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A survey of data quality requirements that matter in ML
development pipelines
MARIA PRIESTLEY, King’s College London, United Kingdom
FIONNTÁN O’DONNELL, Open Data Institute, United Kingdom
ELENA SIMPERL, King’s College London, United Kingdom

The fitness of the systems in which Machine Learning (ML) is used depends greatly on good quality data.
Specifications on what makes a good quality dataset have traditionally been defined by the needs of the data
users - typically analysts and engineers. Our article critically examines the extent to which established data
quality frameworks are applicable to contemporary use cases in ML. Using a review of recent literature at
the intersection of ML, data management, and Human Computer Interaction (HCI), we find that the classical
“fitness-for-use” view of data quality can benefit from a more stage-specific approach that is sensitive to where
in the ML lifecycle the data are encountered. This helps practitioners to plan their data quality tasks in a
manner that meets the needs of the stakeholders who will encounter the dataset, whether it be data subjects,
software developers or organisations. We therefore propose a new treatment of traditional data quality criteria
by structuring them according to two dimensions: 1) the stage of the ML lifecycle where the use case occurs
vs. 2) the main categories of data quality that can be pursued (intrinsic, contextual, representational and
accessibility). To illustrate how this works in practice, we contribute a temporal mapping of the various
data quality requirements that are important at different stages of the ML data pipeline. We also share some
implications for data practitioners and organisations that wish to enhance their data management routines in
preparation for ML.

CCS Concepts: • Information systems→ Database performance evaluation; Data cleaning; • Social and
professional topics→ Quality assurance.

Additional Key Words and Phrases: data quality, machine learning, data ecosystems, data management, data
innovation
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1 INTRODUCTION
Today’s societies are producing immense volumes of data that get used by Artificial Intelligence
(AI) systems. At the core of AI applications is the field of Machine Learning (ML), which relies on
the use of data to classify or detect patterns in existing information (unsupervised ML), as well as
using past data to “train” algorithms to solve new tasks (supervised ML) [37]. Our paper focuses
on the latter subset of ML, which is growing in popularity in systems created to predict probable
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outcomes based on certain inputs, or to make recommendations about which decisions would be
optimal in a given scenario.
These systems work with structured as well as unstructured data (e.g. text, images, audio) to

address practical use cases in fields such as clinical diagnosis, criminal justice, financial lending,
manufacture and autonomous vehicles, among others [52]. In the remainder of this article, we will
refer to ML systems as software systems in which ML models or algorithms are deployed, typically
for the purposes of solving a problem in the real world.
Poor quality datasets and data science pipelines can compromise ML systems in a number

of ways. This includes historical signals and inappropriately proxied measures that make ML
systems vulnerable to reproducing past discrimination against under-represented groups (e.g. in
contexts such as job hiring and criminal justice), or propagating abusive content [46, 67]. Messy or
inaccurate data can also disturb the operational efficiency of businesses, with estimates of 10% to
30% of revenue being spent on resolving data quality issues [30]. The importance of data quality is
therefore increasingly being recognised by private and public stakeholders who want to mitigate
social risks, reduce costs and support the effective assimilation of ML technologies in society.

The growing use of ML across industries, and the high-stakes nature of some of the above uses
[17, 44], is being accompanied by greater scrutiny of the processes that determine the output
of ML-based decision-support systems [51]. Routines for ensuring transparency in ML datasets
and ML development pipelines are being encouraged by national and international organisations
such as the OECD1 and the Open Government Partnership2. The UK government has recently
published an Algorithmic Transparency Standard3 alongside templates designed to help public
sector organisations to document the datasets that underlie their ML tools. Similar trends are
happening in industry, where new standards are currently being developed to guide businesses on
how to define, implement and measure data quality throughout the ML development lifecycle [18].
Standards of this kind crystallise an ever growing corpus of academic literature that has explored
ML data quality challenges and ways to mitigate them [25, 57, 64, 70].
The growing range of ML data management guidelines, frameworks and standards presents

practitioners with a vast range of possible criteria to aspire to, on top of the traditional data
management practices that were established in previous decades. This raises a twofold challenge:
1) how to navigate the ML literature and select only those data quality requirements that are
meaningful to the practitioner’s use case, and 2) how to address the new requirements using
frameworks and practices that are already familiar to the data management community.

Our paper aims to help data practitioners to navigate these challenges by distilling some of the
key concepts from recent literature in the fields of ML, data management and Human Computer
Interaction (HCI). Our contributions include:

• An overview of some of the key data quality requirements that matter in ML systems.
• An illustration of how these requirements map onto traditional data quality criteria.
• A structure for identifying the most salient data quality requirements depending on the
stage of the ML lifecycle where the data use case occurs.

The remainder of this paper is structured as follows. In Section 2, we present the background
literature that motivates our work. We then present our methodology for conducting a literature
review in Section 3, followed by a summary of results in Section 4 and discussion of the findings in
Section 5.

1https://oecd.ai/en/dashboards/ai-principles/P7 [accessed 24/01/22]
2https://www.opengovpartnership.org/documents/algorithmic-accountability-public-sector/ [accessed 24/01/22]
3https://www.gov.uk/government/collections/algorithmic-transparency-recording-standard-hub [accessed 14/01/23]
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2 BACKGROUND
Training data for ML algorithms can be collected in a variety of ways. In their comprehensive
survey of data collection methods for ML, Roh et al. [61] group these into three categories: 1) data
acquisition (including discovery, augmentation and generation), 2) data labelling (using manual or
semi-supervised approaches) and 3) improvement (cleaning the data itself or improving the model
built upon it). The extent to which these data collection methods are used varies depending on the
use case and the type of data upon which an ML system relies.

In larger organisations and complex innovation ecosystems, the data may pass through multiple
stakeholders and be transformed in various ways before it reaches an ML practitioner or their
resultant product. Because of this, the topic of data quality is beginning to transcend beyond
the field of data management and into the realm of Human Computer Interaction (HCI), which
accommodates holistic considerations such as how people search for relevant datasets [42], how
developers perceive data work [64] and the best ways of using crowdsourcing to generate, evaluate
or label data [71]. While the role of these dynamic processes and multi-stakeholder configurations
is increasingly being recognised by data practitioners, it is less clear how traditional data quality
frameworks and notions of data accountability are adapting to ML development pipelines [35].

2.1 Data management practices differ between academia and industry
Longstanding definitions of data quality have viewed good quality data as “data that are fit for use by
data consumers” [74]. This has been accompanied by granular specifications of what makes a good
quality dataset, with essential dimensions such as accuracy, completeness, consistency and validity
being just some of the 60 dimensions identified in the wider data management literature [13].
Practical applications of these dimensions typically focus on smaller subsets of the most relevant
qualities, and can be found in the UK government’s data strategy4, professional associations for
information management such as AHIMA5, and the requirements of open data and open science
initiatives, where datasets should ideally be linked by the peer-reviewed code or publication that
uses them.

It is worth noting that ML data tend to be managed differently depending on whether the system
is within an academic or industry setting [52]. In academia, data management is typically contained
within the projects of individuals or small teams, who are able to design and amend the data
collection, storage and sharing systems at their discretion. Industry researchers, however, often
rely on separate data collection, processing and storage systems that sit across multiple company
functions, requiring formal data management guidelines to ensure consistency and coordination
across teams.

Formal practices of this kind are sometimes established with the help of industry standards. For
example, the International Organization for Standardization (ISO) standard ISO/IEC 25012 provides
guidance on how to define the data quality characteristics that matter to an organisation. Defining
these characteristics is a pre-requisite to deciding how data quality can be evaluated in a practical
sense. This latter task is addressed by the standard ISO/IEC 25024, which guides organisations in
defining the data quality assurance criteria and ways of measuring them quantitatively. These data
quality models are complemented by standards which recognise that organisations differ in their
preparedness to define and execute data quality assurance. The ISO 8000-61 standard specifies the
pure activities of enhancing data quality processes, while ISO 8000-62 defines ways to assess the
maturity, or readiness, of organisations to implement these data quality tasks.

4https://www.gov.uk/government/publications/the-government-data-quality-framework/the-government-data-quality-
framework [Accessed 06/10/21]
5https://library.ahima.org/PB/DataQualityModel [Accessed 13/11/21]
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More recently, ISO has begun to develop the ISO/IEC 5259 standard which focuses on data quality
for the fields of analytics and ML, as well as ISO/IEC DIS 8183 that addresses the AI data life cycle
framework. These newer standards address processes that can be employed by various stakeholders
at different stages of the AI life cycle, which differs from earlier data quality guidelines that tended to
view quality as a uniform outcome that fulfils a pre-defined list of desired criteria. These standards
are still under development, so there is value in publications that inform practitioners of how data
quality applies to ML tasks.

2.2 Data quality means meeting the needs of different users
Traditionally, data quality compliance has meant meeting the needs of the immediate data users
(e.g. analysts or engineers who value clean machine-readable data). However, this singular focus
can flatten the variety of uses and data quality requirements that are encountered at various
stages of the ML development pipeline over the longer-term [57, 70]. For instance, data quality
aspects that are important to ML developers are likely to be different from what was important to
upstream data subjects, who may have valued mechanisms for expressing consent and data usage
preferences. Similarly, downstream users of trained ML algorithms, such as software developers
and organisations, may have their own preferences for specific data qualities when procuring the
system, including aspects such as security, provenance, legal compliance, and the capacity to meet
business goals in real-world contexts. It is therefore useful to consider data quality processes in ML
as being less about obtaining a finished outcome and more about creating a dynamic artefact that
is imbued with the potential to be improved and shaped by different stakeholders to meet their
own requirements.

Many of the data quality issues that could reasonably concern the above mentioned stakeholders
can already be accommodated by the granular data quality specifications produced in the field
of data management. For example, the list of 60 dimensions created by Black and van Nederpelt
[13] includes qualities related to data accuracy, lineage, currency, coverage, legal compliance
and usability. These dimensions are subsumed by higher-order characterisations that capture the
intrinsic, contextual, accessibility, and representational aspects of datasets [74].
While the advent of data-centric technologies has been accompanied by a proliferation of

updated data quality definitions and metrics tailored to fields such as big data [68] and linked data
[77], contemporary authors continue to find value in existing data quality characterisations and
conceptual structures. For example, in their "Data Quality in Use" model for Big Data, Merino
et al. [47] draw on Wang and Strong [74]’s canonical distinction between the intrinsic, contextual,
accessibility, and representational aspects of datasets when using the above mentioned industry
standards ISO/IEC 25012 and ISO/IEC 25024. Other efforts have been made to adapt traditional
data quality management practices to specific fields. This includes the work of Kim et al. [41], who
developed new frameworks for assessing and improving the maturity of IoT data quality processes
based on the standards ISO 8000-61 and ISO 8000-62.

