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ABSTRACT 

Gene expression plays a crucial role in phenotypic changes and disease. The regulation of 

gene expression is a complex process that involves genetics, environmental signals, 

epigenetics, and proteins. However, studying the interplay of these processes is key to 

better understanding the role of genetic variation and gene expression changes within 

important biological processes. 

In genomic studies, gene expression changes are often studied in population-level data, 

however these analyses are often limited to studying the impacts of common variants on 

gene expression due to the limited power associated with rare variants in the populations 

under study. This may cause a problem, particular in small datasets focussed on rare 

disease, or when trying to understand the full range of genetic features that may modulate 

transcriptional events. Allele specific expression (ASE) offers an avenue to overcome these 

issues and consider the regulation of gene expression levels in smaller sample sizes, 

potentially capturing the impact of rare variants. ASE can also be used in combination with 

other population-based genetic studies to improve the overall signal. 

However, ASE analysis suffers from a series of computational biases associated with short-

read RNA-seq data and are particularly sensitive to sequence alignment errors driven by 

reads that overlap heterozygous variants. In this thesis, I have developed a Personalised ASE 

Caller (PAC) pipeline that improves heterozygous read alignment and reduces biases when 

quantifying allelic ratios. I have developed the pipeline into a streamlined tool using 

Nextflow and Docker technology and have made this tool available on my GitHub page for 

use by the scientific community. 

I validated the performance of PAC against other commonly used methods showing that it 

significantly improves allelic quantification. I then show that PAC can identify ground truth 

signals in simulated data and can recapitulate population level signals better than other 

methods. I also demonstrate that PAC has utility in a disease context and that better allelic 

quantification has downstream consequences for interpreting biological data. 
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1. INTRODUCTION 

1.1 GENETIC VARIATION 

1.1.1 EVOLUTIONARY SELECTION 

The variation we see in the human genome and its architecture can be explained by 

evolutionary biology. According to natural selection, variants with large effects on fitness 

will be removed from the population and those that remain will be present at low rates. 

Common variants, on the other hand, are unlikely to have large effects on the fitness [1]. On 

average, altering protein-coding regions is more likely to have a detrimental effect on 

fitness as it is likely to affect protein structure and hence function. Therefore, rare variants 

tend to be within or close to the protein-coding regions. Conversely, altering noncoding 

regions tends to have no consequence or affect gene regulation. Common variants are 

therefore more often found in these regions [2].  

Most human traits are polygenic, which means that natural selection acts on multiple 

variants at the same time and has more complicated effects on the fitness [3]. Here the 

selection pressure is distributed across multiple variants with smear effects, making cleaner 

signals more difficult to identify and interpret. 

The relationship between effect sizes and the commonality of causal genetic variants tends 

to distribute along a spectrum, as illustrated in Figure 1 [4]. Here, rare variants with high 

penetrance tend to be within or near the coding regions and cause rare, severe diseases. On 

the other hand, due to lower selection, variants with low penetrance are more common in 

the population [5]. These are usually in the noncoding regions influencing gene regulation. 

However, the effective population size can influence the general notion of genetic 

architecture, where the strength of selection decreases with smaller populations [6]. In this 

case, the frequency of deleterious alleles can drift by chance to a detectable level [7].  

In addition, there are exceptions to the genetic architecture, where rare variants play a role 

in common traits/diseases [8, 9], or where common variants contribute to rare diseases [10, 

11], but these instances tend to be few in number. Although this general architecture might 

be biased as a consequence of different discovery methods used for rare with high 
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penetrance versus common with low penetrance variants [9], there are ongoing efforts to 

deeply sequence whole genomes of large cohorts in order to improve our understanding 

[12].  

 

 

 

 

 

 

Figure 1. Functional genetic architecture. 
The figure illustrates how allele frequencies and penetrance are distributed in human genetic architecture. Coding variants 
with high penetrance are most often rare. Mendelian and monogenic diseases tend to fall into this category. Common 
diseases usually in the noncoding regions most often have low penetrance but are common in the population. Adapted from 
McCarthy et al., 2008 and Lappalainen & MacArthur 2021 [4, 12]. Created with BioRender.com.  



 
19 

1.1.2 VARIATION IN THE HUMAN GENOME 

The human genome was sequenced over 20 years ago [13, 14]. Following this, the main 

initial focus was to catalogue genetic variation in the human population, leading to massive 

collaborations that discovered the scale of variation across individuals, involving millions of 

variants across the genome that spanned a range of different predicted functional effects 

[15-20]. Some variants have harmful consequences leading to a disease such as the case in 

monogenic diseases. Some are benign variants that are tolerated in the population and do 

not cause disease [21], for example a mutation affecting cilantro taste preference [22]. And 

some variants might not have any detectable consequences at all. We still lack a great deal 

of understanding of genomic variation, and most variants identified from sequencing data 

have unknown consequences [23]. However, a major goal in the field of human genetics is 

to better understand the functional consequences of each genetic variant, particularly as 

the susceptibility to almost every human disease is affected by genetic variation to a certain 

degree [24].  

The most direct way for a variant to influence disease susceptibility is by disrupting the 

coding sequence, and this class of variants is the cause of many genetic diseases, where the 

genetic code and gene annotations can aid in understanding how the variant might disrupt a 

protein. However, these mutations account for only a small proportion of the variation in 

the genome, as only 1% of DNA is protein-coding [25]. The vast majority of variants are in 

non-coding regions of the genome [26] and deciphering benign from pathogenic non-coding 

variants is more difficult since functional annotation of these regions is more complex and 

less complete. 

On average there are 4.1-5 million sites where an individual genome differs from the 

reference genome, ~3.5-4.3 million being single nucleotide variants (SNVs) and ~0.5-0.6 

million being short insertions/deletions (indels) depending on the population under study 

[17]. The vast majority of variants are benign and do not cause health consequences. 

However, on average every individual has over 100 protein truncating variants resulting in a 

premature stop codon, over 20 of which are rare in the human population and potentially 

deleterious [19]. There are computational algorithms to detect variants and differentiate 

them from sequencing errors, GATK [27] being the most commonly used, however, these 
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approaches also create errors and lead to confusion over the functional landscape of an 

individual’s genome. In addition, around 8.5% of a genome is considered particularly 

difficult for variant calling [28]. These regions contain some clinically relevant genes [29], 

therefore better methods are needed to be able to study them. 

Variant calling refers to the identification of variable sites from genomic sequencing data. It 

is important to accurately identify genetic variants from noise and sequencing errors to 

study their effects for example on gene expression, in disease fields or population genetics. 

There are numerous tools that attempt to identify genetic variation from sequencing data, 

but in general, almost all seek to combine multiple types of evidence to assign probability 

scores related to how likely it is that a variant is present at a particular location. These 

evidence types include, but are not limited to, the number of reads carrying reference and 

alternative alleles, sequencing depth, the locations of alternative alleles along each read, 

the direction of each read carrying alternative alleles, mapping and nucleotide quality 

scores, and known genetic variants [30]. Variant calling is particularly difficult in highly 

polymorphic or repetitive regions [31] and for genes expressed at low levels [32]. Amongst 

these approaches, GATK is a gold standard method [27] and is utilized across many 

sequencing studies. GATK is a probabilistic method where the genotypes are determined 

using Bayesian statistics, incorporating many of the features listed above. Here, the model 

calculates the probability for a given genotype given for example the base pairs qualities, 

error rate and read depths. Additional to variant callers, there are also other tools that seek 

to infer genetic information based on reference genomes. IMPUTE2 [33] is a method that 

utilises genotyped individuals of genetically similar populations to impute unobserved 

genotypes in individuals under study. 

Structural variation (SV) is more severe and more difficult to deal with in genomics 

workflows. SVs are generally over 50 bp in size and include rearrangements such as 

deletions, duplications, insertions, inversions, copy number variants (CNVs), and mobile 

element insertions [29]. SVs can affect gene dosage, affect gene function, or rearrange 

genes or regulatory regions. Although SVs only account for around 0.2% of variants, they are 

responsible for 4-11.2% of rare high-impact coding variants [34]. 
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Because knowledge of the consequences of genetic variants is important for the 

understanding of disease mechanisms, drug targets and biological pathways, many variant 

effect predictors have been developed. These tools often incorporate protein sequence, 

structural, evolutionary, epigenetic, and biophysical features to predict the effect a variant 

will have [23, 29]. Often, even the easiest-to-predict missense variants lack a high-quality 

prediction score, and even more so variants in the noncoding regions [12]. This is due to the 

limited understanding of regulatory regions and their environmental context. One way to 

verify variant consequences is experimentally, where the phenotypic consequences of 

variants are studied. For example, a functional assay has shown that glutamate oxidation is 

impaired in cultured fibroblasts derived in patients carrying a mutation in the GC1 gene [35]. 

The link between mutation and phenotype in such studies can be examined by determining 

if the wild-type version of the gene rescues the phenotype, or by testing the consequences 

of variants in model organisms [36]. Another approach to understand the pathogenicity of 

variants is by considering mRNA expression from RNA-seq data, for example considering 

variants influencing splice events [37] or the loss of allelic expression [38]. Functional 

validation gives more information, yet it would be impossible to verify millions of variants 

separately. As such, experimental methods have been developed to characterise genetic 

variants by high‐throughput protocol, where proteins containing different variants are 

generated and assayed for interactions or enzymatic activities [39]. However, this comes 

with its own restrictions, such as limited phenotype assessment. Therefore, computational 

methods remain the main method used to predict the effects of genetic variation at scale. 

 

1.1.3 RARE VARIANTS 

A large number of variants in the population are rare due to a human history of bottlenecks 

and recent expansions [40, 41]. During early human history the effective population size was 

small and some genetic variants that were present remain common in modern populations. 

However, since each generation gains around 100 new mutations, population growth has 

driven the accumulation of large numbers of rare variants. Understanding how rare variants 

contribute to human traits is lagging behind common variants. They are hard to study as 

most analyses rely on population level statistics and power, and therefore they are not well 
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represented, for example in genome-wide association (GWA) [42] studies. Rare variants are 

also often population specific [43, 44], are not often present on genotyping arrays [45], and 

they are poorly imputed with reference panels. The recognition of the importance of rare 

variants has led large efforts to design association studies which incorporate rare and low 

frequency variants [46], often through altered resequencing approaches.  

 

1.2 GENETIC STUDIES TO UNDERSTAND DISEASE VARIANTS  

1.2.1 EARLY STUDIES 

Prior to modern sequencing technologies, linkage analysis and fine mapping in large 

multiplex families were used to identify and then sequence candidate disease genes [24]. 

These studies focused on rare and monogenic diseases and variant segregation was 

followed across multiple families and compared to healthy individuals. This process was 

time consuming and expensive. With the development and reducing costs of high 

throughput sequencing technologies, microarrays [47] and more importantly exome [48] 

and whole genome sequencing [49] have been crucial in genetic studies. Population-based 

studies have allowed the sequencing of many individuals without the need of relatedness, 

which can be difficult to obtain in some cases, facilitating the study of genetic differences in 

different populations and for different phenotypic traits. These experiments can study 

common, low penetrance alleles in addition to monogenic traits. With linkage studies, the 

genetic resolution is often poor. Therefore, population-based studies have driven the 

availability of vast amounts of genetic data, which can be utilised via in silico analysis 

methods to better understand disease and biological function. Linkage analysis is also 

difficult to perform on common diseases often involving multiple variants and genes [24], 

therefore GWA studies (GWAS) have also expanded knowledge in this area.  

 

1.2.2 GWAS 

GWAS detect associations between genotypes and phenotypes, where the allele 

frequencies of variants in individuals with the trait are compared to those without. Most 
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trait-associated variants identified by GWAS are in the noncoding regions of the genome 

[50] and therefore there is often ambiguity regarding the affected gene [51]. The GWAS hits 

within the noncoding genome are likely to affect gene regulation. A schematic of a GWAS 

study is shown in Figure 2. Often, the exact causal variant is not known due to linkage 

disequilibrium. Genomic variants nearby tend to correlate in GWAS with phenotypes due to 

haplotype blocks. Recombination mixes genomes but variants in close proximity to each 

other are more likely to be inherited together. 

 

 

 

Figure 2. An example of a case-control GWA study design. 
As an example, to illustrate GWA study, here genetic basis of a disease is under investigation. Subjects under study are 
divided into cases with those with a disease phenotype and into controls those without. The allelic frequency of each variant 
is investigated between cases and controls either by microarrays (blue pathway), which is most common, or by WGS (purple 
pathway). After statistical corrections, the variants contributing to the phenotype are those that show significant difference 
between cases and controls. Adapted from EMBL-EBI training: GWAS. Created with BioRender.com. 
  

https://www.ebi.ac.uk/training/online/courses/gwas-catalogue-exploring-snp-trait-associations/what-is-gwas-catalog/what-are-genome-wide-association-studies-gwas/
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GWA studies have linked >200,000 variants to complex traits [12] available from the GWAS 

Catalog [52], yet the majority are still uncharacterised [24]. During early GWA studies it 

became apparent that variants identified at genome-wide significance explain only a small 

proportion of trait heritability, and this became known as the missing heritability problem 

[53]. The cumulative effect sizes of associations were smaller than those estimated for the 

overall heritability for the trait [24]. It was not known whether this was caused by common 

variants tagging causal variants imperfectly, if the causal variants were rare or if heritability 

has been overestimated from pedigree data. However, now we know that common diseases 

tend to share genetic predisposition with multiple common genetic variants, each with 

modest effect sizes (eg. [54, 55]), and it has been shown that rare variants contribute to the 

heritability, too [8]. To complicate matters further, many variants are associated with 

multiple traits and have different effects in different cell types [56]. It has been shown that 

the heritability of complex traits is largely distributed along the genome [57, 58] suggesting 

that many genes play a role in disease risk variation. Nevertheless, increasing sample sizes 

will increase the number of loci identified and build a better picture of the common genetic 

architecture of common diseases [59]. 

To date, GWA studies have mostly been performed in European populations [60]. Since 

allele frequencies can vary quite substantially in different ethnic backgrounds, this can cause 

a major problem when trying to biologically interpret the data [61-63]. Increasing sample 

sizes across a more diverse range of populations, and using better variant reference panels, 

will help to better resolve the causal variants from the haplotype block and aid in functional 

understanding [24]. 

With the lack of understanding of the biological mechanisms of causal variants [64], studies 

are now focusing on improving variant annotation. The Encyclopedia of DNA Elements 

(ENCODE) project [65] has identified various functional elements in the genome, thus 

allowing a better understanding of the potential mechanistic actions of unknown variants. 

Another large collaboration, the GTEx consortium, has identified associations between 

genetic variants and gene expression across hundreds of individuals across diverse tissues 

[66] in an effort to correlate trait-associated variants with the genes that they regulate in a 

tissue specific manner [67, 68]. Regardless, the consequence of a large proportion of 
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disease-associated variants remains unknown, especially of those in noncoding regions, 

which are difficult to link to the causal gene for a particular biological function [51]. 

Understanding which variants cause phenotypic change and characterising how they 

function will aid in genetic diagnosis and prognosis. This will be important for personalised 

medicine by revealing the causal gene(s), relevant cell types and biological pathways. One 

way to better understand causal variants and the mechanisms through which they act is by 

assessing the direct phenotype they exert, such as gene expression [69, 70], as it is known to 

affect many diseases and traits [71, 72].  

 

1.3 GENE EXPRESSION STUDIES 

1.3.1 RNA SEQUENCING  

The human genome contains all the instructions of every cell in the body for the whole 

lifetime. It also has errors or mutations that will determine disease susceptibility and 

influence individual traits. Different cell types at different times will express different genes 

regulated by different regulatory regions. There are large changes in gene expression and 

transcript usage in several monogenic disorders [73, 74] and RNA-seq has been shown to be 

useful for diagnostic purposes [37, 38, 75]. Sequencing technologies have advanced at a 

colossal rate in accuracy, speed, and cost. This has revolutionised functional genomic 

studies, providing an enormous amount of data for further studies. We now have RNA and 

other functional sequencing data from different populations, disease cohorts and cell types. 

RNA-sequencing is the most commonly used method to quantify RNA molecules in a 

sample. The first step of the process involves RNA extraction, after which the mRNA (or 

small RNAs) is enriched, or depleted of ribosomal RNA [76]. A cDNA library is then 

generated from the RNA molecules through reverse transcription before adaptor sequences 

are ligated. The cDNA library can then be PCR amplified if required. Following this, the cDNA 

library is sequenced at a required depth with a high-throughput sequencing platform [77]. 

Illumina short-read sequencing is highly accurate, however not perfect with an error rate of 

~0.1-0.5% [29]. Therefore, some mistakes will occur and for this reason, higher coverage is 



 
26 

often preferred; most studies employ >=20× coverage to compromise on the cost and 

accuracy.  

Short-read RNA sequencing computational workflows start by performing quality control on 

raw reads to detect sequencing errors, PCR artefacts or contaminations. The nucleotide 

quality tends to worsen towards the ends of reads, and often bases at the end are removed 

to improve the alignment [78]. At this step the adapters are also trimmed, and poor-quality 

reads removed. RNA-sequencing reads are then aligned to the reference genome to 

quantify the number of reads overlapping genes and transcripts, filtered and normalised for 

differences in library size, the lengths of the genes and technical artefacts [76]. It is 

important to remember that RNA sequencing provides relative, rather than actual, 

measurements of the expression of a gene compared to all other transcripts in the 

sequencing library. Different tools, parameters, or reference genome versions affect the 

results, and each has their limitations and biases; therefore, depending on the area of 

research different workflows might be employed.  

There are numerous alignment tools that map sequencing reads to the reference genome 

such as BWA [79] and Bowtie2 [80], and across these tools, one of two broad methods are 

typically employed: hash table indexing or a Burrows-Wheeler transform. In general, the 

first step of aligners is to fragment the reference genome, where the aligner can find all 

exact matches for the read within a single lookup rather than scanning the whole genome 

for each read [81]. However, for RNA-sequencing data, there is an additional feature that 

needs to be considered beyond potential mismatches and indels, and that is that mRNA 

does not contain introns and therefore reads may be ‘split’ across adjacent genomic 

regions. This property of the data creates difficulty for aligners in determining the non-

continuous genomic location for each sequencing read. To solve this problem, there are 

many different computational solutions to aligning RNA-seq reads. STAR [82], for example, 

allows for splice junction detection by finding the Maximal Mappable Prefix between the 

genome and the reads. Here, the start of the read is aligned to the reference genome, 

finding the maximum mappable length. During this process, if the read contains a splice 

junction, a part of the read will not be aligned to this initial location. Therefore, the 

unaligned part of the read is then aligned to the donor splice site. This way different parts of 

the single read can align to multiple genomic locations accounting for the splicing. Following 
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this, STAR joins these two parts together and quantifies all mismatches and indels, and then 

selects the best alignment for each read based on mismatch and indel scoring penalties. 

There are also other approaches including pseudoaligners, such as kallisto [83], which are 

based on a k-mer algorithm using a de Bruijn Graph of the reference transcriptome. 

Pseudoaligners speed up RNA-seq quantification by identifying a list of compatible 

transcripts for each read from which it could have originated, rather than considering 

alignment of each base pair from read to the transcripts. 

There is now increasing interest in long-read sequencing as it eliminates a lot of the 

complications associated with aligning short reads to the reference genome. Long-read 

sequencing would allow de novo haplotype resolved genome assembly, but while the field is 

still new the error rate is ~10-20% [84], is more expensive and workflows are still in 

development. For this reason, most of the studies still use short-read sequencing [29]. 

 

1.3.2 EXPRESSION QUANTITATIVE TRAIT LOCI (EQTLS) 

Much of gene expression variation is due to genetic effects [85], and we know variation in 

gene expression is important in disease as GWAS hits are enriched for expression 

quantitative trait loci (eQTLs) [67, 72, 86]. eQTL-mapping is the most common method to 

study gene expression variation in a population of individuals. They search for the statistical 

associations between a variant and the expression level of a gene [65]. In this analysis, 

individuals are grouped based on their genotype, then gene expression levels for each gene 

are compared between groups via linear models [85]. If gene expression levels are 

significantly higher in one group then it is assumed that a variant within the locus under 

study is affecting expression [87]. An illustration on how the analysis is performed is shown 

in Figure 3.  
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Figure 3. The principle of eQTL detection.  
In the above example, three distinct variants are illustrated in three groups of individuals (two homozygous to the two alleles 
of each variant and one heterozygous). For single nucleotide polymorphism (SNP) 3, the orange shapes represent control 
condition when no eQTL is observed, and blue shapes represent conditional stimulation that reveals an eQTL. In the bottom 
panel, the logarithm of odds (LOD) is used to investigate the statistical association between genotype and gene expression. 
The variants above the genome wide threshold (SNP 1 and SNP 3 during stimulation) are considered an eQTL. Created with 
BioRender.com. 

 

 

 

Most studies focus on genetic variants that are close to each gene and operate in cis. Cis-

variants are located on the same allele as the gene they affect. eQTLs may act through 

transcription factor binding [66, 67], chromatin accessibility [68], histone modifications [69], 

alternative splicing, small RNAs, large intergenic non-coding RNAs, RNA editing, and mRNA 

degradation [65], usually from a distance of few kilobases. Trans-variants typically act via a 

diffusible factor [88], such as transcription factors, which will affect both alleles but are 

more complicated to study [89]. An illustration describing these processes is presented in 

Figure 4.  
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Figure 4. Mechanism of eQTL.  
In panel A, a regulatory region (green box) regulates expression of a gene (blue box). In the panel B, there is a cis-variant that 
reduces the gene expression relative to the wild type (panel A). In the panel C, there is a trans-variant further away or on a 
different chromosome that mutates a regulatory protein that then reduces expression of a gene relative to the wild type. 
Created with BioRender.com 

 

 

A large consortium (GTEx) has pursued the challenge of characterising the genetic 

architecture of gene expression across different tissue types, and now almost every gene 

has at least one known eQTL [66, 90]. The eQTL map changes dynamically depending on the 

tissue, cell type [91, 92], cellular environment, internal conditions of the source [93], and 

the donor genetic background [94]. To date, most eQTL studies have been performed on 

easily accessible tissues, such as blood, or in post mortem tissue samples [95]. However, 

tissue samples consist of multiple different cell types which can lead to poor resolution. 

Because gene expression is highly dependent on environment, the signal can be affected by 
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the cellular heterogeneity and cellular state. Additionally, there is differential expression 

across populations [64], therefore similar to GWAS these studies will benefit from more 

diverse samples.  

eQTLs can also only capture the effects of common variants, and similar to GWA studies, 

due to linkage disequilibrium the causal variant is often unknown [96]. There are statistical 

fine-mapping approaches to try to elucidate the causal variant within the locus [97-99], but 

these can also often be limited. It is also often the case that there is an overlap between 

GWAS hits with eQTL signals [71, 72], therefore combining these analyses may help identify 

the connection between the causal variant and/or target gene and the mechanism of action 

[100]. However, this task is far from complete.  

One consortium set to tackle this gap is now one of the most used genomics resources, 

Genotype-Tissue Expression (GTEx) project. The project has given the recourses to study 

how genetic variants relate to the gene expression changes, described in the section below.  

 

1.3.3 GENOTYPE-TISSUE EXPRESSION (GTEX) PROJECT 

Most genes are differentially expressed in different cell types [101] and at different 

developmental stages [102], with some transcripts being only transient, and as such large 

number of tissues and individuals are needed to capture the effects of genetic variants on 

gene expression. In addition, it would be beneficial to study the effects of genetic variants in 

the disease-relevant tissue for example, however, this is often not possible in a living donor 

[103]. These problems motivated the GTEx project, where gene and transcript expression 

has been profiled from multiple tissues, along with genotypes, from deceased individuals 

[86]. The current V8 release contains nearly 1000 individuals and 54 different tissue types. 

This enables the study of the relationship of genetic variants with gene expression. The GTEx 

project has also provided the scientific community with a tissue bank that allows 

researchers to study the relationship between genomic variants and molecular phenotypes 

to answer specific research questions. 
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The GTEx resource has been used in numerous studies and has led to many discoveries. The 

main aim of the consortium was to provide a resource to study eQTLs. For example, it has 

been crucial in elucidating that most eQTLs are shared, and while tissue-specific eQTLs are 

still common, eQTLs that are shared between only a few tissues are not seen as often [86]. It 

has also revealed that multiple cis-eQTLs act on the same genes [104]. This is contrary to 

trans-eQTL, where the effect is most often tissue-specific [66]. The GTEx project has also 

been used as a resource for other fields, including a range of studies that have used GTEx 

data to identify tissue-specific imprinting [105], the effect of protein-truncating variants on 

the gene expression in different tissues [106], and the impact of structural variation on 

causing eQTLs [107]. GTEx also provides a genomics data resource to study allele-specific 

expression (ASE) [108]. Taken together, this project has provided a standardized framework 

by which all other gene expression studies can be conducted, providing a standardised 

analysis pipeline, and reference data that is invaluable across both basic and disease 

biology. 

