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Bayesian Active Meta-Learning for Reliable and
Efficient AI-Based Demodulation
Kfir M. Cohen, Student Member, IEEE, Sangwoo Park, Member, IEEE,

Osvaldo Simeone, Fellow, IEEE, Shlomo Shamai (Shitz), Life Fellow, IEEE

Abstract—Two of the main principles underlying the life
cycle of an artificial intelligence (AI) module in communication
networks are adaptation and monitoring. Adaptation refers to
the need to adjust the operation of an AI module depending on
the current conditions; while monitoring requires measures of
the reliability of an AI module’s decisions. Classical frequentist
learning methods for the design of AI modules fall short on
both counts of adaptation and monitoring, catering to one-
off training and providing overconfident decisions. This paper
proposes a solution to address both challenges by integrating
meta-learning with Bayesian learning. As a specific use case, the
problems of demodulation and equalization over a fading channel
based on the availability of few pilots are studied. Meta-learning
processes pilot information from multiple frames in order to
extract useful shared properties of effective demodulators across
frames. The resulting trained demodulators are demonstrated,
via experiments, to offer better calibrated soft decisions, at
the computational cost of running an ensemble of networks at
run time. The capacity to quantify uncertainty in the model
parameter space is further leveraged by extending Bayesian meta-
learning to an active setting. In it, the designer can select in a
sequential fashion channel conditions under which to generate
data for meta-learning from a channel simulator. Bayesian active
meta-learning is seen in experiments to significantly reduce
the number of frames required to obtain efficient adaptation
procedure for new frames.

Index Terms—Bayesian meta-learning, uncertainty quantifica-
tion, Bayesian active meta-learning, demodulation.

I. INTRODUCTION

A. Motivation

Artificial intelligence (AI) is seen as a key enabler for next-
generation wireless systems [2]. Emerging solutions, such as
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Open-Radio Access Network (O-RAN), incorporate AI modules
as native components of a modular architecture that can be
fine-tuned to meet the requirements of specific deployments
[3]. Two of the main principles underlying the life cycle of
an AI module in communication networks are adaptation and
monitoring [4]. Adaptation refers to the need to adjust the
operation of an AI module depending on the current conditions,
particularly for real-time applications at the frame level. At
run time, an AI model should ideally enable monitoring of the
quality of its outputs by providing measures of the reliability
of its decisions. The availability of such reliability measures
is instrumental in supporting several important functionalities,
from the combination of multiple models to decisions about
retraining [5].

Classical frequentist learning methods for the design of AI
modules fall short on both counts of adaptation and monitoring
(see, e.g., [6], [7]). First, conventional frequentist learning
is well known to provide inaccurate measures of reliability,
typically producing overconfident decisions [7]. Second, the
standard learning approach prescribes the one-off optimization
of an AI model, hence failing to capture the need for adaptation.
This paper investigates the integration of meta-learning and
Bayesian learning as a means to address both challenges. As
we detail in the next section, Bayesian learning can provide
well-calibrated, and hence reliable, measures of uncertainty
of a model’s decision; while meta-learning can reduce the
amount of data required for adaptation to a new task, thus
improving efficiency. As a specific use case, we focus on
the problems of demodulation and equalization over a fading
channel based on the availability of few pilots (see Fig. 1). The
goal is to develop AI solutions that are capable of adapting
the demodulator/equalizer to changing conditions based on
few training symbols, while also being able to quantify the
uncertainty of the AI model’s output.

B. Background

As illustrated in Fig. 2, frequentist learning assigns a single
value to each model parameter as a result of training. This
neglects (epistemic) uncertainty that exists at the level of
model parameters due to the limited availability of data. In
contrast, Bayesian learning can express uncertainty about
the true value of the model parameter vector by optimizing
over a distribution, rather than over a single point value [8].
By averaging predictions over the distribution of the model
parameters, Bayesian learning is known to be capable of
providing decisions that are well calibrated [9]–[11]. Calibration
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Fig. 1. Illustration of the meta-learning problem studied in this work for the
example of 16-ary quadrature amplitude modulation (16-QAM). A receiver
has available data corresponding to frames previously received from multiple
devices, each possibly experiencing different channel conditions. Given meta-
training data sets {Dτ}tτ=1 of pilots from previous frames, partitioned into
training data and test data, the demodulator optimizes a hyperparameter vector
ξ. For a newly received frame, the receiver uses the few pilots therein to adapt
the demodulator/equalizer parameter vector φ∗. In the Bayesian meta-learning
framework, instead of a single parameter vector φ∗, the receiver optimizes
over an ensemble of parameter vectors through the hyperparameter vector ξ
of a posterior distribution p(φ∗|Dtr

∗, ξ).

refers to the capacity of a model to produce confidence levels
that reproduce well the actual accuracy of the decisions.

Meta-learning, also known as learning to learn, optimizes
training strategies that can fine-tune a model based on few
samples for a new task by transferring knowledge across
different learning tasks [12]–[18]. Meta-learning is a natural
tool to produce AI solutions that are optimized for adaptation.
Prior work on meta-learning for communication systems,
including [19]–[29], is limited to standard frequentist learning.
Therefore, existing art is unable to produce models that provide
well-calibrated estimations of reliability. Most related to our
work is [19], which proposes to leverage pilot information
from previous frames in order to optimize training procedures
to be applied to the pilots of new frames (see Fig. 1).

Bayesian meta-learning aims at optimizing the procedure
that produces the posterior distribution for new learning
tasks. Accordingly, the goal of Bayesian meta-learning is to
enhance the efficiency of Bayesian learning by reducing the
number of training points needed to obtain accurate and well
calibrated Bayesian models. The optimization of the Bayesian
learning process is carried out by transferring knowledge from
previously encountered tasks for which data are assumed to
be available [30]–[32]. To the best of our knowledge, with the

exception of the conference version of this paper [1], this is the
first work to consider the application of Bayesian meta-learning
to communication systems.

Beside meta-learning, another approach to reduce the number
of required training data points is active learning [33]–[37].
Active learning amounts to the process of choosing which
samples should be annotated next and incrementally added to
the training set [38]. Through this process, active learning can
select relevant samples at which the model is currently most
uncertain in order to speed up the training process.

A much less studied area is active meta-learning, which aims
at reducing the number of tasks a meta-learner must collect
data from, before it can adapt efficiently to new tasks [37],
[39]. Reference [37] proposes a method based on Bayesian
meta-learning via empirical Bayes; while the paper [39] takes
a hierarchical Bayesian approach, generalizing the Bayesian
active learning by disagreements (BALD) criterion introduced
in [33] to meta-learning. While [37] assumes labeled training
sets, reference [39] considers unlabeled data during active
meta-learning. As such, the setting in it is not applicable to the
problem under study here in which data consists of supervised
pairs of pilots and received signals (see Fig. 1). A summary
of the relevant approaches built upon in this work is given in
Table I.

C. Contributions

This paper introduces the use of Bayesian meta-learning
to enable both adaptation and monitoring for the tasks
of demodulation and equalization. Unlike prior works that
considered either frequentist meta-learning [6], [19]–[26] or
Bayesian learning [40]–[43], the proposed Bayesian meta-
learning methodology enables both resource-efficient adaptation
and a reliable quantification of uncertainty. To further improve
the efficiency of Bayesian meta-learning we propose the use
of active meta-learning, which reduces the number of required
meta-training data from previously received frames. Specific
contributions are as follows.
• We introduce Bayesian meta-learning for the problems

of demodulation and equalization from few pilots. The
proposed implementation is derived based on parametric
VI.

• We introduce Bayesian active meta-learning as a solution
to reduce the number of frames required by meta-learning.
Active meta-learning selects in a sequential fashion
channel conditions under which to generate data for meta-
learning from a channel simulator.