2.3 The four dimensions of data quality
Below we will draw on Wang & Strong’s [74] categorisation of the intrinsic, contextual, accessi-
bility, and representational aspects of datasets to illustrate some of the ways in which previously
established data quality categories already apply to ML problems.
Intrinsic data quality has traditionally been understood to reflect the extent to which data

values conform to the actual or true values [74]; this includes specific requirements such as
accuracy, provenance, and cleanliness, the latter of which covers practices such as the addressing
missing values and redundant cases. Besides the usual data qualities needed for statistical analysis
(e.g. addressing missing data, anomalies), an intrinsic quality that is increasingly valued by ML
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practitioners and regulators relates to data lineage and traceability. For data that require multiple
pre-processing steps or transactions between organisations, the origins of their features becomes
important. Traceability makes it possible to interpret and audit the history that precedes the output
of ML algorithms [33], but despite recent regulations on explainable AI (XAI)6, traceability is not
yet shortlisted in the data quality framework used by the UK government7, suggesting that this
data quality characteristic may need to be promoted in the context of ML.
Contextual data quality relates to the extent to which data are pertinent to the task of the data

user [74]; this includes dimensions such as relevance, timeliness, completeness, and appropriateness.
An essential question that is considered here is the extent to which the sample of cases contained in
the dataset diverges from the true distribution of cases that are likely to be encountered when the
ML model is deployed. Possible sources of divergence may include historical time or geographic
representation. For example, temporality has been flagged as a potential source of difficulty in textual
data, where models trained on historical text corpora, such as Google News articles, have been
found to reproduce past social stereotypes (e.g. the word “man” being associated with “computer
programmer” and “woman” with “homemaker”) [14]. If left untreated, the use of such data in
downstream applications (e.g. web search rankings, question retrieval) can perpetuate or amplify
the biases that were and continue to be present in broader society. Other contextual biases have been
detected in image data, with publicly available image corpora such as ImageNet and Open Images
coming predominantly from amerocentric and eurocentric contexts [66]. Insufficient representation
of some geographic regions, such as Asia or Africa, has meant that ML algorithms have less
information to learn about these contexts. This results in solutions that perform poorly for under-
represented groups (e.g. passport photo software that does not recognise the facial expressions of
ethnic minorities, or electronic soap dispensers that do not respond to darker skin tones). These
cases urge ML data practitioners to think critically about the context captured by their dataset and
the degree to which it reflects the use case and lived experience of the end users.

Representational data quality refers to the extent to which data are presented in an intelligible and
clear manner, including requirements such as being interpretable, easy to understand, represented
concisely and consistently [74]. In practical terms, these qualities can be implemented through
practices such as standardisation and documentation. Standardisation refers to conventions for
capturing information in a consistent manner, including machine-readable data structures and
formats for capturing specific attributes (e.g. date, location, measurement error). This helps engineers
to ingest datasets from multiple sources and build interoperable solutions. Documentation about
the dataset provides an additional layer of descriptive information to support the creation of ML
applications. For example, it can help engineers to understand where the dataset sits in relation
to the physical world (e.g. the calibration of equipment, seasonality of data collection, contextual
limitations) [64], so that the training data or model output can be transformed accordingly. It is
worth highlighting that when the limitations of a dataset are made explicit in the documentation,
this helps subsequent users to take the steps needed to improve the quality of the dataset for their
specific use case. Some solutions even allow for the dataset to remain unchanged while the ML
algorithm is tuned to produce more robust or socially equitable outcomes [14, 29].

The accessibility category refers to the extent to which data are available, obtainable and secure.
The rise of big data and ML applications in recent decades has been accompanied by calls for
publishing datasets in an open manner, as well as secure access mechanisms for restricted datasets,
so that their value can be realised [75]. ForML stakeholders whoworkwith personal or commercially

6https://ico.org.uk/media/about-the-ico/consultations/2616434/explaining-ai-decisions-part-1.pdf [accessed 18/11/21]
7https://www.gov.uk/government/publications/the-government-data-quality-framework/the-government-data-quality-
framework [accessed 26/01/22]
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Fig. 1. Data quality management process. Adapted from Kim et al. [41] and ISO 8000-61. The focus of our
paper is shaded in grey.

sensitive data, advances in the accessibility of data have been tempered by security and legal
precautions (e.g. compliance with GDPR and intellectual property rights).
The data quality concerns exemplified above are already within the scope of the concepts

and frameworks that have been established in data management literature, suggesting that this
field already has a good grounding for defining the data quality dimensions that will continue
to remain important to ML. What is new, however, is that ML development is characterised by
complex configurations of datasets, data services and data handlers, which makes individuals more
vulnerable to abstain from taking action due to the belief that data quality is somebody else’s
problem [34]. This diffusion of responsibility can be addressed by providing clearer indicators about
which data quality aspects are and are not out of scope of particular ML roles.

2.4 Why knowledge of desirable data quality practices is important
The struggle of clarifying which data quality requirements are important is not exclusive to ML.
Even where detailed data quality standards and practices exist, organisations and/or practitioners
have to specify which data quality characteristics are relevant to their use case and how to define
them.

In a study of organisations that applied the ISO/IEC 25012 data quality standard, Gualo et al. [24]
found that practitioners struggled to identify and describe the data quality rules that applied to
their use case. The authors found that providing examples of what the requirements can look like
helps to guide practitioners in clarifying their own rules.

Another challenge relates to information overload. Long lists of requirements have been found
to deter practitioners from applying traditional standards, with Kim et al. [41] showing that there
is value in simplified frameworks that are tailored to a specific use case or technology.
Both of the above challenges are encountered during the initial stage of planning and defining

which data qualities to evaluate. In other words, they occur at the beginning of the data quality
management process defined by the standard ISO 8000-61, as illustrated in Figure 1. Without the
planning stage, it becomes harder for a practitioner to develop the right data quality rules and
select the tools to enforce them.
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2.5 Data quality planning precedes implementation
Our paper aims to support ML practitioners and data managers at the planning stage of their data
quality journey. We identify a series of considerations that can help them to define their own
requirements and data quality strategy. By understanding the requirements that exist, practitioners
can be better positioned to select the most meaningful data quality control, assurance and improve-
ment steps for their use case. Although the tasks of implementing specific data quality measures,
evaluation criteria and tools for checking data quality are outside the scope of this review, we will
mention examples where relevant.
Our goal in this paper is twofold. Firstly, we want to inform practitioners of the data quality

requirements and practices that exist and are meaningful in the field of ML. This will be done
by synthesising recent academic literature and grouping the recommendations according to the
dimensions of data quality that are already familiar to the field of data management. Secondly,
to assist readers in selecting a smaller set of data quality practices that may apply to their use
case, we map the recommendations onto specific stages and stakeholders in the ML development
pipeline. In doing so, we hope to make it easier for organisations and individuals to prepare their
data management routines for ML and to anticipate some of the scenarios that may arise at each
stage of the ML development pipeline.

3 METHODOLOGY
Our literature review was conducted using a systematic mapping protocol [54] in order to select a
small set of relevant articles from themuch larger collection of literature emerging at the intersection
of data quality and ML. Below we present the research questions, inclusion criteria and search
strategy that were used to select articles for review. We analysed the selected articles using thematic
coding, which revealed additional themes related to the development stages of ML and the scope
occupied by data quality management in the wider ML literature.

3.1 ResearchQuestions
Our review aimed to identify and discuss the data quality requirements that are important to ML
development, and how they differ from more established data management practices. For this
purpose, we defined the following research questions:

• Where do the data quality requirements of ML sit in relation to traditional data quality
frameworks from data and information management?

• Does ML present any new challenges that are not yet accommodated by traditional data
quality frameworks?

The above questions deal with data quality management planning, as opposed to implementation.
This is a distinction that has previously been recognised in industry standards such as ISO 8000-
61, as depicted in Figure 1. The planning stage (1) deals with the identification of data quality
requirements and strategies for implementing them, while the implementation stages (2-4) are
about translating these plans into practical rules and techniques for data quality control, assurance
and improvement. This distinction between data quality planning and implementation informed
the selection criteria of our review.

3.2 Selection Criteria
Our interest in data quality planning (as distinct from implementation) helped to limit the scope of
our literature review and make the topic small enough to be discussed in a single paper. Specifically,
our targeted papers dealt with philosophical or experiential perspectives on data quality frameworks,
as opposed to papers that evaluated specific data management techniques or proposed new solutions

ACM J. Data Inform. Quality, Vol. xx, No. x, Article xxx. Publication date: x 2023.
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Table 1. Research type facets. Adapted from Petersen et al. [54]. We have shaded in grey the research
categories that were targeted by our study.

Category Description

Validation research Techniques that are novel and have not yet been implemented
in practice. (e.g. experiments)

Evaluation research Practical implementation and evaluation of techniques. (e.g. to
identify benefits and drawbacks when applied in industry)

Solution proposal Proposed solution to a problem. This includes new techniques
or extensions of an existing technique.

Philosophical papers New ways of looking at existing fields through taxonomies or
conceptual frameworks.

Opinion papers Personal opinions on whether a technique is good or bad, or
how it should be applied. Such papers do not rely on related
work or research methods.

Experience papers Explanations of how a framework has been applied in practice,
based on the experience of the author.

for managing data quality. Our choice of research categories is highlighted in Table 1 alongside the
other possible types of research as defined in the systematic mapping protocol of Petersen et al.
[54].

Our inclusion criteria were as follows:
• The abstract of the paper must discuss conceptual frameworks for defining data quality

requirements in relation to ML, or experiences of how these requirements have been defined
in practice.

• The paper was published between 2015 and 2022, in order to provide a contemporary
overview.

• The paper is peer-reviewed and published in a journal, conference, or workshop.
• The paper may come in the form of a full-length article, extended abstract, or workshop
description.

Our exclusion criteria were as follows:
• The abstract of the paper focuses only on techniques for data quality processing, assurance or

improvement, rather than conceptual frameworks for defining the data quality requirements.
• The abstract of the paper only considers the data quality requirements of a specific industry
that uses ML (e.g. healthcare, finance, materials science).

• The paper does not contain information about the publisher.
• The paper is an early iteration of a later work (e.g. if a similar workshop was delivered by
the same authors multiple times, we selected only the latest version).

There was some overlap between our inclusion and exclusion criteria. For example, many
abstracts discussed conceptual frameworks in addition to validating specific techniques, developing
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new prototypes or sector-specific solutions. We included these papers as long as the the main part
of the abstract was generalisable (i.e. discussing data quality concepts that apply to general ML
applications, and not focusing only on a specific industry or solution).