Because eQTL analysis requires large sample sizes, it is not applicable to the study of rare 

diseases with small sample sizes. ASE offers a way to study the effects of variants on gene 

expression within individual samples. ASE can also be used to support eQTL analysis because 

eQTLs that are near genes often act through ASE [85]. 

 

1.3.4 ALLELE SPECIFIC EXPRESSION (ASE) 

Allele specific expression (ASE) represents allelic imbalance between two alleles within an 

individual [109]. ASE analysis detects the differential expression of two alleles from the 

same individual at a site containing a heterozygous variant (Figure 5). ASE can be caused by 

a cis-regulatory variant affecting gene expression which can affect transcription factor 

binding affinity [110, 111], by epigenetic effects including methylation [112] and imprinting, 

or by nonsense mediated decay [113]. However, it has been shown that it is mostly due to 

genetic rather than epigenetic effects [64]. ASE also captures allele specific splicing events 

[114, 115] such as a variant causing exon skipping or intron retention; and also monoallelic 

expression including those observed during X chromosome inactivation [116, 117], in the 

olfactory receptors [118], and in immunoglobulin receptors [119, 120]. However, ASE is not 
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able to detect trans effects as both alleles share the same environment and both will be 

affected by trans effects. There are also allele specific effects downstream of transcription 

at the posttranscriptional stage such as ribosome protein binding affinity or mRNA 

regulation [121]. 

 

 

 

 

 

 

Figure 5. Mechanism of ASE expression.  
A gene (blue box) contains a heterozygous variant, which acts as a marker to distinguish the expression from either allele. C 
allele has a mutation within regulatory region (green box) that reduces transcription factor binding and therefore reduces 
expression. As a consequence, C allele halves its expression relative to the wild type A allele that can be quantified with RNA-
seq considering reads spanning the heterozygous variant within the gene. Created with BioRender.com. 
  



 
33 

RNA-seq reads provide coverage across heterozygous sites in expressed genes, and these 

represent transcription from maternal and paternal alleles [122, 123]. According to a null 

hypothesis, the ratio of reads originating from the reference allele and alternative allele 

should be equal. If there is a variant influencing the gene expression in one haplotype, it can 

cause imbalanced expression between two alleles. This is usually detected through a 

binomial test of read counts between two alleles [124]. If the ratio deviates significantly 

from 50:50, the gene is under ASE [94]. These statistical tests rely on the coverage at 

heterozygous sites to distinguish genuine ASE events from a mutation within a read [125] 

and to distinguish genuine biological events from technical variation in allele mapping. ASE 

detection is illustrated in Figure 6. 

 

 

 

 

Figure 6. The principle of ASE detection.  
The ratio of RNA-seq reads overlapping a heterozygous variant is calculated. A statistical test are performed to detect genes 
where the ratio significantly deviates from 1:1. Adapted from Pastinen, 2010 [126]. Reproduced with permission from 
Springer Nature, Copyright 2010. 
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ASE analysis is a powerful method that allows quantification of cis-variant effects within an 

individual rather than needing large population samples. eQTL analysis requires multiple 

individuals from each genotype group for each genetic variant, which can be difficult to 

obtain for rare variants. Comparison of eQTL and ASE is shown in Figure 7. 

 

 

 

 

 

Figure 7. Comparison of eQTL and ASE detection.  
While eQTL analysis (left side of the figure) requires large sample sizes with each genotype, variant consequences on gene 
expression can be measured within a single individual in ASE analysis. Created with BioRender.com. 

  



 
35 

The regulation of most genes (roughly 60%) is affected by genetic variants in cis [64]. ASE 

captures the effects of both common and rare variants [126]. However, it can also be used 

to detect expression modifiers of protein-coding mutations [113, 127], tumour tissue [128] 

and loss of function variants [129]. Because ASE is often caused by a variant or variants in a 

regulatory region (as opposed to imprinting, which is less common), different environmental 

conditions and different cellular stages may utilise different regulatory regions and 

therefore alter ASE effects [93]. This allows the study of the interactions between 

environment and genetics. For example, ASE tends to slightly increase (by 2.69% when 

measured at 70 and 80 years of age from the same individuals) during ageing, likely due to 

increased environmental variance and reduced genetic regulation [130]. 

Despite its promise, the use of ASE as a detection method also has its own limitations. For 

example, in the cancer field, ASE can be driven by technical artefacts, including copy 

number variants that are common in cancer and can lead to false positive ASE events, which 

account for 84% of allelic imbalance [131]. This is in addition to a highly mutated genome 

that will suffer from mapping biases. ASE can be informative in a disease context, though. 

There have been studies showing ASE can contribute to disease phenotypes, including cases 

where deleterious alleles at heterozygous sites have been shown to have a higher 

expression level in disease cases relative to the healthy controls [132-134]. This allows 

disease alleles to have a greater impact than would be expected from a recessive trait. 

Equally, ASE can mediate autosomal-dominant disease phenotypes by increased expression 

of the wild-type allele [135]. The authors hypothesised a feedback loop can be responsible 

for this. Indeed, a trans effect have been shown to mitigate cis-regulatory effects by a 

negative feedback loop in model organisms to compensate for adverse allelic imbalance 

[136-138]. 

Most ASE studies have used bulk RNA, or RNA from tissues that contains different cellular 

types to detect gene regulatory effects. This different cellular composition will cause 

variation in ASE due to different regulation in constituent cells. To address this, there are 

new studies focusing on single cell ASE [139]. However, this method is expensive, and the 

analysis is still evolving. In addition, bulk RNA-seq data availability significantly outweighs 
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that of single-cell data, therefore it remains a commonly used data type. RNA-seq is a highly 

useful resource, and the next section will describe its utility. 

 

1.3.5 COMPUTATIONAL CHALLENGES 

Analysis of next-generation sequencing data has numerous challenges due to the complexity 

and lack of understanding of the human genome. One of the biggest limitations in short-

read sequencing is the reliance on the reference genome and the biases that follow this. The 

reference genome has errors and gaps, but most importantly, it lacks the diversity present 

in the human population. Genomic regions with high diversity are difficult to study as the 

sequencing read will have multiple mismatches from the reference genome. Yet some 

clinically relevant genes are known to be highly diverse, such as the HLA locus [140]. For the 

same reason, reads that are more similar to the reference sequence will be more accurately 

and easily aligned [141, 142]. The reads that contain alternative alleles are more likely to be 

discarded as they contain a mismatch from the reference genome, biasing the analysis 

towards the reference allele. This is known as mapping bias [141]. 

Another computational challenge comes from incorrect phasing. During short-read 

sequencing, maternal and paternal chromosomes are sequenced simultaneously. It is often 

left for computational tools to phase the haplotypes. Haplotype phasing means linking 

together genetic variants that occur on the same chromosome [143] and this information is 

often important when aligning sequencing data since genetic variation can influence the 

ability to correctly align a read. In addition, often a regulatory variant influences the allelic 

imbalance [144]. Potentially other cis variants might mitigate or exacerbate this effect. 

Therefore, linking the combination of variants on the chromosome is crucial for ASE 

analysis. 

There have been large studies aiming to better understand the variation in the human 

genome, including the 1000 Genomes Project [44] and the HapMap 3 project [145]. Despite 

these efforts, variant calling is still not complete. Often the phasing information is not 

considered due to the cost of experiments and the computational challenges [144]. 
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However, as eQTL studies have shown, knowledge of the background of variants is of crucial 

importance [146]. 

The most common phasing method is population-based haplotype inference. Here 

computational tools are used to output the most likely phase based on the modelling of 

haplotype frequencies [147]. This will not resolve rare and private variants, in addition to 

other challenges including the extent of linkage-disequilibrium. Pedigree-based analysis was 

widely used before large-scale sequencing data was available. However, it is often not 

plausible in large scale studies due to the sequencing costs of parents, availability of 

parental genomes and, also de novo mutations would not be resolved with this approach. 

Phasing and the difference between pedigree and haplotype method is shown in Figure 8. 

Other methods include haplotype assembly [144] and experimental methods such as gently 

fragmenting genomic DNA into large chunks and sequencing each separately; or separating 

metaphase chromosomes and sequencing each separately [143]. Haplotype assembly is not 

capable of phasing full genomes [144], and experimental methods can be very expensive. 

Combination methods perform the best [148], however, due to cost and data access 

limitations these are often not possible. Therefore, computational approaches for phasing 

that incorporate rare and private variants would overcome the limitations of the above. 
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Figure 8. The difficulty of phasing and resolution methods. 
In panel A, an allele has 3 polymorphisms. When reads are generated for this locus from a sequencing machine, the haplotype 
is undetermined. Panel B shows some of the possible allelic combinations by which the polymorphisms could be arranged 
within the locus. Panel C illustrates phasing inference with pedigrees. The haplotype inheritance is visualised by the coloured 
blocks. The pink haplotype goes through a recombination event. Panel D illustrates the use of population genomic 
information to infer the most likely phase. Created with BioRender.com. 

 

 

Mapping biases and the resolution of genetic phase are sources of artificial bias that are 

particularly problematic for ASE. Therefore, improving these can lead to better detection of 

ASE at an individual level. The accurate detection of ASE can lead to a better understanding 

of how variants, and in particular rare variants, play a role in regulating gene expression. 

Because there is a vast resource of short-read sequencing, it is important to develop 

correction methods to be able to use the data available and expand the range of important 

biological findings.   
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1.3.6 EXISTING ASE TOOLS AND ASE USES 

There are numerous tools developed to study ASE. Some of the existing methods include 

GATK ASEReadCounter [27, 149], WASP [123], aFC [150], AlleleSeq [151], EMASE [152], 

QuASAR [153], ASElux [154], ASEP [155], GeneiASE [156], MBASED [157], MMSEQ [158], and 

others [159-163]. There are a range of different functions across these tools that stretch 

from simple allele counting at heterozygous sites, to complex adjustment and normalisation 

of allele count data, each coming with their own advantages and limitations. In general, the 

existing software do not resolve all technical challenges associated with calling ASE from 

short read data. 

Because GATK variant calling is the gold standard variant caller and genotype information is 

often needed for ASE analysis, the GATK tool ASReadCounter is often incorporated into ASE 

pipelines and is easy to use. The tool simply quantifies the allelic ratios at heterozygous 

sites, with the user being able to filter for qualities such as coverage, base quality, and 

mapping quality. However, it does not take into account any computational biases or 

attempt to correct for these.  

Another widely used tool is WASP, which reduces biases associated with ASE analysis by 

removing ambiguously aligning reads. It removes reads that would not align to the same 

genomic location if the genotype at each heterozygous site is swapped to the opposite 

allele. This has been shown to reduce computational artefacts, however, it also removes a 

large number of reads that then impact downstream power to detect ASE events. WASP 

also performs other corrections, including removing duplicate reads at random rather than 

removing reads with the lowest mapping score (which often is the read with the alternative 

allele) and controlling for GC content. 

Log allelic fold change (aFC), although not an ASE detection method, is commonly used in 

the ASE field as a downstream analysis tool that uses ASE to quantify aFC. aFC is a model 

that describes the magnitude of change in gene expression levels that are associated with a 

genetic variant(s) and can also be used to quantify allelic imbalance. aFC can be quantified 

from ASE and eQTL data, allowing for a direct comparison.  
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Another approach used to improve the quantification of ASE is to generate personalised 

diploid genomes for the alignment of sequencing data, based on the two inherited 

haplotypes of an individual, as is the case in AlleleSeq. With this method, personalised 

genomes are constructed that contain genetic variants from each of the two genetic 

backgrounds inherited from parents. RNA-seq reads are then aligned to both genomes, and 

because there are no mismatches associated with the alternative allele at each 

heterozygous site, the reference bias should not be present. Following alignment, AlleleSeq 

can quantify ASE events, but it is often limited by its inability to correctly deal with indels. 

Other tools seek to deal with another common problem that can bias ASE data, which is 

reads that align to multiple locations. It is often tricky to know how to deal with these reads, 

as simply removing them could bias the output, and this problem is further compounded as 

reads containing mismatches from the reference genome are more likely to align to multiple 

locations. EMASE is a method that aligns multi-mapping reads by a hierarchical approach, 

resolving ambiguities initially at the gene level, then isoform and lastly at allele levels. 

Following this, the software quantifies ASE at each site. This approach retains more reads 

that can be informative and reduces reference bias since multi-mapping reads tend not to 

originate randomly from both alleles. 

Although the above tools seek to solve specific technical problems with RNA-seq data, they 

largely focus on individual heterozygous sites for analysis or correction. ASEP is a method 

that aggregates single nucleotide polymorphisms (SNPs) within a gene across multiple 

individuals, utilising a model to quantify gene-based ASE. GeneiASE is another method that 

aggregates information from multiple individuals. It is based on Fisher’s meta-analysis 

method combining P-values across individuals. It can also detect ASE events induced by a 

particular condition. Similarly, MBASED is a method that aggregates multiple SNV loci using 

meta-analysis based detection to quantify gene-level ASE within individuals. 

Finally, most ASE analysis approaches require RNA-seq and genotype information. QuASAR 

is a statistical learning method that has been developed to detect heterozygous SNPs and 

quantify ASE events within an individual, removing the need to genotype the variants prior 

to the ASE analysis.  



 
41 

Outside of these tools, there are many other approaches being developed that are now 

being tested more thoroughly. ASElux is a tool that uses genotypes to generate an allelic 

reference genome. It builds all reads spanning a heterozygous site and pre-screens the RNA-

seq data. The runtime is lower due to only considering genomic regions containing the 

heterozygous variants. MMSEQ tried to battle reference allele bias by generating a custom 

transcriptome onto which the reads are aligned and uses a statistical model to quantify ASE. 

IDP-ASE quantifies ASE by combining long and short-read sequencing [162] and Skelly et al. 

developed a Bayesian hierarchical model to quantify ASE by comparing allelic ratios in ASE 

to non-ASE genes [159]. 

ASE analysis has been applied to multiple fields and continues to gain interest in the 

research community seeking to understand the biological implication of altered gene 

expression. ASE is a powerful tool to study gene expression changes associated with a local 

regulatory variant, particularly with small sample sizes. Because GWAS hits are enriched for 

eQTLs, but the exact causal variant and linked causal gene are often unknown, ASE can be 

used as an extra layer of information in these cases. Indeed, ASE has been used to 

complement fine-mapping approaches in narrowing down a list of potential causal variants 

[164], and this method has been shown to reduce the potential number of causal variants 

by 11% [165]. In addition, numerous studies have identified genes under ASE quantitatively 

as a resource for the scientific community (eg. [108]). 

Because ASE can be caused not only by a local regulatory variant but also by imprinting, 

studies have also utilised ASE for this field. One study identified novel imprinted genes 

utilising ASE analysis, that were verified by additional methods [166]. Another study used 

ASE analysis to identify a differential preference for parental expression in developing 

mouse brain compared to the adult brain [167]. This demonstrates the utility of ASE to 

investigate epigenetic effects in addition to regulatory genetic effects. 

ASE can often be a preferred method to study gene expression changes associated with 

genetic variants in cases where only small sample sizes can be for the analysis (such as rare 

disease studies) or where small sample sizes are preferable in terms of cost and resources. 

For example, ASE can be used to study gene expression in a larger number of environmental 

conditions and tissues than would normally be feasible, particularly in studies investigating 
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GxE interactions where multiple conditions are required [93, 102]. Indeed, recent studies 

have shown that around 50% of genes that demonstrate ASE under particular 

environmental conditions are missed in large eQTL studies [102]. Furthermore, it has been 

demonstrated that roughly 50% of these conditional ASE genes are implicated with GWAS 

hits and thus complex traits, with some examples including obesity and Parkinson’s disease 

[93]. 

ASE has also been widely used in the disease and diagnostic context. For example, one study 

identified ASE in loci associated with Parkinson’s disease, implicating genes likely to be 

involved in the disease, and therefore potential targets for therapeutic intervention [168]. 

ASE has also been observed in autism spectrum disorder and schizophrenia samples, again 

potentially pointing to causal biology [132, 169]. Similarly, changes in ASE have also been 

identified in cancer samples (versus normal controls), with generalized approaches 

identifying targets overlapping known candidate genes [170] and targeted approaches 

implicating changes in the expression of known causal genes in colorectal cancer [171]. As 

ASE methods are still being developed and refined, their utility in clinical settings will 

continue to expand. 

 

1.4 THESIS AIMS 

The overall aim of my PhD is to develop a method to better quantify ASE using short-read 

sequencing data. In order to achieve this, I will focus on the following specific aims: 

1. Develop, test, and characterise a pipeline to improve computational biases 

associated with ASE detection. 

2. Release the pipeline into an easy-to-use, reproducible format and validate its 

performance against other methods. 

3. Assess the performance of the pipeline in recapitulating population level signal 

against other methods.  

4. Investigate the utility of ASE and the pipeline in detecting biologically important and 

disease relevant signals.   
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2.1 INTRODUCTION 

2.1.1 ACCURATE GENE EXPRESSION QUANTIFICATION IS IMPORTANT 

The impact of genetic variation can have different functional consequences depending on 

where in the human genome it occurs. Variants that fall within coding regions are more 

likely to affect the function of the protein itself, but this can also depend on the type of 

mutation that has occurred, be it a single base pair substitution, i.e. changing a single 

nucleotide within the DNA; or structural variation that changes larger DNA sequences [172]. 

Structural variation can be due to copy number variation, or chromosomal rearrangement 

events including insertions, deletions, and duplications, and are more likely to disrupt 

protein function. If the change is divisible by three (length of a codon) and in frame, the 

protein will gain or lose amino acids but the up- and downstream of the protein will not be 

affected. Otherwise, structural variation will lead to a frameshift affecting the downstream 

amino acids of the protein. Single nucleotide variation on the other hand can be 

synonymous, where due to redundancy in the genetic code, the variant does not change the 

amino acid and therefore the protein will not be affected [173], although there are 

exceptions where synonymous mutations increase disease risk [174]. However, a single 

nucleotide variant can also be a nonsense variant that changes the amino acid to a 

premature stop codon, truncating the protein which can lead to the gene being targeted by 

nonsense-mediated decay, or a missense variant that changes the amino acid within the 

protein. In this latter case, the consequences of the variant will depend on various factors 

including where the change is, how conserved the protein is, and how similar the amino 

acids are. 

Some mutations, on the other hand, are in the non-coding genome within so-called junk 

DNA regions, and some are within regulatory regions influencing gene expression levels. 

Because we do not understand the consequences of all these mutations, especially those 

outside of the coding regions, it is often hard to prioritise them for further study. GWA and 

eQTL studies have been important in deciphering important variants in the noncoding 

regions, and it has become apparent that noncoding variants have a high impact on complex 

traits [175-177], many acting via gene expression [178]. As an example, lactose intolerance 
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is prevalent in certain populations, and a variant upstream to LCT, a lactase gene, was 

identified for this phenotype [179]. The variant is within a distal enhancer and is associated 

with lactase production in particular cell types [180], which has provided a fitness benefit in 

recent human evolutionary history. Therefore, understanding gene expression regulation 

can be informative for understanding underlying biological mechanisms and population 

differences.  

However, it can be challenging to distinguish the causal variants with eQTL studies due to 

linkage disequilibrium, and because genes are regulated by multiple regulatory regions. 

Another drawback of eQTL studies is that they cannot be performed on smaller sample sizes 

due to a lack of power [181]. However, ASE is a powerful tool to study allelic imbalance that 

overcomes these issues and has been shown to be informative in disease contexts (eg. [168, 

171]). ASE analysis is a potentially more powerful approach to detect the effects of cis-

acting variants rather than eQTL studies [182] due to being measured within the individuals; 

ASE analysis in only few individuals can be enough to detect the effects of rare variants 

[183].  

There is an enormous amount of short-read data available that offers opportunities to 

utilise these data for ASE analysis in many areas. The ASE field suffers from biases including 

ones related to computational methods that deal with short-read sequencing [142]. In order 

to utilise the potential of ASE analysis, it is essential to deal with these artefacts. The 

following sections will describe technical problems around ASE analysis. 

 

2.1.2 BENEFITS OF ACCURATE PHASING FOR THE ASE ANALYSIS 

In a typical ASE analysis, RNA-seq reads first need to be aligned to the reference genome. 

Reads with an alternative allele at a heterozygous site have a mismatch from the reference 

allele present in the reference genome, and this, in combination with other potential 

variants within the read, sequencing errors or low-quality nucleotides, causes reads with 

alternative alleles to be discarded more often. This is called reference bias [141, 184]. One 

way to overcome this is to construct parental genomes, where phased variants are 
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incorporated into the reference genome generating two parental genomes [151], onto 

which RNA-seq reads can be aligned. 

Humans inherit one maternal and one paternal copy of a genome, each containing genetic 

variants. Most genetic studies do not directly differentiate between these two copies, due 

to the cost and complexities of sequencing both parental samples. Instead, phasing or 

haplotype estimation is used and is important in regions surrounding heterozygous variants, 

as they are key for understanding how genetic variant(s) influence gene expression in cis. 

Phasing determines whether variants come from the same or different chromosomes 

(Figure 9) and when constructing personalised genomes, this governs whether variants 

come from maternal or paternal genomes. This is a challenging task and traditionally has 

been performed using population-level data [148, 185, 186], however, this method 

struggles with rare and de novo variants, and in regions of high diversity [187]. Long-read 

sequencing can incorporate private haplotypes [188], but this method is a relatively new 

approach, with the academic community gaining interest in last two decades [189], but it is 

still a costly method where the underlying protocols and analysis methods are still being 

developed. Similarly, alternative methods including modified laboratory protocols [147, 

148] or sequencing families [190], are also costly, especially for larger sample sizes. 

Conversely, there are also computational tools and approaches that seek to deal with the 

correct phasing of genomes, phASER [191] being one of them. This approach improves 

phasing by incorporating RNA-seq reads that will bring variants together over longer 

distances, since the same read harbouring multiple genetic variants can often be split across 

multiple exons as a consequence of splicing. 

Accurate phasing of genetic variants impacts the ability to construct correct parental 

genomes and thus how well reads can be aligned to the personalised genomes. vcf2diploid 

is a tool within AlleleSeq that constructs personalised maternal and paternal genomes by 

inserting phased variants, indels and structural variants into the reference genome [151]. 

These genomes will contain all the individual variants and therefore, when RNA-seq reads 

are aligned to personalised genomes, the alternative allele can exactly match the altered 

reference genome. 
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Figure 9. Compound heterozygosity as an example for importance of phasing 
In this example, when mutations are on different chromosomes (A), the individual is wild-type for a phenotype. When the 
mutations are on the same chromosome (B), the individual has a disease phenotype. Created with BioRender.com 

 

 

 

2.1.3 FILTERING OF RNA-SEQ DATA 

The initial step of aligning RNA-seq reads involves multiple filtering steps performed on the 

raw reads, and each step has downstream consequences [78]. RNA-seq filtering steps are 

generally determined within research groups and there are no standardised protocols. Each 

filtering step has its own effects and limitations, and the aim of the research will determine 

how and which filtering steps to accommodate. 

Most commonly reads are evaluated for sequence quality, which depends on library 

preparation and sequencing. A commonly used Phred quality score is used for Illumina 

platforms. It quantifies the probability that a given base is incorrect. Trimming removes low-

quality nucleotides based on how likely those are assigned incorrectly [192] prior to aligning 

reads to the reference genome, usually at the end of reads, therefore reducing errors and 



 
49 

random sequences [193]. However, it has been shown that trimming can influence 

downstream analysis such as gene expression estimation [192] since shorter reads are more 

likely to be aligned incorrectly, as are the reads that originate from genes with low exon 

number or high GC content [194, 195]. The number of aligned reads is also reduced [193], 

which can potentially remove informative reads. This can be particularly unfortunate for 

studies investigating rare variants and those with small sample sizes. 

Another common filtering step is soft-clipping. Soft-clipping is performed during the 

alignment step where the bases at the beginning and the end of the read that do not match 

the reference sequence are ignored [196]. The decision is often made considering the 

quality score and the reference sequence, whereas trimming only takes into account the 

quality score. In ASE analysis, this may lead to biased allelic quantification if alternative 

alleles at the ends of reads are preferentially trimmed, therefore exaggerating the reference 

bias known to occur in the read alignment. 

