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ABSTRACT

Fuzzing of compilers and code analysers has led to a large number
of bugs being found and fixed in widely-used frameworks such as
LLVM, GCC and Frama-C. Most such fuzzing techniques have taken
a blackbox approach, with compilers and code analysers starting
to become relatively immune to such fuzzers.

We propose a coverage-directed, mutation-based approach for
fuzzing C compilers and code analysers, inspired by the success
of this type of greybox fuzzing in other application domains. The
main challenge of applying mutation-based fuzzing in this context
is that naive mutations are likely to generate programs that do not
compile. Such programs are not useful for finding deep bugs that
affect optimisation, analysis, and code generation routines.

We have designed a novel greybox fuzzer for C compilers and
analysers by: (1) developing a new set of mutations to target com-
mon C constructs, (2) controlling the aggressiveness of the mutation
activation so that generated programs mostly pass compilation, and
(3) transforming fuzzed programs so that they produce meaningful
output, allowing differential testing to be used as a test oracle, and
paving the way for fuzzer-generated programs to be integrated into
compiler and code analyser regression test suites.

We have implemented our approach in GrayC, a new open-
source LibFuzzer-based tool, and present experiments showing that
it provides more coverage on the middle- and back-end stages com-
pared to other mutation-based approaches such as Clang-Fuzzer,
fuzzing with code fragments, no-fuss fuzzing, and PolyGlot.

We have used GrayC to identify 29 confirmed compiler and
code analyser bugs: 24 previously unknown bugs (with 22 of them
already fixed in response to our reports) and 5 confirmed bugs re-
ported independently shortly before we found them. A further 4 bug
reports are under investigation. Apart from the results above, we
∗Both authors contributed equally to this research.
†A major part of this work was done as an Imperial College London employee.
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have contributed 23 simplified versions of coverage-enhancing test
cases produced by GrayC to the Clang/LLVM test suite, targeting
86 previously uncovered functions in the LLVM codebase.
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1 INTRODUCTION

Over the last decade or so, randomised compiler testing, often
termed compiler fuzzing, has seen an explosion of interest, with
compiler fuzzers leading to the finding and fixing of thousands of
bugs in C compilers such as Clang/LLVM and GCC [61, 77, 97],
as well as in compilers for other languages such as OpenCL [63],
OpenGL [17], SQL [87] and Verilog [55]. Similar efforts have been
proposed for testing code analysers [8], which led to the discov-
ery of bugs in popular frameworks such as model checkers, static
analysers and symbolic executors [16, 58, 59].

During roughly the same period, fuzzing has revolutionised the
field of software testing. However, most compiler fuzzers operate
very differently from mainstream general-purpose fuzzers, such
as AFL [73] and LibFuzzer [71], which are coverage-directed and
mutation-based. Taking inspiration from genetic algorithms, such
general-purpose fuzzers synthesise new inputs by mutating exist-
ing ones, and use coverage feedback as a fitness function: inputs
that yield new coverage of the software under test are prioritised
for further mutation. Due to their use of coverage information,
these fuzzers are often termed greybox. Such fuzzers are equipped
with built-in mutation operators that are very simple, involving
byte-level transformations such as adding, removing or changing in-
dividual bytes. In contrast, most compiler and code analyser fuzzers
either generate programs from scratch (e.g. [16, 64, 97]) or transform
existing programs (e.g. [17, 61]). In either case, they are blackbox:
their execution is not guided by information about coverage of the
compiler codebase.
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The main reason greybox fuzzing is hard to apply effectively to
compilers,1 particularly those for statically-typed languages with
extensive undefined behaviour (UB) such as C, is that naive codemu-
tations tend to produce invalid programs: programs that either do
not conform to the language’s syntax, disobey the language’s static
semantic rules (e.g. calling functions with inappropriately-typed
arguments in C), or trigger UB when run (e.g. a buffer overflow).
Starting with a valid input that exercises a compiler all the way from
lexing to analysis and/or code generation, naive greybox fuzzing
(using byte-level mutations) is likely to produce a large stream of
invalid programs that are rejected by the compiler’s lexer, parser
or type checker, or trigger UB at runtime. Such invalid inputs can
help find edge cases where the compiler crashes instead of grace-
fully rejecting a malformed program, but cannot find deeper errors
in the compiler’s middle- and back-ends, where the vast majority
of optimisations are performed (the middle-end being responsible
for platform-independent optimisations and the back-end for code
generation and optimisations specific to the target architecture).

In contrast, blackbox grammar-based compiler fuzzers can be
designed to emit valid programs by construction, allowing them
to detect middle- and back-end bugs, usually in conjunction with
differential testing [72]. But despite these appealing properties,
blackbox compiler fuzzers are prone to problems of immunity: once
they have enabled the finding and fixing of a substantial number
of bugs in a compiler, they tend to be unable to generate programs
that trigger further bugs [81]. Lacking feedback, the fuzzers have
no way of adapting their generation strategy to find more bugs.

This leads to an interesting research challenge which we address
in this paper: how to devise greybox compiler fuzzing techniques
that yield valid programs capable of detecting deep compiler bugs,
and that can enhance the regression test suites of mature compilers.

Mutation-based approaches have been very successful in the
context of dynamic languages such as JavaScript: LangFuzzer [57]
is a pioneering work in this space which found critical bugs in
JavaScript and PHP interpreters, and more recent efforts, such as Su-
perion [96] for JavaScript and XML and Nautilus [2] for JavaScript,
Lua, PHP and Ruby, have added coverage-guidance. However, code
mutations are less likely to result in dynamically-invalid programs
for dynamic languages, and front-end bugs are often equally valu-
able in the context of web security.

For statically-typed languages like C, preliminary steps towards
mutations that have some chance of preserving static validity in-
clude the use of keyword dictionaries [50, 71], protobuf descrip-
tions of programming language structure [91], and regular expres-
sions and partial grammars for recognising common programming
language-like features [51, 53, 95]. However, such methods still
produce a high rate of invalid programs. For example, the LLVM
project’s Clang-Proto-Fuzzer tool, which relies on a protobuf
description of a fragment of C/C++, was abandoned because it only
found obscure front-end crash bugs that developers were reluctant
to fix [89]; a presentation on the work reports “Bugs are being fixed
too slow (if at all)” [91]. As another example, a recent study using
mutations that exploit knowledge of typical language features de-
cided not to focus on C/C++, with the authors stating: “code that

1For succinctness, we will use the term compilers to refer to both compilers and code
analysers, unless we make the distinction explicit.

crashes a C or C++ compiler, but that includes extensive undefined
behaviour may well be ignored by developers” [53]. Indeed, we re-
ported several front-end crash bugs triggered by statically-invalid
programs produced via naive mutation methods, and found they
were not received positively by developers, either being closed as
“won’t fix”, or ignored (see §5.4). A recent tool, PolyGlot [12], for
generic language processor testing pays special attention to im-
proving the likelihood that the test programs it creates are valid, yet
achieves only limited coverage on the middle- and back-end com-
piler components, restricting its ability to find bugs in C compilers
mainly to front-end crashes (see §5 for more details).

