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A shared neural basis underlying psychiatric 
comorbidity

Chao Xie1,2, Shitong Xiang    1,2, Chun Shen1,2, Xuerui Peng    3, Jujiao Kang1,2, 
Yuzhu Li1,2, Wei Cheng1,2, Shiqi He1,4, Tobias Banaschewski    5, 
Gareth J. Barker    6, Arun L. W. Bokde    7, Uli Bromberg8, Christian Büchel    8, 
Sylvane Desrivières    9, Herta Flor    10,11, Antoine Grigis12, Hugh Garavan13, 
Penny Gowland    14, Andreas Heinz    15, Bernd Ittermann16, 
Jean-Luc Martinot    17, Marie-Laure Paillère Martinot    17,18, Frauke Nees    5,10,19, 
Dimitri Papadopoulos Orfanos    12, Tomáš Paus20, Luise Poustka21, 
Juliane H. Fröhner    22, Michael N. Smolka    22, Henrik Walter    15, 
Robert Whelan23, Barbara J. Sahakian    1,24, Trevor W. Robbins    1,24,31, 
Gunter Schumann    1,25,26,27,31, Tianye Jia    1,2,9,31  , Jianfeng Feng    1,2,28,29,30,31, 
IMAGEN Consortium*, STRATIFY Consortium* & ZIB Consortium*

Recent studies proposed a general psychopathology factor underlying 
common comorbidities among psychiatric disorders. However, its 
neurobiological mechanisms and generalizability remain elusive. In this 
study, we used a large longitudinal neuroimaging cohort from adolescence 
to young adulthood (IMAGEN) to define a neuropsychopathological (NP) 
factor across externalizing and internalizing symptoms using multitask 
connectomes. We demonstrate that this NP factor might represent a 
unified, genetically determined, delayed development of the prefrontal 
cortex that further leads to poor executive function. We also show this 
NP factor to be reproducible in multiple developmental periods, from 
preadolescence to early adulthood, and generalizable to the resting-state 
connectome and clinical samples (the ADHD-200 Sample and the 
Stratify Project). In conclusion, we identify a reproducible and general 
neural basis underlying symptoms of multiple mental health disorders, 
bridging multidimensional evidence from behavioral, neuroimaging and 
genetic substrates. These findings may help to develop new therapeutic 
interventions for psychiatric comorbidities.

The coexistence of multiple psychiatric conditions, known as psy-
chiatric comorbidity1, has garnered substantial attention due to its 
high prevalence and long-lasting impact2. Individuals with comorbid 
psychiatric diagnoses often experience poorer outcomes and severe 
deficits in various cognitive and behavioral domains3. Notably, many 
psychiatric disorders, for example, externalizing and internalizing dis-
orders, have their approximate peak onset in adolescence, coinciding 
with the emergence of comorbidity4,5. For instance, a population-based 

study on the well-being of adolescents found that 27.9% of participants 
aged 14–17 reached multiple diagnostic criteria6. The high prevalence 
of comorbid mental disorders suggests shared neurobiological origins 
among different psychopathologies2. However, the neuropsychopatho-
logical mechanism of psychiatric comorbidity, particularly during the 
critical period of adolescence, remains elusive.

Recently, emerging evidence has suggested a general psychopa-
thology factor (that is, the p factor) underlying higher vulnerability for 
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similar deficits in multiple cognitive functions, as envisaged by 
Research Domain Criteria19. This new understanding inspires us to 
investigate potential transdiagnostic neurobiological processes from 
population-based data that are enriched with task-based fMRIs of 
multiple cognitive domains and symptom measurements covering a 
wide range of mental disorders. This approach also allows us to avoid 
the dilemma of case–control studies in identifying transdiagnostic 
biomarkers, where comorbidity is generally considered a major con-
founding factor to be removed. Furthermore, considering the replica-
tion crisis in neuroimaging studies, it was suggested that combining 
large neuroimaging samples and machine-learning approaches (that 
is, combining training and validation processes) could increase the 
reliability and reproducibility of identified neurobiomarkers20,21.

In this study, we will address the following three specific major 
questions regarding the shared neural bases of behavioral symptoms 
related to psychiatric disorders (Fig. 1a): (1) Can we establish an NP 
factor underlying both externalizing and internalizing symptoms on 
the basis of the multiple task-based connectomes of fMRI? (2) Is the 
NP factor supported by genetic and neurobehavioral substrates of 
comorbid mental disorders? (3) Could the NP factor be generalized 
to other developmental stages and clinical crossdisorder datasets?

Results
Summary of major analytic steps
First, we leveraged the population-based IMAGEN cohort (aged 14 
years, N = 1,750, 882 girls; Extended Data Table 1) to estimate the brain 
signature of eight behavioral symptoms using the connectivity-based 
predictive model grounded on multiple task-based fMRIs (Fig. 1b). 

different psychiatric disorders7. Statistically, the p factor summarizes a 
pattern of positive correlations among symptoms; however, it leaves no 
room for alternative latent effects (for example, anticorrelation among 
symptoms). Indeed, it was argued that the behavioral p factor is largely 
equivalent to a sum of all symptoms8. Further, previous neuroimaging 
studies that investigated the neural correlates of the p factor mainly 
relied on task-free modalities, such as resting state9, diffusion10 and 
structural magnetic resonance imaging (MRI)11. However, although 
these task-free neural correlates of this p factor represent varied neu-
robiological information, they do not aid in specifying the neurocog-
nitive processes underlying multiple psychopathologies12,13. Instead, 
the relevant cognitive brain circuitry can be mapped using multitask 
functional MRI (fMRI) data, which have also been used previously to 
identify circuit-specific neural signatures of externalizing symptoms14.

In contrast, crossdisorder genetic studies further revealed that 
many psychiatric disorders share high degrees of positive genetic cor-
relations15,16, and the common genetic variants predominantly involved 
neurodevelopmental processes17,18. However, opposite genetic effects 
were also identified among psychiatric disorders17, which further high-
lighted the complexity of shared biological processes across multiple 
mental disorders. Therefore, it is necessary to integrate behavioral, 
neuroimaging and genetic evidence to establish coherent neurobio-
logical crossdisorder neural factors (that is, the NP factor) that are 
not only shared among different psychopathologies but could also 
be attributed to specific cognitive brain circuits and genetic variants.

Notably, mounting evidence propose that many mental disorders 
can be understood as extreme deviations from a continuous spectrum 
in the population and different mental disorders may demonstrate 
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Fig. 1 | Overview of research questions and analyses. a, This study aims to 
answer three questions (Q1–Q3) about multiple neurobiological aspects of 
general psychopathology. b, We identified the NP factor in the IMAGEN dataset 
at ages 14 and 19 on the basis of task-based FC with a CPM (Q1; N = 1,750). c, We 
characterized the NP factor using multiple neurocognitive behaviors and genetic 
substrates (Q2). d, We checked the generalizability of the NP factor in multiple 
developmental periods using different fMRI states (Q3; N = 4,942). AN, anorexia 
nervosa; BN, bulimia nervosa; AUD, alcohol use disorder ; MDD, major depressive 

disorder; ADHD, attention-deficit/hyperactivity disorder; ASD, autism  
spectrum disorder; CD, conduct disorder; ODD, oppositional defiant disorder; 
GAD, general anxiety disorder; Dep., depression; ED, eating disorder; SP,  
specific phobia; FPN, frontoparietal network; IFG, inferior frontal gyrus; mPFC, 
medial prefrontal cortex; SAL, salience network; SMF, superior medial frontal 
network; NP factor score, the connectivity strength of the NP factor; vPCun, 
ventral precuneus.
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Specifically, we estimated the condition-specific functional connec-
tivity (FC) using a well-established whole-brain functional atlas22.  
These task-based FCs were used in a connectome-based predictive 
model (CPM)23 to predict each of the eight behavioral symptoms related 
to psychiatric disorders (Fig. 2 and Supplementary Table 1). First, in 
the CPM, univariately significant FCs were used to establish a linear 
model for prediction, and crossvalidation was implemented to avoid 
overfitting and improve the model’s reproducibility in novel samples24 
(Extended Data Fig. 1a). Second, we conducted longitudinal analyses 
to identify a sustainable transdiagnostic NP factor that was predictive 
of both externalizing and internalizing symptoms across adolescence 
and early adulthood (Fig. 1b and Extended Data Fig. 1b). Third, we char-
acterized the NP factor in multiple neurobiological aspects (Fig. 1c), 
including its neuroanatomical interpretation (that is, the brain net-
works involved), neurobehavioral relevance (with the corresponding 
task performance) and its associations with common environmental 
and behavioral risk factors. We also investigated candidate biological 
processes and genetic substrates underlying the crossdisorder NP fac-
tor. Finally, we assessed and confirmed the generalizability of the NP 
factor in other developmental periods and resting-state MRIs (from 
Adolescent Brain Cognitive Development (ABCD) and Human Connec-
tome Project (HCP) cohorts) and in clinical datasets (from the ADHD-
200 Sample (ADHD-200) and the Stratify Project (Stratify)) (Fig. 1d).

Brain signatures of externalizing and internalizing symptoms
We found the task-based FC derived from the eight task conditions 
significantly predicted most behavioral symptoms after Bonferroni cor-
rection (Fig. 3a and Supplementary Table 2). To evaluate the integrated 

predictive effects, we used a multiple regression model combining the 
predicted symptom scores of different task conditions. Specifically, 
externalizing symptoms of attention-deficit/hyperactivity disorder 
(ADHD; adjusted R2 (adj-R2) = 4.28%), autism spectrum disorder (ASD; 
adj-R2 = 2.66%), conduct disorder (CD; adj-R2 = 2.23%) and oppositional 
defiant disorder (ODD; adj-R2 = 1.30%) were largely explained by the 
cognitive domains of reward sensitivity and inhibitory control (Sup-
plementary Table 3). Similarly, three internalizing symptoms (specific 
phobia (SP), generalized anxiety disorder (GAD) and eating disorder 
(ED)) were also significantly predicted by reward sensitivity, inhibitory 
control and emotional reactivity (SP adj-R2 = 4.83 %, GAD adj-R2 = 1.97%, 
ED adj-R2 = 4.89%; Supplementary Table 3). Our results suggested that 
we could characterize the shared neural configurations underlying 
general psychopathology using these brain signatures of externalizing 
and internalizing symptoms.