Another common filtering is performed by removing reads that align to multiple locations 

(from here on referred to as ‘multi-mapping’ reads). Gene duplications, gene splice variants 

and repetitive sequences cause some short-reads to map to multiple locations in the 

genome [197], making it difficult to accurately quantify the expression of certain genes. 

Around 30% of reads can align to multiple locations [32, 198], and since multi-mapping 

reads are most often discarded, this removes a large proportion of potentially informative 

reads and underestimates sequence coverage at certain genes (with large gene families and 

with high homology) [197]. Methods to recover multi-mapping reads exist, but current ASE 

detection methods do not incorporate these approaches into the analysis. 

There are tools to deal with many of the biases associated with ASE quantification, such as 

those that reduce mapping bias (eg. [123, 184]) and calculate ASE counts (eg. [199]), though 

there are no stand-alone pipelines that deal with all of these artificial biases together and 

produce ASE quantification. For this reason, in this chapter, I developed a pipeline testing 

how each of the steps described in this section influences ASE detection and to incorporate 

all key steps into a single stand-alone workflow. To achieve this, I generated highly realistic 

simulated genomic data to obtain ground truth ASE information. This allowed me to test the 

pipeline and refine it into a final pipeline.   
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2.2 METHODS 

2.2.1 PRELIMINARY PAC PIPELINE 

A preliminary pipeline, later termed Personalised ASE Caller (PAC), to obtain improved ASE 

counts (Figure 10), had been in place prior to me taking over the project. It consists of the 

following steps.  

As input, PAC takes a VCF file with phased variants (variant call format, a file that contains 

information on the genetic variation within the individual) and a FASTQ files with unaligned 

RNA-seq reads. As a first step, phASER [191] re-determines the phase of variants at the 

heterozygous sites where RNA-seq reads can add information (read-aware mode). The 

resulting VCF is used to incorporate variants into the reference genome to generate 

hypothetical parental genomes using AlleleSeq [151]. The reads are then aligned to both 

genomes separately with STAR [82]. The parameters used were as follows: adapters were 

trimmed (Phred score <30), keeping properly paired (-f 0x0002 using SAMtools) and 

uniquely mapped (NH:i:1 flag) reads. After alignment to each parental genome, a custom 

script was used to select the best alignment for each read from the two alignments (scoring 

reads by the number of matching nucleotides minus two times the number of indel 

positions, drawing at random when the two mappings have equal scores), and the number 

of each allele at each heterozygous site was counted. The files were then merged, and the 

output file contains the coverage and proportion of reads mapping to the reference genome 

for each heterozygous variant. The pipeline is illustrated in Figure 10. 
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Figure 10. Preliminary PAC pipeline. 
A schematic describing the main steps, features and outputs of preliminary PAC. Created with BioRender.com 

 

 

 

2.2.2 PRELIMINARY ANALYSIS 

2.2.2.1 HIPSCI SAMPLES 

To test a preliminary version of PAC, I obtained data from Human Induced Pluripotent Stem 

Cell Initiative (HipSci) [200] that generated induced pluripotent stem cell (iPSC) lines from 

healthy and disease donors as a reference panel. I selected 10 healthy individuals for which 

there was genotyping and paired-end RNA-seq data available from the corresponding iPSCs, 

and iPSC-derived sensory neurons [201] (data acquired from the European Nucleotide 

Archive (Project code: PRJEB18630)). Genetic variants were obtained from whole exome 

sequencing (WES) data already called by HipSci. The information on donor cell lines is 

provided in Table 1. 
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Donor ID Gender Age Ethnicity Source 
Cell culture 
conditions 

HPSI0913i-eika_2 Male 45-49 White British Fibroblasts Feeder-free 

HPSI0114i-eipl_1 Female 40-44 White British Fibroblasts Feeder-free 

HPSI0114i-kolf_3 Male 55-59 White British Fibroblasts Feeder-free 

HPSI0214i-kucg_2 Male 65-69 White British Fibroblasts Feeder-free 

HPSI0114i-oevr_3 Male 70-74 White British Fibroblasts Feeder-free 

HPSI1113i-podx_1 Female 65-69 White British Fibroblasts Feeder-free 

HPSI0314i-qaqx_1 Female 60-64 White British Fibroblasts Feeder-free 

HPSI0114i-rozh_5 Female 65-69 White British Fibroblasts Feeder-free 

HPSI1013i-wuye_2 Female 30-34 White British Fibroblasts Feeder-free 

HPSI0314i-xugn_1 Male 65-69 White British Fibroblasts Feeder-free 

 
Table 1 HipSci donor information.  
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2.2.2.2 HIPSCI BASIC ANALYSIS 

To obtain an overview of the performance of PAC, I used RNA-seq data and variant calls 

from 10 HipSci (Table 1) healthy iPSC and iPSC-derived sensory neuronal cell line samples as 

inputs for PAC runs, using the GRCh37 reference genome (same version used in HipSci VCF). 

I also aligned the same RNA-seq with STAR 2.51a with default parameters to GRCh37 

reference genomes as a standard alignment approach for comparison. The heterozygous 

sites generated by PAC and standard alignment located on autosomes with >=10× coverage 

and present in both approaches and both cell lines were selected for further investigations 

throughout the analysis. 

 

2.2.2.3 ASE SELECTION AND GENE ANNOTATION 

To demonstrate that PAC is able to detect genes under ASE, I determined the genes under 

ASE from PAC output in iPSCs and neuronal cells. All analysis was performed with custom 

scripts written in Python (available on https://github.com/anna-

saukkonen/PAC/tree/main/thesis_scripts). When comparing cell types or methods, sites 

present in each were selected at >=10× coverage. A two-tailed binomial test was performed 

on the heterozygous sites meeting these criteria. The test gives a statistical significance 

value of deviations from the expected observation, which in this case was 0.5, as the null 

hypothesis is that both alleles are expressed at the same ratio. Sites with P<0.05 were 

considered ASE sites. For more stringent testing, Bonferroni-adjustment was performed on 

P-values generated from the binomial test. Bonferroni-adjustment corrects for the issue of 

multiple comparisons where the chance of false positives increases. The P-values from the 

binomial test were divided by the number of tests, or the number of heterozygous sites, 

under study. To link ASE sites to genes, I acquired gene annotations for all sites from the 

GENCODE GTF file (version 19). If a site overlapped with multiple genes, all genes were 

included in the analysis. If at least one site was under ASE, the gene was assigned to the ASE 

gene list. If the gene contained an ASE and non-ASE site, the gene was considered to be 

under ASE and removed from the non-ASE list. 
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2.2.2.4 DAVID FUNCTIONAL ENRICHMENT ANALYSIS 

To investigate whether genes under ASE identified by PAC were enriched for any biological 

processes, I annotated each variant to a gene and performed gene enrichment analysis for 

these genes. Gene enrichment analysis groups genes with related functions together. Gene 

Ontology (GO) terms are the biological annotation terms associated with a gene, and the 

enrichment of genes within each term is determined by statistical tests against the control, 

which is the defined background gene list [202, 203]. 

The David Bioinformatics Resource 6.8 Functional Annotation Tool [203, 204] was used to 

obtain GO terms and gene enrichment analysis for genes under ASE (detection Bonferroni-

adjusted) in iPSCs for each donor. David uses magnitude of resources to collect gene and 

protein identifiers and their annotations including NCBI, Uniprot, Ensembl, and Gene 

Ontology. Ensembl ID was used as inputs for the David Annotation Tool. Genes with at least 

one site with >=10× coverage from iPSCs were selected for the background gene list. The GO 

ALL category was chosen, which provided the GO mappings annotated with all the levels of 

specificity. The GO terms were considered significant with P<0.05 after the Benjamini-

Hochberg adjustment, which decreased the number of false positives. Benjamini-Hochberg 

adjustment is a default in David output. Elsewhere in the thesis Bonferroni correction is 

used for a more stringent correction. 

 

2.2.3 SIMULATED DATA 

2.2.3.1 PLATINUM GENOMES PROJECT 

In order to determine the accuracy of PAC and to refine its parameters, I generated 

simulated genomic data where the underlying sequence, variant information and allelic 

counts are known. The first step was to obtain the most accurate variant calls available. I 

used phased variant calls (VCF file) that included indels and SNPs for the hg19 version of the 

human reference genome for an individual NA12877 from CEPH/Utah pedigree 1463 from 

the Platinum Genomes Project (PGP) [205] (Figure 11). This project generated deep (50× 

average), whole-genome sequencing data of 17 individuals in a three-generation pedigree. 
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The project used variant calls from six different informatics pipelines and two different 

sequencing technologies. Conflicts between call sets were determined by inheritance-based 

validation. This dataset is widely considered to represent the most accurate set of variant 

calls that can be achieved with current methods.  

 

 

 

 

Figure 11. Pedigree of the family of an individual NA12877 used to generate simulated genomic data. 
The high-quality genomic data from a large family that was used in Platinum Genomes Project (CEPH pedigree 1463) allowed 
the generation of accurate variant calls. The number for each individual represents a suffix to NA128 to generate the Coriell 
ID. Circled individual NA12877 was used for simulation. Modified from Eberle et al., 2016 [205], Copyright 2017 (Licensed 
under CC BY).  

 

 

 

2.2.3.2 GOLD STANDARD GENOMES 

In order to generate accurate simulated genomic data, I generated ‘gold standard’ parental 

genomes where the exact sequence of whole genomes and each allele is known. These 

were later used to simulate RNA-seq and whole genome sequencing.  

I used vcf2diploid within AlleleSeq [151] to incorporate high confidence phased variants 

from hg19 VCF from the PGP [205] for individual NA12877 into the UCSC GRCh37 reference 

https://creativecommons.org/licenses/by/4.0/
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genome to obtain 2 phased personalised parental genomes. The output is a file for each 

chromosome, which I then concatenated into a complete genome per parental genome. The 

output from vcf2diploid also contained map files that contain coordinates of the variants 

and how they correspond between the parental and reference genomes, and chain files that 

are needed to convert reference annotation coordinates to personal ones. I used liftOver 

separately on each genome supplying GENCODE annotation for the reference genome and 

the maternal/paternal chain files to generate the maternal and paternal annotation files. I 

called these gold standard genomes. 

The outputs from the vcf2diploid are maternal and paternal genomes. To determine the 

origin of either of the personalised genomes (whether the output file named 

maternal/paternal was NA12889/90), I downloaded 1000 genome variants calls from 

//ftp.1000genomes.ebi.ac.uk//vol1/ftp/technical/reference/phase2_reference_assembly_s

equence/hs37d5.fa.gz. From this I compared the haplotype phasing in either of the parents 

and compared that to the gold standard maternal and paternal genomes to know which 

background they come from. I used SAMtools faidx to obtain sequence from the reference 

genome, 20bp up and downstream from a variant present in 1000 genomes variant calls. 

Then I searched this sequence in gold standard maternal and paternal genomes. Because 

the coordinates were shifted not all sequences were found but after 10 matching hits in 

both genomes, I was confident of the background and named the files appropriately. 

 

2.2.3.3 DNA SEQUENCING SIMULATION 

Simulated genomic data is important for benchmarking different bioinformatics tools, which 

have bloomed since the advancement of short-read sequencing [206]. Each of these tools 

has limitations, and therefore, validation and comparison of these are crucial. In general, 

the underlying ground truth behind real genomic data (such as the location of every single 

genetic variant, or the exact ratio of alleles at each heterozygous site) is unknown [207], and 

therefore, it alone is not enough to use for validation of other computational tools. With 

simulated genomic data however, different parameters can be controlled (eg. error rate or 

read length) and a large amount of desired data can be quickly generated. Most 

importantly, however, the underlying truth (sequence and location) is also known, allowing 
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researchers to test for the accuracy of their given approach [206]. For example, ART 

software [208] has been used to test a tool that performs quality recalibration of short 

mapping reads [209]. It is important for the simulators to mimic real genomic and biological 

features including GC-content and nucleotide substitutions, and sequencing platform-

specific features including read length and fragment size distribution [206]. Therefore, 

numerous WGS simulation tools have been created including wgsim [210], Mason [211] and 

GenSIM [212]. Different simulation tools differ slightly in their performance on initial 

parameter options, read features, base-calling errors, accounting for PCR amplifications, 

quality scores and sequencing depth [207]. However, ART performs well relative to other 

popular simulators and is also computationally cost-effective [206]. It is easy to use and is a 

popular tool with over 1000 citations, and was therefore chosen for the analysis in this 

section. 

I used the gold standard genomes to generate simulated whole genome sequencing (WGS) 

data in order to then use this for variant calling that then would be used as an input for PAC. 

To simulate WGS, I used ART software (Q Version 2.5.8) [208] on each of the parental 

genomes separately.  

As input, ART requires parameters related to insert size, read length, coverage, and 

standard deviation of fragment length. To obtain a realistic simulation, I acquired these 

parameters from real WGS data for sample HPSI0114i-eipl_1 from the HipSci Project [200]. 

Initially, I used a BWA index on the UCSC GRCh37 reference genome. I mapped HPSI0114i-

eipl_1 DNA-seq reads with BWA-MEM (version 0.7.17) [79]. I selected reads that were 

properly paired (-f 0x0002 using SAMtools) and uniquely mapped (NH:i:1 flag) and removed 

PCR duplicates using SAMtools [210]. I then used SAMtools-stats and obtained the following 

parameters: 841407464 properly paired reads, read length 151 bp (I used 150 for ART as it is 

the maximum read length possible), insert size average: 479.4, insert size standard 

deviation: 116.5, coverage = 40× ((841407464 reads×150bp)/3101788170 (size of genome) = 

40.68979). Since the final coverage is 40×, I set coverage to 20× for maternal and 20× for 

paternal that will be combined later. 
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I used the following options for ART simulation: art illumina paired end reads, sequencing 

system: HiSeqX TruSeq, read length 150bp, fold coverage 20, mean fragment length 479, 

standard deviation 117. 

I combined forward reads from the maternal and paternal RNA-seq simulation, and the 

same for reverse reads to generate wgs1.fq and wgs2.fq. 

 

2.2.3.4 GATK VARIANT CALLING ACCURACY 

To generate realistic genotypes as input for PAC, I performed GATK variant calling on 

simulated WGS data. Simulated WGS reads were aligned to the GRCh37 reference genome 

with BWA-MEM (version 0.7.17) [79]. Following this, variant calling was performed with 

GATK v. 4.0.12.0 according to recommended best practices [27]. This section will briefly 

describe the GATK variant calling best practices at the time of performing this analysis. The 

options and parameters for the different steps in the pipeline are listed in Table 2.  

GATK variant calling starts with generating a uBAM (GATK prefers this data storage format 

as it allows it to store more data) from FASTQ. For this, I used picard.jar FastqToSam. This 

tool converts the FASTQ file to an unaligned BAM or SAM file. Then, I used picard.jar 

SortSam on the output. This tool sorts the SAM or BAM file by some property of the SAM 

file. This was followed by picard.jar MarkIlluminaAdapters, which adds adapter-trimming 

tags. And then again picard.jar SortSam.  

I used picard.jar CreateSequenceDictionary to generate a dictionary for the reference 

genome. I piped together picard SamToFastq, BWA-MEM and picard MergeBamAlignment. 

SamToFastq takes read identifiers, read sequences, and base quality scores from SAM or 

BAM files to write a Sanger FASTQ format file. The options also specify removal of adapter 

sequences marked earlier by MarkIlluminaAdapters. BWA-MEM aligns simulated whole 

genome sequencing onto the reference genome. Picard MergeBamAlignment merges 

information from the uBAM (in the first step) and aligned BAM (previous step) conserving 

the read data. This was followed by picard.jar SortSam and then I performed SAMtools 

index to index the BAM file. I used picard.jar MarkDuplicates to identify duplicate reads 

followed by picard.jar SortSam.  



 
59 

BaseRecalibrator was then used to mask sites I downloaded (from ftp://gsapubftp-

anonymous@ftp.broadinstitute.org/bundle/hg19/*) and was used on the following files: 

• Mills_and_1000G_gold_standard.indels.hg19.sites.vcf.gz 

• dbsnp_138.hg19.vcf.gz, 1000G_phase1.indels.hg19.sites.vcf.gz 

• 1000G_phase1.snps.high_confidence.hg19.sites.vcf.gz 

 

To index, I used gatk IndexFeatureFile. I generated the index on the reference genome with 

SAMtools faidx.  

To remove the inbreeding coefficient, I used gatk BaseRecalibrator. I then used gatk 

ApplyBQSR, and BaseRecalibrator again, followed by gatk AnalyzeCovariates. 

To call variants and indels by local assembly of haplotypes I used gatk HaplotypeCaller. Then 

to obtain variant quality scores I used gatk VariantRecalibrator. To filter variants based on 

their score I used gatk ApplyVQSR. gatk VariantRecalibrator and gatk ApplyVQSR were then 

repeated for indels. 

Variants were then phased with Shapeit2 [186] using the 1000 Genomes phase 3 reference 

panel with standard parameters that were later supplied into PAC. 

  

ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/hg19/*
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/hg19/*
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GATK STEP OPTIONS 

FastqToSam READ_GROUP_NAME=HSXt 

LIBRARY_NAME=illumina_HSXt 

PLATFORM_UNIT=HSXt 

PLATFORM=illumina 

SortSam SORT_ORDER=queryname 

SamToFastq CLIPPING_ATTRIBUTE=XT CLIPPING_ACTION=2 INTERLEAVE=true 

NON_PF=true 

MergeBamAlignme

nt 

CREATE_INDEX=true ADD_MATE_CIGAR=true CLIP_ADAPTERS=false 

CLIP_OVERLAPPING_READS=true 

INCLUDE_SECONDARY_ALIGNMENTS=true 

MAX_INSERTIONS_OR_DELETIONS=-1 

PRIMARY_ALIGNMENT_STRATEGY=MostDistant 

ATTRIBUTES_TO_RETAIN=XS 

MarkDuplicates CREATE_INDEX=true 

IndexFeatureFile -F Mills_and_1000G_gold_standard.indels.hg19.sites.vcf.gz 

BaseRecalibrator --known-sites Mills_and_1000G_gold_standard.indels.hg19.sites.vcf.gz  

--known-sites dbsnp_138.hg19.vcf.gz  

--known-sites 1000G_phase1.indels.hg19.sites.vcf.gz  

--known-sites 1000G_phase1.snps.high_confidence.hg19.sites.vcf.gz 

VariantRecalibrator 

(for SNPs) 

--resource hapmap,known=false,training=true,truth=true,prior=15.0: 

hapmap_3.3.hg19.sites.vcf.gz  

--resource omni,known=false,training=true,truth=false,prior=12.0: 

1000G_omni2.5.hg19.sites.vcf.gz  

--resource 1000G,known=false,training=true,truth=false,prior=10.0: 

1000G_phase1.snps.high_confidence.hg19.sites.vcf.gz  
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--resource dbsnp,known=true,training=false,truth=false,prior=2.0: 

dbsnp_138.hg19.vcf.gz  

-an DP -an QD -an FS -an SOR -an MQ -an MQRankSum -an 

ReadPosRankSum --mode SNP -tranche 100.0 -tranche 99.9 -tranche 99.0 -

tranche 90.0 --max-gaussians 4 

VariantRecalibrator 

(for indels) 

--resource mills,known=false,training=true,truth=true,prior=12.0: 

Mills_and_1000G_gold_standard.indels.hg19.sites.vcf.gz  

--resource 

dbsnp,known=true,training=false,truth=false,prior=2.0:dbsnp_138.hg19.vc

f.gz  

-an QD -an DP -an FS -an SOR -an MQRankSum -an ReadPosRankSum --

mode INDEL -tranche 100.0 -tranche 99.9 -tranche 99.0 -tranche 90.0 --

max-gaussians 4 

ApplyVQSR 

(for SNPs) 

-mode SNP --truth-sensitivity-filter-level 99.9 

ApplyVQSR 

(for indels) 

-mode INDEL --truth-sensitivity-filter-level 99.9 

Table 2. The different steps and options used within the GATK variant calling pipeline. 
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2.2.3.5 RNA SEQUENCING SIMULATION 

To obtain allelic counts from simulated data, I used gold standard genomes to generate 

simulated RNA sequencing data using RSEM v1.3.1 [213]. For the simulated RNA-seq data to 

be as realistic as possible, I obtained sequencing parameters from real RNA-seq data from 

parents of NA12877 that were used as inputs in RSEM. 

I used bowtie-build (v 1.2.2) to index the maternal and paternal genomes. Then I used rsem-

prepare-reference with each of the parental genomes and their annotations separately. This 

process prepares the transcript references for RSEM. 

Then I used rsem-calculate-expression which calculates the gene and isoform expression 

from the input BAM file. For this, I used the real parents of NA12877, NA12889 and 

NA12890 RNA-seq from lymphoblastoid cell lines (LCLs) that were obtained from the 

Geuvadis Project [64] to get realistic numbers. The reads were trimmed and mapped to the 

hg19 reference genome using STAR v.2.5.1a [82] with default parameters. The output was a 

single matrix of expression levels for each transcript in the GENCODE v19 annotations.  

Then I simulated RNA-seq reads from both parental genomes with the rsem-simulate-reads 

function. From the previous step, I obtained the following input options for this step: the 

fraction of reads coming from background noise (paternal: 0.27 and maternal: 0.19) and the 

total number of reads to be simulated (paternal: 40.9M and maternal: 28.1M). The 

simulated reads from the parents (FASTA files) were then merged into a single RNA-seq 

sample, representing the simulated transcriptome of individual NA12877. 

 

2.2.3.6 QUANTIFICATION OF IMBALANCE AT HETEROZYGOUS SITES 

To acquire ‘ground truth allele counts’, I obtained maternal and paternal allele counts at 

heterozygous genome positions of NA12877 from the PGP VCF file. Each RSEM simulated 

transcript has following information provided in the header:  
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• the read index starting from 0 

• the read direction, 0 being forward strand (‘+’) and 1 being reverse strand (‘-’) 

• ID representing the transcript this read is simulated from 

• the start position of the simulated read in strand dir of transcript sid 

• the insert length of the simulated read 

 

The genomic coordinates of the simulated RNA-seq reads were obtained using custom 

scripts which were based on following rules for RSEM simulated reads: 

 

1. If gene in forward direction:  

▪ read1 forward 

o to find start of read: count forwards from start of gene from 

corresponding maternal/paternal annotation f ile  

o to find end of read: count forward 75bp from above  

• read2 reverse 

o to find start of read: count forward length from start  of read1  

o to find end of read: count 75bp backward from above 

2. If read in reverse direction:  

• read1 reverse 

o to find posit ion on id (end of  read): count backwards  from end of gene  

o to find start of read: count 75bp backwards from above  

• read2 forward 

o to find end of read: count backward length from end of read1  

o to find start of read: count 75bp forward from above  

 If gene reverse, flip above  
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I used LiftOver to convert read locations from the parental genomes to the reference 

genome using chain files generated by AlleleSeq. I then counted the number of reads from 

reference and alternative alleles that overlapped all heterozygous positions in NA12877 

based on the PGP variant calls. To do this I used sim.isoforms.results output file from RSEM 

to obtain the transcript ID and GTF file from vcf2diploid for exome positions in the reference 

genome. 

These allele counts were then combined for each site to create ground truth allele counts in 

the offspring. For all subsequent analyses, we used heterozygous sites with at least 20× read 

coverage (sum of reference and alternative allele counts) and blacklist (from ENCODE 

ENCFF001TDO.bed) and HLA regions (obtained from phASER) removed. Figure 12 

summarises all the steps leading to the generation of ground truth ASE calls. 
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Figure 12. Ground truth genomic data generation for individual NA12877. 
In order to obtain realistic simulated genomic data to test PAC against, PGP VCF was used, where the variants were verified 
using multiple sequencing platforms and analysis methods, and conflicting calls were resolved using parental genomic 
information. Phased variants from the PGP were used together with a reference genome to generate ground truth genomes. 
Ground truth genomes were then used to simulate RNA-seq reads based on sequencing parameters obtained from the 
Geuvadis Project that generated RNA-seq reads for the actual parents, individuals NA12890 and 12889, for LCLs. The 
simulated RNA-seq reads were then used to count coverage at each heterozygous site, called ground truth allele counts. 
Ground truth genomes were also used to simulate WGS with sequencing parameters for this obtained from HipSci sample. 
Simulated WGS were used to obtain variant calls using GATK best practices. This VCF, together with simulated RNA-seq reads, 
were used for PAC to obtain allelic count data that were compared against ground truth allele counts at heterozygous sites. 
Figure is from Saukkonen et al., 2022 [109]. Created with BioRender.com 
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2.2.4 TESTING DIFFERENT PAC PARAMETERS 

Once I had realistic ground truth allele counts that acted as a baseline to which to compare 

the performance of PAC, I set to improve PAC. I tested features I hypothesised to affect the 

allelic quantification. I generated different versions of PAC (Table 3), incorporating and 

removing the following features on the preliminary PAC pipeline and compared the allelic 

counts obtained to those in ground truth data: 

• phASER: I tested the consequence of improved phasing with phASER with 

read-aware mode, which improves local phasing by considering whether 

nearby genetic variants fall on the same or opposite reads (or pairs). I 

supplied the PAC pipeline with phased VCF obtained from the GATK pipeline 

for phasing by phASER. PAC was also tested without the phASER step. 

