
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1109/TRO.2023.3275381

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Leibrandt, K., Cruz, L. D., & Bergeles, C. (2023). Designing Robots for Reachability and Dexterity: Continuum
Surgical Robots as a Pretext Application. IEEE TRANSACTIONS ON ROBOTICS, 39(4), 2989-3007.
https://doi.org/10.1109/TRO.2023.3275381

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 21. Oct. 2024

https://doi.org/10.1109/TRO.2023.3275381
https://kclpure.kcl.ac.uk/portal/en/publications/eb6b6d82-82fb-4862-944b-d9849212925a
https://doi.org/10.1109/TRO.2023.3275381


IEEE TRANSACTIONS ON ROBOTICS 1

Designing Robots for Reachability and Dexterity
Continuum Surgical Robots as a Pretext Application

Konrad Leibrandt, Lyndon da Cruz, Christos Bergeles, Senior Member, IEEE

Abstract—This paper contributes a novel method to assess
robot dexterity. Existing Jacobian-based dexterity metrics, such
as the manipulability index or the condition number, do not
allow for comparisons between robot architectures, are local in
nature, and are affected by robot dimensions (robot size). On
the contrary, the introduced metric is global and allows for
quantitative comparisons of robot architectures as it explicitly
incorporates the orientational and positional coverage of a robot’s
end-effector. Experiments presented show that the proposed
dexterity metric can improve the computational and precision
performance of numerical inverse kinematics, and showcase its
suitability for use in computational dexterous robot design, and
in particular for designing concentric tube robots with high
orientational and positional dexterity.

Index Terms—Workspace Analysis, Design Optimization, Con-
centric Tube Robot, Flexible Manipulator, Medical Robotics.

I. INTRODUCTION

DESIGNING bespoke surgical robots or evaluating them
for fitness to a task is gaining attention due to the

increased demand for intervention-specific systems. The re-
search presented in this article is motivated by the desire to
design systems that maximise surgical dexterity given task
and anatomy considerations. While the developed theoretical
framework is applicable across the spectrum of robotics, the
particular focus lies in the optimised design of continuum
surgical robots such as concentric tube robots (CTRs) [1], [2],
recently reviewed in [3], [4].

Purposefully designed CTRs can safely navigate the human
anatomy to reach deep-seated pathologies while offering in-
creased tip dexterity at the surgical site. This customisation
possibility renders them promising for a variety of surgical
scenarios ranging from bronchoscopic procedures [5] to neu-
rosurgery [6], renal surgery [7], transurethral prostate surgery
[8], cardiac surgery [9], olfactory cell sampling [10], and
vitreoretinal surgery [11]–[13]. While most existing research
is evaluated on phantoms, notable in vivo demonstrations have
also emerged [14], [15] to demonstrate the increased maturity
of the technology.
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Fig. 1. A continuum and a serial manipulator reaching a defined 3D position
with different tip orientations: a.) A concentric tube robot pivoting at a
dexterous position within its workspace, in a vitreoretinal surgical scenario.
b.) A serial-link manipulator reaching the same position with three different
end-effector orientations. Red regions indicate increased robot tip dexterity.

The state-of-the-art in CTR design [6], [7], [16], [17] has
mainly considered robot-tip reachability in 3D and confor-
mance to the anatomy as indicators of design suitability.
Within this paper, metrics to evaluate and optimise robot
tip dexterity are introduced, enabling the use of CTR as
nimble intraluminal manipulators, see Fig. 1(a). The described
methodology is applicable to any continuum manipulator, e.g.
surgical continuum robots as reviewed in [18], or serial-link
robots, see Fig. 1(b).

In the following paragraphs, metrics considered for robot
design optimisation, and the state-of-the-art in computational
robot design are summarised.

A. Workspace Analysis

Common metrics that characterise a manipulator’s perfor-
mance are workspace reachability and dexterity considering
actuator limits and potentially collisions with the environ-
ment. Algorithmic evaluation of these metrics, usually via the
robot end-effector Jacobian matrix [19]–[21], allows to assess
manipulator suitability to a specific task-space objective, e.g.
reaching a set of target end-effector poses. Individual point
reachability can then be considered in the context of robot
configuration evaluation and path planning. While given a
robot configuration, the Jacobian can provide information on
tip dexterity, it is not readily linked with dexterity metrics
given a task-space pose, especially if one considers redundant
robots that can reach a pose via configurations that potentially
differ on their dexterity. In other words, end-effector poses
lying closely in task-space might lie far apart in configuration
space resulting in decreased dexterity.

Besides reachability, there are other workspace analysis
considerations that use metrics which focus on end-effector
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force, speed capabilities, mechanical actuator characteristics,
isotropy, or sensitivity to noise and inaccuracies in calibration
or motor control.

B. Design Optimisation

Manipulator design optimisation aims to identify parameters
that maximise selected metrics for given objectives. According
to [22], manipulator design can be separated into:

■ Structure design, which describes the number and type
of joints and links, and

■ Dimensioning, which is the process of finding the optimal
dimensions of the structural components, e.g. the length
of links, and the pose of the joints.

In practice, physical and mechanical constraints place limits on
the flexibility of the structural design, which at the extreme
has infinite dimensionality. This implies that design optimi-
sation is commonly limited to the dimensioning challenge.
The following work focuses in regard to design optimisation
on reachability in R6. Other performance criteria such as
force, speed, or susceptibility to mechanical noise, could be
incorporated with the presented approach, however is not
further elaborated.

C. Related Work

Analysing the workspace dexterity of manipulators is most
frequently based on using the Jacobian matrix, while metrics
to evaluate dexterity are the condition number and the ma-
nipulability measure, see (8) and (9) for their definition. In
[21], manipulability is combined with an availability function
to take joint limits into consideration. A workspace analysis
using an augmented Jacobian is proposed in [20]. Constraints
such as joint limits, obstacle collision, self-collision and task
objectives are used in [20] to optimise the grasping of an
anthropomorphic robot. In [23], column-wise penalisation
of the Jacobian was used to account for distance to joint
limits, obstacles, and mechanical instabilities of CTR. The
resulting dexterity analysis, based on the singular values of
that penalised Jacobian, guided an operator to regions of high
dexterity during telemanipulation.

The global isotropy index (GII) is a metric that optimizes
for global isotropy, [24]. It is computed by searching over the
entire manipulator workspace for the minimum quotient of
the minimum and maximum singular values based on a scaled
end-effector Jacobian. The translational and rotational parts
of the Jacobian are individually scaled based on respective
performance requirements, e.g. force or speed. The noise
amplification index (NAI), [25], is a metric that assesses robot
design regarding how noise or calibration errors in the joint-
space are amplified in the task-space.

Simulation-based design optimisation of continuum manip-
ulators is also an active field of research. In [7], a human-
centric approach is described. A virtual reality headset and a
haptic device were used to simulate and interactively modify
CTR design parameters (curvature, curved length, and actuator
angle) for a given patient anatomy. The clinical goal was
percutaneous access to the kidney. Alternative methods are

purely computer-based and involve a first-level optimisation
that alters the parameter set of the robot architecture, and
a second-level evaluation, which constitutes the optimisation
criteria, and which quantifies the fitness of the robot to the
desired task given the provided parameter set. In order to
evaluate the fitness, the second-level evaluation often employs
optimisation itself.

Design optimisation limited to dimensioning searches the
parameter-space (first-level optimisation) and is amenable to
approaches such as non-linear optimisation e.g. Nelder-Mead
used in [6], [16] or e.g. gradient-based optimisation [26],
or stochastic optimisation e.g. adaptive Simulated Annealing
(ASA) used in [27]–[29]. Additional optimisation approaches
have been employed for serial-link robots, e.g. interval analysis
[22], grid methods [30], and genetic algorithms [31], [32].

The evaluation of suitability metrics (second-level optimisa-
tion) has also seen extensive research. Most published research
requires that goals and objectives are explicitly provided
to the optimisation algorithm in the way of 3D points or
task space poses. Other approaches use coarser goals such
as volumetric/reachability objectives, which means that only
the R3 task space is considered. Examples of second-level
optimisation approaches include:

■ Inverse kinematics to multiple targets considering posi-
tion, orientation accuracy, and stability [6],

■ Volume-based coverage [16],
■ Fréchet distance between the continuum robot centre line

and a desired path [33],
■ Number of collaborative configurations specifically for a

dual-arm system [34],
■ Reachable workspace, task and orientation dexterity, and

insertion port diameter [35],
■ Relative frequency of reachable goals based on mo-

tion planning results with rapidly exploring random tree
(RRT) [27],

■ High stability [36], and
■ Ability to visualise a target based on motion planning

using a modified RRT approach [29].

D. Contributions

The following contributions are presented in the remainder
of the paper.

1) A novel algorithm is proposed to characterise the
workspace and dexterity capabilities of a manipulator
independently of whether it is a serial-link robot or a
flexible robot, using uniform voxelisation of the 6 DoF
task-space, see Sec. II. The presented approach avoids
both local approximations and prescriptive task-space
objectives.

2) Based on the presented algorithm, a dexterity measure,
which is subsequently used as an objective function
for robot design optimisation, is introduced. Instead of
using linearisation, the approach uses reachability of the
6 DoF voxels augmented with additional criteria which
i.e. consider the neighbourhood, see Sec. III.

3) It is demonstrated that the presented principle can be
used to improve the performance of inverse kinematics
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Fig. 2. Different tessellation approaches for a square, without loss of generality, they are also applicable to SO(3): (a) Using random uniform distributed
samples, resulting area sizes and area shapes are different, (b) tessellation using different shapes of equal area size, (c) tessellation results in areas of same
size and shape but are not compact, (d) tessellation is compact and areas are of same size and shape. Tessellation similar to (d) is preferred.

optimisers that suffer from local minima, particularly in
the challenging domain of CTR inverse kinematics.The
approach of storing joint-configuration in the 6 DoF
lookup table and fostering uniformly dense sampling is
presented in Sec. IV.