Construction of a reliable and persistent NP factor
Next, we aimed to establish the NP factor, consisting of crossdisorder 
edges, in relation to both externalizing and internalizing symptoms 
(Fig. 3b). The NP factor needed to meet two additional criteria: (1) only 
crossdisorder edges from the most reliable and informative task condi-
tions should be used to construct the NP factor; and (2) the NP factor 
should be a persistent predictor of different behavioral symptoms 
from adolescence to young adulthood, given the persistent nature of 
psychiatric comorbidity over time3,4.

First, we investigated the enrichment of crossdisorder edges 
using permutation tests to evaluate if the number of crossdisorder 
edges (nedge) identified in a given task condition was significantly larger 
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Fig. 2 | Histograms of externalizing and internalizing symptoms at age 14. Externalizing symptoms include ASD, ADHD, CD and ODD; internalizing symptoms 
include GAD, depression, ED and SP. The green line in each graph marks an approximate threshold for individuals who are high risk (that is, chance with diagnoses is 
over 50% according to Development And Well-Being Assessment (DAWBA)).
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than that in a random discovery. In each permutation iteration, we 
reconducted the previously mentioned CPM process using randomly 
reshuffled participant labels and counted the corresponding number 
of crossdisorder edges (Fig. 3b, see Methods for details). We found 
that only conditions from the stop signal task (SST) and the monetary 
incentive delay (MID) task had significantly more crossdisorder edges 
than in a random observation (for SST, stop success nedge = 325, stop 
failure nedge = 297, positive feedback nedge = 344; for MID, reward antici-
pation nedge = 316; all P values based on permutation (Pperm) < 0.001; 
Supplementary Table 4). These four task conditions were therefore 
considered reliable and included in the following analyses. Next, to 
improve interpretability, we then stratified crossdisorder edges from 
the four reliable task conditions into four groups in terms of their 
predictive effects (Fig. 3c), that is, positive–positive (nedge = 136) and 
negative–negative (nedge = 64) consensus edges (which showed posi-
tive or negative correlations with both externalizing and internalizing 

symptoms simultaneously), and positive–negative (nedge = 1,032) and 
negative–positive (nedge = 48) dissensus edges (which had opposite 
correlations with externalizing and internalizing symptoms). The 
number of positive–negative edges (Pperm < 0.001), negative–positive 
edges (Pperm = 0.002) and positive–positive edges (Pperm < 0.001) were 
significantly higher than that in random discoveries (Supplementary 
Table 5a), and were therefore included in the following analyses.

Finally, we examined the longitudinal consistency for each 
of these three crossdisorder edge groups and characterized the 
summed FC strength of the longitudinally consistent crossdisorder 
edge group as the NP factor underlying externalizing and internal-
izing disorders simultaneously (Fig. 3c). We found that only the 
summed FC strength of positive–positive consensus edges was asso-
ciated with externalizing and internalizing symptoms simultane-
ously at both ages 14 (for externalizing symptoms, N = 1,724, r = 0.31, 
95% confidence interval (CI) = [0.27,∞), one-tailed Pperm < 0.001; 
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for internalizing symptoms, r = 0.23, 95% CI = [0.19,∞), one-tailed 
Pperm < 0.001; because the symptom-predictive model was trained 
at age 14, P values here were estimated using permutation tests that 

are robust to overfitting; Supplementary Table 5c) and 19 (for exter-
nalizing symptoms, N = 1,101, r = 0.13, 95% CI = [0.08,∞), t-statistic 
(t) = 4.43, Pone-tailed = 1.51 × 10−5; for internalizing symptoms, r = 0.051, 
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Fig. 4 | Neurobiological characterization of the NP factor. a, The functional 
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connections, where the number of connections between or within networks 
was divided by the largest connection number observed. b, The top 10% nodes 
in the NP factor ranked by the normalized node degree (that is, the number 
of connections with other nodes). c, The functional connection network of 
the NP factor containing the node with the largest degree (that is, the ventral 
precuneus). d, The NP factor was associated with response accuracy during 
the MID task and the SST. e, The NP factor was associated with most cognitive 

functions (13 of 20), primarily executive function-related behaviors. The 
significance level (that is, the dashed line) was given as a false discovery rate 
(fdr) of 0.05. The P values were reported as the original value and could survive 
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95% CI = [0.001,∞), t = 1.70, Pone-tailed = 0.044; Supplementary Table 6a).  
Moreover, the summed FC strength of positive–positive edges 
at age 14 could also predict the subsequent behavioral symptoms 
measured at age 19 (for externalizing symptoms, N = 1,045, r = 0.13, 
95% CI = [0.08,∞), t = 4.26, Pone-tailed = 1.24 × 10−5; for internalizing 
symptoms, r = 0.17, 95% CI = [0.12,∞), t = 5.54, Pone-tailed = 1.60 × 10−8; 
Supplementary Table 6b), even after controlling for the baseline 
measurements (for externalizing symptoms, N = 1,036, r = 0.073, 
95% CI = [0.02,∞), t = 2.34, Pone-tailed = 0.010; for internalizing symp-
toms, r = 0.076, 95% CI = [0.03,∞), t = 2.44, Pone-tailed = 0.008; Sup-
plementary Table 6c). Research sites, sex and handedness were 
included as control variables for the above association analyses and  
henceforward.

Therefore, we proposed the summed FC strength of positive–posi-
tive consensus edges as the NP factor because it was both positively 
and longitudinally associated with externalizing and internalizing 
symptoms across adolescence and young adulthood. Notably, the 
NP factor had a significantly positive FC strength at both ages 14 and 
19 (at age 14, N = 1,750, t = 43.89, Cohen’s d = 2.10, 95% CI = [1.98,2.22], 
Ptwo-tailed = 1.36 × 10−284; at age 19, N = 1,345, t = 34.21, Cohen’s d = 2.10, 95% 
CI = [1.74,1.99], Ptwo-tailed = 2.53 × 10−185), whereas it showed a decreased FC 
strength from age 14 to age 19 (N = 1,087, t = 3.12, Cohen’s d = 0.19, 95% 
CI = [0.07,0.31], Ptwo-tailed = 0.002). This decrease was associated with 
baseline behavioral symptoms (N = 906; for externalizing symptoms, 
r = 0.15, 95% CI = [0.09,0.21], t = 4.68, Ptwo-tailed = 3.31 × 10−6; for internaliz-
ing symptoms, r = 0.16, 95% CI = [0.10,0.22], t = 4.87, Ptwo-tailed = 1.24 × 10−6), 
indicating that individuals with more behavioral symptoms had a distinct 
NP factor trajectory during this developmental period.

Prefrontal-related NP factor linked to executive dysfunction
We then characterized the NP factor in its neuroanatomical interpreta-
tion (that is, how the NP factor relates to established brain networks 
and critical brain regions), neurobehavioral relevance (how the NP 
factor associates with task performance during the MID task and the 
SST) and associations with common environmental and behavioral 
risk factors (how the NP factor relates to common putative psycho-
pathological risk factors).

The NP factor mainly encompassed prefrontal cortical circuits, 
such as the superior medial frontal, salience and frontoparietal net-
works (Fig. 4a and Supplementary Fig. 6), with prominent regions 
including the ventral precuneus, the inferior frontal gyrus, the 
middle occipital gyrus, the insula and the medial prefrontal cortex  
(Fig. 4b and Supplementary Table 8). Notably, the region with the larg-
est node degree (that is, the region with the greatest number of con-
nections to other nodes) was the ventral precuneus, which might serve 
as a hub that integrates information to or from multiple prefrontal  
regions25 (Fig. 4c).

Because the NP factor was constructed with the SST and the MID 
task (but not the emotional face task (EFT) due to its failed stability 
test), we further assessed the associations of the NP factor with task 
performance during reward sensitivity and inhibitory control. We 
found that a stronger NP factor was associated with lower accuracy 
in the MID task (N = 1,620, r = −0.14, 95% CI = [−0.19,−0.09], t = −5.83, 
Ptwo-tailed = 6.68 × 10−9) and the SST go trials (N = 1,567, r = −0.15, 95% 
CI = [−0.20,−0.10], t = −6.16, Ptwo-tailed = 9.23 × 10−10; Fig. 4d), but not with 
the reaction time of the MID task (r = −0.028, 95% CI = [−0.08,0.02], 
t = −1.11, Ptwo-tailed = 0.26) or the stop-signal delay task (r = 0.007, 
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95% CI = [−0.04,0.05], t = 0.29, Ptwo-tailed = 0.77). A follow-up analysis 
revealed that the observed differentiated associations with accuracy 
and reaction time were significant for the NP factor scores derived 
from both the MID task (Z = 3.16, Cohen’s d = 0.16, 95% CI = [0.06,0.25], 
Ptwo-tailed = 0.001, Steiger’s Z-test) and SST (Z = 4.04, Cohen’s d = 0.20, 
95% CI = [0.11,0.30], Ptwo-tailed = 5.35 × 10−5, Steiger’s Z-test).

We then characterized the functional specificity of the NP factor by 
systemically investigating its associations with common neurocogni-
tive (that is, cognitive functions and personality) and environmental 
risk factors for mental disorders. We found the NP factor was pre-
dominantly correlated with cognitive functions, such as IQ, risk adjust-
ment and working memory performance (Fig. 4e and Supplementary  
Table 9), mainly associated with executive control processes26,27. In con-
clusion, our results suggested the NP factor could be the manifestation 
of deficits in executive control across externalizing and internalizing 
symptoms.

NP factor as the endophenotype of comorbid mental 
disorders
We also investigated whether the NP factor could serve as an endo-
phenotype of psychiatric comorbidity using the polygenic risk scores 
(PRSs) and transdiagnostic genetic variants. We found the NP fac-
tor score (that is, the summed FC strength of crossdisorder edges) 
was associated with the PRS of ADHD28, major depressive disorder 
(MDD)29 and IQ30, all of which correlated with most behavioral symp-
toms at age 14 (Supplementary Table 10). Specifically, individuals 
with a higher NP factor had consistently higher PRSs for both ADHD 
and MDD, and lower PRSs of IQ at both ages 14 (N = 1,594; for ADHD, 
r = 0.10, 95% CI = [0.06,∞), t = 3.92, Pone-tailed = 4.51 × 10−5; for MDD, 
r = 0.07, 95% CI = [0.03,∞), t = 2.70, Pone-tailed = 0.004; for IQ, r = −0.10, 
95% CI = (−∞,−0.06], t = −3.97, Pone-tailed = 3.70 × 10−5) and 19 (N = 1,200; for 
ADHD, r = 0.070, 95% CI = [0.02,∞), t = 2.54, Pone-tailed = 0.006; for MDD, 
r = 0.10, 95% CI = [0.05,∞), t = 3.47, Pone-tailed = 2.73 × 10−4; for IQ, r = −0.05, 
95% CI = (−∞,−0.002], t = −1.80, Pone-tailed = 0.036; Fig. 5a).