 

• Recovering multi-mapping reads: I tested if rescuing of reads that map to 

multiple locations would improve allelic quantification. I used RSEM [213], 

which takes the original alignment from STAR (containing all reads aligned to 

transcriptome coordinates, including reads that align to multiple locations) 

and re-aligns the data using the --sampling-for-bam flag to output a single 

location for each read based on its posterior probability generated from 

estimated abundances. Additional reads aligned by RSEM that were not 

uniquely aligned using STAR were then added to the final BAM file.  

 

• Trimming and soft-clipping: I tested how trimming and soft-clipping, the 

common RNA-seq read filtering steps, affect the allelic quantification. The 

filters for trimming were stringency of 3bp, removing adaptors and terminal 

bases with Phred qualities lower than 30. Soft-clipping was performed during 

STAR mapping within the PAC pipeline with standard parameters. 

 

For each parameter, heterozygous sites present in the ground truth and at >=20× coverage 

were selected. 
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Versions Trimming Soft-clipping phASER Multi-mapping 

1 + - + + 

2 + - - - 

3 + - + - 

4 + - - + 

5 - + + + 

6 - + - - 

7 - + + - 

8 - + - + 

 
Table 3. Different versions of PAC generated for testing. 
The rows represent combinations of included (+) or excluded (-) parameters within PAC version. 
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2.2.5 FINAL PAC PIPELINE 

The final PAC starts as the preliminary pipeline, however at the STAR mapping stage the 

parameters were as follows: including soft-clipping, no trimming (opposite to the 

preliminary pipeline), keeping properly paired (-f 0x0002 using SAMtools) and uniquely 

mapped (NH:i:1 flag) reads. RSEM is used to assign a single location for multi-mapping reads 

based on the read depth of uniquely aligned reads and then incorporates these reads into 

the final aligned files. The final pipeline also produces allele counts at a haplotypic level 

using phASER Gene AE. The pipeline is illustrated in Figure 13.  

 

 

 

Figure 13. Final PAC pipeline. 
A schematic describing the main steps, features and outputs of PAC after refining different parameters. Figure is from 
Saukkonen et al., 2022 [109]. Created with BioRender.com. 
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2.2.6 OUTLIER ANALYSIS 

To investigate if particular genomic features are enriched in the heterozygous sites from 

PAC that have larger differences in their allelic ratios from those in the ground truth data, I 

selected sites where the reference allele ratio between PAC analysis and ground truth ASE 

was more than 10% and had at least 20× coverage in both analyses. The variants were 

annotated with wANNOVAR (http://wannovar.wglab.org), which is the web version of 

ANNOVAR [214]. The output provided information on how the variant affected gene 

structure, the functional consequences, functional importance scores, and the location in 

the gene. 

  

http://wannovar.wglab.org/
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2.3 RESULTS 

2.3.1 PRELIMINARY WORK 

2.3.1.1 BASIC OVERVIEW 

When I joined the research group, there was a preliminary pipeline in place to improve 

allelic quantification, later termed the Personalised ASE Caller (PAC) pipeline. It implements 

a series of steps to detect and quantify ASE events more accurately. Briefly, PAC generates 

personalised diploid genomes and aligns RNA-seq reads to both parental genomes. It selects 

the best alignment and generates site-level allelic counts. More details are in the methods 

section 2.2.1. 

To test this preliminary PAC pipeline, I submitted RNA-seq data obtained from 10 HipSci 

iPSC and iPSC-derived sensory neuron samples into PAC. I also aligned the same RNA-seq 

reads to the GRCh37 reference genome with STAR [82]. I then compared the reference 

allele ratios (RARs) at heterozygote sites between the two methods (Table 4).  

At first, I looked at coverage at the heterozygous sites. If PAC improves ASE biases, fewer 

reads are expected not to be aligned relative to the standard alignment approach, which 

would remove reads due to biases described earlier in the chapter. Therefore, higher 

coverage at the heterozygous sites is expected in PAC. Table 4 shows that the number of 

sites retained across individuals when RNA-seq data was processed with PAC is greater at 

>=10× coverage than in the standard alignment approach in both cell types. Figure 14 shows 

that the number of sites in PAC is higher than in the standard alignment approach in iPSCs in 

all individuals.  

  



 
71 

 

Donor ID 

Standard alignment PAC 

iPSC Neuron iPSC Neuron 

HPSI0913i-eika_2 20936 20433 21522 20950 

HPSI0114i-eipl_1 20715 20945 21255 21415 

HPSI0114i-kolf_3 22261 20882 22872 21366 

HPSI0214i-kucg_2 22497 22376 23079 22894 

HPSI0114i-oevr_3 19906 35364 20534 36254 

HPSI1113i-podx_1 22723 24667 23287 25281 

HPSI0314i-qaqx_1 19652 26341 20234 26929 

HPSI0114i-rozh_5 17707 21730 18103 22305 

HPSI1013i-wuye_2 20148 20808 20679 21299 

HPSI0314i-xugn_1 20885 24595 21419 25198 

Mean 20743.0 23814.1 21298.4 24389.1 

Mean 

(between methods) 

22278.55 22843.75 

 
Table 4. The coverage at the heterozygous sites obtained from the preliminary PAC and standard mapping approach in 
HipSci samples. 
The heterozygous sites at >=10× coverage in iPSC and iPSC-derived sensory neurons from 10 HipSci donors are shown. 
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Figure 14. Number of heterozygous sites in preliminary PAC and standard mapping across HipSci iPSC samples. 
The heterozygous sites at >=10× coverage in iPSCs from 10 HipSci donors are shown. 

 

 

Another assumption from improved ASE detection is that the mean RAR should be closer to 

0.5 when considered across all sites. This is because on average, reads are expected to be 

expressed at an equal rate from each allele. Genes under ASE will deviate from this; 

however, they should offset across the genome, with some showing reference allele skew 

and others showing alternative allele skew. Hence the distribution of allele ratios should 

follow a bell-shaped curve with the mean close to 0.5. Figure 15 shows the RAR in a single 

example HipSci donor in iPSC closely follows the expected bell-shaped curve with most 

reads closer to 0.5 reference allele ratio in the preliminary PAC. The trend is the same across 

all individuals and in both cell types (data not shown). Figure 15 shows that some reference 

bias still remains, potentially demonstrating the scope for improvement in PAC. 
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Figure 15. The proportion of reference allele ratio in PAC and standard alignment approach.  
The data shown is for a single HipSci donor, rozh. Shown are the mean and median reference allele ratios for the individual. 
The bias for reference allele ratio demonstrates potential limitations in the preliminary PAC. 

 

 

2.3.1.2 ASE 

I then examined the ability of PAC to detect sites under ASE and the tissue specificity of ASE 

sites in iPSCs and iPSCs -derived sensory neuronal cells. The heterozygous ASE sites obtained 

from PAC were filtered for ASE with binomial test (P<0.05) and Bonferroni-adjustment for a 

more stringent selection. Table 5 shows a summary of ASE sites from all donors. Figure 16 

shows a Venn diagram of these results. 

The higher number of ASE sites in neurons than in iPSCs might be due to higher coverage in 

neuronal cells (Table 4), however, previous research [169, 215] has demonstrated a higher 

proportion of ASE in neuronal cell types. Table 5 and Figure 16 show that at more stringent 

ASE selection criteria there are fewer cell-type specific ASE events, and the majority of ASE 

events are retained across differentiation. This is most likely due to imprinting and other 

monoallelic events that retain the expression pattern. At P<0.05, more subtle effects are 

captured where cell-type specific events can be seen.  
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iPSC Neuron 

Num. of ASE sites (P<0.05) 2394.3 2538.3 

Num. of ASE sites (Bonferroni-adjusted) 690.8 705.0 

Common ASE sites between iPSCs and 
neurons (P<0.05) 

1174.9 (49% of sites) 1174.9 (46% of sites) 

Common ASE sites between iPSCs and 
neurons (Bonferroni-adjusted) 

484.5 (70% of sites) 484.5 (69% of sites) 

Cell-type specific ASE sites (P<0.05) 1219.4 (51% of sites) 1363.4 (54% of sites) 

Cell-type specific ASE sites (Bonferroni-
adjusted) 

206.3 (30% of sites) 220.5 (31% of sites) 

Table 5. Comparison of heterozygous sites under ASE in two cell types from PAC. 
Data is shown for iPSC and iPSC-derived sensory neurons in 10 HipSci samples. 

 

 

 

 

Figure 16. Venn diagram of heterozygous cell-type specific and shared sites under ASE from PAC. 
Data is shown for iPSC and iPSC-derived sensory neurons in 10 HipSci samples. The results demonstrate that at stringent ASE 
detection criteria, most ASEs are shared between cell types whereas more subtle effects are seen in a cell-type specific 
manner. 
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I examined the RAR of heterozygous sites that are cell-type specific (Figure 17, A and B 

panels) and shared between tissues (Figure 17, C and D panels). The results from one donor 

are illustrated but every HipSci sample follows a similar trend (data not shown). 

At a P<0.05 ASE detection criteria (Figure 17 A), cell-type specific ASE sites show a more 

subtle effect with a distribution closer to 0.5. The drop in ratio at 0.5 represents sites that 

are not under allelic imbalance and hence are not under significant ASE. The ASE sites 

selected with more conservative criteria with Bonferroni-adjustment (Figure 17 B) only 

detect sites with high effect. 

Shared ASE sites (Figure 17 C and D) show stronger effects on allelic imbalances, as the 

distribution is closer to 1. This monoallelic expression potentially reflects imprinted genes, 

as they maintain their expression origin during cellular differentiation.  

A and B panels demonstrate the density of the reference allele ratio (RAR) at heterozygous sites under ASE that are shared 
between iPSCs and neuronal cells (panel A detected with binomial test at P<0.05; panel B detected with binomial test with 
P-values Bonferroni corrected). C and D panels demonstrate the density of RAR at heterozygous sites under ASE that are 
specific to iPSCs and neuronal cells (panel C detected with binomial test at P<0.05; panel D detected with binomial test with 
P-values Bonferroni corrected). Data shown is for a single HipSci donor.  

Figure 17. The reference allele ratio (RAR) of cell type specific and shared ASE sites obtained from PAC. 
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2.3.1 3 GENE ONTOLOGY ENRICHMENT OF GENES UNDER ASE 

Next, I explored the possibility that genes containing an ASE site are enriched for a 

particular biological function. Because the donors are healthy, I hypothesised that no 

disease terms would be enriched. Because ASE is not a rare occurrence in healthy 

individuals [108], I hypothesised that if any terms would be enriched, those would likely be 

in genes that are highly expressed in the cell type under study as this increases statistical 

power to detect any imbalances. 

For each of the 10 donors, genes under ASE from iPSCs were studied for GO enrichment. 

Genes with at least one site with >=10× coverage were selected for the background gene 

list, and enrichment was performed on genes under ASE (detected at P<0.05 and 

Bonferroni-adjusted).  

The David Bioinformatics Resource 6.8 Functional Annotation Tool [204] was used to 

examine gene enrichment. Biological categories enriched for genes undergoing ASE at 

P<0.05 were observed only for 2 donors, one term per sample (Table 6). For genes under 

ASE at Bonferroni-adjustment, there were 3 donors with terms enriched for biological 

categories with all enriched terms from these individuals shown in Table 6. 

The enriched terms with the highest P-values include ‘stem cell population maintenance 

(GO:0019827)’ and stem cell population maintenance (GO:0019827), which are expected for 

iPSC self-renewal function. MHC terms were also enriched. MHC regions are highly 

polymorphic [216] and therefore likely to exhibit ASE, however, their expression is 

associated with immune cells. Other terms included those relating to the endoplasmic 

reticulum and extracellular region, which are related to basic cellular processes. 
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Category Term P-Value P-value corrected Sample 

ASE detected with binomial test P<0.05  

Cellular 

component 

condensed chromosome 

(GO:0000793) 
2.93 × 10-5 2.79 × 10-2 

HPSI0913i-

eika_2 

Cellular 

component 

extracellular matrix 

(GO:0031012) 
3.77 × 10-5 3.84 × 10-2 

HPSI0214i-

kucg_2 

ASE detected with binomial test P-value Bonferroni-adjusted  

Biological 

process 

maintenance of cell number 

(GO:0098727) 
1.89 × 10-8 6.65 × 10-5 

HPSI0913i-

eika_2 

Biological 

process 

stem cell population 

maintenance (GO:0019827) 
1.25 × 10-7 2.19 × 10-4 

HPSI0913i-

eika_2 

Cellular 

component 

lumenal side of endoplasmic 

reticulum membrane 

(GO:0098553) 

1.98 × 10-6 9.15 × 10-4 
HPSI0913i-

eika_2 

Cellular 

component 

integral component of 

lumenal side of endoplasmic 

reticulum membrane 

(GO:0071556) 

1.98 × 10-6 9.15 × 10-4 
HPSI0913i-

eika_2 

Cellular 

component 

MHC protein complex 

(GO:0042611) 
1.30 × 10-5 3.01 × 10-3 

HPSI0913i-

eika_2 

Molecular 

function 

peptide antigen binding 

(GO:0042605) 
1.91 × 10-5 9.66 × 10-3 

HPSI0913i-

eika_2 

Cellular 

component 

MHC class II protein complex 

(GO:0042613) 
8.66 × 10-5 1.33 × 10-2 

HPSI0913i-

eika_2 

Cellular 

component 

MHC class I protein complex 

(GO:0042612) 
3.40 × 10-4 3.87 × 10-2 

HPSI0913i-

eika_2 
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Cellular 

component 

ER to Golgi transport vesicle 

membrane (GO:0012507) 
4.16 × 10-4 3.78 × 10-2 

HPSI0913i-

eika_2 

Cellular 

component 

extracellular region 

(GO:0005576) 
1.86 × 10-5 9.03 × 10-3 

HPSI0114i-

kolf_3 

Cellular 

component 

extracellular region part 

(GO:0044421) 
2.15 × 10-5 5.23 × 10-3 

HPSI0114i-

kolf_3 

Cellular 

component 

integral component of 

lumenal side of endoplasmic 

reticulum membrane 

(GO:0071556) 

1.68 × 10-4 2.70 × 10-2 
HPSI0114i-

kolf_3 

Cellular 

component 

lumenal side of endoplasmic 

reticulum membrane 

(GO:0098553) 

1.68 × 10-4 2.70 × 10-2 
HPSI0114i-

kolf_3 

Cellular 

component 

extracellular space 

(GO:0005615) 
1.91 × 10-4 2.30 × 10-2 

HPSI0114i-

kolf_3 

Cellular 

component 

MHC class II protein complex 

(GO:0042613) 
2.71 × 10-4 2.61 × 10-2 

HPSI0114i-

kolf_3 

Cellular 

component 

MHC protein complex 

(GO:0042611) 
6.04 × 10-4 4.79 × 10-2 

HPSI0114i-

kolf_3 

Cellular 

component 

MHC protein complex 

(GO:0042611) 
3.70 × 10-5 1.63 × 10-2 

HPSI0114i-

eipl_1 

Cellular 

component 

extracellular region 

(GO:0005576) 
1.68 × 10-4 3.66 × 10-2 

HPSI0114i-

eipl_1 

Cellular 

component 

MHC class II protein complex 

(GO:0042613) 
2.00 × 10-4 2.91 × 10-2 

HPSI0114i-

eipl_1 

Table 6. The enrichment of genes under ASE from HipSci samples. 
The GO terms and categories enriched for genes under ASE (detected by binomial test at P<0.05 in 2 individuals, and with 
Bonferroni-adjustment detected in 3 individuals) from 10 healthy HipSci iPSC samples. Shown are uncorrected P-values and 
Benjamini-Hochberg adjusted P-values for the terms. All terms from every individual are shown in the table.  
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2.3.2 GENERATING SIMULATED GENOMIC DATA 

The work in HipSci data shows that the initial PAC pipeline leads to an improvement over 

standard alignment approach. However, a bias towards the reference allele remains, 

suggesting the pipeline can be further improved. In order to develop the pipeline, I 

generated highly realistic simulated genomic data where the underlying ground truth data is 

known. This allowed me to assess the performance of the pipeline and determine how 

different parameters affected the performance. 

 

2.3.2.1 GOLD STANDARD GENOMES 

In order to be able to test and develop PAC, I simulated realistic genomic DNA sequencing 

data where the exact origins of each sequencing read, as well as the locations of all genetic 

variants, were known. To achieve these, I first generated personalised genomes. I used 

Alleleseq [151] to incorporate highly accurate phased variants from the Platinum Genomes 

Project (PGP) into the UCSC GRCh37 reference genome to obtain personalised parental 

genomes where the exact genomic sequence is known. I termed these gold standard 

genomes.  

 

2.3.2.2 VARIANT CALLING ACCURACY 

To generate variant calls from gold standard genomes, I generated simulated WGS from 

maternal and paternal gold standard genomes separately. The simulation was achieved 

using ART [208]. To make the data realistic, I used parameters from real WGS data from 

HipSci sample. I then combined forward and reverse from each genome to generate wgs1.fq 

and wgs2.fq. 

GATK variant calling was performed on simulated WGS data according to GATK best 

practises and phased variants with Shapeit2 [186]. Because variant calling is not perfect and 

introduces errors, this allowed me to examine how well GATK variant calling [27] compares 
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to the original PGP VCF file, in order to better understand where genetic variants may lead 

to errors in ASE analysis (Figure 18). 

There are 4,042,773 genetic variants in the PGP VCF file for NA12877 and 4,011,226 in the 

GATK output, showing a true positive rate of 99.22%. The GATK VCF file also contains an 

additional 5,389 heterozygous variants that are not present in the original data, leading to a 

false positive rate of 0.134%. The GATK VCF misses 36,939 variants, with false negative rate 

being 0.914% (Figure 18). 1,409 sites out of 36,939 sites that GATK valiant calling missed 

were in the HLA regions, and none were in the backlisted gene list. 1 site out of the 5,389 

that GATK falsely assigns were in the HLA regions, and 15 sites were in the blacklisted gene 

list. This demonstrates that large number of false positives and false negatives persist in the 

variant calling even after filtering out HLA and blacklisted regions, which is a common 

practise. 

 

 

 

 

Figure 18. Venn-diagram to demonstrate the comparison of GATK and PGP VCF files. 
The simulated data allowed me to examine the error rate in the GATK variant calling demonstrating a large number of false 
positive and false negative variants. Diagram not to scale. 
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The correct assignment of variants determines the quality of the parental genomes 

generated and therefore the downstream accuracy of the PAC pipeline. Therefore, I next 

explored the genomic locations of false positive and negative data points. Figure 19 shows 

that while there is a base level of variants incorrectly called or missed along most 

chromosomes, some areas have higher peaks of sites present in only the original PGP or 

GATK VCF file. For example, GATK variant calling is unable to detect the heterozygous sites 

in the HLA region on chromosome 6 in the original PGP VCF file, which is expected for highly 

polymorphic genomic regions. This region is often removed from most genetic analyses for 

this reason, including analysis in this thesis. GATK also falsely assigns genetic variants in 

chromosome Y while missing those in chromosome X. However, as I only consider 

autosomal genes, the peaks on sex chromosomes do not affect the analysis in this thesis. 
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Figure 19. The comparison of unique data points in GATK and PGP VCF files 
Grey peaks are unique variants in PGP, and thus those missed by GATK variants calling. Blue points are unique sites in GATK 
variant calling, those that are not present in the original PGP VCF file. Chromosome M was omitted as it did not have any 
genetic variants in either of the files. 
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2.3.2.3 QUANTIFICATION OF IMBALANCE AT HETEROZYGOUS SITES 

To obtain ground truth allelic counts, I used gold standard genomes to simulate RNA-seq 

using RSEM [213] separately on both genomes. As an input, RSEM requires basic statistics 

for RNA-seq including the coverage and background noise. I obtained these from RNA-seq 

data generated from the real parents (NA12889 and NA12890) from Geuvadis Project [64] 

LCLs to get realistic parameters. I then combined RNA-seq from maternal and paternal 

simulations. 

I quantified reference and alternative alleles from the simulated RNA-seq reads from both 

parental genomes that overlapped heterozygous sites from the PGP VCF file. These allele 

counts were then combined for each site to create ground truth allelic counts in the 

simulated sample. The distribution of the reference allele ratios across all >=20× sites in the 

ground truth data is shown in Figure 20 demonstrating it follows a bell-shaped curve as 

expected for unbiased data. 

In the ground truth data, there are 13,211 heterozygous sites that have at least 20× 

coverage. This includes 499 rare variants with <1% minor allele frequency in the CEU 

population from the 1000 Genomes data. 1,359 variants (10.3%) were under ASE under a 

standard binomial test (P < 0.05, corrected for 13,211 tests). Simulated data also contained 

1,237 indels (>1bp) with at least 20× coverage. 

 

Figure 20. The distribution of reference allele ratios in ground truth data. 
The figure shows all heterozygous sites in the ground truth data with >=20× coverage. Ratio of 0.5 (red dashed line) implies 
that both alleles are expressed at equal ratios. KDE = kernel density estimate.  
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2.3.3 DEVELOPING PAC 

After showing that the preliminary PAC pipeline improves ASE detection in real HipSci data, 

and having created simulated ground truth data, I next tested different parameters within 

PAC to refine it into the final pipeline.  

 

2.3.3.1 TESTING DIFFERENT PARAMETERS FOR PAC 

In order to develop PAC, I tested how different parameters in PAC would influence allelic 

quantification. The parameters I tested included whether trimming or soft-clipping, together 

with phasing with phASER with read-aware mode, and re-allocation of multi-mapping reads 

with RSEM would improve the performance of PAC. I generated different versions of PAC 

with combinations of the following: 

• With trimming, no soft-clipping, with phASER, with multi-mapping 

• With trimming, no soft-clipping, without phASER, with multi-mapping 

• With trimming, no soft-clipping, with phASER, without multi-mapping 

• With trimming, no soft-clipping, without phASER, without multi-mapping 

• No trimming, with soft-clipping, with phASER, with multi-mapping 

• No trimming, with soft-clipping, without phASER, with multi-mapping 

• No trimming, with soft-clipping, with phASER, without multi-mapping 

• No trimming, with soft-clipping, without phASER, without multi-mapping 

 

I ran the different versions of PAC with simulated RNA-seq reads. I measured the accuracy 

with the following tests: 

1. I examined the number of sites that each method detected from the 13,211 sites 

that were present in the ground truth. The more reads that are retained, the better 

the alignment step is.  

2. I considered the difference in the RAR from the ground truth allelic ratio. With an 

improved method, the difference from the ground truth is expected to decrease. 
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3. I measured the correlations, measured with R2, between the method and ground 

truth. The stronger correlation indicated the improvement in the method. 

4. I considered the number of outliers where the difference in RAR in PAC versus the 

ground truth was more than 10% and 20%. The improved pipeline is expected to 

have fewer outliers. 

5. I observed the number of sites that are missed by standard alignment but picked up 

by PAC. These extra sites that are discarded by the standard alignment can be 

informative, especially in studies with small sample sizes such as in the rare disease 

field.  

The results are shown in Table 7. The biggest improvement came from including soft-

clipping instead of trimming. On average, the number of aligned reads increased by 250, 

whereas with phASER, the number of reads increased on average by 7, and with multi-

mapping by 35.25. 

The average R2 for PAC versions with trimming was 0.9502, and without was 0.9651. The 

average R2 for PAC versions with phASER and without was 0.9578 and 0.9574, respectively. 

The average R2 for PAC with multi-mapping read re-allocation was 0.9606, and without it 

was 0.9547. 

The average number of 10% outliers in PAC decreased by 95 by incorporating soft-clipping 

rather than trimming. The average number of these outliers decreased by 4.5 incorporating 

phASER. The average number of outliers decreased by 12 by re-allocating multi-mapping 

reads.  