Our contribution. In an attempt to get the best of both worlds—
the validity guarantees associated with grammar-based blackbox
compiler fuzzing and the targeted search offered by a greybox
approach—we present GrayC,2 a greybox fuzzer for C compilers.
The key innovation of GrayC is the use of semantic-aware muta-
tion operators for statically-typed languages with extensive UB:
mutation operators that preserve validity of the input program with
high probability.3 These mutations work at the abstract syntax tree
(AST) level, and include mutations that modify individual programs,
as well as mutations that combine elements of multiple programs.
The programs generated via semantic-aware mutation exercise the
compiler codebase end-to-end, and can be used to find crashes deep
in optimisation passes.

Rather than directly applying coverage-directed fuzzing to each
compiler of interest, GrayC takes a “fuzzing by proxy” approach,
akin to that taken in recent work on fuzzing instruction set simula-
tors [54] and deployed CPUs [92].We run coverage-directed fuzzing
with GrayC’s semantic-aware mutator on a particular compiler
under test (compiled with suitable coverage instrumentation), col-
lecting all the test programs that are considered during the fuzzing
process. We then feed this output corpus to a range of different com-
pilers under test, operating at various optimisation levels, to see
whether they induce compiler crashes. This workflow, summarised
in Figure 1, has the advantage that only the compiler used for gen-
eration of the output corpus needs to be compiled in a manner
suitable for greybox fuzzing. The compilers and analysers subse-
quently tested using the output corpus can be arbitrary binaries,
allowing closed-source compilers (e.g.MSVC) and tools not written
in C/C++, to be tested (e.g. Frama-C is written in OCaml).

Overview of results. We have used GrayC (at various stages of
development) to test the Clang, GCC andMSVC compilers and the
Frama-C code analyser. This led to us finding 29 confirmed bugs: 24
previously unknown compiler and analyser bugs, out of which 22
have already been fixed in response to our reports and a further 5
bugs that turned out to have already been reported by other users.4
Importantly, of these 29 bugs, 21 are middle- or back-end bugs that
can only be triggered by valid programs. It is due to a very high
percentage of the programs that GrayC generates being valid that
our technique was able to find these bugs; this is in contrast to
other techniques that apply mutation-based fuzzing to C compilers.

2Pronounced “Grace”, GrayC is a pun on greybox fuzzing for C, at the same time
paying homage to compiler pioneer Grace Hopper.
3As discussed further in §3.1, there are strong practical reasons for tolerating a suitably
low rate of statically-invalid programs.
4Our reports of a further 4 bugs found by GrayC are waiting investigation.
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Figure 1: Overview of greybox fuzzing with GrayC

In parallel, we also performed extensive testing using the state-
of-the-art blackbox fuzzer Csmith [97], and were unable to find
any of the bugs that GrayC could find. This provides evidence that
greybox compiler fuzzing has the potential to find bugs in compilers
that have already been subjected to extensive blackbox fuzzing.

We also present a set of controlled experiments comparing the
semantic-aware mutators of GrayC with naive byte-level muta-
tion (via Clang-Fuzzer [13]), grammar-based fuzzing (via Gram-
marinator [56]), fragment-based fuzzing (via a tool similar to
LangFuzz [57]), regular expression-based mutation (via Universal
Mutator [51]), and a greybox approach for generic language pro-
cessor testing (via PolyGlot [12]). Our results show that GrayC
provides better coverage of middle- and back-end compiler compo-
nents, and is able to find crashes in these components that are not
found when the other methods are used.

Finally, we have demonstrated how GrayC can have impact
beyond just finding bugs by using it as the basis for contributing
new tests to the LLVM test suite. By combining GrayC with an off-
the-shelf test case reducer, and designing a novel tool, enhanCer,
to equip reduced programs with a test oracle, we produced a set of
small, well-defined programs that achieve coverage of particular
LLVM optimisations that is not achieved by the LLVM test suite. We
contributed these test cases back to the LLVM project to improve
the coverage of regression testing, and the developers reviewed and
accepted the test cases.

In summary, our main contributions are:

(1) A technique for coverage-directed mutation-based greybox
compiler fuzzing that yields valid programs thanks to semantic-
aware mutators specially designed for statically-based lan-
guages with extensive undefined behaviour;

(2) The implementation of this idea in a greybox compiler fuzzer,
GrayC, which uses fuzzing by proxy to generate programs that
can be used as inputs to a range of compilers under test;

(3) A large testing campaign and experimental evaluation showing
that GrayC finds more bugs and achieves higher coverage than
other mutation-based approaches, and can generate programs
that enhance the regression test suites of mature compilers.

2 BACKGROUND

2.1 Compiler Bugs and Program Validity

Our primary focus in this work is on crash bugs, where the com-
piler aborts unexpectedly. Specifically, we are interested in finding
crashes deep in a compiler’s codebase (e.g. in the optimizer or code
generator). For this purpose, we distinguish between statically-
valid and statically-invalid programs. Essentially, statically-valid
programs are those that should be expected to compile according
to the language specification, without reference to any particular
compiler. Therefore, statically-valid programs are more likely to
exercise deep parts of the compiler than statically-invalid programs.

We also investigate extending GrayC to allow generation of
dynamically-valid deterministic programs: these produce a well-
defined deterministic result when executed and do not trigger un-
defined behaviour (such as an out-of-bounds access) at runtime.
Dynamically-valid programs can be used to find miscompilations
via differential testing and enhance compiler tests suites.

2.2 LibFuzzer and Clang-Fuzzer

LibFuzzer [62] is a greybox in-process mutation-based fuzzing
engine. It treats test cases as sequences of bytes, and the user must
write a fuzz target function that uses a given byte sequence to
invoke their system under test (SUT) in a meaningful way. Lib-
Fuzzer is fully integrated with the LLVM [60] infrastructure; using
it requires using a special compilation flag.

Starting from a user-provided initial corpus, LibFuzzer produces
new tests by mutating existing ones. By default, this is achieved
using a set of byte-level mutations. If a mutated test results in new
coverage, it is fed back into the corpus for future mutation. This
process runs iteratively while the engine keeps track of any tests
that cause the SUT to crash.

