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Abstract

This thesis consists of 4 chapters each of which discusses the properties of various models
from Mathematical Finance in particular Rough Volatility models.
In Chapter 1 we discuss the origins of Rough Volatility and cover various theoretical
topics needed for the later chapters in the thesis. Other competing approaches are briefly
discussed.
Chapter 2 (whose contents can also be found in the paper [FGS21]) introduces the Rough
Heston model and demonstrates it’s affine structure. In the absence of the semimartingale
property of the variance, the affine structure is what we shall use to determine both small-
time and large-time asymptotics for this model as well as the H ↓ 0 limit.
Chapter 3 (based on the preprint titled "Small-time VIX smile and the stationary distribution
for the Rough Heston model" found at https://nms.kcl.ac.uk/martin.forde/) stays with the
Rough Heston Model but here we examine the small-time asymptotic behaviour of the
VIX. We see that the model produces skewness and convexity features similar to those
seen in the market.
In Chapter 4 we introduce the Gaussian Multiplicative Chaos (GMC) of the (re-scaled)
Riemann-Liouville (RL) process and prove various forms of convergence as H tends to zero
by comparing with the Multifractal Random Walk. We show the GMC emerges in the limit
from the Rough Bergomi model as H tends to zero. We derive an approximation for the
skew. In addition to the original paper on which this chapter is based [FFGS20] we prove
convergence in L1 using the abstract Shamov framework and derive a Karhunen-Loeve
type expansion for the H = 0 field.
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Chapter 1

Introduction

1.1 Rough Volatility

1.1.1 Volatility is Rough

The origins of modern mathematical finance as it is currently known can be traced back to
the introduction of the Black-Scholes model which even today is considered the canonical
model for financial assets in continuous time:

dSt/St = µdt +σdWt (1.1)

where W is a Brownian Motion.
This model was revolutionary in that one could price all European options (and some
exotics) with corresponding unique replication strategies i.e. perfect hedging strategies.
Such a model was ubiquitous in industry and contributed to the boom in the derivatives
market during the end of the twentieth century.

Whilst simple this model has some substantial drawbacks. Given market prices for vanilla
options we can infer the value of σ required to give the observed market price, the so-
called implied volatility. When the implied volatility is computed from market observed
equity options prices across strikes we typically see what has come to be known as a
volatility smile i.e. a non-constant implied volatility which typically increases as we move
sufficiently far away from the "at-the-money" (ATM) strike. This is in contrast to the "flat"
implied volatility characteristic of the Black-Scholes model. The gradient of the smile
at-the-money (where the strike is the same as the spot value) is known as the skew and it
has been empirically observed to diverge as the maturity tends to zero.

Faced with the task of building more realistic models for asset prices we can divide

9



1.1 Rough Volatility

the various proposed approaches into two broad types. The first, which we shall not
address in this thesis, consists of models that incorporate jumps into the sample paths
of the asset prices thus allowing for the framework of (potentially infinite-activity) Lévy
processes amongst other things.

The second type known as Stochastic Volatility models are models constructed by re-
placing the constant σ in the Black-Scholes model with an adapted stochastic process
σt . A historically important class of Stochastic Volatility models are the Local Volatility
models introduced by Dupire [Dup93] where σt = σ(t,St) for some deterministic function
σ(t,S). Dupire shows that, by integrating the forward Kolmogorov equation, one can
calibrate exactly to given market prices for vanilla prices at all strikes and maturities. In
particular, given a stochastic volatility model with it’s associated call option prices one can
find the associated local stochastic volatility (see also Gyongy [G86]). Whilst very flexible
this class of models fails to capture the dynamic skew structure (i.e. power-law ATM skew
for all t, see section 1.1.4) observed in the market for short dated options (such options are
of great interest to practitioners, they tend to be the most liquid markets) and thus present
great difficulties in controlling the error of hedging portfolios, see Fukasawa [Fuk17].

Another popular approach to Stochastic Volatility is to model σt as a diffusion which
leads to many widely used models such as the Heston Model (where σt is a CIR process)
or the SABR model. Whilst able to generate smiles similar to those observed in the market,
the desired skew structure remains elusive.

Gatheral et al. [GJR18] posit that the volatility process could be modelled by a frac-
tional Brownian motion with Hurst parameter H < 1/2 and showed that this choice was
consistent with the scaling of realised volatility time series observed in the market with
H values typically of order 0.1 (this analysis was refined by Fukasawa [FTW19] who
found the H values to be even smaller). This was then followed up by another paper
[BFG16] which showed that a rough model (termed the rBergomi model) could reproduce
the power-law skew structure seen in options markets. Rough models had thus been shown
to reproduce features of both time series data for financial assets ("under the P-measure")
and also the features of option prices ("ie under Q-measure").

1.1.2 Rough Bergomi Model

In his 2005 paper [B05] Bergomi introduced the so called Bergomi model which, rather
than specifying the dynamics of the spot volatility Vt , modeled the dynamics of the forward

10



1.1 Rough Volatility

variances ξ T
t :=Et [VT ]. The added flexibility of the model allowed for separate calibration

to variance swaps which can be used as hedges. The one-factor model can be written as
follows:

dSt

St
=

√
ξ t

t dWt (1.2)

dξ T
t

ξ T
t

= αe−k(T−t)dBt (1.3)

where W and B are correlated Brownian motions.

This model being a diffusion makes it amenable to approximations of the smile found
in the literature such as the Guyon-Bergomi expansion [Guy21b] which Friz, Bayer and
Gatheral [BFG16] use to derive an expression for the ATM skew showing that it converges
to a constant (which is to be expected for all classical diffusion models). The initially
ad-hoc suggestion of changing the exponential kernel to a power kernel is made so as to
achieve power-law behaviour of the ATM skew. Furthermore, the authors obtain such a
pricing model by taking the so called RFSV model (in the statistical measure) and making
a change of measure resulting in the rBergomi model:

dSt

St
=

√
ξt(t)dWt (1.4)

Vt = ξ0(t)eν
∫ t

0(t−s)H− 1
2 ds− 1

2 ν2 t2H
2H (1.5)

The aforementioned papers ([BFG16], [Fuk17]) show that indeed this reproduces the
correct skew term structure and there is even a pathwise large deviation principle established
in the paper by Jaquier, Pakkanen and Stone [JPS18] and [GJPSW19].

1.1.3 Rough Heston Model

One of the most famous and heretofore widely employed stochastic volatility models is
the (classical) Heston model [H93]

dSt =
√

VtStdWt (1.6)

dVt = λ (V −θ)dt +ν
√

VtdBt (1.7)

for which the characteristic function of the log stock price can be found in semi-closed
form:

logE(epXt ) =V0 f (p, t)+λθ

∫ t

0
f (p,s)ds (1.8)
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1.1 Rough Volatility

where f (p, t) solves the non-linear Riccati equation with initial condition f (p,0) = 0:

∂t f (p, t) =
1
2
(p2 − p)+(pρν −λ ) f (p, t)+

1
2

ν
2 f (p, t)2 (1.9)

The Riccati equation can be linearised and solved efficiently yielding a closed-form ex-
pression for the characteristic function. This allows us to price any European option using
Fourier inversion (see Lee [L04] and [LK07]).

This feature of the model is due to its affine structure. More specifically, an affine (Volterra)
process Xt is a model of the form (see Abi-Jaber [ALP19] for definitions of the relevant
parameters):

Xt = X0 +
∫ t

0
K(t − s)b(Xs)ds+

∫ t

0
K(t − s)σ(Xs)dWs (1.10)

where a(x) := σ(x)σ(x)T and b(x) are affine functions.
Choosing a constant kernel with appropriate σ and drift b gives rise to the classical Heston
model. By changing the volatility kernel to the power law kernel tH−1/2/Γ(H +1/2) gives
rise to the Rough Heston model:

dSt =
√

VtStdWt (1.11)

Vt = V0 +
λ

Γ(H + 1
2)

∫ t

0
(t − s)H− 1

2 (Vs −θ)ds+
ν

Γ(H + 1
2)

∫ t

0
(t − s)H− 1

2
√

VtdBt

This is a rough model in the sense discussed previously (the volatility sample paths have
Hölder continuity H −ε paths and the desired ATM skew term structure is observed as can
be shown using large deviations results, see Chapter 2).

This model remains affine and we have a similar expression for the characteristic function
(here Iα and Dα denote the Riemann-Liouville integral and derivative respectively):

logE[epXt ] =V0I
1
2−H f (p, t)+λθ

∫ t

0
f (p,s)ds (1.12)

where now we have a fractional Riccati equation:

Dα f (p, t) =
1
2
(p2 − p)+(pρν −λ ) f (p, t)+

1
2

ν
2 f (p, t)2 (1.13)

such equations can be solved efficiently using an Adams scheme, so (akin to the classical
case), we have a method to price any European option using Fourier inversion with e.g.
gaussian quadrature.

12



1.1 Rough Volatility

This affine structure will be exploited in chapters 2 and 3 to derive a large deviation
principle for the re-scaled log stock price and the associated VIX index.

As detailed by Rosenbaum and co-authors [ER19], one can model prices over short
time scales as a Hawkes process which is a generalized Poisson process where the intensity
itself depends on the history of the process via a kernel. In order to capture observed
market stylised facts (namely: Market endogeneity, lack of statistical arbitrage, buy-sell
asymmetry and metaorder splitting) one has to pick certain values for the parameters of
the process. In a certain high-frequency limit with where the jump sizes tend to zero and
the frequency of jumps tends to infinity one obtains weak convergence to the rough Heston
model using C-tightness arguments from [JS13]. Hence there is a market microstructure
justification for Rough Volatility models, although the original Hawkes model has the
disadvantage that the stock can only go up or down by 1, and this simplicity is exploited
when they appeal to C-tightness arguments.

1.1.4 Skew

Driving a volatility process with a Gaussian Volterra process significantly increases the
analytical complexity of the model. In particular, the process becomes non-Markovian (due
to the power kernel) and is no longer a semi-martingale. Generating a single Monte-Carlo
sample path is now O(N2) (compared to O(N) for a traditional model) where N is the
number of time steps, and an option price can no longer be represented via the solution to
a finite-dimensional PDE.

To analyse the implied volatilities generated by such models the literature has mostly
focused on asymptotic estimates for the implied volatility smile in particular the short
term at-the-money skew (this being a feature not explained by the previous generation of
models).

In the paper by Alos et al. [ALV07], starting from a general unspecified Stochastic
volatility model (with jumps), an expression for the at-the-money skew is derived in terms
of Malliavin derivatives of the volatility process σ . In the case where σ is a mean-reverting
process driven by a Riemann-Liouville process with H ∈ (0,1/2) they show that (see the
paper for the definitions of the relevant quantities):

lim
T→t

(T − t)H−1/2 ∂

∂x
It(x) =−c

√
2α

ρ

σt
f ′(Yt) (1.14)

13



1.1 Rough Volatility

where It(x) is the implied volatility with log-price x, σt = f (Yt) and Yt is a "rough" OU
process with c as the vol-of-vol parameter and α the mean reversion parameter. We see
the so-called power-law skew phenomenon (i.e. the ATM skew blows up like a power-law
as the maturity tends to zero). This Malliavin calculus approach was extended to more
complicated products such as VIX options in the paper by Alos, Lorite and Muguruza
[AGM18]. The recent article of Jaquier et al. [JMP21] also derives the at-the-money
convexity term for a two-factor rough Bergomi model with three correlation coefficients
to allow for more realistic positive sloping VIX skew using similar Malliavian methods,
which has implications for making smart initial guesses for calibrating such models.

The above results concern the implied volatility precisely at-the-money. A different
approach is taken by Fukasawa [Fuk17] who considers the so-called Edgeworth regime
i.e. the asymptotics of call option prices c(t,kt) where log-strike kt = k

√
t. By expand-

ing around the Black-Scholes price, Fukasawa shows that a classical Markovian local-
stochastic volatility model cannot dynamically generate power-law skew. As discussed in
[Fuk17], one can calibrate a local volatility model to a volatility surface with exploding
skew (see [BDFP22]) but as time evolves the ATM short-end skew will flatten requiring
a re-calibration of the model. If the same (Edgeworth) expansion is conducted for a
stochastic volatility model driven by a fractional Brownian motion one obtains:

σt(
√

θz,θ)−σt(
√

θξ ,θ)√
θ(z−ξ )

∼ θ
H−1/2 (1.15)

as θ → 0 where σt(k,θ) is the implied vol at time t with log-strike k and maturity T . A
similar Edgeworth expansion is derived in the paper by El Euch, Fukasawa et al. [EFGR19]
by expanding the log stock density at maturity using Fourier methods. This expansion
provides a skew term, a curvature term and an at-the-money correction term.

Forde and Zhang [FZ17] take a new approach and characterise the asymptotic behaviour
of European call option prices in the Large deviations regime when the log-moneyness
kt = xt1/2−H . Specifically, they consider a simple correlated rough model of the form:

dSt = Stσ(Yt)(ρ̄dWt +ρdBt) (1.16)

Yt = BH
t (1.17)

where BH
t is a fractional Brownian motion and σ satisfies a certain mild continuity and

growth conditions. A large deviation principle is established for tH−1/2Xt (Xt being the log
stock price in this setup), which yields the following expression for the asymptotic implied
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1.1 Rough Volatility

volatility at log-moneyness x:

σ̂0(x) = lim
t→0

σ̂(xt1/2−H , t) =
|x|√

2Λ∗(x)
(1.18)

where Λ∗(x) = infy>x I(y) and I(y) is the rate function which has a variational representa-
tion which can be computed numerically using the Ritz method by optimizing over a finite
number of Fourier coefficients although this is quite cumbersome to compute in practice
(the rough Heston short-maturity smile is much easier by comparison).

In a later paper, Friz and co-authors [BFGHS18] provide an explicit expansion for the
Forde-Zhang rate function which allows for computations of the smile (in particular the atm
skew). Using a stochastic Taylor series expansion combined with a Laplace approximation
in the spirit of Ben Arous [Ben88], they establish the asymptotic behaviour of the smile in
the moderate deviations regime which sits between the Edgeworth regime discussed by
Fukasawa and the large deviations regime of Forde and Zhang:

σt(θ
1/2−H+β z,θ)−σt(θ

1/2−H+β ξ ,θ)

θ 1/2−H+β (z−ξ )
∼ ρ

σ ′
0

σ0
⟨K1,1⟩θ H−1/2 (1.19)

for 0 < H < 1
2 ,0 < β < 2

3H and as θ → 0. These results are placed in the context of Rough
Paths (actually, in this case, regularity structures) by Friz, Gassiat and Pigato [FGP18a]
though their setup does not a priori contain the Rough Heston model.

1.1.5 Aside: Hedging in Rough Models

This thesis mainly focuses on pricing and so we only briefly discuss the issue of hedging.

In classical stochastic volatility models, the task of hedging a derivative is greatly sim-
plified by the Markov property. An application of Ito’s formula readily yields the classic
PDE formulation familiar from Black-Scholes. Clearly (as previously mentioned) in rough
volatility models we do not have either Markovianity or Ito’s lemma (in the conventional
sense) and so the classical approach will fail.

One approach found in the literature is that of Fukasawa, Horvath and Tankov [FHT21]
where they show that, in a certain class of models, Markovianity is recovered in the en-
larged space consisting of the spot and the forward variance curve. Using this they show
that, formally, an option can be hedged by the stock and a variance swap (an instance of the
Clark-Ocone formula is needed). A similar approach is adopted by Euch and Rosenbaum
[ER18] where again they show a similar Markov property involving the forward variance
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1.1 Rough Volatility

curve and explain how to hedge an option using the spot and the forward variance curve.

These two approaches are analytically rather complex and once any form of transac-
tion costs are considered the problem becomes intractable. An alternative more data driven
approach inspired by the Deep Hedging framework of Buehler [Bue19] was discussed
in the paper [HTZ21] where a hedging portfolio was modelled as a neural network and
machine learning techniques were applied to find the optimal hedge.

1.1.6 Monte-Carlo Simulation

As previously mentioned, Rough models display features observed in the markets that con-
ventional stochastic volatility models cannot capture. This extra sophistication in the model,
however, adds much difficulty to the task of pricing options in particular if one hopes to
price more exotic path dependent contracts such as Asian, Barrier, forward-starting or VIX
options. In the absence of analytical formulae one must turn to Monte-Carlo methods.

We first consider a class of models sometimes referred to as simple Rough Volatility
models where the variance process is a deterministic function of the underlying fractional
process. Following the notation of [Gas22]:

σt = f (t,Ŵt), Ŵt =
∫ t

0
(t − s)H−1/2dWS (1.20)

with the standard price dynamics dSt/St = σt(ρdWt +
√

1− ρ̄2dW̄t). Pricing options will
ultimately boil down to simulating random variables of the form:

I =
∫ T

0
f (t,Ŵt)dWt (1.21)

(the integrated variance is also needed but that will be a Lebesgue integral and hence much
less problematic).

Denote by In a Monte-Carlo estimate of I. To quantify how good the approximation
we consider the weak error associated to a function Φ:

EΦ = E[Φ(I)]−E[Φ(In)] (1.22)

The (power) rate at which this tends to zero is the weak error rate, which essentially tells
us how many extra simulations are required to reduce the weak error to a given tolerance.
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1.1 Rough Volatility

The first task in a Monte-Carlo is to simulate Ŵt . One can utilise the Cholesky de-
composition (since fBm is a Gaussian process) however this becomes very computation-
ally expensive. Alternative much faster schemes include the much used Hybrid scheme
[BLP17] and the rDonsker scheme [HJM17]. Having simulated f (t,Ŵt) on some grid one
may simulate the Ito integral I using a standard method e.g. Euler discretisation.

The simple case of f (t,x) = x is known as the rough Stein-Stein model. Using the Cholesky
method, [BHT20] show that for general Φ ∈C⌈1/H⌉

b the weak error rate is H +1/2 and if
Φ is a quadratic the rate is 1. [Gas22] shows that for a Φ ∈C2⌈1/4H⌉+3

b one has a weak rate
of (3H +1/2)∧1 and in the case of the Hybrid scheme a weak rate of H +1/2 is obtained
(a similarly result can be found in [BFN22]). It should be remarked that Monte-Carlo
pricing is not the only approach for the rough Stein-Stein model and that European options
can be priced using the analytic results of [A20].

For the classical and rough Heston model the square root coefficient in the vol-of-vol term
is not Lipschitz at 0 placing it outside the framework of simple rough volatility models.
This is a problematic feature of the model since for many commonly used parameter values
the variance actually does hit zero, a property that complicates simulation and weak/strong
uniqueness results (discussed in [JP20]).

Andersen addresses this issue in his paper [A07] by introducing the so-called QE schme.
The transition density for the variance process is a multiple of a non-central chi-square
distribution. Andersen considers two different regimes: High vol where the chi-square can
be approximated as a squared Gaussian (this corresponds to the Q in QE i.e. quadratic)
and the low vol regime where the chi-square is approximated by the sum of an exponential
(hence E) and a Dirac mass at zero to reflect the possibility of hitting zero. Andersen
reports favourable performance of the scheme relative to previous proposals though these
results are only empirical and theoretical justification remains an open question.

To simulate the Rough Heston variance process, in [G22], Gatheral describes the so-
called HQE scheme (see algorithm 6.1 in the paper). Using the L2 averaging technique
introduced in [HJM17] and matching moments, one approximates the evolution of the one
step forward variance curve denoted ξ̂n and then simulates two independent QE variables
with parameters depending on ξ̂n. The variance is then a linear combination of these two
QE random variables (by construction guaranteed to be non-negative).

Similar to the QE scheme, the HQE scheme has not been analysed on a theoretical
level. One benchmark for performance are the smiles generated by the characteristic
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1.2 Gaussian Measures

function methods previously discussed and Gatheral reports order 1 weak convergence
(justifying his use of Richardson extrapolation though the order of weak convergence
remains a unproven). With regards to bias, Gatheral reports good agreement with the smile
obtained via characteristic function methods. Another benchmark is the formula derived in
Chapter 2 for the third moment of the driftless log stock price:

E(X3
T ) = 3ρ

∫ T

0

∫ t

0
E(

√
VsVtdWsdt) =

3V0ρνT 1+α

Γ(α)α(1+α)
(1.23)

and numerical experiments conducted by the author indicate that agreement can be achieved
though this becomes harder to establish for higher values of ν and lower values of H due
to the slow convergence of Monte-Carlo.

An alternative approximation for Rough models is the Markovian Approximation [AE19a],[A19a],
[BB21] which is based on the following representation for the kernel K(t) = tH−1/2:

K(t) =
∫

∞

0
e−γt

µ(dγ), t > 0 (1.24)

for some Borel measure µ . Approximating µ by a positive linear combination of Dirac
masses approximates K by a linear combination of exponentials. This realises the volatility
process as a combination of OU processes driven by a single Brownian Motion which
are standard to simulate. [Rom22] combines the Markovian approximation with the
Hybrid approach [BLP17] where the kernel K(t) is replaced by a linear combination
of exponentials for t > κ∆ (unchanged elsewhere) for some low integer κ where ∆ is
the discretisation scale. The numerical results in that paper indicate that the Hybrid
Markovian scheme outperforms the Markovian approximation and the original Hybrid
scheme [BLP17].

1.2 Gaussian Measures

In order to make quantitative statements about prices we typically have to resort to asymp-
totics. In classical mathematical finance the spot and volatility are semimartingales which
allows us to make use of well known tools such as Ito’s lemma, Girsanov’s theorem etc...

As mentioned previously, the rough volatility framework, by construction, lies outside of
the classical semi-martingale paradigm and thus the associated prices are not amenable to
the classical set of approaches (eg Feynman-Kac PDEs) and other techniques are required.

One option is to assume the market follows an affine (Volterra) process whose struc-
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1.2 Gaussian Measures

ture allows for the computation of characteristic functions. Other approaches include the
Freidlin-Wentzell aspproach (Forde-Zhang), Malliavin calculus approach (Fuksawa, Alos)
and the Rough Paths framework (Friz) all of which, to varying extents, utilise the theory of
Gaussian measures [Bog91].

1.2.1 The Cameron-Martin Space

Given a (linear space) X with it’s dual X∗ a Gaussian measure is a (Borel) probability
measure γ with the property that for all θ ∈ X∗, θ(x) has a (without loss of generality,
centred) Gaussian distribution with respect to γ .

This naturally induces a Hilbert space structure on X∗ via the covariance structure

Rγ(θ1)(θ2) := E[θ1(x)θ2(x)] (1.25)

The closure of X∗ under this inner product (in the language of Bogachev) is known as the
reproducing kernel Hilbert space of the measure γ denoted X∗

γ . Note that the limit points
obtained under this closure will not in general be elements of X∗, they are what are known
as measurable linear functionals.

This construction can be dualised by considering the following norm with associated
subset of X:

|h|H(γ) := sup{l(h) : l ∈ X∗,Rγ(l)(l)≤ 1} (1.26)

H(γ) := {h ∈ X : |h|H(γ) < ∞} (1.27)

where one can see that the above norm is simply the operator norm acting on the Hilbert
space X∗

γ and so H(γ) is the dual of X∗
γ in the conventional sense. This space H(γ) is

known as the Cameron-Martin space of the measure γ . Naturally, being a Hilbert space,
X∗

γ is isometrically isomorphic to it’s dual (namely H(γ)) and this Riesz isomorphism is
simply:

l → Rγ(l, .) (1.28)

1.2.2 The Theorems of Girsanov and Cameron-Martin

The Cameron-Martin space encodes all the information of the (centred) Gaussian measure
γ and in fact there is a one-to-one correspondence between candidate Cameron-Martin
spaces and Gaussian measures on a space (subject to regularity conditions).
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1.2 Gaussian Measures

The Cameron-Martin space has the property that for any element h = Rγ(g) ∈ Hγ the
measure γh := γ(.− h) (i.e. the translation of the original measure by the element h) is
equivalent to γ with density:

ρh = exp(g(x)− 1
2
|h|2H(γ)) (1.29)

indeed this property is an alternative characterisation of Hγ . This is the Cameron-Martin
theorem and it underpins many of the topics covered in this thesis.

The canonical example of a Gaussian process is the Brownian motion Wt on the unit
interval. It has mean zero and it’s covariance function is E[WtWs] = t ∧ s. The correspond-
ing Cameron-Martin space is the Sobolev space:

H1 := { f ∈C1[0,1] :
∫ 1

0
ḟ (t)2dt < ∞, f (0) = 0} (1.30)

Most introductory accounts of continuous-time finance introduce a Black-Scholes price
process and use Girsanov’s theorem to add a drift to the underlying Brownian motion
rendering the process risk neutral. This classic result in semi-martingale theory bears
a remarkable resemblance to the above Cameron-Martin result and indeed both these
results coincide when the underlying change of measure is deterministic (as a result of
this these theorems are often conflated). However whereas Girsanov’s theorem relies on
a martingale decomposition in time (i.e. a Brownian motion Wt is a martingale in time)
the Cameron-Martin theorem corresponds to a martingale decomposition in a different
basis namely the reproducing kernel Hilbert space (this decomposition is known as the
Karhunen-Loeve expansion [Ber17b]).

Whilst agreeing for deterministic shifts, these results nonetheless apply in different con-
texts. Girsanov’s theorem in its classical form applies to semi-martingales but has no
Gaussian assumption whereas the Cameron-Martin theorem can be applied to Gaussian
processes that are not semi-martingales (e.g. fractional Brownian motion) and to more
exotic Gaussian objects such as random fields which don’t even exist pointwise (we shall
discuss this in the case of the H = 0 rough Bergomi model).

That the Cameron-Martin space emerges when considering asymptotics of stochastic
processes is to be expected in part due to it’s link to equivalent measures as detailed by
the eponymous theorem. Even in the most elementary case of one dimensional Cramer’s
theorem, the proof of the large deviations upper bound involves changing the measure
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1.3 Random Measures & Multifractality

such that the large deviation is no longer atypical and then applying elementary estimates
[DZ98]. This measure change technique is the standard technique in proving large devia-
tion principles even in much more complex situations e.g. models driven by rough paths
(see [FGP18a] and references therein).

As described by Forde-Zhang [FZ17], if the dynamics of the model are driven exclusively
by Gaussian (possibly fractional) noise then by applying various contraction principles the
large deviation asymptotics of the price are reduced to the large deviations of the Gaussian
noise. The characteristic function has the form:

Λ(θ) = logE[eθ(x)] =
1
2

Rγ(θ)(θ) (1.31)

The Gärtner-Ellis theorem (in this setting) states that (under certain conditions, see Dembo
and Zeitouni [DZ98]) the rate function of a sequence of Gaussian measures is given by the
Legendre transform of limiting logarithmic moment generating function. We can formally
compute this as

Λ
∗(h) = sup

θ∈Rγ

(θ(h)− 1
2
⟨θ ,θ⟩). (1.32)

Taking the derivative with respect to θ gives h(.)−⟨θ , .⟩= 0. Substituting back in yields

Λ
∗(h) =

1
2
|h|2H(γ) (1.33)

and hence we (formally) see the emergence of the Cameron-Martin space in the context of
large-deviations.

1.3 Random Measures & Multifractality

A natural concern when studying the dynamics of a market is that of scale. Individual trades
occur on short time scales which are then aggregated and drive longer term movements.
Conversely long term positions are taken by investors and then dynamically hedged in
the short term. Inspired by Kolmogorov’s theory of turbulence in fluids, the notion of
multifractality is introduced as a means of connecting the behaviour of the model over
different time-scales. Bacry and Muzy [BM03], consider the qth moment of the length l
increment of a random process X(t):

m(q, l) = E(|δlX(t)|q) (1.34)
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1.3 Random Measures & Multifractality

where δlX(t) = X(t + l)−X(t). We say this process exhibits multifractality if:

m(q, l)∼Cqlξ (q) (1.35)

for some concave function ξ (q) as l → 0. In a series of papers by Bacry and Muzy
[BDM01] [BDM01b] [BBM13], a family of stationary models were proposed of the form:

X(t) = B(M([0, t])) (1.36)

where M(t) is a random measure and B is a self-similar process (typically a Brownian
motion independent of M). The multifractality of the process is thus reduced to the multi-
fractality of the random measure M.

By considering a multiplicative cascade model, multifractal random measures have been
constructed on discrete scales (see the discussion in the introduction to [BM03]). To
achieve this on a continuous scale Bacry & Muzy consider a general infinitely divisible
random measure in the upper half plane. The integral of this over a conical domain gives
a field ωt and M(A) is the integral of eγωt over the region A where γ is known as the
intermittency parameter. Such measures can be shown to be exactly multifractal (not just
asymptotically). See section 4.2.2 for an explicit construction.

When the underlying infinitely-divisible random measure is Gaussian, this model is re-
ferred to as the Multifractal Random Walk (MRW). The field ωt is a Gaussian field with
covariance structure

C(s, t) = log(
T

|t − s|
)+ (1.37)

and the associated multifractal exponent:

ξ (q) = q− 1
2

γ
2(q2 −q). (1.38)

Random measures of this type (integrals of exponentials of Gaussian fields) are known as
Gaussian Multiplicative Chaos (GMC) measures:

M(A) =
∫

A
eγX(t)− 1

2 γ2Var(X(t))dt (1.39)

When Xt is a well-defined Gaussian process there is no issue defining the above measure.
When X is only a field (i.e. not defined pointwise) then it is not immediately obvious if the
above measure even exists let alone what properties it may have. For this one must establish
an approximation Xn(t) which is defined pointwise that converges in some sense to the orig-
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inal Gaussian X as n→∞ and consider the limit of the corresponding random measures Mn.

For mollifier approximations to log-correlated Gaussian fields, Rhodes and Vargas [RV10]
establish the converge in law of the random measures. Berestycki [Ber17b] proves the
stronger convergence in probability and in L1 for suitable circle-average approximations.
The much more general framework introduced by Shamov [Sha16] establishes the condi-
tions under which a general approximation converges in probability and in L1.

These limiting measures are substantially different to their approximations. They are
singular with respect to the Lebesgue measure and in fact all their mass is concentrated
on the so-called set of thick points (see Berestycki [Ber17],[Ber17b]) of the Gaussian
field (this set has Lebesgue measure 0). Furthermore, for γ greater than

√
2d (d being the

dimension of the measure space in question) the limiting measure is in fact 0 (since the set
of thick points is empty).

Such measures have been used extensively in Quantum Field Theory. When the co-
variance of the Gaussian field is the Green’s function of the Laplacian, X is the Gaussian
Free Field. The associated random measure is the Liouville measure which was used by
Vargas et al. to construct a rigorous mathematical model of Liouville Quantum Gravity
(see the lecture notes by Berestycki [Ber17]).

1.4 Other Approaches

In this section we briefly discuss approaches other than Rough Volatility to the tasks of
pricing and calibration. This is included to put Rough Volatility in context but will not be
the focus of this thesis.

1.4.1 Calibration

The rough volatility approach is inherently parametric. As previously discussed it repro-
duces many stylised features observed in both financial time series and market prices
which is clearly of theoretical interest. A financial institution is concerned with the more
everyday task of pricing and hedging exotic derivatives in the presence of market data. For
this one requires a market model which is consistent with market prices so as to avoid
arbitrage and correctly prices any hedging instruments in the market.