4) Optimisation of a robot architecture is introduced that
considers the overall workspace reachability and robot
dexterity without relying on predefined tasks, see Sec. V.

II. WORKSPACE VOXELISATION

A uniform subdivision of the workspace is essential for
computing the capabilities of a manipulator and characterising
its dexterity within the workspace. It is particularly important
that the subdivision volumes are equal in surface area/volume
and shape to be suitable for comparing different parts of the
manipulator’s workspace.

This section introduces an approach to divide the 6-
dimensional SE(3) workspace into hyper-volumes of equal
dimensions. The translational space, R3, and the rotational
space, SO(3), are independently partitioned and can therefore
be independently queried with regards to reachability (R3) and
dexterity (SE(3)).

The translation component of SE(3) is subdivided with a
common linear axis-aligned division of a cuboid workspace,
which leads to a uniform discretisation in all 3-dimensions.
With regards to the rotational space, SO(3), the subdivision
process is based on recursive division of an initial uniform par-
titioning. Combining the two discretisation results ultimately
creates a voxelised workspace that is suitable for assessing
the reachability and dexterity of a manipulator in its different
regions.

A. Voxelisation of Translation Space
For comparing different workspace regions, each voxel

in R3 must be of the same dimensions, which is routinely
achieved by subdividing 3D space into cubes of identical size.
Assuming the minimum workspace to evaluate has an edge
length of E0

{x,y,z}, origin p0 ∈ R3, and that the edge length
of the voxels should be ev , then the number of discretisations
along each axis is:

N{x,y,z} =

⌈
E0
{x,y,z}

ev

⌉
, (1)

which, due to quantisation, adjusts the final size of the
workspace under consideration to have an edge length of

E{x,y,z} = N{x,y,z} ev. (2)

Indices IT ∈ N3 associate a 3D point p ∈ R3 to a voxel in
the partitioned workspace via

IT =
⌊
(p− p0)⊘ E{x,y,z}

⌋
, (3)

where ⊘ is the Hadamard division operator, which performs
element-wise division of two vectors or matrices of equal
dimensionality.

This index associates the translation component (p) of an
end-effector pose (T ) to a voxel. The end-effector orientation
(R), however, needs to be separately considered.

B. Voxelisation of Rotation Space

In contrast to the translation space, the rotation space SO(3)
is bounded and is represented by the 3D hypersurface of the
4D unit sphere. Points on that hypersphere are represented by
the four coordinates of a quaternion. To identify indices that
associate an end-effector orientation R to a quantised rotation
volume, SO(3) needs to be uniformly partitioned.

The problem of SO(3) discretisation is recurring and dif-
ferent approaches to address it are possible. One possible
approach is to use a uniform random distribution in SO(3),
see [37]–[39] in conjunction with Voronoi tessellation. This
approach allows creation of any number of rotation space
voxels. However, the resulting voxels are of different shapes
and volumes, which makes it difficult to compare them, see
Fig. 2 (a).

Other published endeavours, [40], [41], propose tessellations
that deliver elements of equal surface area. However, they
do not produce discretisation areas of identical shape or
dimensionality, see Fig. 2 (b). Therefore, they are not suitable
for workspace and dexterity evaluation in robotics. Also,
tessellations as depicted in Fig. 2 (c), which have identical
shape and size, are not suitable as they are not compact. The
issue is that they may represent areas which can be far apart.
To address this, a novel approach for SO(3) discretisation,
building on [42] but deviating in terms of indexing of the
rotation space, is described in the next sections. The goal is
to obtain a tessellation that is compact, and volumes are of
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a b c

d e f

Fig. 3. Recursive subdivision of an icosahedron surface to partition the
unit sphere surface. Vertices represent the inclination and azimuth values in
SO(2). Top row: without projection of new vertices onto the surface of the
sphere. Bottom row: after projecting the vertices onto the surface of the sphere
following each subdivision step.

identical size and shape, as depicted in Fig. 2 (d). To ease
the reader into the methodology, the subdivision of SO(2) is
explained first.

1) Subdivision of SO(2): A unit sphere in R3 is considered
for subdivision of SO(2). Since every point on the surface
of that unit sphere can be described using two variables,
the inclination and the azimuth, the surface of the sphere
represents SO(2). The process to subdivide the surface of a
sphere in equally shaped and sized areas is depicted in Fig. 3.

The process starts with an icosahedron, whose vertices all
lie on the unit sphere, see Fig. 3(a). While it is possible to use
another of the five platonic solids in R3, the icosahedron has
the highest number of faces, it uses the simplest face polygon
(the equilateral triangle), and it is commonly used in computer
graphics and astrophysics for sphere discretisation.

First, each of the icosahedron’s triangular faces is subdi-
vided. By connecting the triangle’s edge centres, new triangles
are formed, see Fig. 3(a). This subdivision results into splitting
the original triangle into four, see change from Fig. 3(a) to (b).
The newly generated vertices, which are the edge centres of

AV = 0.0771
AV = 0.0808
AV = 0.0811

a

AV = 0.0399
AV = 0.0399

b

Fig. 4. Association of the surface of SO(2) to discretised rotations. Different
Voronoi cell centres are used for the same level of subdivision: (a) Triangle
vertices (green) are used as Voronoi cell centres i.e. discretised rotations. (b)
Face centres (orange) are used as discretised rotations. There are (a) three
and (b) two discretised rotations displayed with their associated areas in the
same colour. The sphere depicted is identical between (a) and (b), and was
subdivided twice resulting in 162 vertices and 320 faces.

the original triangle, however, lie on a secant through the unit
sphere. To address this, the newly generated triangles’ vertices
are projected back onto the sphere’s surface via normalisation
of their coordinates, see change from Fig. 3(b) to (e). This
projection introduces an error as the edges between new-new
and new-original vertices experience different elongation from
the projection. The resulting error was analysed in Appendix
A comparing a uniform-subdivision with a fixed number of
iterative subdivisions. Recursive subdivision and projection
produce increasingly finer regular meshes of the sphere’s
surface, see Fig. 3(f). Note that the alternative of projecting
the vertices onto the sphere surface only at the last step is not
appropriate; preliminary evaluation demonstrated that it leads
to higher error.

To achieve a discretisation of the sphere’s surface, an as-
sociation of surface points to discretised rotations is required.
The discretised rotation which represents a set of continuous
rotations will be called a discretisation centre. An adequate
association is one in which every surface point is associated
to its closest discretisation centre. Therefore, the chosen dis-
cretisation centres can be Voronoi cell centres of equal surface
areas. Furthermore, a perfect association must make sure that
any rotation rI,i that is associated to a discretisation centre
rI is closer to rI than the distance of any rotation rII,j to rI,
where rII,j is not associated to rI. Such an optimal association
would only be fulfilled by a circular Voronoi cell, which,
however, cannot be used to tessellate a surface.

This challenge can be overcome in two ways, illustrated in
Fig. 4. The first approach, shown in Fig. 4(a), entails using the
vertices (triangle corners) created during the subdivision pro-
cess as Voronoi cell centres (discretisation centres), and leads
to hexagonal cells. The second approach, shown in Fig. 4(b),
uses the generated triangles’ face centres as discretisation
centres, which leads to triangular cells. The coloured areas in
Fig. 4 represent all the rotations that are associated with the
Voronoi centre of the same colour. With either approach, any
arbitrary continuous rotation can be associated to a discrete
unique vertex, i.e. the centre of the Voronoi cell within which
this continuous rotation lies in. Therefore, the Voronoi cells
can be termed SO(2) rotation voxels.

The most appropriate selection of the Voronoi cell shape is

a b

Fig. 5. Alternative Voronoi cells for SO(2) subdivision. (a) Triangle face
centres are used as centres of the triangular Voronoi cells. (b) Vertices (triangle
corners) are used as hexagonal Voronoi cell centres.
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further elaborated in the following. Fig. 5 depicts the geometry
of those Voronoi cells considering a locally flat surface, and
triangles which have a edge-length of 1. The figure depicts
two radii:

1) the outer radius, Router, that represents the distance of
a rotation that is furthest from the Voronoi cell centre to
which it is associated;

2) the inner radius, rinner, that represents the distance of the
closest rotation which is not associated with the Voronoi
centre.

In an ideal case, circular Voronoi cells would be chosen with
a quotient of Router to rinner equal to 1. When Router

rinner
>> 1,

a discretised rotation captures continuous rotations that are
distant from each other. A triangle-shaped Voronoi cell, see
Fig. 5(a), results in a quotient of 2. On the contrary, using the
triangle corners as discretisation centres, see Fig. 5(b), results
in a quotient of ≈ 1.155 and an approximately circular shape
for the rotation voxel, making this approach the preferred way
to discretise the SO(2) rotation space.

To conclude the study on discretisation of SO(2), the
subtended angle of neighbouring discretisation centres will
be calculated. This subtended angle between two vectors
linking the unit sphere’s centre and two neighbouring ver-
tices on the original icosahedron (ϕvcv, vertex-centre-vertex
angle) is approximately 63.435◦, see [43]. Each subdivision
halves the angle, implying that the discretisation resolution is
63.435◦ × 2−ndiv , where ndiv is the number of applied sub-
divisions. The resulting angle (ϕvcv) represents the resolution
of the discretised rotation space.

The maximum angle (vertex-centre-vertex) between the
rotation voxel centre and the furthest rotation associated with
that voxel is computed by multiplying the angle between two
voxel centres ϕvcv with Router which is based on a triangle
edge length of 1, see Fig. 5.

To validate the proposed subdivision process and hexag-
onal Voronoi cells can indeed robustly represent discretised
SO(2), random samples from the continuous SO(2) space were
uniformly drawn. Then, combinations of different subdivision
levels, Voronoi cell shapes, and discretisation centres generated
the SO(2) partitions to be evaluated. The evaluation crite-
rion was that samples uniformly drawn from SO(2) should
uniformly map to the created rotation voxels. It was found
that 2 subdivisions and tessellation with hexagonal Voronoi
cells whose centre is also the centre of the rotation voxel
leads to angular resolution of 16◦, making this approach
appropriate for the discretisation of SO(2); details are provided
in Appendix A.