LibFuzzer provides an API that allows a custom mutator to be
provided: a function that accepts an existing input as a sequence of
bytes, and returns a mutated version of the input. The function can
use domain-specific logic to interpret the input sequence of bytes
according to the application domain of tye system under test, and
thus perform a semantically-meaningful mutation.

Clang-Fuzzer [13] allows fuzzing of the Clang compiler using
LibFuzzer, by providing a fuzz target that interprets a sequence
of bytes as text and feeds this text to Clang. Clang-Fuzzer uses
LibFuzzer’s built-in byte-level mutations, so the mutated programs
that it generates are very unlikely to be statically-valid C/C++ pro-
grams. As described in detail in §3, our GrayC tool augments the
Clang-Fuzzer fuzz target with a custom mutator that parses an
input into an AST and performs semantic-aware, AST-level muta-
tions, returning the mutated program as a string. This leads to a
high rate of statically-and dynamically-valid programs.

3 GRAYC

The GrayC approach involves using mutation-based fuzzing as
a program generation technique, and then using the generated
programs to test compilers and analysers. The high-level flow of
GrayC is sketched in Figure 1. Starting with an initial corpus of
valid test programs, GrayC uses LibFuzzer to perform coverage-
guided mutation-based fuzzing ( 1 in Figure 1). The fuzz target of
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Clang-Fuzzer is used to exercise the Clang/LLVM codebase, and
our semantic-aware mutators are provided as LibFuzzer custom
mutators. Unconventionally, the purpose of this stage is not to find
bugs, but rather to generate a large corpus of diverse test programs,
which are saved to an external directory, called the fuzzed corpus
( 2 ). The programs in the fuzzed corpus can then be used for deep
testing of a range of off-the-shelf compilers (at various optimisation
levels) and code analysers ( 3 ), which do not need to be compiled
in a special manner; in fact they may be closed-source. The idea of
this “fuzzing by proxy” approach is that coverage-guided fuzzing
on a particular compiler of interest should lead to programs that
are interesting and diverse, and thus useful for testing C compilers
and analysis tools in general. This is supported by the bugs we have
found using GrayC, affecting a range of targets (§4).

We first discuss the custommutators employed byGrayC, whose
key objective is to produce statically-valid programs (§3.1). We
then describe our enhanCer tool that allows GrayC to be used for
differential testing and compiler test suite augmentation (§3.2), and
describe pertinent implementation details (§3.3).

3.1 Custom Mutators

Our custom mutators are semantic-aware, which enables them
to generate statically-valid programs, and their level of aggres-
siveness—essentially the likelihood of generating a statically-valid
program—is configurable, allowing them to target a variety of com-
piler components. We start by presenting the main semantic-aware
mutations that we designed, and then discuss why and how we
control aggressiveness.

GrayC’s custom mutator receives—from LibFuzzer—a program
to transform. It parses the program into an AST, and then selects,
uniformly at random, a transformation and an appropriate AST
node at which to apply the transformation. The transformations are
summarised in Table 1, and are categorised into mutations, which
take individual programs as input, and recombiners, which work
on two programs, the second program selected from the corpus
uniformly at random.

Mutators (lines 1–11 in Table 1). A mutator takes as input a pro-
gram and transforms it based on a certain template. GrayC’s muta-
tors can add new statements, as well as edit or delete expressions
and statements. For instance, Inject-Control-Flow adds a break,
continue or return statement, Replace-By-Constant replaces
an arithmetic expression by a constant (e.g. a=(a+1)%7; to a=6;)
and Change-Type changes the type of an expression (via explicit
casting).

Using two examples, we illustrate how Delete-Statement
works in isolation, and together with Duplicate-Statement.

Example 1. Consider this simple example:
1 for (int i=0; i<5; i++) {

2 i+=2; printf("itr: \%d", i);

3 }

The Delete-Statement mutator acting on the for-loop block
can either remove a statement:

1 for (int i=0; i<5; i++) {

2 printf("itr: \%d", i);

3 }

or replace a block with the empty statement (via two consecutive
applications):

1 for (int i=0; i<5; i++) {

2 ;

3 }

Example 2. GrayC applies a series of mutators to the original
program on the left (a program from the Clang/LLVM test suite)
to synthesise the program on the right:

1 typedef struct {

2 unsigned w[3];

3 } Y;

4 Y arr[32];

5 int main() {

6 int i=0;

7 unsigned x=0;

8 for (i=0; i<32; ++i)
9 arr[i].w[1]=i == 1;

10 for (i=0; i<32; ++i)
11 x+=arr[1].w[1];

12 if (x!=32)

13 abort();

14 return 0;

15 }

1 typedef struct {

2 unsigned w[3];

3 } Y;

4 Y arr[32];

5 int main() {

6 int i = 0;

7 unsigned x = 0;

8 for(i=0; i<32; ++i)

9 for(i=0; i<32; ++i)
10 x+=arr[1].w[1];

11 x+=arr[1].w[1];

12 if (x!=32)

13 abort ();

14 return 0;

15 }

To do so, GrayC invokes: (i) Delete-Statement, to remove
the inner statement of the first loop (in blue: left-program, line 9),
and (ii) Duplicate-Statement, to duplicate the inner statement of
the second loop (in green: left-program, line 11 to right-program,
lines 10–11). The two separate loops in the original program have
now converted to a nested loop in the fuzzed program due to the
deletion of line 9 via two different Delete-Statement mutations:
replacing the inner statement with the empty statement, and then
also removing the empty statement. The Duplicate-Statement
mutation can occur before, in-between or after the two Delete-
Statement mutations.

Recombiners (lines 12–13 in Table 1). A recombiner takes as input
two programs—a source program and a destination program—and
transforms the destination program by adding parts of the source
program. To allow for increased code diversity, the source programs
can be picked from a larger set compared with the original corpus
provided to LibFuzzer. GrayC’s recombiners can then replace
the body of a function with the body of another function from a
different program, or combine the bodies of two functions from
two different programs. We use a careful renaming scheme to work
around name clashes between variables and functions in the source
and destination programs.

Example 3. We illustrate how Combine-Functions recombines
the following two programs: 𝑃blue (the destination program) and
𝑃green (the source program). We mark the lines used in the output
programs in blue if they originate from 𝑃blue , and in green if they
originate from 𝑃green.

Program 𝑃𝑏𝑙𝑢𝑒 :
1 int dest_func(int x_dest

, int y_dest){
2 int b_dest=x_dest*y_dest;

3 b_dest=b_dest+5;

4 return b_dest;

5 }

6 int main() {

7 int ret=dest_func(6,7);

8 return ret;

9 }

+

Program 𝑃𝑔𝑟𝑒𝑒𝑛 :
1 int a=0;

2 int source_func(int

j_src , int k_src){
3 int m_src=j_src+k_src;

4 return m_src;

5 }

6 int main() {

7 int ret=source_func(2,3);

8 return a;

9 }

4
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Table 1: GrayC’s code mutators and recombiners.

