
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

GrayC: Greybox Fuzzing of Compilers and Analysers for C
Karine Even-Mendoza∗†

karine.even_mendoza@kcl.ac.uk
Department of Informatics, King’s College London

London, United Kingdom

Arindam Sharma∗
arindam.sharma@imperial.ac.uk

Department of Computing Imperial College London
London, United Kingdom

Alastair Donaldson
alastair.donaldson@imperial.ac.uk

Department of Computing Imperial College London
London, United Kingdom

Cristian Cadar
c.cadar@imperial.ac.uk

Department of Computing Imperial College London
London, United Kingdom

ABSTRACT

Fuzzing of compilers and code analysers has led to a large number
of bugs being found and fixed in widely-used frameworks such as
LLVM, GCC and Frama-C. Most such fuzzing techniques have taken
a blackbox approach, with compilers and code analysers starting
to become relatively immune to such fuzzers.

We propose a coverage-directed, mutation-based approach for
fuzzing C compilers and code analysers, inspired by the success
of this type of greybox fuzzing in other application domains. The
main challenge of applying mutation-based fuzzing in this context
is that naive mutations are likely to generate programs that do not
compile. Such programs are not useful for finding deep bugs that
affect optimisation, analysis, and code generation routines.

We have designed a novel greybox fuzzer for C compilers and
analysers by: (1) developing a new set of mutations to target com-
mon C constructs, (2) controlling the aggressiveness of the mutation
activation so that generated programs mostly pass compilation, and
(3) transforming fuzzed programs so that they produce meaningful
output, allowing differential testing to be used as a test oracle, and
paving the way for fuzzer-generated programs to be integrated into
compiler and code analyser regression test suites.

We have implemented our approach in GrayC, a new open-
source LibFuzzer-based tool, and present experiments showing that
it provides more coverage on the middle- and back-end stages com-
pared to other mutation-based approaches such as Clang-Fuzzer,
fuzzing with code fragments, no-fuss fuzzing, and PolyGlot.

We have used GrayC to identify 29 confirmed compiler and
code analyser bugs: 24 previously unknown bugs (with 22 of them
already fixed in response to our reports) and 5 confirmed bugs re-
ported independently shortly before we found them. A further 4 bug
reports are under investigation. Apart from the results above, we
∗Both authors contributed equally to this research.
†A major part of this work was done as an Imperial College London employee.

This work was supported by EPSRC (EP/R011605/1 and EP/R006865/1).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA 2023, 17-21 July, 2023, Seattle, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

have contributed 23 simplified versions of coverage-enhancing test
cases produced by GrayC to the Clang/LLVM test suite, targeting
86 previously uncovered functions in the LLVM codebase.

KEYWORDS

Greybox fuzzing, compilers, program analysers, code mutators,
LibFuzzer, Clang, LLVM, GCC, MSVC, Frama-C

ACM Reference Format:

Karine Even-Mendoza, Arindam Sharma, Alastair Donaldson, and Cristian
Cadar. 2023. GrayC: Greybox Fuzzing of Compilers and Analysers for C. In
Proceedings of ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2023). ACM, New York, NY, USA, 12 pages. https :
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Over the last decade or so, randomised compiler testing, often
termed compiler fuzzing, has seen an explosion of interest, with
compiler fuzzers leading to the finding and fixing of thousands of
bugs in C compilers such as Clang/LLVM and GCC [61, 77, 97],
as well as in compilers for other languages such as OpenCL [63],
OpenGL [17], SQL [87] and Verilog [55]. Similar efforts have been
proposed for testing code analysers [8], which led to the discov-
ery of bugs in popular frameworks such as model checkers, static
analysers and symbolic executors [16, 58, 59].

During roughly the same period, fuzzing has revolutionised the
field of software testing. However, most compiler fuzzers operate
very differently from mainstream general-purpose fuzzers, such
as AFL [73] and LibFuzzer [71], which are coverage-directed and
mutation-based. Taking inspiration from genetic algorithms, such
general-purpose fuzzers synthesise new inputs by mutating exist-
ing ones, and use coverage feedback as a fitness function: inputs
that yield new coverage of the software under test are prioritised
for further mutation. Due to their use of coverage information,
these fuzzers are often termed greybox. Such fuzzers are equipped
with built-in mutation operators that are very simple, involving
byte-level transformations such as adding, removing or changing in-
dividual bytes. In contrast, most compiler and code analyser fuzzers
either generate programs from scratch (e.g. [16, 64, 97]) or transform
existing programs (e.g. [17, 61]). In either case, they are blackbox:
their execution is not guided by information about coverage of the
compiler codebase.

1

https://orcid.org/0000-0002-3099-1189
https://orcid.org/0000-0001-5361-1057
https://orcid.org/0000-0002-7448-7961
https://orcid.org/0000-0002-3599-7264
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ISSTA 2023, 17-21 July, 2023, Seattle, USA Karine Even-Mendoza, Arindam Sharma, Alastair Donaldson, and Cristian Cadar

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

The main reason greybox fuzzing is hard to apply effectively to
compilers,1 particularly those for statically-typed languages with
extensive undefined behaviour (UB) such as C, is that naive codemu-
tations tend to produce invalid programs: programs that either do
not conform to the language’s syntax, disobey the language’s static
semantic rules (e.g. calling functions with inappropriately-typed
arguments in C), or trigger UB when run (e.g. a buffer overflow).
Starting with a valid input that exercises a compiler all the way from
lexing to analysis and/or code generation, naive greybox fuzzing
(using byte-level mutations) is likely to produce a large stream of
invalid programs that are rejected by the compiler’s lexer, parser
or type checker, or trigger UB at runtime. Such invalid inputs can
help find edge cases where the compiler crashes instead of grace-
fully rejecting a malformed program, but cannot find deeper errors
in the compiler’s middle- and back-ends, where the vast majority
of optimisations are performed (the middle-end being responsible
for platform-independent optimisations and the back-end for code
generation and optimisations specific to the target architecture).

In contrast, blackbox grammar-based compiler fuzzers can be
designed to emit valid programs by construction, allowing them
to detect middle- and back-end bugs, usually in conjunction with
differential testing [72]. But despite these appealing properties,
blackbox compiler fuzzers are prone to problems of immunity: once
they have enabled the finding and fixing of a substantial number
of bugs in a compiler, they tend to be unable to generate programs
that trigger further bugs [81]. Lacking feedback, the fuzzers have
no way of adapting their generation strategy to find more bugs.

This leads to an interesting research challenge which we address
in this paper: how to devise greybox compiler fuzzing techniques
that yield valid programs capable of detecting deep compiler bugs,
and that can enhance the regression test suites of mature compilers.

Mutation-based approaches have been very successful in the
context of dynamic languages such as JavaScript: LangFuzzer [57]
is a pioneering work in this space which found critical bugs in
JavaScript and PHP interpreters, and more recent efforts, such as Su-
perion [96] for JavaScript and XML and Nautilus [2] for JavaScript,
Lua, PHP and Ruby, have added coverage-guidance. However, code
mutations are less likely to result in dynamically-invalid programs
for dynamic languages, and front-end bugs are often equally valu-
able in the context of web security.

For statically-typed languages like C, preliminary steps towards
mutations that have some chance of preserving static validity in-
clude the use of keyword dictionaries [50, 71], protobuf descrip-
tions of programming language structure [91], and regular expres-
sions and partial grammars for recognising common programming
language-like features [51, 53, 95]. However, such methods still
produce a high rate of invalid programs. For example, the LLVM
project’s Clang-Proto-Fuzzer tool, which relies on a protobuf
description of a fragment of C/C++, was abandoned because it only
found obscure front-end crash bugs that developers were reluctant
to fix [89]; a presentation on the work reports “Bugs are being fixed
too slow (if at all)” [91]. As another example, a recent study using
mutations that exploit knowledge of typical language features de-
cided not to focus on C/C++, with the authors stating: “code that

1For succinctness, we will use the term compilers to refer to both compilers and code
analysers, unless we make the distinction explicit.

crashes a C or C++ compiler, but that includes extensive undefined
behaviour may well be ignored by developers” [53]. Indeed, we re-
ported several front-end crash bugs triggered by statically-invalid
programs produced via naive mutation methods, and found they
were not received positively by developers, either being closed as
“won’t fix”, or ignored (see §5.4). A recent tool, PolyGlot [12], for
generic language processor testing pays special attention to im-
proving the likelihood that the test programs it creates are valid, yet
achieves only limited coverage on the middle- and back-end com-
piler components, restricting its ability to find bugs in C compilers
mainly to front-end crashes (see §5 for more details).

Our contribution. In an attempt to get the best of both worlds—
the validity guarantees associated with grammar-based blackbox
compiler fuzzing and the targeted search offered by a greybox
approach—we present GrayC,2 a greybox fuzzer for C compilers.
The key innovation of GrayC is the use of semantic-aware muta-
tion operators for statically-typed languages with extensive UB:
mutation operators that preserve validity of the input program with
high probability.3 These mutations work at the abstract syntax tree
(AST) level, and include mutations that modify individual programs,
as well as mutations that combine elements of multiple programs.
The programs generated via semantic-aware mutation exercise the
compiler codebase end-to-end, and can be used to find crashes deep
in optimisation passes.

Rather than directly applying coverage-directed fuzzing to each
compiler of interest, GrayC takes a “fuzzing by proxy” approach,
akin to that taken in recent work on fuzzing instruction set simula-
tors [54] and deployed CPUs [92].We run coverage-directed fuzzing
with GrayC’s semantic-aware mutator on a particular compiler
under test (compiled with suitable coverage instrumentation), col-
lecting all the test programs that are considered during the fuzzing
process. We then feed this output corpus to a range of different com-
pilers under test, operating at various optimisation levels, to see
whether they induce compiler crashes. This workflow, summarised
in Figure 1, has the advantage that only the compiler used for gen-
eration of the output corpus needs to be compiled in a manner
suitable for greybox fuzzing. The compilers and analysers subse-
quently tested using the output corpus can be arbitrary binaries,
allowing closed-source compilers (e.g. MSVC) and tools not written
in C/C++, to be tested (e.g. Frama-C is written in OCaml).

