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Abstract
In numerical relativity simulations with non-trivial matter configurations, one
must solve the Hamiltonian and momentum constraints of the ADM formu-
lation for the metric variables in the initial data. We introduce a new scheme
based on the standard conformal transverse-traceless decomposition, in which
instead of solving the Hamiltonian constraint as a 2nd order elliptic equation
for a choice of mean curvature K, we solve an algebraic equation for K for a
choice of conformal factor. By doing so, we evade the existence and unique-
ness problem of solutions of the Hamiltonian constraint without using the usual
conformal rescaling of the source terms. This is particularly important when
the sources are fundamental fields, as reconstructing the fields’ configurations
from the rescaled quantities is potentially problematic. Using an iterative mul-
tigrid solver, we show that this method provides rapid convergent solutions for
several initial conditions that have not yet been studied in numerical relativity;
namely (a) periodic inhomogeneous spacetimes with large random Gaussian
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scalar field perturbations and (b) asymptotically flat black hole spacetimes with
rotating scalar clouds.

Keywords: numerical relativity, constraints, initial data, cosmology

(Some figures may appear in colour only in the online journal)

1. Introduction

In the Arnowitt–Deser–Misner (ADM) formulation of the Einstein equations [1] a full specific-
ation of the initial conditions requires values for the various metric and matter components to
be provided across a 3D spatial hyperslice of the 3+1D spacetime with normal vector nµ. In
the metric sector, one must provide six values for the spatial metric γij and six for the extrinsic
curvature Kij, plus four for the lapse α and shift βi, where in coordinates adapted to the slicing

ds2 =−(α2 −βiβi)dt
2 + 2βidx

idt+ γijdx
idx j, (1)

and

Kij =−1
2
Lnγij. (2)

One must also specify the initial quantities on the 3D hypersurface in the matter sector.
For example, in the case of ideal fluids, these would be the rest frame pressure and energy
density, which relate directly to elements of the stress energy tensor Tµν . In other cases, the
fundamental quantities are fields from which the stress energy tensor is derived in a non trivial
way, for example, in the case of a scalar field, one must specify the field ϕ and its conjugate
momentum Π, since Tµν is a function of (ϕ, Π) and derivatives.

The matter andmetric sectors cannot be freely and independently specified, but must satisfy
four constraints, the Hamiltonian constraint

H≡(3) R+K2 −KijK
ij− 16πρ= 0, (3)

and the momentum constraints

Mi ≡ Dj
(
Kij− γijK

)
− 8πSi = 0, (4)

where we have set G= c= 1. Here we define the matter quantities ρ= nµnνTµν and Si =
−nµ(γνi+ nνni)Tµν as projections of the stress energy tensor.

Usually a physical problem requires that matter fields and their boundary conditions are
specified, and one must solve the four constraints for the corresponding metric variables4.
Since the four constraints alone are insufficient to specify all of the metric variables listed
above, some components must be chosen either arbitrarily or (if possible) using symmetries
and physical intuition.

Of the 16 metric components that must be specified (counting for completeness the lapse
and shift), eight represent gauge choices, four are related to the two dynamical degrees of
freedom characterising a gravitational field in general relativity and their time derivatives, and
the remaining four are set by the constraints. In most, if not all cases, there exists more than

4 Although it is sometimes useful to take the reverse approach, specifying the metric for a given spacetime, and reverse
engineering the matter configuration to which it corresponds, see e.g. [2]. Depending on the simplicity of the matter
sector, this may or may not be easier than the forward problem—in particular for fundamental fields the configuration
that generates a particular curvature is not necessarily unique.

2



Class. Quantum Grav. 40 (2023) 075003 J C Aurrekoetxea et al

one possible metric solution to the specified matter configuration and boundary conditions—
for example, Kerr and Schwarzschild are both asymptotically flat vacuum solutions, but are
physically different.

The canonical approach that is taken to ameliorate this non-uniqueness is to use a conformal
decomposition of the quantities to set more fundamental quantities that can (hopefully) be
chosen in a more well-motivated way. As described in appendix, the metric is usually decom-
posed into a conformal metric γ̄ij with unit determinant and a conformal factor ψ, whilst the
extrinsic curvature is decomposed into the mean curvature (K= Kii), its transverse-traceless
part (ĀijTT) and longitudinal part (described by a vector potential W i).

Several schemes exist for choosing which variables to set and which to solve for; the most
well-known of which are the Conformal Transverse Traceless (CTT) and Extended Conformal
Thin Sandwich (XCTS) approaches [3, 4]. In the CTT method, the conformally related met-
ric and the mean curvature K are freely chosen, and the Hamiltonian and momentum con-
straints are solved for the conformal factor ψ and the vector potential W i respectively. The
latter XCTS approach is more suited to obtaining equilibrium initial data, and involves solv-
ing the momentum constraint for the shift vector βi in place of W i, and an additional Poisson
equation for the lapse α, in order to obtain a (user-specified) time evolution in the conformal
metric ∂tγ̄ij and mean curvature ∂tK. The solution of the Hamiltonian constraint for the con-
formal factor ψ is essentially the same as in the CTT case, and requires a choice of K and the
conformal metric γ̄ij (see [5–8] for reviews and other implementations [9, 10]).