The parameters that performed closest to the ground truth and that became the final PAC 

pipeline was with phASER, multi-mapping read re-allocation, with soft-clipping and without 

trimming. From now on this will be called PAC. 
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Table 7. Summary of PAC parameter optimisation. 
Different parameters were tested for their impact on allelic quantification, including trimming of adaptors and low-quality 
nucleotides (TRIM), soft-clipping within STAR (SOFT), phasing using phASER with read-aware mode (PHASE) and rescuing 
multi-mapped reads (MULTIMAP). WASP is a common filtering tool that attempts to correct biases associated with ASE 
methodology. It does this by removing problematic reads (reads with a heterozygous site that when the genotype is flipped 
do not align to the same genomic location) that would otherwise contribute to a reference allele bias. WASP also 
incorporates other steps to improve ASE biases including correcting read depth and overdispersion statistically and choosing 
a duplicate read by random. WASP is introduced in more detail in section 3.1.1.2. The final version of PAC is highlighted in 
red. Figure is from Saukkonen et al., 2022 [109]. 
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2.3.3.2 PAC OUTLIERS 

Although PAC dramatically improves the quantification of the RAR across large numbers of 

sites (when compared to the ground truth), there are still many sites where PAC fails to 

correctly account for mapping bias. There are 140 heterozygous sites where the allelic ratios 

differ from those in ground truth by 10%. None of these outlier sites were sites that GATK 

valiant calling falsely assigned (section 2.3.2.2).  

To examine the outliers further, I annotated all heterozygous sites as the baseline (Figure 21 

A) and the outliers with a 10% difference from ground truth (Figure 21 B), based on their 

location relative to different genomic elements with wANNOVAR (see methods 2.2.5). Most 

functional annotations in all variants and outlier variants are exonic or in the 3’UTR. The 

exonic noncoding RNA, which overlaps a transcript but does not have a gene definition, 

increased from 3% in all heterozygous sites to 10% in the outliers. These might be novel or 

rare variants, yet-to-be-identified gene isoforms or duplicated gene regions that lack 

comprehensive understanding. 
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Figure 21. The functional annotation of variants analysed by PAC.  
The heterozygous variants obtained from PAC (panel A) and those that differed by at least 10% in their reference allele 
ratio from the ground truth (panel B) were annotated with ANNOVAR, and their genomic locations are shown. The majority 
of variants are exonic and in the 3’UTR in all heterozygous sites and in outlier sites. Variants with at least 20× coverage in 
PAC are shown. 
‘exonic’ = the variant overlaps a coding region (excluding 3/5’UTR regions). 'splicing’ = the variant is within two basepairs of 
a splicing junction. ‘ncRNA’ = the variant overlaps a transcript that does not have a coding annotation in the gene definition 
(+’_intronic’ = overlapping intron; +’_exonic’ = overlapping coding region). ‘UTR5’ = the variant overlaps 5’UTR. ’UTR3’ = the 
variant overlaps 3’UTR. ‘UTR5;UTR3’ = the variant overlaps both 5’ and 3’ UTRs (possibly on differen genes). Intronic = the 
variant overlaps an intron. Upstream = the variant overlaps 1 kb region upstream of transcription start site. Downstream = 
the variant overlaps 1 kb region downstream of transcription end site. Intergenic = the variant is in a intergenic region. 

exonic,splicing = the variant within exon but close to exon/intron boundary. upstream,downstream = the variant is 

located in both downstream and upstream regions (possibly on different genes). Label definitions taken from 

ANNOVAR documentation ( https://annovar.openbioinformatics.org/en/latest/user-guide/gene/).  
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2.4 DISCUSSION 

2.4.1 OTHER AVENUES TO IMPROVE ALLELIC QUANTIFICATION 

ASE is a powerful tool with numerous utilities, which can improve eQTL signals [165] or help 

diagnose disease [168]. However, due to many computational biases and a lack of 

standardised analysis and detection pipelines, it has not been widely used. There are 

numerous computational approaches that have been developed to improve ASE detection, 

including filtering problematic areas [64, 142], utilising genomes that incorporate individual 

variants such as generating parental genomes [151, 217-219] and de novo assembly of the 

genome from the sequencing reads [220], and other computational methods [123, 124, 

150]. None of these incorporates multiple strategies into a single pipeline, however. 

Determining the optimal combination of parameters can be a time-consuming process 

requiring expertise in bioinformatics knowledge. In this chapter, I developed a pipeline to 

tackle this gap in the research area. PAC deals with several of the well-known biases in 

aligning RNA-seq data and accurately quantifying the allelic reads. 

 

2.4.2 PRELIMINARY PAC 

At first, I tested the preliminary PAC on real data and showed that it improves biases 

associated with RNA-seq data analysis by reducing mapping bias and retaining more reads. 

PAC was able to detect sites under ASE and I implemented this on different cell-types within 

the same individual. During the preliminary PAC testing, there was still a reference bias seen 

when plotting the reference allele ratio. However, there has also been evidence that the 

reference allele is more ancestral and might be under stronger evolutionary pressure, and 

therefore some of the reference bias might be due to biological reasons. Nevertheless, this 

bias was greatly reduced when plotting the reference allele ratio in the ground truth data 

(Figure 20), highlighting that biases persist even in pipelines with multiple correction 

methods such as in the preliminary PAC approach. This demonstrates the importance of 

having realistic simulated data as ground truth, highlighting the space for refining PAC 



 
90 

further to improve the computational bias. This exhibits the benefit of realistic simulated 

data and that ASE studies are almost impossible to validate on real samples. Previous ASE 

studies use simulated genomic data [141, 157] to validate their results and performance. 

These simulations are usually only done on RNA-seq, however, which does not replicate 

realistic data as accurately.  

 

2.4.3 SIMULATED GENOMICS DATA 

Because it is impossible to remove all biases from real data to test the performance of ASE 

detection tools, I then developed highly accurate simulated genomic data. This allowed me 

to test the exact impact of different parameters of the PAC pipeline against ground truth.  

I showed that PAC improved read alignment by retaining more reads and improved accuracy 

in measuring allelic ratios compared to the standard alignment. I showed that the remaining 

sites that showed a difference in the reference allele ratio from that in the ground truth 

have some differences in the genomic locations, with unannotated transcripts increasing in 

proportion for example. 

With my simulation method, I show that GATK variant calling fails in certain regions. Sex 

chromosomes are expected to cause difficulties as they share a common origin and have 

repetitive sequences [221] and therefore they are usually discarded, as are HLA regions with 

their high polymorphism. However, even in other regions, variant calling errors are not 

random. Variant calling is more likely to assign heterozygotes as reference homozygotes 

rather than opposite [222, 223], which can affect downstream analysis [224]. I show that 

certain genomic regions along most chromosomes have peaks of false positive and false 

negative variant calling. I ran PAC on variant calls from GATK to replicate the ASE analysis in 

a realistic scenario. The downstream analysis of any genomic study involving genotypes will 

be affected by variant calling errors including generating personalised genomes. 
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2.4.4 PAC REFINEMENT 

Using the simulated ground truth data, I tested multiple parameters and how they affect 

allelic quantification. Rescuing multi-mapping reads has been shown to improve ASE 

detection [152] previously, although no extensive studies have been done as these reads are 

typically discarded in most ASE analyses. I tested different versions of PAC with different 

parameters, and I show that deactivating trimming, including soft-clipping, incorporating 

phASER and re-allocating multi-mapping reads improve ASE detection. I included these 

parameters in the final PAC pipeline.  

With the pipeline refinement, I show that each step makes a relatively small change. 

However, these might be important when considered together, especially in studies with 

small sample sizes and in rare disease fields where the population size is small and rare 

variants play a big role. It has been shown that rare and private variants can also have an 

effect on common diseases [225], however, the study of these is still ongoing due to 

difficulties of small sample sizes. Some studies have refined statistical analysis to try to 

accommodate this and have detected the widespread influence of rare variants on 

phenotypes [226-228] where many genes are regulated only by rare variants and are 

enriched for disease-linked genes [225]. Therefore, improving the detection of effects of 

rare variants on gene expression will play a crucial part in understanding disease 

mechanisms. 
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3.1 INTRODUCTION  

In the previous chapter, I developed PAC and showed its accuracy in reducing mapping bias 

by retaining more reads and identifying allelic counts at heterozygous sites more accurately. 

Chapter 2 overcomes many of the technical problems of ASE analysis. PAC involves multiple 

steps and several software. As with most genomics pipelines, implementing PAC and 

running it reproducibly requires a high level of computational skill. This provides a barrier to 

studying the regulation of gene expression in small sample size or at a rare variant level. To 

make PAC usable by the target audience, the implementation of the pipeline needs to be as 

simple and reproducible as possible. Therefore, the aim of this chapter is to convert PAC 

into a Nextflow package that runs with Docker/Singularity and is easily accessible from my 

GitHub page. Following this, I ran PAC on simulated genomic data from Chapter 2, and 

compared it to the most commonly used method for ASE detection, aligning RNA-seq reads 

by standard alignment to the reference genome. I also compared the performance to WASP, 

a commonly used filtering tool in the ASE field to reduce computational biases. I start the 

introduction by describing other methods used and then I describe the tools I used to 

streamline PAC. 

 

3.1.1 ASE TOOLS PRIOR TO PAC 

3.1.1.1 STANDARD ALIGNMENT 

During a genomics analysis RNA-seq reads are aligned to the reference genome. This step 

introduces biases in ASE analysis for the reasons discussed in chapter 2. During ASE analysis, 

reads overlapping a heterozygous site are quantified. If the ratio significantly deviates from 

1:1, it is assumed to be under ASE. However, alternative alleles carry a mismatch compared 

to the reference sequence, and as such reads containing these alleles are more likely to be 

discarded [229]. This leads to false ASE signals [141, 230]. There are methods that deal with 

these biases; however, their implication often requires more time-consuming and 

complicated analysis and therefore a simple standard alignment approach (for example, 

using data directly generated by STAR) is often preferred. 
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3.1.1.2 WASP 

WASP is one of the most common filtering methods used in the ASE field. WASP aligns reads 

containing a heterozygous site [123] and then it filters out problematic reads by discarding 

those that do not align to the same location after the genotype within that read is swapped 

to that on the other genetic background (Figure 22). This overcomes the issue of alternative 

alleles more likely mapping to multiple locations by removing the reads that do so. The 

drawback from this is that a large number of potentially informative reads are being 

discarded, which can bias the expression level at genomic locations [123]. WASP 

incorporates other filtering steps including choosing a duplicate read by random (this avoids 

selecting the read with the highest score, which is most likely the reference allele) and 

correcting read depth and overdispersion statistically. 

 

 

 

 

 

Figure 22. Overview of WASP. 
WASP is a method that corrects biases associated with ASE. The main mechanisms by which it operates is by removing 
ambiguous reads. The chart describes how WASP makes a decision on whether to keep the read. From van de Geijn et al., 
2015 [123]. Reproduced with permission from Springer Nature, Copyright 2015. 

  



 
96 

3.1.2 GENOMICS PIPELINE INTO A STREAMLINED TOOL 

Most genomic workflows rely on multiple external software and tools [231], which is also 

the case for PAC. Most of this software is developed in an academic setting and is not 

always straightforward to install and run. Each tool often functions slightly differently upon 

version updates, some of which might be incompatible with other tools within the 

workflow. And this is in addition to other dependencies and versions that software requires 

to run [232, 233]. For this reason, the exact result will be difficult to reproduce in different 

computational environments [234]. Consequently, the analysis often requires technical 

users or bioinformaticians [235]. A typical genomics workflow generates multiple 

intermediate files that will quickly take up a large amount of space [236], particularly when 

analysing multiple samples. For these reasons, there is a need for streamlined and easy-to-

use software development that overcomes these issues [236]. 

 

3.1.2.1 DOCKER 

Docker containers are computational environments that allow applications to run in the 

required environment with essential tools and dependencies [237]. To develop a Docker 

container, the developer builds an image that runs commands specified in order to first 

download and install all required software and dependencies. Containers are not reliant on 

the host computer’s dependencies and therefore provide standardised platforms for ease 

and reproducibility. This allows the user to install a pre-built image that contains all the 

software and dependencies instead of downloading these separately and performing 

troubleshooting [232]. 

 

3.1.2.2 NEXTFLOW 

Nextflow is a workflow management system that enables parallelisation and automation of 

computational pipelines. Nextflow has been developed for the bioinformatics field to solve 

the issues associated with reproducibility [236], most of which are associated with 

differences in computational platforms, the way intermediate files are handled, lack of good 
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practise, and the management of software and databases [236]. Nextflow has been 

extensively applied in the genomics field (eg.[238-242]). There is also a community-based 

effort, nf-core, that has collected best practise genomics analyses made available on 

Nextflow [243, 244]. 

Nextflow allows easy pipeline development that uses a Groovy-based domain-specific 

language. Nextflow can incorporate multiple scripting languages the pre-existing pipelines 

have been written in without needing to extensively modify the pipeline [245]. Nextflow 

supports Docker [236] and Singularity [246] technologies, which is beneficial in the 

genomics field where often multiple software and tools are incorporated. Nextflow consists 

of processes and pieces of workflow that can be executed independently. Each process 

communicates with each other through channels in the form of inputs and outputs. The 

output from one process feeds into the downstream process as an input. It allows parallel 

execution, error return and traceability. Nextflow can also be integrated into the GitHub 

software repository. There are also other workflow systems including Snakemake, however 

these are becoming less preferred due to lack of support in Docker and code sharing 

platforms such as GitHub [236]. 

 

3.1.2.3 GITHUB 

GitHub is a popular development platform used for software building, maintaining and 

shipping in particular for open source projects [247]. The version control within GitHub 

allows groups working on the project to track and manage changes. It allows other users to 

access the code and use the software freely.  
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3.2 METHODS 

3.2.1 SIMULATED GENOMIC DATA 

The simulated data used in this chapter was generated and described in Chapter 2 (see 

section 2.2.2). Briefly, I used a GRCh37 reference genome and high confidence variant calls 

for an individual NA12877 from CEPH/Utah pedigree 1463 from the PGP project [205]. I 

incorporated the phased variants into the reference genome to generate maternal and 

paternal genomes. I then used these parental genomes to stimulate WGS, from which I did 

GATK variants calling. I also simulated RNA-seq from the parental genomes. I used these 

simulated RNA-seq to generate allelic counts at heterozygous sites, which acted as ‘ground 

truth allelic counts’. The simulated genomic data was supplied into the PAC to compare the 

results against the ground truth data. 

 

3.2.2 STANDARD ALIGNMENT OF SIMULATED RNA-SEQ READS 

To obtain baseline allelic counts against which to compare other methods, I first aligned the 

simulated RNA-seq paired-end reads to a 1000 genomes version of the GRCh37 reference 

genome with STAR 2.51a with default parameters. This included soft-clipping, using two-

pass alignment, GENCODE gene annotation (version 19), and allowing 8 mismatches per 

read pair, before keeping only properly paired (-f 0x0002 using SAMtools) and uniquely 

mapped (NH:i:1 flag) reads.  

 

3.2.3 WASP 

In order to compare the performance of WASP against standard alignment, I generated 

WASP-filtered alignment data. For this, I first generated WASP-filtered data by following the 

same approach detailed above as that for standard alignment, but with additional flag --

waspOutputMode SAMtag within STAR (v2.7.3a). The VCF file generated from GATK (as 

described in Chapter 2) was supplied as an input.  
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--waspOutputMode SAMtag incorporates the WASP-filtering into the alignment by flipping 

the alleles, and should the flipped allele not align, or align to multiple/different locations it 

discards the read. I filtered the resulting BAM file for reads that were properly paired, reads 

without a WASP flag (and thus do not contain a genetic variant) and reads that pass WASP-

filtering (with flag ‘vW:i:1’), before counting reference and alternative allele coverage at the 

heterozygous sites. 

 

3.2.4 EVALUATING THE ACCURACY OF ALLELE COUNTS AND THE 

OUTLIER ANALYSIS 

To obtain allelic counts from the PAC pipeline, standard alignment, and WASP-filtered 

alignment and evaluate their performance, I compared results obtained with each method 

to the ground truth data (calculated in the previous chapter, see section 2.2.3). I excluded 

sites located in the blacklisted genomic regions (obtained from ENCODE ENCFF001TDO.bed) 

and HLA region (obtained from phASER). For the analysis, I only considered heterozygous 

sites with at least 20× coverage that were present in all 3 methods and the ground truth 

data, unless otherwise stated.  

The performance of methods was compared by considering a number of heterozygous sites 

(obtained with SAMtools mpileup using default parameters and disabling read-pair overlap 

detection); the correlation, measured with R2, between a method and ground truth 

reference allele ratios; the number of additional heterozygous sites aligned by a method but 

missed by standard alignment; the number of sites where the reference allele ratio in a 

method differs from the ground truth reference allele ratio by more than 10% or 20% (from 

hereafter referred to as ‘outliers’). 

 

3.2.5 ACCURACY OF ANALYSIS NEAR INDELS AND OTHER VARIANTS 

In order to investigate how PAC performs in genomic regions that are known to be difficult 

to align, I compared the difference in reference allele ratio in PAC, standard alignment and 
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WASP-filtered alignment against the ground truth reference allele ratio at heterozygous 

sites in regions containing other variants or indels. For indel analysis, I selected 

heterozygous sites that were within 500bp of an indel (with a minimum indel length of 6bp). 

I also investigated heterozygous sites that had another heterozygous single nucleotide 

variant or rare variant (MAF < 1%) within 25bp of the heterozygous site under investigation. 

I used CEU population data from 1000 genomes project for allele frequency information. 

Mann-Whitney tests were performed with Bonferroni-adjustment to correct for multiple 

testing.  
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3.3 STREAMLINING PAC 

In order to streamline PAC, I wrote it in Nextflow and published the code on my Github 

page. In this section, I describe this process. The code underwent extensive troubleshooting 

and testing to ensure its correct function. I start by describing the dependencies for 

Nextflow, each step within Nextflow and the final tool on GitHub. 

 

3.3.1 DEPENDENCIES 

3.3.1.1 CONFIGURATION 

The Nextflow configuration file defines parameters for the tool, including where to obtain 

the Dockerfile, number of threads, output directory, where to obtain files needed for PAC to 

run. These can be customised or left as default parameters.  

PAC uses AWS S3 bucket supported by Nextflow, which contains Illumina iGenomes [248]. 

The reference genome (available GRCh37 and GRCh38) and annotation GTF files were 

obtained from AWS S3 bucket. The BED file was uploaded to GitHub obtained from 

GENCODE.  

 

3.3.1.2 DOCKER 

In order to run PAC, several tools and software are required. PAC requires specific versions 

of each of these and downloading them independently is not straightforward. I created a 

Docker container image that contains all these tools and software, which are executed at 

the start of a PAC run. The Dockerfile shows which commands are run (Figure 23). In order 

to run with Docker, option -profile docker needs to be selected. 
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Figure 23. Dockerfile for PAC. 
The file shows numerous genomics tools and softwares that are required for PAC.  
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3.3.1.3 SINGULARITY  

Singularity is an alternative to Docker, which is often preinstalled on High Performance 

Compute clusters, and is therefore preferred for ease of access. Nextflow automatically tries 

to pull an image with the specified name in the configuration file from the Docker Hub. PAC 

needs to be run with -profile singularity option for this. 

 

3.3.2 PAC INTO NEXTFLOW  

Nextflow consists of processes that contain a task within the workflow that can be executed 

independently. The outputs from one process are distributed to other processes where they 

act as inputs. This allows parallelisation. As soon as the input files become available for a 

particular process, it will be executed. The processes can be written in Linux executable 

languages including Bash, Python or Perl. This section will describe each process within PAC. 
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Figure 24 shows the processes within PAC and where the output from each process feeds 

into. It demonstrates the interconnectivity and benefit of parallelisation, which speed ups 

the run time.  

 

 

Figure 24. The overview of PAC processes within Nextflow. 
Shown are the names of processes and where the inputs and outputs are derived from. Only the process names are shown 
to simplify the figure. The parameter settings section is omitted. Created with BioRender.com. 

  



 
105 

The following sections describe each process within PAC at a high level. See appendix 1 for a 

reference manual for a more detailed information. 

 

3.3.2.1 setting parameters 

The first step, although not a process, checks that all essential parameters are specified 

when executing PAC. The essential parameters are the genome version, path to RNA-seq 

reads, path to variants VCF file, and sample ID. If any of these are missing, PAC stops the run 

and gives an error message stating which parameter is missing. This section also places RNA-

seq reads into multiple channels as multiple processes take them as inputs. 

 

3.3.2.2 process read_length 

Input: This process takes in RNA-seq read files as input file. 

Process: Custom bash script calculates the read length.  

Output: The output is a file with read length value that is used in the downstream processes 

throughout PAC. 

 

Outside of the process the value from the output file is placed into different channels as 

multiple processes need this value. 

 

3.3.2.3 process prepare_star_genome_index 

Input: This process takes in the reference genome specified in options, annotation file, read 

length information from the previous process, and number of cpus as an optional input. 
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Process: It then generates a genome index with STAR --runMode genomeGenerate.  

Output: The genome indices in STARhaploid directory. This step is necessary for standard 

alignment in the next process.  

 

3.3.2.4 process rnaseq_mapping_star 

Input: This process takes in the reference genome, genome index generated from process 

prepare_star_genome_index, read length information from process read_length, the RNA-

seq reads, sample ID and number of cpus as an optional input.  

Process: The step aligns reads to the reference genome and indexes the BAM file with 

SAMtools index. This process provides the standard alignment that the user can use as a 

comparison for the PAC results. The output also feeds into the phaser_step. 

Output: BAM and BAM.bai files of mapped RNA-seq reads. 

 

3.3.2.5 process clean_up_reads 

Input: The process takes in the BAM files generated from process rnaseq_mapping_star, 

variants VCF file, sample ID and number of cpus as an optional input. 

Process: In this step the mapped RNA-seq reads are filtered. SAMtools is used to keep only 

properly paired (where the read orientation of read pairs is as expected and the gap 

between them is likely based on sequencing technology) and uniquely mapped (reads 

mapping to single location) reads. The BAM is then created that is compatible for 

downstream process phaser_step.  

Output: Properly paired and uniquely mapped BAM file, phaser_step process compatible 
BAM and BAI files in separate channels.  
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3.3.2.6 process phaser_step 

Input: Variants VCF file, BAM and BAI files from process clean_up_reads, sample ID and 

number of cpus.  

Process: This step uses phASER to phase variants incorporating aligned RNA-seq reads. 

phASER uses a read-aware mode for phasing. It selects RNA-seq reads where there are two 

variants, that can be split across larger genomic distances due to splicing, hence it can 

incorporate variants over longer distances and thereby improve phasing. This allows better 

phasing of rare variants and longer haplotypes. 

Output: Phased variants VCF file.  

 

3.3.2.7 process create_parental_genomes 

Input: The reference genome, annotation file, phased variants VCF file from process 

phaser_step, sample ID and BED annotation file. 

Process: This step creates personalised parental genomes. The phased variants are 

incorporated into the reference genome using vcf2diploid, generating maternal and 

paternal genomes. liftOver is then used to generate GTF and BED files with adjusted 

genomic coordinates for maternal and paternal genomes. This is because the coordinates 

will be shifted due to indels present in the VCF file. The custom scripts generate maternal 

and paternal VCF files where the heterozygous site coordinates are shifted to the maternal 

and paternal genomes.  

Output: Maternal and paternal genomes, chain files for both genomes that are needed for 

liftOver (not needed in the downsteam process but output ensures files can be found on 

users’ system should they need them for their own analysis), maternal and paternal GTF and 

BED files, files containing regions not lifted for maternal and paternal genomes, maternal 

and paternal VCF files. 
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3.3.2.8 process STAR_reference_maternal_genomes 

Input: Maternal genome and maternal GTF file from process create_parental_genomes, 

read length information from process read_length, sample ID and number of cpus. 

Process: This step generates maternal genome index with STAR --runMode 

genomeGenerate. This step feeds into map_maternal_gen_filter, where the RNA-seq reads 

are mapped to the maternal genomes. 

Output: Maternal genome indices in Maternal_STAR directory. 

 

3.3.2.9 process STAR_reference_paternal_genomes 

This process is identical to process STAR_reference_maternal_genomes above but it is 

performed on the paternal genome. 

 

3.3.2.10 process map_paternal_gen_filter 

Input: Paternal genome indices from process STAR_reference_paternal_genomes, RNA-seq 

reads, paternal genome and GTF file from process create_parental_genomes, read length 

information from process read_length, sample ID and number of cpus.  