Overview of results. We have used GrayC (at various stages of
development) to test the Clang, GCC and MSVC compilers and the
Frama-C code analyser. This led to us finding 29 confirmed bugs: 24
previously unknown compiler and analyser bugs, out of which 22
have already been fixed in response to our reports and a further 5
bugs that turned out to have already been reported by other users.4
Importantly, of these 29 bugs, 21 are middle- or back-end bugs that
can only be triggered by valid programs. It is due to a very high
percentage of the programs that GrayC generates being valid that
our technique was able to find these bugs; this is in contrast to
other techniques that apply mutation-based fuzzing to C compilers.

2Pronounced “Grace”, GrayC is a pun on greybox fuzzing for C, at the same time
paying homage to compiler pioneer Grace Hopper.
3As discussed further in §3.1, there are strong practical reasons for tolerating a suitably
low rate of statically-invalid programs.
4Our reports of a further 4 bugs found by GrayC are waiting investigation.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

GrayC: Greybox Fuzzing of Compilers and Analysers for C ISSTA 2023, 17-21 July, 2023, Seattle, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: Overview of greybox fuzzing with GrayC

In parallel, we also performed extensive testing using the state-
of-the-art blackbox fuzzer Csmith [97], and were unable to find
any of the bugs that GrayC could find. This provides evidence that
greybox compiler fuzzing has the potential to find bugs in compilers
that have already been subjected to extensive blackbox fuzzing.

We also present a set of controlled experiments comparing the
semantic-aware mutators of GrayC with naive byte-level muta-
tion (via Clang-Fuzzer [13]), grammar-based fuzzing (via Gram-
marinator [56]), fragment-based fuzzing (via a tool similar to
LangFuzz [57]), regular expression-based mutation (via Universal
Mutator [51]), and a greybox approach for generic language pro-
cessor testing (via PolyGlot [12]). Our results show that GrayC
provides better coverage of middle- and back-end compiler compo-
nents, and is able to find crashes in these components that are not
found when the other methods are used.

Finally, we have demonstrated how GrayC can have impact
beyond just finding bugs by using it as the basis for contributing
new tests to the LLVM test suite. By combining GrayC with an off-
the-shelf test case reducer, and designing a novel tool, enhanCer,
to equip reduced programs with a test oracle, we produced a set of
small, well-defined programs that achieve coverage of particular
LLVM optimisations that is not achieved by the LLVM test suite. We
contributed these test cases back to the LLVM project to improve
the coverage of regression testing, and the developers reviewed and
accepted the test cases.

In summary, our main contributions are:

(1) A technique for coverage-directed mutation-based greybox
compiler fuzzing that yields valid programs thanks to semantic-
aware mutators specially designed for statically-based lan-
guages with extensive undefined behaviour;

(2) The implementation of this idea in a greybox compiler fuzzer,
GrayC, which uses fuzzing by proxy to generate programs that
can be used as inputs to a range of compilers under test;

(3) A large testing campaign and experimental evaluation showing
that GrayC finds more bugs and achieves higher coverage than
other mutation-based approaches, and can generate programs
that enhance the regression test suites of mature compilers.

2 BACKGROUND

2.1 Compiler Bugs and Program Validity

Our primary focus in this work is on crash bugs, where the com-
piler aborts unexpectedly. Specifically, we are interested in finding
crashes deep in a compiler’s codebase (e.g. in the optimizer or code
generator). For this purpose, we distinguish between statically-
valid and statically-invalid programs. Essentially, statically-valid
programs are those that should be expected to compile according
to the language specification, without reference to any particular
compiler. Therefore, statically-valid programs are more likely to
exercise deep parts of the compiler than statically-invalid programs.

We also investigate extending GrayC to allow generation of
dynamically-valid deterministic programs: these produce a well-
defined deterministic result when executed and do not trigger un-
defined behaviour (such as an out-of-bounds access) at runtime.
Dynamically-valid programs can be used to find miscompilations
via differential testing and enhance compiler tests suites.

2.2 LibFuzzer and Clang-Fuzzer

LibFuzzer [62] is a greybox in-process mutation-based fuzzing
engine. It treats test cases as sequences of bytes, and the user must
write a fuzz target function that uses a given byte sequence to
invoke their system under test (SUT) in a meaningful way. Lib-
Fuzzer is fully integrated with the LLVM [60] infrastructure; using
it requires using a special compilation flag.

Starting from a user-provided initial corpus, LibFuzzer produces
new tests by mutating existing ones. By default, this is achieved
using a set of byte-level mutations. If a mutated test results in new
coverage, it is fed back into the corpus for future mutation. This
process runs iteratively while the engine keeps track of any tests
that cause the SUT to crash.

LibFuzzer provides an API that allows a custom mutator to be
provided: a function that accepts an existing input as a sequence of
bytes, and returns a mutated version of the input. The function can
use domain-specific logic to interpret the input sequence of bytes
according to the application domain of tye system under test, and
thus perform a semantically-meaningful mutation.

Clang-Fuzzer [13] allows fuzzing of the Clang compiler using
LibFuzzer, by providing a fuzz target that interprets a sequence
of bytes as text and feeds this text to Clang. Clang-Fuzzer uses
LibFuzzer’s built-in byte-level mutations, so the mutated programs
that it generates are very unlikely to be statically-valid C/C++ pro-
grams. As described in detail in §3, our GrayC tool augments the
Clang-Fuzzer fuzz target with a custom mutator that parses an
input into an AST and performs semantic-aware, AST-level muta-
tions, returning the mutated program as a string. This leads to a
high rate of statically-and dynamically-valid programs.

3 GRAYC

The GrayC approach involves using mutation-based fuzzing as
a program generation technique, and then using the generated
programs to test compilers and analysers. The high-level flow of
GrayC is sketched in Figure 1. Starting with an initial corpus of
valid test programs, GrayC uses LibFuzzer to perform coverage-
guided mutation-based fuzzing (1 in Figure 1). The fuzz target of

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ISSTA 2023, 17-21 July, 2023, Seattle, USA Karine Even-Mendoza, Arindam Sharma, Alastair Donaldson, and Cristian Cadar

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Clang-Fuzzer is used to exercise the Clang/LLVM codebase, and
our semantic-aware mutators are provided as LibFuzzer custom
mutators. Unconventionally, the purpose of this stage is not to find
bugs, but rather to generate a large corpus of diverse test programs,
which are saved to an external directory, called the fuzzed corpus
(2). The programs in the fuzzed corpus can then be used for deep
testing of a range of off-the-shelf compilers (at various optimisation
levels) and code analysers (3), which do not need to be compiled
in a special manner; in fact they may be closed-source. The idea of
this “fuzzing by proxy” approach is that coverage-guided fuzzing
on a particular compiler of interest should lead to programs that
are interesting and diverse, and thus useful for testing C compilers
and analysis tools in general. This is supported by the bugs we have
found using GrayC, affecting a range of targets (§4).

We first discuss the custommutators employed by GrayC, whose
key objective is to produce statically-valid programs (§3.1). We
then describe our enhanCer tool that allows GrayC to be used for
differential testing and compiler test suite augmentation (§3.2), and
describe pertinent implementation details (§3.3).

3.1 Custom Mutators

Our custom mutators are semantic-aware, which enables them
to generate statically-valid programs, and their level of aggres-
siveness—essentially the likelihood of generating a statically-valid
program—is configurable, allowing them to target a variety of com-
piler components. We start by presenting the main semantic-aware
mutations that we designed, and then discuss why and how we
control aggressiveness.

GrayC’s custom mutator receives—from LibFuzzer—a program
to transform. It parses the program into an AST, and then selects,
uniformly at random, a transformation and an appropriate AST
node at which to apply the transformation. The transformations are
summarised in Table 1, and are categorised into mutations, which
take individual programs as input, and recombiners, which work
on two programs, the second program selected from the corpus
uniformly at random.

Mutators (lines 1–11 in Table 1). A mutator takes as input a pro-
gram and transforms it based on a certain template. GrayC’s muta-
tors can add new statements, as well as edit or delete expressions
and statements. For instance, Inject-Control-Flow adds a break,
continue or return statement, Replace-By-Constant replaces
an arithmetic expression by a constant (e.g. a=(a+1)%7; to a=6;)
and Change-Type changes the type of an expression (via explicit
casting).

Using two examples, we illustrate how Delete-Statement
works in isolation, and together with Duplicate-Statement.

Example 1. Consider this simple example:
1 for (int i=0; i<5; i++) {

2 i+=2; printf("itr: \%d", i);

3 }

The Delete-Statement mutator acting on the for-loop block
can either remove a statement:

1 for (int i=0; i<5; i++) {

2 printf("itr: \%d", i);

3 }

or replace a block with the empty statement (via two consecutive
applications):

1 for (int i=0; i<5; i++) {

2 ;

3 }

Example 2. GrayC applies a series of mutators to the original
program on the left (a program from the Clang/LLVM test suite)
to synthesise the program on the right:

1 typedef struct {

2 unsigned w[3];

3 } Y;

4 Y arr[32];

5 int main() {

6 int i=0;

7 unsigned x=0;

8 for (i=0; i<32; ++i)
9 arr[i].w[1]=i == 1;

10 for (i=0; i<32; ++i)
11 x+=arr[1].w[1];

12 if (x!=32)

13 abort();

14 return 0;

15 }

1 typedef struct {

2 unsigned w[3];

3 } Y;

4 Y arr[32];

5 int main() {

6 int i = 0;

7 unsigned x = 0;

8 for(i=0; i<32; ++i)

9 for(i=0; i<32; ++i)
10 x+=arr[1].w[1];

11 x+=arr[1].w[1];

12 if (x!=32)

13 abort ();

14 return 0;

15 }

To do so, GrayC invokes: (i) Delete-Statement, to remove
the inner statement of the first loop (in blue: left-program, line 9),
and (ii) Duplicate-Statement, to duplicate the inner statement of
the second loop (in green: left-program, line 11 to right-program,
lines 10–11). The two separate loops in the original program have
now converted to a nested loop in the fuzzed program due to the
deletion of line 9 via two different Delete-Statement mutations:
replacing the inner statement with the empty statement, and then
also removing the empty statement. The Duplicate-Statement
mutation can occur before, in-between or after the two Delete-
Statement mutations.

Recombiners (lines 12–13 in Table 1). A recombiner takes as input
two programs—a source program and a destination program—and
transforms the destination program by adding parts of the source
program. To allow for increased code diversity, the source programs
can be picked from a larger set compared with the original corpus
provided to LibFuzzer. GrayC’s recombiners can then replace
the body of a function with the body of another function from a
different program, or combine the bodies of two functions from
two different programs. We use a careful renaming scheme to work
around name clashes between variables and functions in the source
and destination programs.

