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Abstract. We present acreg, a new Stata command that implements the arbitrary
clustering correction of standard errors proposed in Colella et al. (2019).1 Arbi-
trary here refers to the way observational units are correlated with each other: we
impose no restrictions so that our approach can be used with a wide range of data.
The command accommodates both cross-sectional and panel databases and allows
the estimation of OLS and 2SLS coefficients, correcting standard errors in three
environments: in a spatial setting using units’ coordinates or distance between
units; in a network setting starting from the adjacency matrix; and in a multi-way
clustering framework taking multiple clustering variables as input. Distance and
time cutoffs can be specified by the user and linear decay in time and space are
also optional.

Keywords: acreg, inference, arbitrary correlation, geospatial data, network data

1 Introduction

Thanks to increasing computational power, databases have become more and more
complex in the past decades. They nowadays embed convoluted correlation structures
between observational units that were not common before. For example, fueled by
the growing availability of geocoded data and the integration of geographic informa-
tion systems (GIS) in the toolkit of economists, empirical works using spatial data are
proliferating in fields like development economics, urban economics, and economic his-
tory. Other examples of new correlation structures pertain to network data: individuals
are linked, and these links are now measurable through social networks, mobile data,
co-working relations or co-authorships.

Statistical inference in these environments is challenging because the underlying data
generating process is often unknown and researchers need to make assumptions about
the relationship between observations. Available methods to address the correlation
between objects build on the sandwich-type variance-covariance estimator proposed by

1. Our statistical package (acreg) can be installed directly from the Statistical Software Compo-
nents (SSC) archive by typing ssc install acreg. Complementary material may be found at the
dedicated website: https://acregstata.weebly.com.

https://acregstata.weebly.com/
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White (1980). The most common approach is standard clustering (Cameron and Miller
2015) which defines clusters as groups of linked observations that share a common
characteristic. With spatial data, a frequently used approach has been developed by
Conley (1999) who considers a circle around each unit within which the strength of
the dependence between the unit and the surrounding ones is specified. In the case of
network data, the practice is less developed; many studies simply do not correct for the
potential correlation of unobserved shocks across linked observations.

In our companion paper Colella et al. (2019), we explore pitfalls and provide guide-
lines for conducting inference in complex settings, allowing for any type of topological
and temporal dependence between observational units in large samples. Our arbitrary
clustering approach builds on the seminal insight by White (1980), using estimated re-
gression errors and knowledge on the clustering structure to re-construct estimates of the
unknown elements of the sandwich formula. We perform extensive Monte Carlo simula-
tions for both spatial and network data structures, e.g. U.S. counties and co-authorship
in economics. Our simulation results show that arbitrary clustering inference dominates
inference based on conventional estimators.

In this current article, we present our new user-written command acreg that imple-
ments the arbitrary clustering correction of standard errors proposed in Colella et al.
(2019). We also provide several examples of how to use it. Our command accommo-
dates OLS and 2SLS estimations and is designed to deal with network clustering and
several clustered covariance matrix estimators (Bester et al. 2011), including multi-way
clustering (Cameron et al. 2011), spatial clustering (Conley 1999) and HAC (Newey and
West 1987).

In network settings, we are not aware of any existing Stata routine designed to correct
standard errors starting from the knowledge of the binary links between observations.

In spatial settings, there are three user-written Stata commands available (Conley
1999; Hsiang 2010 and Fetzer 2015): however, they suit only OLS estimation. In
addition, they all have pre-set options that are not desirable in all settings. In particular
the commands by Conley 1999 and Fetzer 2015 impose a linear decay in the correlation
structure between units (Bartlett), while Hsiang 2010 and Fetzer 2015 set a time decay
(HAC ) as default.2 In comparison with those commands, acreg is more flexible as
it enables the users to freely set the type of correlation structure and decay across
observations and time. Moreover, in presence of multiple cross-sectional observational
units sharing the same geo-location, our command provides consistent standard errors,
replicating the heteroskedasticity-robust standard errors from ivreg2 (Baum et al. 2003)
when the distance correction is set to zero, while the programs by Conley 1999; Hsiang
2010 and Fetzer 2015 do not. Stata 15 introduced a series of commands, named sp, to
model spatial relations between objects using spatial autoregressive models (SAR). These
models allow for spatial lags of the dependent variable, which modifies point estimates,
or for spatial autocorrelation in the errors. The command closest to ours, spregress,
allows only for heteroskedasticity-robust and asymptotic maximum-likelihood theory-
driven standard errors. Conversely, acreg does not modify the point estimates but

2. Conley 1999 allows to correct for only cross-sectional dependence and not time dependence.
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improves inference by computing standard errors corrected for spatial correlation.
Concerning multi-way cluster robust standard errors, ivreg2 and xtivreg2, allow

the user to specify up to two cluster variables (i.e., two-way clustering). The user-written
command by Colin Cameron, cmreg, instead accommodates multi-way clustering but
suits only OLS estimation and does not allow for the estimation of 2SLS models. acreg
instead can be used to estimate both OLS and 2SLS coefficients correcting standard
errors for an infinite number of cluster dimensions.

The rest of this article is organized as follows. In section 2, we review the arbitrary
clustering method developed in Colella et al. (2019). In section 3, we provide a detailed
description of the syntax of acreg. In section 4, we offer an illustration of our command
with several examples in the spatial and the network settings: we show how options
of our command can be used to suit many models of correlation structure. Finally, in
section 5, we conclude.

2 Estimator for the Variance-Covariance Matrix

Here we present the estimator of the variance-covariance (VCV) proposed in Colella
et al. (2019). The proposed estimator builds on the seminal insight from White (1980)
and can be seen as an extension of the one-way or multi-way clustering (Cameron et al.
2011) that includes also spatial clustering (Conley 1999).3

In our setting, each observation can be correlated to any other and the strength of
their correlation is a function of both time and distance. We define a matrix S containing
information on cross-observation correlations in errors. With spatial data, S is built
from information on the geographic distance between spatial units, e.g., regions, cities,
and countries; while in a network context, it reflects the direct links between observations
at different degrees. acreg computes the matrix S starting from the position of objects
in space, using their coordinates, or from the link structure in a network; it also allows
the user to define the matrix S to accommodate more complex correlation structures.
Entries of the S matrix range from 0 to 1: this measure represents the strength of
the correlation between two units and is inversely proportional to their distance. The
diagonal of S is a vector of ones, reflecting the self-links.