We next investigated candidate biological mechanisms underly-
ing the NP factor by analyzing four single nucleotide polymorphisms 
(SNPs) identified in a recent large-scale, crossdisorder genome-wide 
association study (GWAS)18. We found that the NP factor was positively 
associated with the risk allele T of rs6780942 (N = 1,573, r = 0.074, 95% 
CI = [0.03,∞), t = 3.04, Ptwo-tailed = 0.004; Fig. 5b), which was also the 
most prominent finding in the crossdisorder GWAS18 (P = 1.11 × 10−10) 
and was significant in both an ADHD28 (P = 0.0003) and MDD29 
(P = 0.0001) GWAS. The SNP rs6780942 maps to immunoglobulin 
superfamily member 11 (IGSF11), a gene preferentially expressed in 
the brain that regulates synaptic adhesion31. We then investigated gene 
expression of IGSF11 across different developmental periods using 
BrainSpan32 and observed a reduced gene expression of IGSF11 from 
adolescence to adulthood (Fig. 5c), which may aid in explaining the 

reduced connectivity strength of the NP factor during the same period. 
In summary, these results implied the NP factor might be related 
to genetically determined neurodevelopment from adolescence  
to adulthood.

Generalization of the NP factor
We reconstructed the NP factor on the basis of the MID task and the 
SST in another large-scale, population-based ABCD study33. Again, 
the NP factor grounded on the ABCD study (N = 1,799) showed sig-
nificant positive associations with both externalizing (r = 0.048, 95% 
CI = [0.001,∞), t = 2.04, Pone-tailed = 0.020) and internalizing symptoms 
(r = 0.056, 95% CI = [0.017,∞), t = 2.38, Pone-tailed = 0.009) at age 10. Moreo-
ver, the NP factor estimated at age 10 also demonstrated longitudi-
nal persistence in predicting future behavioral symptoms at age 11 
(N = 1,042; for externalizing symptoms, r = 0.053, 95% CI = [0.002,∞), 
t = 1.72, Pone-tailed = 0.043; for internalizing symptoms, r = 0.079, 95% 
CI = [0.028,∞), t = 2.55, Pone-tailed = 0.005). This effect was also true for 
each individual fMRI task (Table 1).

To assess the clinical relevance of the NP factor, we stratified 
IMAGEN participants at age 14 into individuals with comorbid diag-
noses (that is, those identified as being at severe or high risk for at 
least two mental disorders simultaneously; N = 39), individuals with 
a single diagnosis (that is, those identified as being at severe or high 
risk for only one mental disorder; N = 95) and healthy controls (that 
is, those identified as having no mental disorders; N = 859; Extended 
Data Table 1 and Methods). Both those identified as having comorbid 
diagnoses and those with a single diagnosis demonstrated significantly 
higher NP factor scores than healthy controls (for comorbid diagno-
ses, t = 7.48, Cohen’s d = 1.22, 95% CI = [0.95,∞), Pone-tailed = 1.80 × 10−13; 
for a single diagnosis, t = 6.49, Cohen’s d = 0.70, 95% CI = [0.91,∞), 
Pone-tailed = 1.39 × 10−10). Furthermore, those with comorbid diagnoses 
also demonstrated significantly higher NP factor scores than those 
with a single diagnosis (t = 2.39, Cohen’s d = 0.46, 95% CI = [0.14,∞), 
Pone-tailed = 0.018; Extended Data Fig. 2a). Similarly, in the ABCD cohort, 
using the Kiddie Schedule for Affective Disorders and Schizophre-
nia–5, we identified 61 individuals with comorbid diagnoses, 160 with 
a single diagnosis and 1578 healthy controls with no symptoms across 
all mental disorders (Extended Data Table 2). Again, individuals with 
comorbid diagnoses demonstrated higher NP factor scores than both 
those with a single diagnosis (t = 2.11, Cohen’s d = 0.32, 95% CI = [0.07,∞), 
Pone-tailed = 0.017) and healthy controls (t = 3.67, Cohen’s d = 0.48, 95% 
CI = [0.26,∞), Pone-tailed = 2.50 × 10−4) (Extended Data Fig. 2b). However, 
no difference in NP factor scores was observed between those with a 
single diagnosis and healthy controls (t = 1.06, Cohen’s d = 0.09, 95% 
CI = [−0.05,∞), Pone-tailed = 0.64).

Furthermore, in the case–control cohort Stratify (aged 23 
years)34, the NP factor reconstructed from the SST was significantly 
higher in individuals with any psychiatric diagnoses (N = 369) than in 

Table 1 | Generalization of the NP factor in multiple developmental periods across fMRI states for population-based datasets 
(ABCD, IMAGEN and HCP, N = 3,958)

Dataset Developmental period Age, mean (s.d.) (yr) N (n female, %) fMRI states or 
tasks

Externalizing Internalizing

r Pone-tailed r Pone-tailed

ABCD Preadolescence

10.0 (0.6)

1,799 (885, 49.2%) MID, SST 0.048 0.020* 0.056 0.009**

1,946 (959, 49.3%) MID 0.040 0.038* 0.047 0.018*

1,799 (885, 49.2%) SST 0.042 0.037* 0.042 0.037*

11.0 (0.7)

1,042 (500, 48.0%) MID, SST 0.053 0.043* 0.079 0.005**

1,145 (551, 48.1%) MID 0.055 0.033* 0.063 0.015*

1,042 (500, 48.0%) SST 0.032 0.147 0.056 0.036*

IMAGEN Young adulthood 18.9 (0.7) 931 (481, 51.7%) RS 0.063 0.014*

HCP Adulthood 28.7 (3.7) 1,081 (605, 56.0%) RS 0.075 0.007**
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healthy controls (N = 64; t = 4.50, Cohen’s d = 0.61, 95% CI = [0.39,∞), 
Pone-tailed = 4.43 × 10−6) and for each diagnosis alone (for anorexia ner-
vosa, N = 55, t = 2.47, Cohen’s d = 0.45, 95% CI = [0.15,∞), Pone-tailed = 0.007; 
for alcohol abuse, N = 127, t = 4.53, Cohen’s d = 0.69, 95% CI = [0.44,∞), 
Pone-tailed = 5.22 × 10−6; for bulimia nervosa, N = 44, t = 2.51, Cohen’s 
d = 0.49, 95% CI = [0.17,∞), Pone-tailed = 0.007; for MDD, N = 143, t = 4.19, 
Cohen’s d = 0.63, 95% CI = [0.38,∞), Pone-tailed = 2.07 × 10−5; the same con-
trol sample Ncontrol = 64 was used for all diagnoses; Table 2). Notably, no 
significant result was observed for the MID task, which might be due 
to the gradual disassociation between the NP factor scores generated 
from the SST (inhibitory control) and the MID task (reward sensitivity)  
with brain maturation (for IMAGEN at age 14, N = 1,750, r = 0.32, 95% 
CI = [0.28,0.36], t = 14.12, Ptwo-tailed = 5.85 × 10−43; for Stratify at age 
23, N = 305, r = 0.03, 95% CI = [−0.08,0.14], t = 0.52, Ptwo-tailed = 0.70;  
rdifference = 0.29, Z = 5.04, Ptwo-tailed = 4.65 × 10−7).

Finally, we explored whether the NP factor identified during 
reward processing and inhibitory control could be generalized to 
predict symptoms on the basis of a highly related NP factor derived 
from the same FC using resting-state fMRI (N = 1,002, r = 0.26, 95% 
CI = [0.20,0.31], t = 8.51, Ptwo-tailed = 2.22 × 10−16), that is, the most abun-
dant fMRI data that are widely available for most population-based 
and clinical neuroimaging data, and considered as a nonspecific 
proxy of task-based FC35. In the IMAGEN dataset, the NP factor estab-
lished with resting-state connectivity showed a significant associa-
tion with externalizing symptoms at age 19 (N = 931, r = 0.063, 95% 
CI = [0.01,∞), t = 1.91, Pone-tailed = 0.014; Table 1). Additionally, for 
healthy adults from the population-based HCP dataset (average age of  
29 years), the resting-state NP factor was significantly associated with 
externalizing symptoms (N = 1,081, r = 0.075, 95% CI = [0.03,∞), t = 2.47, 
Pone-tailed = 0.007; Table 1). This association was further validated in the 
clinical ADHD-200 dataset, which showed significantly higher NP factor 
scores in individuals with ADHD (N = 292) compared with those in the 
control group (aged 11 years, N = 228, t = 3.40, Cohen’s d = 0.30, 95% 
CI = [0.15,∞), Pone-tailed = 7.25 × 10−4; Table 2).

Discussion
In this study, using a large longitudinal neuroimaging genetic cohort, 
we identified a reliable neural endophenotype (that is, the NP factor) of 
behavioral symptoms for multiple mental disorders, with implications 
for early prevention and therapeutics in psychiatry.

We constructed the crossdisorder brain signature through the 
intersection of externalizing and internalizing edges, rather than identi-
fying the neural correlates associated with the behaviorally defined gen-
eral p factor36, which was recently criticized for its oversimplification8.  

In other words, we assumed that the neural substrates underlying general 
psychopathology were homogeneously associated with all psychiatric 
symptoms. Indeed, we also identified a large quantity of dissensus cross-
disorder edges between externalizing and internalizing symptoms. How-
ever, despite their large quantity, these dissensus edges did not explain 
more variance than the consensus edges (that is, the NP factor) at age 14 
(Fig. 2c). Furthermore, unlike the consensus edges, the dissensus edges 
lost most of their behavioral associations at age 19 (Fig. 2c), which could 
explain the surge of comorbid externalizing and internalizing disorders 
since late adolescence37, that is, when the consensus edges or the NP 
factor begin to dominate the associations with behavioral measures.