• Extensive experimental results demonstrate that Bayesian
meta-learning produces demodulators and equalizers that
offer better calibrated soft decisions. Furthermore, they
show that for a target meta-testing loss, active meta-
learning can reduce the number of simulated meta-training
frames required.

Part of this paper was presented in [1], which presented the idea
of Bayesian meta-learning with some preliminary experiments.
This journal version presents full technical details, new results
and introduces for the first time Bayesian active meta-learning
for communication systems.
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TABLE I
A SUMMARY OF THE RELEVANT TECHNIQUES CONSIDERED IN THIS WORK

Approach Goal Methodology

frequentist learning accurate data-driven predictions minimize the training loss over the model parameter vector φ
Bayesian learning
via variational inference

reliable and accurate
data-driven predictions

minimize the free energy over the parameters ϕ of the variational distribution
q(φ|ϕ)

frequentist meta-learning sample efficiency minimize the meta-training loss over hyperparameters ξ to be used for frequentist
learning

Bayesian meta-learning sample efficiency and reliability minimize the meta-training loss over hyperparameters ξ to be used for Bayesian
learning

Bayesian active
meta-learning

task efficiency, sample efficiency,
and reliability

minimize the meta-training loss over the hyperparameters ξ and over the
sequential selection of meta-learning tasks

-0.2
0.5

-0.9

0.1

1.2

0.5

(a)                                                     (b)                                                 (c)                                                     (d)

Fig. 2. Network weights in frequentist and Bayesian learning: (a) in frequentist learning, each weight is described by a scalar value; (b) the scalar value can
be viewed as random variable having a degenerated probabilistic distribution concentrated at a simple prior; (c) in Bayesian learning, the weights are assigned
a probability distribution, which, unlike the frequentist point estimate (dashed vertical line), provides information about the uncertainty on the weight; (d) in
variational inference (VI), the posterior is approximated with a parameter distribution.

The rest of the paper is organized as follows. Section II
introduces the channel model, along with background material
on standard frequentist learning and frequentist meta-learning.
Section III expands on Bayesian meta-learning. Then, we
present Bayesian active meta-learning in Section IV. Numerical
results are presented in Section V, and Section VI concludes
the paper.

D. Related Work

For scalability, Bayesian learning can be implemented via
approximate methods based on variational inference (VI) or
Monte Carlo (MC). VI methods approximate the exact Bayesian
posterior distribution with a tractable variational density [9],
[44]–[47], while Monte Carlo techniques obtain approximate
samples from the Bayesian posterior distribution [48]–[50].
Each class of methods comes with its own set of technical
challenges and engineering choices. For instance, VI requires
the selection of a variational distribution family, such as mean-
field Gaussian models, and the specification of a stochastic
optimization algorithm. There are also non-parametric VI
methods such as Stein variational gradient descent (SVGD)
[51], which optimize over deterministic and interacting particles.
For MC techniques, solutions range from first-order Langevin
dynamics techniques [49] to more complex methods such as
Hamiltonian Monte Carlo (HMC) [48]. Implementing any of

these schemes for a specific engineering application is a non-
trivial task.

Bayesian learning has been applied in reference [52] to
the problem of predicting the number of active users in LTE
system; papers [53], [54] applied MC-based Bayesian learning
for MIMO detection; the works [55]–[57] addressed channel
prediction/estimation for massive MIMO systems; reference
[58] studied the identification of IoT transmitters; and the
authors of [59] proposed the use of robust Bayesian learning for
modulation classification, localization, and channel modeling.

As for active learning, applications to communication
systems include paper [60], which proposed a sample-efficient
retransmission protocol; reference [61], which tackled ini-
tial beam alignment for massive MIMO system; work [62],
which aimed at mitigating the problem of scarce training
data in wireless cyber-security attack; and reference [63],
which addressed resource allocation problems in vehicular
communication systems.

Like Bayesian learning, meta-learning also provides a general
design principle, which can be implemented by following
different approaches. Optimization-based methods design the
hyperparameters used by training algorithms; model-based
techniques optimize an additional neural network model to
guide adaptation of the main AI model; and metric-based
schemes identify metric spaces for non-parametric inference
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(see, e.g., [64] and references therein).
The integration of meta-learning and Bayesian learning is

highly non-trivial, and is an active topic of research in the
machine learning literature. References [65]–[69] addressed
Bayesian meta-learning via empirical Bayes using parametric
VI [65], [66], particle-based VI [67], deep-kernels [68],
and expectation-maximization [69]; while the papers [70]–
[73] studied full Bayesian meta-learning that treats also the
hyperparameters as random variables. Lastly, the work [74]
proposed the use of quantum machine learning models as
parameterized variational distributions.

II. CHANNEL MODEL AND BACKGROUND

A. Channel Model and Soft Demodulation or Equalization

In this paper, we consider frame-based transmission over a
memoryless block fading channel model with constellation X
and channel output’s alphabet Y . The channel is characterized
by a conditional distribution p(y|x, c) of received symbol y ∈ Y
given transmitted symbol x ∈ X and channel state c. In the
case of demodulation, we treat the set X as discrete; while
for equalization we view it as the space of vectors of a certain
size. In both cases, we will refer to channel input x as symbol.
The channel state c is constant within each frame, and it is
independently and identically distributed (i.i.d.) across frames
according to an unknown distribution p(c). At frame τ , the
transmitter sends a packet consisting of Nτ symbols xτ =
{xτ [i]}Nτi=1. Given the channel state cτ and the transmitted
symbols, collected in a vector xτ , the received samples yτ =
{yτ [i]}Nτi=1 are conditionally independent and each received
i-th sample is distributed as yτ [i] ∼ p(yτ [i]|xτ [i], cτ ).

A soft demodulator/equalizer is a conditional distribution
p(x|y, φ) that maps channel outputs y ∈ Y to estimated
probabilities for channel input symbol x ∈ X . The demodu-
lator/equalizer depends on a vector of parameters φ, and is
applied separately to each received sample y[i] in a memoryless
fashion as p(x|yτ [i], φ). The ideal frame-specific parameter
vector φτ for the frame τ is the one that best approximates the
channel conditional distribution p(xτ |yτ , cτ ), within its model
class, obtained from the Bayes rule as

p(xτ |yτ , φτ ) ≈ p(xτ |yτ , cτ ) =
p(yτ |xτ , cτ )p(xτ )∑

x′τ∈X
p(yτ |x′τ , cτ )p(x′τ )

,

(1)
where p(xτ ) is the distribution of the input symbol vector xτ .
In practice, as we detail below, the demodulator/equalizer is
optimized based on pilot symbols. To simplify the terminology,
we will also refer to demodulation/equalization as prediction
henceforth.

B. Conventional Data-Driven Demodulators/Equalizers

Pilot-aided schemes utilize available pilot symbols to adapt
the predictor p(x|y, φ) to the unknown channel state c in each
frame τ . A typical choice for a predictor is a multi-layer neural-
network [75]. With L layers, given received sample y, this
class of models produces a vector

a(y|φ) = WL · fWL−1,bL−1
◦ · · · ◦ fW1,b1(y) + bL, (2)

where ◦ is the composition operator; the weights {Wl}Ll=1

and biases {bl}Ll=1 define the model parameter vector φ :=
{Wl, bl}Ll=1 for a total of D parameters; and the function
for the l-th layer fWl,bl is a linear mapping followed by an
entry-wise activation function h(·), i.e., yl = fWl,bl(yl−1) =
h(Wl · yl−1 + bl) with y0 = y. In the last, L-th layer, a soft
demodulator applies the softmax function to vector a(y|φ),
producing the probability distribution

p(x|y, φ) =
[
softmax(a(y|φ))

]
x

(3)

=
exp([a(y|φ)]x)∑

x′∈X exp([a(y|φ)]x′)
,

using [·]x as the x-th element of the vector. In contrast, a soft
equalizer typically defines the conditional distribution

p(x|y, φ) = N (x|a(y|φ), β−1), (4)

where the precision β is fixed. Throughout this paper, we use
N (x|µ,Σ) to indicate the probability density function of a
Gaussian vector with mean µ and covariance matrix Σ.