3.3 Search Strategy
Our literature search strategy consisted of three stages: 1) pre-selected articles that were already
known to us, 2) automatic search on Google Scholar and selected conference proceedings, and 3)
forward and backward snowballing to identify further papers.

Pre-selected articles
We began with a list of six articles [3, 23, 32, 34, 35, 58] related to data quality planning, and in
particular documentation, that were already known to us based on our previous work with ML
models.

Automatic search
We used Google Scholar to search for articles whose title included keywords related to our research
questions. Limiting the search only to titles helped to eliminate marginally relevant papers from
the results. The results were then filtered by examining the titles and abstracts of the papers. Only
those that met the selection criteria were retained.

We began by searching the entire Google Scholar corpus using the query "allintitle: “data
quality" ("machine learning" OR "AI")". This returned 185 results. We truncated our analysis
after examining the first 30 results, as many of them did not meet our inclusion criteria. After
examining the abstracts, seven articles were retained [12, 19, 21, 25, 27, 28, 63].
We then conducted searches inside the proceedings of two leading academic conferences in

machine learning and human-computer interaction: International Conference on Machine Learning
(ICML) and Conference on Human Factors in Computing Systems (CHI). This was done using
Advanced searches in Google Scholar, where the "published in" box was filled with the name of each
conference. We adapted the search query to each venue’s area of specialisation. For example, when
searching through CHI proceedings, we used used a slightly more lenient query due to the smaller
size of the search space: "allintitle: data (quality OR "machine learning" OR AI)". This
returned 19 results, nine of which met our inclusion criteria [2, 26, 31, 49, 56, 62, 64, 70, 73]. We also
adapted the query for ICML, as the conference already specialises in ML. A search for "allintitle:
"data quality" OR "data management"" returned 16 results, one of which was identified as
relevant [38]. Table 2 summarises each of our search queries, the number of results returned by
them, and the number of papers that were subsequently selected for our discussion.

We are aware that there may be other venues with relevant contributions that were not included
in our selection.

Snowballing
After we started reading and reviewing the papers selected using the above techniques, we came
across references to other papers that were relevant to our research questions. Eight papers were
identified in this way [5, 9, 11, 36, 48, 53, 55, 57]. These papers were initially chosen based on the
descriptions provided by authors who cited them, and then assessed using our inclusion criteria.
One further article [53] was identified using a forward search of articles that cited [64], as we were
curious about the work of other authors who cited this paper. Our general approach to snowballing
was informal. Due to time constraints, we did not conduct a systematic review of all possible
forward and backward citations.
While we sought to gather a representative sample of papers, it is important to acknowledge that
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Table 2. Number of papers identified in each Google Scholar search.

Articles published in Search query Results Reviewed Selected

[any venue] allintitle: “data quality" ("ma-
chine learning" OR "AI")

185 The first 30
results.

7

International Conference
on Machine Learning

allintitle: "data quality" OR
"data management"

16 16 1

Conference on Human Fac-
tors in Computing Systems

allintitle: data (quality OR "ma-
chine learning" OR AI)

19 19 9

the 32 papers reviewed here are only a small part of the growing number of articles related to data
quality in ML that exist in reality.

3.4 Thematic coding
After selecting the papers, we read them and extracted information that helped to answer our
research questions. Relevant information was recorded for each paper using a spreadsheet with the
following groups of columns:

• Basic information about the paper - 5 columns: title, authors, publication venue, year, how
the paper was found (e.g. automated search, snowballing or existing knowledge).

• Comments raised by the paper in relation to each of the four traditional data quality
dimensions - 4 columns: intrinsic, contextual, representational, accessibility (as described
by Wang and Strong [74]).

• 1 column to highlight any unusual data quality issues or requirements presented by ML.
Once we started reading the papers, we found that some of the authors’ comments and data

quality requirements were targeted to specific stages in the ML development pipeline. For this
reason, we added the following set of columns to organise our notes:

• Stages of the ML development lifecycle - 8 columns: dataset use case and design, data
collection, data cleaning and pre-processing, data maintenance, ML building, ML verification
and testing. ML deployment, ML monitoring (as described in Section 4).

Information about each paper was coded using the 18 columns described above. We reviewed
this spreadsheet to synthesise common themes at the intersection of two dimensions: each stage of
ML development vs. the four traditional categories of data quality. This is the structure we use to
present our results.

3.5 Scope of the findings
Before presenting our results, we want to clarify their scope. Although the initial goal of our
paper was concerned with theoretical frameworks that can help to define and plan data quality
requirements in ML, we also noted down any practical techniques mentioned by the authors. Many
of our reviewed papers went beyond data quality "planning" to make recommendations on how
data practitioners and managers should prepare their datasets for ML. We did not review these
techniques in a systematic manner, as this would merit a separate review of its own. However, we

ACM J. Data Inform. Quality, Vol. xx, No. x, Article xxx. Publication date: x 2023.



491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

A survey of data quality requirements that matter in ML development pipelines xxx:11

Fig. 2. Venn diagram of fields that complement data quality management.

included some of the techniques in our findings in order to illustrate how data quality plans can
be translated into practical specifications, assurance techniques and solutions that apply during
stages 2 - 4 of the process depicted in Figure 1.
Besides extending into practical techniques, many of our selected papers discussed topics that

went beyond our original focus on data quality in the technical sense. Specifically, they overlapped
with other related communities of research and practice in data management, such as data ethics,
data justice and data feminism. These fields have historically been addressed by different communi-
ties, so the relations between them are not neatly delineated. Nonetheless there is significant overlap
which we attempt to illustrate in Figure 2. Rising [59] presented an understanding where justice
is about situations and consequences, while ethics is about the actions that lead to consequences.
In line with this, data ethics deals with the way that practitioners manage data to ensure privacy,
fairness, accountability, security and environmental sustainability [6]. On the other hand, data
justice addresses inequalities in the way people are represented and treated as a result of the data
that they emit [69]. Data feminism traces the cause of such inequalities to the power relations
present in society, and advocates for actions that support the political, social, and economic equality
of the sexes, including intersections across other social dimensions such as race and class, sexuality,
ability, age, religion, and geography [20].

As illustrated in Figure 2, each of these literatures highlights how systemic challenges in the lived
experience of ordinary people are embedded in data, and their potential to be reinforced or mitigated
through data-centric technologies. While we did not explicitly search for these perspectives, and
time and space constraints prevent us from covering them in the detail that they deserve, we
encourage interested readers to investigate these topics separately.

Another scoping challenge which emerged during our review was related to the definition of data.
Our initial intention was to focus on observational data (for training, testing and serving models),
but this was later expanded due to the substantial attention that our reviewed papers dedicated to
the quality of software systems, ML models and their accompanying documentation. Although
there is some ambiguity among academics as to whether it is constructive to view software as data
[39], we have included the aspects of ML model and documentation quality that emerged during
our review. For instance, we found that training data quality can be mediated by software systems
(e.g. for data maintenance, or for checking input or output data). Moreover, the inclusion of model
and documentation quality helped to highlight the areas where ML model quality is dependent on
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good quality training, testing or serving data, as well as metadata in the form of documentation. For
these reasons, our discussion of data quality grew to include model, software and documentation
quality.

4 RESULTS
We structure our findings according to the main stages of ML development. Because this is an itera-
tive process that involves numerous decision pathways, there is no single agreed-upon workflow
that is universally applicable to every scenario. Nonetheless, a number of commonalities have been
identified by researchers.
As early as 1996, Fayyad et al. [22] proposed a sequence of nine stages that constitute the task

of knowledge discovery in datasets8. The authors suggested that the process typically begins
with developing an understanding of the application domain and use case, followed by data
collection, preprocessing, and reduction, before moving on to identifying and applying relevant data
mining methods, as well as interpreting and acting on their insights. While the authors recognised
that knowledge discovery workflows also include challenges related to data accessibility, human-
computer interaction, and model scaling, their pipeline focused on the granular steps contained
within data mining. A similar focus on data is adopted by the upcoming industry standard ISO/IEC
5259, whose provisional data processing framework in illustrated in Figure 3 (upper) [18].
Recent academic discussions of the ML pipeline have been more detailed in separating out the

different stages undergone by ML data. Specifically, they explore model development, verification,
deployment, and monitoring, which pose different requirements in terms of organisational and
operational considerations [5, 43].

For the purposes of this paper, we organise our findings into a series of stages listed in the first
column of Table 3 and illustrated in Figure 3 (lower). Our first five stages (from dataset design to
ML building) are adapted from the foundational work of Fayyad et al. [22], and the last three stages
(ML verification to deployment and monitoring) are additions derived from more recent literature.
We use Figure 3 to anticipate how our terminology maps onto the framework of the forthcoming
ISO/IEC 5259 standard.

Earlier publications and standards acknowledge that ML development rarely follows a pre-defined
sequence, meaning that data pipelines are difficult to consolidate across different operational
contexts. Our stages must therefore not be assumed to occur in a linear sequence. There are a
number of ways in which reality may diverge from the stylised view presented in our diagram. The
first of these relates to data iteration, where the steps of model building and testing are frequently
followed by the need to collect new data, or enriching the existing dataset [5, 11, 31, 34]. Other
scenarios that are becoming increasingly common are multi-dataset-multi-model pipelines, where
existing ML models are used for pre-processing data or training new ML models [5]. We will flag
these scenarios when we discuss our findings in the subsections below.
While time and space constraints prevent us from anticipating every possible workflow that

may occur in reality, we illustrate a simple example of an ML data quality pipeline in Figure 4.
Additionally, we use Figure 5 to illustrate a more specific scenario of an ML application trained
on text data that might involve multiple data sources and multiple models. The purpose of these
diagrams is to show how different aspects of data quality assurance can map onto different stages
of the ML development process. This is not an exhaustive view and we encourage readers to be
critical in evaluating how the data quality requirements discussed below would apply to their own
non-linear cycles of dataset development.

8Within the scope of knowledge discovery, the specific role of ML is to provide the data mining methods that help to
discover new knowledge in the form of approximations, predictions or observable patterns.
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Fig. 3. An illustration of how our data quality pipeline (lower) maps to the data processing framework used
in ISO/IEC 5259 (upper). Diagram adapted from Chang [18].

We would also like to highlight that the data quality requirements described here should be
viewed as desirable rather than essential. It is unrealistic to expect them to be achieved in their
entirety, especially where practitioners have competing priorities such as time and cost. It is also
common for data management capabilities to change and mature throughout the progression of
a project [7]. So readers should treat the information reported here as aspirational rather than
prescriptive.
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Fig. 4. ML data quality pipeline example.
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Fig. 5. Example pipeline for multi-model-multi-dataset scenario.

ACM J. Data Inform. Quality, Vol. xx, No. x, Article xxx. Publication date: x 2023.