Process: In this step the RNA-seq reads are aligned to the paternal genome with STAR. The 

BAM file generated from this is indexed and filtered with SAMtools to keep only properly 

paired and uniquely mapped reads. 

RSEM is used to index the paternal genome. Following this, RSEM is used with the STAR 

transcriptome.bam to map the same RNA-seq reads with RSEM instead. In this case, reads 

that would map to multiple locations are not discarded but are allocated one location. All 

uniquely mapped reads are used to calculate the expression of each of these loci, and then 



 
109 

the multi-mapping reads are allocated a location based on these weights. The allocation is 

based on probabilities based on ratios of uniquely mapped reads from genomic loci where 

the multi-mapping read aligns to. The file is then filtered with SAMtools to keep only 

properly paired reads. 

Output: BAM file of mapped reads to paternal genome and BAM file generated with RSEM. 

 

3.3.2.11 process map_maternal_gen_filter 

This process is identical to process map_paternal_gen_filter but performed on the maternal 

genome. 

 

3.3.2.12 process extra_reads_rsem  

Input: Filtered BAM file from process map_maternal_gen_filter and 

map_paternal_gen_filter, RSEM sampled BAM files from map_maternal_gen_filter and 

map_paternal_gen_filter, and sample ID. 

Process: Custom script gets the extra multi-mapping reads (which now only have one 

location allocated by weight in the previous step) that are aligned in RSEM, but not in STAR 

and creates a file extra.rsem.maternal/paternal.txt. Then a new RSEM BAM file is created 

containing only these extra reads. 

Output: BAM file for maternal and paternal extra reads that originally aligned to multiple 

locations, now with a single location. 
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3.3.2.13 process add_rsemreads_bam  

Input: Maternal and paternal extra reads from RSEM generated in process 

extra_reads_rsem; BAM file of reads mapped to maternal and paternal genomes from 

map_maternal_gen_filter and map_paternal_gen_filter; map_over, and and maternal and 

paternal bed files with adjusted coordinates, and maternal and paternal phased VCF file 

from process create_parental_genomes, phased VCF file from process phaser_step, sample 

ID, number of cpus, properly paired and uniquely mapped reads to the reference genome 

from process clean_up_reads; and GENCODE BED file. 

Process: For each parental genome, the STAR and RSEM BAM files are merged. Then PAC 

finds reads only aligned in one parent and not the other. When the reads are aligned in both 

maternal and paternal genomes, a custom script (filter_2genomes.pl) selects the best 

alignment for each read from the two alignments (scoring reads by the number of matching 

nucleotides minus two times the number of indel positions, drawing at random when the 

two alignments have equal scores). 

Then two custom scripts (compare_basic_map.pl and compare_2genomes.pl) are used to 

count the number of alleles at each heterozygous site. Initially, this is done with standard 

alignment. Then the same is performed for two genomes parental alignment using the 

liftOver variant files. 

Then phASER is used to generate the gene-level calculations using the VCF files and GTF files 

from each parent (generated in process create_parental_genomes). PAC then produces 

allele counts at haplotypic level using phASER Gene AE. 

Finally, the last custom script (merge_gene_level.pl) merges the gene level counts across 

the two parents. 

Output: The results files: site and haplotype level allelic counts and single genome alignment 

for comparison. 

  



 
111 

3.3.3 PAC METRICS 

I run PAC with 5 frontal cortex GTEx RNA-seq samples with an average depth of ~44 million 

paired reads (see Table 11, alignment described in section 4.2.2) to obtain average metrics 

for PAC. The average metrics for each process are shown in Table 8. PAC is written in 

Nextflow, which allows parallelisation. This means that as soon as the input files for each 

process become available, the process will start. STAR_reference_paternal_genomes and 

STAR_reference_maternal_genomes processes start when create_parental_genomes 

process has finished. Equally, when STAR_reference_paternal_genomes has finished, 

map_paternal_gen_filter will start. And same applies to the maternal genome. When 

map_paternal_gen_filter and map_maternal_gen_filter have finished, extra_reads_rsem 

can proceed. This speeds up the run time as multiple processes can run simultaneously. 

PAC takes an average of 12 h 6 minutes to generate site- and gene-level ASE data per 

sample, whereas generating these data from standard alignment takes an average of 3 h 

and 28 min on the same computational setup (requested 10 CPUs, 512000MB memory). 

Although PAC requires a longer run time (almost 3.5 times longer), it provides extra 

information and accuracy and is scalable for smaller-scale studies where ASE information is 

particularly useful. The improved value of using PAC in any given case is impossible to 

quantify as it will depend on the sample and whether the additional allelic information falls 

within genes that are of biological interest. However, PAC provides an option for users to 

obtain additional and more accurate information from their samples without the need for 

additional experiments/samples. 
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process % time 

read_length 0.01 

prepare_star_genome_index 3.18 

rnaseq_mapping_star 2.22 

clean_up_reads 4.33 

phaser_step 20.39 

create_parental_genomes 14.40 

STAR_reference_maternal_genomes 3.13 

STAR_reference_paternal_genomes 3.11 

map_maternal_gen_filter 13.08 

map_paternal_gen_filter 13.32 

extra_reads_rsem 2.29 

add_rsemreads_bam 20.55 

Table 8. Average metrics for each process within PAC. 
The average metrics for each process within PAC when it was run with 5 test GTEx frontal cortex samples with an average 
depth of ~44 million paired reads. % time represents the percentage of the duration of each process relative to the overall 
duration.  



 
113 

3.3.4 PAC ON GITHUB 

In order to make PAC publicly available and easy for distribution, I published it on GitHub 

(Figure 25). The front page with README.md contains information about PAC, how to run it 

and what options users can select.  

main.nf is the PAC Nextflow script, each of the main processes described in the previous 

section.  

Dockerfile is available for users’ knowledge. The file is not essential as it is pulled from my 

Docker Hub when PAC is executed.  

nextflow.config includes configurations essential for PAC run. It includes default options that 

can be customised by specifying each separately. 

conf directory includes information where PAC can obtain reference genome and the 

annotation files. 

bed directory contains BED annotation files from GENCODE. 

bin directory contains scripts used within PAC. 

article_data contains information where to obtain data used to generate the simulated 

genomic data from Chapter 2. 

test directory that contains downsampled RNA-seq reads and VCF file from simulated 

genomic data (Chapter 2) that can be used to test PAC. It also contains a directory of results 

files generated when running PAC with these test files. 
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Figure 25. PAC GitHub website. 
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3.3.5 PAC USER MANUAL 

NAME 

 PAC – accurate allelic quantification at site and haplotype level 

SYNOPSIS 

nextflow run PAC/main.nf [options] --genome_version <genome 

version> –reads <path to reads> –variants <path to variants> –

id <id> -profile <profile> 

DESCRIPTION 

Allele-specific expression (ASE) is the imbalanced expression of the two alleles of a 

gene. While many genes are expressed equally from both alleles, gene regulatory 

differences driven by genetic changes (i.e. regulatory variants) frequently cause the 

two alleles to be expressed at different levels, resulting in allele-specific expression 

patterns. The detection of ASE events relies on accurate alignment of RNA-

sequencing reads, where challenges still remain. This pipeline has been created to 

adjust for computational biases associated with allelic counts. It comprises of the 

following steps: 

1. Local phasing of genetic data using PHASER 

2. Creation of parental genomes to align sequencing data to 

3. Re-allocation of multimapping reads using RSEM 

4. Selection of the best mapping for each read across the two parental genomes 

5. Outputs haplotype and site level allelic counts 

 

To run a test sample, run following commands: 

load java 

load singularity 

git clone https://github.com/anna-saukkonen/PAC.git 
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path_to_nextflow/nextflow run PAC/main.nf --

genome_version GRCh37 --reads 

"PAC/test/NA12890_merged_sample_0.005_{1,2}.fq.gz" --

variants 

"PAC/test/NA12877_output.phased.downsampled.vcf.gz" --id 

NA12877 -profile singularity 

OPTIONS 

 Required: 

 --genome_version <genome version> 

  The available genomes are: GRCh37 or GRCh38. 

 --reads <path to reads> 

The path to reads in within quotation marks. The reads need to be in the 

same directory with the following format: path_to_read_1.fq.gz and 

path_to_read_2.fq.gz. The options is called with: 

"path_to_reads_{1,2}.fq.gz". 

 --variants <path to variants> 

  The path to phased VCF file within quotation marks. 

 --id <id> 

  The sample ID. 

 -profile <profile> 

  The available options are: docker or singularity. 

 

 Optional: 

 -cpus 

  The number of cpus (as an integer). The default is 10. 

 -outdir 

  The name of the output file directory. The default is "/pac_results". 
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 -N 

An email address should the user want an email notification when the run is 

finished. 

OUTPUT 

 PAC generates 5 output files:  

  haplotype level ASE calls: 

1. ‘id’_gene_level_ae.txt 

single nucleotide level ASE calls from PAC: 

2. results_2genomes_’id’.RSEM.STAR.SOFT.NOTRIM_baq.txt 

3. results_2genomes_’id’.RSEM.STAR.SOFT.NOTRIM.txt 

single nucleotide level ASE calls based on standard single genome 

mapping for comparison: 

4. results_1genome_’id’.SOFT.NOTRIM_baq.txt 

5. results_1genome_’id’.SOFT.NOTRIM.txt 

PREREQUISITE  

 Nextflow 

  The Nextflow can be downloaded with following command: 

  curl -fsSL get.nextflow.io | bash 

 Java 

Java version 8 and above. You can check your java version with following 

command: 

  java -version 

 Docker or Singularity 

The user needs a docker or singularity installed depending on which profile 

they use.  



 
118 

3.4 RESULTS 

PAC was optimised (Chapter 2) to deal with many of the technical problems associated with 

ASE analysis. In this chapter, I have written PAC into an easy-to-use format with Nextflow 

utilising Docker to remove the burden of having to install tools and dependencies. 

I next compared the performance of PAC against other commonly used methods, including 

standard alignment and WASP-filtering.  

 

3.4.1 VALIDATING PERFORMANCE OF PAC  

3.4.1.1 COMPARING PAC TO OTHER METHODS 

In chapter 2 I simulated RNA-seq data from each of the parental gold standard genomes 

inherited by the offspring. I merged these simulated RNA-seq reads and calculated the 

ground truth allelic counts at each of the heterozygous variant positions that were identified 

in the GATK variant calling that was generated from the simulated WGS from the parental 

gold standard genomes. The accuracy of allelic counts obtained from different PAC 

parameters when refining PAC was compared to this ground truth allelic data. In this 

chapter, I validate PAC as a method and compare its performance against other methods, 

using ground truth allelic counts as the baseline again.  

I aligned the simulated RNA-seq reads to the reference genome using STAR as a standard 

alignment approach as this is one of the most common alignment methods. I then aligned 

the same simulated RNA-seq reads with STAR using WASP-filtering. WASP is described in 

section 3.1.1.2. Briefly, it attempts to flip a genotype within a read to that of the other 

allele, and if it does not align to the same genomic location, the read is removed. This has 

been shown to improve mapping bias but also remove a relatively large number of reads 

[123]. Finally, I supplied PAC with the same simulated RNA-seq reads. 

For an output from each of the methods, I counted the RAR at the heterozygous sites, and 

compared how closely the results replicated ground truth data (Figure 26). I only considered 
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heterozygous sites that had at least 20× coverage in the ground truth data and all three 

methods to make results directly comparable. After this filtering step, there were 11,602 

heterozygous sites (Table 9), compared to 13,211 heterozygous sites at >=20× coverage in 

the simulated RNA-seq data. 
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Figure 26. Correlation of reference allele ratios (RAR) between standard alignment, WASP-filtered alignment, and PAC 
with the ground truth data. 
PAC shows the strongest correlation with the ground truth data, followed by WASP-filtered alignment and the poorest 
correlation with standard alignment. Genome-wide Pearson correlation coefficients (R2) are shown (P<0.05 for all 
comparisons).  
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Difference in 
reference allele ratio 

R2 between 
ground truth 

Outliers 
>20% 

Outliers 
>10% 

Gained sites against 
standard alignment 

Standard 
alignment 

Mean: 0.0321   
Median: 0.0258 

0.9599 55 305 N/A 

WASP Mean: 0.0361   
Median: 0.0304 

0.9455 32 387 0 

PAC Mean: 0.0233  
Median: 0.0192 

0.9757 13 62 350 

Table 9. Summary statistics for the different analysis methods for heterozygous sites in standard alignment, WASP-filtered 
alignment and PAC.  
Statistics are shown for sites with at least 20× coverage in all three methods. 

 

 

When considering only heterozygous sites present in standard alignment and ground truth 

data at >=20× coverage, standard alignment was able to detect 12,109 sites out of 13,211 

sites present in the ground truth (~91.7% of heterozygous sites). The average coverage at 

heterozygous sites dropped by 31× from ~175× in the ground truth data to ~144× in the 

standard alignment. This demonstrates the large number of reads are lost with standard 

alignment, many of which tend to be those with alternative alleles due to mapping bias. RAR 

were highly correlated between standard alignment and the ground truth data at 

heterozygous sites (R2=0.960) (Figure 26). However, there were 305 heterozygous sites 

whose absolute difference in RAR was greater than 10% and 55 sites with a difference 

greater than 20%. The absolute mean difference shows a 3.21% bias across all heterozygous 

sites (Table 9). 

Then, when I supplied the simulated RNA-seq data to PAC, the number of reads and the 

accuracy of allelic ratio quantification was significantly improved compared to standard 

alignment. When I only considered heterozygous sites present in PAC and ground truth data 

at >=20× coverage, the number of heterozygous sites increased by 339 compared to the 

standard alignment to 12,448. The average coverage was ~150× at these sites, an increase 

of 6× compared to the standard alignment. When considering the correlation of RAR in PAC 
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compared to the ground truth data, it increased to R2=0.976 (Figure 26). The number of 

heterozygous sites with an absolute difference in RAR of 10% also dramatically decreased to 

62, and of 20% difference it decreased to 13 sites. The mean difference from ground truth 

RAR is 2.33% (Table 9), which is significantly lower than that found for standard alignment at 

the same sites (one-sided t-test, P=2.6×10-125). These results show that PAC retains more 

reads and assigns them significantly better than alignment to the reference genome. 

When I considered heterozygous sites present in the WASP-filtered alignment and the 

ground truth at >=20× coverage, I found that the number of sites data dropped by 836 when 

compared to PAC and by 497 when compared to standard alignment, down to 11,612. The 

average coverage at these sites was 135×, which was 9× fewer than in standard alignment 

and 15× fewer than in PAC. This reduction in the number of reads and coverage is likely due 

to WASP removing difficult-to-align reads from the analysis, and as a consequence removing 

potentially informative reads. The number of outliers with an absolute difference of 20% 

was reduced to 32 using WASP-filtered data, and the number of heterozygous sites with an 

absolute difference in RAR of 10% increased by 82 to 387 relative to the standard alignment. 

Surprisingly, the R2 value decreased relative to PAC and standard alignment to 0.946 (Figure 

26). Likewise, the mean absolute difference between WASP-filtered data and the ground 

truth of 3.61% is significantly higher than in standard alignment (P=4.5×10-21, one-sided t-

test) and in PAC (P=8.9×10-272, one-sided t-test) (Table 9).  

I then examined the RAR ratio distribution of heterozygous sites obtained from PAC, 

standard alignment and WASP-filtered alignment against ground truth RAR in sites that had 

at least 20× coverage (Figure 27). These results demonstrate that as expected, standard 

alignment exhibits reference allele bias with a higher proportion of reads with RAR >0.5 

than in ground truth distribution. WASP-filtered alignment overcorrects the RAR relative to 

the ground truth distribution, with a higher proportion of reads with RAR 0.4-0.55 than in 

ground truth. There is also a smaller proportion of reads with RAR 0.35-0.4 and 0.6-0.75 

than in ground truth. PAC also exhibits slight overcorrections similar to WASP-filtered 

alignment, however, this overcorrection is smaller. Overall, the RAR distribution in PAC is 

closest to the RAR in ground truth. 
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On a more granular level, there were 68,985,120 read pairs in the original raw data. PAC 

aligns 2,402,407 read pairs that are not aligned by either standard alignment or after WASP-

filtering, of which 84,045 reads align across a heterozygous genetic variant. When only 

considering these reads spanning a heterozygous site, PAC places the read at the exact 

location correctly on the reference genome 86.3% of the time. This demonstrates that the 

vast majority of additional reads aligned by PAC are accurate. Additional reads that are 

aligned by PAC have similar GC content to reads aligned by standard alignment (47.8% in 

PAC compared to 49.1% in standard alignment) and do not bias towards any particular 

chromosome. 68 genes show a two-fold difference in either direction in the number of 

reads aligned by PAC relative to the standard alignment; these genes are not enriched for 

any particular GO functional terms.  
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Figure 27. The RAR in standard alignment, WASP-filtered alignment and PAC versus the ground truth. 
The distribution of RAR in heterozygous sites with at least 20× coverage in standard alignment (stand) versus ground truth 
(GT) (panel A), WASP-filtered alignment versus ground truth (panel B), and PAC versus standard alignment (panel C). Sites 
are not shared between methods. The lines represent kernel density estimates for each method. 
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3.4.1.2 ADDITIONAL READS PICKED UP BY PAC  

Next, I set to determine if additional reads aligned by PAC were accurate or noise that 

WASP-filtering removes. When I only considered heterozygous sites that had >=20× 

coverage in PAC but were missed by standard alignment and WASP-filtering, either by not 

meeting this threshold or due to being filtered out during the alignment step, applying PAC 

resulted in an additional 350 heterozygous sites. The RAR for these sites were highly 

correlated between PAC and the ground truth data (R2=0.844). Similarly, when I considered 

heterozygous sites that were detected in standard alignment and PAC (but not WASP-

filtered data), there were an additional 496 sites with highly significant RAR when compared 

to ground truth data (R2=0.956, P=2.6×10-266, Figure 28). This demonstrates that PAC 

performs well at sites with lower coverage that may be missed by other approaches. 

Therefore, with the aim of improving computational biases, WASP-filtered alignment also 

removes reads that could be potentially informative. 

 

 

 

Figure 28. The reference allele ratios (RAR) at heterozygous sites that PAC and standard alignment detect but that are 
discarded by WASP-filtering. 
Sites with at least 20× coverage were considered. Pearson correlation R2=0.956, P=2.6×10-266.  
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3.4.1.3 DOWNSAMPLING  

The original simulated data was generated based on parameters from sequencing data from 

the Geuvadis Consortium. These data were sequenced at a very high coverage, which is 

rarely the case for smaller-scale studies. At a low coverage, fewer reads meet the threshold 

in the analysis step. Also, having lower coverage imposes difficulties in differentiating 

genuine variants from sequencing errors [249]. I performed a comparison of PAC and other 

methods against ground truth data at lower coverages of the simulated data.  

I tested the performance of PAC at lower coverages by randomly resampling simulated raw 

data to 70% of the initial coverage (~48 million read pairs), which is roughly in line with 

average coverage from GTEx V8 sequencing (a commonly used resource for RNA-seq data). 

Because GTEx is also a large-scale study that generated high coverage, I downsampled the 

simulated data further to 50% (~34.5 million read pairs) and 30% (~21 million read pairs) of 

the original coverage. I then compared the results from each method to the ground truth 

allelic counts. As before, PAC outperforms both standard alignment and WASP-filtered data 

with all parameters tested (number of sites, difference in RAR, R2, outliers) at all coverage 

levels (Table 10). 

 

Table 10. The impact of downsampling simulated RNA-seq data on the accuracy of standard alignment, WASP-filtered 
alignment and PAC. 
Correlation of reference allele ratios (RAR) between the standard alignment, WASP-filtered alignment and PAC with the 
ground truth data after downsampling RNA sequencing reads to 70%, 50% and 30% of the initial coverage. Pearson 
correlation coefficients (R2) are shown (P<0.05 for all comparisons). Table is from Saukkonen et al., 2022 [109].  



 
127 

3.4.2 PAC IN DIFFICULT-TO-MAP REGIONS 

Finally, I explored the performance of PAC and other methods around regions that are 

known to be difficult to align and thus suffer from inaccurate allelic quantification. I 

measured the difference in RAR of heterozygous variants compared to the ground truth 

when there was an indel (>6bp) within 500bp. I also considered the heterozygous sites 

when there was another heterozygous site or a rare variant (MAF <1%) within close 

proximity (25bp). The results show that the difference in RAR from the ground truth is 

significantly higher in standard alignment and WASP-filtered data than PAC in all these cases 

(Figure 29). Therefore, at least part of the improvement in accuracy when using PAC 

appears to occur in the difficult-to-map genomic regions. 

 

Figure 29. The difference in reference allele ratio (RAR) of sites that are close to indel, another variant or rare variant 
against the ground truth. 
The RAR is significantly smaller in PAC when there is another variant, rare variant or indel close by. Heterozygous sites that 
are within 500bp of at least 6bp indel, within 25bp of another variant or a rare (MAF <1%) variant in different analyses shared 
between all methods and with at least 20× coverage are considered. A Mann–Whitney U test was performed with Bonferroni 
correction to adjust for multiple testing. (****) P ≤ 1 × 10−4, (**) 1.00 × 10−3 < P ≤1.00 × 10−2. The stars above each box plot 
refer to the comparison against PAC. Figure is from Saukkonen et al., 2022 [109].  
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3.5 DISCUSSION 

3.5.1 OTHER ASE TOOLS 

There are other ASE detection tools, including ASEReadCounter by GATK [199], two-genome 

approaches such as AlleleSeq [151], and masking [141], that have been extensively used. 

ASEReadCounter performs basic RNA-seq read filtering before providing ASE count data. 

Tools with a two-genomes approach generally only generate two personalised genomes 

that allow the user to align RNA-seq reads to both of these. Masking low-quality 

heterozygous positions in the genome has been extensively performed [250-252], however, 

it has been shown that it does not produce more reliable results and the bias persists with 

this method [141].  

None of the previous ASE methods address all the issues involved with the field within one 

workflow, nor are they easy to implement. Most likely these are the reasons that standard 

alignment to the reference genome is still the most commonly used method. There is no 

standardised ASE detection method, therefore there is a gap in the field in this area. For this 

reason, in this chapter, I wrote PAC into Nextflow and made it available on GitHub. The user 

needs minimal effort to run PAC following an initial simple install from GitHub; the run is 

automated including the download of all the tools and dependencies.  

 

3.5.2 PAC INTO STREAMLINED GENOMICS WORKFLOW 

Genomics pipelines are often complicated workflows with multiple steps and requiring 

different tools [231]. Their use often requires expertise in bioinformatics. Because academia 

favours rapid publications and analyses, software development is often not a priority [253]. 

Consequently, they are usually generated predominantly for on-premises use [244]. 

However, with the advancement in genomics data and workflows, streamlined tools are of 

paramount importance. Studies have shown that the results from genomic studies cannot 

be replicated nor the workflows easily adapted [254, 255]. Despite a large number of 

genomics tools available, while the need for these is essential for clinical settings, not many 
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have been translated into a clinical field. One of the reasons is believed to be the poor 

quality of bioinformatics tools [256]. To reproduce results from other research groups, 

generally a substantial amount of time and effort is necessary [255, 257]. 

For these reasons, I have made PAC available in a format that is reproducible on any 

computational system and easy to use. In this chapter, I described the steps within PAC, 

how it was written in Nextflow and Docker that automatically install all the necessary tools 

and software for PAC to run. I have provided a user and reference manual to make PAC 

easier to use. Upon benchmarking the run time, using five test GTEx samples of average 

depth of ∼44 million paired reads, PAC takes almost 3.5 times longer to run than a standard 

alignment approach to obtain the same data. However, PAC provides additional information 

and accuracy that can be crucial for studies with small sample sizes or studies that look into 

variants/genes with small effect sizes. 

 

3.5.3 VALIDATING PERFORMANCE OF PAC 

Following this, I validated the performance of PAC by comparing the accuracy against 

ground truth data obtained in Chapter 2. I compared the performance of PAC against 

standard alignment to the reference genome and WASP-filtered alignment methods. To 

date, there has not been a study with realistic simulated data with an absolute ground truth 

that allows to evaluate the true performance and error rate of allelic counts. The validation 

of ASE events in real data is almost impossible as there are multiple steps where errors 

might arise, including laboratory methods, data acquisition and processing and data filtering 

[181]. Therefore, realistic genomic data allowed me to evaluate and compare the 

performance of different methods. 