# Type Construct Short Name Description

1 Duplicate-Statement Duplicate a statement within the same block excluding variable declarations.

2 Mutator Statement Delete-Statement Delete a non-declaration statement; randomly decide whether to keep the semicolon.

3 Inject-Control-Flow Add break, continue or return; when in a loop, add conditional code based on an auxiliary loop counter so that
the statement only executes on certain iterations.

4 Delete-Expression Delete sub-expressions from a given expression in a corpus program.

5 Expand-Expression Expand sub-expression with other sub-expressions from the corpus program; e.g. in an assignment or loop
condition.

6 Replace-By-Constant Replace an expression with a random valid constant expression of the same data type; e.g. replace a condition in
a while to 0, making its body dead code.

7 Mutator Expression Flip-Bit Flip a bit in a constant expression.

8 Replace-Digit Similar to Flip-Bit but on the number’s decimal representation: either flip the sign or change a single digit.

9 Change-Type Change the type of an expression (short, long, unsigned, float, etc.).

10 Replace-Unary-Operator Replace unary operator with an assignment using the same variable; e.g. replace i++ in a for statement to i=i+2

or i=i-3.
11 Flip-Operator Replace one operator with another (arithmetic operators).

12 Recombiner Function Replace-Function-Body Replace the body of a function with that of another function with the same number of arguments.

13 Combine-Functions Combine the body of a function with another function with the same number of arguments, either by concate-
nating bodies or interleaving their statements.

The recombiner merges the body of source_func in 𝑃green into
the body of dest_func in 𝑃blue . There are several options to merge
the bodies of these functions. The programs 𝑃1 and 𝑃2 below are two
of the possible programs that Combine-Functions could output.
Output program 𝑃1:
1 int dest_func(int x_dest

, int y_dest){
2 int j_src=x_dest;

3 int k_src=y_dest;

4 int m_src=j_src+k_src;

5 int b_dest=x_dest+y_dest;

6 b_dest=b_dest+5;

7 return b_dest;

8 }

9 int main() {

10 int ret=dest_func(6,7);

11 return ret;

12 }

Output program 𝑃2:
1 int dest_func(int x_dest

, int y_dest){
2 int j_src=x_dest;

3 int k_src=y_dest;

4 int m_src=j_src+k_src;

5 int b_dest=x_dest+y_dest;

6 b_dest=b_dest+5;

7 return m_src;

8 }

9 int main() {

10 int ret=dest_func(6,7);

11 return ret;

12 }

Combine-Functions combines functions with the same number
of arguments, and the first thing it does is to initialise the vari-
ables corresponding to the function arguments of the source func-
tion with the values of the arguments in the destination function
(lines 2–4 in 𝑃1 and 𝑃2). The return statement is handled separately:
Combine-Functions randomly selects one of the two return values
(𝑃1 uses the return statement from 𝑃blue , while 𝑃2 that from 𝑃green)
and adds it as a single return statement of the merged function.

Aggressiveness. GrayC aims to generate programs that are likely
to be statically-valid, and that have a reasonable chance of also
being dynamically-valid. While such programs are needed to reach
deeper parts of a compiler, generating only valid programs may
miss interesting corner cases. Therefore, GrayC has two modes: a
conservative mode that generates dynamically-valid programs with
high probability, and an aggressive mode that has a lower probabil-
ity of generating dynamically-valid programs, and also generates
statically-invalid programs at a higher rate (though still low) com-
pared with the conservative mode. We use both modes for crash

testing, but only the conservative mode for finding miscompilations
and augmenting compiler test suites.

At a technical level, the main difference between the two modes
is that in the conservative mode, GrayC applies additional checks
that attempt to eliminate undefined behaviour. We summarise the
extra checks performed in conservative mode in Table 2. For ex-
ample, the Replace-By-Constant mutator adds checks to avoid
undefined behaviour based on the constant’s location, e.g. the re-
placed constant should be non-negative if used as an array index. As
another example, the Combine-Functions mutator combines func-
tions only if their signatures are identical (while in the aggressive
mode, it will attempt to employ casting to resolve differences, which
has the potential to yield statically-invalid programs). To compen-
sate for the recombiner restrictions, the conservative mode adds a
mutator which pulls blocks from Csmith programs, as detailed in
the table.

3.2 enhanCer

To make the generated programs suitable for differential testing
and compiler test suite augmentation, we designed a new tool,
enhanCer, that transforms these programs to produce a single
output. Inspired by the way Csmith [97] programs are designed,
the single output is a hash of all the global variables in the program.

Furthermore, in the context of differential testing, enhanCer
performs the following two tasks: (1) it adds to the global hash value
all the strings printed by the program during execution, and (2) it
replaces any termination function, such as abort and exit, by an
operation that adds to the global hash a unique string representing
the termination function, and then replaces the operation by a
return statement. The reason for which we eliminate termination
functions is to ensure that the global hash is always printed at the
end of a program execution. (Note that Csmith programs never
contains calls to such functions by design, but in our case we start
from existing programs that might contain them.)
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Table 2: GrayC’s extra checks and extra mutator in conservative mode.

# Short Name Checks in Conservative Mode

1 Delete-Expression, Expand-Expression Avoid selecting expressions using pointers; limit size of expressions

2 Replace-By-Constant Replace expression with constant only when data types match exactly. Attempt to avoid invalid memory accesses and
allocation, e.g. do not replace an array subscript with a negative constant.

3 Flip-Bit, Replace-Digit Similar to the extra checks for Replace-By-Constant, attempting to avoid invalid memory accesses and allocations.

4 Change-Type Limit casting of integer type to another integer type only, and similarly for floating-point types.

5 Combine-Functions, Replace-Function-Body Restrict to functions that are consistent in their return and parameters data types without the need for additional casting.
Restrict the second selected function to use no global variables.

6 Add-Csmith-Block To compensate for the restrictions of recombiners above, we add a mutator that generates a Csmith program with a
single function and pulls a block from it into a corpus program. We configure Csmith to limit the expression complexity
and non-flat C structure generation, use no global variables or with user-defined types and no memory allocations.

Even when GrayC’s conservative mode is used, it is possible for
the generated programs to be dynamically-invalid. Furthermore, it
is possible that eliminating termination functions might introduce
undefined behaviour to programs that were previously dynamically-
valid. enhanCer invokes sanitizers to detect and discard such pro-
grams so that they do not confound differential testing.