736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

xxx:16
Priestley,O

’D
onnell&

Sim
perl,2023.

Table 3. ML data quality considerations classified according to different categories of quality (horizontal) and stages of the ML development pipeline (vertical).

Development
stage

Data quality category

Intrinsic Contextual Representational Accessibility
Dataset use case
and design

Accuracy of data can be sup-
ported by hiring human annota-
tors and field experts in advance.
[49, 52, 53]

Relevance of data can be en-
sured by determining what fea-
tures are required in advance.
[9, 36, 53]

Clarity and credibility of the meta-
data can be improved by includ-
ing documentation on user require-
ments and dataset design. [35]

Availability of data can be
supported by infrastructure
for data collection and man-
agement (particularly in large
organisations). [25, 52, 57]

Validity of data for online
learning can be assured by
putting in place runtime
verification tools. [21, 50]

Data collection Accuracy can be improved by:
• Human-in-the-loop ap-

proaches for data la-
belling and augmenta-
tion. [49, 73]

• Data collection tools
that raise actionable
alerts to warn users of
unexpected values in
advance.[38, 57]

• Screening and training
of data workers. [49, 70,
73]

Context coverage can be sup-
ported by institutional guide-
lines on potential power imbal-
ances, ethics and inclusivity.[9,
36, 62, 70]

Clarity of the metadata can
be supported by documenting
the data collection process (e.g.
using datasheets, checklists).
[9, 23, 35, 48, 58]

Consistency of data can be
improved using standardisation.
[25, 33]

Regulatory compliance can
be supported by institutional
frameworks and procedures for
consent, transparency, ethics
and privacy. [9, 36, 70]
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Table 3. ML data quality considerations classified according to different categories of quality (horizontal) and stages of the ML development pipeline (vertical).

Development
stage

Data quality category

Intrinsic Contextual Representational Accessibility
Data cleaning
and preprocess-
ing

Uniqueness of data entries and
features can be improved by
removing redundant cases and
reducing the complexity of the
features. [5, 38, 57]

Completeness can be supported
by automated pre-processing
and ML aids for augmentation
and annotation. [5, 27, 38, 70]

Contextual bias can be detected
using ground-truth correlations.
[32, 52, 53]

Contextual validity can
be improved by balancing the
classes and measuring how well
the dataset fits the real-world
problem. [3, 5, 8, 9, 25, 38, 70]

Clarity of the data pre-processing
sequence can be improved using
documentation and publication of
code. [52, 72]

Consistency of data sourced
from heterogeneous sources can
be supported by reformatting stan-
dards, normalising and aggregation.
[38, 70]

Precision can be improved by
using representational standards
that allow for uncertainty. [3, 5]

Security of sensitive data sup-
ported by anonymisation [33,
70]

Data mainte-
nance

Contextually biased data can
be improved using curation,
including infrastructure, tools,
and practices for maintaining
nonstatic datasets that grow
over time. [3]

Maintainability at scale is sup-
ported by standards. [3]

Clarity of the dataset can be sup-
ported by user interfaces for dataset
exploration. [25, 32, 33, 52, 57]

Clarity of the metadata can
be supported by documentation on:

• data content (e.g. nutrition
labels) [25, 32]

• maintenance plan [36]
• mission statement[36]

Availability of data can be
facilitated by infrastructure for
differential access and sharing
(e.g. via data trusts). [32, 35]

Identifiability of the cor-
rect dataset (out of multiple
versions) can be guided by
version control and DOIs.
[25, 32, 35, 57]
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Table 3. ML data quality considerations classified according to different categories of quality (horizontal) and stages of the ML development pipeline (vertical).

Development
stage

Data quality category

Intrinsic Contextual Representational Accessibility
ML Building Uniqueness of features sup-

ported by dimensionality
reduction. [5, 57]

Completeness of data improved
by enrichment. [33, 34, 57]

Contextual validity supported
by selecting the right features.
Contextually biased data can be
improved by re-sampling or re-
weighting the training distribu-
tion. [5, 16, 25, 57]

Clarity of the ML building process
can be elucidated using model
reproducibility checklists [35, 55]
and by embedding structured meta-
knowledge into the documentation
[56].

Clarity of model performance
can be supported by documentation
on evaluation metrics and statistics.
[31, 48]

Availability of code and model
data can be supported by publi-
cation, in addition to the above
steps. [32, 35, 55]

ML verification
and testing

Contextual fit of the model can
be assessed using benchmarked
evaluation in different condi-
tions/scenarios. [5, 48] These
evaluation metrics must be veri-
fied by checking the overlap be-
tween training and test datasets
[19].

Clarity of model performance
results can be improved by model
cards, including contextual evalua-
tion results. [48]

Transparency of model can
be supported by sensitivity testing
and explanations. [1, 2, 35]

Availability of test data (real
or synthetic) made possible by
sharing. [48]

Security of restricted train-
ing data can be assured by
adversarial testing for data
poisoning, model stealing and
inversion. [5, 48]

ML deployment Validity of serving data can be
ensured by following the data
preparation rules of the original
model, and by checking for rep-
resentational drift. [57, 65]

Contextually sensitive ML op-
tions include client-side ML
(federated learning). [33]

Interpretability of the model output
can be supported by explanations.
[1]
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Table 3. ML data quality considerations classified according to different categories of quality (horizontal) and stages of the ML development pipeline (vertical).

Development
stage

Data quality category

Intrinsic Contextual Representational Accessibility
ML monitoring Fidelity of themodel in evolving

contexts can be monitored by
checking the distribution and
features of data fed into the
model. [3, 57]

Security of restricted training
data can be assured by moni-
toring for adversarial attacks.
[5, 48]
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4.1 Dataset use case and design
The initial steps to ensuring data quality begin before data are collected. These steps include
clarifying the use case for which the data are sought and investigating the operational and/or
infrastructural requirements of gathering the data. These preparatory steps must be recorded in the
dataset’s documentation, in order to inform current and/or future colleagues about the requirements
of the use case.

It is common that the precise data quality requirements will not be known upfront, and new use
cases may emerge as the model matures. This means that practitioners will likely need to return
iteratively to the dataset design and data collection process [31]. In cases where additional data are
required but cannot be collected iteratively, other methods are available to enhance the dataset, as
we will discuss later. With this in mind, the preparatory steps described below should be viewed as
a desirable rather than essential part of the data quality pipeline.

4.1.1 Use case documentation.
The definition of ML data requirements must begin by consulting with relevant stakeholders

[35]. Those who are commissioning the system should be consulted to understand not only the
problem that the ML needs to address, but also the anticipated characteristics of the end users (e.g.
demographics, cultural and environmental context). This information can support the acquisition of
training data that are representative of the population of interest, thus increasing the likelihood that
the output of the ML system will match their needs [9, 36, 70]. Some questions that ML researchers
may want to consider include asking how much supervision, domain expertise, and specialisation
would be needed to collect and label data for the scoped project [36].

The careful analysis of requirements prior to data collection, as recommended above, is different
to the data collection practices that are typical of contemporary ML implementations [36]. Our
recommendation reflects an “interventionist” approach, which contrasts with minimally supervised
data collection methods such as Web crawling and crowdwork that have traditionally been used to
generate large volumes of data. The problem is that these approaches do not typically evaluate
the origin, motivation, platform, or potential impact of the gathered data. This has been flagged as
one of the causes of historical and representational bias in ML systems that use those data, with
numerous authors urging for slower and more methodical approaches to data collection [36, 53].
This includes the recruitment and training of data workers, as they are an integral part of how ML
data come into being [73].
Another issue that can get overlooked with big data is the interrogation of assumptions about

which questions are answerable with certain data attributes in the first place. For example, Paullada
et al. [53] draw attention to studies that attempted to predict personal attributes from photos of
human faces, under the false assumption that these predictions are possible and worthwhile to make.
Careful documentation of the use case and underlying assumptions about relevant data attributes
can help practitioners and organisations to avoid collecting data signals that may subsequently get
discarded.

4.1.2 Data availability and coherence.
Once the use case and requirements for a dataset are known, it is important to conduct further

checks into the availability of the required data.Whereas discussions in traditional datamanagement
tended to focus on static datasets that were already accessible to practitioners, commonML use cases
include big data and real-time analytics where data reside in multiple storage systems characterised
by streaming, heterogeneous and cloud-based data [52, 57]. Data that are dispersed across multiple
sources tend to have different schemas and approaches to storage and access [33, 52]. This can lead
to difficulties in discovering what data are available, their structure and how to parse, query or
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store them, which complicates the task of integrating information into a single dataset suitable
for ML. Several authors have therefore noted that traditional data quality approaches designed
for relational and static datasets may not be sufficient when dealing with the kinds of large-scale
decentralised ML pipelines that are increasingly being used for operational and organisation-wide
decision making [25, 57].
As a result of the above, managing data quality in industrial use cases may require new infras-

tructure that ingests data and converts them into a form that is more compatible with the ML
trainer [57]. This may involve the creation of data warehouses to extract, clean, transform, and
integrate data. For instance, Paleyes et al. [52] discuss how Data Oriented Architectures (DOA)
can help to make data flowing between elements of business logic more explicit and accessible,
simplifying the tasks of data discovery, collection and labelling.

For real-time applications, runtime verification techniques can help to deal with data that arrive
continuously and where models are trained continuously. This form of “online learning” requires
continuous monitoring to correct data quality issues on-the-fly and ensure that they are within
acceptable bounds to match the assumptions of the respective ML model [21]. This may include
checking that the operational input distribution is similar to that represented by the original model,
to avoid issues of distribution shift [50].

Besides technical infrastructure and tools for data quality assurance in online learning, some use
cases may also require additional human resources for data labelling. Access to human annotators
and field experts may be a particularly significant bottleneck in data labelling tasks, such as those in
medical fields [52, 70]. Here, the framing of tasks, labour conditions, and legal issues pertaining to
data collection and distribution will need to be investigated as part of the technical and institutional
infrastructure that precedes data collection [53]. For example, Mitra et al. [49] and Thakkar et al.
[70] discussed the importance of preparatory measures in the form of screening and training of
data workers, with Mitra et al. [49] finding that this preemptive approach produced better quality
data than what would typically be achieved through automated post-processing of noisy data.

4.2 Data collection
Once the data use case and operational requirements are in place, the process of data collection can
start. The design decisions made in the previous step may be implemented in a number of ways,
such as through software systems, annotator guidelines, and labelling platforms. Below we discuss
the ways in which documentation, standards and interfaces can support the acquisition of data
that are high in quality.

4.2.1 Data collection documentation.
The data collection process should be documented as early as possible during task design [53].