I showed that PAC keeps more reads, the allelic ratio is closer to that of ground truth, it has 

fewer outliers, and the additional reads that it picks up that were discarded by other 

methods are assigned accurately. I show that this is unaffected by coverage of the simulated 

data by downsampling the simulated data. PAC shows slight overcorrection when 

considering the RAR distribution of heterozygous sites, however, it is less than in WASP-
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filtered alignment, and the RAR is also closer to the ground truth RAR than in standard 

alignment. 

I show that PAC makes significantly fewer mistakes in regions that are known to be 

problematic in the ASE field, in particular near other variants, rare variants and indels [258]. 

These regions are often difficult to align with traditional methods as indels can cause a shift 

in the codon reading frame and the read then contains mismatches that would not allow it 

to pass the filtering steps. Having another variant is problematic since the alternative allele 

will already carry a mismatch from the reference sequence, thus reducing the alignment 

score and being more likely to be discarded. Rare variants will be even less likely to be 

present in population-level data and thus more problematic, and hence these will be more 

likely to be removed.  

I show that WASP removed a large number of reads as expected. Unexpectedly, however, 

WASP-filtering performed worse than standard alignment in terms of the correlation 

between the ground truth and WASP-filtered alignment reference allele ratio, mean 

difference in the reference allele ratio, and WASP-filtering increased the number of 10% 

outliers. WASP reduced the number of 20% outliers, where the RAR deviated strongly from 

the ground truth. I also showed that WASP-filtering overcorrects the data when considering 

the RAR distribution compared to the ground truth. Depending on the analysis, this might 

be an acceptable trade-off, however, the reduction in the number of reads and an overall 

reduction in performance can be problematic for rare variants and smaller sample sizes such 

as rare disease studies where ASE is gaining interest. 

 

3.5.4 FUTURE OF PAC 

In this chapter, I have developed a streamlined and easy-to-use pipeline to accurately 

quantify allelic counts. Because of this, users do not need an expertise knowledge in 

bioinformatics and PAC is therefore accessible to a wider audience. I have shown that it 

outperforms other commonly used methods and is able to quantify ASE reasonably well in 

difficult-to-map regions. I expect PAC to be particularly useful for studies in rare diseases 

where the sample sizes are small and the additional information that PAC provides can be 
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crucial. PAC would also be useful in studies that are performed at lower coverage, where 

common methods would not meet the threshold and would discard a higher proportion of 

reads that these studies cannot afford. 
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4.1 INTRODUCTION 

4.1.1 RESEARCH ON GENE EXPRESSION LEVELS AT POPULATION 

LEVEL 

GWA and eQTL studies have shown that variants in the non-coding genome contribute to 

variation in gene expression levels; this is associated with phenotypic variance in the 

population [72, 88, 92]. eQTL analysis is the most commonly used method of studying 

genetic regulation of expression, which is less prone to technical artefacts due to the large 

population samples that it requires. However, for the same reason, this method prevents 

the study of rare variants and small sample sizes, as can be the case in rare disease cohorts. 

Therefore, ASE analysis that can be measured within a single individual is becoming more 

widely used as a way to detect genetic regulation of gene expression in cis. ASE offers a 

method to study regulatory variation [259], but can also be applied to a wide array of 

different fields. ASE analysis can complement eQTL studies by improving the power to map 

genotypes [260], and by helping identify candidate genes [261, 262], ASE analysis has been 

used alone to identify genes associated with disease [168]. ASE has been used in model 

organisms to better understand environmental adaptations [263, 264] and can be utilised to 

study epigenetic gene regulation in cis including imprinting [265], X-chromosome 

inactivation [266] and monoallelic expression on autosomal chromosomes [267-269]. 

However, to utilise ASE analysis, statistical methods are needed that differentiate normal 

biological noise from a genuine variation, which is crucial when analysing smaller sample 

sizes where the power will be small, as is often the case with ASE analysis.  

 

4.1.2 THE DIFFICULTIES IN INTERPRETING ASE DATA 

ASE captures the cumulative effects of variants in regulatory regions on gene expression 

within a single individual. When the gene expression from one allele differs from that of the 

other, it is called allelic imbalance. The most common way of quantifying this statistically is 

via a binomial test, which determines if the results significantly deviate from the expected 
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outcome. Within the ASE field, this quantifies if the observed allelic ratio significantly 

deviates from the expected 1:1 ratio (where the gene/heterozygous variant is not under ASE 

and is expressed at the same level on both genetic backgrounds) [64, 94, 124]. This is a very 

simple way of testing for ASE, and therefore, is a widely used method [94, 270]. However, 

this ASE quantification method comes with its technical biases [271]. The binomial test 

assumes the data is binomially distributed, meaning each trial is independent. This may not 

be the case for genetics where each gene can have multiple heterozygous variants 

displaying imbalanced allelic ratios and display different expression patterns due to 

alternative splicing; or vary between cells for example due to methylation events. In 

addition, read count data is known to be overdispersed relative to what is expected from a 

binomial distribution [272]. Overdispersion means that the variance of the read count in 

RNA-seq data is a lot larger than the mean [273, 274]. The overdispersion is most likely due 

to technical and biological effects [123] such as mapping bias and measurement error. 

Indeed, overdispersion has been shown to be reduced with increased sequencing depth 

[275]. The binomial test does not account for this overdispersion. Even after quality control 

filters, a binomial test inflates p values [122], and as such is likely to be leading to false 

positives. There are other statistical approaches that have been applied to ASE data, 

including variations of the beta-binomial test to account for the degree of overdispersion 

[123, 159, 276]; the Beta-binomial test introduces an additional variable to account for this 

overdispersion that it learns from the data [277]. The results between binomial and beta-

binomial tests are similar in data where the degree of overdispersion is similar [271]; 

therefore, the overdispersion most likely comes from high-coverage sites. There are also 

Bayesian inference methods to assess ASE [163, 278], however, it remains difficult to 

distinguish genuine biological causes from artefacts.  

In addition, because genes have different isoforms, it often complicates how ASE is 

quantified. Traditionally, the variant with the highest coverage per gene was used as a 

representative for the gene. However, now with the improved methodology, it is preferred 

to aggregate the variants, to provide ASE estimates on a haplotype level [191]. This is 

illustrated in Figure 30. 
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Figure 30. Haplotype level ASE quantification. 
The variants within a read that distinguish alleles are phased and counted at a haplotype level to give ASE estimates across 
the haplotype. Created with BioRender.com. 

 

 

4.1.3 VALIDATING ASE DATA 

Since ASE suffers from many technical biases, it is difficult to validate the accuracy of allelic 

counts using real data, as the underlying ground truth is not usually known, and alternative 

methods to quantify allelic expression capture the effects of many different processes 

(amplification biases, alignment biases etc), or come with their own limitations. Therefore, 

comparison to population-based statistics is often employed to assess the accuracy of allelic 

counts at the single sample level, as it is more robust to artefacts due to statistical power. 

eQTLs are related to ASEs and therefore often can aid the discovery of regulatory events. 

ASE is highly heritable [94] and therefore unsurprisingly almost every gene has an eQTL [64, 

86, 279]; therefore, most ASEs should be captured when comparing to eQTL signals. ASE will 

identify the cumulative effects of additional rare variants, however, although these may be 
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crucial for biology, they will be in the minority across samples and genes, and as such, 

should not affect population level statistics driven by associations with common variants. 

eQTL effect sizes are often estimated with a linear regression slope [280, 281]. The allelic 

imbalance can be quantified by allelic fold change (aFC) [150] which describes expression 

change associated with a given variant(s). aFC can also be calculated from eQTL data, which 

allows a direct comparison of the two and therefore also a way to validate ASE results. aFC 

is explained in Figure 31. In order to ease the comparison between the two methods, a new 

tool has been developed, phASER-POP [108]. This tool phases variants at a gene level and at 

a population level, and provides an estimate of aFC from both eQTL and ASE data. phASER-

POP phases variants in every individual with allelic expression by combining the integrated 

genotypes with haplotype level ASE in individuals under study. The correlation between 

eQTL and ASE aFC is often high, however it is improved with haplotype level ASE and 

removing mapping bias with WASP, which removes ambiguous reads [123]. 

 

 

 

 

Figure 31. aFC calculation for eQTL and ASE. 
For eQTL (panel A) aFC is calculated by obtaining log2 of total sum of allele 1 over allele 2 in individuals that are heterozygous 
for that SNP. For ASE (panel B), aFC is calculated by obtaining log2 of ratio between expression of haplotype carrying 
alternative variant and reference variants. Created with BioRender.com. 
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Another way to potentially validate ASE on real data is by using long-read sequencing. Long 

reads make it possible to more accurately align data around repetitive sequences [84], large 

insertions/deletions and large chromosomal rearrangements [282]. With long-read 

sequencing, it is also possible to study the transcript structure and quantify variants without 

the need to phase them. Phasing can be challenging with rare variants [283], which is 

important in the ASE field. Phasing is required to differentiate between compound 

heterozygosity (Figure 9) [144], or to correctly quantify ASE at a haplotype level. ASE 

analysis is often used with smaller sample sizes where rare variants may play a bigger role 

than in large population-based studies, which are challenging to phase due to the low 

presence in population-level data, which is used for computational phasing approaches. 

Additionally, we know that changes in transcript structure are often accompanied by 

transcript level changes [284], thus accurate determination is important. Long-read 

sequencing eliminates the burden of biases associated with short-read sequencing that can 

lead to inaccurate transcript structure determination and quantification. However, to date 

the error rate is high and the cost of sequencing is relatively high [84, 285], which limits 

large population-level studies. In addition, the vast amount of short-read sequencing data 

available makes it easier to answer a biological question of interest by re-analysing existing 

data.  

In this chapter, I will assess the accuracy of allelic counts at heterozygous sites using PAC by 

comparing them to population-level data that is generally more robust. I will also attempt to 

validate PAC with long-read sequencing data. Finally, I will identify whether improved RNA 

sequencing alignment and allelic quantification with PAC allows a more robust detection of 

biological signals.  
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4.2 CHAPTER OVERVIEW 

In this chapter I validated ASE data obtained from PAC. I utilised multiple methods to 

achieve this, and compared PAC against other commonly used methods, standard alignment 

and WASP-filtering. Validating ASE experimentally is difficult, with every method having its 

own limitations that can lead to biases. For this reason, in this chapter, I utilised multiple 

avenues and data types to validate ASE and in particular to quantify the improved ASE 

detection obtained when using PAC. Figure 32 summarises this chapter and different 

validation methods. 

 

Figure 32. Overview of Chapter 4 analyses. 
To validate PAC as a method that improves ASE detection, four different analyses were performed. In the first analysis (green 
arrows), GTEx short read sequencing data was aligned by standard alignment to the reference genome, with WASP-filtering 
and with PAC. The aFC for eQTLs and ASE were compared. In the second analysis (purple arrows), GTEx short read sequencing 
data was again aligned by standard alignment to the reference genome, with WASP-filtering and with PAC, and ASE count 
data obtained from these methods. Long read sequencing from GTEx was also used to quantify ASE events. These two ASE 
count datasets were then compared to different methods. In the third analysis (yellow arrows), the simulated RNA-seq data 
(from chapter 2) was aligned by standard alignment to the reference genome, with WASP-filtering and with PAC. The 
biological enrichment of genes under ASE from all these methods and the ground truth data were compared. In the fourth 
analysis (pink arrows), the short read sequencing data from the HipSci Project was aligned by standard alignment to the 
reference genome and with PAC. The abundance of enhancer regions (obtained from NIH Roadmap Epigenomics 
Consortium) was compared between ASE and non-ASE genes. Created with BioRender.com.  
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4.3 METHODS 

4.3.1 DATA DESCRIPTION 

4.3.1.1 GTEX 

The GTEx (Genotype- Tissue Expression) Project [103] generated RNA-seq data from 

deceased individuals from multiple tissues, as well as WGS and genotyping data from whole 

blood. The Project provides a vast resource of data including genotyping calls, gene 

expression and eQTLs. V8 release has 948 donors and 54 tissues. The donor age is between 

20-71, with 67.1% being male and the majority at 84.6% being of the white genetic ancestry. 

The mean number of tissues collected per donor is 19.  

 

4.3.1.2 NANOPORE 

Nanopore data for GTEx samples were obtained from Glinos et al., 2021 [284] where the 

samples were sequenced with the Oxford Nanopore Technologies platform. Expression and 

allelic count data are deposited on the GTEx portal. I used 5 frontal cortex, 5 atrial 

appendage, 5 left ventricle, 6 lung, 6 skeletal muscle and 6 liver samples. The sample IDs are 

shown in Table 11. 
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 Frontal 

cortex 

Atrial 

appendage 

Left 

ventricle 

Lung Skeletal 

muscle 

Liver 

 GTEX-
1192X-0011 

GTEX-
1GN1W-
0226 

GTEX-
1I6K7-0626 

GTEX-1I6K7-
1226 

GTEX-
1C64N-
0326 

GTEX-R53T-
0326 

 GTEX-
13X6J-0011 

GTEX-1IDJD-
0226 

GTEX-
13QBU-
0426 

GTEX-
1KXAM-0426 

GTEX-
1KXAM-
2426 

GTEX-UTHO-
2426 

Sample 

IDs   

GTEX-14BIL-
0011 

GTEX-1IDJF-
0826 

GTEX-
15RIE-1726 

GTEX-
14BMU-0526 

GTEX-
1LVA9-
0326 

GTEX-WY7C-
0726 

 GTEX-
15DCD-
0011 

GTEX-
14XAO-0926 

GTEX-
OHPL-0326 

GTEX-1211K-
0826 

GTEX-
13QJ3-
0726 

GTEX-Y5LM-
0426 

 GTEX-QDT8-
0011 

GTEX-WY7C-
1126 

GTEX-ZVZP-
0226 

GTEX-WYVS-
0526 

GTEX-
17MFQ-
1926 

GTEX-ZF29-
2026 

  GTEX-ZT9X-
0326 

GTEX-ZT9X-
1826 

GTEX-ZPU1-
0826 

Table 11. Sample IDs for GTEx samples for nanopore analysis. 
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4.3.1.3 ROADMAP EPIGENOMICS PROJECT 

The chromatin state data was obtained from the NIH Roadmap Epigenomics Consortium. 

The project consists of 111 consolidated epigenomes from the Roadmap Epigenomics 

Project that were analysed together with 16 epigenomes previously reported by The 

Encyclopedia of DNA Elements (ENCODE) project [286]. The data is publicly available and 

contains global maps of regulatory elements for different cell types. 

The Consortium used a variety of methods including bisulfite treatment, DNA digestion by 

DNase I, RNA profiling, chromatin immunoprecipitation, methylated DNA 

immunoprecipitation and methylation-sensitive restriction enzyme digestion to identify 

regions of regulatory elements, including histone marks, DNA methylation, DNA accessibility 

and RNA expression. To identify the significant combinatorial interactions in different 

chromatin marks and classify genomic regions based on these data, a model based on a 

multivariate Hidden Markov Model was used [286]. The pluripotent cell lines that were 

selected for the project included eight embryonic stem cell lines (E001, E002, E003, E008, 

E014, E015, E016, E024), and five iPSC lines (E018, E019, E020, E021, E022) which have been 

shown to cluster together based on enhancer signals and are similar to each other in terms 

of pluripotency [286]. All active enhancer regions (EnhA1 and EnhA2 chromatin states) from 

13 samples were included in the analysis. The Consortium showed that around 5% of the 

genomes consist of enhancer or promoter regions [286]. 

 

4.3.2 THE COMPARISON OF ASE WITH EQTL ANALYSIS 

To recapitulate population level data with ASE results obtained from PAC, standard 

alignment and WASP-filtered data, I obtained aligned RNA-seq data containing all reads for 

670 whole blood samples from the GTEx project (v8, aligned to the hg38 reference 

genome), which were obtained via the GTEx Portal and dbGaP (dbGaP accession number 

phs000424.v8.p2) [104]. I converted these files back to raw FASTQ sequence files with 

SAMtools. I also obtained phased genetic variant calls from WGS data obtained from the 

GTEx Portal via dbGaP (phASER_GTEx_v8_merged.vcf.gz). I then used the converted RNA-

seq reads and phased variants as inputs for PAC (selecting the GRCh38 reference genome). 
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For this analysis, I updated PAC to the more recent STAR version 2.7.4a. The difference in 

output from more recent STAR versions is marginal. The BAM file PAC generates with STAR 

2.51 (previous version) and 2.74 (current) had only 10 reads different from ~95 million when 

using simulated RNA-seq from Chapter 2. 

With >=20× coverage, GTEx samples have an average of 9972 (SD=3809) heterozygous 

variants, with at least one read present for each nucleotide. PAC uses phASER to provide 

phased haplotypes and the haplotypic count data per individual. The formed matrix then 

feeds into the phASER-POP [108] to obtain aFC value per gene across individuals, for genes 

and samples with at least 8 reads. In all analyses, I used median aFC across individuals. I 

supplied lead eQTL variants identified in the GTEx project (v8) for each gene, obtained from 

the GTEx portal (Whole_Blood.v8.egenes.txt.gz). I also ran phASER-POP using two additional 

gene count matrix files, one for standard alignment 

(phASER_GTEx_v8_matrix.gw_phased.txt.gz), and the other for WASP-filtered alignment 

(phASER_WASP_GTEx_v8_matrix.gw_phased.txt.gz), both obtained through the GTEx 

portal, produced by Castel et al., 2020 [108].  

I then compared the aFC between eQTL data and ASE data for PAC, standard alignment, and 

WASP-filtered alignment. I selected genes with at least ten individuals heterozygous for the 

lead eQTL variant associated with the gene, with aFC estimates generated from eQTL data 

after filtering genes where the eQTL association was q-value < 5%. I selected only genes that 

were present in all three methods after these filtering steps for direct comparison. 

 

4.3.3 NANOPORE ANALYSIS 

To compare allelic data from nanopore to allelic data obtained from PAC, standard 

alignment and WASP-filtered data, I obtained short-read RNA-seq data, genotyping calls and 

nanopore long-read sequencing (LORALS_GTEx_v9_ase_quant_results.gencode.txt.gz) data 

for 5 frontal cortex, 5 atrial appendage, 5 left ventricle, 6 lung, 6 skeletal muscle and 6 liver 

GTEx samples (Table 11) from GTEx Portal and via dbGaP. I also downloaded allelic counts 

per gene for the same samples for short-read RNA-sequencing aligned to the GRCh38 
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reference genome (phASER_GTEx_v8_matrix.gw_phased.txt.gz) and WASP-filtered 

alignment (phASER_WASP_GTEx_v8_matrix.gw_phased.txt.gz) samples.  

The short-read RNA-seq read for the samples together with genotyping calls were used as 

inputs for PAC (selecting GRCh38 to make it comparable to other methods), obtaining allelic 

counts at haplotype level for each gene. I compared allelic ratios between standard 

alignment, WASP-filtered data, and PAC, to the nanopore data. For this, genes present in all 

methods that were on autosomal chromosomes with >=20× coverage were selected.  

 

4.3.4 ENRICHMENT ANALYSIS 

To investigate how PAC, standard alignment and WASP-filtered alignment recapitulate 

enrichment of genes under ASE in ground truth data, I used allelic counts from simulated 

data (chapter 2, section 2.2.2) for paternal and maternal alleles for individual NA12877 that 

were used as a ground truth baseline against which other methods were compared. The 

HLA (obtained from phASER) and blacklist regions (obtained from ENCODE 

ENCFF001TDO.bed) were removed. Only SNPs on autosomal chromosomes with at least 20× 

coverage were included in the analysis.  

I annotated all variants with wANNOVAR (https://wannovar.wglab.org) in each method. 

These variants acted as a background list for enrichment analysis. I selected the 

heterozygous sites with the highest coverage for each gene to be representative for that 

gene. I counted allelic ratios and obtained significant sites under ASE using the binomial test 

at P<0.05. I performed enrichment analysis using gProfiler2 R package for the gene for 

which the representative variant was under ASE, with all expressed variants acting as the 

background. I performed this for ground truth allelic counts, and the output from PAC, 

standard alignment and WASP-filtered alignment, using the same simulated RNA-seq reads. 

 

https://wannovar.wglab.org/
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4.3.5 ENHANCER ANALYSIS 

There has been evidence that shows that genetic risk variants are enriched in enhancer 

regions [287, 288]. For example, around 30% of non-coding SNPs associated with 

Alzheimer’s disease are located in enhancers [289]. Another study showed that a non-

coding risk variant associated with Parkinson’s disease is located in an enhancer region, 

which upregulates the expression of a disease susceptibility gene [290]. Because the 

regulatory regions including enhancers influence gene expression, these variants are likely 

to cause ASE in many cases. This provides an excellent avenue to utilise ASE analysis to 

investigate if the genes under ASE differ in their local enhancer abundance. The logic behind 

this is that since enhancers are enriched for the genetic variants, gene expression would be 

influenced in an allele-specific manner. In order to examine this, I ran PAC on 10 healthy 

HipSci iPSC samples (donors described in Table 1, data acquisition described in section 

2.2.1.1). I annotated variants using the GENCODE v19 GTF file to obtain information on 

which gene each variant falls into. For iPSC data for each donor, I selected genes (with at 

least one heterozygous site with >=10× coverage) under ASE using binomial statistics with 

detection at P<0.05 and Bonferroni-adjusted (where the P-value is divided by the number of 

heterozygous sites) for a more stringent criteria, and non-ASE genes where the statistics did 

not meet this threshold.  

All active enhancer regions from 13 pluripotent samples, obtained from the NIH Roadmap 

Epigenomics Project, were merged together. The enhancer regions can vary slightly in their 

locations between cell lines. In order to remove the same regions, I removed duplicate 

samples by merging the enhancers that overlapped by at least 1 bp together using BEDtools. 

Enhancer abundance near genes was measured by the number of base pairs, annotated as 

active enhancers within 1Mb from gene start and gene end site. I pooled together all donor 

ASE and non-ASE genes and tested for significant differences in enhancer abundance. I 

summed the total number of base pairs of enhancer abundance within a 1Mb range for ASE 

and non-ASE genes, and divided it by the total number of genes in each sample. The 

significance was calculated with the paired non-parametric Wilcoxon signed rank test. 
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I also tested the significant difference in enhancer abundance for genes under ASE and non-

ASE within each donor. I summed the total number of base pairs of enhancer abundance 

within a 1Mb range per gene for ASE and non-ASE genes. I tested the significance with the 

non-paired non-parametric Wilcoxon rank sum test. All analysis was performed with custom 

scripts written in Python and R.  
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4.4 RESULTS 

To validate PAC as a method, I performed analyses using real data and compared the 

performance of PAC against standard alignment and WASP-filtered alignment. In this 

chapter, I first examined how well ASE data recapitulates population-level eQTL signals, 

which are more robust against artificial and technical biases. I then compared ASE data from 

short-read sequencing obtained from PAC, standard alignment, and WASP-filtered data 

against that from long-read sequencing, which in theory circumvents mapping biases and 

phasing errors that are a problem for ASE analysis. I then validated PAC by comparing how 

the functional enrichment of genes under ASE best replicates the enrichment results from 

ground truth data, compared to other methods. And finally, I applied PAC in the context of 

understanding the genomic regulatory environment surrounding genes under ASE, to better 

understand the biology of gene expression regulation. 

 

4.4.1 VALIDATING PAC: ASE VERSUS EQTL AFC ON GTEX WHOLE 

BLOOD DATA 

To validate the performance of PAC, I explored how well ASE data generated by the pipeline 

recapitulates population-level signals obtained via eQTL analysis. Although ASE analysis is 

able to capture more information by not relying on large sample sizes, it also has the ability 

to capture population-level signals. In this analysis, I compared the allelic fold change (aFC) 

[150] (which describes the size of the effect of alternative alleles on gene expression levels) 

generated from ASE data to those obtained from eQTL mapping, with the theory being that 

improved allelic quantification by PAC should improve this correlation compared to other 

methods. 

To generate allelic count data, I aligned 670 whole blood RNA-seq samples from the GTEx 

project (v8) [104] using PAC generating gene-level counts. Within PAC, using phASER-POP 

[108] I then used these counts together with information on lead eQTL SNPs to calculate the 

aFC for each gene (as a function of whether an individual carries the lead eQTL variant). To 
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compare how well PAC performs against other methods, I also obtained gene-level counts 

from the GTEx portal for data that had undergone standard alignment and WASP-filtered 

alignment, and then ran phASER-POP [108] to generate aFC per gene across individuals for 

each of these methods. I compared the aFC estimates obtained from allelic count data 

generated from PAC, standard alignment and WASP-filtered data to aFC values generated 

from eQTL data (data obtained from Castel et al., 2020 [108]). I selected the 8913 genes that 

had a significant eQTL (q-value < 5%) and where the aFC could be calculated from ASE data 

in all three methods and were present at >=20× coverage. The results are shown in Figure 

33. 