2) Subdivision of SO(3): The process for subdividing SO(3)
is similar and makes use of the 4D unit sphere (a unit hyper-
sphere). It starts with a convex regular 4-polytope, the 600-cell,
which is analogous to the icosahedron. The 600-cell constitutes
600 tetrahedra, each connecting 4, out of 120 unique, 4-
dimensional vertices that represent unit quaternions.

Building on [44], the 120 quaternions are generated based
on the golden ratio ϕ = 1

2 (1 +
√
5) as follows:

■ 96 from even permutations of (±ϕ,±1,±ϕ−1, 0);
■ 8 from permutations of (±2, 0, 0, 0);

a b c

Fig. 6. Subdivision of a tetrahedron into 8 smaller tetrahedra. (a), (b), (c)
depict the different options of how the inner octahedron can be subdivided.
Green dotted: initial tetrahedron. Blue dotted: 4 new similar tetrahedra having
their origin at the corners of the original tetrahedron. Purple dotted: 4 new
tetrahedra (from the central purple octahedron) filling the centre. Yellow:
highlight of one of the inner tetrahedron. Red dotted: subdivision pattern.

■ 16 from permutations of (±1,±1,±1,±1).

The resulting vectors are scaled to unit length to provide the
set of unique unit quaternions.

By construction, the smallest angular distance (ϕvcv, as
before), of any two vertices in the 600-cell is 36◦. To group
the 600-cell into tetrahedra that correspond to discretisation
voxels to be subdivided, first the 4-permutations of 120
quaternions are identified, therefore creating

(
120
4

)
tetrahedra.

Then, tetrahedra discretising the 600-cell are identified as those
4-quaternion sets for which the pairwise angles of all their
members are equal to 36◦. Since quaternions Q and −Q
represent the same rotation, only one hemisphere of the unit
hyper-sphere needs to be considered. To identify the tetrahedra
corresponding to a single hemisphere, first a reference quater-
nion Q0 is selected, e.g. Q0 = QN = (0, 0, 0, 1). Then, every
tetrahedron whose vertices correspond to 4-quaternions with
an angle of less than 108◦ = 90◦+ 36◦

2 are considered as part
of the hemisphere. The selected angular threshold considers
all tetrahedra to the north of the hyper-sphere equator (90◦) in
addition to those lying on the equator

(
36◦

2 = 18◦
)

; please
note that the term equator is defined with respect to the
selected reference quaternion. A total of 330 tetrahedra is
considered.

These tetrahedra can be subdivided similarly to the triangles
in SO(2) (recall Fig. 3), according to [45]. A 3-dimensional
visualisation is depicted in Fig. 6. A tetrahedron can be
subdivided by introducing 6 vertices, one at the centre of
each of its edges. As in the SO(2) case, these vertices must
be normalised, i.e. projected onto the hypersurface of the 4D
hypersphere. Then, four identical sub-tetrahedra are obtained
each having an origin at a corner of the initial tetrahedron
(Fig. 6, blue); an octahedron is obtained in the interior (Fig. 6,
purple). Subsequently, the octahedron is split into four sub-
tetrahedra by introducing an edge passing through its centre.
The three possible splits are illustrated in Fig. 6. Since the goal
of the subdivision is to reduce the angle between quaternions,
the edge ek for which the angle between the quaternions
corresponding to its end vertices (Qk,0, Qk,1) is minimum
is chosen:

k⋆ = argmin
k∈{a,b,c}

{2 arccos (∥⟨Qk,0,Qk,1⟩∥)}

= argmax
k∈{a,b,c}

{⟨Qk,0,Qk,1⟩} ,
(4)
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where a, b, c refer to the three cases depicted in Fig. 6, and the
⟨·, ·⟩-operator denotes the dot product. Rearranging (4) exploits
that all Quaternions are from the Northern hemisphere, and
hence computing of the absolute value of the dot product is
unnecessary. Additionally, arccos is monotonically decreasing
such that the trigonometric evaluation can be omitted.

Once the subdivision is sufficiently fine, the list of quater-
nions which represent the vertices of all tetrahedra is consol-
idated by removing duplicate entries. Duplicates may occur
since the subdivision process for every tetrahedron is indepen-
dently performed. In the remainder of this article, the set of
unique quaternions (Qv = {Qv

0,Qv
1, . . .}) will also be referred

to as rotation voxels, since they will constitute the centre of a
rotation volume.

3) Association of a Rotation to a Rotation Voxel: To
associate an arbitrary quaternion QR to a rotation voxel, one
could iterate over the entire set of Qv and identify the closest
match in terms of angular difference using:

IR = argmin
i∈{1...|Qv|}

{2 arccos (∥⟨QR,Qv
i ⟩∥)} . (5)

This search, however, is of complexity linear to the cardinal-
ity of Qv (O(n)). Using a 4D-tree prepopulated by Qv would
reduce computational complexity to O(log (n)), which would
still be prohibitive when billions of lookups are required.
Therefore, an alternative approach in constant-time (O(1)) was
developed to tackle the association task.

A 3-dimensional cube (Crot) with edges spanning [−π, π]
is generated and discretised with N rot

cube equally spaced sub-
divisions per dimension. The cube in R3, which will be used
as a lookup table, describes all possible rotations, and each of
the generated voxels in R3 describe a subset of rotations in
SO(3). All rotations within one voxel are represented by the
centre of the voxel which is a rotation vector in SO(3).

The closest quaternion in Qv is computed for each of
the rotation vectors using (5), and the quaternion’s index
within Qv is stored in the cube’s voxel. This 3D lookup
table needs to be generated only once per given number
of N rot

cube discretisations and hyper-sphere subdivision levels;
recall that quaternions Qv are generated per subdivision level.
An example cube is depicted in Fig. 7. For visualisation
purposes, the cube is cut along the diagonal plane and the
colours represent the different indices values for IR.

The volume of the rotation space that is represented by
a single rotation vector varies for different N rot

cube. Larger
N rot

cube imply smaller individual voxel volumes and hence more
accurate representations. It is generally advisable to choose
N rot

cube ≫ |Qv|.
Once the lookup table is generated, the index IR for a given

QR can be computed by converting QR to the corresponding
rotation vector vrot

R . Then the index:

IR = Crot

(⌊
vrot
R + [π, π, π]T

2π/N rot
cube

⌋)
, (6)

where Crot is the rotation cube lookup table.
The angle between neighbouring vertices on the unit sphere

in SO(3) is 36◦ for the initial 600-cell, and every subdivision
results into this angle being halved. Then, the angular distance

Fig. 7. Lookup table for SO(3) rotation indices; colours represent an
associated index.

between centres of two adjacent rotations voxels in SO(3) is
≈ 36◦ · 2−ndiv .

To validate that the discretisation approach leads to uniform
representation of SO(3), frequency-based error analysis similar
to the SO(2) case is available in Appendix B.

With the described approach the 6-dimensional workspace,
i.e. 3D translation and SO(3), can be subdivided into equally
shaped and sized voxels. The presented voxelisation enables
the development of approaches which analyse robot workspace
and provides excellent computational performance.

III. WORKSPACE ANALYSIS

As mentioned in Sec. I-A, common approaches to analyse
a robot’s workspace are primarily based on linearisation of
the mapping between joint-space and task-space. Approaches
based on local approximations, however, can lead to erroneous
conclusions on the robot’s task-space dexterity. To avoid these
errors, a global approach which is not based on linearisation
is introduced. The approach is global in the sense that it
considers the global joint-space, i.e. all possible joint-space
configurations, to make an assessment of the task-space. The
metric can be used to assess the entire manipulator workspace,
task-based relevant volumes of the workspace, or a single task-
space voxel. Independent of what part of the workspace is
evaluated, the global set of joint-configurations is considered.

A. Drawbacks of Linearisation for Workspace Analysis

Recall the end-effector Jacobian matrix:

J =
∂ẋ

∂q̇
, (7)

where x denotes the end-effector’s pose, q denotes the joint
values, and the ˙ operator denotes derivation with respect to
time. The Jacobian matrix’s singular values σJ can be used to
compute the manipulability (M) or inverse condition number
(C̄) of a manipulator:

M =

√
∥JJ T ∥ =

∏
i

σi, (8)

C̄ =
σmin
J

σmax
J

, (9)

where σmin, and σmax, denote the minimum, and maximum,
singular values, respectively. These two measures are often
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used to characterise the dexterity (D) of a manipulator in the
neighbourhood of a joint configuration under examination.

While M or C̄ are useful for comparing different parts of
the same manipulator workspace, their numeric values are not
geometrically meaningful. As a result, they cannot be directly
compared among manipulators, since they heavily depend on
kinematic parameters such as link-lengths.

These metrics are generally used to characterise a 3D
voxel in translational space disregarding that the Jacobian can
significantly change depending on the end-effector orientation.
In this case, each 3D voxel v3 is associated with the maximum
robot dexterity, DL

V3
, regardless of end-effector orientation:

DL
V3
(v3) = max

qk

{Dq(qk) | x(qk) ∈ v3} , (10)

with Dq being the dexterity of a specific joint configuration
and DL

V3
the dexterity at a specified task-space voxel. With

this approach, each voxel v3 that belongs to the discretised R3

is linked to the manipulator orientation that reaches only that
specific 6 DoF pose, with reduced capabilities of extrapolation
to neighbouring voxels. Finally, when used to assess whether
a manipulator is dexterous in a specific part of the task-
space, DL

V3
may provide misleading information, especially

when conclusions are drawn for task-space poses which are
not in the neighbourhood of the currently examined joint
configuration; recall that neighbouring task-space poses do
not imply a neighbourhood in joint space. Metric DL

V3
is a

local one, and a global accurate measure of reachability and
dexterity of the 6 DoF task-space is needed.