Consider n observations at each t instant of time T from the following linear model:

y = Xβ + ϵ

where we observe each unit i several times in different periods t. y is a dependent
variable, and X is a matrix of k linearly independent components. X could include a

3. We do not provide any theoretical or empirical validation of our approach here. In Colella et al.
(2019) we show results of extensive Monte Carlo simulations based on real-life data on U.S.
metropolitan areas, or on co-authors in Economics. We show that our arbitrary clustering es-
timator of the VCV yields inference at the correct significance level in moderately sized samples,
and it always dominates other commonly used approaches to inference. We provide guidance to
the applied practitioners on how to cluster and to make reasonable assumptions on the error dis-
tribution in absence of prior knowledge about the data generating process.
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long list of dummies for each unit, in case we are interested in the within estimates in
a Panel dataset. The OLS estimator can be written as follow:

bOLS = (X ′X)−1X ′y

and the theoretical VCV of the bOLS is:

V CV (bOLS) = (X ′X)−1X ′ΩX(X ′X)−1

where Ω ≡ E(ϵϵ′|X) is the unknown VCV of ϵ.

The VCV is estimated by the following sandwich estimator (White 1980):

V̂ CV (bOLS) = (X ′X)−1X ′(S × (ee′))X(X ′X)−1

where e ≡ y − XbOLS represents the vector of residuals and where S is the pattern
matrix, and × is element-by-element matrix multiplication. The key element of this
estimator is the middle part X ′(S × (ee′))X.

X ′(S × (ee′))X =

n∑
i=1

T∑
t=1

n∑
j=1

T∑
s=1

xiteitejsx
′
jssitjs

where xit is the (column) vector of regressors, and x′
it is the row it in matrix X.

This framework can also be used in situations with endogeneity. We refer the reader
to our paper (Colella et al. 2019) for an illustration of the 2SLS version of the estimator.

3 The acreg command

acreg requires the installation of the latest versions of ranktest, ivreg2 (Baum et al.

2003), and hdfe (Correia 2016). To check whether the most up-to-date versions of these

packages are installed (and to install them if they are not), please type acregpackcheck

after having installed acreg.

3.1 Syntax

acreg depvar [varlist1 ] [(varlist2 = varlist iv)] [if ] [in] [fweight pweight ] .

[, id(idvar) time(timevar) spatial network latitude(latitudevar) longitude(longitudevar)

links mat(varlist links) dist mat(varlist distances) dist(#) lag(#) weights(varlist weights)

cluster(varlist cluster) hac bartlett nbclust(#) pfe1(fe1var) pfe2(fe2var) correctr2

dropsingletons storeweights storedistances]
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� depvar is the dependent variable.

� varlist1 is the list of exogenous variables.

� varlist2 is the list of endogenous variables.

� varlist iv is the list of exogenous variables used with varlist1 as instruments for
varlist2.

3.2 Options

Panel

� idvar is the cross-sectional unit identifier; required in panel setting.

� timevar is the time unit variable; required in panel setting.

If idvar and timevar are not specified, the model is assumed to be cross-sectional.

Spatial Environment

� spatial specifies that the environment is a spatial one; not required if arbi-
trary cluster correction is not performed or in the case it is if varlist weights,
varlist cluster, or network option is specified.

� latitudevar is the variable containing the latitude of each observation in decimal
degrees: range[-180.0, 180.0].

� longitudevar is the variable containing the longitude of each observation in dec-
imal degrees: range[-180.0, 180.0].

� varlist distances is the list of N variables containing bilateral distances between
observations. In the spatial environment, bilateral distance is the spatial distance
between observations, e.g., physical or travel distance between two locations. (In
the network environment, it is the network distance between observations, i.e., the
number of links along the shortest path between two nodes.)

� dist(#) specifies the distance cutoff beyond which the correlation between the
error terms of two observations is assumed to be zero; required if latitude and lon-
gitude are specified or if dist mat is specified. The distance cutoff is in kilometers
if latitude and longitude are specified. It can be in any other meaningful metric
if bilateral distances are specified.

� lag(#) specifies the time lag cutoff for observations with the same idvar; not
required in the cross-sectional environment; default is 0 in panel environment, i.e.
when id and time options are specified. In the panel environment when timecutoff
is 0 or not specified, standard errors are clustered at id × time level.

Network Environment

� network specifies that the environment is a network one; not required if arbi-
trary cluster correction is not performed and in the case it is if varlist weights,
varlist cluster, or spatial option is specified.
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� varlist links is the list of N dummy variables specifying the links between
observations, i.e., the adjacency matrix. The links between two units can change
over time. However, if distcutoff is set to be greater than one: only the first
observation in time of each individual will be used as input to compute the bilateral
distance between two nodes.

� varlist distances is the list of N variables containing bilateral distances be-
tween observations. In the network environment, bilateral distance is the network
distance between observations, i.e., the number of links along the shortest path
between two nodes. (In the spatial environment, it is the spatial distance between
observations, i.e. the distance between two locations.)

� dist(#) specifies the distance cutoff (geodesic paths) beyond which the correla-
tion between the error terms of two observations is assumed to be zero; required if
dist mat is specified; optional if links mat is specified; default is 1 in the network
environment. When links mat is specified and distcutoff is greater than 1, acreg
computes automatically the bilateral distance between two nodes.

� lag(#) specifies the time lag cutoff for observations with the same idvar; not
required in the cross-sectional environment, default in panel environment is 0, i.e.
when id and time options are specified. In the panel environment when timecutoff
is 0 or not specified, standard errors are clustered at id × time level.