Example 3. We illustrate how Combine-Functions recombines
the following two programs: 𝑃blue (the destination program) and
𝑃green (the source program). We mark the lines used in the output
programs in blue if they originate from 𝑃blue , and in green if they
originate from 𝑃green.

Program 𝑃𝑏𝑙𝑢𝑒 :
1 int dest_func(int x_dest

, int y_dest){
2 int b_dest=x_dest*y_dest;

3 b_dest=b_dest+5;

4 return b_dest;

5 }

6 int main() {

7 int ret=dest_func(6,7);

8 return ret;

9 }

+

Program 𝑃𝑔𝑟𝑒𝑒𝑛 :
1 int a=0;

2 int source_func(int

j_src , int k_src){
3 int m_src=j_src+k_src;

4 return m_src;

5 }

6 int main() {

7 int ret=source_func(2,3);

8 return a;

9 }

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

GrayC: Greybox Fuzzing of Compilers and Analysers for C ISSTA 2023, 17-21 July, 2023, Seattle, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: GrayC’s code mutators and recombiners.

Type Construct Short Name Description

1 Duplicate-Statement Duplicate a statement within the same block excluding variable declarations.

2 Mutator Statement Delete-Statement Delete a non-declaration statement; randomly decide whether to keep the semicolon.

3 Inject-Control-Flow Add break, continue or return; when in a loop, add conditional code based on an auxiliary loop counter so that
the statement only executes on certain iterations.

4 Delete-Expression Delete sub-expressions from a given expression in a corpus program.

5 Expand-Expression Expand sub-expression with other sub-expressions from the corpus program; e.g. in an assignment or loop
condition.

6 Replace-By-Constant Replace an expression with a random valid constant expression of the same data type; e.g. replace a condition in
a while to 0, making its body dead code.

7 Mutator Expression Flip-Bit Flip a bit in a constant expression.

8 Replace-Digit Similar to Flip-Bit but on the number’s decimal representation: either flip the sign or change a single digit.

9 Change-Type Change the type of an expression (short, long, unsigned, float, etc.).

10 Replace-Unary-Operator Replace unary operator with an assignment using the same variable; e.g. replace i++ in a for statement to i=i+2

or i=i-3.
11 Flip-Operator Replace one operator with another (arithmetic operators).

12 Recombiner Function Replace-Function-Body Replace the body of a function with that of another function with the same number of arguments.

13 Combine-Functions Combine the body of a function with another function with the same number of arguments, either by concate-
nating bodies or interleaving their statements.

The recombiner merges the body of source_func in 𝑃green into
the body of dest_func in 𝑃blue . There are several options to merge
the bodies of these functions. The programs 𝑃1 and 𝑃2 below are two
of the possible programs that Combine-Functions could output.
Output program 𝑃1:
1 int dest_func(int x_dest

, int y_dest){
2 int j_src=x_dest;

3 int k_src=y_dest;

4 int m_src=j_src+k_src;

5 int b_dest=x_dest+y_dest;

6 b_dest=b_dest+5;

7 return b_dest;

8 }

9 int main() {

10 int ret=dest_func(6,7);

11 return ret;

12 }

Output program 𝑃2:
1 int dest_func(int x_dest

, int y_dest){
2 int j_src=x_dest;

3 int k_src=y_dest;

4 int m_src=j_src+k_src;

5 int b_dest=x_dest+y_dest;

6 b_dest=b_dest+5;

7 return m_src;

8 }

9 int main() {

10 int ret=dest_func(6,7);

11 return ret;

12 }

Combine-Functions combines functions with the same number
of arguments, and the first thing it does is to initialise the vari-
ables corresponding to the function arguments of the source func-
tion with the values of the arguments in the destination function
(lines 2–4 in 𝑃1 and 𝑃2). The return statement is handled separately:
Combine-Functions randomly selects one of the two return values
(𝑃1 uses the return statement from 𝑃blue , while 𝑃2 that from 𝑃green)
and adds it as a single return statement of the merged function.

Aggressiveness. GrayC aims to generate programs that are likely
to be statically-valid, and that have a reasonable chance of also
being dynamically-valid. While such programs are needed to reach
deeper parts of a compiler, generating only valid programs may
miss interesting corner cases. Therefore, GrayC has two modes: a
conservative mode that generates dynamically-valid programs with
high probability, and an aggressive mode that has a lower probabil-
ity of generating dynamically-valid programs, and also generates
statically-invalid programs at a higher rate (though still low) com-
pared with the conservative mode. We use both modes for crash

testing, but only the conservative mode for finding miscompilations
and augmenting compiler test suites.

At a technical level, the main difference between the two modes
is that in the conservative mode, GrayC applies additional checks
that attempt to eliminate undefined behaviour. We summarise the
extra checks performed in conservative mode in Table 2. For ex-
ample, the Replace-By-Constant mutator adds checks to avoid
undefined behaviour based on the constant’s location, e.g. the re-
placed constant should be non-negative if used as an array index. As
another example, the Combine-Functions mutator combines func-
tions only if their signatures are identical (while in the aggressive
mode, it will attempt to employ casting to resolve differences, which
has the potential to yield statically-invalid programs). To compen-
sate for the recombiner restrictions, the conservative mode adds a
mutator which pulls blocks from Csmith programs, as detailed in
the table.

3.2 enhanCer

To make the generated programs suitable for differential testing
and compiler test suite augmentation, we designed a new tool,
enhanCer, that transforms these programs to produce a single
output. Inspired by the way Csmith [97] programs are designed,
the single output is a hash of all the global variables in the program.

Furthermore, in the context of differential testing, enhanCer
performs the following two tasks: (1) it adds to the global hash value
all the strings printed by the program during execution, and (2) it
replaces any termination function, such as abort and exit, by an
operation that adds to the global hash a unique string representing
the termination function, and then replaces the operation by a
return statement. The reason for which we eliminate termination
functions is to ensure that the global hash is always printed at the
end of a program execution. (Note that Csmith programs never
contains calls to such functions by design, but in our case we start
from existing programs that might contain them.)

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ISSTA 2023, 17-21 July, 2023, Seattle, USA Karine Even-Mendoza, Arindam Sharma, Alastair Donaldson, and Cristian Cadar

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: GrayC’s extra checks and extra mutator in conservative mode.

Short Name Checks in Conservative Mode

1 Delete-Expression, Expand-Expression Avoid selecting expressions using pointers; limit size of expressions

2 Replace-By-Constant Replace expression with constant only when data types match exactly. Attempt to avoid invalid memory accesses and
allocation, e.g. do not replace an array subscript with a negative constant.

3 Flip-Bit, Replace-Digit Similar to the extra checks for Replace-By-Constant, attempting to avoid invalid memory accesses and allocations.

4 Change-Type Limit casting of integer type to another integer type only, and similarly for floating-point types.

5 Combine-Functions, Replace-Function-Body Restrict to functions that are consistent in their return and parameters data types without the need for additional casting.
Restrict the second selected function to use no global variables.

6 Add-Csmith-Block To compensate for the restrictions of recombiners above, we add a mutator that generates a Csmith program with a
single function and pulls a block from it into a corpus program. We configure Csmith to limit the expression complexity
and non-flat C structure generation, use no global variables or with user-defined types and no memory allocations.

Even when GrayC’s conservative mode is used, it is possible for
the generated programs to be dynamically-invalid. Furthermore, it
is possible that eliminating termination functions might introduce
undefined behaviour to programs that were previously dynamically-
valid. enhanCer invokes sanitizers to detect and discard such pro-
grams so that they do not confound differential testing.

3.3 Implementation Details

Our implementation is divided into several parts: GrayC, en-
hanCer, and a set of Bash and Python scripts for crash and dif-
ferential testing. We make use of LLVM 12.0.1, with our mutators
implemented on top of Clang-Fuzzer/LibTooling.

To detect undefined behaviour, enhanCer invokes Frama-
C [15], an open-source industrial-strength framework dedicated
to the formal analysis of C programs, and the Clang/LLVM com-
piler sanitizers: AddressSanitizer [90], a dynamic analysis tool
to detect invalid memory accesses, MemorySanitizer [93] to de-
tect uninitialized memory accesses, and UndefinedBehaviorSani-
tizer [94] to detect a wide range of undefined behaviours.

4 USING GRAYC IN THEWILD

We divide our evaluation into two parts: a long-term fuzzing cam-
paign used to find compiler and analyser bugs (presented in this
section) and a series of controlled experiments designed to better
understand the strengths and weaknesses of GrayC compared to
other approaches (presented in §5).

During the development of GrayC, we applied it to several
versions of popular compilers and code analysers. Our fuzzing cam-
paigns (§4.1) led to the discovery of 29 confirmed bugs (§4.2), with
another 4 bug reports still under investigation, and the contribution
of 23 programs to the Clang/LLVM test suite (§4.3).

In parallel, we applied Csmith [97] continuously over a period of
six months to look for bugs in GCC-11 and Clang-13 on x86_64. It
did not find any bugs, adding weight to our hypothesis that compil-
ers eventually become immune to blackbox fuzzing approaches [81].

Our artifact [1] (see the Evaluation/USING-GRAYC-IN-THE-WILD

folder) contains data associated with these experiments, including
anonymised bug reports and relevant logs.

4.1 Experimental Setup

We summarise below how we approached our open-ended fuzzing
campaigns.

Table 3: Compiler and code analyser bugs found by GrayC.

Previously-unknown Independently-reported

Confirmed Fixed Confirmed Fixed

GCC 8 8 3 3
LLVM 2 2 1 0
MSVC 3 1 0 0
Frama-C 11 11 1 1

TOTAL 24 22 5 4

Initial Corpus. GrayC’s initial corpus was a collection of single-
file programs from various sources: automatically-generated pro-
grams, compiler test suites, and C tutorials. In addition, we used
Csmith to create a set of automatically-generated programs. We
minimised the set of Csmith programs using C-Reduce [82] to
have at least one reduced and dynamically-valid program cover-
ing each function in the fuzzed compiler that was covered by the
original set of programs.

Termination Criteria. Each fuzzing campaign ran until we
reached a time limit, a disk space limit, or no new coverage was
achieved for some time; as this was a series of long-running experi-
ments, the details of these limits varied. Similarly to Clang-Fuzzer,
GrayC terminates the fuzzing process when the mutation attempt
fails 100 times.