In this work we propose a different approach to solving the constraints, in which instead
of choosing K and solving for ψ, one does the reverse—choosing an initial profile for the
conformal factorψ and solving for the trace of the extrinsic curvatureK. This results in a simple
algebraic equation for K in place of the elliptic Hamiltonian constraint for ψ, which avoids
many of the issues associated with uniqueness and existence of solutions [11–15], albeit at the
cost of a somewhatmore complicated system for themomentum constraints that is unavoidably
coupled to the Hamiltonian constraint. A physical interpretation of our method is that it gives
the locally Friedmann–Lemâıtre–Robertson–Walker slicing of a cosmological spacetime, with
K2 ∼ ρ, while the proper lengths on the initial spatial hypersurface are specified via the choice
of ψ, which plays the role of the initial (local) scale factor. We have found that in several
physical problems of interest, this makes the solution simpler to obtain, with more robust and
consistent convergence compared to other methods. Moreover, in many cases (in particular,
fundamental fields with large densities) it gives greater control over the initial conditions as
proper lengths are fixed on the initial hypersurface.We call it the ‘CTTKmethod’ to distinguish
it from the traditional CTT approach in which one solves primarily for ψ.

This paper is structured as follows: in section 2 we explain the issues associated with solv-
ing the constraint equations, how these apply for fundamental fields, and the advantages of
our approach. In section 3 we set out our CTTK approach in full, as an adaptation of the CTT
method. In section 4 we demonstrate that our method results in convergence of the solutions in
several cases of physical interest, including cosmological spacetimes with large amplitude per-
turbations and black holes with rotating scalar clouds. We conclude and discuss extensions in
section 7. For readers not familiar with the standard CTT approach, we review its key features
in appendix.

2. Uniqueness and existence of solutions

In the CTT (and CTTK) approaches, the conformal quantities to be specified γ̄ij, ψ, K,W i and
ĀijTT must satisfy relations of the form

3
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8D̄2ψ−ψR̄− 2
3
ψ5K2 +ψ−7ĀijĀ

ij =−16πψ5ρ, (5)

(
∆̄LW

)i− 2
3
ψ6γ̄ijD̄jK= 8πψ10Si, (6)

D̄jĀ
ij
TT = 0 , (7)

where ∆̄L is the vector Laplacian (see equation (A.9)), R̄ and D̄ are the Ricci scalar and the
covariant derivative associated with the conformal metric γ̄ij, and Āij = ĀijTT + D̄iW j+ D̄ jWi−
2
3 γ̄

ijD̄kWk. These coupled, non linear elliptic equations give rise to a number of pitfalls related
to uniqueness and existence of solutions, which we will discuss in detail below.

The basic problem is that, as noted in the Introduction, there are multiple solutions to this
system, and so we need to impose conditions to narrow it down to a single one that is as
close to the physical problem of interest as possible. If we are not careful in how we choose
the free quantities, we will over-restrict the system, and as a result no solutions will exist
to the constraints for the chosen sources and boundary conditions. This is the problem of
existence. On the other hand, if we do not restrict sufficiently, we may end up with non-unique
solutionswhere, even if they are physically equivalent, our numerical solver will have difficulty
consistently converging to a single one. This is the problem of uniqueness, which comes up
most notably in systems with periodic boundary conditions [16].

A tried-and-tested numerical method for the solution of non-linear elliptical differential
equations is to linearise the equations, and iterate from a trial solution until they converge to
the final non-linear solution. If the trial solution is within the domain of convergence (usually
true if the trial is close to the true solution), the method should converge. For example, consider
the Hamiltonian constraint equation (5) in the simplified case with Āij = 0 and γ̄ij = δij,

8∂ j∂jψ− 2
3
ψ5K2 =−16πψ5ρ , (8)

in the domain D with boundary ∂D [17]. This equation is non-linear in ψ, therefore to solve it
numerically we linearise as ψ→ ψ0 + u, such that equation (8) becomes

∂ j∂ju−
(

5
12
ψ4
0K

2 − 10πψ4
0ρ

)
u≡

[
∂ j∂j− q(x)

]
u= σ(ψ0) . (9)

Here the source σ(ψ0) =−2πψ5
0ρ− ∂ j∂jψ0 +(1/12)ψ5

0K
2, which is independent of u, meas-

ures the difference between the trial solution ψ0 and the true solution.
Consider the case with Dirichlet boundary conditions where u is specified on ∂D. Any trial

solution ψ0 must always satisfy the required boundary conditions and hence u(∂D) = 0 is
homogeneous by construction. If a unique solution u can be found for the linearised elliptic
equation, then we correct our trial solution ψ0 → ψ0 + u, and iterate until we converge to a
final solution where u= 0. Suppose ψ0 = ψ∗ is a solution, then σ(ψ∗) = 0 by construction,
and equation (9) reduces to a homogeneous elliptic PDE. This is the relevant case for most
asymptotically flat spacetimes, such as in numerical relativity evolutions of compact binaries
[18]. If q(x)> 0 in D∪ ∂D, then the maximal principle implies that the only solution is the
trivial solution u= 0 and hence ψ∗ exists and is unique. Conversely, in the case in which
q(x)< 0, the linear homogeneous equation becomes [∂ j∂j+ |q(x)|]u= 0, then this cannot be
guaranteed, implying that ψ∗ is not necessarily a unique solution [13, 14, 17, 19]. Notice that
the sign of q(x) depends on the sign of the exponent of ψ in the RHS of equation (8), so this

4
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‘wrong sign’ can be corrected by a suitable rescaling of ρ with additional powers of ψ, as we
will see later5.