The traditional approach would be to pick a particular model (e.g. a Heston, SABR
or rough volatility model) and then calibrate the parameters to fit market data (for example
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SPX and VIX futures and options) also known as model calibration. This is naturally a
non-trivial task, the map from model parameters to prices is not available in closed form.

One approach explored in the paper by Guo, Loeper and Wang [GLW22] is to re-cast
the calibration problem as a semi-martingale optimal transport problem. More explicitly,
we are looking for a (continuous) semi-martingale which returns the observed market
prices (a finite number in this case) and minimises some objective functional. If such a
functional is chosen to be strictly convex then our search can be restricted to the set of
Markov semi-martingales.
This problem can be dualised resulting in a dual problem consisting of an optimisation over
a single real variable with a constraint taking the form of a non-linear Hamilton-Jacobi
equation with a penalty term. This leads to a max-min problem of the form:

inf
a∈A

supwi
(−

n

∑
i=1

wici +
n

∑
i=1

wiE((XT −Ki)
+)+ cost term) (1.40)

The infimum and supremum are exchanged by means of the Fenchel-Rockafellar theorem.

This approach can be adapted to more complex products and can be used give a partial
solution to the SPX-VIX calibration problem as shown by Obloj and co-authors[GLWO20].

A similar approach (specialised here to the SPX-VIX problem) is that employed by Guyon
[Guy21]. Instead of focusing on continuous-time models Guyon considers a discrete-time
model. More specifically he answers the following question: given SPX smiles at matu-
rities {T,T +∆} and a T -maturity VIX smile can we find a market model that perfectly
calibrates to these smiles in an arbitrage free way. To solve this Guyon introduces the so
called "VIX-constrained martingale Schrödinger problem":

Dµ̄ = inf
µ∈P(µ1,µV ,µ2)

H(µ|µ̂) (1.41)

where H(µ|µ̂) is the relative entropy between µ and a chosen sensible reference measure µ̄ .

This problem can be dualised as follows

Dµ̄ = sup
u∈U

Jµ̄(u) (1.42)

where

Jµ̄(u) = E1[u1(S1)]+EV [uV (V )]+E2[u1(S2)]− logEµ̄ [eu1+uV+u2+∆S+∆L ] (1.43)
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and U is the set of admissible portfolios consisting of European options on S1,S2,V , delta
hedged positions in the stock and forward-starting log contract.
If this supremum is attained at an optimal portfolio u∗ then (due to the particular choice of
the relative entropy as the relevant cost function) the optimal measure µ∗ can be expressed
as:

dµ∗

dµ̄
= eu∗1+u∗V+u∗2+∆∗

S+∆∗
L/Z (1.44)

where Z is a normalisation constant so that the new measure has unit mass.

This optimal portfolio can be approximated using the Sinkhorn fixed-point algorithm.
Once this portfolio has been found (to the desired accuracy) the Radon-Nikodym derivative
above yields the optimal arbitrage-free calibrating model.

Both these approaches have the advantage that they work completely generally and can fit
smiles or prices arbitrarily well but have the downside of returning models that are (in the
first case) diffusions and so will have the standard problems associated to such processes
(insufficient skew on the short end) and in the second case the resulting model will be in
discrete time and so unsuitable for pricing exotic options. Furthermore it is a non trivial
task to check if a given triple (µ1,µV ,µ2) is arbitrage free.

1.4.2 Machine Learning

Another approach to calibration is to learn the pricing map by approximating the map with
a neural network as discussed by Horvath et al. [HMT19]. Given a set of training data (a
set of option prices for a large range of different (random) model parameter values) one
can closely approximate the model pricing map with a neural network after optimizing
the weights and bias of the NN. The training is performed as a one-off task (which can
be lengthy), but once this is done, calibration can be very quick. This separation of the
calibration into two different steps allows for a significant speed up in the computations
which is useful for practitioners.
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Chapter 2

Small-time, large-time and H → 0
asymptotics for the Rough Heston model

2.1 Introduction

[JR16] introduced the Rough Heston stochastic volatility model and show that the model
arises naturally as the large-time limit of a high frequency market microstructure model
driven by two nearly unstable self-exciting Poisson processes (otherwise known as Hawkes
process) with a Mittag-Leffler kernel which drives buy and sell orders (a Hawkes process
is a generalized Poisson process where the intensity is itself stochastic and depends on the
jump history via the kernel). The microstructure model captures the effects of endogeneity
of the market, no-arbitrage, buying/selling asymmetry and the presence of metaorders.
[ER19] show that the characteristic function of the log stock price for the Rough Heston
model is the solution to a fractional Riccati equation which is non-linear (see also [EFR18]
and [ER18]), and the variance curve for the model evolves as dξu(t) = κ(u− t)

√
VtdWt ,

where κ(t) is the kernel for the Vt process itself multiplied by a Mittag-Leffler function
(see Proposition 2.2.2 below for a proof of this). Theorem 2.1 in [ER18] shows that a
Rough Heston model conditioned on its history up to some time is still a Rough Heston
model, but with a time-dependent mean reversion level θ(t) which depends on the history
of the V process. Using Fréchet derivatives, [ER18] also show that one can replicate a call
option under the Rough Heston model if we assume the existence a tradeable variance
swap, and the same type of analysis can be done for the Rough Bergomi model using the
Clark-Ocone formula from Malliavin calculus. See also [DJR19] who introduce the super
Rough Heston model to incorporate the strong Zumbach effect as the limit of a market
microstructure model driven by quadratic Hawkes process (this model is no longer affine
and thus not amenable to the VIE techniques in this paper).
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[GK19] consider the more general class of affine forward variance (AFV) models of
the form dξu(t) = κ(u− t)

√
VtdWt (for which the Rough Heston model is a special case).

They show that AFV models arise naturally as the weak limit of a so-called affine forward
intensity (AFI) model, where order flow is driven by two generalized Hawkes-type process
with an arbitrary jump size distribution, and we exogenously specify the evolution of
the conditional expectation of the intensity at different maturities in the future, akin to a
variance curve model. The weak limit here involves letting the jump size tends to zero as
the jump intensity tends to infinity in a certain way, and one can argue that an AFI model
is more realistic than the bivariate Hawkes model in [ER19], since the latter only allows
for jumps of a single magnitude (which correspond to buy/sell orders). Using martingale
arguments (which do not require considering a Hawkes process as in the aforementioned
El Euch&Rosenbaum articles) they show that the mgf of the log stock price for the affine
variance model satisfies a convolution Riccati equation, or equivalently is a non-linear
function of the solution to a VIE.

[GGP19] use comparison principle arguments for VIEs to show that the moment
explosion time for the Rough Heston model is finite if and only if it is finite for the
standard Heston model. [GGP19] also establish upper and lower bounds for the explosion
time, and show that the critical moments are finite for all maturities, and formally derive
refined tail asymptotics for the Rough Heston model using Laplace’s method. A recent talk
by M.Keller-Ressel (joint work with Majid) states an alternate upper bound for the moment
explosion time for the Rough Heston model, based on a comparison with a (deterministic)
time-change of the standard Heston model, which they claim is usually sharper than the
bound in [GGP19].

[JP20] compute a small-time LDP on pathspace for a more general class of stochastic
Volterra models in the same spirit as the classical Freidlin-Wentzell LDP for small-noise
diffusion. More specifically, for a simple Volterra system of the form

Yt = Y0 +
∫ t

0
K2(t − s)ζ (Ys)dWs (2.1)

we have the corresponding deterministic system:

Yt = Y0 +
∫ t

0
K2(t − s)ζ (Ys)vsds

where v ∈ L2([0,T ]). When K2(t) = const.tH− 1
2 the right term is proporitional to the α-th

fractional integral of ζ v (where α = H + 1
2 ), and in this case [JP20] show that Yε(.) satisfies
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an LDP as ε → 0 with rate function

IY (ϕ) =
1
2

const.×
∫ T

0
(
Dα(ϕ(.)−ϕ(0))(t)

ζ (ϕ(t))
)2dt

(see Proposition 4.3 in [JP20]) in terms of the rate function of the underlying Brownian
motion which is well known from Schilder’s theorem (one can also add drift terms into
(2.1) which will not affect IY ). The corresponding LDP for the log stock price is then
obtained using the usual contraction principle method, so the rate function has a variational
representation, and does not involve Volterra integral equations.

Corollary 7.1 in [FGP18a] provides a sharp small-time expansion in the [FZ17] large
deviations regime (valid for x-values in some interval) for a general class of Rough Stochas-
tic volatility models using regularity structures, which provides the next order correction
to the leading order behaviour obtained in [FZ17], and some earlier intermediate results in
Bayer et al. [BFGHS18]. [FSV19] derive formal small-time Edgeworth expansions for the
Rough Heston model by solving a nested sequence of linear VIEs. The Edgeworth-regime
implied vol expansions in [EFGR19] and [FSV19] both include an additional O(T 2H)

term, which itself contains an at-the-money, convexity and higher order correction term,
which are important effects to capture for these approximations to be useful in practice.

In this chapter, we establish small-time and large-time large deviation principles for
the Rough Heston model, via the solution to a VIE, and we translate these results into
asymptotic estimates for call options and implied volatility. The solution to the VIE
satisfies a certain scaling property which means we only have to solve the VIE for the
moment values of p =+1 and −1, rather than solving an entire family of VIEs. Using the
Lagrange inversion theorem, we also compute the first three terms in the power series for
the asymptotic implied volatility σ̂(x). For the large time, large log-moneyness regime, we
show that the asymptotic smile is the same as for the standard Heston model as in [FJ11].

In the final section, using Lévy’s convergence theorem and result from [GLS90] on
the continuous dependence of VIE solutions as a function of a parameter in the VIE, we
show that the log stock price Xt (for t fixed) tends weakly as α → 1

2 to a random variable

X
( 1

2 )
t whose mgf is also the solution to the Rough Heston VIE with α = 1

2 and whose

law is non-symmetric when ρ ̸= 0. From this we show that X
( 1

2 )
t /

√
t tends weakly to a

non-symmetric random variable as t → 0, which leads to a non-trivial asymptotic smile
in the Edgeworth (or central limit theorem) regime. where the log-moneyness scale as
z = k

√
t as t → 0. We also show that the third moment of the log stock price for the

driftless version of the model tends to a finite constant as H → 0 (in constrast to the Rough
Bergomi model discussed in Chapter 4 where the skew flattens or blows up depending on
the vol-of-vol parameter γ) and using the expression in [ALP19] for E(e

∫ T
0 f (T−t)Vtdt), we
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2.2 Rough Heston and other variance curve models - basic properties

show that V converges to a random tempered distribution whose characteristic functional
also satisfies a non-linear VIE and (from Theorem 2.5 in [A19b]) this tempered distribution
has the same law as the H = 0 hyper rough Heston model.

2.2 Rough Heston and other variance curve models - basic
properties

In this section, we recall the definition and basic properties and origins of the Rough
Heston model, and more general affine and non-affine forward variance models. Most of
the results in this section are given in various locations in [ER18],[ER19] and [GK19], but
for pedagogical purposes we found it instructive to collate them together in one place.

Let (Ω,F ,P) denote a probability space with filtration (Ft)t≥0 which satisfies the
usual conditions, and consider the Rough Heston model for a log stock price process Xt

introduced in [JR16]:

dXt =−1
2

Vtdt +
√

VtdBt

Vt =V0 +
1

Γ(α)

∫ t

0
(t − s)α−1

λ (θ −Vs)ds+
1

Γ(α)

∫ t

0
(t − s)α−1

ν
√

VsdWs (2.2)

for α ∈ (1
2 ,1), θ > 0, λ ≥ 0 and ν > 0, where W , B are two Ft-Brownian motions with

correlation ρ ∈ (−1,1). We assume X0 = 0 and zero interest rate without loss of generality,
since the law of Xt −X0 is independent of X0.

2.2.1 Computing E(Vt)

Proposition 2.2.1

E(Vt) =V0 − (V0 −θ)
∫ t

0
f α,λ (s)ds (2.3)

where f α,λ (t) := λ tα−1Eα,α(−λ tα), and Eα,β (z) := ∑
∞
n=0

zn

Γ(αn+β ) denotes the Mittag-
Leffler function

Proof. (see also page 7 in [GK19]), and Proposition 3.1 in [ER18] for an alternate proof).
Let r(t) = f α,λ (t). Taking expectations of (3.1) and using that the expectation of the
stochastic integral term is zero, we see that

E(Vt) =V0 +
1

Γ(α)

∫ t

0
(t − s)α−1

λ (θ −E(Vs))dt . (2.4)
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2.2 Rough Heston and other variance curve models - basic properties

Let k(t) := λ tα−1

Γ(α) and f (t) := E(Vt)−θ . Then we can re-write (2.4) as

f (t) = (V0 −θ)− k ∗ f (t) . (2.5)

where ∗ denotes convolution. Now define the resolvent r(t) as the unique function which
satisfies r = k− k ∗ r . Then we claim that

f (t) = (V0 −θ)− r ∗ (V0 −θ) .

To verify the claim, we substitute this expression into (2.5) to get:

(V0 −θ)− k ∗ [(V0 −θ)− r ∗ (V0 −θ)] = (V0 −θ)− (V0 −θ)∗ (k− k ∗ r)(t)

= (V0 −θ)− (V0 −θ)∗ r(t)

so (V0 −θ)− k ∗ f (t) = (V0 −θ)− (V0 −θ)∗ r(t) = f (t), which is precisely the integral
equation we are trying to solve. Taking Laplace transform of both sides of k− k ∗ r = r we
obtain r̂ = k̂− k̂r̂, which we can re-arrange as

r̂ =
k̂

1+ k̂
=

λ z−α

1+λ z−α
=

λ

zα +λ

and the inverse Laplace transform of r̂ is r(t) = λ tα−1Eα,α(−λ tα).

2.2.2 Computing E(Vu|Ft)

Now let ξt(u) := E(Vu|Ft). Then ξt(u) is an Ft-martingale, and

ξt(u) =V0 +
1

Γ(α)

∫ u

0
(u− s)α−1

λ (θ −E(Vs|Ft)ds+
1

Γ(α)

∫ t

0
(u− s)α−1

ν
√

VsdWs .

If λ = 0, we can re-write this expression as

dξt(u) =
ν

Γ(α)
(u− t)α−1√VtdWt .

Proposition 2.2.2 (see [ER19]). For λ > 0

dξt(u) = κ(u− t)
√

VtdWt = κ(u− t)
√

ξt(t)dWt (2.6)
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2.2 Rough Heston and other variance curve models - basic properties

where κ is the inverse Laplace transform of κ̂(z) = νz−α

λ+z−α , which is given explicitly by

κ(x) = νxα−1Eα,α(−λxα)∼ 1
Γ(α)

νxα−1 (2.7)

as x → 0 (see also page 6 in [GK19] and page 29 in [ER18]).

Proof. See Appendix Appendix A.

Remark 2.2.1 Integrating (2.6) and setting u = t we see that

Vt = ξ0(t)+
∫ t

0
κ(t − s)

√
VsdWs . (2.8)

Remark 2.2.2 From (2.6), we see that ξt(.) is Markov in ξt(.). However V is not Markov
in itself.

2.2.3 Evolving the variance curve

We simulate the variance curve at time t > 0 using

ξt(u) = ξ0(u)+
∫ t

0
κ(u− s)

√
VsdWs

and substituting the expression for ξ0(t) = E(Vt) in (2.3) and the expression for κ(t) in
Proposition 2.2.2 (which are both expressed in terms of the Mittag-Leffler function).

2.2.4 The characteristic function of the log stock price

From Corollary 3.1 in [ER19] (see also Theorem 6 in [GGP19]), we know that for all t ≥ 0

E(epXt ) = eV0I1−α f (p,t)+λθ I1 f (p,t) (2.9)

for p in some open interval I ⊃ [0,1], where f (p, t) satisfies

Dα f (p, t) =
1
2
(p2 − p)+(pρν −λ ) f (p, t)+

1
2

ν
2 f (p, t)2 (2.10)

with initial condition f (p,0) = 0, where Iα f denotes the fractional integral operator of
order α (see e.g. page 16 in [ER19] for definition) and Dα denotes the fractional derivative
operator of order α (see page 17 in [ER19] for definition).
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2.3 Small-time asymptotics

2.2.5 The generalized time-dependent Rough Heston model and fit-
ting the initial variance curve

If we now replace the constant θ with a time-dependent function θ(t), then

E(Vt) =V0 +
1

Γ(α)

∫ t

0
(t − s)α−1

λ (θ(s)−E(Vs))dt,

which we can re-arrange as

E(Vt)−V0 +λ IαE(Vt) = λ Iα
θ(t)

so to make this generalized model consistent with a given initial variance curve E(Vt), we
set

θ(t) =
1
λ

Dα(E(Vt)−V0 +λ IαE(Vt)) =
1
λ

Dα(E(Vt)−V0)+E(Vt)

(see also Remark 3.2, Theorem 3.2 and Corollary 3.2 in [ER18]).

2.2.6 Other affine and non-affine variance curve models

Another well known (and non-affine) variance curve model is the Rough Bergomi model,
for which dξt(u) = η(u− t)H− 1

2 ξt(u)dWt or the standard Bergomi model (with mean
reversion) for which dξt(u) = ηe−λ (u−t)ξt(u)dWt .

2.3 Small-time asymptotics

2.3.1 Scaling relations

Let
dX̃ε

t =
√

ε
√

V ε
t dBt (2.11)

where V ε
t is defined in Appendix B. This is simply the small-noise Rough Heston variance

process (for now we set λ = 0).

This satisfies (see Appendix B):

X̃ε
t
(d)
= X̃εt

Then the characteristic function of X̃t for ε = 1 is:

E(epX̃t ) = eV0I1−α ψ(p,t) (2.12)
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2.3 Small-time asymptotics

where ψ(p, t) satisfies:

Dα
ψ(p, t) =

1
2

p2 + pρνψ(p, t)+
1
2

ν
2
ψ(p, t)2 (2.13)

with ψ(p,0) = 0.

This expression for the characteristic function is simply the [ER19] formula with all
the drift terms removed. A more direct proof of this result can be found in Appendix B of
the next chapter which is a minor variant of [ALP19].

We first recall that Dαψ(p, t) = d
dt

1
Γ(1−α)

∫ t
0 ψ(p,s)(t − s)−αds . Then

Dα
ψ(p,εt) := (Dα

ψ)(p,εt) =
1
ε

d
dt

1
Γ(1−α)

∫
εt

0
ψ(p,s)(εt − s)−αds

=
1
ε

d
dt

1
Γ(1−α)

∫ t

0
ψ(p,εu)(εt − εu)−α

εdu

= ε
−α d

dt
1

Γ(1−α)

∫ t

0
ψ(p,εu)(t −u)−αdu

= ε
−αDα

ψ(p,ε(.))(t) .

Combining this with (2.13) we see that

ε
−αDα(ψ(p,ε.))(t) =

1
2

p2 + pρνψ(p,εt)+
1
2

ν
2
ψ(p,εt)2 . (2.14)

Setting p → εγq and multiplying by ε−2γ we have

ε
−α−2γDα(ψ(εγq,ε(.)))(t) =

1
2

q2 +qρνε
−γ

ψ(εγq,εt)+
1
2

ν
2
ε
−2λ

ψ(εγq,εt)2 (2.15)

Now setting γ =−α we see that

Dα(εα
ψ(ε−αq,ε(.)))(t) =

1
2

q2 +qρνε
α

ψ(ε−αq,εt)+
1
2

ν
2
ε

2α
ψ(ε−αq,εt)2 (2.16)

with ψ(ε−αq,0) = 0. Thus, we see that εαψ(ε−α p,εt) and ψ(p, t) satisfy the same VIE
with the same boundary condition, so

ψ(p, t) = ε
α

ψ(ε−α p,εt) (2.17)
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2.3 Small-time asymptotics

From the form of the characteristic function in (2.12), the function Λ(p, t) := I1−αψ(p, t)
is clearly of interest too. Using the scaling relation on ψ(p, t):

I1−α
ψ(p,εt) =

1
Γ(1−α)

∫
εt

0
(εt − s)−α

ψ(p,s)ds (2.18)

=
ε

Γ(1−α)

∫ t

0
(εt − εu)−α

ψ(p,εu)du (2.19)

=
ε1−α

Γ(1−α)

∫ t

0
(t −u)−α

ε
−α

ψ(εα p,u)du (2.20)

= ε
−2HI1−α

ψ(εα p, t) (2.21)

Thus we have established the following lemma:

Lemma 2.3.1

Λ(p,εt) = ε
−2H

Λ(εα p, t) (2.22)

in particular

Λ(p, t) = t−2H
Λ(ptα ,1) . (2.23)

2.3.2 The small-time LDP

To simplify calculations, we make the following assumption throughout this section:

Assumption 2.3.2 λ = 0.

Remark 2.3.1 The formal higher order Laplace asymptotics indicate that λ will not affect
the leading order small-time asymptotics, i.e. λ will not affect the rate function, as
we would expect from previous works on small-time asymptotics for rough stochastic
volatility models. The assumption that λ = 0 is relaxed in the next section where we
consider large-time asymptotics.

We now state the main small-time result in the chapter (recall that α = H + 1
2 ):

Theorem 2.3.3 For the Rough Heston model defined in (2.2), we have

lim
t→0

t2H logE(e
p

tα Xt ) = lim
t→0

t2H logE(e
p

t2H
Xt

t
1
2−H ) =

{
Λ̄(p) if T ∗(p)> 1
+∞ if T ∗(p)≤ 1

(2.24)
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2.3 Small-time asymptotics

where Λ̄(p) :=V0Λ(p), Λ(p) := Λ(p,1), Λ(p, t) := I1−αψ(p, t) and ψ(p, t) satisfies the
Volterra differential equation

Dα
ψ(p, t) =

1
2

p2 + pρνψ(p, t)+
1
2

ν
2
ψ(p, t)2 (2.25)

with initial condition ψ(p,0) = 0, where T ∗(p)> 0 is the explosion time for ψ(p, t) which
is finite for all p ̸= 0 (assuming ν > 0). Moreover, the scaling relation in the previous
section show that Λ(p) = |p| 2H

α Λ(sgn(p), |p| 1
α ), so in fact we only need to solve (2.25) for

p =±1, and we can re-write (2.24) in more familiar form as

lim
t→0

t2H logE(e
p

tα Xt ) = lim
t→0

t2H logE(e
p

t2H
Xt

t
1
2−H ) =

{
Λ̄(p) p ∈ (p−, p+)
+∞ p /∈ (p−, p+)

where p± = ±(T ∗(±1))α , so p+ > 0 and p− < 0. Then Xt/t
1
2−H satisfies the LDP as

t → 0 with speed t−2H and good rate function I(x) equal to the Fenchel-Legendre transform
of Λ̄.

Proof. We first consider the following family of re-scaled Rough Heston models:

dXε
t =−1

2
εV ε

t dt +
√

ε
√

V ε
t dBt (2.26)

V ε
t =V0 +

εα

Γ(α)

∫ t

0
(t − s)H− 1

2 λ (θ −V ε
s )ds+

εH

Γ(α)

∫ t

0
(t − s)H− 1

2 ν
√

V ε
s dWs (2.27)

with Xε
0 = 0, where H = α − 1

2 ∈ (0, 1
2 ]. Then from Appendix B we know that

(Xε

(.),V
ε

(.))
(d)
= (Xε(.),Vε(.)) (2.28)

(note this actually holds for all λ > 0, but we are only considering λ = 0 in this proof).
Proceeding along similar lines to Theorem 4.1 in [FZ17], we let X̃ε

t denote the solution to

dX̃ε
t =

√
ε
√

V ε
t dBt (2.29)

with X̃ε
0 = 0. From the previous section we know that

E(epX̃t ) = eV0I1−α ψ(p,t)

on some non-empty interval [0,T ∗(p)), where

Dα
ψ(p, t) =

1
2

p2 + pρνψ(p, t)+
1
2

ν
2
ψ(p, t)2
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2.3 Small-time asymptotics

with ψ(p,0) = 0. Existence and uniqueness of solutions to these kind of fractional
differential equations (FDE) is standard, as is their equivalence to VIEs, see e.g. [GGP19]
and chapter 12 of [GLS90] for details.
From Propositions 2 and 3 in [GGP19], we know that ψ(p, t) blows up at some finite time
T ∗(p)> 0 (i.e. case A or B in the [GGP19] classification).Thus we see that

E(e
p

εα X̃ε
t ) = E(e

p
εα X̃εt ) = eV0I1−α ψ( p

εα ,εt) = e
1

ε2H V0I1−α ψ(p,t) (2.30)

for all t ∈ [0,T ∗(p)), which we can re-write as E(e
p

tα X̃t ) = e
Λ̄(p)
t2H . Thus we see that

lim
t→0

t2H logE(e
p

tα X̃t ) = Λ̄(p)

and Λ(p) := Λ(p,1)< ∞ if and only if T ∗(p)> 1.

We now have the following obvious but important corollary of the Λ scaling relation in
(2.23):

Corollary 2.3.4
Λ(q) = t2H

Λ(
q
tα

, t) = |q|
2H
α Λ(sgn(q), |q|

1
α ) (2.31)

where we have set p = 1 = |q|
tα in (2.23), and t∗q = |q| 1

α .

Remark 2.3.2 This implies that Λ(p)→ ∞ as p → p± :=±(T ∗(±1))α . and more gener-
ally

pT ∗(p)α = 1p>0 p+ + 1p<0 p− . (2.32)

To prove the LDP, we first prove the corresponding LDP for X̃t . From Lemma 2.3.9 in
[DZ98], we know that

lim
t→0

t2H logE(e
p

tα X̃t ) = Λ(p) = Λ(p,1) = I1−α
ψ(p, t)|t=1

is convex in p, and from (2.9) and (2.13) we know that

d
dt

Λ(p, t) =
1
2

p2 + pρνψ(p, t)+
1
2

ν
2
ψ(p, t)2

(where we have also used that DαD1−α =D), which shows that Λ(p, t) is also differentiable
in t, and thus from (2.31), we see that Λ(p) = Λ(p,1) is differentiable in p for p > 0.
Moreover the scaling relation easily yields that Λ(p) is right differentiable at p = 0, since
Λ(p) = o(p). We also know that ψ(p, t) → ∞ as t → T ∗(p) (see Propositions 2 and 3
in [GGP19]), so Λ(p, t) = I1−αψ(p, t) also explodes at T ∗(p) by Lemma 3 in [GGP19].

36



2.3 Small-time asymptotics

Then from Corollary 2.3.4, we know that Λ(p) = p
2H
α Λ(sgn(p), |p| 1

α ), so Λ(p)→ ∞ as
p → p± = ±(T ∗(±1))α and (by convexity and differentiability) Λ is also essentially
smooth, so by the Gärtner-Ellis theorem from large deviations theory (see Theorem 2.3.6
in [DZ98]), X̃ε

1 /ε
1
2−H satisfies the LDP as ε → 0 with speed ε−2H and rate function I(x).

We now show that Xε
1 /ε

1
2−H satisfies the same LDP, by showing that the non-zero drift

of the log stock price can effectively be ignored at leading order in the limit as ε → 0. First,
note that

E(e
p

ε2α
ε
∫ 1

0 V ε
s ds

) = E(e
p

ε2H
∫ 1

0 V ε
s ds

) = E(e
√

2p
εα X̂ε

1 ) = e
1

ε2H V0Λ0(
√

2p)

for p ∈ (−∞, 1
2 p+) (and +∞ otherwise). The X̂ process after the second equals sign

corresponds to the X̃ process when ρ = 0 as reflected in the subscript of Λ after the third
equals sign. So

J(p) := lim
ε→0

ε
2H logE(e

p
ε2α

ε
∫ 1

0 V ε
s ds

) = V0Λ0(
√

2p)

so (again using part a) of the Gärtner-Ellis theorem in Theorem 2.3.6 in [DZ98]), Aε :=∫ 1
0 V ε

s ds satisfies the upper bound LDP as ε → 0 with speed ε−2H and good rate function
J∗ equal to the FL transform of J. But we also know that

Xε
1 − X̃ε

1 =−1
2

εAε

and for any a > 0 and δ1 > 0

P(|
Xε

1

ε
1
2−H

−
X̃ε

1

ε
1
2−H

|> δ )=P(
1
2

ε
1
2+HAε > δ )=P(Aε >

2δ

ε
1
2+H

)≤P(Aε > a) ≤ e−
infa′≥a J∗(a′)−δ1

ε2H

for any ε sufficiently small, where we have use the upper bound LDP for Aε to obtain the
final inequality. Thus

limsup
ε→0

ε
2H logP(|

Xε
1

ε
1
2−H

−
X̃ε

1

ε
1
2−H

|> δ )≤− inf
a′>a

J∗(a′)

but a is arbitrary and (from Lemma 2.3.9 in [DZ98]), J∗ is a good rate function, so in fact

limsup
ε→0

ε
2H logP(|

Xε
1

ε
1
2−H

−
X̃ε

1

ε
1
2−H

|> δ ) =−∞ .

Thus Xε
1

ε
1
2−H

and X̃ε
1

ε
1
2−H

are exponentially equivalent in the sense of Definition 4.2.10 in

[DZ98], so (by Theorem 4.2.13 in [DZ98]) Xε
1

ε
1
2−H

satisfies the same LDP as X̃ε
1

ε
1
2−H

.
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2.3 Small-time asymptotics

2.3.3 Asymptotics for call options and implied volatility

Corollary 2.3.5 We have the following limiting behaviour for out-of-the-money European
put and call options with maturity t and log-strike t

1
2−Hx, with x ∈ R fixed:

lim
t→0

t2H logE((eXt − ext
1
2−H

)+) =−I(x) (x > 0)

lim
t→0

t2H logE((ext
1
2−H

− eXt )+) =−I(x) (x < 0) .

Proof. The lower estimate follows from the exact same argument used in Appendix C in
[FZ17] (see also Theorem 6.3 in [FGP18b]). The proof of the upper estimate is the same
as in Theorem 6.3 in [FGP18b].

Corollary 2.3.6 Let σ̂t(x) denote the implied volatility of a European put/call option with
log-moneyness x under the Rough Heston model in (3.1) for λ = 0. Then for x ̸= 0 fixed,
the implied volatility satisfies

σ̂(x) := lim
t→0

σ̂t(t
1
2−Hx) =

|x|√
2I(x)

. (2.33)

Proof. Follows from Corollary 7.2 in [GL14]. See also the proof of Corollary 4.1 in
[FGP18b] for details on this, but the present situation is simpler, as we only require the
leading order term here.

2.3.4 Series expansion for the asymptotic smile and calibration

Proceeding as in Lemma 12 in [GGP19], we can compute a fractional power series for
ψ(p, t) (and hence Λ(p, t)) and then using (2.31), we find that

Λ̄(p) =
2V0

ν2

∞

∑
n=1

an(1)p1+n Γ(αn+1)
Γ(2+(n−1)α)

where the an = an(u) coefficients are defined (recursively) as in [GGP19] except for our
application here (based on (2.13)) we have to set λ = 0, and c1 =

1
2u2 instead of 1

2u(u−1)
(note this series will have a finite radius of convergence). Using the Lagrange inversion
theorem, we can then derive a power series for I(x) which takes the form

σ̂(x)=
√

V0+
ρν

2Γ(2+α)
√

V0
x+ν

2
Γ(1+2α)+2ρ2Γ(1+α)2(2−3Γ(2+2α)

Γ(2+α)2 )

8V
3
2

0 Γ(1+α)2Γ(2+2α)
x2+O(x3) .