In each frame τ , conventional learning optimizes the model
parameters φτ using N tr

τ i.i.d. pilots Dtr
τ = {(ytr

τ [i], xtr
τ [i])}N

tr
τ

i=1

as training data. Optimization of the prediction aims at
minimizing the training log-loss

LDtr
τ
(φτ ) := − 1

N tr
τ

N tr
τ∑

i=1

log p(xtr
τ [i]|ytr

τ [i], φτ ), (5)

which amounts to the cross entropy for demodulation (3) and
the quadratic prediction loss for equalization (4). Minimization
of (5) can be done via gradient descent (GD), or stochastic
GD (SGD), a variant thereof [76].

GD updates model parameter vector φτ for I iterations with
learning rate η > 0 starting from an initialization vector ξ.
Accordingly, the updated parameters φτ := φGD(Dtr

τ |ξ) are
obtained via the iterations

φ(0)τ = ξ,

∀i = 1, . . . , I : φ(i)τ ← φ(i−1)τ − η∇
φ
(i−1)
τ
LDtr

τ
(φ(i−1)τ ),

φGD(Dtr
τ |ξ) = φ(I)τ . (6)

The resulting prediction for a test input-output pair (yte
τ [i], xte

τ [i])
is given as p(xte

τ [i]|yte
τ [i], φGD(Dtr

τ |ξ)).

C. Frequentist Meta-Learning

The most prominent shortcoming of conventional learning
is its potentially high sample complexity, which translates
into the need for a large number of pilots, N tr

τ , per frame.
Meta-learning addresses this issue by transferring knowledge
acquired over previous frames. Specifically, frequentist meta-
learning, as proposed in [19], treats the initialization vector ξ
in (6) as a hyperparameter vector to be optimized based on
the availability of pilots from t previous transmission frames.

As a preliminary step, we decompose the available pilots
from each frame τ into a disjoint training set Dtr

τ and test
set Dte

τ as Dτ = {Dtr
τ ,Dte

τ }. Furthermore, the data sets for all
previous t frames are stacked as D1:t = {Dτ}tτ=1, and similarly
for Dte

1:t = {Dte
τ }tτ=1, having a total of N te

1:t =
∑t
τ=1N

te
τ
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samples. Meta-learning has two phases: meta-training and meta-
testing. These are defined next by following the frequentist
meta-learning strategy of [19].

Meta-training tackles the bi-level optimization problem

min
ξ

1
N te

1:t

t∑
τ=1

N te
τ LDte

τ

(
φτ (Dtr

τ |ξ)
)

(7a)

s.t. φτ (Dtr
τ |ξ) = argmin

φ(ξ)

LDtr
τ
(φ), τ = 1, . . . , t. (7b)

The notation φ(ξ) in (7b) indicates the dependence of the
optimizer on the initialization vector ξ. By (7), the goal of
frequentist meta-training is to find a hyperparameter vector
ξ such that for any frame τ , the optimized model parameter
vector φτ (Dtr

τ |ξ) fits well the test data set Dte
τ .

Problem (7) is addressed via a nested loop optimization
involving SGD-based inner updates and SGD-based outer
updates, which are also referred as meta-iterations. The inner
loop tackles the inner optimization (7b) in a per-frame manner
via (6) for a randomly selected subset T ⊂ {1, . . . , t} of frames,
which are redrawn independently at each meta-iteration. The
outer loop addresses the outer optimization (7a) via an SGD
step of the meta-loss with learning-rate κ > 0, i.e.,

ξ ← ξ − κ 1

N te
T

∑
τ∈T

N te
τ ∇ξLDte

τ

(
φGD(Dtr

τ |ξ)
)
, (8)

based on data from the batch T of selected frames, and
using the notation N te

T =
∑
τ∈T N

te
τ for the total samples

within the batch of selected frames. Meta-training updates
the initialization vector ξ across multiple meta-iterations.
When meeting some stopping criterion, here determined by a
predefined number of meta-iterations Imeta, meta-training stops,
and the hyperparameter vector ξ is stored to be used for future
learning tasks.

Upon deployment, i.e., during meta-testing, the meta-test
frames also include pilots and data as the meta-training frames.
Accordingly, each meta-test device loads the hyperparameter
vector ξ for initialization, and produces the adapted model
parameter vector φ∗ = φGD(Dtr

∗ |ξ) as in (6) using N tr
∗ pilots

symbols Dtr
∗ = {(ytr

∗ [i], x
tr
∗[i])}

N tr
∗

i=1. Then, it applies the learned
model to the payload data symbols {yte

∗ [i]}N
te
∗

i=1 to carry out
demodulation or equalization

p(xte
∗ [i]|yte

∗ [i], φ∗). (9)

III. THE BAYESIAN FRAMEWORK

A. Bayesian Learning

Bayesian learning treats the model parameter vector φτ for
some frame τ as a random vector, rather than as a deterministic
optimization variable as in frequentist learning framework. As
illustrated in Fig. 2, instead of producing a single demodulator
parameters φτ = φGD(Dtr

τ |ξ) as in (6), Bayesian learning
produces a distribution p(φτ |Dtr

τ , ξ) over the space of the
demodulator parameters φτ . This distribution is computed based
on training data Dtr

τ and on predetermined prior distribution
p(φτ |ξ), which depends in turn on the hyperparameter vector
ξ, also fixed a priori.

Having obtained the distribution p(φτ |Dtr
τ , ξ), the ensemble

prediction of a test point (yte
τ [i], xte

τ [i]) is given by the ensemble
average of the predictions p(xte

τ [i]|yte
τ [i], φτ ) with random

vector φτ having distribution p(φτ |Dtr
τ , ξ), i.e.,

p
(
xte
τ [i]
∣∣yte
τ [i],Dtr

τ , ξ
)

= Ep(φτ |Dtr
τ ,ξ)

[
p
(
xte
τ [i]
∣∣yte
τ [i], φτ

)]
.
(10)

The frequentist prediction (9), reviewed in the previous section,
can be viewed as a special case in which one is limited to the
choice p(φτ |Dtr

τ , ξ) = δ(φτ −φGD(Dtr
τ |ξ)), with δ(·) indicating

the Dirac Delta. With this choice, the distribution p(φτ |Dtr
τ , ξ)

is concentrated at one point, namely the GD solution (6).
The frequentist approach is therefore inherently limited in its
capacity to express uncertainty on the model parameters due
to limited data.

Ideally, the distribution p(φτ |Dtr
τ , ξ) should be obtained as

the posterior distribution

p(φτ |Dtr
τ , ξ) ∝ p(φτ |ξ)p(Dtr

τ |φτ ), (11)

where p(Dtr
τ |φτ ) =

∏N tr
τ

i=1 p(x
tr
τ [i]|ytr

τ [i], φτ ) is the likelihood
function for the training data. However, computing the pos-
terior p(φτ |Dtr

τ , ξ) in (11) is generally intractable for high
dimensional vector φτ .

To address this challenge, we follow VI and introduce a
variational distribution approximation

q(φτ |ϕτ ) ≈ p(φτ |Dtr
τ , ξ), (12)

which depends on a variational parameter vector ϕτ . A typical
choice is given by the Gaussian mean-field approximation [77]
which can be expressed as

q(φτ |ϕτ ) = N (φτ |ντ ,Diag(exp(2%τ ))), (13)

with variational parameter vector ϕτ = [ν>τ , %
>
τ ]>, and the

exponent function is applied element-wise. The variational
parameter vector includes the mean vector ντ ∈ RD and the
vector of the logarithm of the standard deviations %τ ∈ RD for
the Gaussian random vector φτ . Note that vector %τ models
uncertainty in the model parameter space.