Periodic boundary conditions represent a common scenario in many numerical relativity
applications in cosmology when trying to simulate a small representative patch of the whole
spacetime, effectively imposing regularity on the periodic scale [20–46].6 In these cases, we
will often find ourselves in the situation in which the solutions are not unique, for example
operators like ∂ j∂j are not invertible on a torus. Therefore, in many cases the numerical
algorithm will fail to converge and, even when it does, it is not clear that the solution is the
desired physical one. As an example, a different constant value of ψ will result in different
gradient energies for the same inhomogeneous scalar field (coordinate) configuration ϕ(x),
since ρgrad ∼ ψ−4(∂iϕ)

2. In addition, we have a set of four integrability conditions that must
be satisfied—one for Hamiltonian constraint

IH ≡
ˆ
D
dV

(
2
3
ψ5K2 − 16πψ5ρ

)
= 0 , (10)

and three for the momentum constraints7 given by

IMi ≡
ˆ
D
dV

(
2
3
ψ6∂iK+ 8πψ6Si

)
= 0 , (11)

which come from integrating equations (5) and (6) over the domain (note that
´
D ∂

i∂iψ = 0
and we are still considering the simplified case where Āij = 0 and γ̄ij = δij). Suppose that K is a
constant, the momentum constraints impose on Si the restriction that there is no net momentum
in any direction over the spatial slice,

´
D dVψ

6Si = 0. This physical restriction is related to the
assumption of conformal flatness, which would need to be relaxed where other solutions are
of interest. When both K and ψ are not constant, as it could be the case for cosmological
spacetimes containing black holes, equation (11) imposes an extra condition on the first term.
These restrictions on the momentum constraint sources are discussed in greater detail in [16].

In the usual CTT method, a common approach is to uncouple the momentum constraints
from the Hamiltonian constraint by choosing a constant value of the mean curvature K= K̄.
Naively, one could try to choose this constant value such the ‘right sign’ is recovered in
equation (9)

q(x)≡ 5
12
ψ4
0

(
K̄2 − 24πρ

)
> 0. (12)

However, for asymptotically flat spacetimes the value of K̄ is imposed by the boundary condi-
tions to be zero. For periodic boundary conditions the constant choice of K̄ is not free and must
satisfy the integrability condition in equation (10). In effect, this imposes that the constant be
approximately set to a volume averaged value of the energy density ρ̄. The condition for q(x)
can then be rewritten as

q(x)∼ ρ̄− ρ > 0 . (13)

5 A useful framework to understand this is to recast the linear problem using the Fredholm Alternative Theorem.
Consider a self-adjoint linear operator L acting on a vector space u with source σ, Lu= σ, with some boundary
conditions. One of the following statement must be true: either the homogeneous problem Lu= 0 has a non-trivial
solution u ̸= 0 or the inhomogeneous problem Lu= σ has a unique solution. In addition, if no unique solution exists,
a solution exists if and only if the source is orthogonal to the Kernel of the operator

´
D dVũσ = 0, where ũ is the kernel

of L i.e. Lũ= 0.
6 See [47] for an alternative choice of boundary conditions.
7 Note that we have assumed that the ansatz chosen for the vector Laplacian must satisfy

´
D

(
∆̄LW

)
i
dV= 0, in our

case given by equation (A.11).

5
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We see that this cannot be satisfied everywhere on the hyperslice8—by construction there will
be regions where the local value of ρ is smaller than its average ρ̄ and thus q(x)> 0, but also
regions where q(x)< 0 and so often no unique solution can be found.

A standard trick to evade this problem in the case of fluids is to rescale the energy density
[17] by

ρ→ ρ̃ψ−n , (14)

where n> 5 is some positive integer. In this case, the linearised Hamiltonian constraint
equation (9) gets modified such that q(x) now has the ‘right sign’, i.e.

q(x)≡ 1
12
ψ4
0

(
5K2 − 24(5− n)πρ̃ψ−n

0

)
> 0 (15)

and the maximum principle applies. This strategy is useful when one can specify ρ as a fun-
damental quantity which is independent of ψ0. In this case, ρ̃ becomes the freely specifiable
quantity and once the solution for ψ is found, one reconstructs the physical energy density ρ
from (14). As a consequence, a constant choice of ρ̃ generally results in an inhomogeneous
profile for ρ. While the loss of one’s ability to specify a particular configuration for ρ can
be an inconvenience at best, one can still take comfort that the rescaling is one-to-one and
unambiguous.

However, when dealing with a fundamental field ϕ, for example, the energy density ρ itself
is a function of ϕ, Π, V(ϕ) and ψ0. This implies that for any given ρ̃, there exist multiple
possible configurations for ϕ and Π which can reproduce the resulting (and generally spa-
tially varying) ρ. If we add physical restrictions on the fields or their boundary conditions,
the reconstruction of the field configuration may be difficult or in some cases, impossible.
For example, if we start with a system with only potential energy density ρ= V(ϕ), ∂iϕ= 0,
Π= 0, rescaling either the energy density ρ or equivalently the field ϕ by the conformal factor
and imposing the value of the rescaled quantity ϕ̃ will usually result in a space dependent
configuration ϕ(x)∼ ϕ̃ψ(x)−n. This will introduce additional gradient energy density into the
system ρ∼ ψ−4(∂iϕ)

2 +V(ϕ), which we may not want, and moreover may not be compatible
with the boundary conditions (if, for example, we require ϕ= constant on the boundary).