(2.34)
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2.3 Small-time asymptotics

(compare this to Theorem 3.6 in [BFGHS18] for a general class of rough models and
Theorem 4.1 in [FJ11b] for a Markovian local-stochastic volatility model). We can re-write
this expansion more concisely in dimensionless form as

σ̂(x) =
√

V0 [1+
ρ

2Γ(2+α)
z+

Γ(1+2α)+2ρ2Γ(1+α)2(2−3Γ(2+2α)
Γ(2+α)2 )

8Γ(1+α)2Γ(2+2α)
z2 +O(z3)]

where the dimensionless quantity z = νx
V0

.

Remark 2.3.3 In principle one can use (2.34) to calibrate V0, ρ and ν to observed/estimated
values of σ̂(0), σ̂ ′(0) and σ̂ ′′(0) (i.e. the short-end implied vol level, skew and convexity
respectively).

Wing behaviour of the rate function

From Eq 3.2 in [RO96], we expect that ψ(p, t) ∼ const.
(T ∗(p)−t)α as t → T ∗(p) and thus

Λ(p, t) = I1−αψ(p, t) ∼ const.
(T ∗(p)−t)2α−1 as t → T ∗(p). Assuming this is consistent with

the p-asymptotics, then (by (2.32)) we have

Λ(p)=Λ(p,1)∼ const.
(T ∗(p)−1)2α−1 =

const.
(( p+

p )1/α −1)2α−1
∼ const.

(p+− p)2α−1 (p→ p+)

so p∗(x) in I(x) = supp(px−V0Λ(p)) satisfies p∗(x) = p+− const. · x−1/2α(1+o(1)), so

I(x) = p+x+ const. · x1− 1
2α (1+o(1)) as x → ∞.

2.3.5 Higher order Laplace asymptotics

The following is a shortened version of section 3.5 in [FGS21]. If we now relax the

assumption that λ = 0, and work with the original Xε process in (2.27) (as opposed to the
driftless X̃ε process), then we know that

E(epXε
t ) = E(epXεt ) = eV0I1−α gε (p,t)+εα λθ I1gε (p,t)

for t in some non-empty interval [0,T ∗
ε (p)), where

gε(
p

εα
, t) =

ψ(p, t)
ε2H (2.35)

which satisfies

Dαgε(p, t) =
1
2

ε(p2 − p)+(pρν −λ )εαgε(p, t)+
1
2

ε
2H

ν
2gε(p, t)2 (2.36)
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2.3 Small-time asymptotics

with initial condition gε(p,0) = 0. Setting

gε(
p

εα
, t) =

ψε(p, t)
ε2H (2.37)

and setting p 7→ p
εα , and substituting for gε(

p
εα , t) in (2.36) and multiplying by ε2H as

before, we find that

Dα
ψε(p, t) =

1
2

p2 + pρνψε(p, t)+
1
2

ν
2
ψε(p, t)2 − ε

α(
1
2

p+λψε(p, t))

with ψε(p,0) = 0. If we now formally try a higher order series approximation of the form

ψε(p, t) := ψ(p, t)+ ε
1
2+Hψ1(p, t), we find that ψ1(p, t) must satisfy

Dα
ψ1(p, t) =−1

2
p −λψ(p, t)+ pρνψ1(p, t)+ν

2
ψ(p, t)ψ1(p, t)

with ψ1(p,0) = 0, which is a linear VIE for ψ1(p, t).

This gives us an approximation to the characteristic function and, using Laplace and
Saddle point techniques as in [FJL12], (formally) gives the following expression (see
[FGS21] for definitions):

Cε(x) = E((eXε
1 − exε

1
2−H

)+)

=
1

2π
exε

1
2−H

∫ −ip∗+∞

−ip∗−∞

Re(
e−izxε

1
2−H

−iz− z2 E(eizXε
1 ))dz (2.38)

=
A(x)ε

1
2+2He−

I(x)
ε2H

√
2π

[1+ ε
1
2−H(x+G(k∗)+λθF1(k∗))+O(ε(1−2H)∧2H)] (2.39)

where

A(x) =
1

(p∗)2
√

Λ̄′′(p∗)
(2.40)

The ε-dependence of the leading order term here is exactly the same as in Corollary 7.1
in the article of Friz et al. [FGP18a] (in [FGP18a] ε2 = t whereas here ε = t) which deals
with a general class of rough stochastic volatility models (which excludes Rough Heston).

(2.39) is of little use in practice, since the leading order Laplace approximation ignores
the variation of the function 1

k2 in the integrand, and even if we partially take account
of this effect by going to next order with Laplace’s method using the formula in The-
orem 7.1 in chapter 4 in [Olv74] (which we have checked and tried), it still frequently
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2.3 Small-time asymptotics

gives a worse estimate than the leading order estimate σ̂(x) because the higher order
error terms being ignored are too large, and since H is usually very small in practice, tH

converges very slowly to zero. If we instead compute an approximate call price using
the Fourier integral along the horizontal contour going through the saddlepoint (using e.g.
the NIntegrate command in Mathematica) and use our higher order asymptotic estimate
ψ(ik, t)+ ε

1
2+Hψ1(ik, t) for logE(ei k

εα Xε

)), and then compute the exact implied volatility
associated with this price (which avoids the problems with the Laplace approximation),
then (for the parameters we considered) we found this approximation to be an order of
magnitude closer to the Monte Carlo value than the leading order approximation σ̂(x)
(see graph and tables below). See [LK07] for more on computing the optimal contour of
integration for such problems.
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2.3 Small-time asymptotics

Case A Case B Case C
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6

Case D

Fig. 2.1 Here we have plotted the quadratic function G(p,w) as a function of w for the four
cases described in [GGP19]. In cases A and B there are no roots and the solution ψ(p, t) to
(2.13) increases without bound whereas in cases C and D we have a stable fixed point (the
lesser of the two roots) and an unstable root, so a solution starting at the origin increases
(decreases) until it reaches the stable fixed fixed point. For Case D we have also drawn the
curve arising from the reflection transformation used in the proof in Appendix C.
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Fig. 2.2 Here we have solved for the solution f (p, t) to (2.10) numerically by discretizing
the VIE with 2000 time steps, and plotted f (p, t) a function of t and the corresponding
quadratic function G(p,w) as a function of w with p fixed. In the first case α = .75, λ = 2,
ρ =−0.1, ν = .4 and p = 2 and f (p, t) tends to a finite constant, and in the second case
α = .75, λ = 1, ρ = 0.1, ν = 1 and p = 5 and we see that f (p, t) has an explosion time at
some T ∗(p)≈ 0.4. 42
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Fig. 2.3 On the left we have plotted Λ(p) using an Adams scheme to numerically solve the
VIE in (2.13) with 2000 time steps combined with Corollary 2.3.4, for α = 0.75, V0 = .04,
ν = .15, ρ =−0.02, and we find that p+ = T ∗(1)≈ 34.5 and p− = T ∗(−1)≈ 33.25. On
the right we have plotted the corresponding asymptotic small-maturity smile σ̂(x) (in blue)
verses the higher order approximation using Eq (2.38) (red “+" signs), and the smile points
obtained from a simple Euler-type Monte Carlo scheme with maturity T = .00005, 105

simulations and 1000 time steps in Matlab (grey crosses), Matlab and Mathematica code
available on request. We did not use the Adams scheme to compute σ̂(x); rather have used
the first 15 terms in the series expansion for Λ̄(p) in subsection 2.3.4 and then numerically
computed its Fenchel-Legendre transform and used this to compute I(x) and hence σ̂(x).
We see that the Monte Carlo and higher order smile points can barely be distinguished
by the naked eye. For |x| small, we have found this method of computing σ̂(x) to be far
superior to using an Adams scheme, since the numerical computation of the fractional
integral I1−α f (p, t) for |t| ≪ 1 can lead to numerical artefacts when computing the FL
transform of Λ̄(p,1) close to x = 0.

43



2.3 Small-time asymptotics
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Fig. 2.4 On the left here we have the same plot as above but with T = .005 and for the
right plot T = .005 and α = .6 (i.e. H = 0.1), and again we see that the higher order
approximation makes a significant improvement over the leading order smile. Of course
we would not expect such close agreement for smaller values of α , or larger values of
T , |x| or |ρ|, e.g. ρ = −0.65 reported in e.g. [EGR18], but the point here is really just
to verify the correctness of the asymptotic formula in (2.33), and give a starting point
for other authors/practitioners who wish to test refinements/variants of our formula. We
have not repeated numerical results for the large-time case at the current time, since it is
intuitively fairly clear that our large maturity formula is correct (since it just boils down to
computing the stable fixed point of the VIE) and for maturities ≈ 30 years with a small
step-size, the code would take a prohibitively long time to give good results given that each
simulation takes O(N2) for a rough model (where N is the number of time steps), and it is
difficult to verify the formula numerically even for the standard Heston model.
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2.4 Large-time asymptotics

2.4 Large-time asymptotics

In this section, we derive large-time large deviation asymptotics for the Rough Heston
model, and we begin making the following assumption throughout this section:

Assumption 2.4.1 λ > 0, ρ ≤ 0.

Recall that f (p, t) in (2.9) satisfies

Dα f (p, t) = H(p, f (p, t)) (2.41)

subject to f (p,0) = 0, where H(p,w) := 1
2 p2 − 1

2 p+(pρν −λ )w+ 1
2ν2w2. We write

U1(p) :=
1

ν2 [λ − pρν −
√

λ 2 −2λρν p+ν2 p(1− pρ̄2)]

for the smallest root of H(p, .), and note that U1(p) is real if and only if p ∈ [p, p̄], where

p :=
ν −2λρ −

√
4λ 2 +ν2 −4λρν

2ν(1−ρ2)
, p̄ :=

ν −2λρ +
√

4λ 2 +ν2 −4λρν

2ν(1−ρ2)
.

Proposition 2.4.2

V (p) := lim
t→∞

1
t

logE(epXt ) =

λθU1(p) p ∈ [p, p̄],

+∞ p /∈ [p, p̄].

Proof. [GGP19] show that the explosion time for the Rough Heston model T ∗(p)< ∞ if

and only if T ∗(p)< ∞ for the corresponding standard Heston model (i.e. the case α = 1).

From the usual quadratic solution formula −b±
√

b2−4ac
2a , we know that H(p, .) has two

distinct real roots (or a single root) if and only if

(λ −ρ pν)2 ≥ (p2 − p)ν2 (2.42)

which is the same as the condition e1(p)≥ 0 in condition C) in [GGP19]. We note that p̄,
p are the zeros of e1(p).

We now have to verify that under our assumptions that λ > 0 and ρ ≤ 0, T ∗(p)< ∞ if
and only e1(p)< 0. We have two cases to consider to verify this claim:
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2.4 Large-time asymptotics

• Suppose e1(p) ≥ 0. Then case B in [GGP19] is impossible by definition, and
p ∈ [p, p̄], and Eq (3.5) in [FJ11] is satisfied. Eq (3.4) in [FJ11] is

λ > ρν p

in our current notation, and by the assertion on p.769 in [FJ11] that “(3.4) is implied
by (3.5)”, we see that it holds, which is equivalent to e0(p) < 0. Therefore, case
A is impossible. So we are in the non-explosive cases C or D of the [GGP19]
classification. We note that case C is by definition equivalent now to c1(p)> 0.

• Suppose e1(p) < 0. By definition we are not in case C. And we have p /∈ [p, p̄],
but from p.769 in [FJ11], we know the interval [0,1] is strictly contained in [p, p̄].
Hence, case D is also impossible, and we are in the explosive cases A or B.

Hence our claim is verified. We can now re-write (2.41) in integral form as

f (p, t) =
1

Γ(α)

∫ t

0
(t − s)α−1H(p, f (p,s))ds.

Clearly, we have H(p,w)↘ 0 as w ↗U1(p). Assume to begin with that U1(p)> 0 (by an
easy calculation, this is exactly case C in the [GGP19] classification). Then from the proof
of Proposition 4 in [GGP19], we know that 0 ≤ f (p, t)≤U1(p).

Moreover, w∗=U1(p) is the smallest root of H(p,w), so H(p,w)≥Hδ :=H(p,U1(p)−
δ ) for w ≤U1(p)−δ and δ ∈ (0,U1(p)); hence we must have

Hδ

Γ(α)

∫ t

0
(t − s)α−11 f (p,s)≤U1(p)−δ ds <U1(p)

for all t > 0. This implies that Hδ

Γ(α) (t−1)α−1 ∫ t
1 1 f (p,s)≤U1(p)−δ ds<U1(p), or equivalently

if we flip the inequality inside the indicator function

t −1−
∫ t

1
1 f (p,s)>U1(p)−δ ds ≤ Γ(α)

Hδ

U1(p)(t −1)1−α .

Then we see that

1
t

∫ t

0
f (p,s)ds ≥ 1

t

∫ t

1
f (p,s)ds ≥ 1

t

∫ t

1
f (p,s)1 f (p,s)>U1(p)−δ ds

≥ 1
t
(U1(p)−δ )(t −1− Γ(α)

Hδ

U1(p)(t −1)1−α)

≥U1(p)−2δ
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2.4 Large-time asymptotics

for t sufficiently large. Thus U1(p)− 2δ ≤ 1
t
∫ t

0 f (p,s)ds ≤ U1(p) , so 1
t
∫ t

0 f (p,s)ds →
U1(p) as t → ∞. Then using that

logE(epXt ) =V0I1−α f (p, t)+λθ I f (p, t)

and that f (p, t) is bounded, the result follows. We proceed similarly for the case U1(p)< 0
(i.e. case D in the [GGP19] classification, see also Lemma 2.4.4).

Corollary 2.4.3 Xt/t satisfies the LDP as t → ∞ with speed t and rate function V ∗(x)
equal to the Fenchel-Legendre transform of V (p), as for the standard Heston model.

Proof. Since U ′
1(p)→+∞ as p → p̄ and U ′

1(p)→−∞ as p → p, the function λθU1(p)
is essentially smooth; so the stated LDP follows from the Gärtner-Ellis theorem in large
deviations theory.

Remark 2.4.1 We can easily add stochastic interest rates into this model by modelling the
short rate rt by an independent Rough Heston process, and proceeding as in [FK16] (we
omit the details), see also [F11].

Note that we have not proved that f (p, t)→U1(p), but to establish the leading order
behaviour in Proposition 2.4.2, this is not necessary, rather we only needed to show that
I1 f (p, t)∼ tU1(p). Nevertheless, this convergence would be required to go to higher order,
so for completeness we prove this property as well, as a special case of the following
general result:

Lemma 2.4.4 Consider functions G(y) and K(z) which satisfy the following:

• G(y) is analytic and increasing on [0,y0] and decreasing on [y0,∞) where y0 ≥ 0;

• G(0)≥ 0;

• K(z) is positive, continuous and strictly decreasing for z > 0;

•
∫ t

0 K(z)dz is finite for each t > 0 and diverges as t → ∞;

• K(z+α)/K(z) is strictly increasing in z for each fixed α greater than zero.

Then the solution to y(t) =
∫ t

0 K(t − s)G(y(s))ds is monotonically increasing, and if G has
at least one positive root then y(t) converges to the smallest positive root of G as t → ∞.

Proof. See Appendix C.

This lemma can be applied to both cases C and D. As shown in [GGP19], the solution
in case C is bounded between zero and the smallest positive root of G (denoted a in that
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2.4 Large-time asymptotics

paper) so G need only satisfy the conditions of the above lemma on the interval [0,a]
which it does with y0 = 0. For case D, multiplying the defining integral equation by −1
and applying the transformations −y(t)→ y(t) and −G(−y(t))→ G(y(t)) (see final plot
in Figure 3) we recover an integral equation of the desired form (again G need only satisfy
the conditions of the lemma over the corresponding interval [0,a]).

2.4.1 Asymptotics for call options and implied volatility

Corollary 2.4.5 We have the following large-time asymptotic behaviour for European
put/call options in the large-time, large log-moneyness regime:

− lim
t→∞

1
t

logE(St −S0ext)+ =V ∗(x)− x (x ≥ 1
2

θ̄) ,

− lim
t→∞

1
t

log(S0 −E(St −S0ext)+) =V ∗(x)− x (−1
2

θ ≤ x ≤ 1
2

θ̄) ,

− lim
t→∞

1
t

log(E(S0ext −St)
+) =V ∗(x)− x (x ≤−1

2
θ) ,

where θ̄ = λθ

λ−ρν
.

Proof. See Corollary 2.4 in [FJ11].

Corollary 2.4.6 We have the following asymptotic behaviour in the large-time, large log-
moneyness regime, where σ̂t(kt) is the implied volatility of a European put/call option with
strike S0ext:

σ̂∞(x)2 = lim
t→∞

σ̂
2
t (xt) =

ω1

2
(1+ω2ρx+

√
(ω2x+ρ)2 + ρ̄2)

where
ω1 =

4λθ

ν2ρ̄2 [
√

(2λ −ρν)2 +ν2ρ̄2 − (2λ −ρν)] , ω2 =
ν

λθ
.

Proof. See Proposition 1 in [GJ11] (note that for the Rough Heston model λ has to be
replaced with λ

Γ(α) and ν replaced with ν

Γ(α) , but the effect of the α here cancels out in the
final formula for σ̂∞(k).

2.4.2 Higher order large-time behaviour

We can formally try going to higher order; indeed, using the ansatz f (p, t) = U1(p)t +
U2(p)t−α(1+o(1)) for p ∈ [p, p̄], and we find that

U2(p) =− U1(p)
(λ −U1(p)ν2 − pρν)Γ(1−α)
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2.5 Asymptotics in the H → 0 limit

but if we try and go higher order again, the fractional derivative on the left hand side of
(2.10) does not exist. Using the same approach as in [FJM11], one should be able to use
this to compute a higher order large-time saddlepoint approximation for call options. For
the sake of brevity, we defer the details of this for future work.

2.5 Asymptotics in the H → 0 limit

In this section, we will show that for fixed t, the log stock price X (α)
t := Xt converges

as α → 1
2 i.e. as H → 0 in an appropriate sense. To match the assumptions of Theorem

13.1.1 on p.384 of [GLS90] (on the continuity of the solutions to a parametrized family
of VIEs), we define h(α,w) := G(p,w) for α ≥ 1

2 (which is independent of α). The
kernel a(t,s,α) := (t−s)α−1/Γ(α) is of continuous type; see Definition 9.5.2 in [GLS90],
and the remark to Theorem 12.1.1 in [GLS90], which states local integrability of k as a
sufficient condition for this property, and we can easily verify that

sup
t∈[0,T ]

|
∫ t

0
(a(t,s,α)−a(t,s,

1
2
))ds| → 0

as α → 1
2 , so the uniform continuity assumption in Theorem 13.1.1 of [GLS90] is satisfied.

Moreover the solution to the VIE is unique for α ∈ (0,1), see Theorem 3.1.4 in [Brun17],
or Satz 1 in [Di58]. Note that the Lipschitz condition (3.1) in [Di58] has a fixed Lipschitz
constant Γ(α +1), but since the function H defining our VIE (see (2.41)) does not depend
on time, the factor tα on the left hand side of condition (3.1) in [Di58] (using our notation)
allows for an arbitrary Lipschitz constant, on a sufficiently small time interval. Moreover,
once uniqueness on a small time interval is established, there is a unique continuation (if
any) by a standard extension procedure described on p.107 of [Brun17].

Then from Theorem 13.1.1 ii) in [GLS90], f (p, t;α) is continuous in α and t on
{(α, t) : α ∈ [1

2 ,1),0 ≤ t < T̂α(p)}, where [0, T̂α(p)) denotes the maximal interval on
which a continuous solution of the VIE exists. Moreover, since Theorem 13.1.1 of [GLS90]
is multi-dimensional, we can apply it to (Re( f ), Im( f )) to conclude that f (iθ , t;α) →
f (iθ , t; 1

2) for θ ∈R. Using the analyticity of f (., t,0), e.g. from Lemma 7 in [GGP19], we
have that f (iθ , t; 1

2) is continuous at θ = 0, so we can apply Lévy’s convergence theorem

and verify that X (α)
t tends weakly to some random variable X

( 1
2 )

t as α → 1
2 , for which

E(epX
( 1

2 )
t ) = eV0I

1
2 f (p,t)+λθ I1 f (p,t)
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2.5 Asymptotics in the H → 0 limit

for p in some open interval I = (p−(t), p+(t))⊃ [0,1], where f (p, t) satisfies

D
1
2 f (p, t) =

1
2
(p2 − p)+(pρν −λ ) f (p, t)+

1
2

ν
2 f (p, t)2

with initial condition f (p,0) = 0.

Thus we have a H = 0 “model”, or more precisely a family of marginals for X
( 1

2 )
t for

all t ∈ [0,T ]), with non-zero skewness. This is in contrast to the Rough Bergomi model,
which for the vol-of-vol γ ∈ (0,1) tends to a model with zero skew in the limit as H → 0,
see Chapter 4 for details.

Then using similar scaling arguments to section 3, we know that

E(epX
( 1

2 )
εt ) = eV0I

1
2 fε (p,t)+ε

1
2 λθ I1 fε (p,t)

for p ∈ (p−(εt), p+(εt))⊃ [0,1], where fε(p, t) satisfies

D
1
2 fε(p, t) =

1
2

ε(p2 − p)+ ε
1
2 (pρν −λ ) fε(p, t)+

1
2

ν
2 fε(p, t)2

with initial condition fε(p,0)= 0. Then setting fε(
p√
ε
, t)= φε(p, t) as in Eq 49 in [FSV19],

we find that φε(p, t) satisfies

D
1
2 φε(p, t) =

1
2

p2 − 1
2

p
√

ε + pρνφε(p, t)+
1
2

ν
2
φε(p, t)2 − λε

1
2 φε(p, t) (2.43)

with φε(p,0) = 0, for p ∈ ( p−(εt)√
ε

, p+(εt)√
ε

). We can then apply Theorem 13.1.1 in [GLS90]
as above to show that φε(p, t) tends to the solution φ of

D
1
2 φ(p, t) =

1
2

p2 + pρνφ(p, t)+
1
2

ν
2
φ(p, t)2 (2.44)

as ε → 0 for p ∈ (p0
−, p0

+) where p0
± := limε→0

p±(εt)√
ε

. Thus setting t = 1, we see (again

using Lévy’s convergence theorem) that X
( 1

2 )
ε /

√
ε tends weakly to a (non-Gaussian) ran-

dom variable Z as t → 0 for which E(epZ) = eV0I
1
2 φ(p,.)(1). Two interesting and difficult

open questions now arise: is this property time-consistent, i.e. does it remain true at a
future time t when we condition on the history of V up to t, and ii) is V itself a well
defined process in the α → 1

2 limit, or does it e.g. tend to a non-Gaussian field which is
not pointwise defined. We answer the second question in section 2.5.

Remark 2.5.1 Note that the scaling property in this case simplifies to

Λ(p, t) = Λ(pt
1
2 ,1) (2.45)
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2.5 Asymptotics in the H → 0 limit

where Λ(p, t) := I1−αφ(p, t) with α = 1
2 .

2.5.1 Implied vol asymptotics in the H = 0, t → 0 limit - full smile
effect for the Edgeworth FX options regime

Following a similar argument to Lemma 5 in [MT16] one can establish the following
small-time behaviour for European put options in the Edgeworth regime:

1√
t
E((ex

√
t − eXt )+) ∼ ex

√
t E((x− Xt√

t
)+) ∼ E((x− Xt√

t
)+) ∼ P(x) := E((x−Z)+)

as t → 0, where Z is the non-Gaussian random variable defined in the previous subsection,
and f ∼ g here means that f/g → 1. From e.g. [Fuk17] or Lemma 3.3 in [FSV19], we
know that for the Black-Scholes model with volatility σ

1√
t
E((ex

√
t − eXt )+) ∼ PB(x,σ) := E((x−σW1)

+) (2.46)

where W is a standard Brownian motion. From this we can easily deduce that

σ̂0(x) := lim
t→0

σ̂t(x
√

t, t) = PB(x, .)−1(P(x)) (2.47)

for x > 0, where σ̂t(x, t) denotes the implied volatility of a European put option with strike
ex, maturity t and S0 = 1, and PB(x,σ) is the Bachelier model put price formula. Hence we
see the full smile effect in the small-time FX options Edgeworth regime unlike the H > 0
case discussed in e.g. [Fuk17], [EFGR19], [FSV19], where the leading order term is just
Black-Scholes, followed by a next order skew term, followed by an even higher order term.

2.5.2 A closed-form expression for the skewness, the H → 0 limit and
calibrating a time-dependent correlation function

We now consider a driftless version of the model where dXt =
√

VtdBt and Vt = V0 +
1

Γ(α)

∫ t
0(t − s)α−1ν

√
VsdWs. Then

E(X3
T ) = 3E(XT ⟨X⟩T ) = 3E(

∫ T

0

√
Vs(ρdWs + ρ̄dBs)

∫ T

0
Vtdt) = 3ρ E(

∫ T

0

√
VsdWs

∫ T

0
Vtdt)
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2.5 Asymptotics in the H → 0 limit

so formally we need to compute

E(
√

VsVtdWs) = E(
√

Vs(V0 +
1

Γ(α)

∫ t

0
(t −u)α−1

ν
√

VudWu)dWs)

= E(
√

Vs
ν

Γ(α)
(t − s)α−1√Vsds1s<t)

=
ν

Γ(α)
(t − s)α−1 1s<t E(Vs)ds =

ν

Γ(α)
(t − s)α−1 1s<t V0ds .

Thus

E(X3
T ) = 3ρ

∫ T

0

∫ t

0
E(

√
VsVtdWsdt) =

3V0ρνT 1+α

Γ(α)α(1+α)
. (2.48)

If we now relax the assumption that V is driftless and assume a given inital variance
curve ξ0(t) and a general L2 kernel κ then

Vt = ξ0(t) +
∫ t

0
κ(t − s)

√
VsdWs

(where κ is computed in Proposition 2.2.2). Then

E(
√

VsVtdWs) = E(
√

Vs(ξ0(t)+
∫ t

0
κ(t −u)

√
VudWu)dWs) = κ(t − s)1s<tE(Vs)

and

E(X3
T ) = 3ρ

∫ T

0

∫ t

0
E(

√
VsVtdWs) = 3ρ

∫ T

0

∫ t

0
κ(t − s)ξ0(s)dsdt .

Remark 2.5.2 If we allow ρ to be time-dependent, then E(X3
t ) = 3ρ(t)

∫ T
0
∫ t

0 κ(t −
s)ξ0(s)dsdt and we can use this equation to calibrate ρ(t) to the observed skewness
term structure, i.e. the value of E(X3

t ) at each t in some interval [0,T ] implied by European
option prices via the Breeden-Litzenberger formula. Note we have ignored the drift terms
of X to simplify the computations here but in the small -time limit these drift terms will be
higher order.

2.5.3 Weak convergence of the V process on pathspace to a tempered
distribution, and the hyper-rough Heston model

From Theorem 4.3 in [ALP19] we know that

E(e
∫ T

0 f (T−t)Vtdt) = eV0
∫ T

0 f (t)dt+ 1
2V0ν2 ∫ T

0 ψα (t)2dt
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2.5 Asymptotics in the H → 0 limit

for f ∈ L1([0,T ]), where ψα satisfies the Riccati-Volterra equation:

ψα(t) =
∫ t

0
cα(t − s)α−1( f (s)+

1
2

ν
2
ψα(s)2)ds (2.49)

and cα = 1
Γ(α) .

Proposition 2.5.1 V tends to a random tempered distribution V ( 1
2 ) in distribution as

α → 1
2 with respect to the strong and weak topologies (see page 2 in [BDW17] for

definitions), where V ( 1
2 ) is a random tempered distribution1 and for all f in the Schwartz

space S we have

E(e
∫ T

0 f (T−t)V
( 1

2 )
t dt) = eV0

∫ T
0 f (t)dt+ 1

2V0ν2 ∫ T
0 ψ(t)2dt

where ψ satisfies the following VIE:

ψ(t) =
∫ t

0
c 1

2
(t − s)−

1
2 ( f (s)+

1
2

ν
2
ψ(s)2)ds .

Proof. See Appendix D.

Let At satisfy At =V0t + ν

Γ( 1
2 )

∫ t
0(t − s)−

1
2WAsds . Then At is of the same form as Xt in

[A19b], with their dG0(t) =V0dt. Then from Theorem 2.5 in [A19b] (with a = b = 0 and
c = ν2) we know that

E(e
∫ T

0 f (T−t)dAt ) = e
∫ T

0 F(T−s,ψ(T−s))dG0(s) = eV0
∫ T

0 ( f (T−s)+ 1
2 ν2ψ(T−s)2)ds = eV0

∫ T
0 ( f (s)+ 1

2 ν2ψ(s)2)ds

(2.50)

where F(s,u) = f (u)+ 1
2cu2, and ψ satisfies

ψ(t) =
∫ t

0
K(t − s)F(s,ψ(s))ds =

∫ t

0
c 1

2
(t − s)−

1
2 ( f (s)+

1
2

ν
2
ψ(s)2)ds

The process At here is the driftless hyper-rough Heston model for H = 0 discussed in
the next subsection, and e note that ψ satisfies the same VIE as (2.49) (and by e.g. Theorem
3.1.4 in [Brun17] we know the solution is unique), so the limiting field V ( 1

2 ) has the same
law as the random measure dAt . Moreover, from Proposition 4.6 in [JR18] (which uses
the law of the iterated logarithm for B) A is a.s. not continuously differentiable but is only
known to be 2α − ε Hölder continuous for all ε > 0. Hence A exhibits (non-Gaussian)
“field”-type behaviour.

1see e.g. [DRSV17] for more details on tempered distributions
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2.5 Asymptotics in the H → 0 limit

2.5.4 The hyper-rough Heston model for H = 0 - driftless and general
cases

If λ = 0 and α ∈ (1
2 ,1) and we set At :=

∫ t
0 Vsds, then using the stochastic Fubini theorem,

we see that

At −V0t =
1

Γ(α)

∫ t

0

∫ s

0
(s−u)α−1

ν
√

VudWuds (2.51)

=
1

Γ(α)

∫ t

0
ν
√

VudWu

∫ t

u
(s−u)α−1ds

=
ν

αΓ(α)

∫ t

0
(t −u)α

√
VudWu

(using Dambis-Dubins-Schwarz time change

=
ν

αΓ(α)

∫ t

0
(t −u)αdBAu

(where Bt := XTt , Tt = inf{s : As > t}) so B is a Brownian motion)

=
ν

αΓ(α)
BAu(t −u)α |tu=0 +

ν

Γ(α)

∫ t

0
(t −u)α−1BAudu

= νIαBAt .