3.3 Implementation Details

Our implementation is divided into several parts: GrayC, en-
hanCer, and a set of Bash and Python scripts for crash and dif-
ferential testing. We make use of LLVM 12.0.1, with our mutators
implemented on top of Clang-Fuzzer/LibTooling.

To detect undefined behaviour, enhanCer invokes Frama-
C [15], an open-source industrial-strength framework dedicated
to the formal analysis of C programs, and the Clang/LLVM com-
piler sanitizers: AddressSanitizer [90], a dynamic analysis tool
to detect invalid memory accesses,MemorySanitizer [93] to de-
tect uninitialized memory accesses, and UndefinedBehaviorSani-
tizer [94] to detect a wide range of undefined behaviours.

4 USING GRAYC IN THEWILD

We divide our evaluation into two parts: a long-term fuzzing cam-
paign used to find compiler and analyser bugs (presented in this
section) and a series of controlled experiments designed to better
understand the strengths and weaknesses of GrayC compared to
other approaches (presented in §5).

During the development of GrayC, we applied it to several
versions of popular compilers and code analysers. Our fuzzing cam-
paigns (§4.1) led to the discovery of 29 confirmed bugs (§4.2), with
another 4 bug reports still under investigation, and the contribution
of 23 programs to the Clang/LLVM test suite (§4.3).

In parallel, we applied Csmith [97] continuously over a period of
six months to look for bugs in GCC-11 and Clang-13 on x86_64. It
did not find any bugs, adding weight to our hypothesis that compil-
ers eventually become immune to blackbox fuzzing approaches [81].

Our artifact [1] (see the Evaluation/USING-GRAYC-IN-THE-WILD

folder) contains data associated with these experiments, including
anonymised bug reports and relevant logs.

4.1 Experimental Setup

We summarise below how we approached our open-ended fuzzing
campaigns.

Table 3: Compiler and code analyser bugs found by GrayC.

Previously-unknown Independently-reported

Confirmed Fixed Confirmed Fixed

GCC 8 8 3 3
LLVM 2 2 1 0
MSVC 3 1 0 0
Frama-C 11 11 1 1

TOTAL 24 22 5 4

Initial Corpus. GrayC’s initial corpus was a collection of single-
file programs from various sources: automatically-generated pro-
grams, compiler test suites, and C tutorials. In addition, we used
Csmith to create a set of automatically-generated programs. We
minimised the set of Csmith programs using C-Reduce [82] to
have at least one reduced and dynamically-valid program cover-
ing each function in the fuzzed compiler that was covered by the
original set of programs.

Termination Criteria. Each fuzzing campaign ran until we
reached a time limit, a disk space limit, or no new coverage was
achieved for some time; as this was a series of long-running experi-
ments, the details of these limits varied. Similarly to Clang-Fuzzer,
GrayC terminates the fuzzing process when the mutation attempt
fails 100 times.

Compilers and Analysers Tested.We tested recent versions of
LLVM (10,11,12,13,14 and 15), GCC (10,11,12 and 13) and the
code analyser Frama-C (21,22,23 and 24) on Ubuntu Linux 18.04
LTS x86_64. We found bugs in GCC and LLVM on Linux by com-
piling each mutated program with and without sanitizer flags and
using each of the standard -O0, -O1, -O2, -O3, and -Os optimisation
levels. We also conducted a short evaluation onWindows with a
small set of mutated programs generated on Linux to test the Mi-
crosoft Visual Studio Compiler (MSVC 19.28.29915) with the /Od
(no optimisations) and /O2 (maximise speed) optimisation settings.

During our fuzzing campaigns, we used C-Reduce, the LLVM
sanitizers and Frama-C as part of investigating the bugs that we
found. This led to us to report 11 additional bugs in these tools as a
by-product of our work [3–7, 23–25, 67–69].
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Table 4: Number of confirmed compiler and code analyser

bugs found by GrayC in each high-level component.

Front-end Middle-/Back-end

GCC 2 9
LLVM 1 2
MSVC 3 0
Frama-C 2 10

TOTAL 8 21

4.2 Bugs Found

Table 3 gives an overview of the compiler and code analyser bugs
found by GrayC. GrayC found 29 confirmed bugs [18–22, 26–32,
34–40, 42–45, 66, 70, 74–76, 83]: 24 previously unknown bugs (out
of which 22 bugs have already been fixed in response to our reports),
and 5 bugs confirmed and/or fixed independently shortly before we
found them. Additionally, 4 bug reports (not included in Table 3)
are pending investigation [41, 84–86].

Table 4 classifies these bugs (in Table 3) into those occurring
in the front-end and those occurring in the middle- or back-end.
Most of the bugs found by GrayC are in the middle- or back-end,
demonstrating its ability to find deep bugs. The front-end bugs
could in principle be found using more naive mutation approaches.
However, the fact that GrayC generates statically-valid programs
means that these bugs are taken seriously and fixed by developers;
by contrast front-end bugs triggered by statically-invalid programs
are often left unaddressed by developers (see §5.4).

All the bugs we found are crash bugs, except for two which cause
the compiler under test to hang. In particular, our use of GrayC
plus enhanCer did not lead to us finding any miscompilation bugs
using differential testing. However, we were successful in using
GrayC plus enhanCer to generate coverage-enhancing test cases
that have been accepted into the LLVM test suite (see §4.3).

To give a flavour of the kind of bug reports produced by GrayC,
we now discuss one of them.

ICE (Internal Compiler Error) in GCC during constant folding optimi-
sation. The following program fuzzed by GrayC led to an ICE in
GCC-11 and GCC-12:

1 struct a d;

2 struct a {

3 int b;

4 int c[]

5 } main() {

6 d.c[268435456] || d.c[1];

7 }

This programwas obtained using Expand-Expression, which re-
placed d.c[1]with d.c[1] || d.c[1], and then using Replace-By-
Constant, which modified d.c[1] || d.c[1] to d.c[268435456]
|| d.c[1]. During constant folding (middle-end), the decomposi-
tion of d.c[268435456] triggered the bug; this was fixed by adding
extra checks.

4.3 Compiler Test Case Contributions

We used GrayC’s ability to generate dynamically-valid programs,
with the help of enhanCer, to improve the LLVM test suite. In
particular, we contributed test programs generated byGrayCwhich
increase the function coverage achieved by the LLVM test suite.

Once we identified such programs, we transformed and reduced
them further using enhanCer and C-Reduce and manually cleaned
them up. So far, 23 of these programs were accepted into the
LLVM test suite [78, 79]5 and 7 of these programs are under re-
view [80]. These tests targeted 86 previously uncovered functions in
Transforms, IR, AST and other parts of clang lib. All contributed
test case are available at [1].