3. CTTK: a new method to solve the ADM constraints

In this section we describe in detail our method for solving the constraints. The method largely
follows the CTT approach—for completeness we review the key elements in appendix. In the
following we restrict ourselves to the case of conformally flat spacetimes (γ̄ij = δij), although
we expect our method to work in the more general case.

In the CTTK approach, we begin with the standard set of constraint equations as in the CTT
method, but instead of solving for ψ for a given K, we do the following:

• In the Hamiltonian constraint we specify a profile for ψ and solve for K.
• In the momentum constraint the contribution of ∂iK is then always non-zero and must be
included as a source.

With this choice, the Hamiltonian constraint reduces from a 2nd order elliptic differential
equation for ψ to an algebraic equation for K where

8 Note that the condition from the linearisation will be different if ρ= ρ(ψ), as it is the case for the gradient energy
density of a scalar field, with ρ∼ ψ−4(∂iϕ)2 and one can choose a constant K̄ that satisfies the integratibility condition
[22–24, 26–28].

6
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K2 = 12ψ−5
0 ∂ j∂ jψ0 +

3
2
ψ−12
0 ĀijĀ

ij+ 24πρ, (16)

with the freedom to choose between an overall collapsing or expanding K=±
√
K2 space-

time9. The advantage of this approach is apparent—an algebraic equation is much simpler to
solve than an elliptic different equation, evading the existence and uniqueness issues we dis-
cussed in section 2. Up to a sign change, a solution can always be found for K as long as the
RHS of equation (16) is positive semi-definite.

Intuitively, such a choice determines the matter densities measured by normal observers
on the initial hyperslices, which depend on the physical problem under consideration. Two
canonical cases are cosmological spacetimes, where ψ0 is simply a spatially constant value
that determines the initial scale factor, and black hole spacetimes, where Brill–Lindquist type
initial data of the form ψ0 = ψBH = 1+M/2r is used ([48], see Solutions with black holes).
Note that in both these cases the Laplacian term in equation (16) is zero, which ensures that
the RHS of equation (16) is never negative and hence a solutions always exists for K.

Since K is spatially varying in general, then even in the case of zero momentum densities
Si = 0, the momentum constraints will have a non-zero source, so they always need to be
solved. The momentum constraint takes the usual linear form(

∆̄LW
)
i
=

2
3
ψ6
0∂iK+ 8πψ6

0Si . (17)

In general solving the momentum constraints in this form is straightforward, and W i can be
obtained via the vector Laplacian decompositions as described in Solving the vector Laplacian.

The choice of initial guess forW i determines the solution that is picked out, which is unaf-
fected by the addition of a constant to W i. The same is not true in the case where different
constant guesses for ψ are chosen in the CTT approach, since they may change the physical
solutions if the energy density is a function of ψ. Another advantage in the case of periodic
spacetimes is that the integrability condition of theHamiltonian constraint IH introduced in the
previous section is now trivially satisfied, whilst the equivalent condition for the momentum
constraints IMi only requires K to be periodic—satisfied by definition—and gives similar
restrictions on the choices of Si as in the CTT method. Note that the CTTK method, if the
integrability conditions are initially satisfied, they will remain satisfied throughout all iteration
steps of the solver, as K will remain periodic (if the sources are periodic) and the second term
in equation (11) is unchanged throughout the solver iterations. Finally, we note that since for
each iterative step we are solving a pair of algebraic (equation (16)) and effectively a Poisson-
like equation with sources (equation (17)), the iterative solution is unique modulo the sign
of K.

Operationally, the approach is as follows: We choose ψ0 and an initial guess for (Wi)0.
We solve the Hamiltonian constraint using equation (16) (which now includes ((Wi)0) and
ψ0 as sources) to find a value for K0, which adds a source to the the momentum constraints
(equation (17)). This is now solved (using the methods of Solving the vector Laplacian) for
(Wi)1. We repeat this process starting now from (ψ0, (Wi)1) and iterate to obtain Kn and (Wi)n
until the solutions converge10, which they do rapidly, even from a naive initial guess ofWi = 0,
as demonstrated in section 4.

9 Provided that K2 does not go to zero across a closed surface, K should not change sign.
10 One could be concerned that the fact that, due to these iterations, the source in the momentum constraint contains
contributions from second derivatives ofW i via ∂iK which should be included in the principle part, but in practise we
do not find that this gives any issues with convergence of the solutions.

7
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The idea of CTTK, setting K algebraically, can be combined with the standard CTTmethod
to produce a ‘hybrid CTTK’ formalism that we have found yields an improvement in conver-
gence rate (when compared to the ‘pure’ CTTK) where there are contributions to the value of
Āij from non-matter sources (e.g. with Bowen–York data or other non-zero transverse-traceless
components). This hybrid form is specified by the following choice:

K2 = 24πρ, (18)

∂ j∂jψ =−1
8
ψ−7ĀijĀ

ij, (19)

where we have explicitly set the expansion K equal to the energy density, while retaining the
elliptic equation of ψ sourced by the Āij terms. The Hamiltonian constraint in this approach,
equation (19), features with the ‘right sign’ and thus always has unique solutions in the inter-
mediate steps as discussed in detail in section 2, and the momentum constraints can be solved
using the same techniques, solving the vector Laplacian.