The transdiagnostic NP factor mainly targeted top-down regula-
tory prefrontal circuits, such as the frontoparietal, superior medial 
frontal and salience networks. This is in line with previous findings 
that altered activations or gray matter volume in these cognitive net-
works may have further implications in emotional and reward and 
punishment processing, which leads to the wide range of psychiatric 
symptoms seen with both fMRI and structural MRI studies38,39. However, 
whereas previous research overwhelmingly identified reduced transdi-
agnostic neural substrates (that is, hypoactivation, hypoconnectivity 
and decreased gray matter volume; Supplementary Table 11), the NP 
factor identified in this study manifested with hyperconnectivity of 
prefrontal-related neural circuits underlying general psychopathol-
ogy. The hyperconnectivity (or hyperactivation) of prefrontal circuits 
in psychiatric disorders is usually explained as a neural compensation 
of executive resources to the less efficient integration of bottom-up 
sensory information9,39,40. However, Cabeza et al.41 argued that, when 
associated with cognitive deficits, hyperfunctioning prefrontal circuits 
might not necessarily represent a protective compensation effect but 
rather a disruption of the efficacy of executive control.

Indeed, hyperconnectivity of the NP factor may result from 
delayed brain development. During adolescence, the brain under-
goes the maturational processes of synaptic pruning and synapse 
stabilization42 to improve the efficiency of information transmis-
sion in the brain, leading to gradually reduced gray matter volume 
in the healthy brain over time. However, such a reduction (from ages 
14 to 19) was significantly inhibited in individuals with a higher NP 
factor score (N = 1,132, r = −0.176, 95% CI = [−0.23,−0.12], t = −6.01, 
Ptwo-tailed = 2.50 × 10−9), which indicates atypical trajectories of neural cir-
cuit maturation in individuals with high NP factor scores. Furthermore, 
compared with the somatosensory and motor cortices, the synaptic 
elimination process in the frontal and parietal lobes is delayed and 
prolonged during adolescence. Therefore, both brain regions might 
be more vulnerable to maldevelopment42, which is consistent with our 

Table 2 | Generalization of the NP factor in multiple developmental periods across fMRI states for clinical case–control 
datasets (Stratify and ADHD-200, N = 953)

Dataset Developmental period Age, mean (s.d.) (yr) N (n female,%) fMRI 
states/
tasks

Case–control comparison

Case Control Case Control t Cohen’s d Pone-tailed

Stratify–all

Young adulthood

23.2 (2.2) 23.5 (1.9) 369 (281, 77.2%) 64 (47, 73.4%) SST 4.50 0.61 4.43 × 10−6***

Stratify–AN 22.5 (2.1) 23.6 (1.9) 55 (55, 100%) 64 (47, 73.4%) SST 2.47 0.45 0.007**

Stratify–BN 22.6 (1.7) 23.6 (1.9) 44 (44, 100%) 64 (47, 73.4%) SST 2.51 0.49 0.007**

Stratify–AUD 23.3 (2.2) 23.6 (1.9) 127 (74, 58.3%) 64 (47, 73.4%) SST 4.53 0.69 5.22 × 10−6***

Stratify–MDD 23.8 (2.3) 23.6 (1.9) 143 (108, 74.1%) 64 (47, 73.4%) SST 4.19 0.63 2.07 × 10−5***

ADHD-200 Preadolescence 11.0 (2.5) 11.1 (2.4) 228 (50, 21.9%) 292 (145, 50.0%) RS 3.40 0.30 7.25 × 10−4***

For population-based studies ABCD, IMAGEN and HCP, (Table 1) shows the results of the associations of the NP factor scores with externalizing and internalizing symptoms in each cohort. 
Associations between symptom severities and NP factor scores were estimated using Pearson correlation analysis. For the clinical case–control studies ADHD-200 and Stratify, (Table 2) shows 
the group difference in the NP factor scores between the case and control groups. Stratify–all includes all cases of anorexia nervosa, bulimia nervosa, alcohol use disorder and MDD. Because 
higher symptom scores and clinical diagnoses were expected to have higher NP factor scores in these generalization analyses, the corresponding P values were calculated using one-tailed 
tests. Group comparisons of NP factor scores between the clinical case and healthy control groups were conducted using a two-sample t-test. The fMRI states/tasks were used to construct  
the NP factor. The same control sample was used for all diagnoses in Stratify. AN, anorexia nervosa; AUD, alcohol use disorder; BN, bulimia nervosa; MDD, major depression disorder;  
RS, resting-state fMRI. * P < 0.05, ** P < 0.01, *** P < 0.001.
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observation that the NP factor is enriched in the frontal and parietal 
lobes. Finally, individuals with higher NP factor scores at baseline and 
follow-up showed increased behavioral symptoms and widespread 
deficits of cognitive control, which is a function long associated with 
prefrontal and parietal cortices.

Remarkably, we found the NP factor is associated with IGSF11, 
a gene implicated in the neuronal adhesion molecule that binds to 
and stabilizes AMPA receptors regulating synapse stabilization31. The 
upregulation of synaptic adhesion molecules prevents the process of 
synaptic pruning43, which is the signature morphological event of late 
brain maturation during adolescence44. Expression of IGSF11 decreases 
from adolescence to adulthood, which might mediate the developmen-
tal trajectory of the NP factor during this period. Therefore, genetic 
evidence convincingly suggests the proposed NP factor represents an 
endophenotype of prefrontal delayed development across external-
izing and internalizing symptoms.

The NP factor identified in adolescents was generalizable across 
multiple developmental periods and showed consistent prediction 
of multiple behavioral symptoms (such as ADHD, CD, anxiety and 
depression) in population-based data of preadolescents (ABCD, aged 
10–11 years), adolescents (IMAGEN, aged 14 years) and young adults 
(IMAGEN, aged 19 years) and clinical data of young adults (Stratify, 
aged 23 years). Many psychiatric disorders emerge during the transi-
tion from adolescence to adulthood45–47, that is, the period in which 
the brain undergoes its final phase of maturation48. Therefore, the NP 
factor identified during this critical period may mark the fast-evolving 
and most vulnerable neural network from preteenager to adult45, thus 
revealing the neuropsychopathological mechanisms underlying the 
behavioral symptoms related to psychiatric disorders, before onset 
of clinical illness49.

Nevertheless, more rigorous experimental studies are needed 
to clarify the causal mechanisms underlying this NP factor. Addition-
ally, although we focused on a general neuropsychopathology in this 
study, factors of other more specific forms of psychopathology (such 
as externalizing, internalizing and thought disorder psychopathol-
goies) should also play essential roles. Therefore, future studies are 
required to elucidate the dynamic interaction between the general and 
specific neuropsychopathologies that may further contribute to the 
development of psychiatric comorbidity. It should also be noted that, 
although the primary nonclinical, large-scale, population-based data-
sets used in this study were designed to represent the broader popula-
tion (that is, no exclusion criterion was set for mental health status) 
from preadolescence to early adulthood (a critical development period 
in which the onset of most psychiatric disorders peaks4,5), the recruit-
ment of these studies may still suffer from certain sampling biases (for 
instance, the IMAGEN sample was primarily recruited from middle-class 
schools and might underrepresent participants with the most severe 
psychiatric symptoms50). Therefore, despite the large sample sizes 
in our population-based data (IMAGEN and ABCD), these data may 
have lower base rates of psychiatric disorders, especially for extreme 
cases, than in the broader population. Therefore, future studies need 
to have longitudinal data from the same participants, with sufficient 
representations of the most severe symptoms, to verify whether the NP 
factor behaves in a dimensional manner (that is, either quantitatively or 
qualitatively differentiated between clinical participants and healthy 
controls) and could be extended to other developmental periods, such 
as middle and late adulthood.

In conclusion, we established a transdiagnostic NP factor that 
could be generalized to multiple large-scale, population-based and 
clinical neuroimaging datasets and is persistent from preadolescence 
to early adulthood. The NP factor could bridge the genetic substrates 
of neurodevelopmental processes and higher-order cognitive deficits. 
These results demonstrated that the NP factor could serve as a reliable 
neuropsychopathological biomarker of psychiatric comorbidity, sub-
stantially advancing our knowledge in stratified psychiatric medicine.

Online content
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maries, source data, extended data, supplementary information, 
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tributions and competing interests; and statements of data and code 
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Methods
Study protocol
We investigated the multivariate associations between behavioral 
symptoms and task-based FC (MID task, SST and emotion reactivity 
task) with the widely used CPM23,51. The task-based connectome predic-
tion analysis was conducted in the population-based IMAGEN sample 
of children aged 14 years. Additional analyses were then performed to 
discover the relationships between behavioral symptoms and crossdis-
order neural circuits. Next, the predictive and crossdisorder connec-
tome was investigated at several levels, using behavioral, longitudinal, 
genetic and clinical data. Notably, because psychiatric comorbidity is 
common in both males and females, we mainly focused on identifying 
the crossdisorder neural circuits across the whole population, not 
specifically for each sex.

IMAGEN
IMAGEN is a large-scale longitudinal neuroimaging–genetics cohort 
study (N = 2,000 at age 14, N = 1,300 at age 19) conducted to understand 
the biological basis of individual variability in psychological and behav-
ioral traits and their relationship to common psychiatric disorders. The 
study involves a thorough neuropsychological, behavioral, clinical 
and environmental assessment of each participant. Participants also 
undergo biological characterization with the collection of T1-weighted 
structural MRI, task-based fMRI and genetic data. In this investigation, 
we used task and resting-state MRI, genetic and behavioral data. Nota-
bly, as a population-based approach, IMAGEN has balanced sample 
sizes for male and female participants (based on self-reported sex).

Development and Well-Being Assessment and Strengths and 
Difficulties Questionnaire
Behavioral symptoms of the IMAGEN participants were assessed using 
screening questions from the Development and Well-Being Assessment 
(DAWBA)52 and the Strengths and Difficulties Questionnaire (SDQ)53. 
DAWBA is a wide-ranging psychiatric screening questionnaire that was 
previously used to define subthreshold clinical symptoms in neuro-
imaging studies of subclinical psychopathology54. The SDQ was also 
used in this investigation because it contributes to the assignment of 
diagnostic status in the DAWBA52. At age 14, the parent-rated external-
izing symptoms comprised ADHD (23 items), ODD (11 items), CD (10 
items) and ASD (7 items). The child-rated internalizing symptoms 
included GAD (7 items), depression (8 items), SP (13 items) and ED (5 
items). The full set of psychiatric questions asked in our investigation 
can be found in Supplementary Table 1. The choice of using different 
versions of questionnaires (that is parent-rated externalizing symp-
toms and child-rated internalizing symptoms) at age 14 was grounded 
on findings that externalizing problem scores from parents are more 
reliable than those from children themselves, and vice versa55. At age 
19, however, because parent-rated questionnaires were unavailable, we 
used child-rated questionnaires for both externalizing and internal-
izing symptoms (Supplementary Table 1).