5 CONTROLLED EXPERIMENTS

We next compare GrayC with other fuzzing methods, using con-
trolled experiments.

5.1 Experimental Setup

Tools. We consider the following tools in our evaluation:
(1) GrayC-aggressive. GrayC’s aggressive mode.
(2) GrayC-conservative. GrayC’s conservative mode.
(3) GrayC-No-Cov-Guidance. Fuzzing with no coverage guid-

ance to assess a main claim of the paper, which is that coverage
guidance is useful. We adapted GrayC to perform without cov-
erage guidance but with all its available mutators.

(4) GrayC-Fragments-Fuzzing. We adapted GrayC to run
without coverage guidance, and only use code fragment in-
jection (i.e., all other GrayCmutations are disabled). This is the
closest we can get to what LangFuzz6 does: it is not coverage-
guided, and only uses code fragment injection mutation [57].

(5) Clang-Fuzzer. Default Clang-Fuzzer [13, 62] (see §2).
(6) Csmith. Default Csmith [97] (see §1).
(7) Grammarinator. Default Grammarinator (v19.3) [48, 56]:

a general purpose grammar-based open-source fuzzer.
(8) PolyGlot. The tool taken from the artifact associated with the

paper [12]: PolyGlot is a general-purpose AFL-based fuzzer
that aims to generate statically-valid programs via a semantic
error-fixing mechanism.

(9) RegExpMutator. A LibFuzzer-based tool that uses Uni-
versal Mutator [51], a regexp-based mutator, instead of Lib-
Fuzzer’s default mutator.

Implementation notes. The variants GrayC-No-Cov-Guidance
and GrayC-Fragments-Fuzzing are based on the aggressive mode
of GrayC, as it has performed best in our experiments in terms
of bug-finding. To avoid coverage guidance, these variants are not
based on LibFuzzer. Instead, they are based on a simple script that
repeatedly picks a program from the working corpus at random,
applies the relevant mutators, and writes the mutated program back
to the working corpus.

We implemented RegExpMutator by invoking the Universal
Mutator tool as an external Python process. This leads to a variety
of mutated programs being generated, of which one is chosen at
random. We note that this is a rather inefficient way to perform
regex-based mutation, and that by re-implementing the logic of
the Universal Mutator in C++, it would likely be possible to
achieve higher throughput. However, we do not expect this to
dramatically change our findings since, as discussed in §5.2, most

510 of the contributed tests generated via an early version of this work.
6LangFuzz was applied on JavaScript and PHP interpreters, and is not publicly
available.
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Table 5: Average throughput (across 10 repetitions, over 24 h)
by each tool and the percentage which are statically-valid.

Programs/h Statically-valid (%)

Csmith 1,144 99.96%
GrayC-conservative 1,691 99.69%
GrayC-aggressive 2,906 99.47%
GrayC-Fragments-Fuzzing 3,957 99.08%
PolyGlot 714 91.20%
GrayC-No-Cov-Guidance 4,700 75.41%
RegExpMutator 1,390 19.1%
Clang-Fuzzer 1,183 1.55%
Grammarinator 5,391 0.0%

programs generated by the Universal Mutator turn out to be
statically-invalid.

Collecting test programs.We used each tool to construct a corpus
of test programs for subsequent offline testing and coverage analysis
of various compilers and analysers. We allocated 24 h per tool for
program collection, and to account for variance we repeated the
collection process 10 times per tool, resulting in 10 sets of collected
programs per tool. The throughput and coverage results reported
in §5.2 and §5.3 are averages over the 10 sets of programs collected
for each tool.

For the tools that require an initial corpus (all tools except
Csmith and Grammarinator) we assembled an initial corpus as
described in §4.1. Our corpus snapshot for these controlled experi-
ments contains 1,767 dynamically-valid single-file programs. The
reader can consult our artifact for full details on the programs
included. For the coverage-guided tools, fuzzing was performed
against LLVM 12.0.1.

For Clang-Fuzzer, saving all mutated programs proved imprac-
tical: Clang-Fuzzer generates approximately one million programs
every 24 h, with many duplicate programs having no effect on cov-
erage. We considered filtering duplicates during or after fuzzing,
which either reduced the tool efficiency (when spending time de-
tecting duplicates) or led to excessively long post-processing times.
As a result, for Clang-Fuzzer we decided to only save the mu-
tated programs for which Clang-Fuzzer reports extra coverage
(i.e. Clang-Fuzzer’s default settings).

We now discuss our results with respect to throughput and static
validity rate (§5.2), coverage (§5.3), and bug finding (§5.4).

5.2 Throughput and Static Validity Rate

The keymetric when comparing fuzzers is their bug-finding ability—
and coverage as a proxy for that. However, it is instructive to in-
terpret data on coverage and bug-finding ability in the context of
the throughput achieved by each fuzzer. We present results related
to throughput, with a particular emphasis on how it evolves over
time and how many statically-valid programs are generated.

Throughput. The second column of Table 5 shows, for each tool,
the average throughput over 24 h of fuzzing. The mutation-based
black-box fuzzers (Grammarinator, GrayC-No-Cov-Guidance
and GrayC-Fragments-Fuzzing) have the highest overall through-
put, with Grammarinator on top.

At the other end of the spectrum, PolyGlot has the lowest over-
all throughput, with Clang-Fuzzer second to last (however, recall

from §5.1 that we capture only a subset of the programs that Clang-
Fuzzer generates, because otherwise its throughput rate would be
too high to be manageable.) After a closer inspection, we found
that PolyGlot and Clang-Fuzzer have the highest throughput in
the beginning, but this decreases significantly, falling into the last
places by the forth and the eighth hour of fuzzing, respectively. This
declining trend (shared in various degrees by all LibFuzzer-based
tools) is mostly due to the corpus reduction functionality in Lib-
Fuzzer, which consumes more time as the corpus grows, leaving
less time for program mutation.

GrayC’s throughput is somewhere in the middle, with GrayC-
aggressive producing significantly more programs per unit of
time than GrayC-conservative. This is due to the expensive
Add-Csmith-Block mutator and the extra checks of GrayC-
conservative.

Static validity rate. The last column of Table 5 shows, for each
tool, the percentage of generated program that are statically-valid.
We consider a program to be statically-valid if it is compiled suc-
cessfully by GCC 11.1.0 while imposing a compilation timeout of
45 s and a stack limit of 4MB (we impose a small stack limit because
compiler crashes caused by programs with large stack allocations
are typically not compiler bugs per se, but rather resource exhaus-
tion issues).

Over 99% of the programs generated by Csmith, GrayC-
conservative, GrayC-aggressive and GrayC-fragments-fuzzing are
statically-valid.7

PolyGlot achieved a high compilation rate of 91.12% with the
initial corpus in this evaluation, much higher than originally re-
ported with PolyGlot’s initial corpus, which was a mixture of
statically valid and invalid programs [12].