Multiway Clustering Environment

� varlist cluster is the list of variables to use for multiway clustered standard errors;
not required if arbitrary cluster correction is not performed and in the case it is
if spatial option, network option, or varlist weights is specified.

Arbitrary Clustering Environment

� varlist weights is the list of N × T variables containing the weights that will be
used for error correction; not required if the spatial option, network option, or
varlist cluster is specified. The N × T variables need to follow the same order of
the observations.

Correlation Structure

� hac reports Heteroskedasticity and Autocorrelation Corrected (HAC) standard
errors; lagcutoff will be the temporal decay; requires id, time, and lagcutoff.

� bartlett imposes a distance linear decay between observations within the cutoff
in the correlation structure.

� nbclust(#) is the number of clusters used to compute the Kleibergen-Paap
statistic in case of arbitrary cluster correction; default is 100.

High-Dimensional Fixed Effects

� fe1var identifies the first high-dimensional fixed effects variable to be partialled
out.
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� fe2var identifies the second high-dimensional fixed effects variable to be partialled
out.

� correctr2 when pfe1 or pfe2 are specified the r-squared is computed on the
“partialled out sample”. This option reports the correct r-squared, i.e. the pre-
partialling out r-squared. Not allowed with fweights.

� dropsingletons drops singleton groups when pfe1 (and pfe2) is (are) specified.

Storing

� storeweights stores the computed weights used to correct the VCV for arbitrary
cluster correlation as a matrix under the name weightsmat, which may be used as
input for the option varlist weights; optional only if the spatial option, network
option, or varlist cluster is specified.

� storedistances stores the computed distances used to correct the VCV for
arbitrary cluster correlation as a matrix under the name distancesmat, which may
be used as input for the option varlist distances; optional only if the spatial option
or network is specified and varlist distances is not specified.

3.3 Stored results

acreg stores the following in e():

Scalars

� e(N) number of observations

� e(mss) model sum of squares (centered)

� e(mssu) model sum of squares (uncentered)

� e(rss) residual sum of squares

� e(tss) total sum of squares (centered)

� e(tssu) total sum of squares (uncentered)

� e(r2) centered R2 (1-rss/tss)

� e(r2u) uncentered R2

� e(widstat) Kleibergen-Paap Wald rk F statistic

Matrices

� e(b) coefficient vector

� e(V) corrected variance-covariance matrix of the estimators

Functions

� e(sample) marks estimation sample
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4 Examples

We illustrate the use of our command in four environments: spatial and network settings,
both in cross-sectional and panel contexts. In every environment, we estimate the same
equation imposing different assumptions on the error correlation structure: iid, standard
clustering, and arbitrary clustering.

4.1 Spatial Environment, Cross-Sectional Setting

For this example, we use the data on the homicides in southern states of the U.S.
homicide 1960 1990.dta available at the STATA website. Data contain, among others,
the county-level homicide rate per year per 100,000 persons (hrate), the population
in logs (ln population), the logarithm of the average income (ln income), the unem-
ployment rate (unemployment), and the average age (age). This dataset is an extract
of the data originally used by Messner et al. (1999) and concerns 4 different periods
(1960, 1970, 1980, 1990). We consider only the cross-sectional database for 1990 and
we estimate the effect of income on homicide rate, controlling for population, and age.
For the sake of illustration, we claim that income is endogenous and we assume that
unemployment is a valid instrument for it. Figure 1 shows the spatial dependency of
the outcome variable, the endogenous regressor, and the instrument.

We first estimate the model assuming that observations’ errors are uncorrelated.4

. use http://www.stata-press.com/data/r15/homicide1990.dta , clear
(S.Messner et al.(2000), U.S southern county homicide rates in 1990)

. acreg hrate ln_population age (ln_income=unemployment)
HETEROSKEDASTICITY ROBUST STANDARD ERRORS
No HAC Correction
No Absorbed FEs
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 990.487

Number of obs = 1412
Total (centered) SS = 69908.59003 Centered R2 = 0.1079
Total (uncentered) SS = 198667.4579 Uncentered R2 = 0.6861
Residual SS = 62363.84851

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

ln_income -8.822082 1.35491 -6.51 0.000 -11.47766 -6.166507
ln_population 1.404433 .2769494 5.07 0.000 .861622 1.947244

age -.281615 .050726 -5.55 0.000 -.381036 -.1821939
_cons 94.4605 12.42859 7.60 0.000 70.10091 118.8201

We now estimate the model above clustering standard errors by state.5

4. This is equivalent to using ivreg2 (Baum et al. 2003) and the following syntax: ivreg2 hrate

ln population age (ln income=unemployment), robust

5. This is equivalent to using ivreg2 (Baum et al. 2003) and the following syntax: ivreg2 hrate

ln population age (ln income=unemployment), cluster(sfips). We are aware that the number
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Figure 1: Homicide rate, log income, and unemployment in 1990 for southern U.S.
counties

(a) Homicide rate

(b) Income

(c) Unemployment
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. acreg hrate ln_population age (ln_income=unemployment), cluster(sfips)
MULTIWAY CLUSTERING CORRECTION
Cluster variable(s): sfips
No HAC Correction
No Absorbed FEs
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 143.959

Number of obs = 1412
Total (centered) SS = 69908.59003 Centered R2 = 0.1079
Total (uncentered) SS = 198667.4579 Uncentered R2 = 0.6861
Residual SS = 62363.84851

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

ln_income -8.822082 1.801762 -4.90 0.000 -12.35347 -5.290693
ln_population 1.404433 .3090553 4.54 0.000 .7986955 2.01017

age -.281615 .1303804 -2.16 0.031 -.5371558 -.0260741
_cons 94.4605 17.89048 5.28 0.000 59.3958 129.5252

We now estimate the model above using a spatial correction following Conley (1999),
with a threshold of 100 kilometers. This means that the error of each county is assumed
to be correlated with the counties that are located within a radius of 100 kilometers
from it.