DAWBA also provides a diagnostic output for common psychiatric 
disorders, that is, the likelihood of a clinical diagnosis being made after 
rating. Of the 1,750 IMAGEN participants at age 14, 134 had a high risk for 
at least one diagnosis (that is, they scored 4 or 5, with over 50% chance 
of being diagnosed), and 39 participants met the criteria for two or 
more diagnoses. More specifically, 93 participants were likely to have 
one or more externalizing disorders (24 with ADHD, 45 with ODD, 59 
with CD and 1 with ASD), and 46 participants were likely to have one or 
more internalizing disorders (16 with GAD, 21 with depression, 5 with 
ED and 14 with SP; see Extended Data Table 1 for more detail).

Monetary incentive delay task
Participants performed a modified version of the MID task (Supple-
mentary Fig. 1) to examine neural responses to reward anticipation 
and reward outcome56. The task consisted of 66 10-second trials.  

In each trial, participants were presented with one of three cue shapes 
(cue, 250 ms) denoting whether a target (white square) would sub-
sequently appear on the left or right side of the screen and whether 
zero, two or ten points could be won in that trial. After a variable delay 
(4,000–4,500 ms) of fixation on a white crosshair, participants were 
instructed to respond with a left or right button press as soon as the 
target appeared. Feedback on whether any, and how many, points were 
won during the trial was presented for 1,450 ms after the response 
(Supplementary Fig. 1). With a tracking algorithm, task difficulty (that 
is, target duration varied between 100 and 300 ms) was individually 
adjusted, such that each participant successfully responded on ~66% 
of trials. Participants had first completed a practice session outside the 
scanner (~5 minutes) during which they were instructed that, for every 
five points won, they would receive one food snack in the form of small 
chocolate candies. Our study used the task conditions consisting of hit 
anticipation, hit feedback and miss feedback.

Stop-signal task
Participants performed an event-related SST (Supplementary Fig. 2)  
designed to study neural responses to successful and unsuccess-
ful inhibitory control57. The task comprised go trials and stop trials. 
During go trials (83%, 480 trials), participants were presented with 
arrows pointing either to the left or to the right. Participants were then 
instructed to make a button response with their left or right index fin-
ger, corresponding to the direction of the arrow. In the unpredictable 
stop trials (17%, 80 trials), the arrows pointing left or right were followed 
(on average 300 ms later) by arrows pointing upwards; participants 
were instructed to inhibit their motor responses during these trials. A 
tracking algorithm changes the time interval between the go and stop 
signal onsets according to each participant’s performance on previ-
ous trials (average percentage of inhibition over previous stop trials, 
recalculated after each stop trial), resulting in 50% successful and 50% 
unsuccessful inhibition trials. The intertrial interval was 1,800 ms. The 
tracking algorithm of the task ensured that participants were success-
ful on 50% of stop trials and worked at the edge of their own inhibitory 
capacity. Our study used the SST measures consisting of stop success, 
stop failure and go wrong.

Emotional face task
The EFT was adapted from Grosbras et al.58. Participants watched 
18-second blocks of either a face movie (depicting anger or neutrality) 
or a control stimulus. Each face movie showed black and white video 
clips (200–500 ms) of male or female faces. Five blocks each of angry 
and neutral expressions were interleaved with nine blocks of the con-
trol stimulus. Each block contained eight trials of six face identities 
(three female). The same identities were used for the angry and neutral 
blocks. The control stimuli were black and white concentric circles that 
expanded and contracted at various speeds, roughly matching the 
contrast and motion characteristics of the face clips. Our study used 
the EFT task conditions of neutral and angry faces.

Image acquisition
fMRI data were acquired at eight IMAGEN assessment sites with 3 T 
MRI scanners from different manufacturers (Siemens, Philips, General 
Electric, Bruker). The scanning variables were specifically chosen to be 
compatible with all scanners. The same scanning protocol was used at 
all sites. In brief, high-resolution T1-weighted 3D structural images were 
acquired for anatomical localization and coregistration with the func-
tional time series. In addition, blood oxygen level-dependent (BOLD) 
functional images were acquired with gradient-echo, echo-planar imag-
ing sequence. For all tasks, each volume consisted of 40 slices aligned 
to the anterior commission–posterior commission line (2.4-mm slice 
thickness, 1-mm gap). The echo time was optimized (30 ms, with rep-
etition time (TR) of 2,200 ms) to provide reliable imaging of the sub-
cortical areas.
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Task-based functional image preprocessing
Task-based fMRI data were first prepreprocessed using SPM8 (Statisti-
cal Parametric Mapping, http://www.fil.ion.ucl.ac.uk/spm). Spatial pre-
processing included slice time correction to adjust for time differences 
due to multislice imaging acquisition, realignment to the first volume 
in line, nonlinearly warping to the MNI space (on the basis of a custom 
echo-planar imaging template (53 × 63 × 46 voxels) created from an 
average of the mean images from 400 adolescents), resampling at a 
resolution of 3 × 3 × 3 mm3 and smoothing with an isotropic Gaussian 
kernel of 5 mm full-width at half-maximum.

Network construction
To estimate the condition-specific FC, we used the CONN toolbox 
(version 16.h) with the weighted generalized linear model method. 
Task condition regressors, 21 covariate regressors (21 covariate 
regressors consisting of 12 motion regressors (3 translations, 3 rota-
tions and 3 translations shifted 1 TR before, and 3 translations shifted 
1 TR later) and 9 additional columns corresponding to the long-term 
effects of the movement (3 nuisance variables for the white mat-
ter and 6 nuisance variables for ventricles, commonly referred to 
as CompCor correction59) were first regressed out from the raw 
BOLD signal of each region of interest (ROI). The residual signals 
were then further fed into weighted generalized linear models to 
investigate conditional time-series correlations (that is, the con-
ditional FC) between any pairs of ROIs, where the temporal weight 
function for each condition was calculated as the corresponding, 
but now rectified, task condition regressor (that is, only time points 
expected with positive BOLD signals count). This approach not only 
amplifies the expected hemodynamic delay to each task condition 
but also deweights the initial and final scans when estimating func-
tional correlation measures to avoid spurious jumps in BOLD signal 
and reduces the potential crosstalk between adjacent task condi-
tions60. After this procedure, ROI:ROI FCs were calculated on the 
basis of the brain template from the 268-node functional brain atlas22  
(Supplementary Fig. 3).

Connectome-based predictive modeling
We used CPM (Supplementary Fig. 4) to predict the participants’ behav-
ioral symptoms from whole-brain, task-based FC. CPM is a recently 
developed method for identifying functional brain connections related 
to a behavior variable of interest, which is then used to predict behavior 
in novel participants (that is, participants whose data were not used 
in model creation)23. The CPM procedure was recently described in 
studies reporting its application to cognitive and psychiatry vari-
ables, such as fluid intelligence, attention control and ADHD51,61–63. The 
CPM processing pipeline is available online (https://www.nitrc.org/ 
projects/bioimagesuite/). We slightly modified the original CPM, which 
used the leave-one-out crossvalidation, to a 50-fold crossvalidation 
process to hasten the process while maintaining robustness. In the 
first step, we randomly divided the data into 50 folds, where one fold 
was left out as the testing dataset while the other 49 folds were used as 
the training dataset. Next, a vector of behavioral scores (for example, 
ADHD symptoms) was associated with the edge of the connectome 
(that is, the FC matrix) across participants from the training dataset, 
with site and handedness being included as covariates. Then, a default 
threshold23 (that is, P < 0.01 in our study) was applied to retain only 
edges that were significantly associated (either positively or negatively) 
with behavioral symptoms in the training dataset. Analyses were also 
repeated with three additional thresholds (for example, 0.05, 0.005 and 
0.001), demonstrating similar predictive performance (Supplementary 
Table 2). Next, the sum of the weights of positive and negative edges 
(negative edges will be multiplied by −1 before summing up) was cal-
culated for each individual and entered into a linear regression model 
to estimate the relationship between the summed edge strength and 
the observed behavior in the training dataset. In the testing dataset, 

the summed edge strength of each individual was submitted to the 
corresponding linear model estimated in the training dataset to gener-
ate the predicted behavior score. This process was repeated 50 times, 
with predicted behavior scores in each testing fold established on the 
basis of the remaining 49-fold data. Finally, Spearman’s correlation 
was applied to estimate the model performance between predicted 
and actual behavior scores across all individuals. We repeated the CPM 
1,000 times and continued further analyses using the edges selected 
in over 95% of models to select the most robust edges. For more details 
on CPM, see Shen et al.23.

Neuropsychopathology factor
The NP factor was constructed to represent longitudinally consistent 
and generalizable transdiagnostic brain signatures across externalizing 
and internalizing spectra. First, by applying CPM on condition-specific 
functional neural networks (that is, the functional connectome derived 
for each task condition), we identified crossdisorder edges that were 
associated with at least one externalizing symptom and one internal-
izing symptom simultaneously. Then, for each task condition, we 
investigated if the number of crossdisorder edges identified was sig-
nificantly higher than a random observation using a permutation test 
(see Reliability assessment using permutation tests for more details). 
Only the significant, and therefore informative, task conditions and 
their crossdisorder edges were retained for further analyses. Next, 
given that different combinations of association directions with exter-
nalizing and internalizing symptoms have distinct neurobiological 
implications, we stratified these crossdisorder edges into four groups 
to improve interpretability: positive–positive (or negative–negative) 
edges that were associated with both externalizing and internalizing 
symptoms positively (or negatively); positive–negative edges that 
were associated positively with externalizing symptoms but negatively 
with internalizing symptoms; and negative–positive edges of negative 
associations with externalizing symptoms but positive associations 
with internalizing symptoms. Lastly, the four groups of crossdisorder 
edges were investigated for longitudinal consistency on the basis of 
their predictive performance on both externalizing and internalizing 
symptoms in the follow-up study at age 19, and the longitudinally con-
sistent crossdisorder edges (that is, the FC strength) were summed to 
generate the NP factor. Please note that only positive–positive edges 
(that is, edges positively associated with both internalizing and exter-
nalizing symptoms) were found to be longitudinally consistent and 
used to compute the NP factor. Therefore, the NP factor may serve 
as a transdiagnostic neural indicator for comorbid externalizing and 
internalizing symptoms.