As previously mentioned, there are metrics such as the
GII and the NAI, which scale the Jacobian to overcome the
shortcomings of the conditional number C̄ and manipulability
M. Nevertheless, as those metrics are based on the end-
effector Jacobian, their conclusiveness for the task-space is
hindered due to the non-linearity between joint- and task-space
as well as the multivalued mapping from task- to joint-space.
Those metrics and Jacobian scaling can, however, be combined
with the approach presented in the following.

B. Workspace Analysis without Linearisation

As detailed in Sec. II, task-space SE(3) can now be vox-
elised in six dimensions with (hyper) voxels v6 (belonging
to discretised R6) that have the same shape and size. These
voxels can be classified as reachable or non-reachable when
sampling the joint-space of a manipulator. The 6 DoF dexterity
(DV6 ) of a voxel (v6) can then be defined as one if it is reached
in position and orientation during sampling and as zero if not
reached:

DV6
(v6) =

∨
qk

{
1 , if x(qk) ∈ v6

0 , else
, (11)

where qk represents a random joint configuration during
sampling and x(qk) the corresponding task-space pose.

To assess the extent in which a manipulator can attain
different orientations at a specific 3D voxel v3 (of discretised

vx

vyϵx+

ϵy+

ϵx- = 0

0 = ϵy-

DΓ (q, x+) = max
(
0, 1 − ϵx+

vx

)
DΓ (q, y+) = max

(
0, 1 −

ϵy+

vy

)
DΓ (q, x-) = 1, with ϵx- = 0

DΓ (q, y-) = 1, with ϵy- = 0

Fig. 8. Dexterity measure based on how well a manipulator in its initial
configuration q (red) can reach neighbouring voxels. The deviation from the
targeted neighbouring pose is ϵx+ , ϵx− , ϵy+ , ϵy− . No deviations from the
targeted pose lead to a partial dexterity (DΓ) of one. Small deviations lead to
a value ∈ [0, 1]. Deviations of more than vx or vy lead to a partial dexterity
of zero. All partial dexterities are combined to the configuration dexterity
(D(q)) using (13).

R3), the number of attainable discretised rotations relative to
the overall number of discretised rotations can be computed:

DG
V3
(v3) =

∑
∀v6:v6|3≡v3

DV6
(v6)

|Qv6|3(v3)|
, (12)

where v6|3 corresponds to the translational part of the 6 DoF
voxel v6, DG

V3
is the dexterity of voxel v3, and |Qv6|3 | is the

number of v6 voxels within a v3 voxel or with other words
the number of discretised orientations for a given position. The
dexterity for the v3 voxel is 1 if all orientations are reachable
at that voxel location and 0 if no orientation is reachable. Since
this method evaluates the possible positions and orientations
considering the entire definition space of feasible joint values,
in this paper it is considered a global measure (DG

V3
).

Equation (12) provides a measure (ratio) of the rotational
space that can be reached at a given position. The opposite
could be analogously evaluated, so that the measure would
indicate how many positions can be reached given an orienta-
tion.

C. Weighting the Reachability Map

When dexterity must be assessed in the context of a specific
task, the reachability of certain rotations and certain positions
may be weighted. For example, it might be important that one
manipulator can retroflex in one application, while in another
the same manipulator might require its end-effector to only
face forward.

Using the presented voxelisation approach, a 6D weight ma-
trix representing the importance of specific rotations at specific
positions can be used by multiplying each voxel value. In other
words a specific voxel index (IT,R) can be associated with a
voxel-specific scaling factor (ST,R). Important voxels can be
multiplied with a factor larger than one while insignificant
voxels are multiplied with a factor smaller than one or, for
irrelevant voxels, zero. This approach is sketched in Fig. 9,
where a robot is tasked to orthogonally sweep the boundary
indicated in grey. Within the example, orientation-scaling
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IT,R ST,R

. . . 0.0
i94 0.0
i93 0.44
i92 0.8
i91 0.95
i 1.0
i1 0.95
i2 0.8
i3 0.44
i4 0.0
. . . 0.0

0.44

0.80
0.951.0

IT,R ST,R

. . . 0.0
j94 0.0
j93 0.42
j92 0.78
j91 0.93
j 1.0
j1 0.93
j2 0.78
j3 0.42
j4 0.0
. . . 0.0

0.42 0.78
0.93
1.0

0.20
0.360.46

0.5

a
b

c

Fig. 9. Regional workspace weighting via association of scaling factors to
voxels to regulate emphasis on certain rotations and translations. The grey
line represents the target workspace. The three differently coloured config-
urations show different weights in their proximity. (a) Green configuration:
Orientations orthogonal to the tangent of the line are highly weighted. (b) Red
configuration: Positions at a distance from the line are weighted lower than
positions close to the line. (c) Blue configuration: Weighting at the end of
the line of interest are lower than in the middle of the line. Tables: the tables
represent weights for different rotation indices at the specific end-effector
position. The orientation normal to the trajectory (index: i) is weighted the
highest while deviations from the normal are considered of lower importance
and hence are weighted lower.

differs for each robot configuration. Further, as the middle
robot configuration, indicated as (b), is not contacting the
boundary, the scaling factors ST,R for the different directions
are lower than for poses (a), (c), which are in contact with
the boundary. Weighting enables the comparison of different
manipulators for specific tasks, rather than broadly across their
workspaces.

D. Dexterity Map Considering the Neighbourhood

Reachability and the ability to move to neighbouring poses
are important considerations in robot design. Naturally, other
considerations such as force, speed requirements, noise am-
plification may be important in different applications. The
reachability map in R6 weights a reached voxel as 1 if reach-
able and 0 if non-reachable. To incorporate other performance
considerations, every joint configuration associated with a
specific voxel can be further evaluated against performance
criteria presented in [24], [25] to compute a weight ∈ [0, 1].

The reachability map provides information on which Carte-
sian poses a manipulator can reach. It does not assess, how-
ever, whether the manipulator can move from that specific
pose to neighbouring poses. Assessing motion in different
directions allows for more comprehensive insights. Combining
the reachability map presented in Sec. III-B with techniques
presented in Sec. III-A has the potential to provide further in-
sights into the manipulators capabilities. The numerical values
provided by both M, C̄, however, cannot be easily interpreted.
Therefore, a new approach is presented that uses inverse
kinematics to conclude to what extent the neighbourhood
Γ(q) in the Cartesian space can be reached from a given
configuration (q). Simulating motions into the neighbourhood
allows taking motion constraints into account including joint-
limits, self-collisions, or collisions with the environment. The
neighbourhood can be coarse such that only points along
the positive and negative directions of the orthonormal basis

(±ei) are considered as neighbours and evaluated (nΓ = 12
evaluations), or fine by evaluating permutations of diagonal
neighbours, which results in nΓ = 64 evaluations, with
Γ ∈ {−1,+1}6. Furthermore, the size of the sphere of
influence is an important design choice, meaning the distance
within which a neighbourhood is still considered relevant.

To calculate the dexterity for a specific joint configuration,
the reachability of neighbouring poses is considered:

Dq(q) = (1− wn)DG
V6
(x(q)) +

wn

nΓ

nΓ∑
i=1

DΓ
q (q, i),

with DG
V6
,DΓ

q , wn ∈ [0, 1],

(13)

where Dq(q) is the dexterity for a specific joint value (q),
DG

V6
(x(q)) the dexterity for reaching voxel x(q), DΓ

q (q, i)
the dexterity as a measure of ability to reach a pose from
x(q) to the ith neighbour of Γ, and wn ∈ [0, 1] a weight of
how much the neighbourhood should influence the dexterity
of a specific joint configuration.

To evaluate whether the manipulator has the dexterity to
reach a neighbouring pose from the joint configuration under
consideration, the motion to that pose is simulated using a
single inverse kinematic step. Metric DΓ

q (q, i) is calculated
based on the distance between the target pose and the pose
achieved using a single inverse kinematic step employing
the Jacobian method. Alternative approaches including path
planning could be considered, but Jacobian-based inverse
kinematics represent the direct/linear way to move between
configurations:

∆x0
i = viei, (14)

∆qi(q) = J †(q)∆x0
i , (15)

∆xi(q) = ∆x(T (q),T (q +∆qi)), (16)

DΓ(q, i) = max

{
0, 1− ∥∆xi −∆x0

i ∥
vi

}
, (17)

where vi is the step length of the ith direction of Γ, ∆x0
i is

the desired Cartesian step, J † is the pseudo-inverse used to
compute the joint delta ∆qi, T (·) is the forward kinematics
function to compute the homogeneous transformation matrix
of the end-effector, and ∆x(·) ∈ R6 provides the Cartesian
step to reach T (q+∆qi) from T (q). The Jacobian J can be
adjusted column-wise to address motion restrictions in joint-
space such as joint limits, or task-space such as collisions. If a
motion is restricted, the columns of the Jacobian that represent
the restricted joints can be scaled down to characterise those
restrictions. Further details can be found in [23] and [46,
Ch. 5].

This set of equations provides the measure DΓ(q, i) ∈ [0, 1],
which quantifies how well a manipulator can reach Cartesian
poses in its neighbourhood from the configuration under exam-
ination, see Fig. 8. Parameter vi can be chosen based on how
large the neighbourhood which is taken into account should
be. When this dexterity measure (DΓ) is used together with the
voxelisation approach in Sec. II, the lattice distance in each
dimension can be used as a parameter for vi. Different to the
Jacobian approach presented in Sec. III-A this measure allows
to easily compare different manipulators and their performance
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in the Cartesian workspace. This method is fundamentally
based on the same principals as DG

V3
however, it is not solely

considering whether a V3 voxel can be reached with different
orientations but further evaluates to what extent the neighbour-
hood can be reached taking joint-limits, collision constraints,
or other custom workspace constraints into account. Joint
limits can be taken into account by scaling down ∆q such
that q + ∆q meets the joint limit criteria, which means that
the desired pose cannot be reached fully leading to a lower
dexterity value. Similarly, collision constraints can be taken
into account by rejecting or modifying resulting configurations
from the inverse kinematics step if they result into a collision.
Since this approach is based on the global approach and takes
the local neighbourhood and constraints into account it is
considered a locally refined global method (DG,L

V3
).