Compilers and Analysers Tested.We tested recent versions of
LLVM (10,11,12,13,14 and 15), GCC (10,11,12 and 13) and the
code analyser Frama-C (21,22,23 and 24) on Ubuntu Linux 18.04
LTS x86_64. We found bugs in GCC and LLVM on Linux by com-
piling each mutated program with and without sanitizer flags and
using each of the standard -O0, -O1, -O2, -O3, and -Os optimisation
levels. We also conducted a short evaluation on Windows with a
small set of mutated programs generated on Linux to test the Mi-
crosoft Visual Studio Compiler (MSVC 19.28.29915) with the /Od
(no optimisations) and /O2 (maximise speed) optimisation settings.

During our fuzzing campaigns, we used C-Reduce, the LLVM
sanitizers and Frama-C as part of investigating the bugs that we
found. This led to us to report 11 additional bugs in these tools as a
by-product of our work [3–7, 23–25, 67–69].

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

GrayC: Greybox Fuzzing of Compilers and Analysers for C ISSTA 2023, 17-21 July, 2023, Seattle, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: Number of confirmed compiler and code analyser

bugs found by GrayC in each high-level component.

Front-end Middle-/Back-end

GCC 2 9
LLVM 1 2
MSVC 3 0
Frama-C 2 10

TOTAL 8 21

4.2 Bugs Found

Table 3 gives an overview of the compiler and code analyser bugs
found by GrayC. GrayC found 29 confirmed bugs [18–22, 26–32,
34–40, 42–45, 66, 70, 74–76, 83]: 24 previously unknown bugs (out
of which 22 bugs have already been fixed in response to our reports),
and 5 bugs confirmed and/or fixed independently shortly before we
found them. Additionally, 4 bug reports (not included in Table 3)
are pending investigation [41, 84–86].

Table 4 classifies these bugs (in Table 3) into those occurring
in the front-end and those occurring in the middle- or back-end.
Most of the bugs found by GrayC are in the middle- or back-end,
demonstrating its ability to find deep bugs. The front-end bugs
could in principle be found using more naive mutation approaches.
However, the fact that GrayC generates statically-valid programs
means that these bugs are taken seriously and fixed by developers;
by contrast front-end bugs triggered by statically-invalid programs
are often left unaddressed by developers (see §5.4).

All the bugs we found are crash bugs, except for two which cause
the compiler under test to hang. In particular, our use of GrayC
plus enhanCer did not lead to us finding any miscompilation bugs
using differential testing. However, we were successful in using
GrayC plus enhanCer to generate coverage-enhancing test cases
that have been accepted into the LLVM test suite (see §4.3).

To give a flavour of the kind of bug reports produced by GrayC,
we now discuss one of them.

ICE (Internal Compiler Error) in GCC during constant folding optimi-
sation. The following program fuzzed by GrayC led to an ICE in
GCC-11 and GCC-12:

1 struct a d;

2 struct a {

3 int b;

4 int c[]

5 } main() {

6 d.c[268435456] || d.c[1];

7 }

This programwas obtained using Expand-Expression, which re-
placed d.c[1]with d.c[1] || d.c[1], and then using Replace-By-
Constant, which modified d.c[1] || d.c[1] to d.c[268435456]
|| d.c[1]. During constant folding (middle-end), the decomposi-
tion of d.c[268435456] triggered the bug; this was fixed by adding
extra checks.

4.3 Compiler Test Case Contributions

We used GrayC’s ability to generate dynamically-valid programs,
with the help of enhanCer, to improve the LLVM test suite. In
particular, we contributed test programs generated by GrayCwhich
increase the function coverage achieved by the LLVM test suite.

Once we identified such programs, we transformed and reduced
them further using enhanCer and C-Reduce and manually cleaned
them up. So far, 23 of these programs were accepted into the
LLVM test suite [78, 79]5 and 7 of these programs are under re-
view [80]. These tests targeted 86 previously uncovered functions in
Transforms, IR, AST and other parts of clang lib. All contributed
test case are available at [1].

5 CONTROLLED EXPERIMENTS

We next compare GrayC with other fuzzing methods, using con-
trolled experiments.

5.1 Experimental Setup

Tools. We consider the following tools in our evaluation:
(1) GrayC-aggressive. GrayC’s aggressive mode.
(2) GrayC-conservative. GrayC’s conservative mode.
(3) GrayC-No-Cov-Guidance. Fuzzing with no coverage guid-

ance to assess a main claim of the paper, which is that coverage
guidance is useful. We adapted GrayC to perform without cov-
erage guidance but with all its available mutators.

(4) GrayC-Fragments-Fuzzing. We adapted GrayC to run
without coverage guidance, and only use code fragment in-
jection (i.e., all other GrayC mutations are disabled). This is the
closest we can get to what LangFuzz6 does: it is not coverage-
guided, and only uses code fragment injection mutation [57].

(5) Clang-Fuzzer. Default Clang-Fuzzer [13, 62] (see §2).
(6) Csmith. Default Csmith [97] (see §1).
(7) Grammarinator. Default Grammarinator (v19.3) [48, 56]:

a general purpose grammar-based open-source fuzzer.
(8) PolyGlot. The tool taken from the artifact associated with the

paper [12]: PolyGlot is a general-purpose AFL-based fuzzer
that aims to generate statically-valid programs via a semantic
error-fixing mechanism.

(9) RegExpMutator. A LibFuzzer-based tool that uses Uni-
versal Mutator [51], a regexp-based mutator, instead of Lib-
Fuzzer’s default mutator.

Implementation notes. The variants GrayC-No-Cov-Guidance
and GrayC-Fragments-Fuzzing are based on the aggressive mode
of GrayC, as it has performed best in our experiments in terms
of bug-finding. To avoid coverage guidance, these variants are not
based on LibFuzzer. Instead, they are based on a simple script that
repeatedly picks a program from the working corpus at random,
applies the relevant mutators, and writes the mutated program back
to the working corpus.

We implemented RegExpMutator by invoking the Universal
Mutator tool as an external Python process. This leads to a variety
of mutated programs being generated, of which one is chosen at
random. We note that this is a rather inefficient way to perform
regex-based mutation, and that by re-implementing the logic of
the Universal Mutator in C++, it would likely be possible to
achieve higher throughput. However, we do not expect this to
dramatically change our findings since, as discussed in §5.2, most

510 of the contributed tests generated via an early version of this work.
6LangFuzz was applied on JavaScript and PHP interpreters, and is not publicly
available.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ISSTA 2023, 17-21 July, 2023, Seattle, USA Karine Even-Mendoza, Arindam Sharma, Alastair Donaldson, and Cristian Cadar

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 5: Average throughput (across 10 repetitions, over 24 h)
by each tool and the percentage which are statically-valid.

Programs/h Statically-valid (%)

Csmith 1,144 99.96%
GrayC-conservative 1,691 99.69%
GrayC-aggressive 2,906 99.47%
GrayC-Fragments-Fuzzing 3,957 99.08%
PolyGlot 714 91.20%
GrayC-No-Cov-Guidance 4,700 75.41%
RegExpMutator 1,390 19.1%
Clang-Fuzzer 1,183 1.55%
Grammarinator 5,391 0.0%

programs generated by the Universal Mutator turn out to be
statically-invalid.

Collecting test programs.We used each tool to construct a corpus
of test programs for subsequent offline testing and coverage analysis
of various compilers and analysers. We allocated 24 h per tool for
program collection, and to account for variance we repeated the
collection process 10 times per tool, resulting in 10 sets of collected
programs per tool. The throughput and coverage results reported
in §5.2 and §5.3 are averages over the 10 sets of programs collected
for each tool.

For the tools that require an initial corpus (all tools except
Csmith and Grammarinator) we assembled an initial corpus as
described in §4.1. Our corpus snapshot for these controlled experi-
ments contains 1,767 dynamically-valid single-file programs. The
reader can consult our artifact for full details on the programs
included. For the coverage-guided tools, fuzzing was performed
against LLVM 12.0.1.

For Clang-Fuzzer, saving all mutated programs proved imprac-
tical: Clang-Fuzzer generates approximately one million programs
every 24 h, with many duplicate programs having no effect on cov-
erage. We considered filtering duplicates during or after fuzzing,
which either reduced the tool efficiency (when spending time de-
tecting duplicates) or led to excessively long post-processing times.
As a result, for Clang-Fuzzer we decided to only save the mu-
tated programs for which Clang-Fuzzer reports extra coverage
(i.e. Clang-Fuzzer’s default settings).

We now discuss our results with respect to throughput and static
validity rate (§5.2), coverage (§5.3), and bug finding (§5.4).

5.2 Throughput and Static Validity Rate

The keymetric when comparing fuzzers is their bug-finding ability—
and coverage as a proxy for that. However, it is instructive to in-
terpret data on coverage and bug-finding ability in the context of
the throughput achieved by each fuzzer. We present results related
to throughput, with a particular emphasis on how it evolves over
time and how many statically-valid programs are generated.

Throughput. The second column of Table 5 shows, for each tool,
the average throughput over 24 h of fuzzing. The mutation-based
black-box fuzzers (Grammarinator, GrayC-No-Cov-Guidance
and GrayC-Fragments-Fuzzing) have the highest overall through-
put, with Grammarinator on top.

At the other end of the spectrum, PolyGlot has the lowest over-
all throughput, with Clang-Fuzzer second to last (however, recall

from §5.1 that we capture only a subset of the programs that Clang-
Fuzzer generates, because otherwise its throughput rate would be
too high to be manageable.) After a closer inspection, we found
that PolyGlot and Clang-Fuzzer have the highest throughput in
the beginning, but this decreases significantly, falling into the last
places by the forth and the eighth hour of fuzzing, respectively. This
declining trend (shared in various degrees by all LibFuzzer-based
tools) is mostly due to the corpus reduction functionality in Lib-
Fuzzer, which consumes more time as the corpus grows, leaving
less time for program mutation.

GrayC’s throughput is somewhere in the middle, with GrayC-
aggressive producing significantly more programs per unit of
time than GrayC-conservative. This is due to the expensive
Add-Csmith-Block mutator and the extra checks of GrayC-
conservative.

Static validity rate. The last column of Table 5 shows, for each
tool, the percentage of generated program that are statically-valid.
We consider a program to be statically-valid if it is compiled suc-
cessfully by GCC 11.1.0 while imposing a compilation timeout of
45 s and a stack limit of 4MB (we impose a small stack limit because
compiler crashes caused by programs with large stack allocations
are typically not compiler bugs per se, but rather resource exhaus-
tion issues).