We can now take

At =V0t +νIαBAt (2.52)

as the definition of the Rough Heston model for α ∈ [1
2 ,1) (i.e. allowing for the possibility

that α = 1
2), where B is now a given Brownian motion (this is the so-called hyper-rough

Heston model introduced in [JR18] for the case of zero drift. Note that for a given sample
path Bt(ω), we can regard (2.52) as a (random) fractional ODE of the form:

A(t) =V0t + Iα f (A(t)) (2.53)

where f (t) = Bt(ω).

55



2.5 Asymptotics in the H → 0 limit
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Fig. 2.5 Here we have plotted the H = 0 asymptotic short-maturity smile (i.e. σ̂0(x)
in (2.47)), for ν = .2, ρ = −.1 and V0 = .04. We have used a 10-term small-t series
approximation to the solution to (2.44) combined with the scaling property in (2.45), and
the Alan Lewis Fourier inversion formula for call options given in e.g. Eq 1.4 in [EGR18]
using Gauss-Legendre quadrature for the inverse Fourier transform with 1600 points over
a range of [0,40].

The case λ > 0

For the case when λ > 0, using (2.8) we see that

At −
∫ t

0
ξ0(s)ds =

∫ t

0

∫ s

0
κ(s−u)

√
VudWuds (2.54)

=
∫ t

0

√
Vu

∫ t

u
κ(s−u)dsdWu

=
∫ t

0
F(t −u)

√
VudWu (where F(t −u) =

∫ t

u
κ(s−u)ds)

=
∫ t

0
F(t −u)dMu

(where dMt =
√

VtdWt)

=
∫ t

0
F(t −u)dBAu

(where Bt := MTt , Tt = inf{s : As > t}) so B is a Brownian motion)

= BAuF(t −u)|tu=0 +
∫ t

0
κ(t −u)BAudu

=
∫ t

0
κ(t −u)BAudu

where we have used (2.7) to verify that F(t −u)→ 0 as u → t.
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2.6 Appendix

2.6 Appendix

2.6.1 Appendix A: Computing the kernel for the Rough Heston vari-
ance curve

Let Zt =
∫ t

0
√

VsdWs, and we recall that

Vt =V0 +
1

Γ(α)

∫ t

0
(t − s)α−1

λ (θ −Vs)ds+
1

Γ(α)

∫ t

0
(t − s)α−1

ν
√

VsdWs

= ξ̃0(t)−
λ

ν
(ϕ ∗V )+ϕ ∗dZ

where ∗ denotes the convolution of two functions, ϕ ∗ dZ =
∫ t

0 ϕ(t − s)dZs and ξ̃0(t) =
V0 +

1
Γ(α)

∫ t
0(t − s)α−1λθds =V0 +

λθ

αΓ(α)t
α , and ϕ(t) = ν

Γ(α)t
α . Now define κ to be the

unique function which satisfies

κ = ϕ − λ

ν
(ϕ ∗κ) . (A.1)

Such a κ exists and is known as the resolvent of ϕ . Then we see that

Vt −
λ

ν
κ ∗Vt = ξ̃0(t)−

λ

ν
ϕ ∗V +ϕ ∗dZ − λ

ν
κ ∗ [ ξ̃0(t)−

λ

ν
ϕ ∗V +ϕ ∗dZ]

= ξ0(t)−
λ

ν
(ϕ − λ

ν
κ ∗ϕ)∗V +(ϕ − λ

ν
κ ∗ϕ)∗dZ

= ξ0(t)−
λ

ν
κ ∗V +κ ∗dZ

where ξ0(t) = ξ̃0(t)− λ

ν
κ ∗ ξ̃0(t), and we have used (A.1) in the final line. Cancelling the

−λ

ν
κ ∗V terms, we see that

Vt = ξ0(t)+κ ∗dZ = ξ0(t)+
∫ t

0
κ(t − s)

√
VsdWs

⇒ ξt(u) = E(Vu|Ft) = ξ0(u)+
∫ t

0
κ(u− s)

√
VsdWs

and thus
dξt(u) = κ(u− t)

√
VtdWt

i.e. the correct κ function is the solution to (A.1). If we take the Laplace transform of
(A.1), we get

κ̂(z) = ϕ̂(z)− λ

ν
ϕ̂(z)κ̂(z) . (A.2)
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2.6 Appendix

and (A.2) is just an algebraic equation now, which we can solve explicitly to get κ̂(z) =
ϕ̂(z)

1+ λ

ν
ϕ̂(z)

. But we know that ϕ(t) = ν

Γ(α)t
α whose Laplace transform is ϕ̂(z) = νz−α , so

κ̂(z) evaluates to

κ̂(z) =
νz−α

1+λ z−α
.

Then the inverse Laplace transform of κ̂(z) is given by

κ(x) = νxα−1Eα,α(−λxα) .

2.6.2 Appendix B: The re-scaled model

We first let

dXε
t =−1

2
εV ε

t dt +
√

ε
√

V ε
t dWt

V ε
t −V0 =

εγ

Γ(α)

∫ t

0
(t − s)H− 1

2 λ (θ −V ε
s )ds+

εH

Γ(α)

∫ t

0
(t − s)H− 1

2 ν
√

V ε
s dWs

(d)
=

εγ

Γ(α)

∫ t

0
(t − s)H− 1

2 λ (θ −V ε
s )ds+

εH− 1
2

Γ(α)

∫ t

0
(t − s)H− 1

2 ν
√

V ε
s dWεs

=
εγ

Γ(α)

∫
εt

0
(t − u

ε
)H− 1

2 λ (θ −V ε

u/ε
)
1
ε

du+
εH− 1

2

Γ(α)

∫
εt

0
(t − u

ε
)H− 1

2 ν

√
V ε

u/ε
dWu .

where we have set u = εs. Now set V ′
εt =V ε

t . Then

V ′
εt −V0 =

εγ−1

Γ(α)

∫
εt

0
(t − u

ε
)H− 1

2 λ (θ −V ′
u)du+

εH− 1
2

Γ(α)

∫
εt

0
(t − u

ε
)H− 1

2 ν
√

V ′
u dWu

=
εγ−1

εH− 1
2 Γ(α)

∫
εt

0
(εt −u)H− 1

2 λ (θ −V ′
u)du+

εH− 1
2

εH− 1
2 Γ(α)

∫
εt

0
(εt −u)H− 1

2 ν
√

V ′
u dWu

=
1

Γ(α)

∫
εt

0
(εt −u)H− 1

2 λ (θ −V ′
u)du+

1
Γ(α)

∫
εt

0
(εt −u)H− 1

2 ν
√

V ′
u dWu

where the last line follows on setting γ −1 = H − 1
2 , i.e. γ = α . Thus for this choice of γ ,

Vε(.)
(d)
=V ε

(.).

2.6.3 Appendix C: Monotonicity property

Recall that y(t) satisfies

y(t) =
∫ t

0
K(t − s)G(y(s))ds
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One can easily verify that the kernel used for the Rough Heston model satisfies the stated
properties in Lemma 2.4.4.

In the classical case K(t)≡ 1 the integral eq clearly reduces to an ODE, and it is well
known that the solution of this is at least continuously differentiable on the domain of
existence. In the following it will be assumed that the solution y(t) is analytic for t > 0.
This is proved for the kernel relevant to the Rough Heston model in [MF71] (Theorem 6),
see also the end of page 14 in [GGP19].

What follows is a natural extension of the technique used in [MW51] (Theorem 8).
Using the properties of convolution and differentiating under the integral sign, we have:

y(t) =
∫ t

0
K(t − s)G(y(s))ds =

∫ t

0
K(s)G(y(t − s))ds (C.1)

y′(t) = K(t)G(0)+
∫ t

0
K(s)G′(y(t − s))y′(t − s)ds (C.2)

= K(t)G(0)+
∫ t

0
K(t − s)G′(y(s))y′(s)ds (C.3)

G(0)> 0 so y′(t)→+∞ as t → 0+ and since G(y) is increasing for y ≤ y0 we have that
y′(t)> 0 until y(t) reaches y0 i.e. the solution increases. For y ≥ y0, G(y) is decreasing
and suppose that y(t) ceases to be increasing at some point. This implies (assuming a
continuous derivative) the existence of a t0 and an interval I = [t0, t1] such that y′(t0) = 0
and y′(t1)< 0 for all t1 ∈ I (if y(t) and hence y′(t) is analytic then the zeros of the derivative
are isolated and a sufficiently small interval I exists). Using the integral equation for y′(t):

y′(t0) = K(t0)G(0)+
∫ t0

0
K(t0 − s)G′(y(s))y′(s)ds = 0 (C.4)

y′(t1) = K(t1)G(0)+
∫ t0

0
K(t1 − s)G′(y(s))y′(s)ds+

∫ t1

t0
K(t1 − s)G′(y(s))y′(s)ds

We can re-write the kernels in the first and second terms of the expression for y′(t1) as:

K(t1) =
K(t1)
K(t0)

K(t0) , K(t1 − s) =
K(t1 − s)
K(t0 − s)

K(t0 − s)

and we can easily check that the quotient in the second expression here decreases mono-
tonically from K(t1)/K(t0) to zero.
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By the mean value theorem for definite integrals there exists a τ ∈ (0, t0) such that:

∫ t0

0

K(t1 − s)
K(t0 − s)

K(t0 − s)G′(y(s))y′(s)ds =
K(t1 − τ)

K(t0 − τ)

∫ t0

0
K(t0 − s)G′(y(s))y′(s)ds

=−K(t1 − τ)

K(t0 − τ)
K(t0)G(0) (C.5)

where the second equality follows from (C.4). Substituting this into our expression for
y′(t1):

y′(t1) =
K(t1)
K(t0)

K(t0)G(0)+
K(t1 − τ)

K(t0 − τ)

∫ t0

0
K(t0 − s)G′(y(s))y′(s)ds+

∫ t1

t0
K(t1 − s)G′(y(s))y′(s)ds

= K(t0)G(0)(
K(t1)
K(t0)

− K(t1 − τ)

K(t0 − τ)
)︸ ︷︷ ︸

>0

+
∫ t1

t0
K(t1 − s)G′(y(s))y′(s)︸ ︷︷ ︸

>0

ds > 0 (C.6)

and we have used (C.4) in the second line. But this is a contradiction so the solution
remains increasing.

As discussed elsewhere in this paper, when studying the Rough Heston model, the non-
linearity in the integral equation has the generic form G(y) = (y−θ1)

2+θ2 i.e. a quadratic
with positive leading coefficient (for simplicity set to 1 here) and minimum of θ2 obtained
at y = θ1. Depending on the values of {θ1,θ2} the following cases due to [GGP19] are
distinguished:

• (C) G(0)> 0, θ1 > 0 and θ2 < 0

• (D) G(0)≤ 0

Case C is already in the form considered here with y0 = 0. In case D, applying the
transformation y(t) → −y(t) and −G(−y(t)) → G(y(t)) (reflecting in the x and then y
axis) yields a function G(y) which is a quadratic with negative leading coefficient and
thus increases until it reaches it’s maximum after which it decreases which is of the type
considered here.

2.6.4 Appendix D: Limit of Volterra equations

From Theorem 13.1.1 ii) in [GLS90], the unique solution ψ(α) to

ψ
(α)(t) =

∫ t

0
cα(t − s)α−1( f (s)+

1
2

ν
2
ψ

(α)(s)2)ds
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tends pointwise to the solution of

ψ 1
2
(t) =

∫ t

0
c 1

2
(t − s)−

1
2 ( f (s)+

1
2

ν
2
ψ 1

2
(s)2)ds .

which is also unique by e.g. Theorem 3.1.4 in [Brun17]. Now consider any sequence
fε ∈S with ∥ fε∥m, j → 0 as ε → 0 for all m, j ∈Nn

0 for any n ∈N (i.e. under the Schwartz
space semi-norm defined in Eq 1 in [BDW17]). Then the convergence here implies in
particular that fε tends to f pointwise. Then from Theorem 13.1.1. in [GLS90], the unique
solution ψε to

ψε(t) =
∫ t

0
c 1

2
(t − s)−

1
2 ( fε(s)+

1
2

ν
2
ψε(s)2)ds

tends pointwise to the solution to

ψ0(t) =
∫ t

0
c 1

2
(t − s)−

1
2

1
2

ν
2
ψ0(s)2ds

which is zero. Then from Lévy’s continuity theorem for generalized random fields in the
space of tempered distributions (see Theorem 2.3 and Corollary 2.4 in [BDW17]), we
obtain the stated result.
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Chapter 3

Small-time VIX smile for the Rough
Heston model

3.1 Introduction

The Rough Heston stochastic volatility model was introduced in Jaisson&Rosenbaum[JR16],
and (using C-tightness arguments from Jacod&Shiryaev[JS13]) they show that the model
arises naturally as a weak large-time limit of a high-frequency market microstructure
model driven by two nearly unstable Hawkes process. [ER19] show that the characteristic
function of the log stock price for the Rough Heston model admits a quasi-closed form
solution via the solution to a non-linear Volterra integral equation (VIE) (see also [EFR18]
and [ER18]), and the variance curve for the model evolves as dξu(t) = κ(u− t)

√
VtdWt ,

where κ(t) is the usual fractional kernel tH− 1
2 for the V process multiplied by a Mittag-

Leffler function. The instantaneous variance process V for the model is (H − ε)-Hölder
continuous like fractional Brownian motion (see e.g. Theorem 3.2 in [JR16]) and the
model exhibits power law skew in the small-time limit (see the previous chapter and
Corollary 3.4 in [FSV21]). [DJR19] introduce an extension of this model known as the
super Rough Heston model which incorporates the empirically observed strong Zumbach
effect as a weak limit of a market microstructure model driven by a quadratic Hawkes
process (also using C-tightness arguments) but this model is no longer affine and thus not
directly amenable to VIE techniques or Edgeworth and large deviation asymptotics, so
it is difficult to prove anything about the qualitative behaviour or dynamics of the smile
(and the Zumbach term is a drift term and hence very unlikely to affect leading order large
deviation asymptotics). A variant of this model is used in [GJR20], which attains a better
fit to SPX and VIX options in practice than conventional rough volatility models, but
Guyon[Guy20b] remarks if we calibrate this model to the VIX smile, the short-maturity
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at-the-money SPX skew is still too small compared to what is observed in practice (see
below for discussion on the addition of jumps in [FS21]).

The theoretical value of the VIX index at time t is VIXt =
√

− 2
∆
E(log St+∆

St
|Ft), where

St is the S&P 500 index value at time t, ∆ = 30 days and Ft is the market filtration, so
VIX2

t is effectively a rolling 30-day Variance swap rate. A VIX option is a European call or
put option on VIXT for some maturity T , and if we replace the spot value S0 in the Black-
Scholes formula with the VIX future price E(VIXT ), we can define the implied volatility
of a VIX call or put in the usual way by inverting the Black-Scholes formula. VIX options
are very liquid in practice (although their bid/offer spreads are still comparatively high),
and empirical VIX smiles typically exhibit positive skew with negative convexity (see plots
in [GJR20],[Guy20],[DeM18],[HJT20] et al.), although e.g. Markovian diffusion models
like the standard Heston model can give rise to negative VIX implied vol skews..

In this chapter, we work with a generalized version of the Rough Heston model as used
in [GR19] with initial variance curve ξ0(t) and the corresponding dynamics of the forward
variance ξt(u). We first derive an explicit formula for simulating VIXT in Eq (3.4) (note
that no such formula exists for e.g. the quadratic rough Heston model in [GJR20] though
there are approximations see [Rom22]) and we then perform a formal small T -expansion of
ξT (u) which suggests that (VIX2

T −VIX2
0)/T

1
2−H ∼ cX̃T/T

1
2−H in some sense as T → 0 for

some constant c > 0, where X̃t =
∫ t

0
√

VsdWs is the martingale component of the log stock
price for the driftless rough Heston model when the correlation ρ = 1. This leads us to guess
that (VIX2

T − VIX2
0)/T

1
2−H satisfies the same small-time LDP as cX̃T/T

1
2−H , for which

we can readily compute a small-time LDP with minor amendments to the main arguments
in Theorem 2.3.3 to allow for non-flat ξ0(t). We then make this rigorous by showing that
(VIX2

T −VIX2
0)/T

1
2−H and cX̃T/T

1
2−H are exponentially equivalent as T → 0 and hence

satisfy the same LDP, and this is proved using a minor variant/extension of Theorem 7.1 in
Abi Jaber et al.[ALP19] for the exponential-affine formula for E(euX̃T+( f∗X̃)T |FW

t ) for a
general function f and u ∈R such that T is less than the explosion time T ∗(u). Specifically
we show that ε2H logE(eε−α p(VIX2

ε−VIX2
0−cX̃ε )) = V0I1−αφε(p,1) where α = H + 1

2 , and
φε(p, t) satisfies a family of VIEs whose solution tends uniformly to zero on [0,1] as ε → 0
for all p ∈ R and Ir denotes the r-th order fractional integral operator. We later translate
this LDP into VIX call option and implied volatility asymptotics, and we compute a
small log-moneyness expansion for the asymptotic VIX smile using expansions previously
derived in chapter 2 which yields tractable expressions for the overall level, skew and
convexity of the short-end VIX smile. We also mention Proposition 18 in [AGM18] which
shows that the derivative of the VIX implied volatility with respect to log-moneyness
at-the-money tends to a finite constant as T → 0 (as opposed to exploding power-law
behaviour ∝ T H− 1

2 ) for a standard (and mixed) rough Bergomi-type model, and we have
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verified this behaviour numerically. However numerical computations suggest that for the
rough Heston model, the [AGM18] measure of at-the-money skew does indeed appear to
be O(T H− 1

2 ) as T → 0, as one would guess from (3.24) below.

Unfortunately, since the limiting VIX smile only depends on the factor ν/
√

V0 and not
on ρ , we cannot simultaneously fit the overall level and skew of observed limiting VIX
smile using the standard rough Heston model. To circumvent this issue, the companion
article [FS21] enriches the model with an additional independent CGMY (a.k.a. KoBoL)-
type Lévy process L as in [FSV21] with Y ∈ (1,2), and using a simple modification of
the main result in [FSV21] for the Edgeworth regime where log-moneyness scales like
x
√

T , we show that one can simultaneously use the rough Heston parameters to fit the
at-the-money VIX level and skew as T → 0, and the CGMY parameters to fit the observed
level, at-the-money correction and at-the-money skew of SPX options as T → 0 (using
the main Theorem in [FSV21] adapted for our rough Heston V process), and the drift of
the V process can be made to be fully consistent with the initial observed variance curve
structure.

3.2 The Model

We consider a generalized Rough Heston model for a log stock price process Xt = logSt of
the same form in Gatheral&Radoičič[GR19]:

dXt = −1
2

Vtdt +
√

Vt(ρdWt + ρ̄dBt)

Vt = ξ0(t) + cα

∫ t

0
(t − s)α−1

ν
√

VsdWs (3.1)

for H ∈ (0, 1
2), α = H + 1

2 , cα = 1
Γ(α) and ν > 0, with some initial variance curve ξ0(t)

with ξ0(.) continuous, where W , B are two independent Brownian motions, ρ̄ =
√

1−ρ2

with |ρ| ≤ 1, and we assume X0 = 0 and zero interest rate without loss of generality. Note
we do not have a mean reversion term λ in (3.1) since such a term will not materially affect
the asymptotics at the leading order large deviations level that we consider here once we
re-calibrate to the observed initial variance curve ξ0(t), but would add further headache to
our already lengthy analysis in e.g. Appendix B.

It is not known whether we have pathwise uniqueness for (3.1) even when ξ0(t) is
constant because

√
v is not Lipschitz at zero (see section 4.2.3 in [JP20] for more on this),

but we do have weak uniqueness (see Theorem 3.4 in [ALP19]) and uniqueness in law
for V on C([0,T ]), since we can explicitly compute an exponential-affine formula for the
Fourier transform of V on pathspace in terms of a Volterra integral equation with a unique
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solution, see Appendix B (which is based on Theorem 7.1 in [ALP19]) (see also Theorem
6.1 in [ALP19]).

When ξ0(t) is a non-constant function of t, conditions were derived in [AE19b] (see
Theorem 2.1) guaranteeing the existence of a non-negative weak solution for V . An
example of such an admissible initial variance curve would be a smooth non-decreasing
function such that the spot variance V0 = ξ0(0)≥ 0. We shall assume henceforth that our
chosen ξ0 satisfies the [AE19b] conditions.

To clarify these points further, if we assume we have two solutions U and V to (3.1),

then

E((Vt −Ut)
2) =

1
Γ(α)2E(

∫ t

0
(t − s)2H−1

ν(
√

Vs −
√

Us)
2ds) (3.2)

≤ 1
Γ(α)2E(

∫ t

0
(t − s)2H−1

ν |Vs −Us|ds

≤ 1
Γ(α)2

∫ t

0
(t − s)2H−1

νE((Vs −Us)
2)

1
2 ds

so f (t) := E((Vt −Ut)
2) satisfies

f (t) ≤ 1
Γ(α)2

∫ t

0
(t − s)2H−1

ν
√

f (s)ds (3.3)

but unfortunately there is a non-zero solution to f (t) =
∫ t

0(t − s)2H−1ν
√

f (s)ds in
addition to the trivial zero solution (see Example 3.1.18 in [Brun17] for general H ∈ (0,1)
and for H = 1

2 , f (t) = 1
4ν2t2), so we cannot directly use a comparison principle in e.g.

Appendix A.2 in [ACLP19] to assert that f (t)≤ 0. If however we replace the
√

v coefficient
in (3.1) with a Lipshitz function σ(v) which agrees with

√
v for v ≥ δ > 0, this comparison

theorem approach does show that we have pathwise uniqueness for V up to the hitting time
of V to δ for any δ > 0 (see also [JP20]). One can also adapt Lemma 4.10 in [JP20] to
show that Vt > 0 Lebesgue a.e. even if V hits zero, and it is currently an open problem for
what parameter combinations this is possible.

We let Ft = FW,B
t . Then we know that ξt(u) := E(Vu|Ft) is given by

ξt(u) = ξ0(u) +
ν

Γ(α)

∫ t

0
(u− s)H− 1

2
√

VsdWs
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so

dξt(u) =
ν

Γ(α)
(u− t)H− 1

2
√

VtdWt

and VIX2
T :=− 2

∆
E(log ST+∆

ST
|FT ) =

1
∆
E(
∫ T+∆

T Vudu|FT ) =
1
∆

∫ T+∆

T ξT (u)du.

3.2.1 The small-time LDP for (VIX2
T −VIX2

0)/T
1
2−H

Using the stochastic Fubini theorem and Taylor’s remainder theorem, we see that

VIX2
T =

1
∆

∫ T+∆

T
ξT (u)du

=
1
∆

∫ T+∆

T
(ξ0(u)+

∫ T

0

ν

Γ(α)
(u− s)H− 1

2
√

VsdWs)du

=
1
∆

∫ T+∆

T
ξ0(u)du + c1

∫ T

0
((T +∆− s)

1
2+H − (T − s)

1
2+H)

√
VsdWs

=
1
∆

∫ T+∆

T
ξ0(u)du + c1

∫ T

0
((T +∆− s)

1
2+H − (T − s)

1
2+H)dX̃s (3.4)

where c1 =
ν

∆Γ(α)( 1
2+H)

and

X̃t =
∫ t

0

√
VsdWs

is the martingale component of the log stock price process X when ρ = 1.
Then using that

1
∆

∫ T+∆

T
ξ0(u)du =

1
∆

∫
∆

0
ξ0(u)du +

1
∆

T (ξ0(∆)−ξ0(0)) + o(T ) = VIX2
0 + O(T )

we (formally) expect that

VIX2
T −VIX2

0

T
1
2−H

∼ c1∆
1
2+H

T
1
2−H

∫ T

0

√
VsdWs =

cX̃T

T
1
2−H

(3.5)

as T → 0, where

c := c1∆
1
2+H =

ν

Γ(α)α
∆

H− 1
2 .

From Theorem 2.3.3 we know that X̃T/T
1
2−H satisfies an LDP with some rate function

Iρ=1(x) and speed T−2H as T → 0, so based on above we conjecture the following result,
for which the full proof is given below.
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Theorem 3.2.1 (VIX2
T − VIX2

0)/T
1
2−H satisfies the LDP as T → 0 with speed T−2H and

rate function J(x) := Iρ=1(x
c) where Iρ=1(x) is the same as I(x) in Theorem 2.3.3 for the

special case when ρ = 1, and J(x) is the Fenchel-Legendre transform of

Λ̄
ρ=1(cp) := lim

T→0
T 2H logE(e

p
T α (VIX2

T −VIX2
0))

for p ∈ (−∞, p+
c ) and Λ̄ρ=1(cp) = +∞ otherwise, where Λ̄ρ=1 and p+ are the same as

Λ̄ and p+ in Theorem 2.3.3 for the special case where the correlation ρ is +1, and c is
defined above.

The following Proposition extends and streamlines the proof of main Theorem 2.3.3 to
the case of the generalized rough Heston model in (3.1).

Proposition 3.2.2 (XT + 1
2⟨X⟩T )/T

1
2−H and XT/T

1
2−H satisfies the same LDP as T → 0

as in Theorem 2.3.3.

Proof. Recall that Xt +
1
2⟨X⟩t is just the martingale component of the log stock price Xt .

Then from Theorem B.1 in Appendix B, we know that

E(ep(Xt+
1
2 ⟨X⟩t)) = e

∫ t
0 ξ0(t−s)( 1

2 p2+ pρνψ(p,s)+ 1
2 ν2ψ(p,s)2)ds = e

∫ t
0 ξ0(t−s)Dα ψ(p,s)ds

for t ∈ [0,T ∗
ψ(p)), where ψ(p, .) satisfies the fractional Riccati VIE:

ψ(p, t) =
∫ t

0
cα(t − s)α−1(

1
2

p2 + pρνψ(p,s)+
1
2

ν
2
ψ(p,s)2)ds (3.6)

and T ∗
ψ(p) > 0 is the explosion time for ψ , and (by e.g. Appendix A) this solution is

unique. Then

E(e
p

εα ( 1
2 ⟨X⟩εt+Xεt)) = e

∫
εt
0 ξ0(εt−s)( 1

2
p2

ε2α
+ p

εα ρνψ( p
εα ,s)+ 1

2 ν2ψ( p
εα ,s)2)ds

and

ψ(
p

εα
,εt) =

∫
εt

0
cα(εt − s)α−1(

1
2

p2

ε2α
+

p
εα

ρνψ(
p

εα
,s)+

1
2

ν
2
ψ(

p
εα

,s)2)ds

= ε

∫ t

0
cα(εt − εs)α−1(

1
2

p2

ε2α
+

p
εα

ρνψ(
p

εα
,εs)+

1
2

ν
2
ψ(

p
εα

,εs)2)ds

for t ∈ [0, 1
ε
T ∗

ψ(
p

εα )). Then multiplying both sides by εα , we see that ψε(p, t) := εαψ( p
εα ,εt)

satisfies

ψ
ε(p, t) =

∫ t

0
cα(t − s)α−1(

1
2

p2 + pρνψ
ε(p,s)+

1
2

ν
2
ψ

ε(p,s)2)ds
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for t ∈ [0, 1
ε
T ∗

ψ(
p

εα )), so we see that ψε(p, .) and ψ(p, .) satisfy the same VIE, and hence
are equal. Then

ε
2H logE(e

p
εα ( 1

2 ⟨X⟩εt+Xεt)) = ε
2H loge

∫
εt
0 ξ0(εt−s)( 1

2
p2

ε2α
+ p

εα ρνψ( p
εα ,s)+ 1

2 ν2ψ( p
εα ,s)2)ds

= ε
2H logeε

∫ t
0 ξ0(εt−εs)( 1

2
p2

ε2α
+ p

εα ρνψ( p
εα ,εs)+ 1

2 ν2ψ( p
εα ,εs)2)ds

=
∫ t

0
ξ0(εt − εs)(

1
2

p2 + pρνψ(p,s)+
1
2

ν
2
ψ(p,s)2)ds

→ V0

∫ t

0
(
1
2

p2 + pρνψ(p,s)+
1
2

ν
2
ψ(p,s)2)ds (3.7)

= Λ̄(p, t) (3.8)

as ε → 0 if t < T ∗
ψ(p) using the bounded convergence theorem, since ξ0(.) is continuous at

zero and ψ is bounded on [0, t] for if t < T ∗
ψ(p). From Lemma 2.3.9 in [DZ98], we know

that Λ̄(p, t) is convex in p, and from (3.6) we also know that

d
dt

Λ(p, t) =
1
2

p2 + pρνψ(p, t) +
1
2

ν
2
ψ(p, t)2

so Λ(p, t) is differentiable in t.

Using the scaling relation in Corollary 2.3.4 we also know that Λ(p,1)= p
2H
α Λ(sgn(p), |p| 1

α ),
so setting Λ(p) := Λ(p,1) we know that Λ(p) is differentiable in p. Moreover, the
quadratic Q(w) := 1

2 p2 + ρ pνw2 + 1
2w2 has no real roots so we are in Case A or B in

[GGP19] where the VIE for ψ(p, .) has no fixed point, so T ∗
ψ is finite and explodes at rate

const./(T ∗
ψ(p)− t)α (see Lemma 3 in [GGP19]).

From the integral in (3.8) and the aforementioned known explosion rate and the scaling
relation, we see that Λ̄(p, t) also tends to +∞ as p ↗ p+ = T ∗

ψ(+1)α or as p ↘ p− =

−T ∗
ψ(−1)α , and (by convexity and differentiability) Λ is also essentially smooth. Moreover,

from the monotonicity of the Lp-norm, we know that Λ̄(p, t) = ∞ for p /∈ (p−, p+) as well.
Hence by the Gärtner-Ellis theorem from large deviations theory (see Theorem 2.3.6
in [DZ98]), (Xε +

1
2⟨X⟩ε)/ε

1
2−H satisfies the LDP as ε → 0 with speed ε−2H and rate

function I(x). Finally the LDP for Xε/ε
1
2−H is obtained using exponential equivalence as

in the proof of Theorem 2.3.3.
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Proof. (of Theorem 3.2.1). Setting T = ε to make the notation consistent with Chapter 2
and integrating (3.4) by parts, we see that

VIX2
ε − 1

∆

∫
ε+∆

ε

ξ0(u)du = VIX2
ε − VIX2

0 −ζ (3.9)

= c1

∫
ε

0
((ε +∆− s)

1
2+H − (ε − s)

1
2+H)dX̃s (3.10)

= c1∆
1
2+H X̃ε − c1α

∫
ε

0
((ε − s)H− 1

2 − (ε +∆− s)H− 1
2 )X̃sds

= c1∆
1
2+H X̃ε +

∫
ε

0
f (ε − s)X̃sds

= cX̃ε + ( f ∗ X̃)ε (3.11)

where ζ := 1
∆

∫
ε+∆

ε
ξ0(u)du−VIX2

0 = O(ε) and f (s) := c1α((s+∆)H− 1
2 − sH− 1

2 ) and we
note that f ∈ L2. As discussed above, from Theorem 2.3.3 we know that the leading order
term cX̃T/T

1
2−H satisfies the stated LDP as T → 0, so the issue is just to argue away the

remainder term, using exponential equivalance as in Chapter 2.