Numerous authors have shared templates on how to structure the documentation. This includes
datasheets [23, 35], data statements [9], and checklists [58]. These documents are intended to help
dataset creators to become more intentional and reflective about their data collection objectives,
underlying assumptions, implications of use, and stakeholder values as they work. Benefits to
this include an improved understanding of the dataset’s contextual validity, by asking questions
about how the dataset instances or sampling approach can be made more reflective of the larger
population (e.g. in terms of geographic or demographic coverage) [23, 70], or application context
[48].

For consumers, documentation about data collection methods provides the information needed
to make informed decisions about using a dataset and to avoid unintentional misuse [23, 25]. It
supports users in deciding whether the data are comprehensive enough for their use case [19].
In some cases, the documentation may reveal assumptions that would not be readily apparent

ACM J. Data Inform. Quality, Vol. xx, No. x, Article xxx. Publication date: x 2023.



970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018

xxx:22 Priestley, O’Donnell & Simperl, 2023.

from basic metadata or dataset content [35]; for instance, a recent crawl of old news articles would
benefit from a statement to explain that the time of data collection is different from the original
time of creation of the data values.
Besides understanding the dataset, some documentation frameworks are designed to equip

downstream practitioners with the transparency needed to repeat the data collection process (e.g.
for the purposes of gathering alternative datasets with similar characteristics, auditing or repeating
an experiment in different contexts) [23, 53, 58]. Documentation methods of this kind have been
particularly encouraged in sociocultural data collection mechanisms, such as crowdsourcing, where
data workers are hired worldwide to read texts, view images and video, and label the data that
are used to develop ML models. This means recording operations related to sampling, mapping
experimental conditions to micro-tasks, and ensuring quality contributions from participants [58].

In this vein, data users are beginning to assess quality not only in terms of the characteristics of
the data (e.g. accuracy), but also the working conditions, skills and aspirations of the individuals
who annotated those data [73]. Authors in the field of HCI envision that as ML practitioners respond
to the push for better documentation, this creates an opportunity for data labour practices to also
be documented and reviewed. To this end, Rothschild et al. [62] propose that crowdsourced ML
datasets can be accompanied by a cover sheet that describes the precise hiring and employment
practices. The intention is to encourage requesters to create institutional norms around just and
respectful employment for data workers.

4.2.2 Data collection standards.
As noted in our earlier discussion of data use cases, a major challenge in ML data collection

in industrial applications relates to data heterogeneity, which can be manifested as unstructured,
semi-structured, and structured data of disparate types [25]. During the data collection process,
the user requirements established in the previous step (dataset use case and design) need to be
translated into common standards that allow datasets to be linked and that capture the necessary
information. For example, streaming data from the web may need to be filtered and converted to a
more structured format, while data from IoT sensors may require standardised semantics to capture
the types of equipment used, as well as accommodating uncertainty around measurements.

4.2.3 Data collection interfaces.
One of the novel aspects of production ML is that data collection is automated rather than manual

(e.g. data arrives continuously from sensors or web applications). In cases like this, part of the
responsibility for ensuring good data quality lies with software engineers, who can design systems
that generate actionable alerts to inform users of potential data quality issues (e.g. if a feature is
missing or has an unexpected value) [57]. Other examples of data collection interfaces can take a
more creative format, such as data collection games. However, Gundry and Deterding [26] found
that such interfaces can present a trade-off between participant enjoyment and data quality, where
games elicited more enjoyment but led to less accurate data compared to an equivalent control.

4.3 Data validation and maintenance
Once the data have been collected, they typically undergo a process of checking and cleaning
before being usable for an ML system. This stage of the ML development pipeline bears a large
bulk of the activities related to data quality assurance. Below we discuss these tasks, which include
pre-processing, validating the contextual coverage of the data, data quality metrics, user interfaces
for inspecting data, dataset accessibility and maintenance over the longer term.

4.3.1 Pre-processing.
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Data collection is often followed by pre-processing tasks such as feature selection, deduplication,
removal of outliers, consistency checking, anonymisation and imputation of missing values [52, 70].
As was done during the data collection step, information about the preprocessing steps should
be recorded in the dataset documentation. This helps subsequent data consumers to determine
whether the data are readily compatible with their chosen task or if they need to undertake further
transformations (e.g. dimensionality reduction, bucketing, tokenization, removal of instances,
normalisation etc.) [23, 57]. Another aspect of data composition that can be useful to inspect and
report in some ML use cases relates to potential dependencies that may exist between features,
where information leakages between variables could later cause the trained ML models to produce
unrealistically accurate predictions during testing [57].

While the nature of the above work is not unusual in relation to longstanding data management
literature that has dealt with validity, consistency and integrity concerns, literature from the field
of ML has highlighted constraints in the order in which the data preprocessing tasks should be
executed. Differences in the sequence of data pre-processing steps have been found to produce
radically different ML results (e.g. correcting the data for missing values using imputation can
affect outliers in the dataset)[27]. Given that the search space of all possible sequences of data
pre-processing tasks is combinatorially large, some authors have proposed algorithmic solutions
for establishing the optimal pre-processing pipeline[11]. Others have drawn attention to formal
ways of establishing and treating the reasons behind problematic data. For example, Bertossi and
Geerts [12] suggest that explainable AI techniques can be applied to identify the features that cause
inconsistencies in data and use this information to predict the best repair actions.

But even where formal data cleaning techniques have not been used, data practitioners can still
take care to document their actions where possible (e.g. using pre-defined protocols or ex-ante
publication of reproducible code that was used to prepare the data). One possible way of doing this
is through the use of interactive notebooks to weave together code and documentation [72]. Data
validation routines and publication of pre-processing code is particularly valuable in contexts where
data preparation is decoupled from the ML pipeline, providing more transparency and opportunities
to detect bugs, feedback loops, or changes in data dependencies [52].

4.3.2 Data context and coverage.
The period after data collection is a good time to re-evaluate contextual characteristics of the

dataset and the degree to which they align with the intended use case. In sociocultural data,
important factors to explore could include cultural biases related to gender, race, ethnicity, or
religion [9, 25]. Guidance on which protected characteristics to look out for can be found within
practical toolkits such as “AI Fairness 360” [8], and checklists can be used to document such
information to ensure legal and ethical compliance [60].

Additionally, practitioners should consider the possibility that some variables captured in a dataset
may not explicitly refer to demographic groups, but still contain stereotype-aligned correlations
[32, 53]. For example, variables such as wages or location may be strongly correlated with specific
populations in a given region. To surface these kinds of relationships, practitioners may need to
compute comparisons to variables from other datasets considered to be "ground truth", such as
Census Data [32]. In use cases that do not capture human data, it may also be useful to evaluate the
variance of data in capturing different environmental contexts, such as the environment in which
autonomous vehicles are trained in the lab and how it may differ from situations in the real world
[52].
While some of the contextual biases described above may be detectable in the existing data

through effort, others may become clear only once the dataset is deployed throughML in production.
This is especially true of unstructured data (e.g. text, images) where the features are opaque and
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difficult to inspect. In cases like this, it is important to document the populations from whom the
data originate. Numerous authors have observed that ML systems perform better for users whose
demographic characteristics match those represented in the training data [9, 36]. The contextual
origins of datasets must therefore be recorded in the documentation as a means to preempt scientific
and ethical issues that may result from the use of data from certain populations to develop ML
technology for other populations. Bender and Friedman [9] provide examples of data statements for
NLP datasets, which can be used to provide the context needed by developers and users to better
understand how the subsequent ML results might generalise, how best to deploy the software,
and what biases might be embedded in it. For datasets that originate from crowdworkers, it is
important to additionally report any potential sampling and selection biases, as well as response
bias, design bias and ethical integrity aspects (e.g. informed consent, minimum wage), that will
allow the experimental setup to be traced or reproduced where necessary [48, 58].

4.3.3 Data quality metrics.
In addition to the qualitative descriptions of dataset use cases, collection and pre-processing

steps discussed earlier, during the data maintenance step it is beneficial to include quantitative
metrics about the dataset. Several generalised and context-specific frameworks have been proposed
for this in the literature.
Holland et al. [32] developed a web-based “dataset nutrition label” that comprises of seven

modules to display general aspects such as metadata, provenance, variables, statistics, pair plots,
probabilistic models, and ground truth correlations. In contrast to this standardised approach,
Gudivada et al. [25] recommend metrics that are more task-specific. For example, the data quality
metrics that matter most in classification tasks are proposed to include class overlap, outliers,
boundary complexity, label noise, and class imbalance. Regression tasks, on the other hand, benefit
from data quality metrics regarding outliers andmissing values. This suggests that data practitioners
who are responsible for maintaining the dataset may need to refer back to the anticipated ML use
case in order to decide which metrics would be most meaningful to consider and report.

4.3.4 User interfaces.
Besides quantitative metrics, the above proposals for data quality metrics have also advocated

for the use of dashboards and visual aids for data inspection and sanity checks (e.g. min max values
in continuous data, distribution of categorical values) [25, 32, 52, 57]. Holzinger [33] highlights that
“at the end of the pipeline there is a human, who is limited to perceive information in dimensions.
It is a hard task to map the results, gained in arbitrarily high dimensional spaces, down to the lower
dimensions." To this end, interactive software tools can help users to explore the data through pair
plots, distributions, correlations, histograms or heatmaps, and evaluate their suitability for certain
demographics or other criteria.

4.3.5 Accessibility.
Maintaining a dataset after its creation can present a number of accessibility questions, especially

for personal or commercially sensitive datasets whose disclosure could pose risks to privacy, security,
or intellectual property [32]. Before publishing, data managers will need to determine the usage
affordances of the dataset, its policies and designated owners [35]. Specific mechanisms may need
to be identified for achieving good data availability while simultaneously protecting them from
unauthorised access (e.g. by defining user entitlements to data access, including metadata containing
licence type and DOI) [25, 32, 35]. One possibility here is the use of specialised infrastructure (e.g.
data trusts) that allow for secure data storage, retrieval and purging mechanisms between trusted
parties. In cases where direct access to data is not possible, proxy metrics such as the data “nutrition
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label” described earlier may provide sufficient information for auditing and accountability purposes
[32].

4.3.6 Maintenance.
Datasets will require governance standards and specifications to support their maintenance,

especially in larger organisations that handle multiple datasets [25]. This documentation should
include information about the conventions used for naming and organising the data, their meaning,
source and version history [32, 35, 57], as well as specifying the complex relationships that may
exist between multiple data sources.
For datasets that deal with contextually significant data (e.g. from specific geographic regions,

populations or industries), data managers may have an interest in maintaining them in ways that
help to address data coverage issues over the longer-term. This can involve the establishment of
open repositories and data trusts with the goal of gathering more representative data [36]. As part
of this, data managers can develop “mission statements” to communicate their curation goals and
encourage external contributions that can make the collection more contextually representative in
future.