Reliability assessment using permutation tests
To investigate which task conditions provided reliable crossdisorder 
edges, we implemented permutation tests evaluating if identified 
crossdisorder edges from each task condition were indeed informa-
tive, that is, if the number of edges identified for the given condition 
was significantly larger than that in a random discovery (Supplemen-
tary Fig. 5). Due to the time-consuming nature of the proposed CPM 
analysis (1,000 repetitions of 50-fold crossvalidation as described in 
Connectome-based predictive modeling), the number of permutations 
was set as 1,000, which was sufficient to provide an accurate estimation 
of a P value as small as 0.01. This permutation process was also used 
to provide unbiased P values for the association of the crossdisorder 
network with behavioral symptoms.

Generalization datasets
To investigate whether the NP factor identified with the adolescent IMA-
GEN dataset using the task-based connectomes could be generalized 
into other developmental periods and fMRI states, we used multiple, 
large-scale, population-based datasets (ABCD cohort33 and the HCP64) 
and clinical case–control datasets (Stratify34 and ADHD-20065).
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ABCD cohort. The dataset used for this study was selected from the 
Annual Curated Data Release (https://data-archive.nimh.nih.gov/abcd) 
of the ABCD cohort, which recruited 11,875 children between 9 and 11 
years of age from 21 sites across the USA66. MRI data in the ABCD study 
were collected from different 3 T scanner platforms (Siemens Prisma, 
General Electric MR750 and Philips Achieva dStream). To minimize the 
biases introduced by multiple platforms, we only included MRI data 
from the most frequent manufacturer, Siemens Prisma; data from this 
manufacturer comprised 5,968 participants from 13 sites. By examin-
ing the similarity of brain activations across these 13 sites, we further 
selected 2,326 participants with consistent activation patterns from 
4 sites. After quality control67, 1,966 participants of the MID task and 
1,837 participants of the SST were included in further analysis. ABCD 
has balanced sample sizes for boys and girls (based on self-reported 
sex) (Table 1). To construct the NP factor in the ABCD dataset, with 
the same positive–positive edges used to establish the NP factor in 
the IMAGEN cohort, we extracted the corresponding FC of reward 
anticipation and reward positive feedback from the MID task and FC of 
the stop success and stop failure from the SST. The sum of FCs for the 
MID task and SST was the corresponding NP factor for the ABCD. For 
psychiatric symptoms, we used the Parent Child Behavior Checklist 
Scores (abcd_cbcls01) to assess the dimensional psychopathology in 
children68. The summed scores of externalizing and internalizing symp-
toms were used in further analysis. The ABCD Parent Diagnostic Inter-
view for Diagnostic and Statistical Manual of Mental Disorders, Fifth 
Edition (DSM-5) provides a diagnostic output for common psychiatric 
disorders (abcd_ksad01). Diagnosis of ASD was provided from a clinical 
assessment questionnaire (abcd_screen01). Because the morbidity of 
SP (21.5%) with abcd_ksad01 in the ABCD dataset was much higher than 
that of other pediatric epidemiologic investigations of SP (4.8%)69,70, we 
excluded this diagnostic information in the clinical relevance analysis. 
For all analyses of ABCD data, we included site, family, handedness and 
sex as covariates in a mixed model71.

HCP. The dataset used for this investigation was selected from the 
March 2017 public data release from the HCP, WU-Minn Consor-
tium. HCP has balanced sample sizes for men and women (based on 
self-reported sex; Table 1). Our sample included 1,081 participants 
(aged 22–35 years, mean age 31 years) scanned on a 3 T Siemens 
connectome-Skyra scanner. More details of participants and collection 
and preprocessing of data are provided at the HCP website (http://www. 
humanconnectome.org/). Externalizing symptoms were measured 
using the Achenbach Adult Self-Report (ASR) Syndrome Scales72 (ASR_
Computed_Externalizing_Adjusted_T). For all analyses of HCP data, we 
included site, handedness and sex as covariates.

Stratify. Stratify recruited participants (ages 19–25) with anorexia 
nervosa, alcohol use disorder, bulimia nervosa, major depression 
and controls with no mental disorder diagnosis at three sites (Berlin, 
London and Southampton). The proportions of men and women (based 
on self-reported sex) varied across different mental health disorder 
groups (Table 1). Furthermore, the protocol of Stratify was harmonized 
to match the IMAGEN protocol. Stratify datasets collected task-based 
neuroimaging data of the SST and MID task. After quality control (the 
same quality control procedures as with the ABCD dataset67), 267 cases 
and 46 controls of the MID task and 380 cases and 64 controls of the 
SST were included in further analysis. For all analyses of Stratify data, 
we included site, handedness and sex as covariates.

ADHD-200. ADHD-200 is a grassroots initiative dedicated to accel-
erating the scientific community’s understanding of the neural basis 
of ADHD (aged 7–21 years). Males are predominant in the case group 
whereas both sexes (based on self-reported sex) are balanced in the 
control group (Table 1). Inclusion criteria included no history of neu-
rological diseases and other chronic medical conditions and estimates 

of full-scale IQ above 80, and psychostimulant drugs were withheld 
at least 24–48 hours before scanning. Data were downloaded from 
the ADHD-200 consortium website (http://fcon_1000.projects.nitrc. 
org/indi/adhd200). In our study, we used data from four sites (Peking 
University, Kennedy Krieger Institute, New York University Child Study 
Center and Oregon Health & Science University) that recruited both 
participants with ADHD and control participants without ADHD. In 
total, there were 228 cases and 292 controls. For all analyses of ADHD-
200 data, we included site, handedness and sex as covariates.

Genotyping for the IMAGEN study
DNA purification and genotyping were performed by the Centre 
National de Génotypage. DNA was extracted from whole-blood samples 
(∼10 ml) preserved in BD Vacutainer EDTA Tubes (Becton, Dickinson 
and Company) using the Gentra Puregene Blood Kit (QIAGEN), accord-
ing to the manufacturer’s instructions. SNPs with call rates of <98%, 
minor allele frequency <1% or deviation from the Hardy–Weinberg 
equilibrium (P < 1.00 × 10−4) were excluded from analyses. Individuals 
with an ambiguous sex code, excessive missing genotypes (failure rate 
>2%) and outlying heterozygosity (heterozygosity rate of 3 s.d. from 
the mean) were also excluded.

Polygenic risk scores
To calculate the PRSs of depression, ADHD and intelligence, we used 
previously published GWASs of ADHD28, depression29 and intelli-
gence30. The discovery depression GWAS consisted of 135,458 cases 
and 344,901 controls, the ADHD study consisted of 20,183 cases and 
35191 controls and the IQ study included 269,867 individuals. We 
then used PRSice software (http://prsice.info/) to calculate the cor-
responding PRS. The clumping process was applied to retain only 
SNPs with the smallest P value for each linkage disequilibrium block 
(combined with a sliding window process to exclude any less signifi-
cant SNPs with an r2 < 0.1 in 250-kb windows). PRSs were calculated 
at P value thresholds between 0 and 0.5 in increments of 0.01, and 
we used the mean PRSs of depression, ADHD and intelligence for 
subsequent analyses73.

Cognition–behavior phenotypes
Cambridge Cognition Battery. The Cambridge Cognition Battery 
(http://www.cambridgecognition.com/) comprised the Spatial Work-
ing Memory task (number of errors and strategies), the Cambridge 
Guessing Task (CGT; risk taking, quality of decision-making, delay 
aversion, deliberation time, overall proportion bet, risk adjustment), 
the Rapid Visual Information Processing task and the Affective Go-No 
Go task (mean correct latency for positive and negative stimuli, num-
ber of omission errors for positive and negative stimuli). The CGT 
quality of decision-making is the proportion of trials on which the 
participant chooses the most likely outcome. The CGT deliberation 
time is the reaction time to choose the color of the box. The overall 
bet is the overall bet across the trials. CGT risk taking is mean pro-
portion of available points the participant stakes at each trial. CGT 
delay aversion is the difference between the risk-taking score in the 
descending and the ascending conditions. CGT risk adjustment is the 
degree to which a participant adjusts their risk taking according to the 
ratio of colored boxes, calculated as [2 × (proportion of points staked 
(%) at 9:1) + (% 8:2) − (% 7:3) − 2 × (% 6:4)] ÷ CGT risk taking. The Rapid 
Visual Information Processing task is a 10-minute test that measures 
sustained attention by presenting a rapid stream of digits and requir-
ing participants to detect target sequences. A white box is displayed 
in the center of the screen, in which digits 2–9 are rapidly presented 
at 100 digits per minute. Participants are required to detect target 
sequences (for example, 2-4-7, 3-5-7 or 4-6-8) and respond to this 
target sequence as quickly as possible. Outcome measures include 
a signal detection theory measure of target sensitivity and mean  
response latency.
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IQ. We measured intelligence using the fluency and verbal components 
of the Wechsler Intelligence Scale for Children, Fourth Edition74.

Delay discounting. We used the Monetary-Choice Questionnaire, as 
described by Kirby75. The Monetary-Choice Questionnaire is an efficient 
and reliable measurement of delay discounting that has been validated 
in adolescents76. For each participant, we estimated the k values that 
reflect how one discounts a reward value with the delay required to 
obtain it. The questionnaire contains 27 dichotomous-choice items 
pitting a smaller immediate reward against a larger delayed reward for 
three levels of reward magnitude (small, medium and large). Higher k 
coefficients in a hyperbolic discounting equation for each reward level 
represent greater preference for small immediate rewards and higher 
impulsivity. The geometric mean was calculated and logarithmically 
transformed to use in our analyses.

Personality
Substance Use Risk Personality Scale. The Substance Use Risk Person-
ality Scale (23 items, self-questionnaire) was used to measure sensation 
seeking, impulsivity, anxiety sensitivity and negative thinking subscores, 
and has been shown to be related to substance use in adolescents77.

NEO Personality Inventory. The NEO Personality Inventory (60 
items, self-questionnaire) explores the big-five domains of per-
sonality: neuroticism, extraversion, openness, agreeableness and 
conscientiousness78.

Temperament and Character Inventory–Revised. The Temperament 
and Character Inventory–Revised (36 items)79 was used to measure 
excitability, impulsiveness, reserve, disorderliness and their combined 
measure of novelty seeking.