From Theorem B.1 (which is adapted from Eqs 2.8-2.10 in [AE19b] and Lemma 7.3
in [ALP19]), we know that

E(ep
∫

ε

0 f (ε−s)X̃sds) = e
∫

ε

0 ξ0(ε−s)Dα ψ2(p,s)ds = e
∫

ε

0 ξ0(ε−s)g(p,s)ds

where

ψ1(p, t) = p
∫ t

0
f (s)ds (3.12)

ψ2(p, t) =
∫ t

0
cα(t − s)α−1(

1
2

ψ1(p,s)2 + ψ1(p,s)νψ2(p,s)+
1
2

ν
2
ψ2(p,s)2)ds

for ε ≤ Tψ2(p) where Tψ2(p) is the explosion time for ψ2 (note that g(p, t) :=Dαψ2(p, t) =
1
2ψ1(p, t)2 + ψ1(p, t)νψ2(p, t)+ 1

2ν2ψ2(p, t)2) , and recall that f (s) := c1α((s+∆)H− 1
2 −

sH− 1
2 ). We first note that

ψ1(ε
−α p,εt) =

p

εH+ 1
2

c1α

∫
εt

0
((s+∆)H− 1

2 − sH− 1
2 )ds = pcε

−αhε(t) (3.13)

where hε denotes the bounded, continuous function

hε(t) := ∆
− 1

2−H
α

∫
εt

0
((s+∆)H− 1

2 − sH− 1
2 )ds ≤ 0

defined for t ∈ [0,1], which tends to zero pointwise as ε → 0 (this will be needed below).
Then

69



3.2 The Model

ψ2(pε
−α ,εt) =

∫
εt

0
cα(εt − s)α−1(

1
2

ψ1(pε
−α ,s)2 + ψ1(pε

−α ,s)νψ2(pε
−α ,s)

+
1
2

ν
2
ψ2(pε

−α ,s)2)ds

= ε

∫ t

0
cα(εt − εs)α−1(

1
2

ψ1(pε
−α ,εs)2 + ψ1(pε

−α ,εs)νψ2(pε
−α ,εs)

+
1
2

ν
2
ψ2(pε

−α ,εs)2)ds

= ε
α

∫ t

0
cα(t − s)α−1(

1
2
(pcε

−αhε(s))2 + pcε
−αhε(s)νψ2(pε

−α ,εs)

+
1
2

ν
2
ψ2(pε

−α ,εs)2)ds

for t ∈ [0, 1
ε
Tψ2(ε

−α p)). Multiplying by εα and cancelling powers of ε , we see that

ψ
ε
2 (p, t) := ε

α
ψ2(pε

−α ,εt) (3.14)

=
∫ t

0
cα(t − s)α−1(

1
2
(pchε(s))2 + pchε(s)ρνψ

ε
2 (p,s)+

1
2

ν
2
ψ

ε
2 (p,s)2)ds

i.e. ψε
2 (p, t) satisfies

Dα
ψ

ε
2 (p, t) =

1
2
(pchε(t)+νψ

ε
2 (p, t))2 . (3.15)

Then we see that

ε
2H logE(epε−α (VIX2

ε−ζ−VIX2
0−cX̃ε )) = ε

2H logE(epε−α
∫

ε

0 f (ε−s)X̃sds)

= ε
2H loge

∫
ε

0 ξ0(ε−s)g(pε−α ,s)ds

= ε
2H logeε

∫ 1
0 ξ0(ε−εu)g(pε−α ,εu)du

= ε
2α

∫ 1

0
ξ0(ε − εu)g(pε

−α ,εu)du

=
∫ 1

0
ξ0(ε − εu)gε(p,u)du

=
∫ 1

0
ξ0(ε − εu)

1
2
(pchε(s)+νψ

ε
2 (p,s))2ds .

where gε(p,u) := ε2αg(pε−α ,εu).

Recall that hε(t) → 0 as ε → 0, so we expect ψε(t) to tend to zero as well. To use
Theorem 13.1.1 in [GLS90] to prove this, we first need to verify uniqueness for the
solution ψε , which we can do using the general argument given in Appendix A.

Since (3.15) with hε replaced by zero has a unique solution equal to the zero function,
from Theorem 13.1.1 i) in [GLS90] we know there is a subsequence εn such that ψεn(p, t)
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converges uniformly to zero on [0,1]. Now suppose ψε(p, .) does not converge uniformly
to zero. Then we can find a subsequence εk such that ψεk(p, .) stays uniformly far from
zero for all k ∈ N. This subsequence has no subsequence that converges to zero, which
contradicts Theorem 13.1.1 i) in [GLS90].

Then using (3.15) and the bounded convergence theorem and the continuity of ξ0(t) at
t = 0 we see that

lim
ε→0

ε
2H logE(epε−α (VIX2

ε−ζ−VIX2
0−cX̃ε )) = lim

ε→0

∫ 1

0
ξ0(ε − εu)Dαgε(p,u)du

= 0 (3.16)

for all p ∈ R, and since ζ = O(ε) the limit is unchanged if we remove ζ here. Finally,
setting RT := VIX2

T −VIX2
0 − cX̃T , and using (3.16) we see that for x > 0 and p > 0

lim
T→0

T 2H log P(
RT

T
1
2−H

> x) ≤ lim
T→0

T 2H log E(e
p

T 2H (
RT

T
1
2−H

−x)
) = 0− xp

and taking the inf over p ≥ 0 we see that the left hand side is −∞. Similarly for x < 0 and
p < 0

lim
T→0

T 2H log P(
RT

T
1
2−H

< x) ≤ lim
T→0

T 2H log E(e
p

T 2H (
RT

T
1
2−H

−x)
) = −xp

and again we can take the inf over p ≤ 0. Combining these observations, we see that

lim
T→0

T 2H log P(| RT

T
1
2−H

|> x) = −∞

which shows that (VIX2
T −VIX2

0 −ζ )/T
1
2−H and cX̃T/T

1
2−H are exponentially equivalent

as T → 0 (where ζ is defined in (3.10)) (see Definition 4.2.10 in [DZ98]), so the LDP
follows from Theorem 4.2.13 in [DZ98] (as used in Theorem 2.3.3). Finally we can
remove the ζ term here since ζ is deterministic and o(T

1
2−H) so (VIX2

T −VIX2
0)/T

1
2−H

and cX̃T/T
1
2−H are also exponentially equivalent.

Remark 3.2.1 The lower bound for p in Theorem 3.2.1 is −∞ (as opposed to some finite
negative constant p−) because for ρ = 1 and p < 0, Λ̄ρ=1(.) falls under case C for the
ABCD classification used in [GGP19] (for our case we have to use driftless versions of
the quantities defined in Eq 7 and 8 in [GGP19]; specifically c1(u) = 1

2u2, e0(u) = 1
2ρνu

and e1(u) = e0(u)2 − 1
4ν2u2, because we are working with X̃ not the true log stock price

process X). But since the ρ value associated with the X̃ process is 1, we are in the special
double root case for Eq 10 in [GGP19] where e1(u) = 0 (borderline between C and B), but
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3.2 The Model

since we still fall in Case C, there is no explosion for the VIE in Eq 2.25 for any negative
p-value.

Remark 3.2.2 For the driftless case where ξ0(t) ≡ V0, using a simple ansatz and local
martingale arguments, Proposition 4.6 in [GK19] derives the following exponential-affine
formula for the mgf of

∫ T+∆

T ξT (u)du:

E(eh
∫ T+∆

T (ξT (u)−V0)du) = eV0
∫ T

0 g(T+∆−u)du = eV0
∫

∆+T
∆

g(s)ds

for h in a certain interval, where g satisfies the non-standard VIE g(t) = 1
2(
∫ t

0
ν

Γ(α)(t −
v)H− 1

2 g(v)dv)2 for t ≥ ∆ and g(t) = h for t ∈ [0,∆] (note g is discontinuous at t = ∆ or else
we have a contradiction). This is clearly very relevant for pricing VIX options at non-zero
maturities using Fourier inversion methods (see Subsection 3.2.6 for more details), but we
will not need to use this VIE here.

3.2.2 VIX call option asymptotics

We now translate the LDP in Theorem 3.2.1 into small-time asymptotics for VIX call
options for the same large deviations regime used in Chapter 2:

Corollary 3.2.3 For x > 0 we have the following asymptotic behaviour for close-to-the
money VIX call option prices:

lim
T→0

T 2H logE((VIXT −VIX0exT
1
2−H

)+) = −J(2VIX2
0x)

where J is the rate function defined in the main Theorem 3.2.1.

Proof. See Appendix D.

Remark 3.2.3 For x < 0 (using very similar arguments), we obtain the following small-
time behaviour for close-to-the-money VIX put options:

lim
T→0

T 2H logE((VIX0exT
1
2−H

−VIXT )+) = −J(2VIX2
0x) .

3.2.3 VIX future and implied volatility asymptotics

Lemma 3.2.4 VIX2
T−VIX2

0√
T

tends weakly to c
√

V0Z, where Z is a standard Normal.
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Proof. From Theorem 3.3.2 (which is adapted from Eqs 2.8-2.10 in [AE19b] and Lemma
7.3 in [ALP19]), we know that

E(epcX̃ε+p
∫

ε

0 f (ε−s)X̃sds) = e
∫

ε

0 ξ0(ε−s)Dα ψ2(p,s)ds = e
∫

ε

0 ξ0(ε−s)g(p,s)ds

where (not to be confused with the ψ functions of the previous subsection)

ψ1(p, t) = p(c+
∫ t

0
f (s)ds) (3.17)

ψ2(p, t) =
∫ t

0
cα(t − s)α−1(

1
2

ψ1(p,s)2 + ψ1(p,s)νψ2(p,s)+
1
2

ν
2
ψ2(p,s)2)ds

for ε ≤ T ∗
ψ2
(p) where T ∗

ψ2
(p) is the explosion time for ψ2 (where g(p, t) := Dαψ2(p, t) =

1
2ψ1(p, t)2 + ψ1(p, t)ρνψ2(p, t)+ 1

2ν2ψ2(p, t)2) , and recall that f (s) := c1α((s+∆)H− 1
2 −

sH− 1
2 ). We first note that

ψ1(ε
− 1

2 p,εt) = pε
− 1

2 c +
p

ε
1
2

c1α

∫
εt

0
((s+∆)H− 1

2 − sH− 1
2 )ds (3.18)

= pcε
− 1

2 (1+hε(t))

where hε is defined as above. Then

ψ2(pε
− 1

2 ,εt) =
∫

εt

0
cα(εt − s)α−1(

1
2

ψ1(pε
− 1

2 ,s)2 + ψ1(pε
− 1

2 ,s)νψ2(pε
− 1

2 ,s) (3.19)

+
1
2

ν
2
ψ2(pε

− 1
2 ,s)2)ds

= ε

∫ t

0
cα(εt − εs)α−1(

1
2

ψ1(pε
− 1

2 ,εs)2 + ψ1(pε
− 1

2 ,εs)νψ2(pε
− 1

2 ,εs)

+
1
2

ν
2
ψ2(pε

− 1
2 ,εs)2)ds

= ε
α

∫ t

0
cα(t − s)α−1(

1
2
(pcε

− 1
2 (1+hε(s)))2 + pcε

− 1
2 (1+hε(s))νψ2(pε

− 1
2 ,εs)

+
1
2

ν
2
ψ2(pε

− 1
2 ,εs)2)ds

for t ∈ [0, 1
ε
Tψ2(ε

− 1
2 p)). Multiplying by

√
ε and cancelling powers of ε , we see that

ψε
2 (p, t) :=

√
εψ2(pε−

1
2 , t) satisfies

ψ
ε
2 (p, t) := ε

H
∫ t

0
cα(t − s)α−1(

1
2
(pc(1+hε(s))2 + pc(1+hε(s))νψ

ε
2 (p,s)+

1
2

ν
2
ψ

ε
2 (p,s)2)ds
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3.2 The Model

i.e. ψε
2 (p, t) satisfies Dαψε

2 (p, t) = 1
2εH(pc(1+hε(t))+νψε

2 (p, t))2. Then we see that

E(epε
− 1

2 (VIX2
ε−ζ−VIX2

0)) = e
∫

ε

0 ξ0(ε−s) 1
2 (ψ1(

p√
ε
,s)+νψ2(

p√
ε
,s))2ds

= eε
∫ 1

0 ξ0(ε−εs) 1
2 (ψ1(

p√
ε
,εs)+νψ2(

p√
ε
,εs))2ds

= eε
∫ 1

0 ξ0(ε−εs) 1
2 (pcε

− 1
2 (1+hε (t))+νψ2(

p√
ε
,εs))2ds

= e
∫ 1

0 ξ0(ε−εs) 1
2 (pc(1+hε (t))+νψε

2 (p,s))2ds .

εH and hε(t)→ 0 as ε → 0, so we expect ψε
2 (t) to tend to zero as well. To use Theorem

13.1.1 in [GLS90] to prove this, we first need to verify uniqueness for the solution ψε ,
which we can do using the general argument given in Appendix A.

From Theorem 13.1.1 i) in [GLS90] (as above) we know that ψε
2 (p, .) converges

uniformly to zero on any compact interval, and ψε
2 (p, t) is continuous in ε and t on {(ε, t) :

ε ∈ [0,1),0 ≤ t < T ∗
ε (p)}. Then using the above equations, the bounded convergence

theorem and the continuity of ξ0(t) at t = 0 we see that

lim
ε→0

E(epε
− 1

2 (VIX2
ε−ζ−VIX2

0)) = e
1
2 p2V0c2

for all p ∈ R, and since ζ = O(ε) the limit is unchanged if we remove ζ here. Finally,
since Theorem 13.1.1 in [GLS90] is multi-dimensional, we can apply it to (Re(ψ), Im(ψ))

with p replaced by ik with k ∈R as we discuss in Section 2.5. The result then follows from
Lévy’s convergence theorem.

We also have the following asymptotic estimate for the small-time behaviour of VIX
futures which will be needed for the implied volatility asymptotics below.

Lemma 3.2.5 E(VIXT −VIX0) = O(
√

T ) as T → 0.

Proof. Recall that VIX2
ε − VIX2

0 −ζ = cX̃ε + ( f ∗ X̃)ε from (3.11) where ζ = O(ε) and
f (s) := c1α((s+∆)H− 1

2 − sH− 1
2 ) and setting X̂t :=

√
V0
∫ t

0(ρdWt + ρ̄dBt) and ε = t, we
see that

E((VIX2
t − VIX2

0 −ζ )2)
1
2 = E((cX̃t + ( f ∗ X̃)t)

2)
1
2

≤ E([c(X̃t − X̂t) + ( f ∗ (X̃ − X̂))t ]
2)

1
2 + E((cX̂t + ( f ∗ X̂)t)

2)
1
2

≤ cE((X̃t − X̂t)
2)

1
2 + E(( f ∗ (X̃ − X̂))2

t )
1
2 + c

√
V0
√

t

+ E((
∫ t

0
f (t − s)

∫ s

0

√
V0dWuds)2)

1
2 .
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Using stochastic Fubini we can re-write the final term as E((
√

V0
∫ t

0
∫ t

u f (t−s)dsdWu)
2)

1
2 =

O(t). We also note that

E((X̃t − X̂t)
2) =

∫ t

0
E((

√
Vs −

√
V0)

2)ds =
∫ t

0
(ξ0(s)+2

√
V0E(

√
Vs)+V0)ds

≤
∫ t

0
(ξ0(s)+2

√
V0E(Vs)

1
2 +V0)ds

≤
∫ t

0
(ξ0(s)+2

√
V0ξ0(s)

1
2 +V0)ds ∼ 4V0t (3.20)

as t → 0, and for the convolution term (from Jensen) we see that

E(( f ∗ (X̃ − X̂))2
t )

1
2 = E((t · 1

t

∫ t

0
f (t − s)(X̃s − X̂s)ds)2)

1
2 (3.21)

≤ t
∫ t

0
f (t − s)2E((X̃s − X̂s)

2)ds = O(t) .

using (3.20) and the fact that f ∈ L2.

Putting all this together, we see that 1√
tE((VIX2

t − VIX2
0−ζ )2)

1
2 ≤ c̄ for some constant

c̄ > 0 and t sufficiently small, and since ζ = O(t) we can remove the ζ term and the

result still holds. Thus ϒT := VIX2
T −VIX2

0√
T

is U.I., and (from Lemma 3.2.4) we know that

ϒT
w→c

√
V0Z as ε → 0, where Z is a standard Normal.

Then from (3.10) and the Ito isometry we know that

E((VIX2
T −VIX2

0)
2)

1
2 ≤ E((VIX2

T − 1
∆

∫ T+∆

T
ξ0(u)du)2)

1
2 + | 1

∆

∫ T+∆

T
ξ0(u)du−VIX2

0|

= c1(
∫ T

0
((T +∆− s)

1
2+H − (T − s)

1
2+H)2

ξ0(s)ds)
1
2 + |ζ | → 0 (3.22)

as T → 0, so VIX2
T → VIX2

0 in L2 and hence also in probability.

Now define YT := 1
VIXT+VIX0

. Then YT is a continuous function of VIX2
T so (by the con-

tinuous mapping theorem) YT →Y0 (a constant) in probability, and clearly YT ≤ 1
VIX0

. Note

that VIXT−VIX0√
T

= ϒTYT , and from above we know that ϒT
w→c

√
V0Z. From the general

standard result that if Xn
w→X and Yn → c (a constant) in probability, then (Xn,Yn)

w→(X ,c),
we see that (ϒT ,YT ) tends weakly to (c

√
V0Z,Y0), and from the continuous mapping theo-

rem ϒTYT tends weakly to Y0Z. Moreover, YT is uniformly bounded so ϒTYT is also U.I.
Then by Theorem 3.5 in Billingsley[Bil99], E(ϒTYT )→ Y0E(Z) = 0.
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3.2 The Model

Corollary 3.2.6 If σ̂VIX(K,T ) denotes the implied volatility of a VIX call or put option
with strike K, we see that

σ̂VIX(x) := lim
T→0

σ̂VIX(VIX0exT H− 1
2 ,T ) =

|x|√
2J(2VIX2

0x)
(3.23)

for x ∈ R, where J is the rate function introduced in the main Theorem 3.2.1.

Proof. Let CBS(S,K,σ ,T ) denote the usual Black-Scholes call option formula with zero
interest rate and dividend. Then can easily verify that for any b ∈ R

lim
T→0

T 2H logCBS(VIX0 +b
√

T ,VIX0exT
1
2−H

,σ ,T ) = − x2

2σ2

so from Lemma 3.2.5 (and using that CBS is monotonic in its first argument) we see that

lim
T→0

T 2H logCBS(E(VIXT ),VIX0exT
1
2−H

,σ ,T ) = − x2

2σ2 .

For any δ ∈ (0,J(2VIX2
0x)), we can then choose σ so that −J(2VIX2

0x) =− x2

2σ2 −δ . Then
from Corollary 3.2.3

−J(2VIX2
0x) = limsup

T→0
T 2H logE((VIXT −VIX0exT

1
2−H

)+)

= limsup
T→0

T 2H logCBS(E(VIXT ),VIX0exT
1
2−H

, σ̂VIX(x,T ),T )

< lim
T→0

T 2H logCBS(E(VIXT ),VIX0exT
1
2−H

,σ ,T ) = − x2

2σ2 .

Since CBS(.) is monotonically increasing in the σ argument, we see that limsupT→0 σ̂VIX(x,T )≤
σ . Finally we let δ → 0, and we proceed similarly for the lower bound.

3.2.4 Small log-moneyness expansions

Using section 2.3.4, we obtain the following small-moneyness expansion

Λ̄
ρ=1(p) =

1
2

V0 p2 +
V0ν

2Γ(2+α)
p3 + O(p3)

(Λ̄ρ=1)∗(x) =
1
2

x2

V0
− νx3

2V 2
0 Γ(2+α)

+ O(x4)
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Fig. 3.1 Here we have plotted the factor Γ(2+α)2Γ(1+2α)+Γ(1+α)2(4Γ(2+α)2−6Γ(2+2α))
4Γ(1+α)2Γ(2+α)2Γ(2+2α)

which
appears in the convexity term in (3.24) as a function of α , and we see that this factor is
strictly negative for all admissible α values.

and combining this with (3.23) we find that

σ̂VIX(x) =
c̄ν

√
V0

2VIX2
0
+

νx
2
√

V0Γ(2+α)

+
VIX2

0να∆1−αΓ(α)

V
3
2

0

Γ(2+α)2Γ(1+2α)+Γ(1+α)2(4Γ(2+α)2 −6Γ(2+2α))

4Γ(1+α)2Γ(2+α)2Γ(2+2α)
x2

+ O(x3)

(3.24)

where c̄ := 1
Γ(α)α ∆α−1 and we see that the linear skew term is positive, and note there is

no VIX smile if ν = 0, since in this case Vt is constant. Moreover, since the fraction in
front of the x2 term only depends on α , we can readily verify from a graph that the O(x2)

convexity term is strictly negative (see Figure 3.1 below), which is consistent with what is
observed in practice, see e.g. [JMP21] and plots in [GJR20],[Guy20],[DeM18],[HJT20]
et al. for more on this point. Since V0 is already fixed from ξ0() i.e. V0 = ξ0(0) we see
that we cannot independently fit the overall level and the skew of the VIX smile in the
small-T limit. This issue is addressed in the companion article [FS21] by the addition of
an independent CGMY-jump component to the model which allows the SPX and VIX
short-maturity smiles to decouple in some sense.

3.2.5 The Edgeworth regime

Proceeding as in [FSV21], we have also formally verified the following asymptotic be-
haviour for VIX options in the Edgeworth regime under driftless rough Heston model
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:

σ̂VIX(
√

V0ex
√

T ,T ) =
ν√
V0

(
∆α−1

2αΓ(α)
+

1
2Γ(2+α)

xT H + o(T H))

and we see that the at-the-money and skew terms are essentially the same as in the large
deviations regime in (3.24). Since the answer is not surprising, we omit the details of
the proof. To make this rigorous would require very fiddly tail estimates with Fourier
arguments as in [EFGR19], which is beyond the scope of the discussion here.

3.2.6 Fourier inversion formula for VIX calls for T > 0

Note we have the following Fourier inversion formula for exact pricing of VIX call options,
where we have used Cauchy and Fubini’s theorem in the first and second lines respectively:

E((VIXT −K)+) =
1

2π

∫
∞

0
(v

1
2 −K)+

∫
∞

−∞

e−i(u−ia)v
φ(u− ia,T )dudv

=
1

2π

∫
∞

−∞

φ(u− ia,T )
∫

∞

0
(v

1
2 −K)+e−i(u−ia)vdvdu

=
1

2
√

π

∫
∞

−∞

φ(u− ia,T )
Erfc(K

√
a+ iu)

2(a+ iu)
3
2

du

where φ(u,T ) := eV0I1−α ψ2(iu,T ) is the characteristic function of VIX2
T , Erfc is the comple-

mentary error function and a > 0 such that ia is inside the strip of analyticity of φ(.,T )
(the condition Tψ2(Re(a))> T is sufficient for this, by the same reasoning as in the proof
of Theorem 7 of [GGP19]).

3.3 Appendix

3.3.1 Appendix A: Uniqueness of solutions to fractional Riccati VIEs

Following Theorem 3.1.2 and 3.1.4 in Chapter 3 in [Brun17], we consider a general
non-linear VIE of the form

u(t) =
∫ t

0

1
Γ(α)

(t − s)H− 1
2 (

1
2
(p+h(s))2 +ν(p+h(s))u(s)+

1
2

ν
2u(s)2)ds (A.1)

where h is bounded and continuous, and suppose we have two continuous solutions u and
u2 to (A.1) on some interval [0,T ]. Then

|u2(t)−u(t)| ≤
∫ t

0
(t − s)H− 1

2 L|u2(s)−u(s)|ds
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Fig. 3.2 Here we have plotted Λ̄ρ=1(pc) in blue using an Adams scheme with 2000
time steps applied to the driftless rough Heston VIE in Eq 2.25 with ρ = 1 versus
T 2H logE(e

p
T α (VIX2

T −V0)) (red) obtained using Monte Carlo for T = .0001, ξ0(t) =V0 =
.04, H = .25, ν = .25, and ∆ = 1/12 with 100,000 simulations, and we see both quantities
are in close agreement.
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Fig. 3.3 Here we have computed σ̂(x) using the same method as for Figure 2.3 with 15
terms (blue) verses the VIX implied volatility computed using Monte Carlo (crosses) for
T = .0001, V0 = 1, H = .25, ν = .25 and ∆ = 1 with 10,000,000 simulations and 200 time
steps. It is difficult to verify exact agreement here since we can no longer exploit the usual
Romano-Touzi/Willard conditioning trick for the Monte Carlo since ρ is effectively 1 here,
and because of this the MC results for the left portion of the smile are less accurate since
there is a significantly lower exponentially small probability that these (put) options expire
in-the-money.
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for some local Lipschitz constant L (since the function 1
2(p+h(s))2+ν(p+h(s))u+ 1

2ν2u2

is locally Lipschitz in u), and we write this more succinctly as ∆ ≤−k ∗∆, where k(t) :=
−LtH− 1

2 and ∆= |u2−u1|. The Laplace transform of k is k̂(λ )=−cλ−α where c= LΓ(α),
and (from the definition of Eq 2.11 in [ALP19]) the resolvent r of k satisfies

k ∗ r = k− r

which implies that

k̂r̂ = k̂− r̂

and hence

r̂(λ ) = 1 − (1+ k̂(λ ))−1 =
c

c−λ α
.

Then r̂ is the Laplace transform of r(t) =−ctα−1Eα,α(ctα) which is non-positive (see e.g.
Table 1 in [ALP19] with c 7→ −c and end of proof of Proposition 2.2.1). Then using the
following Lemma (taken from Appendix A.2 in [ACLP19]), we see that in fact ∆ ≡ 0, so
we have uniqueness.

Lemma 3.3.1 (See Appendix A.2 in [ACLP19]. Suppose f ,g,k ∈ L1([0,T ]). Assume k
has non-positive resolvent r. Then if f ≤ g− k ∗ f , then f ≤ g− r ∗g.

Proof. Write f + k ∗ f = g−h for h ≥ 0, so f̂ + k̂ f̂ = ĝ− ĥ . Then from the definition of
the resolvent: k̂r̂ = k̂ − r̂ we find that

f̂ +
r̂

1− r̂
f̂ = ĝ− ĥ

⇒ f̂ (1− r̂) + r̂ f̂ = f̂ = ĝ− ĥ− r̂(ĝ− ĥ)

so f = g−h− r ∗ (g−h)≤ g− r ∗g .

3.3.2 Appendix B: Derivation of the VIE

Theorem 3.3.2 (minor variant of Theorem 7.1 in [ALP19] without their restriction that
Re(ψ1) ∈ [0,1] and no drift term). Consider the d-dimensional stochastic convolution
equation:

Xt = X0(t) +
∫ t

0
K̃(t − s)σ(Xs)dWs
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so E(Xt) = X0(t), where K̃ ∈ L2([0,T ];Rd×d), a(x) = σT (x)σ(x) = x1A1 + ...+ xdAd , Ai

is a (symmetric) d ×d matrix for each i = 1..d, A(u) = (uA1uT ,uA2uT , ...,uAduT ), W is a
d-dimensional Brownian motion, and

ψ = uK̃ + ( f +
1
2

A(ψ))∗ K̃ (B.1)

for f ∈ L1 and let Y satisfy dYt =−1
2ψ(T − t)2σ(Xt)

2dt +ψ(T − t)σ(Xt)dWt with

Y0 = uX0(T ) + ( f ∗X0)T +
1
2

∫ T

0
ψ(T − s)a(X0(t))ψ(T − s)T ds .

Then if ψ is bounded on [0,T ], then eY is an FW
t -martingale on [0,T ] and we have the

exponential-affine formula:

E(euXT+( f∗X)T |FW
t ) = eYt .

For our specific case of interest for the Rough Heston model, f2 = 0, u2 = 0 and X0(t) =
(0,ξ0(t)) so we can re-write (B.1) in component form as

ψ1 = u1 + f1 ∗1

ψ2 = u2K +
1
2
(ψ2

1 +2νψ1ψ2 +ν
2
ψ

2
2 )∗K = IαF(ψ1,ψ2)

where K(t) = tα−1

Γ(α) and F(ψ1,ψ2) =
1
2(ψ1 + νψ2)

2, and Y0 = uX0(T ) + ( f ∗ X0)T +
1
2
∫ T

0 ψ(T − s)a(X0(T ))ψ(T − s)T ds = I1(ξ0(T − (.))Dαψ2)(T ) , which further simpli-
fies to the familiar expression V0I1−αψ2(T ) if ξ0(.) is flat.

Proof. We let Ft := FW
t throughout, and we first note that

E(Xs|Ft) = X0(s) +
∫ s∧t

0
K̃(s− v)dMv (B.2)

where dMt = σ(Xt)dWt . Now let

Yt = E(uXT +
∫ T

0
f (T − s)Xsds|Ft) +

1
2
(
∫ T

0
−
∫ t

0
)ψ(T − s)a(E(Xs|Ft))ψ(T − s)T ds
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for t ≤ T . Using (B.2) and the affine property of a(.) we can re-write Yt in the form
Y0 +(...) as

Yt = uX0(T ) + ( f ∗X0)(T ) +
1
2

∫ T

0
ψ(T − s)a(X0(s))ψ(T − s)T ds

+ u
∫ t

0
K̃(T − s)dMs +

∫ T

0
f (T − s)

∫ s∧t

0
K̃(s− v)dMvds (B.3)

+
1
2

∫ T

0
ψ(T − s)a(

∫ s∧t

0
K̃(s− v)dMv)ψ(T − s)T ds .− 1

2

∫ t

0
ψ(T − s)a(Xs)ψ(T − s)T ds

(the sum of the three terms on the right hand side in the first line here is Y0). From Fubini
we see that the fifth term here can be re-written as∫ T

0
f (T − s)

∫ s∧t

0
K̃(s− v)dMvds =

∫ t

0

∫ T

v
f (T − s)K̃(s− v)dsdMv .

Similarly

∫ T

0
ψ(T − s)a(

∫ s∧t

0
K̃(s− v)dMv)ψ(T − s)T ds (B.4)

=
∫ T

0
ψ(T − s)(

d

∑
i=1

Ai
∫ s∧t

0
K̃(s− v)dMi

v)ψ(T − s)T ds

=
∫ t

0

∫ T

v
A(ψ(T − s))K̃(s− v)dsdMv

and recall that A(u) = (uA1(u)uT ,uA2(u)uT , ...,uA(u)duT ). Thus

Yt = Y0 + u
∫ t

0
K̃(T − v)dMv +

∫ t

0

∫ T

v
f (T − s)K̃(s− v)dsdMv

+
1
2

∫ t

0

∫ T

v
A(ψ(T − s))K̃(s− v)dsdMv −

1
2

∫ t

0
ψ(T − s)a(Xs)ψ(T − s)T ds

= Y0 +
∫ t

0
(uK̃(T − v)+

∫ T

v
f (T − s)K̃(s− v)ds +

1
2

∫ T

v
A(ψ(T − s))K̃(s− v)ds)dMv

− 1
2

∫ t

0
ψ(T − s)a(Xs)ψ(T − s)T ds

and we note that ∫ T

v
f (T − s)K̃(s− v)ds =

∫ T−v

0
f (T − (s+ v))K̃(s)ds

= (K̃ ∗ f )(T − v)

and similarly
∫ T

v
A(ψ(T − s))K̃(s− v)ds = (A(ψ)∗ K̃)(T − v)
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so

Yt = Y0 +
∫ t

0
(uK̃(T − v)+( f ∗ K̃)(T − v) +

1
2
(A(ψ)∗ K̃)(T − v))dMv

− 1
2

∫ t

0
ψ(T − s)a(Xs)ψ(T − s)T ds .