4.4 ML building
In many contexts, the previous data collection and preparation steps are likely to have been carried
out by a person different to the one who builds the ML model. For this reason, the ML practitioner
would ideally go back and check the dataset’s documentation to make sure that it meets their use
case requirements. This can help them to avoid using the data for a purpose that may be morally or
ethically objectionable to the original curators [53].
Once the dataset is confirmed to be suitable, the process of building ML can begin. Some of

the initial data work may be similar to the data pre-processing stage mentioned earlier, but here
the requirements will depend to a greater extent on the selected ML techniques and use case.
Examples of possible tasks include feature selection, enrichment and sampling. We summarise
these requirements below, followed by a discussion on data accessibility issues that accompany ML
models.

4.4.1 Feature selection.
During the initial development of a model, an important part of data preparation involves

selecting or engineering a set of features that are most predictive of the outcome [57]. This includes
removing redundancies (e.g. correlated variables) or using dimensionality reduction methods (e.g.
PCA) before using the data as model input. However, preparations of this kind are not always
feasible with unstructured data such as images, language, and video, where high dimensionality
and large sizes make it hard to identify relevant features from the outset [34]. Some work on feature
selection may therefore be put on hold until ML models are more mature, where the focus shifts
from preparatory steps on the incoming dataset towards ex-post feature selection as a way to
optimise resources and reduce latency while still retaining the same accuracy in the model.

4.4.2 ML-informed data pre-processing and enrichment.
Once relevant features are selected, ML developers may need to re-examine data quality chal-

lenges related to contextual coverage and cleanliness, where the limitations of the dataset may
need to be mitigated through enrichment and/or sampling approaches before feeding them to the
model. Below we discuss each of these processes.
Exploration into data coverage that was initiated at the data collection and pre-processing

stages should continue during the ML building process. In particular, ML practitioners should be
mindful that it is not always possible for the preceding data handlers to obtain a priori knowledge
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of potentially sensitive features (e.g. gender, race), especially in high dimensional data such as
images, language, and video. In cases like this, ML in itself can become a tool for detecting smaller
subsets of data that would most benefit from enrichment or using modeling choices to mitigate
bias [33, 34]. In the case of enrichment, the first step is to contextualise the available data, and
then augment the existing features with new signals from other datasets or acquire new labels
[57]. Solutions of this kind have been applicable in contexts such as gender biased text data, where
authors have proposed the use of further data collection and improvement steps, such as crowdwork
and debiasing algorithms, to identify and remove discriminative word mappings from training data
[14].

Besides enriching the available data, another solution for creating contextually relevant datasets
involves sampling. Such practices target the dataset’s representativeness, rather than size, as the
quality that will influence the performance of an ML model. Several authors have noted that a
small number of representative observations can be more effective than using an extremely large
but biased dataset [25]. Indeed, using all available data to train models can sometimes have a
detrimental effect [28].

Examples of this have been especially prominent in research that deals with imbalanced datasets,
where the outcome of interest is under-represented in the observation space (e.g. fraud detection,
clinical diagnosis). Here, techniques such as under-sampling and synthetic data have been found to
enhance model performance [16]. Others have proposed that training datasets should be filtered in
other contexts that deal with human behaviour. For example, Hagendorff [28] propose to single
out data from certain subpopulations that are deemed more competent, eligible, or morally versed
for a specific task.
One of the downsides of re-sampling approaches is that they can be costly to implement and

require the practitioner to know in advance which features are responsible for the undesirable bias
[34]. To this end, some authors have proposed algorithmic approaches for identifying subsamples
of training data that are most effective at meeting the desired model metrics (e.g. log loss, AUC,
and calibration) [57].
In addition to mitigating bias, ML tools can also be used to enhance the cleanliness of datasets

for specific models. As mentioned during the pre-processing stage, automated techniques can be
used to select the optimal sequence of data preprocessing tasks that maximise the performance of
the ML model [11].

4.4.3 Multi-dataset-multi-model scenarios.
Another common scenario involves practitioners reusing existing ML models as part of their

data pre-processing steps, or relying on an existing ML model as a starting point to train a second
model for a new domain. These scenarios have implications for data quality because they determine
part of the context to which the data quality needs to be tailored.

For example, in the NLP domain, it is common to reuse tools such as part-of-speech (POS) taggers,
dependency parsers, and pre-defined stop word lists to prepare the data for subsequent use in a
model. To do this, the practitioner will typically need to prepare their text data by removing special
characters and tokenising the string into a list of words that can be read by the pre-processing tool.

In other cases, model reuse forms a more substantial part of the ML development process. This is
common with complex models that could take weeks of computation on multiple machines, where
using existing models as a starting point can save valuable time and resources when training a
second model. For example, a convolutional neural network (CNN) trained on human faces that
already has the capacity to extract the main features (e.g. eyes, noses, etc.) can prove more efficient
than training a new CNN from scratch [5]. This is termed “transfer learning” in the literature, and
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it typically means using one of a few "foundation models" created by large organisations that had
access to huge data and computational power [15].
An important data quality challenge here relates to knowledge about the data on which the

model was trained, and the data used to evaluate the model. For example, duplicate entries in a
dataset can produce an overlap between the datasets used to train and evaluate a model, which can
cause the performance metrics to be exaggerated [19].
Another issue to consider is the extent to which the original model’s intended usage matches

that of the new application. Foundational models that are built to be generalisable can come at the
expense of specificity. For example, their training data may not sufficiently capture an operational
context that is characterised by specific demographic or cultural traits. In cases like this, reusing
and tuning a trained model helps to improve model performance only if the tuning is done using a
dataset that contains task-specific data entries [19]. Some authos have called for smaller reusable
models that are trained on contextually-relevant, rather than large, datasets [10].

4.4.4 Documentation.
Where possible, the ML building process should be accompanied by documentation that has all

the necessary information to reproduce or verify the model [35, 55].
This includes defining themetrics and statistics used to evaluate themodel, as well as reporting the

measures of central tendency (e.g. mode, median and mean) and uncertainty around observed effects
(e.g. range, quartiles, absolute deviation, variance and standard deviation) [48]. Documentation
practices at this stage can also provide an opportunity to examine and reflect on the data properties
that significantly affect the model accuracy, and whether there are any dependencies to other data
and infrastructure that may affect the outcome [57]. Besides the model results, the documentation
at should also report the provenance of the model (e.g. who developed it, potential conflicts of
interest, when it was developed, versioning etc.) [48].
The above information can come in the form of separate documents, or as comments and

variable identifiers embedded in the code. Pinhanez et al. [56] preset an example from the field
of conversational systems where practitioners have tended to structure their documentation in a
manner that is readable by machines. The authors discussed how documentation of this kind can
have its own computational value when building new tools to assist the developers.
Besides assisting collaboration between ML developers, the documentation also provides an

opportunity to disclose decisions and facts that can be used by the broader community to better
understand what the model does [48]. As with dataset maintenance, the model documentation
should also be accompanied by versioning information and DOIs, which could be done through
institutional repositories or other open platforms where the model itself or its metadata are housed
[35]. In commercially sensitive settings, the level of disclosure may be tempered by the requirement
to protect intellectual property rights.

4.4.5 Accessibility.
In contexts where openness is possible, a growing number of research venues are encouraging

ML practitioners to publish their models for the purposes of review and verification (e.g. checking
experimental conditions, hyperparameters, proper use of statistics, robustness), as well as supporting
the replication of existing models in subsequent innovation and research. Structured guidelines for
sharing ML models can be found in reproducibility checklists, such as the one proposed by Pineau
et al. [55]. Such checklists cover both the accessibility of model code as well as training data.

In the publication of code, practitioners in industry may first need to ensure that their applications
do not contain software that is protected by intellectual property, or is built on top of proprietary
libraries. Although this is an important consideration, prior research has observed that many
authors from industry were indeed able to submit code [55]. In cases where the model cannot
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be shared at all and practitioners still want to provide access for model verification and review,
they can share minimal information on model performance across various factors [48]. One way
of doing this is to use “model cards”, which are short documents that describe model evaluation
procedures and results across different settings that are relevant to the intended application domain
[48]. We will elaborate on these procedures in the next section. Additionally, models that use
decision thresholds can include a threshold slider in the digital documentation that accompanies a
model [48], allowing users to view performance parameters across different decision thresholds.
With regard to the publication of data, ML practitioners are typically encouraged to share the

training and test data that underpin their model. However, this presents a challenge to ML models
that rely on commercially sensitive or personal data (e.g. in healthcare or finance). For cases like this,
synthetic training and test data can be generated using distribution hypotheses from the original
data [32], or complementary empirical results can be provided using open-source benchmark
datasets in addition to results based on the confidential data [55]. ML practitioners should also be
mindful of using and distributing training data that come from unknown sources; this includes
benchmark datasets scraped from the Web, whose licensing and copyright restrictions are unclear,
or datasets that may have become deprecated [53].

4.5 ML testing
In many documented cases of adverse ML outcomes, the issues with training data became apparent
only after the solution was deployed in real-world contexts. In order to avoid this, ML practitioners
and auditors can test the system for contextual bias and security issues before releasing the system.
We discuss these considerations below.

4.5.1 Performance metrics and explainability.
The evaluation metrics for ML models have traditionally focused on generic cues such as in-

formation loss, false positive and false negative rates. However, more recently researchers have
started encouraging practitioners to develop context-specific criteria that rely on specific types of
test data. For example, to assess the contextual coverage of an ML model, its performance can be
tested in different demographic and intersectional groups (e.g. by age, race, gender, geography)
[48]. This is particularly important in cases where protected attributes may be underrepresented in
the training dataset, prompting fairness concerns [34]. When deciding which factors to present in
the intersectional analyses, practitioners must be cautious to preserve the privacy of individuals;
this can be done through collaboration with policy, privacy, and legal experts to decide which
groups may be responsibly inferred, and how this information can be stored and accessed [48].
For practitioners who are struggling to find test data for populations outside of the initial domain
used in training, possible solutions include using synthetic datasets to represent use cases that may
otherwise go unevaluated [48].
Besides testing performance on different demographic groups, different business contexts may

also be relevant to consider (e.g. plant recognition worldwide or in the Pacific Northwest, vehicular
crash tests with one or another phenotype in dummies) [48]. This allows stakeholders (policymakers,
developers and individuals) to compare models not only based on generic evaluation metrics, but
also on social and economic dimensions such as ethics, inclusivity and fairness, making it possible
to take remedial action where necessary.