IV. WORKSPACE VOXELISATION FOR INVERSE
KINEMATIC LOOKUP

In this section the SE(3) voxelisation approach is used to
create a lookup table for querying joint configurations (q) that
can reach a given task-space (Cartesian) pose.

A. Limitations of Common Lookup Approaches

In conventional approaches, random samples of joint con-
figurations are drawn from a chosen distribution (e.g. uni-
form), and evaluated with regards to task-space objectives
and workspace limitations. Valid configurations may need to
fulfil additional criteria such as stability or collision avoidance.
Cartesian poses and joint values are then associated within
a search-tree structure for quick lookup queries. Functional
approximations can be further used to interpolate between
neighbouring samples. The size of the lookup table, however,
quickly increases with the number of random configurations
considered. Furthermore, uniform sampling of the joint-space
likely results in non-uniform sampling of the task- space,
implying that some volumes are over-sampled while others
are under-sampled.

B. Associating Joint Configurations to Voxels

Using the scheme proposed here, each random joint config-
uration is associated to a discretised SE(3) voxel via

q → T (q) → v6, (18)

where q is the robot configuration, T (q) the corresponding
end-effector pose, and v6 the SE(3) voxel.

Robotic manipulators, and in particular redundant manip-
ulators, can reach certain task space poses with different
joint configurations. Therefore, an approach is needed wherein
such dicretised voxels v6 are associated with a plurality
of robot configurations, but without risking the creation of
unnecessarily large lookup tables.

In this proposed framework, each lookup voxel (LUV6 )
has a maximum capacity (NLU ) of the number of joint
configurations it can store, thereby controlling the amount
of memory that the lookup table occupies. This way, in-
creasing the number of random joint configuration samples

also increases the probability of finding configurations in
otherwise sparsely sampled volumes of the workspace while
avoiding oversampling other areas. Moreover, this presented
approach allows to suppress singular configurations which
are characterised by joint-space changes resulting in marginal
task-space variation. Singular configurations would otherwise
create densely sampled volumes in the task-space without
adding useful information on either dexterity or kinematics.

In the proposed approach new incoming randomly gener-
ated configurations are associated with voxels via a priority
algorithm that maximises the variance of stored joint con-
figurations in any voxel LUV6 . Here, variance is calculated
with respect to the configuration’s joint values. Given that the
number of configurations that each voxel can be associated
with is limited to NLU , incoming configurations may replace
existing ones only when variance increases.

Mathematically, it is assumed that a set of Qpre
lu con-

figurations are stored in LUV6
, while qr is the incoming

configuration. Then, all (NLU +1) candidate configuration sets
are generated, Qcand, that result from either disregarding qr

or substituting any qi ∈ Qpre
lu with qr:

Qcand =

Qpre
lu ,

⋃
∀qi∈Qpre

lu

(
(Qpre

lu \ qi) ∪ qr

) (19)

Subsequently, the variance for each configuration set within
Qcand is computed, and the set with the maximum variance
is chosen as the updated set to be associated with LUV6

according to:

Qpost
lu = argmax

∀Q⋆∈Qcand

{
wT

q Var[Q
⋆]
}
, (20)

where the joint weighting factor wq can be used to emphasise
different joints, e.g. distal joints over proximal joints.

It must be noted that computing the mean or distances of
revolute joint values (periodic entities) requires scrutiny, [47,
Ch. 2.3.8]. Specifically, before computing the mean, the joint
value represented as an angle on the unit circle is converted
into Cartesian coordinates:

q̄i = atan2

 1

NLU

NLU∑
j=1

sin (qi,j) ,
1

NLU

NLU∑
j=1

cos (qi,j)

 .

(21)
Additionally, the difference between angles is always wrapped
to the interval [−π, π] to obtain a meaningful variance metric.

C. Inverse Kinematic Solver using Lookup

The generated lookup table can then be used as a maximum-
time inverse kinematic solver. The lookup-table is stored using
a dense tensor representation. A vertex v6 and associated
translation (I⋆

T ) and rotation (I⋆R) indices are determined in
constant-time given a target pose T ⋆ in SE(3). To find the
most suitable configuration, a radius search is used with a
computational complexity linear to the covered volume. The
distance of I⋆

T and I⋆R to the lookup indices IT (3) and IR (6)
represent the respective search radii in translation (rIT ) and
rotation (rIR ). The maximum capacity of configurations per
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voxel (NLU ) is also linearly correlated to the computational
complexity.

The corresponding lookup voxel LUV6
stores joint con-

figurations with end-effector poses that are associated with
the same Voronoi cell. Sufficiently fine voxelisations imply
that the stored configurations correspond to the approximately
same target pose. If the corresponding voxel LUV6

is empty,
neighbouring voxels can be queried. The query might result
into multiple possible joint configuration candidates which
have an end-effector pose sufficiently close to the target pose.

A secondary selection criteria can be proximity between
current and next configuration in joint-space. Certain tasks
such as telemanipulation, prefer task-space trajectories which
are associated with small joint value increments, i.e. small
joint velocities.

To ensure that the looked up joint configuration does not
require unacceptably high joint velocities from the respective
current configuration, a maximum distance criteria is em-
ployed: ∣∣qcurrent − qlu,i

∣∣ ≤ ∆qmax, (22)

where qcurrent is the current joint configuration or the robot
and qlu,i a looked up configuration.

Recall that up to NLU joint configurations may be associated
with vertex v6, while sufficiently close configurations may
also be associated with neighbouring task-space voxels. To
compare the entire set of relevant configurations, radii were
defined in translational (rIT ) and rotational (rIR ) voxel space
to provide a search boundary. All configurations, which are
associated to voxels within that boundary, are considered, and
a cost based on the distance between a lookup configuration
and the current configuration in joint space (∆q) and target
configuration in task space (∆x) is minimised to find the
optimal joint configuration for the given target pose:

∆qi = qcurrent − qlu,i (23)

∆xi = xtarget − x
(
qlu,i

)
(24)

q⋆
lu = argmin

i

{(
wT

q ∆qi
)2

+
(
wT

x∆xi

)2}
, (25)

where q⋆
lu represents the optimal joint configuration, and wq

and wx weights to compute the overall cost of the lookup
configuration considering proximity to the previous joint con-
figuration (∆qi) and proximity to the target pose (∆xi).

The search boundary governed by rIT and rIR expands until
either a suitable joint configuration is found, or the distance
to the target pose exceeds a threshold that signifies lookup
failure.

V. ROBOT ARCHITECTURE OPTIMISATION

A function which associates a robot architecture (Ai) to
a scalar metric that corresponds to its task-space capabilities
(CT ) enables algorithmic robot optimisation for a specific task:

A⋆
R = argmax

Ai

{CT (Ai)} , (26)

where A⋆
R is the optimal robot architecture. It can be found

using appropriate optimisation algorithms, keeping in mind the
non-convexity of the problem in the general case.

A metric should enable comparisons of significantly differ-
ent robot architectures and dimensionalities. Global metrics
such as the introduced global dexterity are superior to local
approximations when the design of robots with improved
dexterity is considered. The dexterity computation presented in
Sec. III-B fulfils these requirements when used in conjunction
with a function which extracts from the global capability
measure based on task-specific preferences (CV ) the task-
specific capabilities of the robot (CT ).

A composition between the dexterity measure DV6 and
function CV , which could be a continuous parameterised
trajectory or volumetric function, can be expressed as:

CT (Ai) = D∫
T
(Ai) =

∫
v6

(CV ◦ DV6
(Ai)) (v6) . (27)

This generic representation can for example be implemented
in the discretised case as the sum over the dexterity voxels,
which were previously scaled with CV to compute CT :

DΣT
(Ai) =

∑
∀v6∈DV

CV (DV6
(Ai, v6)) . (28)

This idea was previously presented in Sec. III-C in form of a
masking approach. The mask (CV ) represents the task-space
specific preferences to promote those Cartesian poses, which
are most relevant to perform a task and to suppress the weight
of those which are not important to achieve a preferred task-
space goal.

When the specific task is not known (e.g. in telemanipula-
tion) the masking approach depicted in Fig. 9 and formalised
in (28) is even more useful. Instead of optimising the robot
for a specific trajectory to the task-space target, it allows for a
fuzzy approach in which 6 DoF volumes or Cartesian poses of
high task relevance are described. In other words, an a priori
knowledge of the exact end-effector path is not required, and
instead regions of interest can be used.

VI. EXPERIMENTS

To demonstrate different use cases and the versatility of
the presented 6 DoF voxelisation approach, experiments were
conducted with: (i) a serial link robotic arm, (ii) a serial link
flexible surgical instrument, and (iii) a flexible concentric tube
robot.

A. Voxelisation-based Dexterity

Robot dexterity is evaluated with three methods. The first
method uses the common manipulability metric defined in
(8). It is denoted as DL

V3
, and it is based on the end-effector

Jacobian, and therefore describes the local neighbourhood of
a configuration.

The second method was introduced in Sec. III-B. For each
position ∈ R3, the algorithm computes what proportion of all
discretised orientations can be reached. The metric, denoted
as DG

V3
, is based on a global evaluation but does not explicitly

take into account whether the manipulator can directly move
between neighbouring voxels.

The third method was introduced in Sec. III-D. Evaluation
uses metric DG

V3
while also considering whether the manipu-

lator can move from one configuration and its corresponding
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end-effector voxel in R6 towards neighbouring voxels in R6.
The resulting metric, denoted as DG,L

V3
, is a globally evaluated

metric that incorporates local behaviour.
All computations use a self-collision model, see Fig. 10. A

simple capsule based model was chosen to enable Graphics
Processing Unit (GPU) accelerated computation. The model
is conservative insofar as it potentially rejects configurations
which are collision-free.