The disadvantage of using this hybrid approach is that the proper distance on the initial
hyperslice is now not a fixed choice since the final value of ψ ̸= ψ0. As a result, if the sources
ρ and/or Si depends on ψ, e.g. in the case of a fundamental scalar field, one needs to recalculate
ρ and Si after obtainingψ, and iterate until convergence is achieved. Depending on the physical
problem of interest, this can be an acceptable compromise, particularly when the initial trial
ψ0 is close to the true solution.

4. Numerical validation

In this section we discuss the results after implementing the CTTK method using a multigrid
approach built with the chombo library [49]. We discuss two illustrative physical problems,
covering the two key cases of periodic boundaries and asymptotically flat black hole space-
times. In both cases we use non-trivial density and momentum profiles derived from a real
scalar field ϕ(x) and conjugate momentum Π(x), so that

ρ(x) =
1
2
ψ−4(∂iϕ)

2 +
1
2
Π2 +V(ϕ) , (20)

Si(x) =−Π ∂iϕ. (21)

We compute the Hamiltonian (H) and momentum (M≡
√
M2

i ) constraint errors via
equations (3) and (4) and iterate the initial condition solver until their global error norms have
been appropriately reduced. We then perform convergence tests by comparing the local value
of the constraints across the grid for low and high resolutions with NLR and NHR number of
grid points respectively. Both the Hamiltonian and momentum constraints must decrease with
resolution as

lim
∆x→0

HHR

HLR
= lim

∆x→0

MHR

MLR
≈
(
NLR

NHR

)n

, (22)

where n is the order of convergence, limited by the stencils used11.

11 In our case n= 2 due to the red-black linear algorithm in the solver.
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Figure 1. Gaussian random fields in ϕ and Π in a periodic box of size L= 0.12H̄−1

where H̄−1 is the Hubble length averaged over the initial hyperslice. The mass of
the potential is m= 3.45H̄ and the parameters of the perturbations are (ϕmax,ϕmin) =

(−9.96,−10.03)× 10−2MPl and (Πmax,Πmin) = (0.41,0.28)MPlH̄. The colour scale
on the plots is linear. The non-trivial profiles source both energy density ρ and
momentum density Si components of the stress-energy tensor.

5. Gaussian random scalar field and momentum with periodic boundary
conditions

We test the CTTKmethod in a box of length Lwith periodic boundary conditions by simulating
a set of Gaussian random fields in ϕ and Π with a quadratic scalar potential V(ϕ) = m2ϕ2/2,
as shown in figure 1. This field profile sources non-trivial stress-energy components ρ and Si,
and we choose the field parameters so that modes propagate in both directions roughly equally
in the spatial slice—ensuring that the periodic integrability condition for Si is approximately
satisfied.

We choose the conformal factor ψ0 = 1 and thus fix the initial (and final) matter energy
density. We start with the guess Wi = 0, so that in the first iteration Āij = 0. We then solve
the Hamiltonian constraint for K2 via equation (16). This space dependent K, together with
the non-zero Si, now source the momentum constraint, which we solve by decomposing the
vector Laplacian using the ansatz for non-compact sources (equations (A.14) and (A.15)). As
noted above, this gives rise to linear Poisson equations for W i which admit an infinite num-
ber of solutions Wi+ const when solved with periodic boundary conditions. Whilst these are
physically equivalent since they give rise to the same Āij ∼ ∂iWj, the solver will not converge
if the freedom remains unchecked. We therefore pick out the closest to our initial guess by
modifying the Laplace operator to [∂ j∂j]→ [∂ j∂j− c], where c is a positive constant that we
choose to be of order the solver tolerance [50, 51].12 We then reconstruct Āij from the solution
of W i, which provides an additional source for K2 in the next iteration of the Hamiltonian
constraint. The process is iterated until a set tolerance on the error is achieved.

12 We are grateful to David Garfinkle for pointing out this trick to us (in the context of solving the non-linear Hamilto-
nian constraint for periodic spacetimes), which he in turn credited to Jim Isenberg.
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Figure 2. Convergence test for the initial Gaussian random fields in a box of size L
with periodic boundary conditions. The left panels show the normalised global con-
vergence of the Hamiltonian and momentum constraints norms with solver iterations.
Note that in this approach, the Hamiltonian constraint is algebraically solved and so it
remains satisfied at every iteration. The right panels show the final local convergence,
the Hamiltonian and momentum constraint errors across the grid (x,L/2,L/2) for two
resolutions, with very good agreement to the expected 2nd order.

In the left panels of figure 2 we plot the evolution of the Hamiltonian and momentum con-
straint error norms with the number of iterations. Note that as we are solving the Hamiltonian
constraint algebraically, the error is always zero (to numerical precision) by construction. The
momentum constraint converges within a few iterations. In the right panels we plot the final
local constraint errors for low and high resolutions, showing agreement with the expected 2nd
order convergence. Note that even though the solver reduces the global error and saturates
within a few of iterations, we run it for longer so that local constraint errors that do not dom-
inate are converged too.