In addition to representativeness, other meaningful metrics might include reflections on model
performance in real business settings, for instance by estimating customer conversion rates [52],
model size and energy consumption incurred by the model [53]. Additionally, sensitivity studies of
dataset parameters can give insight into the features that have an impact on the model’s prediction
[35]. This does not only help to support transparency and explainability fror data users, but it
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can also help practitioners to understand the effect that errors in specific features can have on a
model’s output and performance. This understanding is vital to applying data quality assurance
and correction tools [63].
One of the themes emerging from the above authors is that performance metrics need to be

tailored to the specific use case of the model. Often this involves trade-offs between traditional
evaluation metrics such as precision and recall [25], as well as contextually sensitive issues such
as test-set accuracy, robustness and fairness, compactness and privacy, where maximising one
performance metric may come at the expense of another [34]. Because of the subjective nature of
the model evaluation process, and the various different metrics that practitioners can choose to
prioritise, these decisions can be communicated to users using “model cards” that contextualise the
results according to different benchmarks that matter in the intended application [48]. As was the
case with dataset documentation, the use of visualisations can help to demonstrate cross-sectional
analyses of model performance according to different metrics.
Besides performance, model inspection and visualisation methods can also support the inter-

pretability of the model, which can in turn influence its perceived quality [4]. This falls within the
field of explainable AI (XAI), which aims to help practitioners and operators to analyse the output
of ML models and the reasons behind automated decisions. Possible ways of doing this include pro-
viding natural language explanations based on decision trees, using model visualisations to support
understanding, and explaining the outcome by example [1]. Whereas many XAI approaches have
focused on model-based explanations, Anik and Bunt [2] proposed that data-centric explanations
can be equally meaningful to evaluating the trustworthiness of ML models, both by engineers as
well as end-users.

4.5.2 Access Security.
The steps taken to test the security of ML models will depend on whether they are open or closed,

and whether their data are subject to privacy restrictions. There may be ambiguous cases where
the training and evaluation data may need different levels of disclosure. For example, the training
data may be proprietary or require a non-disclosure agreement, while the evaluation datasets are
shared publicly for third-party use [48]. Open datasets that have been anonymised will require a
careful review to mitigate the risk of de-anonymisation; ideally this would be done by someone
who has a good background knowledge of the hypothetical enemy [33].

Another evaluation that is important to conduct during the testing stage relates to weighing
the benefits of detailed reporting practises outlined earlier against the potential risks of exposing
confidential data. Adversarial testing should be conducted to make sure that the public-facing
model output cannot be used to recreate the original data [48], especially in cases that provide
confidence intervals and interactive interfaces (e.g. sliders) in digitised model documentation.
Besides test-based approaches, practitioners can also opt for using theoretical models for proving
that their models are safe against adversarial attacks [40, 45, 76].

4.6 ML deployment
Once ML models are trained and ready for deployment, the focus of data quality work shifts from
internal operations on training and test data, and instead looks at assuring the quality of serving
data that enter the system from the outside.
Mechanisms are needed to ensure that the serving data undergo the same preparation steps

as the steps that were applied to the raw training data [57]. This can be especially challenging
in settings where new data arrive continuously, and where they are used to retrain and deploy
updated models. The latter case will require additional measures for preventing adversarial attacks
such as data poisoning [52] or spam [57].
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Other precautions also apply to models that do not ingest new training data. For example,
proprietary models can be stolen by repeatedly querying the system (e.g. via a public prediction
API) and monitoring the outputs to reverse engineer a substitute model [52]. Another similar risk
relates to model inversion, where querying can be used to recover parts of a private training dataset,
thereby breaking its confidentiality [52]. These risks are especially likely in models that report
confidence values alongside their predictions.
To mitigate the above risks, ML developers should work closely with software engineers in

order to ensure that public-facing systems built on top of the ML are robust against malicious
attacks. Recent trends in ML have discussed the development of new engineering approaches such
as federated learning to foster privacy, data protection and security [33]. Federated learning works
by allowing devices to learn a shared prediction model collaboratively while keeping the training
data securely on the user’s own computer.

4.7 ML monitoring
Once a model is deployed, the focus on serving data should continue. At this stage, the work shifts
to monitoring the properties of incoming data and ensuring that they are contextually similar
to the data that the model was trained on. Polyzotis et al. [57] and Schelter et al. [65] propose
analyses that can be used to detect training-serving skew in pre-defined variables. However, others
note the difficulty in trying to establish which columns must be inspected, and what the required
thresholds should be [63]. Chen et al. [19] suggest that the thresholds can be based on the expected
distribution of a targeted population for relevant features (e.g. the usage frequency of a phrase, or
the number of individuals with a particular skin tone).

Some monitoring activities can be automated and communicated to the users of ML systems via
alerts. This may include data integrity checks, anomaly detection, and performance metrics [52].
Additionally, the system can be designed to gather additional data about misuses or outliers while
the model operates in the real world, providing DevOps engineers and ML developers with more
information for mitigating security and performance issues in subsequent versions of the model.

4.8 Challenges for stakeholders
In this final section of our results, we summarise the data quality requirements that matter within
specific stakeholder roles. Knowledge of relevant responsibilities can help practitioners to under-
stand and resolve the data quality issues that are within their capacity, and to articulate their own
requirements to relevant colleagues.

• Subject matter experts are typically consulted during the early stages of defining the
dataset use case and design. These experts can advise on which data features are relevant in
their domain of expertise, and the anticipated characteristics of the end users (e.g. in terms
of demographic, cultural or environmental traits). Discussions of this kind should help the
data collector to assess how much supervision and domain expertise would be needed to
collect, label and document the dataset.

• Data engineers and software engineers may be involved in different stages of the ML
development pipeline. During the initial stages of dataset design and collection, they may be
asked to select or build systems for data storage, access, transformation and linking. During
the stage of ML deployment, their role may shift to building a user-facing ML system that is
secure against attacks or unauthorised access, while at the same time being transparent and
user-friendly. Other responsibilities may include building systems for monitoring incoming
data and generating alerts if they do not meet a pre-defined set of criteria.
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• Data managers work with the data validation and maintenance stage of the ML pipeline.
Their role is to collaborate with other stakeholders to ensure that a dataset is clean, contex-
tually relevant, well-documented, and accessible in the right way. Important responsibilities
include determining the policies and designated owners of the dataset, and ensuring that
it is protected from unauthorised access where necessary. Data managers must also take
responsibility for putting together relevant documentation about how the dataset was
collected, its naming conventions, purpose, and version history.

• Data analysts and data scientists are involved during the stages of data validation and ML
building. After data are collected, they are likely to carry out pre-processing tasks such as
feature selection, deduplication, removal of outliers, consistency checking, anonymisation
and imputation of missing values. Data analysts may also be required to inspect the dataset
to identify potential biases, protected characteristics, or stereotype-aligned correlations.
When it comes to building ML models, data scientists may be tasked with selecting or
creating new features, enriching and/or resampling the dataset. In every task, it is important
that the practitioner records the sequence of actions they perform on the data, and the
properties and limitations they may discover about the dataset.

• ML engineers are mostly involved with the ML building and testing stages, and they are
likely to collaborate closely with data scientists whose role is to validate and prepare the
dataset. ML engineers will make decisions about which data features to use in the model,
how to split the training and evaluation data, and whether to build a new model or re-use
an existing one. They may need to consult with subject matter experts in order to establish
which performance criteria should be prioritised and the different contexts in which the
model needs to be tested.

• DevOps engineers work with ML engineers and software developers to oversee the ML
system once it has been deployed. Their responsibilities include monitoring the properties
of incoming and outgoing data to make sure that the system is operating reliably. These
responsibilities may be subsumed by ML engineers in the absence of DevOps staff.

An important caveat we would like to restate is that our findings are not exhaustive, and capture
only a small selection of recurring themes that came up during our review. We therefore encourage
readers to remain open to other data quality requirements that may matter to them and their
colleagues, bearing in mind that these may not have been covered here.

5 DISCUSSION
Our paper provided a literature review of data quality requirements that matter during ML devel-
opment. We found that these requirements can be broadly accommodated within the data quality
frameworks traditionally endorsed by data management research, including routines for data
collection, processing and documentation. What is unique about the experience of ML practitioners
is that their data quality requirements and corresponding tasks are disaggregated across different
stages of the ML development pipeline.
Each stage of ML development embodies a new purpose with its own data uses and quality

requirements, meaning that the traditionally accepted definition of data quality as “fitness for
use” should not be viewed as a singular outcome. Instead, data quality must be defined using
stage-specific approaches that are sensitive to where in the ML lifecycle the data are encountered
and who encounters them [25, 57]. Because of this, the four traditionally used categories of data
quality (intrinsic, contextual, representational and accessibility) must be addressed differently at
different stages of the ML development pipeline, as we will discuss below.
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Requirements around intrinsic data quality may initially be targeted to the data collection stage,
where careful monitoring and human-in-the-loop methods can support the acquisition of data
that are accurate, reliably sourced and clean from the outset. Once the data have been collected,
the requirements may shift to removing any remaining inconsistencies and redundancies as part
of general data maintenance. When it is time for the dataset to be used to train an ML model,
the intrinsic requirements will include determining an appropriate level of dimensionality and
ensuring the completeness of relevant features. During the later stages of ML deployment, the tasks
of intrinsic data quality shift from working with training data to the preparation of serving data
received from the outside world.
With contextual data quality, the authors in our review highlighted the importance of under-

standing the anticipated ML use case and characteristics of the end users before data collection. This
understanding is needed to design the data collection process to gather data that adequately reflect
their purpose and the environment in which the trained ML will be deployed. Other contextual
requirements during data collection, especially in sociocultural contexts, relate to compliance with
ethical and inclusivity guidelines. After the data are collected, their contextual integrity must
be evaluated and, where necessary, improved through the curation of additional data. When ap-
proaching the early stages of ML development, the contextual fit of the dataset may be improved
through steps such as feature selection and re-sampling of the training distribution. Once the ML
model is built, requirements around performance can be assessed using benchmarked evaluation
in different contexts. After the model is deployed, the data requirements shift to monitoring the
quality of serving data in terms of their distribution and features, to ensure that they align with
data characteristics upon which the model was trained.

A large part of the representational aspect of data quality involves documenting how the above
requirements were met. In the earlier stages of dataset development, documentation should focus
on the user requirements and dataset design, followed by summaries of the dataset collection
process, cleaning, maintenance and evaluation steps. Other representational requirements that may
arise during the data collection stage relate to the standards used to capture data, as well as the
quality of user interfaces for data collection and exploration.

Lastly, requirements around accessibility include the quality and security of infrastructure used
for data storage, access and maintenance, which must be in place before the data are available to
develop ML models. This can be supported by institutional frameworks and guidelines on consent,
transparency and privacy of datasets. When it comes to data security, the later stages of model
development require thorough testing and monitoring processes to mitigate against adversarial
attacks that could poison training data or expose private datasets.