To describe VI, we will use the Kullback-Liebler (KL)
divergence KL(p(z)||q(z)) [78], which is a measure of the
distance between two distributions p(z) and q(z). It is defined
as the average of the log-likelihood ratio log(p(z)/q(z)) as

KL(p(z)||q(z)) = Ep(z)

[
log
(p(z)
q(z)

)]
. (14)

VI-based Bayesian learning prescribes that the variational
parameter vectors φτ be obtained via the minimization of
the KL divergence KL(q(φτ |ϕ)||p(φτ |Dtr

τ , ξ)) between the
variational distribution q(φτ |ϕ) and the posterior distribution
p(φτ |Dtr

τ , ξ). This problem can be equivalently formulated as
the minimization [76], [77]

ϕτ = argmin
ϕ

FDtr
τ
(ϕ|ξ), (15)

where the variational free energy [79] is defined as

FDtr
τ
(ϕτ |ξ)=N tr

τ Eq(φτ |ϕτ )[LDtr
τ
(φτ )] + KL(q(φτ |ϕτ )||p(φτ |ξ))

=N tr
τ LDtr

τ
(ϕτ ) + KL(q(φτ |ϕτ )||p(φτ |ξ)). (16)
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In (16), we have defined as LDtr
τ
(ϕτ ) the expectation of loss

function LDtr
τ
(φτ ) (5) over variational distribution q(φτ |ϕτ ),

i.e.,

LDtr
τ
(ϕτ ) = Eq(φτ |ϕτ )[LDtr

τ
(φτ )]. (17)

In (16), the second summand is a regularizer that restricts
the variational distribution to be close to the prior distribution.
Note that, if the variational distribution has ability to express
the posterior distribution in (11), the minimizer of the problem
(15) becomes the Bayesian posterior p(φτ |Dtr

τ , ξ), since the
KL divergence KL(q(φτ |ϕ)||p(φτ |Dtr

τ , ξ)) is minimized (and
it equals zero) when the two distributions are the same.

A typical choice for the prior distribution p(φτ |ξ) is the
Gaussian distribution. In this case, we have

p(φτ |ξ) = N (φτ |ν,Diag(exp(2%))), (18)

which is defined by the hyperparameter vector ξ = [ν>, %>]>,
where ν ∈ RD and % ∈ RD stand for the mean and logarithm
of the standard deviation vector of the Gaussian random vector
φτ .

Assuming the Gaussian variational distribution in (13) and
the Gaussian prior (18), the regularizer term in (16) can be
computed in closed-form as
KL(q(φτ |ϕτ )||p(φτ |ξ)) =

1
2

D∑
d=1

(
2(%[d]− %τ [d]) +

exp(2%τ [d]) + (ντ [d]− ν[d])2

exp(2%[d])
− 1

)
,

which is a differentiable function for ϕτ .
With these choices of variational posterior and prior, problem

(15) can be addressed via gradient-descent methods by using
the reparametrization trick [80]. This is done by writing
the random model parameter vector φτ ∼ q(φτ |ϕτ ) as
φτ = ντ + exp (%τ )� e, with random vector e ∼ N (0, ID)
and � being the element-wise multiplication. An estimate of the
gradient of the objective (17) using the reparametrization trick
is done with the aid of R drawn independently samples of the
standard normal Gaussian random vector e, and differentiating
the resulting empirical estimate of (17).

Algorithm 1: Reparametrization Trick [80]
Inputs : G(·) = a function over vector φτ

ϕτ = variational parameter
Parameters : R = ensemble size
Output : Ĝ(ϕτ ) = approximation of Eq(φτ |ϕτ )[G(φτ )]

1 for r = 1, . . . , R do
2 Draw eτ,r ∼ N (0, ID)
3 φτ,r(ϕτ , eτ,r)← ντ + exp (%τ )� eτ,r

4 return Ĝ(ϕτ )← 1
R

∑R
r=1 G

(
φτ,r(ϕτ , eτ,r)

)
Specifically, we estimate the free energy in (16) by replacing

the training loss LDtr
τ
(ϕτ ) with the empirical estimate

L̂Dtr
τ
(ϕτ ) =

1

R

R∑
r=1

LDtr
τ

(
ντ + exp (%τ )� eτ,r

)
, (19)

obtained by drawing samples eτ,r ∼ N (0, ID) for
r = 1, 2, . . . , R. This yields the estimated free energy

F̂Dtr
τ
(ϕτ |ξ) = N tr

τ L̂Dtr
τ
(ϕτ ) + KL(q(φτ |ϕ)||p(φτ |ξ)). (20)

This is a special case of Algorithm 1 with input G(φτ ) =
LDtr

τ
(φτ ). The function (20) can be directly differentiated and

used in SGD updates.
Once the variational parameter ϕτ is inferred using Bayesian

training, ensemble prediction for a payload data symbol
(yte
τ [i], xte

τ [i]) can be obtained via (10) by replacing p(φτ |Dtr
τ , ξ)

with q(φτ |ϕτ ) to yield the ensemble predictor

p(xte
τ [i]|yte

τ [i], ϕτ ) = Eq(φτ |ϕτ )
[
p(xte

τ [i]|yte
τ [i], φτ )

]
. (21)

Practically, it uses Monte Carlo sampling with R model vectors,
producing the approximated soft predictor p̂(xte

τ [i]|yte
τ [i], ϕτ )

via Algorithm 1 with G(φτ ) = p(xte
τ [i]|yte

τ [i], φτ ).

B. Bayesian Meta-Learning

While conventional Bayesian learning assumes that the
random model parameter vector φτ has a fixed prior distribution
p(φτ |ξ) parametrized by a predefined hyperparameter vector ξ,
Bayesian meta-learning leverages the stronger assumption that
there is a shared prior distribution p(φτ |ξ) across all frames
that can be optimized through a hyperparameter vector ξ.

In this section, we formulate Bayesian meta-learning by
following empirical Bayes [81], with the aim of selecting a
distribution p(φτ |ξ) that provides a useful prior for the design
of the predictor on new frames. Mathematically, Bayesian
meta-training optimizes over the hyperparameter vector ξ by
addressing the bi-level problem

min
ξ

1
N te

1:t

t∑
τ=1

N te
τ Eq(φτ |ϕτ (Dtr

τ |ξ))
[
LDte

τ
(φτ )

]
(22a)

s.t. ϕτ (Dtr
τ |ξ) = argmin

ϕ
FDtr

τ
(ϕ|ξ), τ = 1, . . . , t. (22b)

Problem (22) chooses the hyperparameter vector ξ that min-
imizes the average test loss on the meta-training frames
τ ∈ {1, . . . , t} that is obtained with the variational posterior via
(15). The subproblems in (22b) correspond to Bayesian learning
applied separately to each frame as explained in Section III-A.
An illustration of all the quantities involved in problem (22)
can be found in Fig. 3 by using the formalism of Bayesian
networks [82].

To address problem (22) in a tractable manner, we apply
the reparametrization trick for both outer (22a) and inner
optimization (22b) by following the same steps described in
Section III-A. Details on the optimization can be found in
Algorithm 2. In short, the inner loop updates the frame-specific
variational parameters ϕτ by minimizing the approximated free
energy (20) separately for each frame τ within a mini-batch
T via GD (dashed blue line in Fig. 3b). Following [30], [66],
the prior’s parameter vector ξ plays two roles in the inner
loop, namely (i) as the initialization for the inner GD update
in Algorithm 2 line 9; and (ii) as the regularizer for the same
update via the prior p(φτ |ξ). The outer optimization (22a) is
addressed via SGD to minimize the average log-likelihood for
test set using Algorithm 1 with G(φτ ) = LDte

τ
(φτ ), shown as

dashed green line in Fig. 3b.
After obtaining meta-trained hyperparameter ξ, meta-testing

takes place, starting with the adaptation of the variational
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ξ φ x y

ξ

φτ

φ∗

ytr
τ [i]

yte
τ [i]

xtr
τ [i]

xte
τ [i]

ytr
∗[i]

yte
∗ [i]

xtr
∗[i]

xte
∗ [i]

(a)

(b)

ϕτ

samples
frames

p(φ|ξ)
p(x|y, φ)

q(φτ |ϕτ )

q(φ∗|ϕ∗)

ϕ∗

meta-training frames

samples

samples

samples

samples

Fig. 3. Probabilistic graphical model (Bayesian network) [82] for Bayesian
meta-learning. Circles represent random variables; double-lined circles rep-
resent deterministic variables or (hyper)parameters; shaded circles represent
observations; dashed diamonds represent variational parameter vectors; and
plaques indicate multiple instances (the outer plaques represent frames, whereas
the inner represent multiple sample, e.g., symbols across time): (a) High level
representation, assuming a prior p(φ|ξ) and predictor p(x|y, φ); (b) Model
using the train/test splits, with variational inference q(φτ |ϕτ ) ≈ p(φτ |Dtr

τ , ξ)
indicated as dashed arrows.