Over 99% of the programs generated by Csmith, GrayC-
conservative, GrayC-aggressive and GrayC-fragments-fuzzing are
statically-valid.7

PolyGlot achieved a high compilation rate of 91.12% with the
initial corpus in this evaluation, much higher than originally re-
ported with PolyGlot’s initial corpus, which was a mixture of
statically valid and invalid programs [12].

GrayC-No-Cov-Guidance’s lack of coverage guidance resulted
in a significantly lower compilation rate of 75.41%. We suspect this
is because without coverage guidance, similar statically-invalid pro-
grams that cover the same front-end code do not get de-prioritised.

Only 19.09% programs compile for RegExpMutator and only
1.55% for Clang-Fuzzer. None of the Grammarinator programs
generated during this evaluation pass compilation.

5.3 Coverage

Wemeasured coverage for GCC-12 on Ubuntu 18.04 LTS x86_64 and
LLVM-13 on Ubuntu 20.04 LTS x86_64. We compiled the generated
programs with -O3, to exercise a large number of optimisations,
and we imposed a timeout of 50 s for compiling a program. We used
the GCov-based tool gfauto [49] to generate the coverage results
in a human-readable format.

We compare GrayC with other mutation-based tools, which all
start from an initial corpus. Including Csmith and Grammarinator
in this comparison would be unfair, as they are generation-based
tools that cannot benefit from the coverage of an initial corpus. Nev-
ertheless, we measured coverage for Csmith and Grammarinator
as well, and in both cases the coverage is smaller than the one for
our initial corpus, with Grammarinator achieving particularly low
coverage (with essentially no coverage in the middle- and back-end,
given that all the generated programs are statically-invalid).
7Csmith-generated programs are by construction compilable; however, some files hit
our compilation timeout.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

GrayC: Greybox Fuzzing of Compilers and Analysers for C ISSTA 2023, 17-21 July, 2023, Seattle, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

0 4 8 12 16 20 24
310000

320000

330000

340000

350000

Hours

Li
ne

 C
ov

er
ag

e
(G

C
C

)

0 4 8 12 16 20 24
175000

180000

185000

190000

195000

Hours

Li
ne

 C
ov

er
ag

e
(L

LV
M

)

Figure 2: GCC and LLVM line coverage over 24 h of fuzzing.

0 4 8 12 16 20 24
61000

62000

63000

64000

65000

66000

67000

Hours

M
id

dl
e-

en
d

Li
ne

 C
ov

er
ag

e

0 4 8 12 16 20 24
65000

66000

67000

68000

69000

70000

71000

72000

Hours

B
ac

k-
en

d
Li

ne
 C

ov
er

ag
e

Figure 3: LLVMmiddle- and back-end coverage over 24 h of

fuzzing.

Results. Figure 2 (best viewed in colour) shows the line coverage
achieved in GCC (left) and LLVM (right) by the mutation-based
tools. In addition, we show the coverage achieved by the initial cor-
pus, from which all these tools benefit. Note that in the beginning,
the coverage achieved by all tools is that of the initial corpus.

GCC Coverage: Figure 2 shows that GrayC-aggressive
achieves the highest coverage, with 348,362 lines covered af-
ter 24 h of fuzzing. GrayC-No-Cov-Guidance is in second
place (345,386 lines), followed by GrayC-conservative (340,556),
Clang-Fuzzer (324,101), PolyGlot (323,770), RegExpMutator
(323,250), GrayC-Fragments-Fuzzing (315,287) and the initial cor-
pus (314,467).

LLVM Coverage: Figure 2 shows that for LLVM, it is GrayC-
No-Cov-Guidance which achieves the highest overall cover-
age (192,139 lines), followed by Clang-Fuzzer (191,305), GrayC-
aggressive (190,781), GrayC-conservative (188,571), PolyGlot
(186,620), RegExpMutator (186,308), GrayC-Fragments-Fuzzing
(181,360 lines) and the initial corpus (180,551).

We believe Clang-Fuzzer and GrayC-No-Cov-Guidance
achieve higher overall coverage in LLVM because (an older ver-
sion of) LLVM is the compiler used for analysing and parsing pro-
grams during program generation. It is likely that Clang-Fuzzer’s
statically-invalid programs achieve substantial coverage of error-
handling code in the front-end, which remain unchanged in the
newer version of LLVMagainst whichwemeasure coverage. Indeed,
as discussed next, most of the coverage achieved by Clang-Fuzzer
is in the front-end, while GrayC exercises the more challenging
middle- and back-end. These two factors likely have a similar effect
in GrayC-No-Cov-Guidance, which also generates a large number
of statically-invalid programs.

Middle- and Back-End Coverage in LLVM: Recall that a key
design goal of GrayC is to produce programs that are statically-
valid, in order to exercise the middle- and back-end components
of compilers and analysers. Thus, for LLVM, we also measured the
coverage achieved by each fuzzing tool in the middle- and back-end
of the compiler, based on a best-effort classification of LLVM source
directories into front-end, middle-end and back-end components.
Our hypothesis was that because GrayC is effective at generating
diverse valid programs, it would achieve better coverage of the
middle- and back-end components compared to other techniques.

Figure 3 shows the middle- and back-end coverage achieved
by each tool after 24 h of fuzzing. GrayC-aggressive achieves the
highest coverage (middle-end: 66,914 lines, back-end: 71,053 lines),
followed by GrayC-No-Cov-Guidance (66,594 and 70,553), GrayC-
conservative (65,840 and 69,873), PolyGlot (64,455 and 67,621),
Clang-Fuzzer (63,367 and 67,651), RegExpMutator (63,269 and
67,323), GrayC-Fragments-Fuzzing (62,469 and 66,742), and the
initial corpus (62,441 and 66,738).

Unlike for the overall coverage results, Clang-Fuzzer performs
significantly worse than GrayC here, because it mostly generates
statically-invalid programs that are rejected by the front-end. For
similar reasons, the coverage difference between GrayC configura-
tions and the rest of the fuzzers (RegExpMutator and PolyGlot)
is more pronounced.

5.4 Bug Finding

To better understand the bug finding abilities of each tool, we
used the sets of programs gathered via our 24 h fuzzing runs to
test LLVM-12 and GCC-12 with optimisation levels -O0, -O1, -O2,
-O3 and -Os, and Frama-C-24 on Ubuntu 18.04 LTS x86_64.8 We
imposed a per-program timeout of 45 s for compilation and 200 s
for Frama-C analysis.

We used the following process to de-duplicate the crashes trig-
gered by these programs, to identify a set of unique bugs discovered
by each fuzzing tool. First, we bucketed the crashes based on error
messages printed by the compiler/analyser, e.g. “internal compiler
error: tree check: expected array_type”. We then searched the bug
trackers of LLVM, GCC and Frama-C to look for an existing bug
report corresponding to each bucket. Where we could find no re-
lated report, we checked whether the crash still manifested with
the latest version of the compiler/analyser. This was the case for
all but one crash. In these cases, we filed a new bug report and
awaited feedback from developers. In a few cases, crashes that ap-
peared to be due to distinct bugs (based on bucketing) turned out
(according to developer feedback) to be due to the same underly-
ing bug. One issue we reported to Frama-C was closed as “won’t
fix”; we discarded crashes corresponding to this bug from further
consideration. All other bugs were confirmed by developers. Our
complete set of unique bugs comprises the bugs we found were
already reported, plus the new bugs we reported (excluding the one
that was closed as “won’t fix”), plus the remaining bug that must
have been independently fixed.

Results. Table 6 summarises the number of distinct middle-end
and front-end bugs found by each fuzzing tool (none of the bugs

8The raw data is in our artifact [1], in Evaluation/EVALUATION-VIA-CONTROLLED-
EXPERIMENTS/Bug-finding-trails.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ISSTA 2023, 17-21 July, 2023, Seattle, USA Karine Even-Mendoza, Arindam Sharma, Alastair Donaldson, and Cristian Cadar

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 6: Confirmed unique bugs found by each tool during

24 h of fuzzing (union over 10 repetitions) in the middle- and

front-end components.

Tool Component
Fix

Rate

Bug Report

References

Middle Front

GrayC-aggressive 6 - 100% [20, 29, 36, 37, 39, 45]
GrayC-No-Cov-Guidance 4 - 100% [29, 37, 39, 45]
GrayC-conservative 2 - 100% [29, 45]
RegExpMutator 2 1 67% [28, 29, 33]
Clang-Fuzzer 1 4 60% [28, 33, 46, 47, 65]
PolyGlot - 1 0% Not reproducible
Csmith - - 0% None
Grammarinator - - 0% None
GrayC-Fragments-Fuzzing - - 0% None

found were classified as back-end bugs). GrayC-aggressive is the
most successful at finding middle-end bugs, with GrayC-No-Cov-
Guidance and GrayC-conservative also succeeding at finding such
bugs. The middle-end bugs found by Clang-Fuzzer and RegExp-
Mutator are bugs in the analysis component of Frama-C; these
tools did not find any middle-end compiler bugs. The other fuzzing
tools either found no bugs, or only front-end bugs.

In response to one of the front-end crashes in GCC found by both
RegExpMutator and Clang-Fuzzer, triggered by statically-invalid
programs, the developers responded: “fuzzing source is going to turn
up a lot of error-recovery cases - while somewhat interesting they
will inevitably be [a] very low priority since GCC has mechanisms to
present the user with a nicer error message..." [46]. In LLVM, Clang-
Fuzzer identified an incomplete program that led to a compiler hang
and PolyGlot found a statically-invalid program that triggered a
front-end ICE when parsing array types.

The low fix rate associated with front-end bugs (Table 6, “Fix
Rate” column), the negative remarks and lack of action in relation
to most of these somewhat pathological bugs, which are triggered
by statically-invalid programs, supports our hypothesis that for
greybox fuzzing to work well in the domain of optimising compilers,
mutation operators that yield statically-valid programs, such as
those incorporated in GrayC, are essential.

Csmith, Grammarinator and GrayC-Fragments-Fuzzing
found no bugs during the controlled experiment. As discussed in
§4, we did not find any bugs during a long-running testing cam-
paign using Csmith; hence, it is unsurprising that Csmith did not
uncover any bugs during this controlled experiment. We note that
Frama-C has been extensively tested using Csmith in the past [16].
Grammarinator detected no bugs, probably due to its extremely
low compilation rate and the fact the mature ahead-of-time compil-
ers’ front-ends have already been heavily tested. Similarly, GrayC-
Fragments-Fuzzing’s poor coverage delta (from the initial corpus)
in both LLVM and GCC can explain these results.