. acreg hrate ln_population age (ln_income=unemployment), ///
> spatial latitude(_CX) longitude(_CY) dist(100)
SPATIAL CORRECTION
DistCutoff: 100
LagCutoff: 0
No HAC Correction
No Absorbed FEs
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 112.917

Number of obs = 1412
Total (centered) SS = 69908.59003 Centered R2 = 0.1079
Total (uncentered) SS = 198667.4579 Uncentered R2 = 0.6861
Residual SS = 62363.84851

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

ln_income -8.822082 2.357644 -3.74 0.000 -13.44298 -4.201183
ln_population 1.404433 .4689154 3.00 0.003 .4853754 2.32349

age -.281615 .109112 -2.58 0.010 -.4954706 -.0677594
_cons 94.4605 21.86325 4.32 0.000 51.60932 137.3117

of states (clusters) is small and inference would suffer from it, but this is irrelevant to the scope of
this exercise.
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Additional options

Thresholds. If we want to account for correlation between counties at a greater dis-
tance, we can increase the distance cutoff using the dist() option. In the following
example, we allow for a radius of 200 kilometers.

. acreg hrate ln_population age (ln_income=unemployment), ///
> spatial latitude(_CX) longitude(_CY) dist(200)

. estimates store sp1

Bartlett. In previous examples the matrix used for the computation of the variance-
covariance matrix is binary: for each county pair, it contains 1 if they are located within
the distance threshold from each other and 0 otherwise. acreg allows for weights in the
matrix to linearly decrease as the distance between units increases. To do that we only
need to add the option bartlett to the syntax.

. acreg hrate ln_population age (ln_income=unemployment), ///
> spatial latitude(_CX) longitude(_CY) dist(200) bartlett

. estimates store sp2

Partial out high dimensional fixed effects. acreg allows for adding high dimen-
sional fixed effects and partial them out, using the hdfe command by Correia (2016).
Up to two fixed effects variables can be specified through the options pfe1() and pfe2().
In the example below we estimate the previous model by adding state fixed effects.

. acreg hrate ln_population age (ln_income=unemployment), ///
> spatial latitude(_CX) longitude(_CY) dist(100) pfe1(sfips)

. estimates store sp3

The following code reports the result of the three estimations in this subsection:

. esttab sp1 sp2 sp3, cells(b se) keep(ln_income ln_population age) mtitles(spatial bartlett FE)

(1) (2) (3)
spatial bartlett FE

b/se b/se b/se

ln_income -8.822082 -8.822082 -13.88229
2.733507 2.313018 1.835268

ln_populat~n 1.404433 1.404433 1.649735
.4834539 .4388646 .4000578

age -.281615 -.281615 -.178832
.1223503 .1015135 .0960779

N 1412 1412 1412

4.2 Spatial Environment, Panel Setting

For this example we use the same database we used in the previous section:
homicide 1960 1990.dta. We estimate again the effect of income on homicide rate, con-
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trolling for population and age and we assume that unemployment is a valid instrument
for it. Compared to the previous section, we now use all four waves of the dataset.

Pooled model

We first consider a pooled model in which we do not include any Random or Fixed Ef-
fects. We first estimate the model assuming that observations’ errors are uncorrelated.6

. use http://www.stata-press.com/data/r15/homicide_1960_1990.dta, clear
(S.Messner et al.(2000), U.S southern county homicide rate in 1960-1990)

. acreg hrate ln_population age (ln_income=unemployment)
HETEROSKEDASTICITY ROBUST STANDARD ERRORS
No HAC Correction
No Absorbed FEs
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 289.132

Number of obs = 5648
Total (centered) SS = 286387.1082 Centered R2 = -0.0447
Total (uncentered) SS = 781008.6785 Uncentered R2 = 0.6169
Residual SS = 299188.6495

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

ln_income 3.83872 .7815313 4.91 0.000 2.306947 5.370494
ln_population -.4411802 .1968992 -2.24 0.025 -.8270955 -.055265

age -.4626917 .0637006 -7.26 0.000 -.5875425 -.3378408
_cons -7.265041 4.126029 -1.76 0.078 -15.35191 .8218268

We now estimate the same model, but we use the panel feature of acreg to account for
autocorrelation between observations from the same county over time.7 We assume no
correlation across counties. We specify the option id() with the county id, the option
time() with the year variable and the option lag() with a number greater or equal
than the maximum lag between observations, which in this case is 30.8

. acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year) lagcut(30)
TEMPORAL CORRECTION
No HAC Correction
No Absorbed FEs
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 210.438

Number of obs = 5648
Total (centered) SS = 286387.1082 Centered R2 = -0.0447

6. This is equivalent to using ivreg2 (Baum et al. 2003) and the following syntax: ivreg2 hrate

ln population age (ln income=unemployment), robust

7. The estimation of the betas does not change with respect to the previous model, acreg is only used
for the computation of the standard errors.

8. This is equivalent to using ivreg2 (Baum et al. 2003) and the following syntax: ivreg2 hrate

ln population age (ln income=unemployment), cluster( ID). Alternatively, using acreg and the
following syntax: acreg hrate ln population age (ln income=unemployment), cluster( ID)
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Total (uncentered) SS = 781008.6785 Uncentered R2 = 0.6169
Residual SS = 299188.6495

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

ln_income 3.83872 .921289 4.17 0.000 2.033027 5.644414
ln_population -.4411802 .2513095 -1.76 0.079 -.9337379 .0513774

age -.4626917 .0787756 -5.87 0.000 -.617089 -.3082943
_cons -7.265041 4.832603 -1.50 0.133 -16.73677 2.206687

We now extend the model above, which takes into account autocorrelation over time,
by adding the spatial correction proposed by Conley (1999), with a threshold of 100
kilometers. This means that the error term of each county at a given year is assumed
to be correlated with those of all the counties that are located within a radius of 100
kilometers from it observed at the same year while simultaneously correcting for auto-
correlation over time for each county. We assume the correlation between near counties
but observed at different points in time to be zero.

. acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year) lagcut(30) ///
> spatial latitude(_CX) longitude(_CY) dist(100)
SPATIAL CORRECTION
DistCutoff: 100
LagCutoff: 30
No HAC Correction
No Absorbed FEs
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 24.838

Number of obs = 5648
Total (centered) SS = 286387.1082 Centered R2 = -0.0447
Total (uncentered) SS = 781008.6785 Uncentered R2 = 0.6169
Residual SS = 299188.6495

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

ln_income 3.83872 1.810937 2.12 0.034 .2893488 7.388092
ln_population -.4411802 .3871668 -1.14 0.254 -1.200013 .3176528

age -.4626917 .1425257 -3.25 0.001 -.742037 -.1833464
_cons -7.265041 9.814094 -0.74 0.459 -26.50031 11.97023

FE model

In the following example we replicate the previous model, accounting for both spatial
and temporal correlation, but we add to the specification the county fixed effects using
the option pfe1.

. acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year) lagcut(30) ///
> spatial latitude(_CX) longitude(_CY) dist(100) pfe1(_ID)
SPATIAL CORRECTION
DistCutoff: 100
LagCutoff: 30
No HAC Correction
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Absorbed FE: _ID
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 49.605

Number of obs = 5648
Total (centered) SS = 144755.2058 Centered R2 = 0.0175
Total (uncentered) SS = 144755.2058 Uncentered R2 = 0.0175
Residual SS = 142223.0274

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

ln_income .2588154 1.149746 0.23 0.822 -1.994645 2.512276
ln_population -1.630949 1.740873 -0.94 0.349 -5.042997 1.781099

age .1466193 .2006033 0.73 0.465 -.2465559 .5397944
_cons -1.31e-17 .1743959 -0.00 1.000 -.3418097 .3418097

nb: total SS, model and R2s are after partialling out.
To get the corrected ones use the option correctr2

We now add to the previous model also time fixed effects using the option pfe2.

. acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year) lagcut(30) ///
> spatial latitude(_CX) longitude(_CY) dist(100) pfe1(_ID) pfe2(year)
SPATIAL CORRECTION
DistCutoff: 100
LagCutoff: 30
No HAC Correction
Absorbed FE: _ID and year
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 3.895

Number of obs = 5648
Total (centered) SS = 136166.339 Centered R2 = -0.0793
Total (uncentered) SS = 136166.339 Uncentered R2 = -0.0793
Residual SS = 146961.8234

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

ln_income -13.30126 17.5969 -0.76 0.450 -47.79055 21.18803
ln_population -1.602695 2.253785 -0.71 0.477 -6.020033 2.814642

age .0038921 .0937463 0.04 0.967 -.1798472 .1876314
_cons -1.11e-15 .128699 -0.00 1.000 -.2522454 .2522454

nb: total SS, model and R2s are after partialling out.
To get the corrected ones use the option correctr2

Additional Options

Thresholds. Now we account for spatial correlation between observations of the same
year without accounting for any temporal correlation. We do this by setting the lagcutoff
at 0.9

9. The result differs from the one obtained in the cross-sectional environment (acreg hrate

ln population age (ln income=unemployment), spatial latitude( CX) longitude( CY)

dist(100)) because the spatial correlation is assumed to be present only between observa-
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. acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year) lagcut(0) ///
> spatial latitude(_CX) longitude(_CY) dist(100)

. estimates store spp1

Now we account for spatial correlation between observations of the same year, and
also for temporal correlation between observations from the same county, but only
between neighbor decades, i.e. two observations from the same county are assumed to
be correlated only if they are observed with less than 10-year difference.10 We do that
by setting the lagcutoff equal to 10.

. acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year) lagcut(10) ///
> spatial latitude(_CX) longitude(_CY) dist(100)

. estimates store spp2

HAC. In the previous examples the matrix used for the computation of the variance-
covariance matrix is binary. We can use the option hac to have a linear decay in time
and compute Heteroscedasticity-Autocorrelation-Consistent standard errors, following
Newey and West (1987).

. acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year) lagcut(30) ///
> spatial latitude(_CX) longitude(_CY) dist(100) hac

. estimates store spp3

The following code reports the result of the three estimations in this subsection.

. esttab spp1 spp2 spp3, cells(b se) keep(ln_income ln_population age) mtitles(lag0 lag10 hac)

(1) (2) (3)
lag0 lag10 hac
b/se b/se b/se

ln_income 3.83872 3.83872 3.83872
1.743993 1.801373 1.785354

ln_populat~n -.4411802 -.4411802 -.4411802
.3542752 .377059 .3727145

age -.4626917 -.4626917 -.4626917
.1347804 .1403627 .139132

N 5648 5648 5648

4.3 Network Environment, Cross-sectional Setting

For this example, we use a dataset of co-offending in a London-based youth gang. Data
were collected by James Densley and Thomas Grund. The data have been used in Grund
and Densley (2012) and Grund and Densley (2015). Information on 54 individuals is
reported, two individuals are recorded to be linked if they committed at least a crime
together. Data contains, among others, the age (Age), the birthplace (Birthplace),

tions from the same year.
10. This would allow an observation’s error term to be correlated with all other observations within

10-year lags and 10-year leads from the same county.
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the number of arrests (Arrests), the number of convictions (Convictions), and the
position in the gang’s internal hierarchy (Ranking). The symmetric binary links consti-
tuting the co-offending network are stored in 54 variables ( net2 1- net2 54). Figure
2 presents the distribution of the variables Arrest and Ranking within the network. In
this example we want to estimate the effect of ranking on arrests, controlling for age,
residence, and birthplace FEs.

Figure 2: Gang Network

(a) Arrest (b) Ranking

Notes: In panel (a), blue dots represent arrested people. In panel (b), darker red

dots identify a greater position in the ranking.