Algorithm 2: Bayesian Meta-Training
Inputs : D1:t = labeled data sets of t meta-training

frames
Parameters : B = number of frames per meta-update batch

I = number of inner update steps
η, κ = inner/outer updates learning rates

Output : ξ = learned hyperparameter vector

1 initialize ξ
2 while meta-learning not done do
3 T ← random batch of B frames
4 for τ ∈ T do
5 randomly divide Dτ = {Dtr

τ ,Dte
τ }

6 / frame-specific update .

7 ϕ
(0)
τ ← ξ

8 for i = 1, 2, . . . , I inner update steps do
9 ϕ

(i)
τ ←ϕ

(i−1)
τ − η

N tr
τ
∇ϕτ F̂Dtr

τ

(
ϕ

(i−1)
τ

∣∣ξ) using (20)

10 ϕGD(Dtr
τ |ξ)← ϕ

(I)
τ

11 / meta-update .

12 ξ ← ξ − κ 1
N te
T

∑
t∈T N

te
τ∇ξL̂Dte

τ

(
ϕGD(Dtr

τ |ξ)
)

13 return ξ

𝜉(𝒟1:𝑡)

𝜏 ∈ {1: 𝑡}

𝑝(𝑥, 𝑦|𝑐)

𝑝(𝑐)

𝑥𝜏

𝑦𝜏
𝑐𝜏

NN / BNN

𝑝(𝑥, 𝑦|𝑐)

𝑝(𝑐)

𝑥𝜏

𝑦𝜏
𝑐𝜏

𝑝(𝑥, 𝑦|𝑐)

𝑝(𝑐)

𝑥𝜏

𝑦𝜏
𝑐𝜏

meta 
training

adapt

𝜑∗ = 𝜑GD(𝒟∗
tr|𝜉)

𝑦∗
te

𝑦∗
tr

𝑥∗
tr

𝑝(𝑥, 𝑦|𝑐)

𝑝(𝑐)

𝑥∗

𝑦∗
𝑐∗

meta-test frame

meta-training frames

𝑥1:𝑡

𝑦1:𝑡

𝑝(𝑥∗
te|𝑦∗

te, 𝜙∗)

𝜉(𝒟1:𝑡)

𝜙∗ = 𝜙GD(𝒟∗
tr|𝜉)

E𝑞(𝜙∗|𝜑∗) 𝑝(𝑥∗
te|𝑦∗

te, 𝜙∗)

soft prediction

𝑐𝑡+1

Fig. 4. Bayesian meta-learning (blue) as compared to frequentist meta-learning
(red). The frequentist predictor uses a single predictor, depicted as a neural
network (NN), whereas Bayesian meta-learning uses an ensemble of predictors,
e.g., a Bayesian NN (BNN). The dashed line represents the operation of the
active meta-learning introduced in Section IV. The data for each frame is
generated by following the distribution p(x, y|c) = p(x)p(y|x, c), with input
distribution p(x) and conditional distribution p(y|x, c) for channel state c.

parameter ϕ∗(Dtr
∗ |ξ) via (22b) using the available pilot data

Dtr
∗ at the current frame, to obtain ensemble prediction

p(xte
∗ [i]|yte

∗ [i], ϕ∗) = Eq(φ∗|ϕ∗)
[
p(xte
∗ [i]|yte

∗ [i], φ∗)
]
, (23)

as done in (21). Bayesian meta-learning is illustrated compara-
tively to meta-learning in Fig. 4.

C. Computational Complexity

We now briefly elaborate on the complexity of meta-learning
by analyzing the complexity of meta-training and of meta-
testing. To this end, let us define as C the complexity of
obtaining the probability p(x|y, φ) for a data sample (y, x).
This baseline complexity depends on the model dimensionality,
and it accounts for the amount of time needed to carry out the
forward pass on the neural network implementing the model
p(x|y, φ). Accordingly, as seen in Table II, the per-data point
complexity of meta-testing equals C for frequentist learning,
and CRte for Bayesian learning, where Rte is the size of the
ensemble used for inference.

The complexity of computing the first-order gradient via
backpropagation per-sample is given by G1C, with G1 being a
constant in the range between 2 and 5 [83], [84]. Furthermore,
computing the Hessian-vector product (HVP) has a complexity
of the order G2G1C, where constant G2 is also between 2 to
5 [19, Appendix A], [85, Appendix C]. Assume that all tasks
have data sets of equal size, i.e., N tr

τ = N tr and N te
τ = N te for

any task τ . Therefore, for each meta-training iteration, for a
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batch of B tasks with I local updates, the complexity of the
frequentist meta-update (8) is of the order

B
(

IN trG1C︸ ︷︷ ︸
frame-specific update

+ IN trG2G1C︸ ︷︷ ︸
HVPs in meta-update

+ N teG1C︸ ︷︷ ︸
gradient in meta-update

)
.

(24)
For Bayesian meta-learning, the complexity increases linearly

with the training ensemble size that is used for estimating the
loss functions in (22a) and (22b). Note that the impact of
the size Rtr of the training ensemble used for meta-training
is different from the size Rte used for inference, as the first
determines the variance of the stochastic loss functions, while
the latter determines the quality of Bayesian prediction (see,
e.g., [59] and references therein). Ignoring the constant cost of
differentiating the KL term in the free energy and for sampling
from the Gaussian distribution, the complexity analysis is
summarized in Table II.

TABLE II
COMPUTATIONAL COMPLEXITY OF FREQUENTIST AND BAYESIAN

META-LEARNING. (SEE TEXT IN SEC. III-C FOR DETAILS)

inference
[per-test
sample]

meta-training [per-meta-iteration]

frequentist C BG1C
(
IN tr(G2 + 1) +N te

)
Bayesian CRte BG1C

(
IN tr(G2 + 1)Rtr +N teRte

)

IV. BAYESIAN ACTIVE META-LEARNING

In the previous sections, we have considered a passive meta-
learning setting in which the meta-learner is given a number
of meta-training data sets, each corresponding to a different
channel state c. In this section, we study the situation in which
the meta-learner has access to a simulator that can be used
to generate random data sets for any channel state c via the
channel p(y|x, c). The problem of interest is to minimize the
use of the simulator by actively selecting the channels {cτ} for
which meta-training data is generated. To this end, we devise
a sequential approach, whereby the meta-learner optimizes the
next channel state ct+1, given all t meta-training data sets of
frames τ = 1, . . . , t.

At the core of the proposed active meta-learning strategy,
are mechanisms used by the meta-learner to discover model
parameter vectors φ that have been underexplored so far, and
to relate model parameter vector φ to a channel state.