1) Serial Link Robot: In the first experiment the dexterity
of a 7 DoF serial link robot (KUKA LBR iiwa 7 R800, see
specifications: http://tiny.cc/x9z2vzhttp://tiny.cc/x9z2vzhttp://tiny.cc/x9z2vzhttp://tiny.cc/x9z2vzhttp://tiny.cc/x9z2vzhttp://tiny.cc/x9z2vzhttp://tiny.cc/x9z2vzhttp://tiny.cc/x9z2vzhttp://tiny.cc/x9z2vzhttp://tiny.cc/x9z2vzhttp://tiny.cc/x9z2vzhttp://tiny.cc/x9z2vzhttp://tiny.cc/x9z2vzhttp://tiny.cc/x9z2vzhttp://tiny.cc/x9z2vzhttp://tiny.cc/x9z2vzhttp://tiny.cc/x9z2vz) is evaluated.

The resulting dexterity maps are depicted in Fig. 11. The
colours represent the respective metrics for each voxel. A
high dexterity is represented by a red (warm) colour while a
position in which the robot has a low dexterity is represented
with a blue (cold) colour. Please note that the values of the
metrics differ between the subfigures. The dexterity value
for DL

V3
in Fig. 11(a) is the maximum manipulability M,

see (8), achieved at the end-effector position, and is not
easily interpreted. This method primarily allows for a relative
assessment of dexterity.

On the contrary, for DG
V3

and DG,L
V3

, depicted in Fig. 11(b)
and Fig. 11(c), the dexterity value represents the proportion
of orientations which are achieved based on all possible (here:
3240) rotation voxels. Crucially, these metrics allow to con-
clude that the assessed manipulator can reach all voxels within
the inner red volume under any desired orientation. For the
metric DG,L

V3
the 12-voxel neighbourhood with wn = 0.8 was

used. The memory usage for the dexterity data structure that
differentiates between 125×125×116×3240 = 5872.5×106

voxels, requires 4 bytes per voxel (using single precision
floating point numbers). This leads to 21.87 GB of RAM,
which was designed to suit the memory of the used GPU.

There are notable differences between method DL
V3

, see
Fig. 11(a), and the other two methods (b), (c). DL

V3
suggests

that the dexterity is highest around the ground plate that the
robot is standing on, see Fig. 11(a) - circle 1. Furthermore,
that approach suggests that the manipulator is less dexterous
at the centre at approximately 900 mm height, see Fig. 11(a)
- circle 2. The global approaches (b), (c) show a corridor of

Fig. 10. Collision model for the 'KUKA LBR iiwa 7 R800' used during
the dexterity analysis experiment. The green and blue capsules represent
the geometric collision primitives attached to the robotic links. The brown
background represents the reachable workspace of the manipulator.

uniformly high dexterity in an approximate (red)

U

-shape.
The differences between DG

V3
, and DG,L

V3
are more subtle,

with the main difference being under the robot base, see
Fig. 11(b) - circle 3. Considering the local neighbourhood,
the volume under the base is described with lower dexterity
then when only considering 3D reachability.

Both of the introduced metrics lead to similar evaluations.
The additional computational burden to include local consid-
erations is therefore in most cases only justified when the
boundaries of the workspace are of particular interest.

2) Flexible Surgical Instrument: The second experiment
assesses the dexterity of different kinematic architectures of
same dimensions for a surgical instrument detailed in [48]. It
showcases the advantage of meaningful dexterity metrics and,
in particular, the importance of meaningful absolute values
that inform a technical reviewer about the ratio of the desired
workspace that is reachable.

Classic metric DL
V3

was used to evaluate the capabilities of
two different manipulators, and results are shown in Fig. 12(a),
(b). Metric DG

V3
was also employed for the same manipulators,

see Fig. 12(c), (d). Fig. 12(a), (c) refers to a 5 DoF tool
with pitch-yaw-yaw-pitch-yaw (PYYPY) configuration, while
Fig. 12(b), (d) refers to a 6 DoF tool with a pitch-yaw-yaw-
pitch-yaw-roll (PYYPYR) configuration.

First, consider Fig. 12(a) and Fig. 12(b). The classic dex-
terity metric, DL

V3
, shows fairly uniform regions of dexterity

in both cases. As expected, the 5 DoF tool is overall less
dexterous, even up to an order of magnitude, when compared
to the 6 DoF tool. The classic approach shows homogeneously
low dexterity of the under-actuated 5 DoF tool (overdetermined
system) since it is based on the eigenvalues of the Jacobian
matrix. Finally, fine details on dexterity regions cannot be
readily identified.

Next, Fig. 12(c) is compared to Fig. 12(d). The voxelisation
approach highlights the different regions of high dexterity
within the otherwise identical robot workspaces. In addition, it
provides quantitative information on the orientation coverage
for the two manipulators. Specifically, even in its most dexter-
ous region, the 5 DoF can reach less than 2.5% of orientations,
while the 6 DoF can reach almost 25%.

The metric introduced in this paper allows for a direct
comparison with Fig. 11 as well, where almost 100% orienta-
tion coverage is observed. Such conclusions cannot be derived
through the use of Jacobian-based dexterity values. Notably,
DL

V3
in Fig. 12 is higher in comparison to Fig. 11 since the

unit of the link-lengths for the instrument are millimetre (mm)
while for the robotic manipulator the unit was in meter (m).

B. Inverse Kinematics

The third experiment evaluates the inverse kinematic ap-
proach presented in Sec. IV. The voxelised workspace is used
to store multiple joint configurations in the 6 DoF voxels of
SE(3). In this experiment the amount of joint configurations
stored per voxel is bound to 5 configurations, and thus reduces
the amount of required memory while being able to use
large numbers of samples to generate an evenly dense lookup
table. Limiting the number of stored configurations can result

https://www.kuka.com/-/media/kuka-downloads/imported/6b77eecacfe542d3b736af377562ecaa/db_lbr_iiwa_en.pdf?rev=345eae49080e42f8a6db71560389e512&hash=7D620372E19F752E930B459EF31641F4
https://www.kuka.com/-/media/kuka-downloads/imported/6b77eecacfe542d3b736af377562ecaa/db_lbr_iiwa_en.pdf?rev=345eae49080e42f8a6db71560389e512&hash=7D620372E19F752E930B459EF31641F4
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Fig. 11. Dexterity assessment based on kinematic model of an iiwa 7 robot of the KUKA AG. In each analysis the workspace was divided in 125 × 125
× 116 voxels for the position. In (b) and (c) the rotation space was further divided in 3240 rotation voxels. Each dexterity analysis considers 1013 random
configuration samples. Dexterity measures used: (a) DL

V3
, (b) DG

V3
, (c) DG,L

V3
. Gray circles in (a) describe area of significant difference compared to (b) and

(c), grey circle in (b) shows subtle difference to (c).

Tool: 5 DoF (PYYPY) Tool: 6 DoF (PYYPYR)
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Fig. 12. Dexterity assessment based on kinematic model of custom surgical
tool. Each experiment considers 1013 configurations. (a) DL

V3
of 5 DoF tool,

(b) DL
V3

of 6 DoF tool, (c) DG
V3

of 5 DoF, (d) DG
V3

of 6 DoF tool.

into sub-optimal lookup results, while a high number of
configurations can lead to uneven sampling of the workspace
as discussed in section IV. Given a limited amount of com-
puting memory, both the number of voxels for the evaluated
workspace and the number of maximum stored configurations
per voxel need to be considered. For dexterous architectures,
1.5GB of disk-space was used to store the lookup table.

Four different CTR architectures aimed at vitreoretinal
surgery were used, with a structural design similar to [12]. In
vitreoretinal surgery, the robot enters the eye from an incision
on the sclera (the white part of the eye) and extends up to
the retina, where surgery takes place. Increased dexterity is
required to precisely carry out interventions, and in particular
deliver novel treatments, such as regenerative therapies [49].
An in-depth introduction of this surgical domain is out of
the scope of this paper; please refer to [50] for a review

of robotic retinal surgery. The four CTR architectures were
chosen to have varying suitability for the task, and thus assess
to what extent an advanced inverse kinematics algorithm can
compensate for design imperfections. The architectures are
intermediate steps of a design optimisation algorithm, detailed
later, and are denoted as IO,0 (sub-optimal), IO,3 (unsuitable),
IO,7 (unsuitable), and IO,11 (optimised).

The simulated telemanipulation task entails inserting the
robot through the sclera and the vitreous body to reach a
point close to the macula (central part of the retina). The
target is indicated with coordinate axes in Fig. 16. Once
there, the end-effector was pivoted ±60◦ around the x, y-axis
(pitch, yaw) and 360◦ around the z-axis (roll), before the CTR
was retracted back to the origin. It is important to note that
while CTRs have so far been controlled precisely with regards
to their tip position, orientation control is more challenging.
While different tip orientations lie close in task space, their
associated configurations (joint space) are far away. The pro-
posed framework and lookup approach is perfectly suited to
address this challenge.

Following the framework introduced by the authors in [51],
optimisation algorithms compete in parallel to deliver the best
inverse kinematics solution. Two different inverse kinematic
approaches were used to solve the inverse kinematics for
each simulated telemanipulation task. The first approach em-
ployed two standard local non-linear optimisation algorithms
(BOBYQA and Nelder-Mead) [52]. The competing second
approach additionally employed the lookup table, resulting
in utilisation of three optimisers. The idea of combining the
local non-linear optimisers with the lookup approach arose
from the observation that local optimisers regularly converge
to sub-optimal local minima. The global lookup provides a
good initial guess for the local optimisers to improve, and
helps steer away from local minima. The optimisers and
the lookup approach were timed to provide their best result
every 100 ms, which resulted into a control rate of 10 Hz.
To improve motion smoothness, joint level based trajectory
planning is envisioned. Alternatively, previous research [51],
has shown using optimisers with different timeouts 10 Hz -
50 Hz improves latency in areas in which optimised results are
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Fig. 13. Voxelisation is used to store multiple joint configurations of a CTR per voxel. This information is then used for inverse kinematic lookup. Comparison
of inverse kinematic performance when using purely local optimisers (†) and combining local optimisers with the lookup (‡) (also hatched in (a)) to provide
seed configurations. Different CTR architectures (IO ∈ {0, 3, 7, 11}) were used. DG

V3
is the reachability of the robot architecture relative to a perfect

workspace reachability. The lookup was based on 108 samples. (a) Statistic of best performing optimiser, over 1160 consecutive inverse kinematic tasks, with
100 ms per task. The box plots in (b) represent the performance over the entire trajectory with 1160 samples of an equally spaced time series.

easily found. The comparative results are presented in Fig. 13.
The results in Fig. 13(b) show that the introduction of the

lookup table as a first step in the optimisation leads to a mean
(ϵ) that demonstrates up to 25% improvement, both in terms of
position and orientation errors. Only for the architecture with
the index IO,7 the results show no significant difference. This
can be explained by the large error this architecture has in
position and orientation. A detailed investigation revealed that
the inverse kinematic task was largely outside of the workspace
of this specific architecture and hence was not capable of
following the target end-effector pose.