The code below is necessary to load the dataset (webnwuse gang), load the network
(nwload gang) and replace the diagonal of the adjacency matrix with ones (the loop).
This is needed because the original database does not contain self-links.

. webnwuse gang

Loading successful

(2 networks)

gang_valued
gang

. nwload gang

. forvalues j = 1(1)54 {
2. qui replace _net2_`j´ = 1 in `j´
3. }

We first estimate the model assuming that observations’ errors are uncorrelated.11

. acreg Arrest Ranking Age Residence i.Birthplace
HETEROSKEDASTICITY ROBUST STANDARD ERRORS
No HAC Correction
No Absorbed FEs
Included instruments: Ranking Age Residence 1b.Birthplace 2.Birthplace 3.Birthplace 4.Birthplace

11. This is equivalent to using ivreg2 (Baum et al. 2003) and the following syntax: ivreg2 Arrest

Ranking Age Residence i.Birthplace, robust
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Number of obs = 54
Total (centered) SS = 2196.537037 Centered R2 = 0.2442
Total (uncentered) SS = 7497 Uncentered R2 = 0.7786
Residual SS = 1660.198039

Arrests Coefficient Std. err. z P>|z| [95% conf. interval]

Ranking -2.168476 .8207074 -2.64 0.008 -3.777033 -.5599192
Age .7665194 .3094139 2.48 0.013 .1600793 1.372959

Residence -1.534665 1.561649 -0.98 0.326 -4.59544 1.526111

Birthplace
Caribbean 0 (empty)

East Africa -.2523035 2.869505 -0.09 0.930 -5.87643 5.371822
UK .7012659 2.228246 0.31 0.753 -3.666016 5.068548

West Africa .8171717 2.012521 0.41 0.685 -3.127297 4.76164

_cons 2.317286 7.506876 0.31 0.758 -12.39592 17.03049

We now estimate the same model using the standard-error correction proposed in our
paper (Colella et al. 2019). We assume that the error term of each observation is
correlated with that of another if they are linked in the network. To implement this
in acreg, we provide the variables containing the adjacency matrix as input in the
links mat option and set distcutoff equal to 1.

. acreg Arrest Ranking Age Residence i.Birthplace, network links_mat(_net2_*) dist(1)
NETWORK CORRECTION
DistCutoff: 1
LagCutoff: 0
No HAC Correction
No Absorbed FEs
Included instruments: Ranking Age Residence 1b.Birthplace 2.Birthplace 3.Birthplace 4.Birthplace

Number of obs = 54
Total (centered) SS = 2196.537037 Centered R2 = 0.2442
Total (uncentered) SS = 7497 Uncentered R2 = 0.7786
Residual SS = 1660.198039

Arrests Coefficient Std. err. z P>|z| [95% conf. interval]

Ranking -2.168476 .7132431 -3.04 0.002 -3.566407 -.7705455
Age .7665194 .3730319 2.05 0.040 .0353904 1.497648

Residence -1.534665 1.618858 -0.95 0.343 -4.707568 1.638239

Birthplace
Caribbean 0 (empty)

East Africa -.2523035 2.258789 -0.11 0.911 -4.679449 4.174842
UK .7012659 2.984775 0.23 0.814 -5.148785 6.551317

West Africa .8171717 2.260143 0.36 0.718 -3.612627 5.24697

_cons 2.317286 7.825902 0.30 0.767 -13.0212 17.65577
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Additional Options

Accounting for degree grater than one. Each node of a network has a certain num-
ber of links that connects it to other nodes. This number is called the degree k of a
node. acreg allows the user to account for correlation between two observations that
are not necessarily directly linked but are linked through other observations. Starting
from the same 0-1 adjacency matrix used in the previous example, we now want to al-
low for correlation also between individuals that are linked through another individual
(degree 2). To do that we will use the same syntax but we change the distcutoff to 2.

. acreg Arrest Ranking Age Residence i.Birthplace, network links_mat(_net2_*) dist(2)

. estimates store ne1

Bartlett. In previous examples the matrix used for the computation of the variance-
covariance matrix is binary: it contains values 1 for each pair of individuals that are
first or second degree linked, and zeros otherwise. acreg allows for weights in the matrix
to linearly decrease as the network distance increases.12 To do that in our sample, i.e.,
having ones for first degree linked observations and 0.5 for second degree ones we will
use the option bartlett.

. acreg Arrest Ranking Age Residence i.Birthplace, network links_mat(_net2_*) dist(2) ///
> bartlett

. estimates store ne2

Partial out high dimensional fixed effects. acreg allows for adding high dimen-
sional fixed effects and partial them out, using the hdfe command by Correia (2016):
up to two fixed effects variables can be specified through the options pfe1() and pfe2().
In the example below we estimate the previous model partialing out birthplace FEs in-
stead of adding them as dummies in the main regression.

. acreg Arrest Ranking Age Residence, network links_mat(_net2_*) dist(1) pfe1(Birthplace)

. estimates store ne3

The following code reports the result of the three estimations in this subsection.

. esttab ne1 ne2 ne3, cells(b se) keep(Ranking Age Residence) ///
> mtitles(degree2 bartlett FE)

(1) (2) (3)
degree2 bartlett FE

b/se b/se b/se

Ranking -2.168476 -2.168476 -2.168476
.4801238 .7688551 .7132431

Age .7665194 .7665194 .7665194
.4001636 .3427023 .3730319

Residence -1.534665 -1.534665 -1.534665
2.138931 1.590511 1.618858

12. With distance here we refer to the strength of the link: first degree is distance 1, second degree is
distance 2, etc...
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N 54 54 54

4.4 Network Environment, Panel Setting

For this section we use an ad-hoc database that can be downloaded from our command’s
website. It is a balanced panel dataset of 1000 observations (NT ) referring to 100 (N )
individuals at 10 (T ) points in time. Individuals are identified through the variable
id, while time is identified through the variable time. Database also contains, among
others, the following variables Y it, X1 it, End it, and IV it. The symmetric binary
links constituting the network are stored in 100 (N ) variables (clus 1-clus 100). In
this example we want to estimate the effect of End it on Y it, controlling for X it. We
claim that End it is endogenous and we assume that IV it is a valid instrument for it.