6. Rotating scalar cloud around a spinning black hole with asymptotically flat
boundary conditions

We also test the hybrid CTTKmethod (i.e. equations (18) and (19)) and our solver for the case
of a scalar cloud with potential V(ϕ) = m2ϕ2/2 that is rotating around a spinning black hole.
Scalar fields are popular models to describe the growth of a wave dark matter cloud around a
black hole [52], and are also relevant for superradiant instabilities [53]. In figure 3 we plot the
field profiles that we use to mimic the rotating cloud and are given by

ϕ(x) = ∆ϕ r2 exp
[
−r2/σ2

]
sin(αcos(β

√
x2 + y2)−κφ) (23)

Π(x) = ∆Π r2 exp
[
−r2/σ2

]
cos(αcos(β

√
x2 + y2)−κφ) (24)

where r2 =
√
x2 + y2 + z2 is the spherical radial coordinate and φ is the azimuthal angle. The

set of parameters (α, β, κ, σ) determine the precise shape of the cloud.

10
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Figure 3. Field profiles for the scalar field ϕ and momentum Π mimicking a rotating
scalar cloud around a spinning black hole of massM and dimensionless spin parameter
a/M= 0.5, in a box of size L= 128M. The mass of the potential is m= 10−2M−1 and
the parameters of the cloud are ∆ϕ= 10−4MPl, ∆Π= 10−5MPlM

−1 and σ = 5M−1.
The colour scale on the plots are linear. These profiles induce non-trivial energy and
momentum density components of the stress-energy tensor.

We use the hybrid CTTK approach, where we choose K2 to absorb only the matter terms,
and linearise equation (19) for the conformal factor un+1 = ψn+1 −ψn solving it iteratively(

∂ j∂j−
7
8
ψ−8
n ĀijĀ

ij

)
un+1 =−1

8
ψ−7
n ĀijĀ

ij− ∂ j∂jψn . (25)

We expand Āij = ĀijBH +Aij∗ (and Wi =Wi
BH +Wi

∗), choose the initial guess ψini = ψBH and
ĀijBH to be the Bowen–York solution for a spinning black hole with massM (equation (A.31)),
which satisfies ∂ j∂jψBH = ∂jĀ

ij
BH = 0. The quantities u and Āij∗ are the corrections we solve for.

We start by solving the momentum constraints sourced by the spatially varying K, choosing
Wi

∗ = 0 as a starting guess for the correction to the Bowen–York data (note that the totalWi ̸= 0,
but we can ignore the Bowen–York Wi

BH in the momentum constraints since they are linear
and it is a solution) and using the compact source ansatz equation (A.16). We then reconstruct
the corrected Āij and solve the Hamiltonian constraint for u. After we correct our trial solution
ψn+1 → ψn+ un+1, we recompute the new K2 and iterate the same process until we converge
to the final solution when the right hand side of equation (25) achieves a set tolerance. As
in the previous subsection, we run the solver for a few more iterations after the global error
saturates, to make sure that the local constraints are converged too.

We impose asymptotically flat boundary conditions by using extrapolating boundary condi-
tions for u andW i, so that the asymptotic solution is consistent with having zero source terms
to the Laplacian near the boundary. We choose three refinement levels, and enforce the con-
dition that regridding boundaries of the low and high resolution runs approximately coincide.
This is important in simulations with Adaptive Mesh Refinement, since convergence tests aim
to compare the error in the same region for different resolutions, and if the regridding bound-
aries do not coincide, the resolution in some regions might not have increased consistently.
Figure 4 confirms the expected 2nd order convergence.

11
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Figure 4. Convergence test for a rotating cloud around a spinning black hole. The left
panels show the global convergence of the norm of the Hamiltonian and momentum
constraints. The right panels show the final local convergence of the Hamiltonian and
momentum constraints across the grid, in perfect agreement with the expected 2nd order.
The sharp spikes correspond to the location of the refinement boundaries.

7. Conclusions

In this paper we proposed a new method for solving the ADM constraints based on the CTT
method. In this CTTK approach, rather than choosing constant mean curvature slices, one
chooses the conformal factor and solves for a spatially varying K. This has the advantage of
avoiding potential issues with non-uniqueness and existence of solutions in the Hamiltonian
constraint while keeping control of the specified initial data sources. The price to pay is that
the Hamiltonian and momentum constraints become unavoidably coupled and must be simul-
taneously solved even in cases with zero momentum density sources, but this does not present
any significant technical challenge. The method is very stable—we have found that it gives
rapid convergence for a number of physical problems of interest, including mixed systems of
black holes in scalar field environments and strongly inhomogeneous closed spacetimes.

It can therefore be a useful alternative to existing methods, in particular in the case of space-
times containing fundamental fields. For example, it may help stabilise the initial conditions
for superposed boson stars, where one would like to retain the ‘unperturbed’ conformal factor
profiles for individual stars [54, 55]. It may also offer advantages in more traditional astro-
physical scenarios including vacuum spacetimes and perfect fluids, where it would keep the
mass of the system fixed with corrections to their spin and/or momentum when solving the
constraints13.