6 RELATEDWORK

As discussed in §1, randomised testing techniques have been suc-
cessful in finding bugs in compilers for a range of languages, with
a recent major focus on C (e.g. [61, 77, 97]), but also on other

languages such as OpenCL [63], OpenGL [17], SQL [87] and Ver-
ilog [55]. These techniques mainly work by cross-checking multiple
compilers (e.g. [55, 63, 97], a form of differential testing [52, 72], or
checking expected equivalences between programs (e.g. [17, 61]),
a form of metamorphic testing [10, 88]. We refer the reader to a
recent survey for an overview of state-of-the-art techniques [9].
The main difference between these existing works and ours is that
GrayC employs greybox fuzzing.

In §1 we have already discussed mutation-based fuzzing tech-
niques in the context of dynamic languages such as JavaScript,
particularly the pioneering work on LangFuzz [57] and more re-
cent work on Superion [96] and Nautilus [2]. The recent PolyGlot
technique [12] caters for generic language processor fuzzing, and is
applicable to both dynamic and static languages, including C. Our
evaluation against a variant of GrayC resembling LangFuzz (since
the LangFuzz tool is unavailable) and against PolyGlot demon-
strates the advantages of our approach.

A similar language-agnostic work is on “no-fuss fuzzing” of com-
pilers [53], which investigates applying AFL-based greybox fuzzing
to compilers for a number of smart contract languages and the
Zig programming language [98]. Instead of building per-language
custom mutators, this work investigates using regular expression
based mutation, based on (a partial re-implementation of) the Uni-
versal Mutator tool [51], and mutation based on approximate
parsing of input programs using simple features common to many
languages, such as balanced parentheses [95]. The authors of [53]
remark that their approach is geared towards languages that aim
to be total, so that the compiler should behave gracefully for any
input, and they explicitly comment that such approaches are less
likely to be useful in the context of C/C++ compilers. Our findings
in §5.4, based on experiments using a Universal Mutator-based
LibFuzzer custom mutator, confirm this.

GrayC builds on the (very basic) Clang-Fuzzer tool [13], which
provides a fuzz target for Clang and uses LibFuzzer’s default byte-
level mutators. Our experimental results showed that, due to the
naivety of byte-level mutators, Clang-Fuzzer is ineffective at find-
ing deep compiler bugs. We attempted to compare with Clang-
Proto-Fuzzer [14], an extension of Clang-Fuzzer that features
partially semantic-aware mutators based on a protobuf description
of a fragment of C++, but found that this project is no longer main-
tained and is not currently in a usable state. A presentation on the
work already reported that developers have not been responsive to
the bugs that it found (see §1).

An approach to differential testing of Java Virtual Machine (JVM)
implementations also takes a coverage-guided approach [11]. Un-
like our work, this approach does not focus on mutations that
produce valid programs; in fact, the focus is on looking for discrep-
ancies where one JVM accepts a class file, while another rejects it
as being malformed.

7 CONCLUSION AND FUTUREWORK

We have presented the design of our coverage-directed compiler
fuzzing approach and its implementation, GrayC. Our evaluation
demonstrates that GrayC can achieve better coverage of the middle-
and back-end components of compiler codebases compared with

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

GrayC: Greybox Fuzzing of Compilers and Analysers for C ISSTA 2023, 17-21 July, 2023, Seattle, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

other mutation-based approaches, leading to the discovery of nu-
merous previously unknown bugs and to the contribution of new
tests to the Clang/LLVM test suite. Future work will focus on im-
proving GrayC’s facilities for potentially finding miscompilation
bugs, e.g. by augmenting GrayC with mutations inspired by partic-
ular compiler optimisations of interest, and further investigating
the balance between the conservative and aggressive modes of the
tool to ensure that our efforts to generate dynamically-valid pro-
grams do not detract too much from the ability of these programs
to exercise optimisations in depth.

8 DATA AVAILABILITY

GrayC, enhanCer and the experimental infrastructure, data, and
results are available as open source at [1].

REFERENCES

[1] GrayC artifact. Date Accessed Feb. 17th, 2023. https://doi.org/10.5281/zenodo.
7649113.

[2] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,
Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS: Fishing for Deep
Bugs with Grammars. In Proc. of the 26th Network and Distributed System Security
Symposium (NDSS’19) (San Diego, CA, USA). https://doi.org/10.14722/ndss.2019.
23412

[3] C-Reduce Bug - clang delta (found as a by-product of fuzzing). Date Confirmed
and Fixed Jan. 16, 2022. https://www.flux.utah.edu/listarchives/creduce-
bugs/msg00555.html.

[4] C-Reduce Bug - clang delta (found as a by-product of fuzzing). Date Confirmed
and Fixed Jan. 4, 2022. https://www.flux.utah.edu/listarchives/creduce-bugs/
msg00553.html.

[5] C-Reduce Bug - clang delta (found as a by-product of fuzzing). Date Confirmed
Jun. 7, 2021 and Fixed Jun. 20, 2021. https://www.flux.utah.edu/listarchives/
creduce-bugs/msg00537.html.

[6] C-Reduce Bug - clang delta (found as a by-product of fuzzing). Date Confirmed
November 2, 2022. https://www.flux.utah.edu/listarchives/creduce- bugs/
msg00563.html.

[7] C-Reduce Bug - clang delta (found as a by-product of fuzzing). Date Reported Dec.
17, 2021. https://www.flux.utah.edu/listarchives/creduce-bugs/msg00551.html.

[8] Cristian Cadar and Alastair Donaldson. 2016. Analysing the Program Analyser.
In Proc. of the 38th International Conference on Software Engineering, New Ideas
and Emerging Results (ICSE NIER’16) (Austin, TX, USA).

[9] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan
Hao, and Lu Zhang. 2020. A Survey of Compiler Testing. Comput. Surveys 53, 1
(2020), 4:1–4:36. https://doi.org/10.1145/3363562

[10] T.Y. Chen, S.C. Cheung, and S.M. Yiu. 1998. Metamorphic testing: a new approach
for generating next test cases. Technical Report HKUST-CS98-01. Hong Kong
University of Science and Technology.

[11] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-directed differential testing of JVM implementations. In Proc. of the
Conference on Programing Language Design and Implementation (PLDI’16) (Santa
Barbara, CA, USA). https://doi.org/10.1145/2908080.2908095

[12] Yongheng Chen, Rui Zhong, Hong Hu, Hangfan Zhang, Yupeng Yang, Dinghao
Wu, and Wenke Lee. 2022. One Engine to Fuzz ’em All: Generic Language
Processor Testing with Semantic Validation. In Proc. of the IEEE Symposium on
Security and Privacy (IEEE S&P’22) (San Francisco, CA, USA). https://doi.org/10.
1109/SP40001.2021.00071

[13] clangfuzzer [n. d.]. clang-fuzzer. https://github.com/llvm/llvm-project/tree/
main/clang/tools/clang-fuzzer.

[14] clangprotofuzzer [n. d.]. clang-proto-fuzzer. https://llvm.org/docs/FuzzingLLVM.
html#clang-proto-fuzzer.

[15] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Sig-
noles, and Boris Yakobowski. 2012. Frama-C: A software analysis perspective. In
Proc. of the 10th International Conference on Software Engineering and FormalMeth-
ods (SEFM’12) (Thessaloniki, Greece). https://doi.org/10.1007/s00165-014-0326-7

[16] Pascal Cuoq, Benjamin Monate, Anne Pacalet, Virgile Prevosto, John Regehr,
Boris Yakobowski, and Xuejun Yang. 2012. Testing Static Analyzers with Ran-
domly Generated Programs. In Proc. of the 4th International Conference on NASA
Formal Methods (NFM’12) (Norfolk, VA, USA).

[17] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017.
Automated Testing of Graphics Shader Compilers. Proceedings of the ACM
on Programming Languages (PACMPL) 1, OOPSLA (2017), 93:1–93:29. https:
//doi.org/10.1145/3133917

[18] Frama-C Bug - Eva plugin. Date Confirmed Mar. 13, 2022 and Closed Jul. 11,
2022. https://git.frama-c.com/pub/frama-c/-/issues/2595.

[19] Frama-C Bug - Eva plugin. Date Confirmed May 10, 2022 and Fixed Jun. 10, 2022.
https://git.frama-c.com/pub/frama-c/-/issues/2610.

[20] Frama-C Bug - Eva plugin. Date Confirmed Nov. 8, 2021 and Fixed Sept. 15, 2022.
https://git.frama-c.com/pub/frama-c/-/issues/2585.

[21] Frama-C Bug - Eva plugin, kernel, abstract interpretation. Date Confirmed and
Fixed Jun. 10, 2021. https://git.frama-c.com/pub/frama-c/-/issues/2563.

[22] Frama-C Bug - Front-end. Date Confirmed Oct. 14, 2021 and Date Fixed Dec. 3,
2021. https://git.frama-c.com/pub/frama-c/-/issues/2576.

[23] Frama-C Bug - Front-end (found as a by-product of fuzzing). Date Confirmed
May 28, 2022 and Fixed Oct. 20, 2021. https://git.frama-c.com/pub/frama-c/-
/issues/2559.

[24] Frama-C Bug - Front-end (found as a by-product of fuzzing). Date Confirmed
Sept. 14, 2021 and Fixed Jul. 11, 2022. https://git.frama-c.com/pub/frama-c/-
/issues/2573.

[25] Frama-C Bug - Front-end (found as a by-product of fuzzing). Date Confirmed
Sept. 16, 2021 and Fixed Oct. 20, 2021. https://git.frama-c.com/pub/frama-c/-
/issues/2574.

[26] Frama-C Bug - Kernel. Date Confirmed Apr. 20, 2021 and Fixed Apr. 30, 2021.
https://git.frama-c.com/pub/frama-c/-/issues/2551.

[27] Frama-C Bug - Kernel. Date Confirmed Apr. 6, 2021 and Fixed Oct. 13, 2021.
https://git.frama-c.com/pub/frama-c/-/issues/2550.

[28] Frama-C Bug - kernel. Date Confirmed Jan. 11, 2022 and Fixed Jul. 11, 2022.
https://git.frama-c.com/pub/frama-c/-/issues/2592.