A. Active Selection of Channel States

After having collected t meta-training data sets D1:t =
{Dτ}tτ=1, the proposed active meta-learning scheme selects
the next channel state, ct+1, to use for the generation of the
(t+ 1)-th meta-training data set Dt+1. We adopt the general
principle of maximizing the amount of “knowledge” that can
be extracted from the data set associated with selected channel
ct+1, when added to the t available data sets D1:t. This is
done via the following three steps: (i) searching in the space
of model parameter vectors for a vector φt+1 that is most
“surprising” given the available meta-training data D1:t; (ii)

translating the selected model parameter vector φt+1 into a
channel ct+1; and (iii) generating data set Dt+1 by using the
simulator with input ct+1.

As illustrated in Fig. 5, in step (i), we adopt the scoring
function introduced in [37], i.e.,

st(φ|ϕ1:t) := − log

(
1
t

t∑
τ=1

q(φ|ϕτ )

)
(25)

in order to select the next model parameter vector as

φt+1 = argmax
φ

st(φ|ϕ1:t). (26)

The criterion (25) measures how incompatible model parameter
vector φ is with the available data D1:t. In fact, by the
derivations in the previous section: the mixture of variational
distributions 1

t

∑t
τ=1 q(φ|ϕτ ) quantifies how likely a vector

φ is on the basis of the data D1:t (Fig. 5b); and the negative
logarithm in (25) evaluates the information-theoretic “surprise”
associated with that mixture. Problem (26) can be addressed
either by grid search for low-dimensional model parameter
space, or by using gradient ascent due to the differentiability
nature of the scoring function (25), as illustrated in Fig. 5c.

In step (ii), we need to convert the selected model parameter
vector φt+1, i.e., the outcome of (26), into channel state ct+1.
We choose the channel state ct+1 that minimizes the cross
entropy loss when evaluated at φt+1, i.e.,

ct+1 ∈ argmin
c

{
Lp(φt+1|c) = Ep(x,y|c)[− log p(x|y, φt+1)]

}
,

(27)
where we set p(x, y|c) = p(x)p(y|x, c), with p(x) being
some fixed distribution and p(y|x, c) being the distribution
of the output of the simulator. In (27), we have emphasized
that there may be more than one solution to the problem.
The rational behind problem (27) is that data generated from
the distribution p(x, y|ct+1) can be interpreted as being the
most compatible with the demodulator p(x|y, φt+1), where
compatibility is measured by the average of the cross entropy
Ep(y|ct+1)

[
H
(
p(x|y, ct+1), p(x|y, φt+1)

)]
.

We emphasize that the proposed approach is different from
the methodology introduced by [37], which uses another
variational distribution in problem (22). In our experiments,
we found the method in [37] to be ineffective and complex for
the problem under study here. The main issue appears to be
overfitting for the additional variational distribution, which is
overcome by leveraging the availability of the channel simulator
implementing the model p(y|x, c).

In some models, problem (27) can be solved analytically.
For more complex models, SGD-based approaches can be used,
either by differentiating an estimate of the loss in a manner
similar to the discussion in Sec. III

(
i.e., Algorithm 1 with

G(φt+1) = Lp(φt+1|c)
)
, or by directly estimating its gradient

[86].
Finally, in step (iii), meta-training data set Dt+1 =
{(yt+1[i], xt+1[i])}Nt+1

i=1 is generated using the simulator in
an i.i.d. fashion following the distribution

Nt+1∏
i=1

p(xt+1[i])p
(
yt+1[i]

∣∣xt+1[i], ct+1

)
. (28)
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Fig. 5. Illustration of how model parameter vectors are scored to enable active meta-learning provided t = 3 meta-training sets. (a) Frequentist meta-learning
relies on point estimates, and is hence unable to score as-of-yet unexplored model parameters; (b) Bayesian meta-learning can associate a score to each model
parameter vector φ based on the variational distributions

{
q(φ|ϕτ )

}
evaluated in the previously observed frames τ = 1, . . . , t; (c) The scoring function can

be maximized to obtain the next model parameter vector φt+1 as the most “surprising” one.

As a final note, we adopt the proposal in [37] of implementing
active selection only after tinit > 1 channel states that are
generated at random, as a means to avoid being overconfident
at early stages. The overall proposed Bayesian active meta-
learning scheme is summarized in Algorithm 3.

Algorithm 3:
Bayesian Active Meta-Training

Inputs : p(y|x, c) = channel model
p(x) = generative symbols distribution

Parameters : tinit = number of prior-based first frames
Output : ξ = shared hyperparameter vector

1 / Generate initial experience .
2 for t = 1, 2, . . . , tinit do
3 Draw using the prior ct ∼ p(ct)
4 Acquire data Dt ∼

∏Nt
i=1 p(xt[i])p(yt[i]|xt[i], ct)

5 while data acquisition not done do
6 ξ ← BayesianMetaTraining(D1:t) using Algorithm 2
7 / frame-specific update with updated ξ .
8 for τ = 1, 2, . . . , t do
9 ϕτ ← ϕGD(Dtr

τ |ξ) using (20)

10 / step (i), choose surprising model parameter .
11 φt+1 = argmaxφ st(φ|ϕ1:t) using (25)
12 / step (ii), choose next channel .
13 ct+1 ∈ argminc Lp(φt+1|c) as in (27)
14 / step (iii), generate data set .

15 Dt+1 ∼
∏Nt+1

i=1 p(xt+1[i])p(yt+1[i]|xt+1[i], ct+1)
16 t← t+ 1

17 return ξ

V. EXPERIMENTS

In this section, we present experimental results to evaluate
the performance of Bayesian meta-learning for demodula-
tion/equalization.

A. Performance Metrics
Apart from the standard measures of symbol error rate (SER)

and mean squared error (MSE), we will also evaluate metrics

quantifying the performance in terms of the reliability of the
confidence measures provided by the predictor. While such
measures can be defined for both classification and regression
problems, we will focus here on uncertainty quantification for
demodulation via calibration metrics (see [87] for discussion
on regression).

As discussed in the previous sections, for a new frame, we
need to make a prediction for the payload symbols {yte

∗ [i]}N
te
∗

i=1

via the demodulator p(xte
∗ [i]|yte

∗ [i], φ∗) for frequentist meta-
learning (9), or p(xte

∗ [i]|yte
∗ [i], ϕ∗) for Bayesian meta-learning

(21). The confidence level assigned by the model to the hard
predicted symbol

x̂te
∗ [i] = argmax

x∈X
p(x|yte

∗ [i], θ) (29)

given the received symbol yte
∗ [i], can be defined as the

corresponding probability [7]

p̂[i] = max
x∈X

p(x|yte
∗ [i], θ) = p(x̂te

∗ [i]|yte
∗ [i], θ), (30)

where we have θ = φ∗ for frequentist meta-learning and θ = ϕ∗
for Bayesian meta-learning. Perfect calibration [7] can be
defined as the condition where symbols that are assigned a
confidence level p̂[i] are also characterized by a probability of
correct detection equal to p.

Two standard means of quantifying the extent to which the
perfect calibration is satisfied are reliability diagrams [88] and
expected calibration error (ECE) [7]. To introduce them, the
probability interval [0, 1] is first divided into M equal length
intervals, with the m-th interval (m−1M , mM ] referred to as the
m-th bin henceforth. Let us denote as Bm the subset of the
payload data symbol indices whose associated confidence level
p̂[i] lie within the m-th bin, i.e.,

Bm =
{
i
∣∣p̂[i] ∈ (m−1M , mM

]
, with i = 1, 2, . . . , N te

∗
}
. (31)

Note this is a partition of the data set Dte
∗ since we have⋃M

m=1 Bm = {i = 1, 2, . . . , N te
∗ } and Bm ∩ Bm′ = ∅ for

any m′ 6= m.
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The within-bin empirical average accuracy of the predictor
for the m-th bin is defined as

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(x̂te
∗ [i] = xte

∗ [i]), (32)

with 1(·) being indicator function and |Bm| denoting the
number of total samples in Bm. The within-bin empirical
average confidence of the predictor for the m-th bin is

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂[i]. (33)

A perfectly calibrated demodulator p(x|y, θ) would have
acc(Bm) = conf(Bm) for all m ∈ {1, . . . ,M} in the limit
of a sufficiently large payload data set, i.e., N te

∗ →∞.
Reliability diagrams plot the accuracy acc(Bm) and the

confidence conf(Bm) over the binned probability interval
[0, 1]. Ideal calibration would yield acc(Bm) = conf(Bm) in a
reliability plot. If in the m-th bin, the empirical accuracy and
empirical confidence are different, the predictor is considered
to be over-confident when conf(Bm) > acc(Bm), and under-
confident when conf(Bm) < acc(Bm).