Whilst we implemented our approach as a variation of the CTT method, we expect that it
should work equally well as an amendment to XCTS, and we plan to expand the method to this
formalism in the future, along with the ability to choose a non-flat conformal metric. We also
plan to make our implementation publicly available as part of the grchombo code [56, 57].

13 We are grateful to Mark Hannam for highlighting this advantage.
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Appendix. The CTT decomposition

In this appendix we review the methodology of the Conformal Transverse-Traceless (CTT)
decomposition, following closely the treatments in [5–7].

A.1. York–Lichnerowicz decomposition of the metric quantities

To solve the constraint equations it is convenient to perform the York–Lichnerowicz conformal
decomposition, in which one writes the spatial metric γij as a product of a conformal factor ψ
and a background metric γ̄ij,

γij = ψ4γ̄ij , (A.1)

with γ̄ = detγ̄ij = 1. The conformal factor absorbs the overall scale of the metric and leaves
five degrees of freedom in the conformally related metric γ̄ij. One can show that given this
choice, the Hamiltonian constraint reduces to

8D̄2ψ−ψR̄−ψ5K2 +ψ5KijK
ij =−16πψ5ρ, (A.2)

where D̄2 = γ̄ijD̄iD̄j is the covariant Laplace operator associated with γ̄ij. Given a choice of
the conformal metric γ̄ij and some specification of Kij, the Hamiltonian constraint results in a
Poisson equation that must be solved for the conformal factor ψ.

One also separates the extrinsic curvature tensor into its trace K and traceless part Aij as

Kij = Aij+
1
3
γijK , (A.3)

and further decomposes Aij as

Aij = ψ−2Āij . (A.4)
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Using that DjAij = ψ−10D̄jĀij the constraints become

8D̄2ψ−ψR̄− 2
3
ψ5K2 +ψ−7ĀijĀ

ij =−16πψ5ρ, (A.5)

D̄jĀ
ij− 2

3
ψ6γ̄ijD̄jK= 8πψ10Si . (A.6)

Any symmetric, traceless tensor such as Āij can be split into a transverse-traceless part that
is divergence free and a longitudinal part that can be written in terms of the gradients of a
vector. That is,

Āij = ĀijTT + ĀijL , (A.7)

where the transverse part satisfies D̄jĀ
ij
TT = 0 and the longitudinal part satisfies

ĀijL = D̄iW j+ D̄ jWi− 2
3
γ̄ijD̄kW

k . (A.8)

We can now write the divergence of Āij as

D̄jĀ
ij = D̄jĀ

ij
L = D̄2Wi+

1
3
D̄i

(
D̄jW

j
)
+ R̄ijW

j ≡
(
∆̄LW

)i
, (A.9)

where ∆̄L is the vector Laplacian. Hence, the momentum constraints are rewritten as(
∆̄LW

)i− 2
3
ψ6γ̄ijD̄jK= 8πψ10Si , (A.10)

while in the Hamiltonian constraint the term in Āij must be reconstructed from W i and ĀijTT.
In the standard CTT approach, we choose the conformally related metric γ̄ij to be flat, the

mean curvatureK to be a spatially constant value. Given these choices, one solves the Hamilto-
nian and momentum constraints for ψ and the vector potential W i, and then reconstructs the
physical solutions14 γij and Kij.

A.2. Solving the vector Laplacian

In this work we restrict ourselves to conformally flat spacetimes (γ̄ij = δij, R̄= 0) where the
vector Laplacian (∆̄LW)i in Cartesian coordinates reduces to(

∆̄LW
)i
= ∂ j∂jW

i+
1
3
∂i∂jW

j . (A.11)

Whilst we adopt this simplification here, we expect that our method should work equally well
for non-conformally flat spacetimes, and intend to develop a fully general system in future
work.

Several methods may be used to solve the vector Laplacian, and these can lead to different
numerical convergence properties, depending on the physical system studied. Here we sum-
marise the two used in this work.

• Non-compact sources: One approach [58, 59] to solve this equation is based on writing the
vector field W i as a sum of another vector field V i and the gradient of a scalar field U,

Wi = Vi+ ∂iU , (A.12)

14 We can check at this point the degrees of freedom: We started with 6 in γ ij and 6 in Kij. Now we have 1 in ψ, 5
in γ̄ij, 1 in K, 2 in ĀijTT and 3 in ĀijL. So if we specify the 8 degrees of freedom in γ̄ij, K and ĀijTT, the four constraint
equations will fix the remaining 4 degrees of freedom in ψ and ĀijL.
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so that the vector Laplacian is expressed as

(
∆̄LW

)
i
= ∂ j∂jVi+

1
3
∂i∂

jVj+ ∂ j∂j∂iU+
1
3
∂i∂

j∂jU . (A.13)

We have the freedom to chooseU in such away that it cancels the second term in the equation
above,

∂ j∂jU=−1
4
∂ jVj . (A.14)

The vector Laplacian simplifies, and the momentum constraints become three flat-space
Poisson equations for V i

∂ j∂jVi =
2
3
ψ6∂iK+ 8πψ6Si . (A.15)

A simple choice of U that solves equation (A.14) is ∂iU=−Vi/4, so that Wi = 3Vi/4.
• Compact sources: A second approach [60, 61] chooses