Substance use
Alcohol. Alcohol abuse was assessed using the screening questions 
from the Alcohol Use Disorders Identification Test (AUDIT, ten items)80. 
The AUDIT was developed by the World Health Organization as a simple 
way to screen and identify people who are at risk of developing alco-
hol problems. AUDIT focuses on identifying the preliminary signs of 
hazardous drinking and mild dependence. It is used to detect alcohol 
problems experienced within the last year, and it is one of the most 
accurate alcohol screening tests available.

Smoking. Smoking behavior was assessed as the frequency (that is, 
cigarettes per day) of smoking during the last 30 days using the Euro-
pean School Survey Project on Alcohol and Other Drugs81.

Environmental risk
Childhood Trauma Questionnaire. The Childhood Trauma Question-
naire (CTQ)82 was used to assess childhood maltreatment across child-
hood and adolescence. It consists of five domains: emotional abuse, 
emotional neglect, physical abuse, physical neglect and sexual abuse. 
The scores from the five domains was summed for a total CTQ score; 
the higher the score the greater the severity of maltreatment.

School bully. School bully behavior was measured using an adapted 
questionnaire grounded on the Health Behaviour in School-aged Chil-
dren survey. These questions were initially used in the revised Olweus 
Bully/Victim Questionnaire83.

Family stress. Family stress was measured using the family stress 
and socioeconomic item from the DAWBA. A larger score for this item 
indicates greater family stress.

Family drinking. Family drinking was measured using the parent 
AUDIT.

Other risks
Body mass index. Recorded weight and height were used to calcu-
late the body mass index (weight in kilograms per height in meters 
squared).

Pregnancy and Birth Questionnaire. The Pregnancy and Birth Ques-
tionnaire was used to collect information during the pregnancy; it 
consisted of mother and father data, medical condition of mother 
(‘did the mother take any prescribed medication during pregnancy?’), 
smoking exposure (‘how many cigarettes did the mother smoke per 
day before pregnancy?’) and birth weight (‘what was the birth weight 
of the child?’).

Ethical approval
The IMAGEN study was approved by local ethics research committees 
at each research site: King’s College London, University of Nottingham, 
Trinity College Dublin, University of Heidelberg, Technische Universität 
Dresden, Commissariatà l’Energie Atomique et aux Energies Alterna-
tives and University Medical Center. Informed consent was sought 
from all participants and a parent/guardian of each participant. The 
ABCD study conforms to each site’s institutional review board’s rules 
and procedures, and all participants provided informed consent (par-
ents) or informed assent (children). The WU-Minn HCP Consortium 
obtained full informed consent from all participants, and research 
procedures and ethical guidelines were followed in accordance with 
the institutional review boards. ADHD-200 is a multicenter study, 
and each site was approved by the local research ethics review board. 
Signed informed consent was obtained from all participants or their 
legal guardians before participation. Stratify was approved by the Lon-
don – Westminster Research Ethics Committee, and signed informed 
consent was obtained from all participants. Compensation for time 
and travel costs were provided for participants in the above cohorts, 
as approved by the ethical committees.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
IMAGEN data are available from a dedicated database at https:// 
imagen2.cea.fr. Stratify data are available from the IMAGEN database 
at https://imagen2.cea.fr. ABCD data are available from a dedicated 
database at https://abcdstudy.org/. HCP data are available from a 
dedicated database at https://www.humanconnectome.org/. ADHD-
200 data are available from a dedicated database at http://fcon_1000. 
projects.nitrc.org/indi/adhd200. Shen 268 parcellation is available at 
https://www.nitrc.org/frs/?group_id=51.

Code availability
The code that supports the findings of this study is available on GitHub 
at https://github.com/xic199wzr/NP-factor.

References
51.	 Rosenberg, M. D. et al. A neuromarker of sustained attention  

from whole-brain functional connectivity. Nat. Neurosci. 19, 
165–171 (2016).

52.	 Goodman, R., Ford, T., Richards, H., Gatward, R. & Meltzer, H. The 
Development and Well-being Assessment: description and initial 
validation of an integrated assessment of child and adolescent 
psychopathology. J. Child Psychol. Psychiatry 41, 645–655 (2000).

53.	 Goodman, R. The Strengths and Difficulties Questionnaire: a 
research note. J. Child Psychol. Psychiatry 38, 581–586 (1997).

54.	 Galinowski, A. et al. Resilience and corpus callosum 
microstructure in adolescence. Psychol. Med. 45,  
2285–2294 (2015).

http://www.nature.com/naturemedicine
https://imagen2.cea.fr
https://imagen2.cea.fr
https://imagen2.cea.fr
https://abcdstudy.org/
https://www.humanconnectome.org/
https://www.nitrc.org/frs/?group_id=51
https://github.com/xic199wzr/NP-factor


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02317-4

55.	 Criinen, A. A., Achenbach, T. M. & Verhulst, F. C. Comparisons 
of problems reported byparents of children in 12 cultures: total 
problems, externalizing, and internalizing. J. Am. Acad. Child 
Adolesc. Psychiatry 36, 1269–1277 (1997).

56.	 Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L. & Hommer, 
D. Dissociation of reward anticipation and outcome with 
event-related fMRI. NeuroReport 12, 3683–3687 (2001).

57.	 Bari, A. & Robbins, T. W. Inhibition and impulsivity: behavioral  
and neural basis of response control. Prog. Neurobiol. 108,  
44–79 (2013).

58.	 Grosbras, M. H. & Paus, T. Brain networks involved in viewing 
angry hands or faces. Cereb. Cortex 16, 1087–1096 (2006).

59.	 Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based 
noise correction method (CompCor) for BOLD and perfusion 
based fMRI. NeuroImage 37, 90–101 (2007).

60.	 Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: a functional 
connectivity toolbox for correlated and anticorrelated brain 
networks. Brain Connect. 2, 125–141 (2012).

61.	 Beaty, R. E. et al. Robust prediction of individual creative ability 
from brain functional connectivity. Proc. Natl Acad. Sci. U S A 115, 
1087–1092 (2018).

62.	 Greene, A. S., Gao, S., Scheinost, D. & Constable, R. T. 
Task-induced brain state manipulation improves prediction of 
individual traits. Nat. Commun. 9, 2807 (2018).

63.	 Barron, D. S. et al. Transdiagnostic, connectome-based prediction 
of memory constructs across psychiatric disorders. Cereb. Cortex 
31, 2523–2533 (2021).

64.	 Van Essen, D. C. et al. The Human Connectome Project: a data 
acquisition perspective. NeuroImage 62, 2222–2231 (2012).

65.	 The ADHD-200 Consortium The ADHD-200 Consortium: a model 
to advance the translational potential of neuroimaging in clinical 
neuroscience. Front. Syst. Neurosci. 6, 62–62 (2012).

66.	 Casey, B. J. et al. The Adolescent Brain Cognitive Development 
(ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. 
Neurosci. 32, 43–54 (2018).

67.	 Xiang, S. et al. A novel analytical decoder of BOLD signals for 
dissociating latent neurobehavioral processes. Preprint at bioRxiv 
https://doi.org/10.1101/2021.08.25.457728 (2021).

68.	 Achenbach, T. M. & Rescorla, L. A. in The Use of Psychological 
Testing for Treatment Planning and Outcomes Assessment 3rd 
edn, Vol. 2 (ed Maruish, M. E.) Ch. 7 (Routledge, 2004).

69.	 Wardenaar, K. J. et al. The cross-national epidemiology of specific 
phobia in the World Mental Health Surveys. Psychol. Med. 47, 
1744–1760 (2017).

70.	 Salehi, M. et al. The lifetime prevalence, risk factors, and 
co-morbidities of specific phobia among pediatric population: 
a cross-sectional national survey. Clin. Med. Insights, Psychiatry 
https://doi.org/10.1177/11795573211070537 (2022).

71.	 Dick, A. S. et al. Meaningful associations in the adolescent brain 
cognitive development study. NeuroImage 239, 118262 (2021).

72.	 Achenbach, T. M. The Achenbach System of Empirically Based 
Assessment (ASEBA): Development, Findings, Theory, and 
Applications (Research Center for Children, Youth, & Families, 2009).

73.	 Chen, D. et al. Brain signatures during reward anticipation predict 
persistent attention-deficit/hyperactivity disorder symptoms.  
J. Am. Acad. Child Adolesc. Psychiatry 61, 1050–1061 (2022).

74.	 Feis, Y. F. Wechsler Intelligence Scale for Children-IV (WISC-IV).  
in Encyclopedia of Cross-Cultural School Psychology (ed. Clauss- 
Ehlers, C. S.) 1030–1032 (Springer, 2010).

75.	 Kirby, K. N., Petry, N. M. & Bickel, W. K. Heroin addicts have higher 
discount rates for delayed rewards than non-drug-using controls. 
J. Exp. Psychol. 128, 78–87 (1999).

76.	 Duckworth, A. L. & Seligman, M. Self-discipline outdoes IQ in 
predicting academic performance of adolescents. Psychol. Sci. 
16, 939–944 (2005).

77.	 Woicik, P. A., Stewart, S. H., Pihl, R. O. & Conrod, P. J. The 
substance use risk profile scale: a scale measuring traits linked to 
reinforcement-specific substance use profiles. Addict. Behav. 34, 
1042–1055 (2009).

78.	 Costa, P. T. & Mccrae, R. Cross-sectional studies of personality 
in a national sample: I. Development and validation of survey 
measures. Psychol. Aging 1, 140–143 (1986).

79.	 Gutiérrez-Zotes, J. A., Bayón, C., Montserrat, C., Valero, J. & 
Fernández-Aranda, F. Temperament and Character Inventory 
Revised (TCI-R). Standardization and normative data in a general 
population sample. Actas Esp. Psiquiatr. 32, 8–15 (2003).

80.	 Allen, J. P., Litten, R. Z., Fertig, J. B. & Babor, T. A review of esearch 
on the Alcohol Use Disorders Identification Test (AUDIT). Alcohol. 
Clin. Exp. Res. 21, 613–619 (1997).

81.	 Muscat, R. & Rapinett, G. The 2007 ESPAD Report: Substance Use 
Among Students in 35 European Countries; http://www.espad.org/ 
sites/espad.org/files/The_2007_ESPAD_Report-FULL_091006.pdf 
(2007).

82.	 Bernstein, D. P., Ahluvalia, T., Pogge, D. & Handelsman, L. Validity 
of the Childhood Trauma Questionnaire in an adolescent 
psychiatric population. J. Am. Acad. Child Adolesc. Psychiatry 36, 
340–348 (1997).