The ECE quantifies the overall amount of miscalibration by
computing the weighted average of the differences between
within-bin accuracy and within-bin confidence levels across all
M bins, i.e.,

ECE =
1

N te
∗

M∑
m=1

∣∣Bm∣∣∣∣∣acc(Bm)− conf(Bm)
∣∣∣. (34)

B. Frequentist and Bayesian Meta-Learning for Demodulation

For the first set of experiments, we focus on a demodulation
problem at the symbol level in the presence of transmitter I/Q
imbalance [89], [90], as considered also in [19]. The main
reason for this choice is that channel decoding typically requires
a hard decision on the transmitted codeword, whose accuracy
can be validated via a cyclic redundancy check. In contrast,
demodulation is usually a preliminary step at the receiver side,
and downstream blocks, such as channel decoding, expect soft
inputs that are well calibrated. For each frame τ , the transmitted
symbols xτ [i] are drawn uniformly at random from the 16-
QAM constellation X = 1/

√
10({±1,±3}+ {±1,±3}). The

received symbol yτ [i] ∈ Y = C is given as

yτ [i] = hτfIQ,τ (xτ [i]) + zτ [i], (35)

for a unit energy fading channel coefficient hτ , where the
additive noise is zτ [i] ∼ CN (0,SNR−1) for some signal-to-
noise ratio (SNR) level SNR, and the I/Q imbalance function
[91] fIQ,τ : X → X̄τ is

fIQ,τ (xτ [i])=x̄I,τ [i] + x̄Q,τ [i] (36)[
x̄I,τ [i]
x̄Q,τ [i]

]
=

[
1 + ετ 0

0 1− ετ

] [
cos δτ − sin δτ
− sin δτ cos δτ

] [
xI,τ [i]
xQ,τ [i]

]
,

which depends on the imbalance parameters ετ and δτ . In (35),
xI,τ [i] and xQ,τ [i] refer to the real and imaginary parts of the
modulated symbol xτ [i]; and x̄I,τ [i] and x̄Q,τ [i] stand for the
real and imaginary parts of the transmitted symbol fIQ,τ (xτ [i]).

Note that the constellation X̄τ of the transmitted symbols x̄τ [i]
is also composed of 16 points via (36).

By (35) and (36), the channel state cτ consists of the
tuple: (a) amplitude imbalance factor ετ ∈ [0, 0.15]; (b) phase
imbalance factor δτ ∈ [0, 15◦]; and (c) channel realization
hτ ∈ C. All of the variables are drawn i.i.d. across different
frames and are fixed during each frame. We consider the
channel state distribution for frame τ as

p(cτ ) = Beta
(
ετ
0.15

∣∣∣5, 2)Beta
(

δτ
0.15◦

∣∣∣5, 2)CN (hτ |0, 1).

(37)
We set our base learner to be a multi-layer fully-connected

neural network (3) with L = 5 layers. The real and imaginary
parts of the input y[i] ∈ C are treated as a vector in R2,
which is fed to layers with 10, 30, and 30 neurons, all with
ReLU activations, while the last linear layer implements a
softmax function that produces probabilities for the 16QAM
constellation points.

To address the ability of meta-learning to adapt the demod-
ulator using only few pilots, we set the number of pilots
as N tr

τ = 4 during meta-training and N tr
∗ = 8 for meta-

testing [19]. Fig. 6 shows the SER as a function of the
number of total meta-training frames t. Since only half of
the constellation points are available as pilots during meta-test
(N tr
∗ = 8 different symbols out of 16), conventional learning

cannot obtain a SER lower than of 0.5. In fact, conventional
learning performs worse than a standard model-based receiver
applying linear minimal mean square error (LMMSE), followed
by maximum likelihood (ML) demodulation, while disregarding
the presence of I/Q imbalance function fIQ. Both meta-learning
schemes are clearly superior to conventional learning and
to the mentioned model-based solution, showing that useful
knowledge has been transferred from previous frames to a
new frame. Furthermore, Bayesian meta-learning obtains a
slightly lower SER as compared to frequentist meta-learning.
This advantage stems from the capacity of ensemble predictors
to implement more complex decision boundaries [59].

Fig. 6. Symbol error rate (SER) as a function of the number t of meta-training
frames with 16-QAM, Rayleigh fading, and I/Q imbalance for N tr

τ = 4,
N tr
∗ = 8. The symbol error rate is averaged over by N te

∗ = 4000 data symbols
and 50 meta-test frames with ensemble of size 100.
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Fig. 7. Expected calibration error (ECE) over meta-test data Dte
∗ as a function

of the number t of meta-training frames, for the same setting as in Fig. 6.

To gain insights into the reliability of the uncertainty
quantification provided by the demodulator, we use the metrics
defined in Sec. V-A by setting the total number of bins to
M = 10. We plot the ECE as a function of the number of
total meta-training frames t in Fig. 7. Bayesian meta-learning
is seen to achieve a lower ECE than frequentist meta-learning,
indicating that Bayesian meta-learning provides more reliable
estimates of uncertainty. Furthermore, the increase in ECE as
the number t of available meta-training frames increases may
be interpreted as a consequence of meta-overfitting [92]. This
suggests that meta-learning may be considered as complete
after a number of frames that depends on the complexity of
the propagation environment. In practice, this can be assessed
by evaluating the performance of the demodulator on pilots
(see the online strategy in [19] for further discussion on this
point).

To further elaborate on the quality of uncertainty quan-
tification, Fig. 8 depicts reliability diagrams for frequentist
and Bayesian meta-learning. The within-bin accuracy levels
acc(Bm) in (32) and the within-bin empirical confidence
conf(Bm) in (33) are depicted as dark (blue) and light (red)
bars, respectively. Frequentist meta-learning is observed to
produce generally over-confident predictions, while Bayesian
meta-learning provides better calibrated predictions with well-
matching confidence and accuracy levels.

C. Bayesian Active Meta-Learning for Equalization

In this sub section, we illustrate the operation of ac-
tive meta-learning by investigating a single-input multiple-
output (SIMO) Rayleigh block fading real channel model.
At frame τ , the modulator uses a 4-PAM to produce sym-
bols xτ [i], i = 1, 2, . . . , Nτ , taken uniformly from the set
X ∈ 1/

√
5{−3,−1,+1,+3}. Given channel state cτ =

[c0τ , c
1
τ ]> ∈ R2, the i-th channel output symbol yτ [i] ∈ R2

for i = 1, 2, . . . , Nτ is defined as the two-dimensional real
vector

yτ [i] = cτxτ [i] + zτ [i], (38)

Fig. 8. Reliability diagrams (top) for frequentist meta-learning (left) and
Bayesian meta-learning (right) with SNR = 18 dB, using t = 16 meta-
training frames and predictions averaged over 50 meta-test frames. Frequentist
meta-learning tends to be over-confident, whereas the Bayesian soft predictions
are better matched to the true accuracy. The bottom figure shows the histogram
of |Bm|/N of prediction over M = 10 bins. Full details in Appendix A

where both the additive noise zτ [i] ∼ N
(
0, 1

2SNRI2
)

and
the normalized real block fading coefficients cτ ∼ p(c) =
N (c|0, I2) are i.i.d. We adopt the linear equalizer

x̂τ [i] = φ>τ · yτ [i] (39)

with linear equalizer weight vector φτ = [φ0τ , φ
1
τ ]> ∈ R2. To

obtain a soft equalization, we account for a precision level β
via the conditional distribution

p(xτ [i]|yτ [i], φτ ) = N (φ>τ · yτ [i], β−1). (40)