[29] Frama-C Bug - kernel, abstract interpretation. Date Confirmed and Fixed Jan. 24,
2022. https://git.frama-c.com/pub/frama-c/-/issues/2588.

[30] Frama-C Bug - kernel, abstract interpretation. Date Confirmed May 18, 2021 and
Fixed May 21, 2021. https://git.frama-c.com/pub/frama-c/-/issues/2556.

[31] Frama-C Bug - kernel, Front-end. Date Confirmed Jan. 10, 2022 and Fixed Feb. 9,
2022. https://git.frama-c.com/pub/frama-c/-/issues/2590.

[32] Frama-C Bug - Parsing, EVA-plugin. Date Confirmed May 18, 2021 and Fixed
May 21, 2021. https://git.frama-c.com/pub/frama-c/-/issues/2555.

[33] GCC Bug. Date Reported Aug. 6, 2016. https://gcc.gnu.org/bugzilla/show_bug.
cgi?id=72825.

[34] GCC Bug - Front-end. Date Confirmed Apr. 9, 2021 and Fixed Apr. 22, 2021.
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99990.

[35] GCC Bug - Front-end. Date Confirmed Aug. 8, 2022 and Fixed Nov. 21, 2022.
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106560.

[36] GCC Bug - ipa. Date Confirmed Dec. 23, 2021 and Fixed Apr. 20, 2022. https:
//gcc.gnu.org/bugzilla/show_bug.cgi?id=103818.

[37] GCC Bug - Middle-end. Date Confirmed Dec. 22, 2021 and Fixed Jan. 24, 2022.
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=103813.

[38] GCC Bug - Middle-end. Date Confirmed May 02, 2022 and Fixed May 27, 2022.
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=104402.

[39] GCC Bug - Middle-end (reported independently before we found it). Date Con-
firmed Mar. 20, 2018 and Fixed Apr. 14, 2022. https://gcc.gnu.org/bugzilla/show_
bug.cgi?id=84964.

[40] GCC Bug - Middle-end (reported independently shortly before we found it). Date
Confirmed Nov. 18, 2022 and Fixed Nov. 19, 2022. https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=103314.

[41] GCC Bug - rtl-optimization. Date Reported Jun. 9, 2022. https://gcc.gnu.org/
bugzilla/show_bug.cgi?id=105910.

[42] GCC Bug - Tree optimization. Date Confirmed and Fixed Apr. 12, 2022. https:
//gcc.gnu.org/bugzilla/show_bug.cgi?id=105232.

[43] GCC Bug - Tree optimization. Date Confirmed and Fixed Jun. 10, 2022. https:
//gcc.gnu.org/bugzilla/show_bug.cgi?id=107170.

[44] GCC Bug - Tree optimization. Date Confirmed Dec. 23, 2021 and Fixed Jan. 5,
2022. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=103816.

[45] GCC Bug - Tree-optimization (reported independently before we found it). Date
Confirmed Jul. 27, 2021 and Fixed Mar. 23, 2022. https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=101636.

[46] GCC Bug: incomplete program (several duplicate reports exist). Date Reported
Aug. 28, 2022. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106764.

[47] GCC Bug (several related reports exist). Date Reported May 11, 2021. https:
//gcc.gnu.org/bugzilla/show_bug.cgi?id=100525.

[48] GitHub. Date Accessed December 31, 2022. Git Repository of Grammarinator.
https://github.com/renatahodovan/grammarinator.git.

[49] GitHub. Date Accessed March 23, 2022. Git Repository of gfauto. https://github.
com/google/graphicsfuzz.git.

[50] Google. 2020. AFL dictionaries. https://github.com/google/AFL/blob/master/
dictionaries/README.dictionaries.

[51] Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming Zhang.
2018. An Extensible, Regular-Expression-Based Tool for Multi-language Mutant
Generation. In Proc. of the 40th International Conference on Software Engineering
(ICSE’18) (Gothenburg, Sweden). https://doi.org/10.1145/3183440.3183485

[52] Alex Groce, Gerard J. Holzmann, and Rajeev Joshi. 2007. Randomized Differential
Testing as a Prelude to Formal Verification. In Proc. of the 29th International

11

https://doi.org/10.5281/zenodo.7649113
https://doi.org/10.5281/zenodo.7649113
https://doi.org/10.14722/ndss.2019.23412
https://doi.org/10.14722/ndss.2019.23412
https://www.flux.utah.edu/listarchives/creduce-bugs/msg00555.html
https://www.flux.utah.edu/listarchives/creduce-bugs/msg00555.html
https://www.flux.utah.edu/listarchives/creduce-bugs/msg00553.html
https://www.flux.utah.edu/listarchives/creduce-bugs/msg00553.html
https://www.flux.utah.edu/listarchives/creduce-bugs/msg00537.html
https://www.flux.utah.edu/listarchives/creduce-bugs/msg00537.html
https://www.flux.utah.edu/listarchives/creduce-bugs/msg00563.html
https://www.flux.utah.edu/listarchives/creduce-bugs/msg00563.html
https://www.flux.utah.edu/listarchives/creduce-bugs/msg00551.html
https://doi.org/10.1145/3363562
https://doi.org/10.1145/2908080.2908095
https://doi.org/10.1109/SP40001.2021.00071
https://doi.org/10.1109/SP40001.2021.00071
https://github.com/llvm/llvm-project/tree/main/clang/tools/clang-fuzzer
https://github.com/llvm/llvm-project/tree/main/clang/tools/clang-fuzzer
https://llvm.org/docs/FuzzingLLVM.html#clang-proto-fuzzer
https://llvm.org/docs/FuzzingLLVM.html#clang-proto-fuzzer
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1145/3133917
https://doi.org/10.1145/3133917
https://git.frama-c.com/pub/frama-c/-/issues/2595
https://git.frama-c.com/pub/frama-c/-/issues/2610
https://git.frama-c.com/pub/frama-c/-/issues/2585
https://git.frama-c.com/pub/frama-c/-/issues/2563
https://git.frama-c.com/pub/frama-c/-/issues/2576
https://git.frama-c.com/pub/frama-c/-/issues/2559
https://git.frama-c.com/pub/frama-c/-/issues/2559
https://git.frama-c.com/pub/frama-c/-/issues/2573
https://git.frama-c.com/pub/frama-c/-/issues/2573
https://git.frama-c.com/pub/frama-c/-/issues/2574
https://git.frama-c.com/pub/frama-c/-/issues/2574
https://git.frama-c.com/pub/frama-c/-/issues/2551
https://git.frama-c.com/pub/frama-c/-/issues/2550
https://git.frama-c.com/pub/frama-c/-/issues/2592
https://git.frama-c.com/pub/frama-c/-/issues/2588
https://git.frama-c.com/pub/frama-c/-/issues/2556
https://git.frama-c.com/pub/frama-c/-/issues/2590
https://git.frama-c.com/pub/frama-c/-/issues/2555
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72825
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72825
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99990
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106560
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=103818
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=103818
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=103813
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=104402
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84964
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84964
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=103314
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=103314
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105910
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105910
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105232
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105232
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=107170
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=107170
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=103816
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101636
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101636
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106764
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100525
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100525
https://github.com/renatahodovan/grammarinator.git
https://github.com/google/graphicsfuzz.git
https://github.com/google/graphicsfuzz.git
https://github.com/google/AFL/blob/master/dictionaries/README.dictionaries
https://github.com/google/AFL/blob/master/dictionaries/README.dictionaries
https://doi.org/10.1145/3183440.3183485

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ISSTA 2023, 17-21 July, 2023, Seattle, USA Karine Even-Mendoza, Arindam Sharma, Alastair Donaldson, and Cristian Cadar

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Conference on Software Engineering (ICSE’07) (Minneapolis, MN, USA). https:
//doi.org/10.1109/ICSE.2007.68

[53] Alex Groce, Rijnard van Tonder, Goutamkumar Tulajappa Kalburgi, and Claire Le
Goues. 2022. Making No-Fuss Compiler Fuzzing Effective. In Proc. of the 31st
International Conference on Compiler Construction (CC’22) (Seoul, Korea). https:
//doi.org/10.1145/3497776.3517765

[54] Vladimir Herdt, Daniel Große, Hoang M. Le, and Rolf Drechsler. 2019. Verifying
Instruction Set Simulators using Coverage-guided Fuzzing*. In Proc. of the 22nd
Design, Automation & Test in Europe Conference & Exhibition (DATE’19) (Florence,
Italy). IEEE, 360–365. https://doi.org/10.23919/DATE.2019.8714912

[55] Yann Herklotz and John Wickerson. 2020. Finding and Understanding Bugs
in FPGA Synthesis Tools. In Proc. of the 28th International Symposium on Field-
Programmable Gate Arrays (FPGA’20). ACM/SIGDA, 277–287. https://doi.org/10.
1145/3373087.3375310

[56] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. 2018. Grammarinator: A
Grammar-Based Open Source Fuzzer. In Proc. of the 9th ACM SIGSOFT Interna-
tional Workshop on Automating TEST Case Design, Selection, and Evaluation (A-
TEST’18) (Lake Buena Vista, FL, USA). https://doi.org/10.1145/3278186.3278193

[57] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code
Fragments. In Proc. of the 21st USENIX Security Symposium (USENIX Security’12)
(Bellevue, WA, USA).

[58] Timotej Kapus and Cristian Cadar. 2017. Automatic Testing of Symbolic Exe-
cution Engines via Program Generation and Differential Testing. In Proc. of the
32nd IEEE International Conference on Automated Software Engineering (ASE’17)
(Urbana-Champaign, IL, USA).

[59] Christian Klinger, Maria Christakis, and Valentin Wüstholz. 2019. Differen-
tially Testing Soundness and Precision of Program Analyzers. In Proc. of the
International Symposium on Software Testing and Analysis (ISSTA’19) (Beijing,
China).

[60] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proc. of the 2nd International
Symposium on Code Generation and Optimization (CGO’04) (Palo Alto, CA, USA).
https://doi.org/0.1109/CGO.2004.1281665

[61] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation via
Equivalence Modulo Inputs. In Proc. of the Conference on Programing Language
Design and Implementation (PLDI’14) (Edinburgh, UK). https://doi.org/10.1145/
2594291.2594334

[62] LibFuzzer 2022. http://llvm.org/docs/LibFuzzer.html.
[63] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson.