83.	 Olweus, D. Revised Olweus bully/victim questionnaire.  
J. Psychopathol. Behav. Assess. (1996).

Acknowledgements
This work received support from the following sources: the National 
Natural Science Foundation of China (T2122005 and 81801773 to 
T.J., 82150710554 to G.S.), Ministry of Education (MOE) Frontiers 
Center for Brain Science (to C.X.), National Key R&D Program of 
China (2023ZY1068, 2019YFA0709501, 2021YFC2501402 and 
2018YFC1312900 to T.J.; 2019YFA0709502 and 2018YFC1312904 to 
J.F.), the Shanghai Pujiang Project (18PJ1400900 to T.J.), Guangdong 
Key Research and Development Project (2018B030335001 to 
J.F.), the European Union-funded FP6 Integrated Project IMAGEN 
(reinforcement-related behavior in normal brain function and 
psychopathology; LSHM-CT- 2007-037286 to G.S.), the Horizon 
2020-funded European Research Council Advanced Grant for 
STRATIFY (brain network-based stratification of reinforcement-related 
disorders; 695313 to G.S.), the 111 Project (B18015 to J.F.), the key project 
of Shanghai Science and Technology (16JC1420402 to J.F.), Shanghai 
Municipal Science and Technology Major Project (2018SHZDZX01 
to J.F.), Zhang Jiang Lab (to J.F.), Shanghai Center for Brain Science 
and Brain-Inspired Technology (to J.F.), ERANID (Understanding the 
Interplay between Cultural, Biological and Subjective Factors in 
Drug Use Pathways; PR-ST-0416-10004 to G.S.), Human Brain Project 
(HBP SGA 2, 785907, and HBP SGA 3, 945539, to G.S.), the Medical 
Research Council Grant for c-VEDA (Consortium on Vulnerability to 
Externalising Disorders and Addictions; MR/N000390/1 to G.S.), the 
National Institute of Health (NIH) (a decentralized macro and micro 
gene-by-environment interaction analysis of substance use behavior 
and its brain biomarkers; R01DA049238 to G.S.), the National Institute 
for Health Research Biomedical Research Centre at South London 
and Maudsley National Health Service Foundation Trust and King’s 
College London, the Bundesministeriumfür Bildung und Forschung 
(grants 01GS08152 and 01EV0711 to G.S.), the European Union and UK 
Research and Innovation-funded project environMENTAL (101057429  
to G.S. and 10038599 to S.D.), Forschungsnetz AERIAL (01EE1406A  
and 01EE1406B to G.S.), Forschungsnetz IMAC-Mind (01GL1745B to 
G.S.), the Deutsche Forschungsgemeinschaft (SM 80/7-2, SFB 940,  
TRR 265 and NE 1383/14-1 to G.S.), the Medical Research Foundation 
and Medical Research Council (MR/R00465X/1, MR/S020306/1 and 
MRF-058-0009-RG-DESR-C0759 to S.D.) and NIH-funded ENIGMA 
project (5U54EB020403-05 and 1R56AG058854-01 to S.D.). Further  
support was provided by grants from the L’Agence nationale de la 

http://www.nature.com/naturemedicine
https://doi.org/10.1101/2021.08.25.457728
https://doi.org/10.1177/11795573211070537
http://www.espad.org/sites/espad.org/files/The_2007_ESPAD_Report-FULL_091006.pdf
http://www.espad.org/sites/espad.org/files/The_2007_ESPAD_Report-FULL_091006.pdf


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02317-4

recherche (ANR) (ANR-12-SAMA-0004 to M.-L.P.M., and AAPG2019 –  
GeBra and ANR-18-NEUR00002-01 – ADORe to J.-L.M.); the Eranet 
Neuron (AF12-NEUR0008-01 – WM2NA to J.-L.M.); the Fondation 
de France (00081242 to J.-L.M.); the Fondation pour la Recherche 
Médicale (DPA20140629802 to J.-L.M.); the Mission Interministérielle 
de Lutte-contre-les-Drogues-et-les-Conduites-Addictives (MILDECA to 
J.-L.M.); the Assistance Publique–Hôpitaux de Paris and Institut National 
de la Santé et de la Recherche Médicale (interface grant to M.-L.P.M.); 
Paris Sud University IDEX 2012 (to J.-L.M.); the Fondation de l’Avenir 
(AP-RM-17-013 to M.-L.P.M.); the Fédération pour la Recherche sur le 
Cerveau; and the NIH, Science Foundation Ireland (16/ERCD/3797 to 
R.W.), USA (Axon, Testosterone and Mental Health during Adolescence; 
RO1 MH085772-01A1 to T.P.), NIH consortium (5U54 EB020403-05 
to S.D.), supported by a cross-NIH alliance that funds Big Data to 
Knowledge Centres of Excellence (ENIGMA; 5U54EB020403-05 and 
1R56AG058854-01 to S.D.).

Author contributions
T.J., G.S., T.W.R. and J.F. conceptualized the study. C.X. and T.J. 
designed the analytic approach. C.X. analyzed the data. C.X. and T.J. 
wrote the manuscript. S.X. preprocessed the neuroimaging data. Y.L. 
and S.X. helped with visualization. C.S., X.P., W.C. and S.H. helped in 
interpreting the results. J.K. calculated the PRS. T.W.R., G.S., B.J.S. and 
J.F. revised the first draft. T.B., G.J.B., A.L.W.B., C.B., S.D., J.F., H.F., A.G., 
H.G., P.G., A.H., B.I., J.-L.M., M.-L.P.M., F.N., L.P., J.H.F., M.N.S., H.W., 
R.W. and G.S. were the principal investigators of IMAGEN. T.B., G.J.B., 
A.L.W.B., C.B., H.F., A.G., H.G., P.G., A.H., B.I., J.-L.M., M.-L.P.M., F.N., 
D.P.O., L.P., J.H.F., M.N.S., H.W., R.W. and G.S. acquired the data. All 
authors critically revised the manuscript.

Competing interests
T.B. served in an advisory or consultancy role for Lundbeck, Medice, 
Neurim Pharmaceuticals, Oberberg GmbH and Shire. He received 
conference support or speaker’s fee from Lilly, Medice, Novartis and 
Shire. He has been involved in clinical trials conducted by Shire and 
Viforpharma. He received royalties from Hogrefe, Kohlhammer, CIP 
Medien and Oxford University Press. The present work is unrelated 
to the above grants and relationships. G.J.B. received honoraria from 
General Electric Healthcare for teaching scanner programming 
courses. All other authors declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41591-023-02317-4.

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41591-023-02317-4.

Correspondence and requests for materials should be addressed  
to Tianye Jia.

Peer review information Nature Medicine thanks Klaas Stephan 
and the other, anonymous, reviewer(s) for their contribution to the 
peer review of this work. Primary Handling Editor: Jerome Staal, in 
collaboration with the Nature Medicine team.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturemedicine
https://doi.org/10.1038/s41591-023-02317-4
https://doi.org/10.1038/s41591-023-02317-4
https://doi.org/10.1038/s41591-023-02317-4
https://doi.org/10.1038/s41591-023-02317-4
http://www.nature.com/reprints


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02317-4

Extended Data Fig. 1 | The construction process of the NP factor. a. For each 
participant, we first constructed the brain connectome for each task condition 
of the three tasks with a whole-brain 268 region atlas. Specifically, the EFT 
contained angry and neutral conditions; the SST contained go wrong, stop 
success, and stop failure conditions; the MID task contained positive feedback, 
reward anticipation, and negative feedback conditions. We also collected eight 
behavioural symptoms: four externalising symptoms (ASD, ADHD, ODD, and CD) 
and four internalising symptoms (GAD, ED, Dep. And SP). We then estimated the 
brain signature for each behavioural symptom with each task-based connectome 
by the machine-learning method of Connectome-based predictive modeling 
(CPM). b. With the identified brain signature for behavioural symptoms, we next 

constructed the Neuropsychopathological (NP) Factor in three steps. First, for 
each task condition, we counted the number of cross-disorder edges that the 
edge was predictive of both externalising and internalising symptoms. Then 
we used the permutation test to identify reliable conditions where the number 
of cross-disorder edges was significantly higher than random discovery. These 
reliable cross-disorder edges were then divided into four groups regarding their 
simultaneous predictive effects for externalising and internalising symptoms 
(that is positive-positive, positive-negative, negative-positive and negative-
negative), and we conducted longitudinal analyses to identify which groups of 
cross-disorder edges could be used to form the NP factor that is still predictive to 
both externalising and internalising symptoms at age 19.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02317-4

Extended Data Fig. 2 | The group difference of the NP factor scores between comorbid-diagnoses, single-diagnosis and healthy control groups. The upper  
and lower bars represent the Q3 + 1.5xIQR and Q1–1.5xIQR, respectively. Abbreviation: Q1: the 1st quartile; Q3: the 3rd quartile; IQR: the interquartile range; * P < 0.05,  
** P < 0.01, *** P < 0.001; ns. not significant.
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Extended Data Table 1 | Characteristics of the IMAGEN cohort at age 14

The development and well-being assessment (DAWBA) provides a diagnostic output for common psychiatric disorders with six ranks from 0 to 5. Specifically, for each mental disorder, 
individuals were flagged as normal if scored 0 or 1 (that is less than 0.1% and approximately 0.5% of children have the disorder in question, respectively), as low risk (that is with mild 
symptoms) if scored 2 or 3 (approximate 3% or 15% of children have the disorder in question, respectively), and as high risk (that is with severe symptoms) if scored 4 or 5 (approximate 
50% or more than 70% of children have the disorder in question, respectively). ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; CD, conduct disorder; ODD, 
oppositional defiant disorder; GAD, general anxiety disorder; ED, eating disorder; SP, specific phobia.
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Extended Data Table. 2 | Characteristics of the ABCD cohort at age 10

The ABCD Parent Diagnostic Interview for DSM-5 Full provides a diagnostic output for common psychiatric disorders (abcd_ksad01). The diagnosis of ASD was provided in a clinical 
assessment questionnaire (abcd_screen01). ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; CD, conduct disorder; ODD, oppositional defiant disorder; GAD, 
general anxiety disorder; ED, eating disorder. Please note that as the morbidity of specific phobia (SP) (21.5%) with abcd_ksad01 in the ABCD dataset was much higher than that of other 
pediatric epidemiologic investigations of SP (4.8%), we thus excluded this diagnosis here.
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