Wi =
7
8
Vi−

1
8

(
∂iU+ xk∂iVk

)
, (A.16)

so that the momentum constraint yields

5
6
∂ j∂jVi−

1
6
∂i∂

j∂jU− 1
6
xk∂i∂

j∂jVk−
2
3
ψ6∂iK= 8πψ6Si . (A.17)

If we choose U such that

∂ j∂jU=
2
3
ψ6x j∂jK− 8πψ6x jSj , (A.18)

then

5
6
∂ j∂jVi−

1
6
∂i∂

j∂jU− 1
6
xk∂i∂

j∂jVk−
2
3
ψ6∂iK= 8πψ6Si , (A.19)

which again results in the constraint becoming

∂ j∂jVi =
2
3
ψ6∂iK+ 8πψ6Si . (A.20)

Note that in both cases we retain the term in ∂iK, which means that the momentum con-
straints remain coupled to theHamiltonian constraint, although in the traditional CTT approach
this is usually zero. Whilst both approaches result in the same Poisson equation for V i, they
differ in the way in which W i and thus Āij are reconstructed from the vector recovered. The
latter approach results in more compact solutions and so is suited to asymptotically flat space-
times containing compact objects, whereas the former is required for periodic spacetimes such
as those used in cosmological simulations. This choice should be guided by the physical sys-
tem studied, in particular it should be consistent with the required behaviour at the boundaries;
a poor choice affects the convergence of the numerical algorithm. For example, extrapolating
boundary conditions for U and V i have provided satisfactory results in the case of black hole
spacetimes.
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A.3. Solutions with black holes

Here we review solutions in the vacuum case, the so-called Bowen–York solutions of the
momentum constraint, which provide initial data for boosted and rotating black holes.

Consider vacuum solutions for which the matter source terms vanish, ρ= Si = 0. Assuming
a moment of time symmetry, the momentum constraints are trivially satisfied by choosing
Kij = K= 0. The Hamiltonian constraint then reduces to

D̄2ψ =
1
8
ψR̄ , (A.21)

where R̄ is the Ricci scalar associated to the conformal metric γ̄ij. Choosing the conformal
metric to be flat γ̄ij = δij makes D̄i reduce to the standard flat covariant derivative so that D̄2 =
∂i∂i and the Ricci scalar vanishes R̄= 0. The Hamiltonian constraint then becomes

∂i∂iψ = 0 . (A.22)

Spherically symmetric solutions are given by

ψ = 1+
M
2r
, (A.23)

where the constant M corresponds to the gravitational mass of the black hole. In addition,
the solution is linear so if we want to construct multiple black hole initial data we can just
superpose the single solution to obtain Brill–Lindquist initial data [48]

ψ = 1+
∑
i

Mi

2ri
. (A.24)

The form of ψ in equation (A.23) is that of the Schwarzschild solution expressed in isotropic
coordinates

dl2 =

(
1+

M
2r

)4 (
dr2 + r2

(
dθ2 + sin2 θdϕ2

))
, (A.25)

which can be transformed to the solution in Schwarzschild coordinates

dl2 =

(
1− 2M

R

)−1

dR2 +R2
(
dθ2 + sin2 θdϕ2

)
, (A.26)

by the following coordinate transformation

R= r

(
1+

M
2r

)2

, (A.27)

where the location of the horizon for a black hole of mass M is at R= 2M (or r=M/2 in
isotropic coordinates).

If wewant to generalise the previous solution to boosted or rotating black holes, the assump-
tion of time symmetry must be broken which necessitates solving the momentum constraints.
For the CTT case, assuming maximal slicing K= 0 and conformal flatness, Bowen and York
found the following closed form solutions [59] to the constraint

∂ j∂jW
i+

1
3
∂i∂jW

j = 0 (A.28)
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as follows:

• A boosted black hole solution given by

Wi =− 1
4r

(
7P i+ liljP j

)
, (A.29)

where li = xi/r is the unit (coordinate) vector pointing radially outwards from the black hole
and P i is the linear momentum of the black hole.

• A spinning black hole solution for which

Wi =
1
r2
ϵijkljSk , (A.30)

where εijk is the completely antisymmetric Levi-Civita tensor in three dimensions and S i is
the angular momentum of the black hole.

Given the linearity of the momentum constraints, we can obtain the boosted and rotating
black hole solution by adding equations (A.29) and (A.30). One therefore reconstructs the
longitudinal part of the traceless extrinsic curvature tensor via equation (A.8) as

ĀijL =
3
2r2

[
niP j+ n jP i+ nkPk

(
nin j− δij

)]
− 3
r3

(ϵilknj+ ϵjlkni)n
lSk . (A.31)

For such boosted and/or rotating black holes, the analytical conformal factor in equation (A.23)
no longer solves the Hamiltonian constraint and one needs to numerically solve

D̄2ψ+
1
8
ψ−7ĀijĀ

ij = 0 . (A.32)

Here the numerical approach is usually to linearise the Hamiltonian constraint by expanding
around a ‘guess’ solution ψ = ψ0 + u and solve for u iteratively from the linearised differ-
ential equation. In doing so one should apply the puncture method [62], which mitigates the
divergences at the black hole centres.
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[44] Bentivegna E, Korzyński M, Hinder I and Gerlicher D 2017 J. Cosmol. Astropart. Phys.

JCAP03(2017)014
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