Pooled model

We first consider a pooled model in which we do not include any Random or Fixed
Effects. We first estimate the model assuming that observations’ errors are uncorre-
lated.13

. use https://acregstata.weebly.com/uploads/2/9/1/6/29167217/acregfakedata.dta, clear

. acreg Y_it X1_it (Z_it=IV_it)
HETEROSKEDASTICITY ROBUST STANDARD ERRORS
No HAC Correction
No Absorbed FEs
Included instruments: X1_it
Instrumented: Z_it
Excluded instruments: IV_it
Kleibergen-Paap rk Wald F statistic: 37.874

Number of obs = 1000
Total (centered) SS = 2834382.139 Centered R2 = 0.4913
Total (uncentered) SS = 4195421.4 Uncentered R2 = 0.6563
Residual SS = 1441795.144

Y_it Coefficient Std. err. z P>|z| [95% conf. interval]

Z_it 1.02863 .2409828 4.27 0.000 .5563128 1.500948
X1_it 1.228864 .3320382 3.70 0.000 .5780809 1.879647
_cons 11.61852 3.013075 3.86 0.000 5.713007 17.52404

We now estimate the same model accounting for correlation between errors from obser-
vations of the same individual (id). We still assume that there is no correlation between
individuals and do not consider the network structure yet. To do this, we use the panel
features (options id() and time) and we set the lag() option to be greater than or
equal to the maximum distance in time between observations, which in this case is 10.14

13. This is equivalent to using ivreg2 (Baum et al. 2003) and the following syntax: ivreg2 Y it X1 it

(End it=IV it), robust

14. This is equivalent to clustering by individuals using ivreg2 (Baum et al. 2003) and the fol-
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. acreg Y_it X1_it (Z_it=IV_it), id(id) time(time) lag(10)
TEMPORAL CORRECTION
No HAC Correction
No Absorbed FEs
Included instruments: X1_it
Instrumented: Z_it
Excluded instruments: IV_it
Kleibergen-Paap rk Wald F statistic: 30.295

Number of obs = 1000
Total (centered) SS = 2834382.139 Centered R2 = 0.4913
Total (uncentered) SS = 4195421.4 Uncentered R2 = 0.6563
Residual SS = 1441795.144

Y_it Coefficient Std. err. z P>|z| [95% conf. interval]

Z_it 1.02863 .2720916 3.78 0.000 .4953406 1.56192
X1_it 1.228864 .3779895 3.25 0.001 .4880181 1.96971
_cons 11.61852 3.042037 3.82 0.000 5.656242 17.58081

We now estimate the model above adding to the temporal correlation the correction
for network links as proposed in our paper (Colella et al. 2019). We assume that the
error term of each individual is correlated with that of another individual observed in
the same year if they are linked in the network while accounting for correlation between
errors from observations of the same individual. To implement this in acreg, we provide
the variables containing the adjacency matrix as input in the links mat option and set
distcutoff equal to 1.15 The correlation between linked individuals but observed at
different points in time is still assumed to be null.

. acreg Y_it X1_it (Z_it=IV_it), id(id) time(time) lag(10) ///
> network links_mat(clus*) dist(1)
NETWORK CORRECTION
DistCutoff: 1
LagCutoff: 10
No HAC Correction
No Absorbed FEs
Included instruments: X1_it
Instrumented: Z_it
Excluded instruments: IV_it
Kleibergen-Paap rk Wald F statistic: 22.720

Number of obs = 1000
Total (centered) SS = 2834382.139 Centered R2 = 0.4913
Total (uncentered) SS = 4195421.4 Uncentered R2 = 0.6563
Residual SS = 1441795.144

Y_it Coefficient Std. err. z P>|z| [95% conf. interval]

Z_it 1.02863 .3842782 2.68 0.007 .2754589 1.781802
X1_it 1.228864 .4495232 2.73 0.006 .3478147 2.109913
_cons 11.61852 4.743084 2.45 0.014 2.32225 20.9148

lowing syntax: ivreg2 Y it X1 it (End it=IV it), cluster(id), or acreg: acreg Y it X1 it

(End it=IV it), cluster(id)

15. The total number of observations in the database is NT (1000), but the total number of individuals
is N (100). Since we are using the panel feature, acreg will require a link matrix formed by N
variables, not NT.
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FE model

In the following example we replicate the previous model, accounting for both spatial
and temporal correlation, but we add to the specification the individual fixed effects
using the option pfe1.

. acreg Y_it X1_it (Z_it=IV_it), id(id) time(time) lag(10) ///
> network links_mat(clus*) dist(1) pfe1(id)
NETWORK CORRECTION
DistCutoff: 1
LagCutoff: 10
No HAC Correction
Absorbed FE: id
Included instruments: X1_it
Instrumented: Z_it
Excluded instruments: IV_it
Kleibergen-Paap rk Wald F statistic: 38.899

Number of obs = 1000
Total (centered) SS = 2331112.842 Centered R2 = 0.4938
Total (uncentered) SS = 2331112.842 Uncentered R2 = 0.4938
Residual SS = 1180104.818

Y_it Coefficient Std. err. z P>|z| [95% conf. interval]

Z_it 1.368636 .346849 3.95 0.000 .6888244 2.048448
X1_it .7942328 .3663375 2.17 0.030 .0762245 1.512241
_cons 9.58e-17 1.266864 0.00 1.000 -2.483007 2.483007

nb: total SS, model and R2s are after partialling out.
To get the corrected ones use the option correctr2

We now add to the previous model also time fixed effects using the option pfe2.