GrayC-No-Cov-Guidance’s lack of coverage guidance resulted
in a significantly lower compilation rate of 75.41%. We suspect this
is because without coverage guidance, similar statically-invalid pro-
grams that cover the same front-end code do not get de-prioritised.

Only 19.09% programs compile for RegExpMutator and only
1.55% for Clang-Fuzzer. None of the Grammarinator programs
generated during this evaluation pass compilation.

5.3 Coverage

Wemeasured coverage forGCC-12 on Ubuntu 18.04 LTS x86_64 and
LLVM-13 on Ubuntu 20.04 LTS x86_64. We compiled the generated
programs with -O3, to exercise a large number of optimisations,
and we imposed a timeout of 50 s for compiling a program. We used
the GCov-based tool gfauto [49] to generate the coverage results
in a human-readable format.

We compare GrayC with other mutation-based tools, which all
start from an initial corpus. IncludingCsmith andGrammarinator
in this comparison would be unfair, as they are generation-based
tools that cannot benefit from the coverage of an initial corpus. Nev-
ertheless, we measured coverage for Csmith and Grammarinator
as well, and in both cases the coverage is smaller than the one for
our initial corpus, withGrammarinator achieving particularly low
coverage (with essentially no coverage in the middle- and back-end,
given that all the generated programs are statically-invalid).
7Csmith-generated programs are by construction compilable; however, some files hit
our compilation timeout.
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Figure 2: GCC and LLVM line coverage over 24 h of fuzzing.
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Figure 3: LLVMmiddle- and back-end coverage over 24 h of

fuzzing.

Results. Figure 2 (best viewed in colour) shows the line coverage
achieved in GCC (left) and LLVM (right) by the mutation-based
tools. In addition, we show the coverage achieved by the initial cor-
pus, from which all these tools benefit. Note that in the beginning,
the coverage achieved by all tools is that of the initial corpus.

GCC Coverage: Figure 2 shows that GrayC-aggressive
achieves the highest coverage, with 348,362 lines covered af-
ter 24 h of fuzzing. GrayC-No-Cov-Guidance is in second
place (345,386 lines), followed by GrayC-conservative (340,556),
Clang-Fuzzer (324,101), PolyGlot (323,770), RegExpMutator
(323,250), GrayC-Fragments-Fuzzing (315,287) and the initial cor-
pus (314,467).

LLVM Coverage: Figure 2 shows that for LLVM, it is GrayC-
No-Cov-Guidance which achieves the highest overall cover-
age (192,139 lines), followed by Clang-Fuzzer (191,305), GrayC-
aggressive (190,781), GrayC-conservative (188,571), PolyGlot
(186,620), RegExpMutator (186,308), GrayC-Fragments-Fuzzing
(181,360 lines) and the initial corpus (180,551).

We believe Clang-Fuzzer and GrayC-No-Cov-Guidance
achieve higher overall coverage in LLVM because (an older ver-
sion of) LLVM is the compiler used for analysing and parsing pro-
grams during program generation. It is likely that Clang-Fuzzer’s
statically-invalid programs achieve substantial coverage of error-
handling code in the front-end, which remain unchanged in the
newer version of LLVM against whichwemeasure coverage. Indeed,
as discussed next, most of the coverage achieved by Clang-Fuzzer
is in the front-end, while GrayC exercises the more challenging
middle- and back-end. These two factors likely have a similar effect
in GrayC-No-Cov-Guidance, which also generates a large number
of statically-invalid programs.

Middle- and Back-End Coverage in LLVM: Recall that a key
design goal of GrayC is to produce programs that are statically-
valid, in order to exercise the middle- and back-end components
of compilers and analysers. Thus, for LLVM, we also measured the
coverage achieved by each fuzzing tool in the middle- and back-end
of the compiler, based on a best-effort classification of LLVM source
directories into front-end, middle-end and back-end components.
Our hypothesis was that because GrayC is effective at generating
diverse valid programs, it would achieve better coverage of the
middle- and back-end components compared to other techniques.

Figure 3 shows the middle- and back-end coverage achieved
by each tool after 24 h of fuzzing. GrayC-aggressive achieves the
highest coverage (middle-end: 66,914 lines, back-end: 71,053 lines),
followed by GrayC-No-Cov-Guidance (66,594 and 70,553), GrayC-
conservative (65,840 and 69,873), PolyGlot (64,455 and 67,621),
Clang-Fuzzer (63,367 and 67,651), RegExpMutator (63,269 and
67,323), GrayC-Fragments-Fuzzing (62,469 and 66,742), and the
initial corpus (62,441 and 66,738).

Unlike for the overall coverage results, Clang-Fuzzer performs
significantly worse than GrayC here, because it mostly generates
statically-invalid programs that are rejected by the front-end. For
similar reasons, the coverage difference between GrayC configura-
tions and the rest of the fuzzers (RegExpMutator and PolyGlot)
is more pronounced.

5.4 Bug Finding

To better understand the bug finding abilities of each tool, we
used the sets of programs gathered via our 24 h fuzzing runs to
test LLVM-12 and GCC-12 with optimisation levels -O0, -O1, -O2,
-O3 and -Os, and Frama-C-24 on Ubuntu 18.04 LTS x86_64.8 We
imposed a per-program timeout of 45 s for compilation and 200 s
for Frama-C analysis.

We used the following process to de-duplicate the crashes trig-
gered by these programs, to identify a set of unique bugs discovered
by each fuzzing tool. First, we bucketed the crashes based on error
messages printed by the compiler/analyser, e.g. “internal compiler
error: tree check: expected array_type”. We then searched the bug
trackers of LLVM, GCC and Frama-C to look for an existing bug
report corresponding to each bucket. Where we could find no re-
lated report, we checked whether the crash still manifested with
the latest version of the compiler/analyser. This was the case for
all but one crash. In these cases, we filed a new bug report and
awaited feedback from developers. In a few cases, crashes that ap-
peared to be due to distinct bugs (based on bucketing) turned out
(according to developer feedback) to be due to the same underly-
ing bug. One issue we reported to Frama-C was closed as “won’t
fix”; we discarded crashes corresponding to this bug from further
consideration. All other bugs were confirmed by developers. Our
complete set of unique bugs comprises the bugs we found were
already reported, plus the new bugs we reported (excluding the one
that was closed as “won’t fix”), plus the remaining bug that must
have been independently fixed.