From the above summary of the intrinsic, contextual, representational and accessibility require-
ments of ML datasets, we see that the responsibility for managing data quality is distributed across
various stakeholders. This includes subject matter experts, data analysts, software engineers, ML
engineers and DevOps specialists (or site reliability engineers). Distinguishing between these
different classes of users is necessary if we are to understand the radically different backgrounds
and tasks that are needed to keep ML data quality pipelines running smoothly [57]. In Figures 4
and 5 of the Results section, we presented illustrated examples of this complex web of relationships
and the nature of their interactions with datasets. At the intersection of dataset development and
ML pipelines, we came across a number of synergies and tensions that have implications on data
quality but have been less explicit in previous data quality frameworks. These are as follows:

• Ethical and legal requirements - numerous articles in our review commented on ethical
issues such as working with sensitive data, the impact of data-driven decisions on human
life, and potential security risks. Rather than being a distinct and temporally-constrained
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task, we observed that these requirements transcend different stages of the ML lifecycle.
This is in line with the observation made by Gebru et al. [23] that the best way to elicit
information about ethical and legal compliance is by requiring practitioners to document
specific stages of the dataset development process.

• Amount of data - early advances in ML were motivated and, in some cases, enabled by the
availability of big datasets, and big data remain necessary in many ML applications such as
autonomous vehicles and clinical diagnosis [33, 75]. However, numerous researchers in our
review highlighted that bigger datasets are not always better. Earlier trends of opportunistic
data collection and post hoc justifications of large datasets are gradually moving towards a
requirement for more deliberative data collection methods [35, 36], sampling techniques[16]
and minimal data architectures [57] to deliver better performance without reducing model
accuracy.

• Representational standards - adherence to common standards and metadata already has
a long history in traditional data management literature. However, ML applications that
are built on social and cultural data require practitioners to reconcile different vocabularies
and unique ways of perceiving the world with the need for standardised and homogeneous
datasets to be fed into ML systems [36]. This requirement for contextual sensitivity is being
met by the growing use of semantic standards that use ontologies and annotate data with
graph-like properties [33].

• Software requirements - software quality can impact data quality in a number of ways.
Software infrastructures may determine how data are structured and collected, how access
to datasets is granted, and how the dataset is presented for exploration by prospective users
(e.g. via visualisations or dashboards). When ML models are integrated into client-side
applications, software developers need to ensure that model training and serving data
are protected against adversarial attacks, and that they do not inadvertently expose any
personal or commercially sensitive data [33].

• Documentation - rather than being a post-hoc activity that accompanies completed
datasets, the authors in our review viewed documentation as a pre-emptive activity that
should span the entire ML development lifecycle. The stages of dataset design, collection,
ML training and testing should each yield documents that can support communication and
decision-making between successive stakeholders [35, 70]. This is especially valuable in
larger organisations where the data and ML activities are separated across teams, or where
they are vulnerable to information loss due to staff handover.

In order to show how the above implicationsmap onto the four traditional data quality dimensions
that were discussed earlier, we summarise them in Table 4.
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Table 4. Additions to traditional data quality dimensions introduced by ML.

Challenge Data quality category
Intrinsic Contextual Representational Accessibility

Legal and ethical Some intrinsic aspects of
datasets, particularly in per-
sonal or sociocultural data, now
require greater pre-processing
to identify and anonymise
or remove sensitive and/or
protected characteristics (e.g.
gender, race, age).

The relevance of sociocultural
data to specific use cases re-
quires an assessment of the
presence and distribution of
legally protected characteris-
tics.

Documentation of the dataset and
its development process can help
to anticipate and prevent ethical or
legal risks.

Compliance with ethical and le-
gal requirements requires con-
trolled access mechanisms that
preserve the security of per-
sonal and proprietary data (e.g.
data trusts).

Bias Small contextually relevant
datasets can lead to better and
fairer performance than large
data.

Documenting the environment in
which data were collected helps
practitioners to assess contextual
relevance and to mitigate bias.

Software Data collection and manage-
ment software can be used to
improve the intrinsic quality of
data (e.g. through runtime veri-
fication and alerts).

Runtime verification tools can
be used to detect contextual
drift.

Visualisations and dashboards can
make it easier to inspect the quality
of a dataset.

Documentation facilitates the
handover of information across
different stages of ML development.
This is especially useful in sce-
narios where datasets and ML are
developed by multiple teams.

Software built on top of ML
models needs to be tested
to ensure that model training
and serving data are protected
against adversarial attacks.
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Many of the processes described above span across multiple stakeholders, whose ability to self-
organise into a robust data quality workflow will require the support of higher-level institutional
structures. Part of that is about providing incentives to individuals and organisations [23, 53]. At
present, the field of ML suffers from the devaluation of data work, with model development tasks
being held in higher esteem than data quality processes [35, 64]. In response to this, authors have
advocated for the professionalisation of data work as a means to promote best practices in data
management and accountability. Practical approaches to this include establishing membership
organisations and review panels with standardised codes of conduct [36]. Participation in these
schemes will impose greater costs which may be felt particularly strongly by smaller stakeholders
such as startups and SMEs. For this reason, policy makers could explore solutions for achieving
economies of scale through consortia and trusts9 that pool the resources needed by practitioners to
produce good quality data.
Besides institutional change as a long-term strategy for improving data quality, it is equally

important to consider actionable steps that can be taken in the shorter term by individuals and teams
that wish to improve their practices. Reviewing the complete range of data quality enhancement
tools and protocols goes beyond the scope of this article, but several examples of such tools were
encountered during our review. In the sphere of documentation, there exist various checklists,
such as those for reporting crowdsourcing experiments [58] and model reproducibility [55], as well
as datasheets [23], cover sheets on employment practices [62], data nutrition labels [32], model
cards [48], notebooks [72] and explainability toolkits10. When it comes to mitigating the risks of
ML models through data, readers may be interested in ethics assurance tools such as AI Fairness
360 11, legal and ethical checklists for NLP [60], and verification tools for streaming and serving
data [21, 65]. Lastly, for readers who are interested in sharing ML datasets and the models built
upon them, repositories hosted by CodeOcean, GitHub, Zenodo and HuggingFace12 can serve as
good candidates. We encourage interested readers to investigate the relevance, advantages and
drawbacks of these tools in their specific use case.

5.1 Relevance to use cases
Earlier in this paper we noted that data quality frameworks and standards present practitioners
with dozens of possible criteria to comply with. These are accompanied by a growing range of tools
for data pre-processing, documentation and assurance. It is impossible for all of these requirements
to be met, nor is it necessary. Previous studies that explored the application of data quality standards
found that practitioners benefit from seeing examples of data quality requirements, as it helps
to clarify their own needs [24]. It was also found that there is value in simplified data quality
frameworks that are tailored to specific use cases or technologies [41].

Our review sought to assist ML practitioners who are trying to define their data quality require-
ments. Firstly, we synthesised previous literature to illustrate the common data quality requirements
that can exist in ML. Secondly, by mapping these requirements to different stages of the ML pipeline,
we provide a way for readers to see the requirements that are likely to precede and follow their
specific task, and to discern which data quality outcomes to focus on in their role. This type of
clarity is needed to prevent the diffusion of responsibility and to ensure that every stakeholder is
proactive at mitigating data quality issues that are within their capacity.

Besides individuals who work directly with data, we anticipate that our review will be useful to
coordinators of data innovation projects that involve multiple stakeholders. Our own experience of
9https://theodi.org/article/data-trusts-in-2020/ [accessed 1/03/22]
10ELI5 python package: https://github.com/TeamHG-Memex/eli5 [accessed 19/08/22]
11https://aif360.mybluemix.net/ [accessed 19/08/22
12https://huggingface.co/docs [accessed 18/08/22]
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this includes a series of projects that emerged from a Public Private Partnership (PPP) between
the European Commission and the Big Data Value Association (BDVA). These projects included
the European Data Incubator (EDI), EuRopEAn incubator for trusted and secure data value Chains
(REACH) and EUHubs4Data. Their goal was to facilitate data-driven innovation in startups and
SMEs through collaboration between data providers, data users, business coaches and legal experts
assembled from different geographic regions. The review provided in this paper can help managers
of similar initiatives to understand the data quality requirements of colleagues who are responsible
for different parts of the data value chain, and to signpost participants to resources that will support
their data quality practice and documentation.

6 CONCLUSION
Shifting data practices from current priorities driven by availability or convenience towards high
quality data will require the effort of decisionmakers and practitioners at every level of organisations
and policy. We hope to have contributed a useful vocabulary for perceiving and articulating some
of the nuanced data quality requirements that can be resolved by practitioners in different parts of
the ML pipeline.

6.1 Limitations
Our review is limited by the relatively small sample of articles, which represent only a minor portion
of the growing number of literature that is emerging at the intersection of data management, ML
and HCI. It is possible that the keywords and sources that were used during our search for articles,
as well as the insights drawn from them, were influenced by the authors’ fields of expertise. For
example, we did not elaborate greatly on concepts such as data ethics, data feminism and data
justice, which relate to data quality but lie outside the technical focus adopted in our review.
Another limitation relates to the simplification of our findings for the purpose of this review.

For example the ML pipelines illustrated in Figures 4 and 5 (along with the sequence of stages in
Table 3) use a linear sequence of data quality assurance steps that is unlikely to be structured like
this in reality. Specifically, multi-dataset-multi-model and agile data iteration scenarios are more
common than the waterfall-ish view used to report our findings. Moreover, much of our discussion
focused on desirable or ideal scenarios rather than what is feasible. So we did not do justice to the
important trade-offs and negotiations that occur when some parts of data quality may need to be
adapted or sacrificed in favour of practical requirements and business goals.

6.2 Future work
Our review focused mainly on defining the requirements of ML data as part of the "planning" stage
of the data quality management process illustrated in Figure 1. We did not systematically review the
literature on how these plans can be implemented through tools for data quality control, assurance
and improvement. As the fields of ML and data quality research continue to grow, we envision a
demand for reviews that are able to compile a list of the available data quality tools, and compare
their overlaps, differences, and blind spots.
We also encourage organisations to look beyond the traditional view of data quality as a fixed

outcome that meets a list of pre-defined criteria, and to consider a more dynamic perspective
that specifies the particular data quality requirements that are valued within their part of the ML
lifecycle. Movement in this direction is already underway in the standardisation community, with
standards such as ISO/IEC 5259 and ISO/IEC DIS 8183 beginning to incorporate the ML life cycle
into data quality recommendations. In Figure 3 we illustrated how the findings of our review may
be reconciled with the pipeline of the forthcoming ISO/IEC 5259 standard. We encourage future
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researchers to investigate the practical application of this standard by individuals and organisations,
and to share their experiences with the wider community.
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