. acreg Y_it X1_it (Z_it=IV_it), id(id) time(time) lag(10) ///
> network links_mat(clus*) dist(1) pfe1(id) pfe2(time)
NETWORK CORRECTION
DistCutoff: 1
LagCutoff: 10
No HAC Correction
Absorbed FE: id and time
Included instruments: X1_it
Instrumented: Z_it
Excluded instruments: IV_it
Kleibergen-Paap rk Wald F statistic: 39.988

Number of obs = 1000
Total (centered) SS = 2226516.365 Centered R2 = 0.4935
Total (uncentered) SS = 2226516.365 Uncentered R2 = 0.4935
Residual SS = 1127664.807

Y_it Coefficient Std. err. z P>|z| [95% conf. interval]

Z_it 1.327506 .3119844 4.26 0.000 .7160278 1.938984
X1_it .8232877 .3574087 2.30 0.021 .1227796 1.523796
_cons -7.70e-17 .9797572 -0.00 1.000 -1.920289 1.920289

nb: total SS, model and R2s are after partialling out.
To get the corrected ones use the option correctr2
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Additional Options

Thresholds. Now we still account for network correlation between observations of the
same year, but we do not account for any kind of temporal correlation. We do that by
setting the lagcutoff at 0.

. acreg Y_it X1_it (Z_it=IV_it), id(id) time(time) lag(0) ///
> network links_mat(clus*) dist(1)

. estimates store nep1

Now we account for network correlation between observations of the same year, and
also for temporal correlation between observations from the same individual, but only
if they were observed with a lag lower than 3 years. We do that by setting the lagcutoff
equal to 3.

. acreg Y_it X1_it (Z_it=IV_it), id(id) time(time) lag(3) ///
> network links_mat(clus*) dist(1)

. estimates store nep2

HAC. In the previous examples the matrix used for the computation of the variance-
covariance matrix is binary. We can use the option hac to have a linear decay in time
and compute Heteroscedasticity-Autocorrelation-Consistent standard errors, following
Newey and West (1987).

. acreg Y_it X1_it (Z_it=IV_it), id(id) time(time) lag(3) ///
> network links_mat(clus*) dist(1) hac

. estimates store nep3

The following code reports the result of the three estimations in this subsection.

. esttab nep1 nep2 nep3, cells(b se) keep(X1_it Z_it) mtitles(lag0 lag10 hac)

(1) (2) (3)
lag0 lag10 hac
b/se b/se b/se

Z_it 1.02863 1.02863 1.02863
.3629168 .3783906 .3756538

X1_it 1.228864 1.228864 1.228864
.4116362 .4578899 .4442984

N 1000 1000 1000

4.5 Multiway clustering

In this section, we illustrate the multiway clustering environment. acreg allows for
the traditional one-dimension clustering, two-way clustering and multi-way clustering;
in the latter scenarios, two observations are considered to be correlated if they share
at least one cluster dimension (Cameron and Miller 2015). For this example we use
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again the data on the homicides in southern states of the U.S. homicide 1960 1990.dta
available at the STATA website. As in section 4.1 we consider only the cross-sectional
database for 1990 and we estimate the effect of income on homicide rate, controlling for
population, and age. For the sake of illustration, we claim that income is endogenous
and we assume that unemployment is a valid instrument for it.

Two-way clustering

In this first example we cluster standard errors following two dimensions: state and age.

. use http://www.stata-press.com/data/r15/homicide1990.dta , clear
(S.Messner et al.(2000), U.S southern county homicide rates in 1990)

. acreg hrate ln_population age (ln_income=unemployment), cluster(sfips age)
MULTIWAY CLUSTERING CORRECTION
Cluster variable(s): sfips age
No HAC Correction
No Absorbed FEs
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 141.918

Number of obs = 1412
Total (centered) SS = 69908.59003 Centered R2 = 0.1079
Total (uncentered) SS = 198667.4579 Uncentered R2 = 0.6861
Residual SS = 62363.84851

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

ln_income -8.822082 1.818954 -4.85 0.000 -12.38717 -5.256998
ln_population 1.404433 .2960066 4.74 0.000 .8242705 1.984595

age -.281615 .1315389 -2.14 0.032 -.5394265 -.0238035
_cons 94.4605 17.95901 5.26 0.000 59.26148 129.6595

Multi-way clustering

The example above can be replicated also using the ivreg2 command, by simply typing
ivreg2 hrate ln population age (ln income=unemployment), cluster(sfips age).
However, ivreg2 accomodates a maximum of 2 cluster variables, while acreg allows for
clustering for an infinite number of variables.16 In the following and last example we
cluster standard errors following three dimensions: state, age, and hcount.

. acreg hrate ln_population age (ln_income=unemployment), cluster(sfips age hcount)
MULTIWAY CLUSTERING CORRECTION
Cluster variable(s): sfips age hcount
No HAC Correction
No Absorbed FEs
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment

16. The cgmreg command developed by Collin Cameron allows for multi-way clustering but is not
suitable for 2SLS estimation.
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Kleibergen-Paap rk Wald F statistic: 128.582
Number of obs = 1412

Total (centered) SS = 69908.59003 Centered R2 = 0.1079
Total (uncentered) SS = 198667.4579 Uncentered R2 = 0.6861
Residual SS = 62363.84851

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

ln_income -8.822082 2.240027 -3.94 0.000 -13.21245 -4.431709
ln_population 1.404433 .7062929 1.99 0.047 .0201242 2.788741

age -.281615 .1261689 -2.23 0.026 -.5289014 -.0343285
_cons 94.4605 21.90178 4.31 0.000 51.53379 137.3872

5 Conclusion

In this article, we presented the acreg Stata command: a new user-written routine that
allows for standard error correction in OLS and 2SLS estimation of models with complex
correlation structure. acreg can accommodate in a flexible way dependence of the errors
between units in space or in a network and across time. This command includes most of
the standard options present in previous commands to estimate regression coefficients.
The correlation structure can be inputed by the user in a matrix form or built from
information on the geographic distance between spatial units or from the links between
observations. We also provide a broad collection of examples with both cross-section
and panel data.
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