Results. Table 6 summarises the number of distinct middle-end
and front-end bugs found by each fuzzing tool (none of the bugs

8The raw data is in our artifact [1], in Evaluation/EVALUATION-VIA-CONTROLLED-
EXPERIMENTS/Bug-finding-trails.
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Table 6: Confirmed unique bugs found by each tool during

24 h of fuzzing (union over 10 repetitions) in the middle- and

front-end components.

Tool Component
Fix

Rate

Bug Report

References

Middle Front

GrayC-aggressive 6 - 100% [20, 29, 36, 37, 39, 45]
GrayC-No-Cov-Guidance 4 - 100% [29, 37, 39, 45]
GrayC-conservative 2 - 100% [29, 45]
RegExpMutator 2 1 67% [28, 29, 33]
Clang-Fuzzer 1 4 60% [28, 33, 46, 47, 65]
PolyGlot - 1 0% Not reproducible
Csmith - - 0% None
Grammarinator - - 0% None
GrayC-Fragments-Fuzzing - - 0% None

found were classified as back-end bugs). GrayC-aggressive is the
most successful at finding middle-end bugs, with GrayC-No-Cov-
Guidance and GrayC-conservative also succeeding at finding such
bugs. The middle-end bugs found by Clang-Fuzzer and RegExp-
Mutator are bugs in the analysis component of Frama-C; these
tools did not find any middle-end compiler bugs. The other fuzzing
tools either found no bugs, or only front-end bugs.

In response to one of the front-end crashes inGCC found by both
RegExpMutator andClang-Fuzzer, triggered by statically-invalid
programs, the developers responded: “fuzzing source is going to turn
up a lot of error-recovery cases - while somewhat interesting they
will inevitably be [a] very low priority since GCC has mechanisms to
present the user with a nicer error message..." [46]. In LLVM, Clang-
Fuzzer identified an incomplete program that led to a compiler hang
and PolyGlot found a statically-invalid program that triggered a
front-end ICE when parsing array types.

The low fix rate associated with front-end bugs (Table 6, “Fix
Rate” column), the negative remarks and lack of action in relation
to most of these somewhat pathological bugs, which are triggered
by statically-invalid programs, supports our hypothesis that for
greybox fuzzing to work well in the domain of optimising compilers,
mutation operators that yield statically-valid programs, such as
those incorporated in GrayC, are essential.

Csmith, Grammarinator and GrayC-Fragments-Fuzzing
found no bugs during the controlled experiment. As discussed in
§4, we did not find any bugs during a long-running testing cam-
paign using Csmith; hence, it is unsurprising that Csmith did not
uncover any bugs during this controlled experiment. We note that
Frama-C has been extensively tested using Csmith in the past [16].
Grammarinator detected no bugs, probably due to its extremely
low compilation rate and the fact the mature ahead-of-time compil-
ers’ front-ends have already been heavily tested. Similarly, GrayC-
Fragments-Fuzzing’s poor coverage delta (from the initial corpus)
in both LLVM and GCC can explain these results.

6 RELATEDWORK

As discussed in §1, randomised testing techniques have been suc-
cessful in finding bugs in compilers for a range of languages, with
a recent major focus on C (e.g. [61, 77, 97]), but also on other

languages such as OpenCL [63], OpenGL [17], SQL [87] and Ver-
ilog [55]. These techniques mainly work by cross-checking multiple
compilers (e.g. [55, 63, 97], a form of differential testing [52, 72], or
checking expected equivalences between programs (e.g. [17, 61]),
a form of metamorphic testing [10, 88]. We refer the reader to a
recent survey for an overview of state-of-the-art techniques [9].
The main difference between these existing works and ours is that
GrayC employs greybox fuzzing.

In §1 we have already discussed mutation-based fuzzing tech-
niques in the context of dynamic languages such as JavaScript,
particularly the pioneering work on LangFuzz [57] and more re-
cent work on Superion [96] and Nautilus [2]. The recent PolyGlot
technique [12] caters for generic language processor fuzzing, and is
applicable to both dynamic and static languages, including C. Our
evaluation against a variant of GrayC resembling LangFuzz (since
the LangFuzz tool is unavailable) and against PolyGlot demon-
strates the advantages of our approach.

A similar language-agnostic work is on “no-fuss fuzzing” of com-
pilers [53], which investigates applying AFL-based greybox fuzzing
to compilers for a number of smart contract languages and the
Zig programming language [98]. Instead of building per-language
custom mutators, this work investigates using regular expression
based mutation, based on (a partial re-implementation of) the Uni-
versal Mutator tool [51], and mutation based on approximate
parsing of input programs using simple features common to many
languages, such as balanced parentheses [95]. The authors of [53]
remark that their approach is geared towards languages that aim
to be total, so that the compiler should behave gracefully for any
input, and they explicitly comment that such approaches are less
likely to be useful in the context of C/C++ compilers. Our findings
in §5.4, based on experiments using a Universal Mutator-based
LibFuzzer custom mutator, confirm this.

GrayC builds on the (very basic) Clang-Fuzzer tool [13], which
provides a fuzz target for Clang and uses LibFuzzer’s default byte-
level mutators. Our experimental results showed that, due to the
naivety of byte-level mutators, Clang-Fuzzer is ineffective at find-
ing deep compiler bugs. We attempted to compare with Clang-
Proto-Fuzzer [14], an extension of Clang-Fuzzer that features
partially semantic-aware mutators based on a protobuf description
of a fragment of C++, but found that this project is no longer main-
tained and is not currently in a usable state. A presentation on the
work already reported that developers have not been responsive to
the bugs that it found (see §1).

An approach to differential testing of Java Virtual Machine (JVM)
implementations also takes a coverage-guided approach [11]. Un-
like our work, this approach does not focus on mutations that
produce valid programs; in fact, the focus is on looking for discrep-
ancies where one JVM accepts a class file, while another rejects it
as being malformed.

7 CONCLUSION AND FUTUREWORK

We have presented the design of our coverage-directed compiler
fuzzing approach and its implementation, GrayC. Our evaluation
demonstrates thatGrayC can achieve better coverage of the middle-
and back-end components of compiler codebases compared with
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other mutation-based approaches, leading to the discovery of nu-
merous previously unknown bugs and to the contribution of new
tests to the Clang/LLVM test suite. Future work will focus on im-
proving GrayC’s facilities for potentially finding miscompilation
bugs, e.g. by augmenting GrayC with mutations inspired by partic-
ular compiler optimisations of interest, and further investigating
the balance between the conservative and aggressive modes of the
tool to ensure that our efforts to generate dynamically-valid pro-
grams do not detract too much from the ability of these programs
to exercise optimisations in depth.

8 DATA AVAILABILITY

GrayC, enhanCer and the experimental infrastructure, data, and
results are available as open source at [1].
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