2015. Many-core compiler fuzzing. In Proc. of the Conference on Programing
Language Design and Implementation (PLDI’15) (Portland, OR, USA). https:
//doi.org/10.1145/2737924.2737986

[64] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random testing
for C and C++ compilers with YARPGen. In Proc. of the ACM on Programming
Languages (OOPSLA’20) (Chicago, IL, USA). https://doi.org/10.1145/3428264

[65] LLVM Bug. Date Reported May 6, 2022. https://github.com/llvm/llvm-project/
issues/55312.

[66] LLVM Bug - Arrays. Date Reported Jun. 9, 2021 and Closed Jan. 7, 2022. https:
//github.com/llvm/llvm-project/issues/49983.

[67] LLVM Bug - Clang codegen (found as a by-product of fuzzing). Date Confirmed
Jan. 15, 2022. https://github.com/llvm/llvm-project/issues/53105.

[68] LLVM Bug - compiler-rt:ubsan (found as a by-product of fuzzing). Date Con-
firmed Jan. 16, 2022. https://github.com/llvm/llvm-project/issues/51421.

[69] LLVM Bug - IR (found as a by-product of fuzzing). Date Reported Jul. 5, 2021.
https://github.com/llvm/llvm-project/issues/50332.

[70] LLVM Bug - Union declaration. Date Reported Jun. 10, 2021 and Closed Jan. 13,
2022. https://github.com/llvm/llvm-project/issues/49993.

[71] LLVM Project. Date Accessed July 21, 2022. libFuzzer – a library for coverage-
guided fuzz testing. https://llvm.org/docs/LibFuzzer.html.

[72] W. M. McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10 (1998), 100–107. Issue 1.

[73] Michal Zalewski. [n. d.]. Technical “whitepaper” for afl-fuzz. http://lcamtuf.
coredump.cx/afl/technical_details.txt.

[74] MSVC Bug - CppCompiler, Front-end. Date Confirmed May 20, 2021. https:
//developercommunity.visualstudio.com/t/internal- compiler- error-when-
compiling-program-wit/1427557.

[75] MSVC Bug - CppCompiler, Front-end. Date Confirmed May 20, 2021 and Closed
Nov. 24, 2021. https://developercommunity.visualstudio.com/t/internal-compiler-

error-when-compiling-program-wit/1427553.
[76] MSVC Bug - CppCompiler, Front-end. Date Confirmed May 20, 2021 and Fixed

Nov. 9, 2021. https://developercommunity.visualstudio.com/t/syntactically-
invalid-c-program-causes-microsoft-c/1427550.

[77] Kazuhiro Nakamura and Nagisa Ishiura. 2016. Random testing of C compilers
based on test program generation by equivalence transformation. In 2016 IEEE
Asia Pacific Conference on Circuits and Systems (APCCAS). https://doi.org/10.
1109/APCCAS.2016.7804063

[78] Phabricator-LLVM. Date Approved March 3, 2021. https://reviews.llvm.org/
D88931.

[79] Phabricator-LLVM. Date Approved October 11, 2022. https://reviews.llvm.org/
D118234.

[80] Phabricator-LLVM. Under review: date January 26, 2023. https://reviews.llvm.
org/RevisionNoAnonymous.

[81] John Regehr. 2020. The Saturation Effect in Fuzzing. https://blog.regehr.org/
archives/1796.

[82] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-case reduction for C compiler bugs. In Proc. of the Conference
on Programing Language Design and Implementation (PLDI’12) (Beijing, China).
https://doi.org/10.1145/2254064.2254104

[83] LLVM Bug - Front-end (reported independently before we found it). Date Con-
firmed Jan. 26, 2022. https://github.com/llvm/llvm-project/issues/49081.

[84] LLVM Bug - ASan (reported independently before we found it). Date Reported
Feb. 20, 2021. https://github.com/llvm/llvm-project/issues/48633.

[85] LLVM Bug - Front-end (reported independently before we found it). Date Re-
ported Jun. 26, 2021. https://github.com/llvm/llvm-project/issues/50222.

[86] LLVM Bug - Front-end (reported independently before we found it). Date Re-
ported Nov. 12, 2015 and Fixed on early 2022. https://github.com/llvm/llvm-
project/issues/25871.

[87] Manuel Rigger and Zhendong Su. 2020. Detecting Optimization Bugs in Database
Engines via Non-optimizing Reference Engine Construction. In Proc. of the
Joint Meeting of the European Software Engineering Conference and the ACM
Symposium on the Foundations of Software Engineering (ESEC/FSE’20) (Online).
https://doi.org/10.1145/3368089.3409710

[88] Sergio Segura, Gordon Fraser, Ana Sanchez, and Antonio Ruiz-Cortés. 2016. A
Survey on Metamorphic Testing. (2016).

[89] Kostya Serebryany. 2022. Personal communication.
[90] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry

Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Proc. of the
2012 USENIX Annual Technical Conference (USENIX ATC’12) (Boston, MA, USA).
https://doi.org/10.5555/2342821.2342849

[91] Kostya Serebryany, Vitaly Buka, and Matt Morehouse. 2017. Structure-aware
fuzzing for Clang and LLVM with libprotobuf-mutator. In 2017 US LLVM Devel-
opers’ Meeting. https://llvm.org/devmtg/2017-10/slides/.

[92] Kostya Serebryany, Maxim Lifantsev, Konstantin Shtoyk, Doug Kwan, and Peter
Hochschild. 2021. SiliFuzz: Fuzzing CPUs by proxy. CoRR abs/2110.11519 (2021).
arXiv:2110.11519

[93] Evgeniy Stepanov and Konstantin Serebryany. 2015. MemorySanitizer: fast
detector of uninitialized memory use in C++. In Proc. of the International Sympo-
sium on Code Generation and Optimization (CGO’15) (San Francisco, CA, USA).
https://doi.org/10.1109/CGO.2015.7054186

[94] UBSan 2017. Undefined Behavior Sanitizer. https : / /clang. llvm.org/docs/
UndefinedBehaviorSanitizer.html.

[95] Rijnard van Tonder and Claire Le Goues. 2019. Lightweight multi-language
syntax transformation with parser parser combinators. In Proc. of the Conference
on Programing Language Design and Implementation (PLDI’19) (Phoenix, AZ,
USA). https://doi.org/10.1145/3314221.3314589

[96] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-
Aware Greybox Fuzzing. In Proc. of the 41st International Conference on Software
Engineering (ICSE’19) (Montreal, Canada). https://doi.org/10.1109/ICSE.2019.
00081

[97] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-
derstanding Bugs in C Compilers. In Proc. of the Conference on Programing
Language Design and Implementation (PLDI’11) (San Jose, CA, USA). https:
//doi.org/10.1145/1993498.1993532

[98] Zig Software Foundation. Date Accessed September 1, 2022. Zig programming
language. https://ziglang.org/.

12

https://doi.org/10.1109/ICSE.2007.68
https://doi.org/10.1109/ICSE.2007.68
https://doi.org/10.1145/3497776.3517765
https://doi.org/10.1145/3497776.3517765
https://doi.org/10.23919/DATE.2019.8714912
https://doi.org/10.1145/3373087.3375310
https://doi.org/10.1145/3373087.3375310
https://doi.org/10.1145/3278186.3278193
https://doi.org/0.1109/CGO.2004.1281665
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334
http://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/3428264
https://github.com/llvm/llvm-project/issues/55312
https://github.com/llvm/llvm-project/issues/55312
https://github.com/llvm/llvm-project/issues/49983
https://github.com/llvm/llvm-project/issues/49983
https://github.com/llvm/llvm-project/issues/53105
https://github.com/llvm/llvm-project/issues/51421
https://github.com/llvm/llvm-project/issues/50332
https://github.com/llvm/llvm-project/issues/49993
https://llvm.org/docs/LibFuzzer.html
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://developercommunity.visualstudio.com/t/internal-compiler-error-when-compiling-program-wit/1427557
https://developercommunity.visualstudio.com/t/internal-compiler-error-when-compiling-program-wit/1427557
https://developercommunity.visualstudio.com/t/internal-compiler-error-when-compiling-program-wit/1427557
https://developercommunity.visualstudio.com/t/internal-compiler-error-when-compiling-program-wit/1427553
https://developercommunity.visualstudio.com/t/internal-compiler-error-when-compiling-program-wit/1427553
https://developercommunity.visualstudio.com/t/syntactically-invalid-c-program-causes-microsoft-c/1427550
https://developercommunity.visualstudio.com/t/syntactically-invalid-c-program-causes-microsoft-c/1427550
https://doi.org/10.1109/APCCAS.2016.7804063
https://doi.org/10.1109/APCCAS.2016.7804063
https://reviews.llvm.org/D88931
https://reviews.llvm.org/D88931
https://reviews.llvm.org/D118234
https://reviews.llvm.org/D118234
https://reviews.llvm.org/RevisionNoAnonymous
https://reviews.llvm.org/RevisionNoAnonymous
https://blog.regehr.org/archives/1796
https://blog.regehr.org/archives/1796
https://doi.org/10.1145/2254064.2254104
https://github.com/llvm/llvm-project/issues/49081
https://github.com/llvm/llvm-project/issues/48633
https://github.com/llvm/llvm-project/issues/50222
https://github.com/llvm/llvm-project/issues/25871
https://github.com/llvm/llvm-project/issues/25871
https://doi.org/10.1145/3368089.3409710
https://doi.org/10.5555/2342821.2342849
https://llvm.org/devmtg/2017-10/slides/
https://arxiv.org/abs/2110.11519
https://doi.org/10.1109/CGO.2015.7054186
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://doi.org/10.1145/3314221.3314589
https://doi.org/10.1109/ICSE.2019.00081
https://doi.org/10.1109/ICSE.2019.00081
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://ziglang.org/

	Abstract
	1 Introduction
	2 Background
	2.1 Compiler Bugs and Program Validity
	2.2 LibFuzzer and Clang-Fuzzer

	3 GrayC
	3.1 Custom Mutators
	3.2 enhanCer
	3.3 Implementation Details

	4 Using GrayC in the Wild
	4.1 Experimental Setup
	4.2 Bugs Found
	4.3 Compiler Test Case Contributions

	5 Controlled Experiments
	5.1 Experimental Setup
	5.2 Throughput and Static Validity Rate
	5.3 Coverage
	5.4 Bug Finding

	6 Related Work
	7 Conclusion and Future Work
	8 Data Availability
	References