Comparing this expression to the “Driftless” Ricccati eq:

ψ = uK̃ + ( f +
1
2

A(ψ))∗ K̃

we see that

Yt = Y0 +
∫ t

0
ψ(T − s)σ(Xs)dWs −

1
2

∫ t

0
ψ(T − s)a(Xs)ψ(T − s)T ds

so eYt is a local martingale. If eY is a true martingale on [0,T ] (see the end of the proof for
clarification on this point), then E(eYT |Ft) = eYt and in particular

E(eYT ) = E(euXT+( f∗X)T ) = eY0 = euX0(T )+( f∗X0)(T )+ 1
2
∫ T

0 ψ(T−s)a(X0(s))ψ(T−s)T ds .(B.5)

In our specific case Xt =

(
X̃t

Vt

)
with kernel K̃ =

(
1 0
0 K

)
and X0(t) = (0,ξ0(t)). Then

σ(Xt) =
√

Vt

(
0 1
0 ν

)
so

a(Xt) := σ(Xt)σ
T (Xt) = Vt

(
0 1
0 ν

)(
0 0
1 ν

)
= Vt

(
1 ν

ν ν2

)

which implies that A1 = 0 and

A2(ψ) =
(

ψ1 ψ2

)(1 ν

ν ν2

)(
ψ1

ψ2

)
= ψ

2
1 +2νψ2 +ν

2
ψ

2
2 .

Then the Riccati-Volterra eq becomes:

ψ =
(

ψ1 ψ2

)
= uK̃ + ( f +

1
2

A(ψ))∗ K̃

= (u1,u2)

(
1 0
0 K

)
+ (( f1,0)+

1
2
(0,ψ2

1 +2νψ1ψ2 +ν
2
ψ

2
2 ))∗

(
1 0
0 K

)
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which we can re-write as

ψ1 = u1 + f1 ∗1

ψ2 = u2K +
1
2
(ψ2

1 +2νψ1ψ2 +ν
2
ψ

2
2 )∗K = u2K + IαF(ψ1,ψ2) . (B.6)

and

Y0 = u2ξ0(T ) + ( f ∗X)0 +
1
2

∫ T

0
ψ(T − s)a(X0(s))ψ(T − s)T ds

and

1
2

ψ(T − s)a(X0(t))ψT (T − s) = ξ0(t)(ψ1(T − s),ψ2(T − s))

(
1 ν

ν ν2

)(
ψ1(T − s)
ψ2(T − s)

)
= ξ0(t)(ψ2

1 +2νψ1ψ2 +ν
2
ψ

2
2 )

so

Y0 = u2ξ0(T ) + ( f ∗X)0 +
1
2

∫ T

0
ψ(s)a(X0(T − s))ψ(s)T ds

= u2ξ0(T ) + ( f ∗X)0 +
1
2

∫ T

0
ξ0(T − s)(ψ1(s)2 +2νψ1(s)ψ2(s)+ν

2
ψ2(s)2)ds

= u2ξ0(T ) + ( f ∗X)0 + I1(ξ (T − (.))Dα(ψ2 −u2K))(T )

= ( f ∗X)0 + I1(ξ (T − (.))Dα
ψ2)(T )

(where we have used (B.6) for the second equality and (I1−αK)(t) = 1 for the final
equality.) which is the exponent in (B.5). Moreover

Yt = ξ0(T ) +
∫ t

0
ψ(T − s)σ(Xs)dWs −

1
2

∫ t

0
ψ(T − s)a(Xs)ψ(T − s)T ds

so

dYt = ψ(T − t)σ(Xt)dWt −
1
2

ψ(T − t)a(Xt)ψ(T − t)T dt

=
√

Vt(ψ1(T − t)+νψ2(T − t))dW 2
t − 1

2
Vt(ψ1(T − t)2 +νψ1(T − t))2dt .

Then from Lemma 7.3 in [ALP19], eY is a genuine FW
t -martingale on [0,T ] if ψ1+νψ2 ∈

L∞([0,T ]) and since f is integrable, ψ2 ∈ L∞ implies ψ1 + νψ2 ∈ L∞, and ψ2 ∈ L∞ if
T ∗(u)> T (where T ∗(u) is the explosion time for ψ2) since the solution to the VIE for ψ2

is continuous up to the explosion time.
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3.3.3 Appendix C: Uniform moment bound

Lemma 3.3.3 (see also Lemma 3.1 in [ALP19] and Lemma A.1 in [JP20]). For m ≥ 2

sup
t≤T

E(V m
t ) ≤ cm,T

for some finite constant cm,T which depends on m and T and the model parameters.

Proof. Setting K(t) = tα−1/Γ(α) and using the Bukholder-Davis-Gundy inequality ap-
plied to the martingale Mu :=

∫ u
0 K(t − s)

√
VsdWs at t = u, we see that

E(V m
t ) = E((ξ0(t)+

∫ t

0
K(t − s)

√
VsdWs)

m)

≤ 2m
ξ0(t)m + 2mCmE((

∫ t

0
K(t − s)2Vsds)

1
2 m)

= 2m
ξ0(t)m + 2mCmE((

∫ t

0
K(t − s)2− 4

m K(t − s)
4
mVsds)

1
2 m)

≤ 2m
ξ0(t)m + 2mCm∥K∥m−2

2

∫ t

0
K(t − s)2E(V

1
2 m

s )ds

≤ 2m
ξ0(t)m + 2mCm∥K∥m−2

2

∫ t

0
K(t − s)2E(a(1+Vs)

m)ds

where we have used Hölder’s inequality with p = 1
2m and q = (1−1/p)−1 in the final line

as in Appendix A.2 in [JP20], so f (t) := E(V m
t ) satisfies

f (t) ≤ c + c
∫ t

0
K(t − s)2 f (s)ds = c + c

∫ t

0
(t − s)α2−1 f (s)ds

for some constant c > 0 and t ∈ [0,T ], where α2 = 2H. Using Lemma 3.3.1, we know that

f (t) ≤ c − (r ∗ c)(t)

= c + c
∫ t

0
(t − s)α2−1Eα2,α2(c̃(t − s)α)cds < ∞

where r is the resolvent of ctα2−1 given by r̂(t) =−c̃tα2−1Eα2,α2(c̃tα2) where c̃ = cΓ(α2).
Eα2,α2(c̃(t − s)α2) is bounded on [0, t], so f (t)≤ const.×

∫ t
0(t − s)α2−1c̃s−α2ds < ∞ for all

s ∈ [0, t].

3.3.4 Appendix D: Asymptotics for VIX call options

From Jensen’s inequality, we know that for any q ≥ 1 we have

(VIX2
T )

q = (
1
∆

∫ T+∆

T
ξT (u)du)q ≤ 1

∆

∫ T+∆

T
ξT (u)qdu
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and hence

E(VIX2q
T ) ≤ 1

∆

∫ T+∆

T
E(ξT (u)q)du =

1
∆

∫ T+∆

T
E(E(Vu|FT )

q)du

≤ 1
∆

∫ T+∆

T
E(V q

u )du (D.1)

which will be needed further down.

• Lower bound. We first note that for x fixed and any δ ∈ (0,x), exT
1
2−H

≤ 1 + (x+
δ )T

1
2−H for T sufficiently small. Recall that VIX2

0 =
1
∆

∫ T+∆

T ξT (u)du and we set
kx,δ := VIX0(x+δ ). We first note that for δ > 0 and T = T (δ ) sufficiently small,

exT
1
2−H

≤ 1+(x+δ )xT
1
2−H . Thus for T = T (δ ) sufficiently small

E((VIXT −VIX0exT
1
2−H

)+)

≥ E((VIXT −VIX0(1+(x+δ )T
1
2−H)+)

= T
1
2−HE((

VIXT −VIX0

T
1
2−H

− kx,δ )+)

≥ δT
1
2−HE(1 VIXT −VIX0

T
1
2−H

>kx,δ+δ
)

= δT
1
2−HP(VIXT > VIX0 +T

1
2−H(kx,δ +δ ))

= δT
1
2−H P(VIX2

T > VIX2
0 +2VIX0 (kx,δ +δ )T

1
2−H +(kx,δ +δ )2T 1−2H) .

But for T = T (δ ) sufficiently small, the right hand side here is greater than or equal
to

δT
1
2−H P(VIX2

T −VIX2
0 > 2VIX0 (kx,δ +2δ )T

1
2−H)

= δT
1
2−H P(

1
∆

∫ T+∆

T
ξT (u)du− 1

∆

∫ T+∆

T
ξ0(u)du > 2VIX0 (kx,δ +2δ )T

1
2−H) .

Then using the LDP and the continuity of J we see that

liminf
T→0

T 2H logE((VIXT −VIX0 exT
1
2−H

)+) ≥ −J(2VIX0(kx,δ +2δ ))

= −J(2VIX2
0 +2δVIX0 +4δVIX0)) .

We then let δ → 0 and again use the continuity of the rate function J(x) to obtain
the required lower bound.
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• Upper bound. From Hölder’s inequality, we note that for q > 1

E((VIXT −VIX0 exT
1
2−H

)+)

≤ E((VIXT −VIX0(1+ xT
1
2−H)))+

= E((VIXT −VIX0(1+ xT
1
2−H))+1

VIXT≥VIX0 (1+xT
1
2−H)

)

≤ E[(VIXT −VIX0(1+ xT
1
2−H))

q
+]

1
q E(1

VIXT≥VIX0+xT
1
2−H )

1− 1
q .

Thus

T 2H logE((VIXT −VIX0 (1+ xT
1
2−H))+)

≤ T 2H

q
logE[(VIXT −VIX0 (1+ xT

1
2−H))

q
+]

+ T 2H(1− 1
q
) logP(VIXT ≥ VIX0 (1+ xT

1
2−H))

≤ T 2H

q
logE(VIXq

T ) + T 2H(1− 1
q
) logP(VIXT ≥ VIX0 (1+ xT

1
2−H))

≤ T 2H

q
log(E(VIX2q

T )
1
2 ) + T 2H(1− 1

q
) logP(VIXT ≥ VIX0 (1+ xT

1
2−H))

≤ T 2H

q
1
2

log(
1
∆

∫ T+∆

T
E(V q

u )du) + T 2H(1− 1
q
) logP(VIX2

T ≥ VIX2
0(1+ xT

1
2−H)2)

(by (D.1))

≤ T 2H

q
1
2

log(
1
∆

∫ T+∆

T
(E(V q

u )
1
q )qdu + T 2H(1− 1

q
) logP(VIX2

T ≥ VIX2
0(1+2xT

1
2−H))

(using Minkowski applied to E((Vu)
q))

≤ T 2H

q
1
2

log(c
1
q
q,T )

q + T 2H(1− 1
q
) logP(VIX2

T ≥ VIX2
0(1+2xT

1
2−H)

for some finite constant cq,T depending on q and T , where we have used Lemma
3.3.3 in the final line. Letting T → 0 in the final line and using the LDP and the
continuity of J, and then letting q → ∞, we see that

limsup
T→0

T 2H logE((VIXT −VIX0 (1+ xT
1
2−H))+) ≤ −J(2VIX2

0x) .
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Chapter 4

The Riemann-Liouville field and its
GMC as H→0, and skew flattening for
the rough Bergomi model

4.1 Introduction

Gaussian multiplicative chaos (GMC) is a random measure on a domain of Rd that can be
formally written as Mγ(dx) = eγXx− 1

2 γ2E(X2
x )dx where X is a Gaussian field with zero mean

and covariance K(x,y) := E(XxXy) = log+ 1
|y−x| + g(x,y) for some bounded continuous

function g. X is not defined pointwise because there is a singularity in its covariance,
rather X is a random tempered distribution, i.e. an element of the dual of the Schwartz
space S under the locally convex topology induced by the Schwartz space semi-norms.
For this reason, making rigorous sense of Mγ requires a regularizing sequence Xε of
Gaussian processes (with the singularity removed), see e.g. [BBM13] and [BM03] and
Section 4.2.2 here for such a regularization in 1d based on integrating a Gaussian white
noise over truncated triangular regions or page 17 in [RV10]. In most of the literature on
GMC, the choice of Xε is a martingale in ε , from which we can then easily verify that
Mε

γ (A) =
∫

A eγXε
x − 1

2 γ2Var(Xε
x )dx is a martingale, and then obtain a.s. convergence of Mε

γ (A)
using the martingale convergence to a random variable Mγ(A) with E(Mγ(A)) = Leb(A),
and with a bit more work we can verify that Mγ(.) defines a random measure (see page 18
in [RV10]).

If γ2 < 2d, Mε
γ (dx) = eγXε

x − 1
2 γ2E((Xε

x )
2)dx tends weakly to a multifractal random mea-

sure Mγ with full support a.s. which satisfies the local multifractality property

lim
δ→0

logE(Mγ([x,x+δ ]d)q)

logδ
) = ζ (q) (4.1)
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for q ∈ (1,q∗) (see Proposition 3.7 in [RV10]), where ζ (q∗) = 1 1 and

ζ (q) = dq − 1
2

γ
2(q2 −q)

so q∗ = 2
γ2 for d = 1, and E(Mγ([0, t])q) = ∞ if q > q∗, see Theorem 2.13 in [RV14] and

Lemma 3 in [BM03]). Mγ is the zero measure for γ2 = 2d and γ2 > 2d; in these cases a
different re-normalization is required to obtain a non-trivial limit.

In the sub-critical case, using a limiting argument it can be shown that Mγ satisfies

E(
∫

D
F(X ,z)Mγ(dz)) = E(

∫
D

F(X + γ
2K(z, .),z)dz) (4.2)

for any measurable function F and any interval D. This comes from the Cameron-Martin
theorem for Gaussian measures, the notion of rooted measures and the disintegration
theorem (see [FS20]). (4.2) can be taken as the definition of GMC, and it uniquely
determines Mγ as a measurable function of X , and hence also uniquely fix its law. GMC
also has natural applications in Liouville Quantum Field Theory.

Continuing in the same vein as [NR18] (see also [HN20]), we consider a re-scaled
Riemann-Liouville process ZH

t =
∫ t

0(t − s)H− 1
2 dWs in the H → 0 limit. Using Lévy’s

continuity theorem for tempered distributions, we show that ZH tends weakly to an almost
log-correlated Gaussian field Z as H → 0, which is a random tempered distribution, i.e. a
random element of the dual of the Schwartz space S . From Theorem A in [JSW19], we
know this field differs from a standard Bacry-Muzy field by a Hölder continuous Gaussian
process, and we show that ξ H

γ (dt) = eγZH
t − 1

2 γ2Var(ZH
t )dt tends to a Gaussian multiplicative

chaos (GMC) random measure ξγ for γ ∈ (0,1) as H ↘ 0. Unlike standard constructions
of GMC, our approximating sequence ZH

t is not a martingale so we cannot appeal to the
martingale convergence theorem. We later address the more difficult “L1-regime” where
γ ∈ [1,

√
2) using standard tightness/weak convergence arguments and comparing ξ H

γ to
a sequence of GMCs ξ H

ϕ constructed in using a Gaussian white noise integrated over
curved regions in the upper half plane under the Haar measure. A stronger L1 convergence
is established by appealing to the framework of [Sha16] where the existence of a GMC
(suitably defined) is shown to be equivalent to the existence of a Randomised Shift.

These results have a natural application to the popular Rough Bergomi stochastic
volatility model, since ξ H

γ is the quadratic variation of the log stock price for this model
and values of H as low as .03 have been reported in empirical studies of this model (see e.g.
[FTW19]). Using the Riemann-Liouville GMC and Jacod’s stable convergence theorem,
we then prove the surprising result that the martingale component Xt of the log stock price
for the Rough Bergomi model tends weakly to Bξγ ([0,t]) as H → 0 where B is a Brownian

1see Lemma 3 in [BM03] to see why the critical q value is q∗
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motion independent of everything else, which means the smile for the rBergomi model
with ρ ≤ 0 is symmetric in the H → 0 limit for γ ∈ (0,

√
2. [Ger20] shows that E(X3

t )

decays exponentially fast or blows up exponentially fast depending on whether γ is less
than or greater than a critical γ ≈ 1.61711 which solves 1

4 +
1
2 logγ − 3

16γ2 = 0. We also
define a H = 0 model with non-zero skew for which Xt/

√
t tends weakly to a non-Gaussian

random variable X1 with non-zero skewness as t → 0.

4.2 The Riemann-Liouville process and its GMC as H → 0

We work on a probability space (Ω,F ,P) with filtration (Ft)t≥0 throughout, which
satisfies the usual conditions. In this section we consider a re-scaled Riemann-Liouville
process in the limit as H → 0; To this end, let (Wt)t≥0 denote a standard Brownian motion
and consider the following family of re-scaled Riemann-Liouville processes:

ZH
t =

∫ t

0
(t − s)H− 1

2 dWs (4.3)

for H ∈ (0, 1
2), for which RH(s, t) := E(ZH

s ZH
t ) =

∫ s∧t
0 (s−u)H− 1

2 (t −u)H− 1
2 du . The inte-

grand here is dominated by

h(u,s, t) = ((s−u)−
1
2 ∨1) · ((t −u)−

1
2 ∨1) (4.4)

which is integrable for s < t, so using the dominated convergence theorem, we find that

RH(s, t) → R(s, t) :=
∫ s∧t

0
(s−u)−

1
2 (t −u)−

1
2 du

for s ̸= t as H → 0 and RH(s, t)→∞ for s= t > 0. We note also that R(0,0)= limn→∞

∫ 0
0 nds=

0 (from the definition of Lebesgue integration) and we also note that RH(0,0) = 0 so
limH→0 RH(0,0) = R(0,0) = 0. We can evaluate this integral to obtain

R(s, t) := 2tanh−1(

√
s√
t
) = log

1+
√

s√
t

1−
√

s√
t

= log
√

t +
√

s√
t −

√
s

= log
(
√

t +
√

s)2

t − s

= log
1

t − s
+ g(s, t) (4.5)

for 0 < s < t, where

g(s, t) = 2log(
√

s+
√

t) (4.6)
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and note that R(s, t)≥ 0 for all s, t ≥ 0.∫
[0,T ]2

RH(s, t)dsdt ≤ 2
∫
[0,T ]2

∫ t

0
((s−u)−

1
2 ∨1) · ((t −u)−

1
2 ∨1)dudsdt < ∞

so from the dominated convergence theorem, we have

lim
H→0

∫
[0,T ]2

φ1(s)φ2(t)RH(s, t)dsdt =
∫
[0,T ]2

φ1(s)φ2(t)R(s, t)dsdt (4.7)

for any φ1,φ2 ∈ S , where S denotes the Schwartz space. Similarly, for any sequence
φk ∈ S with ∥φk∥m, j → 0 for all m, j ∈ Nn

0 for any n ∈ N (i.e. under the Schwartz space
semi-norm defined in Eq 1 in e.g. [BDW17])

lim
k→∞

∫
[0,T ]2

φk(s)φk(t)R(s, t)dsdt = 0 (4.8)

since µ(A) =
∫

A R(s, t)dsdt is a bounded non-negative measure (since
∫ T

0
∫ t

0 R(s, t)dsdt =∫ T
0 2tdt = T 2 < ∞), and the convergence here implies in particular that φk tends to zero

pointwise, so we can use the bounded convergence theorem. Thus if we define

LZH ( f ) := E(ei( f ,ZH)) = e−
1
2
∫
[0,T ]2 f (s) f (t)RH(s,t)dsdt

L ( f ) := e−
1
2
∫
[0,T ]2 f (s) f (t)R(s,t)dsdt

for f ∈ S , and note at the moment that we do not have a process or field as a subscript in
L ( f ) since we have not yet shown that this is the characteristic functional of a random field.
Then from (4.7) and (4.8) and Lévy’s continuity theorem for generalized random fields in
the space of tempered distributions (see Theorem 2.3 and Corollary 2.4 in [BDW17]), we
see that LZH ( f ) tends to LZ( f ) pointwise and L (.) is continuous at zero, then there exists
a generalized random field Z (i.e. a random tempered distribution) such that LZ = L and
ZH tends to Z in distribution with respect to the strong and weak topology (see page 2
in [BDW17] for definition).Based on the right hand side of (4.5), we can say that Z is an
almost log-correlated Gaussian field (LGF).

Remark 4.2.1 Since g(s, t) (the correction to the logarithmic term in the covariance) is
smooth away from (0,0), from Theorem A in [JSW19], we know that Z differs from the
standard Bacry-Muzy field on (0,T ] with covariance log 1

|t−s| by some Gaussian process
Gt which is a.s. Hölder continuous on (0,T ].

4.2.1 Constructing a Gaussian multiplicative chaos from ZH as H → 0

We now define the family of random measures : ξ H
γ (dt) := eγZH

t − 1
2 γ2Var(ZH

t )dt .
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4.2 The Riemann-Liouville process and its GMC as H → 0

Theorem 4.2.1 Let Hn ↘ 0. Then for any A ∈ B([0,T ]) and γ ∈ (0,1), ξ
Hn
γ (A) tends to

some non-negative random variable ξγ,A in L2 (and hence also converges in probability),
ξγ([0,T ]) is a non-trivial random variable (i.e. has finite non-zero variance), and there
exists a random measure ξγ on [0,T ] such that ξγ(A) = ξγ,A a.s. for all A ∈ B([0,T ]). ξγ

is the GMC associated with the family of process ZH as H → 0.

Proof. We wish to show that E((ξ Hn
γ [0,T ]− ξ

Hm
γ [0,T ]))2 → 0, i.e. that ξ

Hn
γ [0,T ] is a

Cauchy sequence in L2. To this end, we first note that

E(ξ Hn
γ ([0,T ])ξ Hm

γ ([0,T ])) = E(
∫
[0,T ]2

eγ2(ZHn
t +ZHm

s )− 1
2 γ2E((ZHn

t )2)− 1
2 γ2E((ZHm

s )2)dsdt)

=
∫
[0,T ]2

E(eγ2(ZHn
t +ZHm

s )− 1
2 γ2E((ZHn

t )2− 1
2 γ2E((ZHm

s )2
)dsdt

=
∫
[0,T ]2

e
1
2 γ2RHn(t,t)+

1
2 γ2RHm(s,s)+γ2E(ZHn

t ZHm
s )− 1

2 γ2RHn(t,t)− 1
2 γ2RHm(s,s)dsdt

=
∫
[0,T ]2

eγ2E(ZHn
t ZHm

s )dsdt .

The integrand here is bounded by eγ2 ∫ s∧t
0 h(u,s,t)du (where h(u,s, t) is defined in (4.4)) and is

integrable on [0,T ]2, and E(ZHn
t ZHm

s ) =
∫ s

0 (t −u)Hn− 1
2 (s−u)Hm− 1

2 du → R(s, t) Lebesgue
a.e. on [0,T ]2 as n,m → ∞, so from the dominated convergence theorem we see that

E(ξ Hn
γ ([0,T ])ξ Hm

γ ([0,T ])) →
∫
[0,T ]2

eγ2R(s,t)dsdt (n,m → ∞)

= 2
∫
[0,T ]

∫
[0,t]

eγ2R(s,t)dsdt

= 2
∫
[0,T ]

∫
[0,t]

(

√
t +

√
s√

t −
√

s
)γ2

dsdt

= 2
∫
[0,T ]

t
∫
[0,1]

(

√
t +

√
tu√

t −
√

tu
)γ2

dudt

= 2
∫
[0,T ]

t
∫
[0,1]

(
1+

√
u

1−
√

u
)γ2

dudt = 2
∫ T

0
taγdt

= aγT 2 < ∞ (4.9)

for γ ∈ (0,1), where

aγ :=
∫
[0,1]

(
1+

√
u

1−
√

u
)γ2

du =
2 · 2F1(2,−γ2,3− γ2,−1)
(1− γ)(1+ γ)(2− γ2)

(4.10)
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4.2 The Riemann-Liouville process and its GMC as H → 0

where 2F1(z) is the hypergeometric function, and using that 1−
√

u ∼ 1
2(1−u) as u → 1,

we can easily verify that aγ → ∞ as γ ↑ 1. Hence

E((ξ Hn
γ ([0,T ])−ξ

Hm
γ ([0,T ]))2)

= E(ξ Hn
γ ([0,T ])2) − 2E(ξ Hn

γ ([0,T ])ξ Hm
γ ([0,T ])) + E(ξ Hm

γ ([0,T ])2)→ 0

so ξ
Hn
γ ([0,T ]) converges in L2(Ω,F ,P) to some a.s. non-negative random variable ξγ,[0,T ],

and hence also converges in probability. Similarly, for any A ∈ B([0,T ]), we can trivially
modify the argument above to show that

E(ξ Hn
γ (A)ξ Hm

γ (A)) →
∫

A

∫
A

eγ2R(s,t)dsdt ≤ aγT 2 < ∞

so ξ H
γ (A) tends to some random variable ξγ,A in L2, and hence in probability.

We also know that E(ξ Hn
γ ([0,T ])) = T for all n and we have already established L2-

convergence for ξ
Hn
γ (A) as n → ∞ which implies L1 convergence, so (by Scheffe’s lemma)

E(ξγ,[0,T ]) = T , which further implies that P(ξγ,[0,T ] > 0)> 0 and (from the reverse triangle
inequality)

|E(ξ 2
γ,[0,T ])

1
2 −E((ξ H

γ,[0,T ])
2)

1
2 | ≤ E((ξγ([0,T ])−ξ

H
γ ([0,T ]))2) → 0

so

E(ξ 2
γ,[0,T ]) = lim

H→0
E((ξ H

γ,[0,T ])
2) = aγT 2

so in particular ξγ is not multifractal at zero, since the power is 2 here and not ζ (2). The
L2-convergence also means that ξ H

γ [0,T ]→ ξγ,[0,T ] in Lq as H → 0 for all q ∈ [1,2] which
(again from the reverse triangle inequality) implies that

lim
H→0

E(ξ H
γ ([0,T ])q) = E(ξ q

γ,[0,T ]) . (4.11)

Given that E(ξγ,[0,T ]) = T and Var(ξγ,[0,T ]) =
∫
[0,T ]2 eγ2R(s,t)dsdt−T 2 > 0 since aγ > 1 for

γ ∈ (0,1), we see that ξγ,[0,T ] is a non-trivial random variable.

For A,B ∈ B([0,T ]) disjoint, ξ H
γ,A∪B = ξ H

γ,A +ξ H
γ,B a.s. since ξ H

γ is a measure, and we
know that both sides tend to ξγ,A∪B and ξγ,A +ξγ,B in probability. But by a standard result,
if Xn

p→X and Xn
p→Y , then X = Y a.s., hence

ξγ,A∪B = ξγ,A + ξγ,B (4.12)

a.s.
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4.2 The Riemann-Liouville process and its GMC as H → 0

Similarly for any sequence An ↓ /0 with An ∈ B([0,T ]), E(ξγ,An) = Leb(An), so by
Markov’s inequality P(ξγ(An)> δ )≤ Leb(An)

δ
, so ξγ(An) tends to zero in probability, and

from (4.12), we know that ξγ(An) is decreasing, and hence also tends to some random
variable Y a.s. (and hence also in probability). Thus by the same standard result discussed
above, Y = 0 a.s. Thus by Theorem 9.1.XV in [DV07] (see also the end of Section 4 on
page 18 in [RV10]), there exists a random measure ξγ on [0,T ] such that ξγ(A) = ξγ,A a.s.
for all A ∈ B([0,T ]).

Remark 4.2.2 If we replace the definition of ZH with the usual Riemann-Liouville process
ZH

t =
√

2H
∫ t

0(t − s)H− 1
2 dWs, then adapting the arguments above, we see that

E((
∫

A
eγ2ZH

t − 1
2 γ2Var(ZH

t )dt)2) → Leb(A)2

as H → 0, for all A∈B([0,T ]). But we know that the first moment of
∫

A eγ2ZH
t − 1

2 γ2Var(ZH
t )dt

is Leb(A) as well, hence
∫

A eγ2ZH
t − 1

2 γ2Var(ZH
t )dt → Leb(A) in L2.

Remark 4.2.3 For c∈ (0,1], (Wc,ξγ([0,c])∼ (
√

cW1,cξγ [0,1]), so in particular, ξγ([0,(.)])
is a self-similar process, and we can easily verify ξγ([0,c]) is monofractal at zero, i.e.
E(ξγ([0,c])q) = cqE(ξγ([0,1])q) .

4.2.2 Construction and properties of the usual Bacry-Muzy multi-
fractal random measure (MRM) via Gaussian white noise on
triangles

In this subsection we briefly describe the family of (stationary) Gaussian process used
in [BM03]; the Bacry-Muzy multifractal random measure (MRM) is then the GMC
associated with this family of processes as the l parameter tends to zero. Define ωl(t)
as in Eq 7 in [BBM13] with λ = 1 and T = 1, and set ω̄l(t) := ωl(t)−E(ωl(t)), so
ω̄l(t) =

∫
(u,s)∈Al(t) dW (u,s) where (in this subsection alone) dW (u,s) is a two-dimensional

Gaussian white noise with variance s−2duds, and Al(t) = {(u,s) : |u− t| ≤ (1
2s)∧T,s ≥ l}

is the cone-like region defined in Eq 11 in [BM03] (for the special case when f (l) = f (e)(t)
in their notation, see Eqs 12 and 15 in [BM03]). Then

KT
l (s, t) := E(ω̄l(t)ω̄l(s)) =


log T

τ
l ≤ τ ≤ T

log T
l + 1− τ

l τ ≤ l

0 τ > T

(4.13)
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where τ = |t − s|, and one can easily verify that KT
l (s, t)≤ log T

τ
(see Eq 25 in [BM03]).

From a picture, we also see that E(ω̄l(t) ω̄l′(s)) = Kl(s, t) for l > l′ (i.e. the answer does
not depend on l′), and KT

l (s, t)↗ log T
|t−s| as l → 0. We now define the measure

MT,l
γ (dt) = eγω̄l(t)− 1

2 γ2Var(ω̄l(t))dt (4.14)

and we use Ml
γ(dt) as shorthand for M1,l

γ (dt). One can easily verify that Ml
γ(A) is a

martingale with respect to the filtration Fl := σ(W (A,B) : A ⊂ R+,B ⊆ [l,∞]) (see e.g.
subsection 5.1 in [BM03] and page 17 in [RV10]) and supl E(Ml

γ(A)
q)< ∞ (Lemma 3 i)

in [BM03]), so from the martingale convergence theorem, MT,l
γ (A) converges to MT

γ (A) in
Lq for q ∈ (1,q∗), and from the reverse triangle inequality this implies that

lim
l→0

E((MT,l
γ (A))q) = E((MT

γ (A))
q) (4.15)

and MT is perfectly multifractal, i.e. E(|MT
γ ([0, t])|q) = cq,T tζ (q) (see e.g. Lemma 4 in

[BM03]) for some finite constant cq,T > 0, depending only on q and T . For integer q ≥ 1,
we also note that

E(MT
γ (A)

q) =
∫

A
...
∫

A
e

γ2
∑1≤i< j≤q log T

|ui−u j | dui...duq

=
∫

A
...
∫

A
e

γ2q(q−1) logT +∑1≤i< j≤q log 1
|ui−u j | dui...duq

= T γ2q(q−1)E(Mγ(A)q) (4.16)

so we see that

cq,T = cqT γ2q(q−1) (4.17)

where cq = cq,1, and this also holds for non-integer q (see e.g. Theorem 3.16 in [Koz06]).