The frequency of which optimiser finds the best solution
is depicted in Fig. 13(a). The figure shows that the lookup
table itself would only very rarely provide the best result.
Using it, however, significantly boosts the performance of
the Nelder-Mead algorithm, which implies that the latter
benefited from the initial guesses provided by the lookup table.
Previous experiments using only the Nelder-Mead algorithm
showed that it suffers from local minima. Here, this issue was
eliminated by combining it with the lookup approach, which
also resulted in a better convergence result overall.

C. Manipulator Architecture Optimisation

The final experiment demonstrates how the developed met-
rics can be used to computationally design robots optimised
for dexterous manipulation. The experiment is divided into
two parts: (i) robot architecture optimisation, according to
(26), based on the robot’s workspace dexterity, and (ii) the
architecture evaluation, based on the error of a concrete inverse
kinematic task, which is used to simulate telemanipulation.

A specific trajectory for architecture optimisation was
avoided, as telemanipulation tasks are determined in the
moment by the operator and take place across the robot’s
workspace. Robot architecture optimisation, and robot archi-
tecture evaluation, therefore use different metrics. A discussion
on how the two metrics compare is provided in the following
and depicted in Fig. 14.

Similar to the previous section, the goal is to maximise
the dexterity of a CTR to carry out vitreoretinal surgery and
ultimately regenerative therapy delivery. Such tasks require
extensive workspace coverage on the retina, in addition to
high orientation dexterity at every point; this latter property
is rarely a feature of CTR.

The voxelisation approach is used to compute a metric that
describes the dexterity of a robot architecture for a given
workspace. Rather than directly solving the inverse kinemat-
ics, the metric predicts the capability of a robot to execute
an inverse kinematic task. The hypothesis is that increased
dexterity metric corresponds to increased inverse kinematic
convergence, especially considering reachability of neighbours
as per the developed theory.

The metric DΣT
formalised in (27) was used, which com-

bines the voxelisation approach together with the masking
approach. It is the sum of the masked dexterity values in
the workspace. In the following the metric DΣT

is based on
dexterity measure DG

V3
.

Starting from a guessed CTR, the BOBYQA algorithm, was
used to identify the optimised lengths and curvatures of each
of the CTR tubes. The BOBYQA algorithm is a local non-
linear optimisation algorithm which performed well in initial
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Fig. 14. Optimising CTR architecture: Dexterity (DΣT
) visualisation and inverse kinematics error for each CTR architecture during optimisation. For every

index IO the error (ϵ) statistics of the full trajectory are depicted. ϵmean: mean error along the trajectory, ϵrmse: root-mean-square error, ϵmin/max: minimum
and maximum error. DG

V3
is the reachability of the robot architecture relative to a perfect workspace reachability.

tests and it is characterised to suffer little from local minima,
and additionally has a fast convergence rate.

The considered robot architecture comprises variable curva-
ture (VC) sections, and constant curvature (CC) sections. As
first introduced in [1], a VC comprises two tubes of identical
stiffness, whose rotations are independent but the translations
are coupled, and delivers 3 DoF. A CC comprises a single tube,
and delivers 2 DoF. The CTR architecture that was chosen to
optimise for consists of a VC, a curved CC, and a straight
tool-carrying CC with minimal length (1 DoF), for a total of
6 DoF.

The optimisation output is shown in Table I, while conver-
gence plots are depicted in Fig. 14.

Fig. 14 shows how the dexterity measure (DΣT
) developed

over each optimisation step. It is visualised as a relative value
based on the ideal case in which all voxels within the desired
workspace can be reached. During the optimisation CTR
architecture parameterisations were assessed to maximise the
CTR dexterity score (DΣT

). After the optimisation concluded
the same parameterisations were further evaluated in regards
to how well they perform for a simulated telemanipulation
task. This second evaluation is used to assess the hypothesis
that high dexterity scores correlate to low inverse kinematics
errors.

This simulated telemanipulation task was identical to the
inverse kinematic experiment described in Sec. VI-B.

The average inverse kinematic error, along the trajectory,
between desired end-effector and achieved end-effector pose

TABLE I
CTR ARCHITECTURE OPTIMISATION PARAMETERS

Sec Stiffness Radius Curvature⋆ Curved Length⋆

(Type) Tube Ratio [mm] [mm−1] [mm]
0 5 : 1 0.3125 52.20 ∈ [0, 200] 15 ∈ [2, 45]0 (VC) 1 5 : 1 0.29 52.20 ∈ [0, 200] 15 ∈ [2, 45]

1 (CC) 2 1 : 1 0.25 52.63 ∈ [0, 200] 15 ∈ [2, 45]
2 (CC) 3 0.05 : 1 0.125 0 1 ∈ [0.5, 2]
⋆Value range for optimisation specified as: [min, max]

in translation (mm) and orientation (◦) for each optimisation
step is shown in Fig. 14. The dexterity measure quickly
converges and the errors for translation and orientation reduce
with increasing dexterity. The tube parameters evaluated first
(IO,{5−10}) resulted into poor dexterity (DΣT

) values, and
poor performance in the telemanipulation task. Fig. 16 depicts
CTRs during the telemanipulation task to the same pose while
following the trajectory. The previously computed dexterity
metric for the architecture’s workspace is overlaid. A subset
of those architecture’s was discussed in Sec. VI-B. Fig. 16(a)
depicts the initial architecture, which is not quite able to
reach the desired end-effector pose. Intermediate architectures
Fig. 16(b)-(c), with very low manipulability scores, cannot
reach the desired pose. Finally, Fig. 16(d), which depicts the
optimised CTR, reaches the desired pose with overall increase
manipulability.

The analysis of how the telemanipulation error, the average
translation and rotation error over the entire trajectory, corre-
sponds to dexterity measure is depicted in Fig. 15. Estimation
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Fig. 15. Optimising CTR architecture: Relation between dexterity DΣT
and

inverse kinematics error. Pearson correlation coefficient (ρ): -0.810 (Transla-
tion), -0.946 (Orientation), p-value: < 0.1% (both). The relation shows that
a high dexterity measure (DΣT

) results in small inverse kinematic errors in
position and orientation. DΣT

: measures the reachability of the respective
robot architecture relative to a perfect reachability of the entire workspace.
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of the correlation coefficient shows that the telemanipulation
error is negatively correlated to the dexterity for both position
and orientation (highly significant). This confirms the hypoth-
esis that increased dexterity as calculated by metric DΣT

is
linked with improved inverse kinematics performance.

The error metrics for the considered CTRs are summarised
in Table II. The table shows that initial errors (IO,0) of up
to 1.94mm and 23.27 ◦ were reduced to (IO,99) worst case
errors in the sub-millimetre range for the position and less
than 5 ◦ in orientation. The average error for the optimised
architecture was 0.15mm and 0.63 ◦.

It is important to note that this is the first paper that
considers orientational dexterity in CTR design. A preliminary
vitreoretinal surgery CTR developed for reachability in [12]
achieved only 0.92 % of the maximum achievable dexterity
compared to more than 36 % achieved with the presented
approach. The maximum achievable dexterity considers a
simple task-space priority model, which factors in a wide range
of forward facing orientations and locations in the eye.

D. Computational Performance
For all experiments, the majority of the computing tasks

were performed on the GPU using a OpenCL™ language im-
plementation. CTR experiments were performed on an Intel®
Core™ i7-6900K CPU with 2× Nvidia Quadro P6000 (2×
12.6 TFLOPS) GPUs. Computing the dexterity for a single
architecture considered 108 random joint configurations and
lasted 108.7 s. The CTR optimisation experiment with 100
iterations lasted approximately 3 h. The generation of the
inverse kinematic lookup table completed on average in 686 s.

Computing the forward kinematics for serial-link robots is
significantly faster than for CTR due to kinematics simplicity.
The following metrics for computing the workspace for the
iiwa 7 robot were achieved with an Intel® Core™ i7-
8850H CPU with an Nvidia GeForce 1050 Ti (2.1 TFLOPS)
GPU. The workspace was divided into 75 × 75 × 70 =
393, 750 positional voxels with each further subdivided in
420 unique rotations for the 6 DoF approaches. This resulted
into 165.375 × 106 unique voxels. The workspace was as-
sessed with Nsample = 1011 random uniformly distributed

TABLE II
TELEMANIPULATION ERROR OF CTR ARCHITECTURES

ϵmean ϵrmse ϵmin ϵmaxIO DΣT [mm/◦] [mm/◦] [mm/◦] [mm/◦]
0 11.0% 0.68 / 8.31 0.85 / 11.00 0.00 / 0.01 1.94 / 23.27
3 21.1% 0.57 / 3.59 0.95 / 6.19 0.00 / 0.01 2.94 / 19.35
7 0.2% 5.43 / 12.89 6.04 / 14.57 0.30 / 0.09 8.72 / 23.72

11 31.0% 0.96 / 4.29 1.32 / 6.00 0.00 / 0.02 3.35 / 16.19
25 34.3% 0.25 / 1.15 0.48 / 2.13 0.00 / 0.00 1.62 / 7.84
99 36.3% 0.15 / 0.63 0.28 / 1.07 0.00 / 0.01 0.99 / 4.84

joint-configurations. Computing DL
V3

took 440 min, DG
V3

took
210 min, and DG,L

V3
took 500 min. This renders the presented

metric DG
V3

significantly faster than the manipulability based
approach DL

V3
. The presented global dexterity measure ap-

proach that considers also reachability of the 12 neighbour
voxels DG,L

V3
took only 13.6% longer than the manipulability

based approach.
It should be noted that the manipulability based approach

does not subdivide the rotational space, which arguably could
justify a lower number of samples as there are less unique vox-
els. In our experience, the number of samples used to assess
the workspace should be 100× - 1000× larger than the number
of unique voxels; this ensures that the result is not influ-
enced by undersampling. Furthermore, the degrees-of-freedom
(NDoF) of the manipulator should be considered. For a total
number of samples Nsample, the equivalent number of samples
per joint is calculated as Nsample, joint =

NDoF
√

Nsample. Then,
if every joint was subdivided in Nsample, joint =

7
√
1011 ≈

37.28 samples, the overall number of joint-configuration sam-
ples would be 1011.