The next model parameter φt+1 is chosen to maximize the
scoring function as in (26) by restricting the optimization to
the domain ||φ|| ≤ 1. This restricted optimization domain
is selected in order to match the circular symmetry of the
problem. Furthermore, the corresponding next channel state
ct+1 is selected by tackling problem (27), which amounts to
the minimization

ct+1(φ) ∈ argmin
c

Ep(x)p(y|x,c)[− log p(x|y, φ)] (41a)

= argmin
c

Ep(x)p(z)[
β
2 (x− φ> · (cx+ z))2]

= argmin
c

Ep(x)p(z)[
β
2

(
(1− φ> · c)x− φ>z

)2
]

=
{
c
∣∣φ> · c = 1

}
. (41b)

In the set of solutions of problem (41b), we select the minimum-
norm solution ct+1 = φt+1/‖φt+1‖2. This way, the selected
channel focuses on the more challenging low-SNR regime.
Details of this experiment are provided in Appendix A.

Fig. 9 illustrates the scoring function (25) used to select
the next model parameter φt+1 as a heat map in the space of
model parameter φ. Specifically, the figure shows the scoring
functions after observing t = 4 and t = 5 meta-training frames.
The optimized next model parameter vector φt+1 (26) is shown
as a star, while the previously selected model parameter vectors
φ1:t are shown as squares. Fig. 9 illustrates how active meta-
learning efficiently explores the model parameter space. It does
so by avoiding the inclusion of channel states that are similar
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Fig. 9. Scoring function (25) used by Bayesian active meta-learning to select
the next model parameter vector φt+1 at the fourth and fifth iterations. The
scoring function is shown as a heat map over the two dimensional space of
the model parameter vector φ for the example detailed in Sec. V-C.

Fig. 10. Meta-test mean squared error (MSE) loss as function of the number
of frames t. Bayesian active meta-training is able to achieve lower meta-test
loss levels by using fewer meta-training tasks t. Solid lines are the mean test
loss over 100 channel states. The confidence levels account for one standard
deviation.

to those already considered (i.e., the squares in the figure). This
way, the model parameter space can be covered with fewer
meta-training frames t, leading to a larger frame efficiency of
active meta-learning.

Finally, to numerically validate the advantage of active meta-
learning, we plot the meta-test MSE loss in Fig. 10 for both
passive and active Bayesian meta-learning versus the number of
frames t. For passive meta-learning, we have generated random
channel realizations by drawing from the distribution p(c) =
N (c|0, I2). We have repeated the experiment 100 times, and
show the confidence interval of one standard deviation for the
meta-test loss. The results in the figure confirm that active meta-
learning requires far fewer meta-training frames. Furthermore,
the increased randomness of passive meta-learning is due to
the random selection of channel states at each iteration.

VI. CONCLUSIONS

In this paper, we have introduced tools for reliable and
efficient AI in communication systems via Bayesian meta-

learning. Bayesian learning has the advantage of producing
well-calibrated decisions whose confidence levels are a close
match for the corresponding test accuracy. This property
facilitates monitoring of the quality of the outputs of an AI
module. Meta-learning optimizes models that can quickly adapt
based on few pilots, producing sample-efficient AI solutions.
This paper has focused on the application of Bayesian meta-
learning to the basic problems of demodulation/equalization
from few pilots. We have demonstrated via experiments that
the demodulator/equalizer obtained via Bayesian meta-learning
not only achieves a higher accuracy, but it also enjoys better
calibration performance than its standard frequentist counterpart.
Furthermore, thanks to meta-learning, such performance levels
can be obtained based on a limited number of pilots per frame.

To reduce the number of past frames required by meta-
learning, we have also introduced Bayesian active meta-
learning, which leverages the uncertainty estimates produced
by Bayesian learning to actively explore the space of channel
conditions. We have shown via numerical results that active
meta-learning can indeed significantly speed up meta-training
in terms of number of frames.

Future work may consider a fully Bayesian meta-learning
implementation that also accounts for uncertainty at the level
of hyperparameters (see, e.g., [73] and references therein). This
may be particularly useful in the regime of low number of
frames. Another direction for research would be to investigate
different scoring functions for active meta-learning (see, e.g.,
[39]). A study on the impact of well-calibrated decisions
obtained via Bayesian learning on downstream blocks at the
receiver, such as channel decoding, is also of interest. Finally,
the proposed tools may find applications to other problems
in communications, such as power control [25] and channel
coding [28], [93].

APPENDIX A
EXPERIMENTS DETAILS

Table III summarizes the parameters used for the numerical
experiments in Sec. V for demodulation and equalization.
Throughout the simulations, we used PyTorch [94] adopt-
ing autograd’s option create graph = True to allow the
computational graph to calculate second-order derivatives.

For the demodulation problem in Sec. V-B (Figs. 6 –
8), the complex input space Y = C is treated as a two-
dimensional real vector space R2 when is fed into the neural
network demodulator. The KL term in (20) is suppressed by a
multiplicative coefficient of 0.1, as a means to emphasize the
average log-likelihood term should have over the prior. This is
an approach known as generalized Bayesian inference [79], [95].
To handle the discrepancy in the number of pilots for adaptation
during meta-training and meta-testing, i.e., N tr

∗ > N tr
τ , we

consider the following strategy akin to burn-in phase [49]
during meta-testing as done in [19]: (i) start with I updates
using learning rate η utilizing N tr

τ pilots among the available
N tr
∗ pilots; (ii) then, additional I∗ − I updates are performed

with reduced learning rate (5% of the original learning rate)
with all available N tr

∗ pilots. This strategy becomes particularly
useful in practical scalable systems in which the number of
pilots may change depending on the deployment environments.
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TABLE III
PARAMETERS FOR THE DEMODULATION AND EQUALIZATION META-LEARNING.

Description Symbol Demodulation (Sec. V-B) Equalization (Sec. V-C)

Signal to noise ratio [dB] SNR 18 6
Modulation - 16-QAM 4-PAM
Neural network input dimension integer dim(C) = 2 dim(R2) = 2
Neural network layers size [{hidden},output] neurons per layer [10, 30, 30, 16] [, 1]
Activation of hidden layers - ReLU NA
Activation of last layer - softmax no activation
Meta-training frames mini-batch size B 16 full batch (t)
Frame-specific learning rate η 10−1 2 · 10−3

Meta-learning rate κ 10−3 5 · 10−2

Number of pilots for frame-specific updates while meta-training N tr
τ 4 4

Number of pilots for meta-updates while meta-training N te
τ 3000 4

Number of pilots for frame-specific updates while meta-testing N tr
∗ 8 4

Number of symbols with each channel states while meta-testing N te
∗ 4000 1000

Number of inner SGD updates while meta-training I 2 2
Number of inner SGD updates while meta-testing I∗ 200 2
Number of meta-updates while meta-training Imeta 200 no. of tasks t
Ensemble size (for Bayesian framework only) R 100 100
Assumed precision of equalizer β - 150
Number of frames forming the initial experience tinit - 3
Number of meta-training iterations - 200 100
Number of meta-testing frames averaged over - 50 100

As for the equalization setting in Sec. V-C (Figs. 9 – 10),
we observe that reinitializing the hyperparameter ξ to a random
value at each data acquisition iteration benefits meta-training
in practice. While using the previous iteration’s optimized
hyperparameter vector ξ as the starting point for the current
iteration is useful in reducing the computational complexity
[19], [96], we found it beneficial not to do so in our equalization
problem to avoid meta-overfitting especially in the few-frames
(e.g., 10 frames) regime of interest.
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