4.3 ξγ for the full sub-critical range γ ∈ (0,
√

2)

4.3.1 The Sandwich lemma

We now look to extend the definition of ξγ to γ ∈ (0,
√

2). We will use the following
standard result:

Theorem 4.3.1 (Kahane’s Inequality) (see e.g. Appendix of [RV10]). Let I be a bounded
subinterval of R and (X(u))u∈I , (Y (u))u∈I be two centred continuous Gaussian processes
with E[X(u)X(u′)]≤ E[Y (u)Y (u′)] for all u,u′. Then, for all convex functions F : R→ R,
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we have:

E[F(
∫

I
eX(u)− 1

2E(X(u)2)du)] ≤ E[F(
∫

I
eY (u)− 1

2E(Y (u)
2)du)] .

Lemma 4.3.2 (The Sandwich lemma). Fix any τ and δ such that 0 < τ < τ +δ < 1. Then
for τ ≤ s ≤ t ≤ t +δ and H > 0 sufficiently small, we can sandwich RH(s, t) as follows:

K4τ

l∗(H,τ)(k) ≤ RH(s, t) ≤ K4
l∗(H)(k) (4.18)

for k = |t − s|< δ for 0 < s < t < 1, where l∗(H,τ) = 1
F ′

H(k
∗) > 0 and l∗(H) := 4e−

1
2H > 0

(which both tend to zero as H → 0), and FH(k) := RH(τ,τ + k). Note the upper bound
trivially holds for s = 0 as well, since RH(0,k) = 0 and KT

l (k) ≥ 0. We also remind the
reader that if 0 = s < t, R(s, t) = 0 not log 1

t−0 +g(0, t) = ∞.

Remark 4.3.1 The lower bound of the Sandwich lemma will only be used to prove the
local multifractality of ξγ , and is not needed for everything else in this chapter.

Proof. We define GH(k) := RH(τ + δ − k,τ + δ ), and at this point we refer the reader

to Appendix A for some basic properties of GH(k). Then choosing l∗ = l∗(H) such that
GH(0) =

(τ+δ )2H

2H ≤ 1
2H = log( 4

l∗ ), we see that

l∗(H) = 4e−
1

2H ↓ 0 as H → 0 .

(A.1) implies that GH(k)≤ log 4
k , and for k ∈ [l∗,4], K4

l∗(k) = log 4
k , so in this case GH(k)≤

K4
l∗(k). For k ∈ (0, l∗), K4

l∗(k) = log( 4
l∗ )+ 1− k

l∗ > log 4
l∗ ≥ GH(0) > GH(k). Hence for

both cases, we have the following upper bound:

GH(k) = RH(τ +δ − k,τ +δ ) ≤ K4
l∗(H)(k) .

From Appendix A, we recall that

RH(s,k+ s) =
∫ s

0
(u(k+u))H− 1

2 du

and if we restrict attention to Aδ := {(s, t) : t − s = k and (s, t) ∈ [τ,τ +δ ]2) for 0 < τ <

τ +δ < 1 with k ∈ [0,δ ], then from Appendix A we know that RH(s, t) is maximized at
s = τ +δ −k taking the value GH(k) and minimized at s = τ with value FH(k) (see Figure
4.2). Thus

RH(s, t) ≤ GH(k) ≤ K4
l∗(H)(k) (4.19)
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for (s, t) ∈ [τ,τ +δ ]2 where k = |t − s|.
From the second part of Appendix A, we know that F0(k) := log 1

k + 2log(
√

τ +√
τ + k) > log 4τ

k but we also know that FH(k) ↑ F0(k) uniformly on compact intervals
away from zero (Dini’s theorem), and for H > 0 FH(0)< ∞ and log(4τ

k )→ ∞ as k → 0, so
from the aforementioned uniform convergence, we see that for H > 0 sufficiently small
there exists a k∗ = k∗(H,τ)> 0 such that

FH(k∗) = log
4τ

k∗
(4.20)

(see top-right plot in Figure 4.2) with

FH(k) ≥ log
4τ

k
for k ∈ [k∗,4τ] , FH(k) ≤ log

4τ

k
for k ≤ k∗ . (4.21)

Now set l∗ = l∗(H,τ) such that |F ′
H(k

∗)|= 1
l∗
. l∗ ∈ [τ,τ +δ ] for H sufficiently small, and

l∗ ≥ k∗ since

1
k∗

= | d
dk

log
4τ

k
|k=k∗| > |F ′

H(k
∗)| (4.22)

(see Figure 4.2 top right-plot). We now note the following:

• In the region [k∗, l∗], FH(k)> log(4τ/k) so FH(k)> log(4τ/l∗)+1−k/l∗ (since the
latter is just the tangent line to log(4τ/k) at k = l∗), see Figure 4.2 top right plot.

• At k = k∗, FH is greater than said tangent and by construction has the same gradient
as the tangent, i.e. 1

l∗
. Then as k decreases to zero, the gradient of FH increases in

absolute value (due to the convexity of FH) so FH is greater than the tangent line.

Thus K4τ
l∗ (k) = log 4τ

l∗
+ 1− k

l∗
< FH(k) for k ∈ (0, l∗). We also see that l∗ ↓ 0 as H ↓ 0,

since k∗ → 0 as H → 0. Thus, to sum up, we have shown that

GH(k) = RH(τ +δ − k,τ +δ ) ≤ K4
l∗(H)(k)

and

K4τ

l∗(H,τ)(k) ≤ FH(k) = RH(τ,τ + k)

for k ∈ [0,4τ]. From Appendix A, we recall that RH(s,k+ s) =
∫ s

0 (u(k+u))H− 1
2 du and

that if we restrict attention to Aδ for 0 < τ < τ + δ < 1 with k ∈ [0,δ ], then RH(s, t) is
minimized at s = τ with value FH(k). Thus

K4τ

l∗(H,τ)(k) ≤ FH(k) ≤ RH(s, t) ≤ GH(k) ≤ K4
l∗(H)(k) (4.23)
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for (s, t) ∈ [τ,τ +δ ]2 where k = |t − s|.

4.3.2 Existence of a limiting law for ξγ for γ ∈ (0,
√

2)

Let P be an independently scattered infinitely divisible random measure (see [BM03] for
details) with

E(eiqP(A)) = eϕ(q)µ(A)

for q∈R where µ(du,dw)= 1
w2 dwdu denotes the Haar measure. Here we restrict attention

to the special case where ϕ(q) = 1
2γ2q2, in which case P(du,dw) is just γ times a Gaussian

white noise with variance 1
w2 dudw (similar to Section 4.2.2). Let AH

t := {0 ≤ u ≤ t, w ≥
gH(u, t)} for a family of functions which satisfy the following condition: gH(., t)≥ 0 with
gH(u, t) increasing in t and H. We now define the process ωH

t = P(AH
t ) for t ≥ 0 with

filtration

FH := σ(P(A×B) : B ⊆ [H,∞],A,B ∈ B(R)) (4.24)

(compare to a similar filtration on page 17 in [RV10]), and ωH
t is a Gaussian process since

ϕ(q) is the characteristic function of a Gaussian with covariance

E(ωH
s ω

H
t ) =

∫ s

0

∫
∞

gH(u,t)

1
w2 dwdu =

∫ s

0

1
gH(u, t)

du

for 0≤ s≤ t, and differentiating with respect to s, we see that if g satisfies 1
gH(s,t)

=RH
s (s, t)

then (for H fixed) the Gaussian process ωH has the same covariance as our process ZH ,
and the explicit formula for gH is given as

gH(s, t) =
1
γ

2s
1
2−Ht

3
2−H

Γ(1
2 +H)(t(1+2H)2F1(1, 1

2 −H, 3
2 + H, s

t )+ s(1−2H)2F1(2, 3
2 −H, 5

2 +H, s
t ))

where 2F1(a,b,c,z) is the regularized hypergeometric function2 (and in Appendix B we
verify that Condition 1 above is satisfied). For H = 0 we have g0(s, t) =

√
s(t−s)√

t . For

H2 < H1, ω
H2
t −ω

H1
t = P(AH2

t \AH1
t ) and ωH

t = P(AH
t ) are independent for any H ≥ H1,

so ωH
t is an FH-martingale (see (4.24) for definition of FH , and we refer to this as a

backward martingale since the martingale evolves as H goes smaller not larger and we
start the martingale at some H > 0), and from this one can easily verify that ξ H

ϕ (I) is also
an FH-backward martingale for any Borel set I.

2we are using Mathematica’s definition here
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Theorem 4.3.3 Let ξ H
ϕ denote the GMC of γωH on [0,1]. Then for any q ∈ (1,q∗) and

any interval I ⊆ [0,1], ξ H
ϕ (I) tends to some non-negative random variable ξϕ,I as H → 0

a.s. and in Lq, and E(ξ H
ϕ (I)q)→ E(ξ q

ϕ,I).

Proof. From the upper bound in the Sandwich Lemma RH(s, t)≤ Kθ

l∗(H)(s, t) for 0 < s <
t < 1, where θ = 4 · sup(I) and KT

l (s, t) is the covariance of the model in [BM03], and
l∗(H) ↓ 0 as H ↓ 0. Then from Kahane’s inequality we have that

E(ξ H
ϕ (I)q) ≤ E(Mθ

l∗(H)(I)
q) (4.25)

where MT
l is defined as in Section 4.2.2. Moreover, from Lemma 3 in [BM03] we know that

supl>0E(Mθ
l (I)

q)< ∞ for q ∈ [1,q∗), so we have the uniform bound supH>0E(ξ H
ϕ (I)q)<

∞.

From above we know that ξ H
ϕ (I) is a F H-backwards martingale. Then (by Doob’s

martingale convergence theorem for continuous martingales) ξ H
ϕ (I) tends to some random

variable (which we call ξϕ,I) as H → 0 a.s. and in Lq for q ∈ [1,q∗). Moreover, from the
reverse triangle inequality, the aforementioned Lq-convergence implies that

E((ξ H
ϕ (I))q) → E(ξ q

ϕ,I) (4.26)

as H → 0, for q ∈ [1,q∗).

Theorem 4.3.4 The laws of ξ H
γ ([0, .) on C0([0,1]) converge weakly as H → 0 to the law

of a non-decreasing process on C0([0,1]) which induces a non-atomic measure ξγ on [0,T ]
with E(ξγ(A)) = Leb(A).

Remark 4.3.2 In next section, we give a stronger result involving L1-convergence using
Theorem 25 in [Sha16]) via generalized randomized shifts

Proof. Note that although E(ωH
s ωH

t ) = E(ZH
s ZH

t ) this does not imply that E(ωH
s ω

H2
t ) =

E(ZH
s ZH2

t ) for H ̸= H2. However (crucially) ξ H
ϕ (defined in Theorem 4.3.3) has the same

law as our original ξ H
γ measure for all H > 0, and the non-decreasing process ξ H

ϕ ([0,(.))
and ξ H

γ ([0,(.)) have the same finite-dimensional distributions, so it suffices to prove
weak convergence in law of the sequence ξ H

ϕ ([0,(.)). Thus from the a.s. convergence
in Theorem 4.3.3 and the bounded convergence theorem, we see that for n distinct time
values t1, ...tn ∈ [0,1] and u1, ..un ∈ R

lim
H→0

E(e∑
n
k=1 iukξ H

ϕ ([0,tk))) = E(e∑
n
k=1 ξγ,[0,tk ]) .
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So we have convergence of the finite-dimensional distributions of the process ξ H
γ ([0, .])).

Moreover, from the upper bound for the Sandwich lemma, for 0 < s < t < 1 we have

E(ξ H
γ ([s, t])q) ≤ E((M4,l∗(H)

γ ([s, t]))q) ↗ E((M4
γ ([s, t]))

q) = cq,4|t − s|ζ (q) .

Moreover, ζ (q) = 1+ (1− 1
2γ2)(q− 1) +O((q− 1)2), and hence ζ (q) > 1 for q > 1

sufficiently small for γ ∈ (0,
√

2). Hence by Problem 2.4.11 in [KS91] (or Theorem 1.8
in chapter XIII in [RY99]) with Xm

t := ξ H
γ ([0, t]) and H = 1/m, the probability measures

QH = P◦ (Xm)−1 induced by the sequence of processes ξ H
γ ([0, .]) on C0([0,1]) are tight

under the usual sup norm topology. Thus by Proposition 2.4.15 in [KS91] (see also
Theorem B.1.3 in [FH05] and page 1 in [BM16]), the sequence QH converges weakly to a
probability measure Q on C0([0,1]). Moreover, since

ξ
H
ϕ ([0,s]) ≤ ξ

H
ϕ ([0, t])

for 0 < s < t, and we have a.s. convergence of both sides, so ξϕ([0,s]))≤ ξϕ([0, t])) and
hence Q is the law of a non-decreasing continuous process, which induces a measure on
[0,1] which we call ξγ , with no atoms. We know that E(ξγ,A) = Leb(A), so E(ξγ(A)) =
Leb(A).

4.3.3 Existence of the GMC measure for γ ∈ (0,
√

2) using the Shamov
approximation theorem

In the previous section we have discussed the limiting law of the GMC associated to the
H = 0. Whilst providing us with results on convergence in law this doesn’t tell us anything
about how the limiting GMC depends on the underlying probability space. More precisely,
can we strengthen the aforementioned convergence in law to convergence in probability or
even in L1? To establish this we adopt the more abstract (but more powerful) framework
of Shamov [Sha16].

For H > 0 we have the RL-GMC:

ξ
H
γ (A) =

∫
A

eγZH
t − 1

2 γ2Var(ZH
t )dt

and let H := H1
0 = { f :

∫ 1
0 f ′(t)2dt} denote the Cameron-Martin space of W . Consider

the following element of H indexed by t ∈ [0,1]:

Y H(t)(s) := γ(
tH+ 1

2 − (t − s)H+ 1
2

H + 1
2

1s<t +
tH+ 1

2

H + 1
2

1s≥t) (4.27)
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Being an element of H we can write the following:

ZH
t = ⟨Y H(t),W ⟩ (4.28)

γ
2Var(ZH

t ) = ⟨YH(t),Y H(t)⟩ (4.29)

where the inner product is understood to be the standard inner product in H . The first
equation above should be understood as a Paley-Wiener integral (since W is a.s. not an
element of H ).

We have thus written the process ZH
t as a pair (Y H ,W ). This decomposition is a spe-

cial case of the Maurey-Nikishin factorisation which can be applied to any Gaussian (see
[Sha16]). Shamov defines the subcritical GMC associated to the pair (Y H ,W ) as a random
measure ξ H

γ satisfying:

1. E(ξ H
γ (dt)) = dt.

2. The measure ξ H
γ is measurable with respect to W so we can write ξ H

γ (dt) =
ξ H

γ (W,dt)

3. For all f ∈ H

ξ
H
γ (W + f ,dt) = e⟨Y

H(t), f ⟩
ξ

H
γ (W,dt) a.s .

In Theorem 17 of [Sha16], the existence of such a random measure is shown to be
equivalent to the statement that Y H(t) is a so-called Randomised Shift i.e. that if we sample
t independently from W using the Lebesgue measure then the distribution of W +Y H(t) is
absolutely continuous with respect to that of W :

LawP⊗Leb[W +Y (t)] ≪ LawP[W ] .

In the case H > 0 then Y H(t) ∈ H and this absolute continuity property is simply a
consequence of the Cameron-Martin theorem (the existence of the GMC can easily be seen
directly without this theorem since for H > 0 the covariances are non-singular).

At H = 0, Y H(t) is no longer in H and so the standard Cameron-Martin theorem cannot
be straightforwardly applied. In this case YH remains a linear, bounded map from H into
L0[0,1] (in fact L2[0,1]) and so in the language of [Sha16] it is a generalised H -valued
function.

101



4.3 ξγ for the full sub-critical range γ ∈ (0,
√

2)

The question remains whether Y 0(t) is a random shift and if so what is the relation-
ship between ξγ and its approximating measures. This is answered (in general) by the
Shamov[Sha16] Approximation Theorem (Theorem 25) which states that if we have a
series of randomized shifts Yn with associated GMCs denoted MYn and kernels KYnYn(t,s) :=
⟨Yn(t),Yn(s)⟩ satisfying:

• The family of random variables {MYn} is uniformly integrable.

• There exists a generalized H -valued function that is the limit of Yn in the sense that

∀ f ∈ H : ⟨Yn, f ⟩ L0(Leb)−−−−→ ⟨Y, f ⟩

then Y is a randomized shift. If, furthermore

• The kernels KYn,Yn converge to KY,Y in L0(µ ⊗µ) (i.e. convergence in measure).

then the sub-critical GMC MY (associated to Y with expectation µ) is the limit of MYn , in
the sense that:

∀ f ∈ L1(µ) :
∫

f (t)MYn(W,dt) L1
−→

∫
f (t)MY (W,dt) .

We address each of these points in turn:

• Uniform Integrability. As in the proof of multifractality (see next section), for
each H > 0 we can bound the covariance of the RL process by the covariance of an
approximate Bacry-Muzy multifractal random walk (see section 4.2.2). By Kahane’s
inequality we can thus bound the p-th moment of our measure from above by the
p-th moment of the Bacry-Muzy MRM which is shown in [BM03] to be uniformly
bounded. Thus {MHn} are uniformly integrable.

• Convergence of the shifts. The operator Y H is (up to an unimportant factor Γ(H +
1
2)

−1) the RL fractional integral Iα of order α = H + 1
2 . As is proved in Samko et

al.[SKM93] (Theorem 2.6), the RL integrals form a semigroup in Lp(0,1) for p ≥ 1,
which is continuous in the uniform topology for all α > 0 and strongly for all α ≥ 0,
which in our context implies that for all f ∈ H :

lim
H→0

||⟨Y H , f ⟩−⟨Y 0, f ⟩||L2 = lim
H→0

||Iα( f ′)− I
1
2 ( f ′)||L2 = 0 .

Note that f ∈ H implies f ′ ∈ L2, and convergence in L2 implies convergence in
measure.
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• Convergence of kernels. These kernels are the same (up to a factor of γ) as the
covariances RH(s, t) and R(s, t). As discussed previously, away from the diagonal
{s = t}, RH(s, t)→ R(s, t) pointwise and hence in measure.

Thus we have shown that ∫
f (t)ξ H

γ (dt) L1
−→

∫
f (t)ξγ(dt)

for all f ∈ L1.

Remark 4.3.3 From section 6.8 in [Sha16], we know that ξγ has no atoms.

4.3.4 Local multifractality

Proposition 4.3.5 For γ ∈ (0,
√

2), ξγ has the following locally multifractal behaviour
away from zero:

lim
δ→0

logE(ξγ([t, t +δ ])q)

logδ
= ζ (q) (4.30)

for t ∈ (0,1) and q ∈ (0,q∗).

Proof. Applying Kahane’s inequality and Sandwich Lemma for q ∈ (1,q∗) we have

E[(M4τ,l∗(H,τ)
γ ([τ,τ +δ ]))q] ≤ E[(ξ H

γ ([τ,τ +δ ]))q] ≤ E[(M4,l∗(H)
γ ([τ,τ +δ ]))q] (4.31)

where MT,l
γ is defined as in Section 4.2.2. Using the Lq convergence of MT,l

γ (A) in (4.15)
and (4.26), we see that

E[(M4τ
γ ([τ,τ +δ ]))q] ≤ E[(ξγ([τ,τ +δ ]))q] ≤ E[(M4

γ ([τ,τ +δ ]))q] .

Then using the multifractality property of MT
γ we see that:

cq,4τδ
ζ (q) = cq,1(4τ)γ2q(q−1)

δ
ζ (q) ≤ E[(ξγ([τ,τ +δ ]))q] ≤ cq,4δ

ζ (q) = cq,14γ2q(q−1)
δ

ζ (q)

where we have used (4.17) in the final line. Taking the logarithm of the above inequality,
dividing by logδ and taking limits yields the local multifractality property for ξγ (recall
that we are assuming that τ > 0 here).
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Fig. 4.1 Here we see simulations of ξγ using a spectral expansion for (from left to right)
γ = 0.125, 0.25, 0.375 and 0.5 with n = 1000 eigenfunctions, 1000 time points, H = 0
and we have used Gauss-Legendre quadrature. For this range of γ-values, the first four raw
sample moments are in very close agreement with the theoretical values for H = 0.

4.4 Application to the Rough Bergomi model - skew flat-
tening/blowup as H → 0

We consider the standard Rough Bergomi model for a stock price process XH
t :

dXH
t =−1

2V H
t dt +

√
V H

t dWt ,

V H
t = eγZH

t − 1
2 γ2Var(ZH

t )

ZH
t =

∫ t
0(t − s)H− 1

2 (ρdWs + ρ̄dW⊥
t )

(4.32)

where γ ∈ (0,
√

2), |ρ| ≤ 1 and W , W⊥ are independent Brownian motions, and (without
loss of generality) we set X̃H

0 = 0. We let X̃H
t =

∫ t
0

√
V H

t dWt denote the martingale part of
XH .

Theorem 4.4.1 For γ ∈ (0,
√

2), X̃H tends to B⊥
ξγ ([0,(.)])

stably (and hence weakly) in law

on any finite interval [0,T ], where B⊥ is a Brownian motion independent of everything
else.
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Corollary 4.4.2 From the weak convergence of ξ H
γ ([0,T ) and the previous result we see

that

lim
H→0

E(eikXH
t ) = E(e−

1
2 (ik+k2)ξγ ([0,t]))

= E(eik(− 1
2 ξγ ([0,t])+B⊥

ξγ ([0,t])
)
)

which (by a well known result in Renault&Touzi[RT96]) implies that implied volatility
smile for the true Rough Bergomi model in (4.32) is symmetric in the log-moneyness
k = log K

S0
.

Remark 4.4.1 We call this the skew flattening phenomenon, so in particular X̃H
t (for a

single fixed t) tends weakly to some symmetric distribution µ .

Proof. From Theorem 4.2.1, we know that ⟨X̃H⟩t tends to a random variable ξγ([0, t]) in
L2 (and hence in probability), and ⟨X̃H ,W ⟩t = ρ

∫ t
0

√
V H

u du . But

E((V H
t )

1
2 ) = E(e

1
2 (γZH

t − 1
2 γ2 1

2H t2H))

= E(e
1
2 γZH

t − 1
2 ·

1
4 γ2· 1

2H + 1
2 ·

1
4 γ2· 1

2H − 1
2 γ2 1

4H t2H) = e−
1

16H γ2t2H
→ 0

as H → 0, so (by Markov’s inequality) P(
√

V H
t > δ )≤ 1

δ
E(
√

V H
t )→ 0, so

√
V H

t tends
to zero in probability, and hence

Gt := ⟨X̃H ,W ⟩t
p→ 0 . (4.33)

Moreover, for any bounded martingale N orthogonal to W

⟨X̃H ,N⟩t = 0 . (4.34)

Thus setting Zt = Wt and applying Theorem IX.7.3 in Jacod&Shiryaev[JS03] (see
also Proposition II.7.5 and Definition II.7.8 in [JS03]), we can construct an extension
(Ω̃,F̃ ,(F̃t), P̃) of our original filtered probability space (Ω,F ,Ft ,P) and a continuous
Z-biased F -progressive conditional PII martingale X̃ on this extension (see Definition 7.4
in chapter II in [JS03] for definition), such that X̃H converges stably (and hence weakly) to
X̃ (see Definition 5.28 in chapter XIII in [JS03] for definition of stable convergence) for
which

⟨X̃⟩t = ξγ([0, t])

⟨X̃ ,M⟩t = 0
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for all continuous (bounded) martingales M with respect to the original filtration Ft .
From Proposition 7.5 and Definition 7.8 in Chapter 2 in [JS03], this means that X̃t =

X ′
t +

∫ t
0 usdWs where X ′ is an F̃t-local martingale and u is a predictable process on the

original space (Ω,F ,P). One such M is Mt =Wt∧τb∧τ−b , where τb = inf{t : Wt = b}, so we
have a pair of continuous local martingales (M,X) with ⟨X̃ ,M⟩t = ⟨X̃ ,W ⟩t =

∫ t
0 usds = 0

for t ≤ τb ∧ τ−b, so in fact ut ≡ 0. Then applying F.Knight’s Theorem 3.4.13 in [KS91]
with M(1) = X and M(2) =W , if Tt = inf{s ≥ 0 : ⟨X⟩s > t}, then XTt is a Brownian motion
independent of W . Hence X has the same law as B⊥

ξγ ([0,t])
for any Brownian motion B⊥

independent of W .

4.4.1 H → 0 behaviour for the usual rough Bergomi model

If we replace the definition of ZH with the usual RL process ZH
t =

√
2H
∫ t

0(t−s)H− 1
2 ds (as

is usually done), then from remark 4.2.2, we know that ξ H
γ (A) tends Leb(A) in L2 for any

Borel set A ⊆ [0,1], so adapting Theorem 4.4.1 for this case, we see that X̃H tends weakly
to a standard Brownian motion, which means the rough Bergomi model tends weakly to
the Black-Scholes model in the H → 0 limit.

4.4.2 A closed-form expression for E((X̃H
t )3)

In this subsection we compute an explicit expression for the skewness of X̃H
t (conditioned

on its history), which (as a by-product) gives a more “hands-on” proof as to why the skew
tends to zero as H → 0, and also allows us to see how fast the skew decays.

We first note that (trivially) X̃H has the same law as X̃H defined by
dX̃H

t =
√

V H
t (ρdBt + ρ̄dWt) ,

V H
t = eγZH

t − 1
2 γ2Var(ZH

t )

ZH
t =

∫ t
0(t − s)H− 1

2 dBt

(4.35)

where B is independent of W , and this is the version of the model we use in this subsection.
We now replace the constant ρ with a time-dependent ρ(t), and replace our original V H

t

process with

V H
t = ξ0(t)eγZH

t − 1
2 γ2Var(ZH

t )

to incorporate a non-flat initial variance term structure.
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Proposition 4.4.3

Et0((X̃
H
T − X̃H

t0 )
3)

= 3γ

∫ T

t0

∫ t

0
ρ(s)ξ

1
2

t0 (s)ξt0(t)e
1
2 γ2Covt0(Z

H
s ZH

t )− 1
8 γ2Vart0(Z

H
s )(t − s)H− 1

2 dsdt (4.36)

where ξt0(t) = ξ0(t)eγ
∫ t0

0 (t−u)H− 1
2 dBu− γ2

4H [t2H−(t−t0)2H ]. This simplifies to

E((X̃H
T )3) = 3ργV

3
2

0

∫ T

0

∫ t

0
e

1
2 γ2(RH(s,t)− s2H

8H )(t − s)H− 1
2 dsdt < ∞ (4.37)

if t0 = 0, ρ is constant and ξ0(t) =V0 for all t (i.e. flat initial variance term structure).

Proof. See Appendix C.

Remark 4.4.2 Using that RH(s, t) → RfBM(s, t) as s, t → 0 (for H > 0 fixed), where
RfBM(s, t) = 1

2H
1
2(t

2H + s2H −|t − s|2H) is the covariance function of 1√
2H

W H where W H

is a standard (one or two-sided) fractional Brownian motion, we find that the exponent
in (4.37) behaves like 1

16H (s2H + 2t2H − 2(t − s))2H) for s < t as s, t → 0, and thus can
effectively be ignored, so (for ρ constant)

E((X̃H
T )3) ∼ 3ργV

3
2

0

∫ T

0

∫ t

0
e

1
2 γ2(RH(s,t)− s2H

8H )(t − s)H− 1
2 dsdt

=
3ργV

3
2

0

(H + 1
2)(H + 3

2)
T H+ 3

2 (T → 0) .

Remark 4.4.3 Note that X̃H is driftless so (4.35) is only a toy model at the moment,
but we easily adapt Proposition 4.4.3 and the two remarks above to incorporate the
additional −1

2⟨X̃
H⟩t drift term required to make St = eX̃H

t a martingale. However, the
relative contribution from this drift will disappear in the small-time limit, so we omit the
tedious details, since rough stochastic volatility models are generally used (and considered
more realistic) over small time horizons.

4.4.3 Convergence of the skew to zero

Corollary 4.4.4 For γ ∈ (0,1) and 0 ≤ t ≤ T ≤ 1, Et0((X̃
H
T − X̃H

t0 )
3)→ 0 a.s. as H → 0.
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Proof. For T ≤ 1, using that RH(s, t) ↑ R(s, t) and (t − s)H− 1
2 ↑ (t − s)−

1
2 we see that

|Et0((X̃
H
T − X̃H

t0 )
3)| ≤ 3|ρ|γ

∫ T

t0

∫ t

0
ξ

1
2

t0 (s)ξt0(t)e
1
2 γ2(Rt0(s,t)−

s2H
8H )(t − s)−

1
2 dsdt

≤ 3|ρ|γ
∫ T

t0

∫ t

0
ξ

1
2

t0 (s)ξt0(t)e
1
2 γ2(R(s,t)− s2H

8H )− 1
2 log(t−s)dsdt

≤ 3ξ̄
1
2

t0 (s)ξ̄t0(t) |ρ|γ
∫ T

t0

∫ t

0
e

1
2 (1+γ2) log 1

t−s +
1
2 γ2ḡdsdt

≤ const.×E(M√
1
2 (1+γ2)

([0,T ])2) < ∞

for γ ∈ (0,1) where Mγ(dt) is the usual [BM03] GMC, and R0(s, t) = Et0(ZsZs) =
∫ s

t0(s−
u)−

1
2 (t −u)−

1
2 duds, ḡ = 2log(2

√
2), ξ̄t = sup0≤s≤t ξs. The result follows from dominated

convergence theorem.

4.4.4 Speed of convergence of the skew to zero

The proof in the previous subsection applies to γ ∈ [0,1] however the result remains true
for γ up to a critical value γ∗ >

√
2 see Theorem 2 in [Ger20]. This result also gives us the

rate at which the skew converges to zero (or indeed blows up):

Proposition 4.4.5 (see [Ger20]). Let ρ(.) be continuous and bounded away from zero
with constant sign for t sufficiently small. Then

− lim
H→0

H log[sgn(ρ)E((X̃H
T )3)] = r̂(γ) =

{
1

16γ2 0 ≤ γ ≤ 1 ,
1
4 +

1
2 logγ − 3

16γ2 γ ≥ 1
(4.38)

r̂(γ) is negative for γ larger than the root of 1
4 +

1
2 logγ − 3

16γ2 at ≈ 1.61711, which makes
the integral explode as H → 0 for such values of γ .

Interestingly this critical value of γ∗ = 1.61711.. is greater than
√

2.