VII. CONCLUSION

Different approaches can be used to assess the dexterity
of manipulators. Common approaches assess the dexterity
through Jacobian based methods, which linearise the mapping
between joint- and task-space. These methods have the disad-
vantage of providing information only on manipulability in the
neighbourhood of the configuration under examination, and do

a

IO : 0

b

IO : 7

c

IO : 9

d

IO : 99

Fig. 16. Optimising CTR architecture: Visualisation of the inverse kinematics error for a specific tip pose during a predefined trajectory. Evaluation of
Optimisation Index IO ∈ {0, 7, 9, 99}. (a): the architecture is not able to reach the target neither in position nor orientation. (b), (c): the middle two
architectures are neither able to reach the target the error is higher than in (a), (d): the architecture is able to reach the target pose in both position and
orientation. The dexterity metric DG

V3
is overlayed as heat map for 4 different architectures. Dexterity (DG

V3
) visualisation [ : high dexterity, : medium

dexterity, : low dexterity]. (a): the overlay shows some medium and low dexterity regions, (b), (c): the overlay shows no dexterity or low dexterity regions,
(d): the overlay shows high and medium dexterity regions. The overlays show that higher dexterity indicated by warmer colours results into smaller inverse
kinematic errors.
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Fig. 17. Subdivision of an icosahedron surface. Statistical analysis of the frequency of associating a random rotation to each discretised rotation relative
to the expected frequency. For each level 109 uniform random rotations are drawn. Vertices used for discretised rotations (green): (a) ϵrmse = 0.03%, (b)
ϵrmse = 5.36%, (c) ϵrmse = 5.42%, Face centres used as discretised rotations (blue): (a) ϵrmse = 0.04%, (b) ϵrmse = 1.52%, (c) ϵrmse = 4.70%. (a)
χ2-test confirms both approaches result in a uniform distribution with a 0.1% significance level. The subdivision errors mean that (b), (c) are not uniformly
distributed with a 0.1% significance level.

not provide a global metric on the capabilities of a manipulator
within a workspace.

In this article, an approach to subdivide the workspace in
equal size volumes was presented as the first step to enable a
global assessment of the capabilities of a manipulator. Using
a highly parallel implementation, this voxelisation approach
was used to assess the workspace of different types of ma-
nipulators. Furthermore, the approach was used to generate
a lookup table which provide a mapping from task-space
volumes to joint-space configurations. Using the presented
voxelisation approach the generated lookup table has a limited
amount of saved configurations per voxel, which enables
performance similar to denser lookup tables but with a reduced
memory footprint. Finally, the voxelisation approach was used
in conjunction with applying a task-specific mask to the
volumes to compute a summative single-value metric that
describes the capabilities of a manipulator for a specific task.
This enabled the optimisation of a flexible manipulator for a
complex telemanipulation task.

The presented diverse set of experiments considered differ-
ent types of manipulators alongside representative applications
to demonstrate the advantage of the proposed approach. The
paper demonstrates that the presented approaches have the
potential to provide insights and solutions in a variety of
robotic research questions around dexterous performance.

SOFTWARE

Implementation details presented in this paper can be found
at http://code.leibrandt.euhttp://code.leibrandt.euhttp://code.leibrandt.euhttp://code.leibrandt.euhttp://code.leibrandt.euhttp://code.leibrandt.euhttp://code.leibrandt.euhttp://code.leibrandt.euhttp://code.leibrandt.euhttp://code.leibrandt.euhttp://code.leibrandt.euhttp://code.leibrandt.euhttp://code.leibrandt.euhttp://code.leibrandt.euhttp://code.leibrandt.euhttp://code.leibrandt.euhttp://code.leibrandt.eu. In particular, an implementation of
the 6 DoF task-space to joint-values lookup is available at
http://rwa.code.leibrandt.euhttp://rwa.code.leibrandt.euhttp://rwa.code.leibrandt.euhttp://rwa.code.leibrandt.euhttp://rwa.code.leibrandt.euhttp://rwa.code.leibrandt.euhttp://rwa.code.leibrandt.euhttp://rwa.code.leibrandt.euhttp://rwa.code.leibrandt.euhttp://rwa.code.leibrandt.euhttp://rwa.code.leibrandt.euhttp://rwa.code.leibrandt.euhttp://rwa.code.leibrandt.euhttp://rwa.code.leibrandt.euhttp://rwa.code.leibrandt.euhttp://rwa.code.leibrandt.euhttp://rwa.code.leibrandt.eu.

APPENDICES

The uniform voxelisation of the rotational space is critical
for the described workspace analysis. The following sections
evaluate the error which is introduced by the subdivision
algorithm introduced in Sec. II.

APPENDIX A
SO(2) - SUBDIVISION ERROR

Analysis of the resulting error for the SO(2) case was
conducted by drawing uniform random rotations in SO(2)

using the approach described in [53], which leads to a random
vector (rv3 ) on the unit sphere, with:

u ∈ [0, 1], v ∈ [0, 1],

rv3 =

 2
√

u (1− u) cos (2πv)

2
√
u (1− u) sin (2πv)

2u− 1

 (29)

with u, v drawn from uniform random distributions.
For each of the random vectors (rv3 ), the closest unique

vertex on the unit sphere, which represents the centre of
a Voronoi cell, is found. A uniform discretisation implies
that all discretised rotations are equally often associated to
a random SO(2) rotation over an infinite larger number of
random rotations. If a discretised rotation deviates from the
mean number of rotations per discretised rotation, it would
indicate that its Voronoi cell area is respectively smaller or
larger than the average area size of the discretised rotations.

Fig. 17 shows the resulting histograms for the first 2
subdivision levels using one billion (109) random rotations
per histogram. The green coloured histogram represents the
relative quantity of how often a specific discretised rotation
was associated to a random rotation using the vertices from
the subdivision process. The blue histogram shows the relative
quantity when using the face centres as discretised rotations.
There are more faces per subdivision level than there are
vertices.

The root-mean-square-error from an optimal subdivision is
computed and also depicted in Fig. 17. Without a subdivision,
both approaches give close to perfectly uniform discretised
rotations. After one subdivision, the projection approach re-
sults into small errors when using vertices (≈5.36%) and face
centres (≈1.52%) as discretised rotations. Notably, using the
face centres result into a more uniform tessellation.

After the second subdivision the errors of both approaches
are similar ≈5.42% using the vertices and ≈4.70% when
using the face centres.

Please note that although the area size of the Voronoi
cell (triangle) using face centres is smaller than Voronoi cell
(hexagon) using the vertex both areas have the same max
distance from the centre to the most distant rotation in the cell,
see Fig. 5. For this reason, vertices are employed as Voronoi
centres and discretised rotations. Using the hexagon Voronoi
cell has a similar error compared to the triangle Voronoi cell

http://code.leibrandt.eu
http://rwa.code.leibrandt.eu
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Fig. 18. Subdivision of the 600-cell. Statistical analysis of how often a random rotation is associated to each unique quaternion relative to the expected
frequency. For each level 109 random rotations are drawn from a uniform distribution. Green: Linear search according to (5). Blue: Constant time lookup
according to (6). (a) χ2-test confirms both approaches result in uniform distribution with a 0.1% significance level. The subdivision errors mean that (b), (c)
are not uniformly distributed with a 0.1% significance level.

at the subdivision level 2, which is used in this paper. The
circle like shape of those hexagons was therefore the deciding
factor in the choice of the Voronoi cell shape.

APPENDIX B
SO(3) - SUBDIVISION ERROR

The error analysis of the discretisation error for SO(3) was
conducted similarly to the SO(2) analysis.

To show that the discretisation approach also works for
SO(3) one billion (109) uniform random rotations are gen-
erated using the quaternion approach presented in [54], with

u ∈ [0, 1], v ∈ [0, 1], w ∈ [0, 1],

Qr =


√
1− u cos (2πv)√
1− u sin (2πv)√
1− u cos (2πw)√
1− u sin (2πw)

 (30)

with u, v, w drawn from uniform random distributions.
For each of the random rotations the closest rotation in

Qv is computed and the number of the closest matches for
each index in Qv is counted. The results for the first three
subdivision levels are depicted in Fig. 18. Both the linear
search (5) and the constant time lookup approach (6) provide
similarly good results in terms of frequency relative to the
expected frequency. The expected frequency is the quotient
of random rotations and the number of unique quaternions
for the respective discretisation level. The expected frequency
is also the reference for the root-mean-square error (RMSE)
calculation in Fig. 18.

The presented approaches to subdivide and project the unit-
sphere in R3 for SO(2) and in R4 for SO(3), show low dis-
cretization errors. Furthermore, the equal shape and equal size
of the resulting discretised Voronoi areas and volumes make
it an ideal approach to compare and assess the reachability
in R6 and therefore enables to compute meaningful dexterity
metrics for manipulators.
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