4.4.5 A H = 0 model - pros and cons

We can circumvent the problem of vanishing skew, by considering a toy model of the form

Xt = σ(ρWt + ρ̄B⊥
ξγ ([0,t])) (4.39)
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where ρ̄ =
√

1−ρ2, W and ξγ([0, t]) are defined as in Section 4.3 with γ ∈ (0,1), and B⊥

is a Brownian motion independent of W . Then from the tower property we see that

E(eikXt ) = E(E(eik(σρWt+σρ̄Bξγ ([0,t]))|W )) = E(eikσρWt− 1
2 k2(σρ̄)2ξγ ([0,t])))

and (from Remark 4.2.3) we know that ξγ([0, t])∼ tξγ([0,1]) (i.e. self-similarity), so

E(e
ik√

t
Xt ) = E(eikσρWt/

√
t− 1

2 k2(σρ̄)2ξγ ([0,t])/t) = E(eikσρW1− 1
2 k2(σρ̄)2ξγ ([0,1]))

so X is self-similar: Xt/
√

t ∼ X1 for all t > 0, and X1 (and hence Xt) has non-zero skewness
for α ̸= 0; more specifically (see Appendix D for a derivation of the following):

E((
Xt√

t
)3) = 3σ

3
ρ(1−ρ

2)E[W1ξ [0,1]] (4.40)

= 4σ
3
ρ(1−ρ

2)γ (4.41)

and E(X2
1 ) = σ2, and we can derive a similar (slightly more involved) expression for

E(X4
1 ). The ρ component achieves the goal of a H = 0 model with non-zero skewness,

and one can establish the following small-time behaviour for European put options in the
Edgeworth Central Limit Theorem regime:

1√
t
E((ex

√
t − eXt )+) ∼ ex

√
t E((x− Xt√

t
)+) ∼ E((x− Xt√

t
)+) ∼ E((x− X̄1)

+)

and limt→0 σ̂t(x
√

t, t) = CB(x, .)−1(C(x)) for x > 0, where σ̂t(x, t) denotes the implied
volatility of a European call option with strike ex

√
t maturity t and S0 = 1 (CB(x,σ) is the

Bachelier model call price formula). Hence we see the full smile effect in the small-time
FX options Edgeworth regime unlike the H > 0 case where the leading order term is just
Black-Scholes, followed by a next order skew term, followed by an even higher order
convexity term.

We can go from a toy model to a real model adding back the usual −1
2⟨X⟩t drift term

for the log stock price X so St = eXt is a martingale, and in this case we lose self-similarity
for X but Xt/

√
t still tends weakly to a non-Gaussian random variable, and in particular

limt→0E(( Xt√
t )

3) = 4σ3ρρ̄2γ . 3. This model overcomes two of the main drawbacks of the
original Bacry et al. multifractal random walk, namely zero skewness and unrealistic small-
time behaviour. However, the property in (4.41) does not appear to be time-consistent,
since if we define ηh

t := E((Xt+h−Xt√
h

)3|Ft) for t > 0, then E((ηh
t )

2) = O(h−γ2
) (and not

O(1) as we would want), so we do not pursue this model further at the present time.

3We can also replace the ρWt component of X with a second rBergomi component with a non-zero
H-value, and derive similar results
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4.5 Explicit spectral expansions for ZH for H ≥ 0

Following section 4.3 in [Gia15], we first briefly recall the classical Karhunen-Loève
theorem. Let (Xt)t∈[a,b] be a centred continuous-parameter real-valued process defined on
some probability space (Ω,F ,P), which is second order (i.e. E(X2

t )< ∞ for all t ∈ [a,b])
with continuous covariance function KX(s, t). Let

Zk =
∫ b

a
Xtek(t)

where {ek}∞
k=1 are the eigenfunctions of the Hilbert-Schmidt integral operator on L2([a;b])

given by (A f )(t) =
∫ b

a KX(s, t) f (s)ds, which is an orthonormal basis for the space spanned
by the eigenfunctions corresponding to the non-zero eigenvalues of A. Then E(Z jZk) =

λkδ jk for all j,k, E(Z j) = 0 for all j, and the series

∞

∑
n=1

Zkek(t)

converges to Xt in mean square, uniformly for t ∈ [a,b]. This expansion is often said to
be bi-orthogonal, since the random coefficients Zk are orthogonal in L2(Ω,F ,P) and the
eigenfunctions are orthogonal in L2([a,b]). If X is Gaussian, then the Zk’s are independent
Gaussians.

The K-L expansion of standard Brownian motion on [0,1] is given by

Wt =
∞

∑
n=1

√
λn φn(t)Zn

(see page 50 in [Gia15]), where Zn is a sequence of i.i.d. standard Normals, and

λn =
4

(2n−1)2π2 , φn(t) =
√

2sin((n− 1
2
)πt) . (4.42)

λn and φn are the eigenvalues and eigenfunctions of the Hilbert-Schmidt covariance opera-
tor R 1

2
: L2([0,1])→ L2([0,1]) given by R 1

2
θ(t) =

∫ 1
0 R 1

2
(s, t)θ(s)ds =

∫ 1
0 (s∧ t)θ(s)ds,and

and φn forms an orthonormal basis of L2([0,1]) and
√

λ nφ ′
n forms an orthonormal basis of

L2([0,1]).

We now recall the re-scaled Riemann-Liouville process from :

ZH
t =

∫ t

0
(t − s)H− 1

2 dWs
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with H ∈ (0,1) for which RH(s, t) :=E(ZH
s ZH

t ) =
∫ s∧t

0 (s−u)H− 1
2 (t−u)H− 1

2 du. We define
the operator KH : L2 →C[0,1] as KH f (t) =

∫ t
0(t − s)H− 1

2 f (s)ds for H ∈ [0, 1
2), and set

Xn
t =

n

∑
k=1

√
λk KHφ

′
k(t)Zn . (4.43)

Recall that
√

λ nφ ′
n forms an orthonormal basis of L2([0,1]), and we see that the covariance

function of Xn is

RH,n(s, t) =
n

∑
k=1

λkKHφ
′
k(s)KHφ

′
k(t) .

The aim of the next few subsections is to show that (4.43) converges to ZH
t in appropriate

sense for H > 0 and for H = 0. To do this, we first have to give some background on the
Cameron-Martin and Reproducing Kernel Hilbert spaces associated with Gaussian fields.

4.5.1 The Cameron-Martin space of a log-correlated Gaussian field

Let

C(x,y) = log
1

|y− x|
+ g(x,y) (4.44)

for some function g which is continuous and bounded away from (0,0). If the associated bi-
linear operator C(φ ,ψ) :=

∫ ∫
C(x,y)φ1(x)φ2(y)dxdy is positive definite (i.e. C(φ ,φ)≥ 0

for all φ ∈ S ) and continuous at zero (i.e. under the Schwartz space semi-norm defined in
Eq 1 in e.g. [BDW17]) then the Minlos-Bochner theorem implies that C is the covariance of
a centred Gaussian measure µ on the space S ′ of tempered distributions which is the dual
of the Schwartz space S (see e.g. Theorem 2.1 in [BDW17] or page 8 in Janson[Jan97]).
If X ∼ µ , then (due to the log term in (4.44)) we say that X is an almost log-correlated
Gaussian field, which has the following covariance structure:

E(X(φ1)X(φ2)) =
∫ ∫

C(x,y)φ1(x)φ2(y)dxdy . (4.45)

S is a Montel space and thus is reflexive, i.e. (S ′)′ is isomorphic to S using the canonical
embedding of S into its bi-dual (S′)′.

We can complete S using the inner product ⟨φ1,φ2⟩Rµ :=
∫ ∫

C(x,y)φ1(x)φ2(y)dxdy
to form the Hilbert Space Rµ (see e.g. page 44 in Bogachev[Bog91]). If we define Hµ to
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be the dual of Rµ i.e. the space of linear bounded functionals on Rµ with norm

∥h∥Hµ
:= sup{h(l) : l ∈ Rµ ,C(l, l)≤ 1}

then Hµ is known as the Cameron-Martin space of X (again see page 44 in [Bog91]).

We now recall the standard Riesz Representation theorem:

Theorem 4.5.1 Given a Hilbert space H, the map φ : H → H∗ defined by:

φ(h) = ⟨h, .⟩

is an isometric isomorphism.

Any element of Hµ is a bounded linear operator on the Hilbert space Rµ , so (by Riesz) for
any h ∈ Hµ there exists a unique g ∈ Rµ such that

h( f ) = ⟨ f ,g⟩Rµ = E(X( f )X(g)) = (Cg)( f ) ∀ f ∈ Rµ .

h and Cg are both bounded linear functions on Rµ that agree on every element of Rµ so
h =Cg, so the Riesz map φ : Hµ → Rµ here is given explicitly by φ(h) =C−1h.

4.5.2 Characterizing Hµ when C = AA∗

Suppose we have some Hilbert space E and we can factorise the covariance as C = AA∗

A : E → Hµ , A∗ : Rµ → E

where A and A∗ are bounded linear operators and A∗ is the adjoint of each other in the
sense that (Aφ)( f ) = ⟨A∗ f ,φ⟩E for all φ ∈ E and all f ∈ Rµ i.e. A∗ f = f (A(.)). Then we
have the following:

Proposition 4.5.2 Hµ is equal to the Hilbert space H =AE with inner product ⟨A f ,Ag⟩H :=
⟨ f ,g⟩E for all f ,g ∈ E.

Before proceeding with the proof, we recall a definition: given a set X , a Reproduc-
ing Kernel Hilbert Space H (RKHS) is a Hilbert space of functions on X admitting a
reproducing kernel, i.e. there exists a positive definite function K : X ×X →R such that:

(i) K(p, .) ∈ H for all p ∈ X .
(ii) f (p) = ⟨K(p, .), f ⟩H for all f ∈ H and p ∈ X .
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Proof. One proof can be found on pages 107-108 of [Bog91]. Alternatively, note that for
all f ∈ E and g ∈ Rµ :

(A f )(g) := ⟨A∗g, f ⟩E = ⟨AA∗g,A f ⟩H = ⟨Cg,A f ⟩H . (4.46)

But this is the statement that H is an RKHS on Rµ with kernel C. Such spaces are uniquely
characterised by their kernel (this is the Aronszajn-Moore theorem) and so all that remains
is to show that Hµ is also a RKHS with the same kernel. To this end, we note that any
h ∈ Hµ can be written as Cφ for some φ ∈ Rµ , so ∀g ∈ Rµ we have

h(g) = ⟨Cφ ,g⟩ = ⟨Cφ ,Cg⟩Hµ
= ⟨Cg,h⟩Hµ

which is the reproducing condition.

Our particular case of interest is of course for the Riemann-Liouville process (resp.
field) where (A f )(t) :=

∫ t
0(t − s)H− 1

2 f (s)ds for H ∈ [0,1) which is a bounded linear map
on E = L2([0,1]) (see Theorem 2.6 in Samko et al.[SKM93] for a proof of this) and
Hµ = AL2([0,1]). Moreover, using the Stone-Weierstrauss argument in Appendix A of
[FZ17], we can also verify that Hµ is dense in L2

As another simple example, we can trivially write C = Cι where ι is the identity
mapping on Rµ . Let E = Rµ , A = C and A∗ = ι we see the adjoint condition is simply
(Cφ)( f ) = ⟨φ , f ⟩Rµ . By Proposition 4.5.2 we recover the result Hµ =CRµ .

4.5.3 Karhunen-Loève type expansions

The Hilbert space structure allows us to expand our field in a basis. We have established a
linear isomorphism Hµ ↔ Rµ which is also an isometry. Thus if we have an O.N. basis of
Hµ then there is a corresponding O.N. basis {Ak =C−1ek} of Rµ . Then for all φ ∈ S we
have

φ =
∞

∑
k=1

cφ
n Ak

where cφ

k = ⟨φ ,Ak⟩Rµ and convergence is of course in the Rµ norm i.e. (C(φ −φn),φ −
φn)→ 0, where φn = ∑

n
k=1⟨φ ,Ak⟩Ak denotes the nth partial sum, or equivalently

X(φ) =
∞

∑
k=1

cφ

k X(Ak)
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in the sense that

∥X(φ)−Xn(φ)∥2 = ⟨C(φ −φn),φ −φn⟩ → 0 (4.47)

as n → ∞, where Xn = ∑
n
k=1 cφ

k X(Ak). Using the isometry and the reproducing property in
H we see that

cφ

k = ⟨Cφ ,Ak⟩ = ⟨Cφ ,CAk⟩Hµ
= ⟨Cφ ,ek⟩Hµ

= ek(φ)

by the reproducing property. In this sense we say that X = ∑
∞
k=1 X(Ak)ek and we can

re-write the convergence in (4.47) as

∥X(φ)−Xn(φ)∥2 = E([(X ,φ)− (Xn,φ)]2) → 0

where Xn := ∑
n
k=1 X(Ak)ek.

We also have that

E(X(A j)X(Ak)) = ⟨CA j,Ak⟩ = ⟨A j,Ak⟩Rµ = ⟨CA j,CAk⟩Hµ
= 1 j=k .(4.48)

and we know that each Zk := X(Ak) is Gaussian so they must be i.i.d. standard Normals,
so we can re-write our expansion as

X(φ) =
∞

∑
k=1

ek(φ)Zk .

Moreover, Xn(φ) = ∑
n
k=1 ek(φ)Zk is a discrete-time L2-martingale, so by the martingale

convergence theorem Xn(φ) converges a.s. to X(φ), and hence Xn → X a.s. in the weak
topology on S (and the strong topology, see page 2 in [BDW17]).

4.5.4 Choice of basis and explicit computation of terms

The operator C is a Hilbert-Schmidt, compact, linear and self-adjoint operator on L2 so
by the spectral theorem we can form the O.N. basis (en) of eigenfunctions of C which is
known as the Karhunen-Loève basis, which is frequently used in theoretical proofs but
is not so useful in practice aside from a few special cases (e.g. Brownian motion and the
Brownian bridge) since typically these eigenfunctions cannot be computed explicitly.

For this reason we appeal to Proposition 4.5.2 instead: let (ẽk) be an O.N. basis of
L2([0,1]). A is injective (due to the positive definiteness of C), so ek = Aẽk is an O.N. basis
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of AL2([0,1). Then in this basis we have

X =
∞

∑
k=1

AẽkZk (4.49)

and the Zk = X(Ak)’s are i.i.d. Normals.

If we use the O.N. basis of L2([0,1]) given by
√

λ nφk(t) from (4.42), then we can
compute KHφ ′

k(t) explicitly as

KHφ
′
k(t) =

√
2

1+2H
(2n−1)πt

1
2+H

1F1(
3
4
+

1
2

H,
5
4
+

1
2

H,− 1
16

(2n−1)2
π

2t2) (H > 0)

and

K′
Hφk(t) =

√
2
√

2n−1π [cos(
1
2
(2n−1)πt)FresnelC(

√
(2n−1)t)

+ FresnelS(
√

(2n−1)t)sin[
1
2
(2n−1)πt]] (H = 0)

(4.50)

where pFq is the generalized hypergeometric function4, FresnelC(z) =
∫ z

0 cos(1
2πt2)dt,

FresnelS(z) =
∫ z

0 sin(1
2πt2)dt. No such explicit formulae are known for the standard K-L

expansion for the RL process which requires knowledge of the eigenvalues of eigenfunc-
tions of the covariance operator (see Gulisashvili et al.[GVZ19] for asymptotic results in
this direction).

4.5.5 Using the spectral expansion to sample the GMC mass ξ H
γ ([0,T ])

for H ≪ 1 and H = 0

From the well known Selberg formula we have that

E(ξ H
γ ([0,T ])q) =

∫
[0,T ]

...
∫
[0,T ]

eγ2
∑1≤i< j≤q RH(ui,u j)dui...duq (4.51)

for q > 0. In the following table we have tabulated the first four raw moments ξγ([0,1]) for
(using (4.51)) and their corresponding estimates using Monte Carlo simulation with the K-
L expansion in (4.43) using (4.50) (which we denote by µ̂n), with n = 1000 eigenfunctions,
1000 time steps and 1 million simulations for both cases, and Gaussian quadrature for
the numerical integration, and we find that the exact and MC answers are in very close
agreement (and similarly we get very close agreement for small positive H values, e.g.

4using Mathematica’s definition
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H = .0001, for which the numbers are almost identical to those in the table). If we perform
the same computations for e.g. H = .0001 using a traditional Cholesky decomposition
with a simple Riemann sum, then we get nonsensical answers, which we have not tabulated
here. Based on these results, our KL expansion clearly useful for pricing variance options
under the rough Bergomi model with H small or zero (i.e. options on ξ H

γ ([0,T ])); our
expansion does not appear to work so well for the (driftless) rough Bergomi model with
non-zero correlation defined in Eq 4.35 in estimating the third moment of the driftless log
stock price: E((X̃H

T )3) (when compared to the analytical expression for this quantity given
in 4.37.

γ µ1 µ2 µ3 µ4 µ̂1 µ̂2 µ̂3 µ̂4

0.05 1 1.00502 1.01513 1.0305 1 1.005 1.0151 1.0305

0.1 1 1.02028 1.06216 1.12836 0.99999 1.0202 1.062 1.1281

0.15 1 1.04644 1.14633 1.31508 0.99999 1.0464 1.1462 1.3148

0.2 1 1.08466 1.27764 1.63646 0.99999 1.0845 1.2771 1.6351

0.25 1 1.13669 1.47323 2.1843 0.99999 1.1367 1.4734 2.1852

0.3 1 1.20512 1.76191 3.14796 0.99985 1.2042 1.7582 3.1336

0.35 1 1.29359 2.19289 4.94361 0.99975 1.2919 2.1849 4.9066

0.4 1 1.40729 2.85324 8.56902 1.0001 1.4078 2.8651 8.9761

0.45 1 1.5537 3.90481 16.6981 1 1.5532 3.8953 16.461

0.5 1 1.74375 5.66824 37.5977 1.0001 1.744 5.6369 35.0148

The following table performs the same computations as above but for H = .03 (em-
pirical values as low as this are reported in Fukasawa et al.[FTW19]), and in the final
column we compare against a traditional Cholesky scheme using Simpson’s rule (also with
1000 time steps and 1 million simulations), and we see that our K-L expansion method
outperforms the latter to an increasingly greater extent as γ increases. In the second
column, we have computed the usual vol-of-variance parameter η = γ√

2H
corresponding

to each choice of γ . Matlab was unable to compute a positive-definite 1000 point Cholesky
decomposition when we tried using Gaussian quadrature instead of Simpson’s rule (the
former of course has non-equidistant time points), and also for H = .05, see final table
below.

116



4.5 Explicit spectral expansions for ZH for H ≥ 0

γ
η
=

γ
√

2H
µ

1
µ

2
µ

3
µ

4
µ̂

H 1
µ̂

H 2
µ̂

H 3
µ̂

H 4
µ̂

H
,c

ho
l

1
µ̂

H
,c

ho
l

2
µ̂

H
,c

ho
l

3
µ̂

H
,c

ho
l

4

0.
05

0.
20

41
24

1
1.

00
43

1.
01

30
6

1.
02

63
1

1.
00

43
1.

01
3

1.
02

62
1

1.
00

43
1.

01
31

1.
02

64

0.
1

0.
40

82
48

1
1.

01
74

9
1.

05
34

5
1.

10
98

8
0.

99
99

9
1.

01
75

1.
05

34
1.

10
98

1
1.

01
76

1.
05

38
1.

11
07

0.
15

0.
61

23
72

1
1.

03
99

3
1.

12
5

1.
26

44
1

1
1.

04
1.

12
53

1.
26

7
1

1.
04

02
1.

12
59

1.
26

84

0.
2

0.
81

64
97

1
1.

07
25

1.
23

48
9

1.
52

80
5

0.
99

99
7

1.
07

25
1.

23
49

1.
52

81
1.

00
01

1.
07

35
1.

23
8

1.
53

53

0.
25

1.
02

06
2

1
1.

11
64

4
1.

39
50

5
1.

95
61

3
1.

00
02

1.
11

74
1.

39
77

1.
96

3
0.

99
99

1.
11

73
1.

39
9

1.
96

78

0.
30

1.
22

47
4

1
1.

17
35

3
1.

62
47

3
2.

66
89

2
0.

99
97

7
1.

17
27

1.
62

26
2.

66
46

0.
99

99
9

1.
17

6
1.

63
52

2.
70

41

0.
35

1.
42

88
7

1
1.

24
61

9
1.

95
50

9
3.

90
47

9
1.

00
02

1.
24

77
1.

96
35

3.
95

1
0.

99
98

7
1.

25
05

1.
97

6
3.

98
71

0.
40

1.
63

29
9

1
1.

33
78

2.
43

77
5

6.
17

75
2

0.
99

98
8

1.
33

71
2.

43
52

6.
15

55
0.

99
98

1.
34

81
2.

50
16

6.
54

63

0.
45

1.
83

71
2

1
1.

45
29

2
3.

16
09

9
10

.6
69

7
0.

99
97

1
1.

45
05

3.
13

51
10

.2
87

8
0.

99
93

7
1.

47
14

3.
29

87
11

.6
32

5

0.
50

2.
04

12
4

1
1.

59
79

1
4.

28
21

1
20

.4
21

4
0.

99
96

6
1.

59
47

4.
25

61
20

.1
08

9
1.

00
03

1.
64

88
4.

81
97

28
.5

11
7

117



4.6 Appendix

4.6 Appendix

4.6.1 Appendix A: Definition and properties of FH(k) and GH(k) for
the Sandwich lemma

RH(s, t) =
∫ s∧t

0 (s− u)H− 1
2 (t − u)H− 1

2 du =
∫ s

0 uH− 1
2 (t − s+ u)H− 1

2 du for 0 ≤ s ≤ t, and
note that the integrand is non-negative. Going forward we set k = t − s. We restrict
RH(s, t) to Aδ := {(s, t) : t − s = k,(s, t) ∈ [τ,τ + δ ]2) with k ∈ (0,δ ) and δ ∈ (0,1− τ),
i.e. RH(s,k+ s) =

∫ s
0 (u(k+ u))H− 1

2 du . This expression is maximized at s = τ + δ − k
and minimized at s = τ for constant k (see Figure 4.2). Recall that GH(k) := RH(τ +δ −
k,τ +δ ), we will now establish some basic properties of GH(k). From the analysis above:
GH(k) =

∫
τ+δ−k
0 (u(k+u))H− 1

2 du . Taking the derivative with respect to k and using the
Leibniz rule, we see that

G′
H(k) = −(τ +δ − k)H− 1

2 (τ +δ )H− 1
2 + (H − 1

2
)
∫

τ+δ−k

0
uH− 1

2 (k+u)H− 3
2 du

which is negative (since H < 1
2), so GH(k) is decreasing in k. The integral term in the

previous equation explodes as k ↓ 0:

∫
τ+δ−k

0
uH− 1

2 (k+u)H− 3
2 du ≥

∫
τ+δ−k

0
(k+u)2H−2du =

(τ +δ )2H−1

2H −1
− k2H−1

2H −1
↑ ∞ .

Hence G′
H(k)→−∞ as k ↘ 0. Conversely, if we fix k and let H → 0, we find that

GH(k) ↑ G0(k) = log
1
k
+ 2log(

√
τ +δ − k +

√
τ +δ ) (H → 0)

≤ g(k) := log
1
k
+ 2log(2

√
τ +δ ) = log

1
k
+ log(4(τ +δ ))

with equality at k = 0 in the sense that both sides of the inequality are infinite. Thus

GH(k) ≤ G0(k) ≤ g(k) ≤ log
4
k

(A.1)

since τ +δ < 1 by assumption.

Similarly, we recall that FH(k) := RH(τ,τ + k) =
∫

τ

0 (τ −u)H− 1
2 (τ + k−u)H− 1

2 du, so

F ′
H(k) = (H − 1

2
)
∫

τ

0
(τ −u)H− 1

2 (τ + k−u)H− 3
2 du ≥ (H − 1

2
)
∫

τ

0
(τ −u)2H−2du

F ′′
H(k) = (H − 1

2
)(H − 3

2
)
∫

τ

0
(τ −u)H− 1

2 (τ + k−u)H− 5
2 du
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Fig. 4.2 Top left plot: R(s, t) is maximized at s = τ +δ − k, and minimized at s = τ . In
the top right graphic, we have plotted the various quantities appearing in the lower bound
part of the proof of the Sandwich Lemma with H = .1, τ = .95 (of course in practice
we care about much lower H-values but it is clearer to see what is going on here for a
larger H-value so the curves are not so close to each other). Note the blue dashed line is
tangential to the grey line at k = k∗, and the blue line has steeper slope than the grey line at
this point. In the bottom graphic we we have plotted gH(s, t) for different t values for the
RL process/field with H = 0 (left).

so FH(k) is decreasing and convex in k, and F ′
H(k) ↘ −∞ as k ↘ 0. FH(k) increases

pointwise as H ↓ 0 to F0(k) := log 1
k +2log(

√
τ +

√
τ + k). The second term is minimized

at k = 0, so we define: f (k) := log 4τ

k and note that f (k)< F0(k).

4.6.2 Appendix B: Monotonicity properties of gH(s, t)

The covariance of the RL process for s < t < 1 is R(s, t) =
∫ s

0 (s−u)H− 1
2 (t −u)H− 1

2 du =∫ s
0 uH− 1

2 (t−s+u)H− 1
2 du . Differentiating this expression using the Leibniz rule we see that

Rs(s, t) = sH− 1
2 tH− 1

2 + (1
2 −H)

∫ s
0 uH− 1

2 (t − s+u)H− 3
2 du and recall that gH(s, t) = 1

Rs(s,t)
.

Then we can infer monotonicity properties of g from Rs:

• By inspection Rs is a decreasing function of t, so g is increasing in t.

• For 0 < s < t, (t − s+u)H− 1
2 is a smooth function of u on [0,s] so the integral term

in our expression for Rs is finite ∀t > 0. Thus Rs(s, t) tends to +∞ as s → 0 so
gH(0, t) = 0 for t > 0.
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• For s = t > 0 the first term in our expression for Rs(s, t) is finite but the integral
diverges, so we also have gH(t, t) = 0.

• For s, t ∈ (0,1]2, (st)H− 1
2 , 1

2 −H and uH− 1
2 (t − s+ u)H− 3

2 are non-negative and
decreasing in H, so gH(s, t) is increasing in H.

• By inspection, gH(s, t) is continuous for s ∈ [0, t], and performing a Taylor series
expansion of ∂

∂ sgH(s, t)(s, t) we can show that ∂

∂ sgH(s, t)→−∞ as s ↘ 0 and s ↗ t.

These properties can be seen in the bottom plot in Figure 4.2.

4.6.3 Appendix C: Proof of Proposition 4.4.3

We first recall that for any continuous martingale M, using Ito’s lemma and integrating by
parts we know that E(M3

t ) = 3E(
∫ t

0 Msd⟨M⟩s) = 3E(Mt⟨M⟩t). Thus we see that

Et0((X̃
H
T − X̃H

t0 )
3)

= 3Et0((X̃
H
T − X̃H

t0 )(⟨X̃
H
T ⟩−⟨X̃H

t0 ⟩))

= 3Et0(
∫ T

t0
ρ(s)

√
V H

s dBs ·
∫ T

t0
V H

t dt)

= 3Et0(
∫ T

t0
ρ(s)ξ

1
2

t0 (s)e
1
2 γ
∫ s

t0
(s−u)H− 1

2 dBu− 1
2 ·

1
2 γ2 ∫ s

t0
(s−u)2H−1du dBs

×
∫ T

t0
ξt0(t)eγ

∫ t
t0
(t−u)H− 1

2 dBu− 1
2 γ2 ∫ t

t0
(t−u)2H−1dudt) .

So we (formally) need to compute

δ I = Et0(e
1
2 γ
∫ s

t0
(s−u)H− 1

2 dBu− 1
2 ·

1
2 γ2 ∫ s

t0
(s−u)2H−1dudBs · eγ

∫ t
t0
(t−u)H− 1

2 dBu− 1
2 γ2 ∫ t

t0
(t−u)2H−1du

)

= Et0(e
γ
∫ t

t0
(t−u)H− 1

2 dBu+
1
2 γ
∫ s

t0
(s−u)H− 1

2 dBu−(...)dBs)

where (...) refers to the non-random terms. To this end, let X = γ
∫ t

t0(t − u)H− 1
2 dBu +

1
2γ
∫ s

t0(s− u)H− 1
2 dBu and Y = dBs. Then E(XY ) = γ(t − s)H− 1

2 ds1s<t (since formally

E(1
2γ
∫ s

t0(s− u)H− 1
2 dBu · dBs) = 0, see end of proof for discussion on how to make this

argument rigorous) and

E(YeX) = e
1
2E(X

2)E(XY ) = e
1
2VH(s,t)γ(t − s)H− 1

2 ds1s<t

⇒ δ I = e−
1
2 γ2 ∫ t

t0
(t−u)2H−1du− 1

2 ·
1
2 γ2 ∫ s

t0
(s−u)2H−1du e

1
2VH(s,t)γ(t − s)H− 1

2 ds1s<t
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where VH(s, t) = γ2 ∫ t
t0 [(t −u)H− 1

2 + 1
2(s−u)H− 1

2 1s<t ]
2du . Cancelling terms in the expo-

nent, we see that δ I simplifies to

δ I = e
1
2 γ2 ∫ s

t0
(s−u)H− 1

2 (t−u)H− 1
2 du− 1

8 γ2 ∫ s
t0
(s−u)2H−1du)

(t − s)H− 1
2 ds1s<t

= e
1
2 γ2Covt0(Z

H
s ZH

t )− 1
8 Vart0(Z

H
s ))(t − s)H− 1

2 ds1s<t

Then

Et0((X̃
H
T − X̃H

t0 )
3) = 3Et0

∫ T

t0

∫ T

t0
ρ(s)ξ

1
2

t0 (s)ξt0(t)δ Idt

and (4.36) and (4.37) follow. Finally we recall that a general stochastic integral
∫ t

0 φsdMs

with respect to a martingale M is defined as an L2- limit of
∫ t

0 φ 1
n [ns]dMs; using this

construction we can rigourize the formal argument above with δ I (we omit the tedious
details for the sake of brevity).

4.6.4 Appendix D: Proof of skew formula

We require an expression for E[W1ξγ [0,1]]. Consider the following quantity:

E[eαW1− 1
2 α2

ξγ [0,1](W )] = Ẽ[ξγ [0,1](W )] (D.1)

= E[ξγ [0,1](W +αh)] (D.2)

= E[
∫ 1

0
e⟨Y

0(t),αh⟩
ξγ [dt](W )] (D.3)

=
∫ 1

0
e⟨Y

0(t),αh⟩dt (D.4)

where in the first line we have changed the measure, in the second we have applied the
Cameron-Martin theorem and in the third and fourth we have used the Shamov definition
of the GMC. Here h is simply the identity function.

Differentiating both sides with respect to α and then setting α = 0 yields

E[W1ξγ [0,1]] =
∫ 1

0
⟨Y 0(t),h⟩dt =

∫ 1

0
γ

t1/2

1/2
dt =

γ

1
2 ·

3
2

(D.5)

which gives the result.
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