PAC shows the strongest correlation of Genome-wide Pearson correlation coefficients (R2) 

=0.842 between gene-level aFC generated from ASE and eQTL data. The correlation in 

WASP-filtered alignment is lower at R2=0.829, and for data obtained through standard 

alignment, there is the lowest correlation of R2=0.820. These results show that WASP-

filtering slightly improves the correlation between aFC values from ASE and eQTL data, 

while PAC improves it considerably more. WASP mostly works by removing ambiguous 

reads while PAC employs multiple correction steps including diploid genome, retention of 

multi-mapping reads, and optimised alignment parameters; therefore, PAC appears to have 

more power to recapitulate population level signals. 
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Figure 33. Correlation of allelic fold change (aFC) values derived from ASE and eQTL analyses from GTEx whole blood 
samples. 
aFC from standard alignment recapitulates eQTL signal relatively well. WASP-filtering improves this correlation, and the 
correlation is improved even more in data obtained from PAC. Pearson’s correlation coefficients are shown for eQTL versus 
ASE aFCs.   

Standard 

alignment 

WASP 

PAC 
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In addition to improving the accuracy, PAC also aligns more reads across heterozygous sites 

compared to standard or WASP-filtered alignment. As a result, more genes meet the 

minimum coverage thresholds for PAC data compared to the other methods. Compared to 

WASP-filtered alignment, 740 more genes were retained in PAC data at the specified 

coverage cut-offs (regardless of whether they were present in standard alignment data). To 

assess the accuracy of allele counts generated from these additional 740 genes, I next 

examined if these genes are informative and assigned accurately by PAC by comparing aFC 

generated from ASE and eQTL data. The aFC between ASE and eQTL data in these additional 

genes was still high at Genome-wide Pearson correlation coefficients (R2)=0.653, P=4.0×10-

91 (Figure 34 A). I then examined 319 genes that were not present in WASP-filtered data or 

standard alignment, similarly showing a significant correlation of R2=0.643, P=1.1×10-38 

between ASE and eQTL aFC (Figure 34 B). When looking at 421 genes that were present in 

PAC and standard alignment but not in WASP-filtered data, the correlation was slightly 

improved (R2=0.669, P=6.9×10-56) (Figure 34 C).  

These results demonstrate that PAC improves the accuracy of allele counts at heterozygous 

sites as the correlation of aFC values between ASE and eQTL data is higher for PAC and thus 

better recapitulates population-level signals that are less prone to computational biases. 

PAC also enables the study of more genes due to increased coverage gained by accurately 

assigning additional reads to their correct genomic location, potentially capturing more 

information for biologically important genes. This is crucial for smaller sample sizes, for 

which ASE is often employed for. 
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Figure 34. Correlation of allelic fold change (aFC) values derived from ASE and eQTL analyses for extra genes that can be 
analysed in PAC relative to standard alignment or WASP-filtered data from GTEx whole blood samples. 
A) There are 740 extra genes present in PAC but discarded in WASP-filtered data and these show a high correlation (R2=0.65) 
with the ground truth data. B) The 319 extra genes present in PAC that are discarded in standard alignment or WASP-filtered 
data from GTEx whole blood samples show slightly reduced but still high correlation (R2=0.64) with the ground truth data. 
C) There are 421 extra genes present in PAC that are present in standard alignment but discarded in WASP-filtered data, and 
these show high correlation (R2=0.67) with the ground truth data. Pearson’s correlation coefficients are shown for eQTL 
versus ASE aFCs.  
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4.4.2 ASSESSING PAC WITH NANOPORE DATA 

As an attempt to further validate the accuracy of allelic counts generated by PAC, I 

examined the utility of long-read sequencing to validate short-read ASE data. Long-read 

sequencing avoids phasing and the reference allele bias associated with short-read 

sequencing. Long-read sequencing is more likely to be uniquely mappable and therefore is 

thought to be a more accurate method for ASE detection. A recent study by Glinos et al., 

2021 [284] generated long-read sequencing using GTEx data, and gene level allelic counts 

have been made available on the GTEx Portal for 88 samples across 14 different tissue 

types. For this analysis, I selected 5 frontal cortex, 5 atrial appendage, 5 left ventricle, 6 

lung, 6 skeletal muscle and 6 liver samples (Table 11). I obtained allelic counts per gene for 

these samples, together with the same data obtained from the short-read sequencing for 

the standard alignment and WASP-filtered alignment. Then, I obtained raw short-read RNA 

sequencing data for the same samples and ran them with PAC to obtain allelic counts per 

gene. After collating all data across these approaches, I then compared gene-level allelic 

ratios generated from long-read data against those generated from short-read data after 

applying standard alignment, WASP filtering and PAC. 

Unexpectedly, there were no significant correlations between any methods and nanopore 

data when comparing the allelic ratios when all tissue data was pooled together (P>0.05 in 

all cases, Figure 35). The allelic ratios in standard alignment and WASP-filtered data were 

more dispersed than in PAC, however, the data did not correlate in any analyses. 

Performing the comparison within each tissue (Figure 36), the trend remained the same 

(P>0.05 in all cases).  

I considered the mean difference in allelic ratios between PAC, standard alignment and 

WASP-filtered alignment from that in nanopore across all tissues analysed. The mean 

difference in standard alignment was 0.0869, in WASP-filtered data it was 0.0863 and in PAC 

it was 0.0851. As such, there is no correlation between allelic ratios generated from long-

read sequencing and the same data generated via any method from short-read sequencing. 

The original study also only observed a moderate concordance [284]. 
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Figure 35. Comparison of allelic ratios between Nanopore and standard alignment, WASP-filtered data and PAC. 
None of the approaches had significant correlation between the short-read and the long-read sequencing. Data shown for 
all GTEx tissues pooled together.
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Figure 36. Comparison of Nanopore and different analyses within each GTEx tissue. 
Data from short-read sequencing from any of the approaches or tissues did not correlate with long-read sequencing data.  
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4.4.3 ACCURACY OF ENRICHMENT OF ASE GENES 

ASE is widespread even in healthy individuals [108], and I have shown in section 2.3.1.3 that 

biological enrichment terms can be obtained for genes under ASE. Because gene set 

enrichment analysis is a common method to analyse a gene set, in this section I set to 

examine how accurate detection of allelic imbalance can influence downstream analysis of 

biological processes. For this, I used simulated genomic data generated in Chapter 2 to test 

if genes under ASE are enriched for any particular biological terms. I did not expect to 

observe any enriched categories as the simulated data is based on a healthy individual, 

however, this allowed me to obtain a baseline truth against which I could compare how 

differences in ASE detection in other methods influenced the enriched terms. 

I annotated heterozygous variants present in the simulated RNA-seq data for maternal and 

paternal genomes with wANNOVAR (https://wannovar.wglab.org). The variant with the 

highest coverage per gene acted as a representative for that gene. I calculated which genes 

showed significant ASE for each highest expressing variant with a binomial test P<0.05. I 

used g:Profiler2 to obtain genes and pathways that were enriched for ASE selecting KEGG 

pathway and GO terms (Figure 37). This analysis resulted in a list of enriched biological 

terms that were generated from genes showing significant ASE in the ground truth 

simulated data. 

I then examined if ASE genes generated via PAC, standard alignment, and WASP-filtered 

alignment would be enriched for the same biological signals, or whether biases would lead 

to false biological interpretations of the data. I performed the same analysis for data 

obtained by PAC, standard alignment to the reference genome and WASP-filtered alignment 

using the same simulated RNA-seq data. I compared how these methods performed against 

enrichment in the ground truth (Figure 37). 

  

https://wannovar.wglab.org/
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Figure 37 shows that ground truth data returned 25 terms. One of these is Parkinson's 

disease term which could be of interest in genetic analysis. 

In standard alignment, there are 28 terms in total. It wrongly picks up 12 terms and 

correctly assigns only 16 terms out of 25. In WASP analysis there are 17 terms in total. WASP 

picked 7 terms incorrectly, and correctly assigns 10 out of 25 terms. WASP picked one term 

PAC missed. In PAC analysis there are 16 terms in total. It has 3 incorrect terms, but it 

correctly assigns 13 terms out of 25. PAC picked up 4 terms that WASP missed. 

Overall, PAC best recapitulates ground truth data. Both WASP-filtered alignment and 

standard alignment have more terms than PAC, yet have more incorrect terms. False 

positives are problematic for downstream biological analysis. 
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4.4.4 ENHANCER ANALYSIS 

ASE measures allelic imbalances within a coding region, which are most often caused by cis-

regulatory variants rather than the SNP differentiating the allele itself [288]. As genetic risk 

variants are enriched in enhancer regions [287, 291, 292], I hypothesised that it is possible 

that genes under ASE would be enriched for regulatory sequences in the surrounding 

regions, thus increasing the likelihood of a variant falling within an enhancer region that 

subsequently influences gene expression in cis (Figure 38).  

 

 

 

 

 

Figure 38. Enhancer abundance analysis near genes under ASE. 
Genes under ASE are potentially enriched for enhancers and other regulatory regions that influence gene expression. The 
variants within regulatory regions (green boxes) accumulate and affect the gene expression of the gene (blue box) 
downstream or upstream. Created with BioRender.com. 
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I tested this hypothesis by comparing the abundance of enhancer regions near genes under 

ASE to non-ASE genes. I ran PAC with RNA-seq reads from iPSCs from the 10 healthy HipSci 

donors (see methods, section 2.2.1.1). I then obtained a list of genes that were under ASE 

using a binomial test (for more stringent criteria I used Bonferroni-adjustment, where the P-

value is divided by the number of heterozygous sites), and genes that did not meet the ASE 

threshold. I then compared the average number of nucleotides within active enhancer 

regions (genomic locations obtained from NIH Roadmap Epigenomics Consortium) 

surrounding ASE and non-ASE genes when all the donor data was pooled.  

When ASE detection was stringent with Bonferroni-adjustment, enhancer regions were 

significantly more abundant around ASE genes versus non-ASE genes (Wilcoxon signed rank 

test: P=0.04883). However, under less stringent ASE detection (binomial test at P<0.05) 

there was no significant difference between ASE and non-ASE genes (Wilcoxon signed rank 

test: P= 0.375). This might reflect that the relaxed ASE selection criteria included non-ASE 

genes in the list. 

During comparisons within individuals, only 3 donors showed a significant difference in the 

total number of bases in active enhancer regions per gene when ASE detection was 

Bonferroni-adjusted (Wilcoxon rank sum test: P=0.01921, P=0.04515, P=0.02059). No 

statistical difference was found when ASE sites were detected at P<0.05 (Wilcoxon signed 

rank test: P≥0.05).  
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4.5 DISCUSSION 

In this chapter, I tested the accuracy of PAC in quantifying allelic expression using a series of 

population-based approaches and alternative datasets. First, I applied PAC to population-

level gene expression data to demonstrate that it recapitulates regulation signals better 

than other commonly used methods. Second, I tested how PAC and other methods compare 

in their allelic ratios to that of nanopore sequencing. Third, I demonstrate that correct ASE 

detection is crucial for downstream analysis with ASE enrichment analysis. Fourth, I show 

that ASE can be used to answer biological questions such as demonstrating that genes 

under ASE are enriched for enhancer regions.  

 

4.5.1 COMPARISON OF ASE TO POPULATION-LEVEL DATA 

In the initial analysis, I compared how well aFC associated with ASE correlates with eQTL 

aFC. eQTL mapping is a more robust method that relies on population-level data, where 

errors are thought to average out across samples. Because ASE is prone to artefacts, 

improved ASE detection should better recapitulate the eQTL signals [108]. I show that PAC 

improves this correlation but also accurately quantifies aFC for extra genes that other 

methods lack the power to analyse. The correlation between ASE and eQTL aFC is only 

slightly improved in WASP-filtered alignment compared to the standard alignment, 

however, WASP-filtering removes a large number of genes that I have shown can be 

quantified accurately and therefore WASP-filtering most likely removes informative reads. 

The ability of PAC to accurately quantify allelic expression for a larger number of genes may 

be particularly important in analyses with small sample sizes such as in the rare disease 

field, or where other analysis approaches may cause important genes to be missed.  

 

4.5.2 LONG-READ SEQUENCING 

I next explored the validation of ASE with nanopore data and in particular if PAC can better 

replicate long-read ASE detection. Although PAC slightly improved the correlation of allelic 
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ratios at heterozygous sites with the nanopore data, it was not significant, and in general, 

ASE signals in short and long-read data do not seem to be consistent for these samples. 

Similar to my findings, there was only moderate concordance between ASE reported in 

short-read versus long-read sequencing in the original study [284]. The authors explained 

this via low read depth and some reads being filtered out at the quality control step. It has 

also been demonstrated that replicate RNA-seq libraries are needed in ASE analysis to 

reliably quantify the technical noise [293], and as such, repeat sequencing of samples here 

(for long and short-read sequencing) may also show high levels of discordance. 

Furthermore, at present long-read sequencing still suffers from a relatively high nucleotide 

error rate [285] with most errors being caused by indels [84], which might explain some of 

the unexpected results. Long-read sequencing is a rapidly evolving field, and the error rate is 

reducing and error correction methods improving [285]. It will be important to analyse 

genomic regions that are difficult to sequence with short-read sequencing including repeat 

sequences, around rare variants and complex chromosomal rearrangements [294], and in 

the future it is hoped that long-read sequencing will ease the study of ASE in cancer 

samples, which often have large mutation rates exacerbating biases even further. 

 

4.5.3 THE ENRICHMENT OF ASE GENES 

Next, I explored the consequences for downstream biological interpretation of improper 

ASE analysis. First, I show that the ASE analysis can be used to detect genes and biological 

terms that are enriched for genetic regulation using simulated ground truth data. Then, I 

show that PAC has the least number of false positive terms (18.7% (3/16)) out of all other 

analyses. The standard alignment had the most terms correct, however, it also had 42.9% 

(12/28) false positive terms. Surprisingly, WASP had the least number of correctly assigned 

terms but also a high number of false positives (41.2% (7/17)). 

Although this analysis was performed on simulated data in order to assess the performance 

of each analysis to the ground truth, it demonstrates that analysis with real data may lead 

to a false biological interpretation of the data. In this particular case, standard alignment 
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would have missed the Parkinson’s disease term, which may have been of particular interest 

to disease researchers. 

 

4.5.4 ABUNDANCE OF ENHANCERS NEAR ASE GENES 

Finally, I applied ASE to explore the potential mechanisms driving variation in gene 

expression across samples. Because ASE signals are often driven by cis- variants in 

regulatory regions, rather than the proxy SNP in the gene itself, and because each gene is 

often regulated by multiple regulatory regions, I investigated if enhancers are more 

abundant near genes under ASE. I show that enhancer regions are indeed enriched near 

genes under ASE, as expected under the most stringent criteria. This demonstrates the 

utility of ASE to answer biological questions and to understand underlying mechanisms. 

In this chapter, I performed a series of validation exercises for the PAC derived data, and 

began to explore the application of PAC to population-level questions. In the next chapter, I 

will focus on applying ASE and PAC in disease and functional contexts to better understand 

underlying biological mechanisms.  
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5.1 INTRODUCTION 

5.1.1 DETECTION OF DISEASE GENES 

In clinical settings, genetic diseases are most commonly studied by targeted gene 

sequencing or whole exome sequencing, which are able to detect defects in protein-coding 

regions [295]. In total, only around 25-50% of patients with a rare disease [296-298] or 

Mendelian disorder [38] have a causal genetic variant identified with WES, due to the 

ambiguity around potential causal genes and the accuracy of genome annotation, and as 

such many genetic disorders remain undiagnosed [37]. In addition, an understanding of the 

functional molecular interpretation and clinical impact is lacking. This is now being tackled in 

some contexts by including the non-coding genome and functional genomic information, 

such as disruptions in gene expression, into the diagnostic pathway.  

RNA-seq can provide information on changes in gene expression that are caused by genetic 

changes that might affect regulatory regions, regulatory proteins, or splice sites. Differential 

gene expression, where transcript levels differ between healthy and disease states [299], 

has been shown to be a powerful tool in understanding the biology behind many processes 

including psychiatric disorders [300], neurodegenerative disorders [301] and cancer [302]. 

Furthermore, RNA-seq has been used to validate splice-altering mutations, which enabled 

diagnosis in 66% of patients in one particular cohort, while only 21% of patients had 

received a diagnosis via WES/WGS [37]. In another study, 10% of patients where WES had 

failed to provide a diagnosis for a suspected mitochondrial disorder, received a diagnosis 

using RNA-seq and provided candidate causal genes for the rest of the patients [38]. 

Therefore, RNA-seq is a powerful tool to understand the biological mechanisms underlying 

disease states. 

In general, genes that show differential gene expression between cases and controls are 

thought to reveal genes that are induced by the disease state rather than being causal of 

the disease itself [303]. As such, although differentially expressed genes may be useful as 

biomarkers in diagnostic settings (eg. [304, 305]), to understand the causal mechanisms 

additional information is often needed. Given that GWAS hits are commonly found in non-
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coding regions of the genome, and have been shown to overlap genetic signals associated 

with eQTLs [71, 72, 306], variation in gene expression is likely to be the intermediate 

between genomic variants and phenotypes in many cases, often providing a link to the 

potential causal gene. However, as discussed in previous chapters, eQTL analysis is limited 

by several features, the most relevant of which include the inability to detect associations in 

smaller sample sizes and the inability to identify the correct causal variant with certainty 

due to linkage disequilibrium [307]. ASE offers an alternative route to disentangle these 

problems, and provides an additional layer of information on the role of gene expression 

that can be used to understand the disease and other biological processes. In this chapter, I 

explore the utility of ASE via two examples to better understand underlying biological 

processes: haploinsufficiency and gene-by-environment (G×E) interactions.  

 

5.1.2 ASE AND HAPLOINSUFFICIENCY 

Most genes have two functional copies and can tolerate a decrease in gene dosage (they are 

haplosufficient (HS)) [308]. Should one allele be expressed at a lower level or not expressed 

at all, there are often regulatory mechanisms in place to compensate for this change from 

the other allele to maintain expression levels required for normal gene function. 

Haploinsufficient (HIS) genes cannot tolerate reduced gene dosage, and deletion will cause 

an abnormal phenotype or disease state [309]. Similarly, there are genes where an 

additional copy of the gene is also not tolerated [310]. For HIS genes, two functional alleles 

are essential for the wild-type phenotype state. Haploinsufficient genes can be difficult to 

study and are often implicated in serious phenotypes including neurological disorders [311], 

intellectual disability [312], intellectual disability (eg. [313]), developmental [314] or 

metabolic disorders, or tumorigenesis. Experimental approaches to identify and verify these 

genes in humans are impossible due to the need to crossbreed and the severity of 

phenotypes. Because haploinsufficient genes are clinically relevant, there is a growing 

interest in utilising prediction methods to identify haploinsufficient genes to prioritise and 

interpret genetic variants. Current prediction methods exploit a magnitude of genomic 

features such as genomic conservation [315], haploinsufficiency in model organisms, 

mutation intolerance in population data [316], functional annotations [315], depletion of 
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variants [19] and epigenomic patterns [317]. These features are often incorporated into 

models comparing HIS to HS genes and it has been shown that many drastic differences are 

observed in genomic, evolutionary, functional, and network properties used for predictive 

models [308]. Because ASE measures allelic ratios within each sample and therefore 

quantifies the relative expression level of each allele at heterozygous sites, it could be an 

informative feature of gene dosage for use in haploinsufficiency research. In this chapter, I 

explore HIS genes and their allelic ratios, and hypothesise that in healthy individuals, allelic 

ratios of HIS genes are less likely to show deviation between the two alleles and also across 

individuals. So far ASE has not been utilised in HIS gene prediction models, and so this 

research opens new avenues to explore HIS prediction methods. 

 

5.1.3 GENETIC VARIANTS AND G×E INTERACTIONS 

In the second example, I explore ASE in the context of G×E interactions, to test how gene 

expression regulation changes in different environments, which can be highly relevant when 

trying to understand variation in transcriptional responses that may occur due to disease 

phenotypes. Different genes are expressed in different cell types and under different 

environmental stimuli, and genetic variation within individuals may affect how genes 

respond to these environmental changes. Large population-level studies have been 

informative in demonstrating the tissue specificity of gene expression [91, 318]. The GTEx 

consortium has shown that some eQTLs are widely shared between tissues, while some are 

highly tissue-specific [104]. To better understand how environmental stimuli affect gene 

expression, response eQTLs (reQTLs) can be utilised by treating cell cultures with different 

environmental treatments, which describe G×E interactions [319-321]. However, these 

studies miss about half of the genes associated with dynamic regulatory interactions, many 

of which have been implicated as disease genes; therefore, the cell type and environment 

play a crucial role [102]. ASE enables the study of G×E interactions by exposing different cell 

types to environmental stimuli [93]. Because ASE allows the study of gene expression 

variation on smaller sample sizes, a larger combination of environmental stimuli on more 

cell types can be investigated. Indeed, studies have demonstrated that 50% of genes under 

ASE showing G×E expression are involved in GWAS traits, significantly more than normal 
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genes under ASE [93]. The understanding of interactions between these features is only 

beginning to be investigated, and recent studies have begun to profile the transcriptional 

response of different cell types to different stimuli, in order to better understand the 

underlying causal mechanisms of the disease [102]. In this chapter, I explore how improved 

allelic quantification can better guide the interpretation of these results. 
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5.2 METHODS 

5.2.1 DATA DESCRIPTION 

5.2.1.1 HIS GENE LIST 

To construct a HIS gene list I selected 299 known HIS genes [309] often used as a training set 

in many other papers that develop machine learning for haploinsufficiency prediction (eg. 

[308, 317]). I converted the Entrez ID to Ensembl ID with g:Profiler 

(https://biit.cs.ut.ee/gprofiler/convert). The converter was unable to convert 2 genes. I 

converted 1 gene manually and the other gene did not match any Ensembl ID. I also 

included 298 HIS genes from Han et al., 2018 [317], used for model training. These were 

collected from Dang et al., 2008 [309] and ClinVar. After removing duplicates, 357 HIS genes 

remained in total.  

 

5.2.1.2 GREY HIS GENE LIST 

There are multiple studies that have used various parameters to predict HIS genes. Some of 

these are genuine HIS genes that have not yet been validated, but some will be falsely 

classified as HIS. I called these genes ‘grey’ (not definite) HIS genes. To construct a grey HIS 

gene list (hereafter referred to as grey list), I obtained genes that were predicted to be HIS 

from previous publications.  

1. From Han et al., 2018 paper [317] I used 3406 genes with episcore >= 0.6 as 

predicted HIS genes. In this paper, researchers used epigenomics to predict 

haploinsufficiency. 

2. From Shihab et al., 2017 [315] I used 339 unique genes that were used as a 

benchmark to test their model: haploinsufficient genes in OMIM, haploinsufficient 

genes with de novo mutations in OMIM, genes where a heterozygous knockout 

mutation in mice causes lethality phenotypes, genes where a heterozygous knockout 

mutation in mice causes seizures, genes with de novo loss of function mutation in 

autism probands from Iossifov et al., 2012 [322], and genes with de novo loss of 

https://biit.cs.ut.ee/gprofiler/convert
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function mutations in other sets of autism probands [323-325]. There were in total 

339 genes after removing duplicates and 328 after converting to Ensembl ID.  

3. From Huang et al., 2010 [308] I used the HI_prediction_with_imputation.bed file 

that contains probabilities for genes being haploinsufficient. Researchers used 

genomic, evolutionary, functional, and network properties to develop a model to 

predict HIS genes. I selected 2571 genes with >=85% probability of being 

haploinsufficient for the grey list. After converting to Ensembl IDs, 2596 genes 

remained. 

4. From Lek et al., 2016 [19] I used 3231 genes with pLi score >0.9. Researchers used 

variant depletion to predict haploinsufficiency. After converting to Ensembl IDs, 

3151 genes remained. 

5. From Steinberg et al., 2015 [326] I selected 5% of genes with the highest genome-

wide haploinsufficiency (GHIS) score. The score was constructed using various 

features including gene co-expression and genetic variation. These were provided in 

Ensembl ID format. 

After removing duplicates and those present in the HIS gene list, there were 7720 grey HIS 

genes.  

 

5.2.1.3 HS GENE LIST 

To generate the HS gene list, I obtained 574 HS genes used as a training set in Han et al., 

2018 [317]. They collected these genes from a paper that identified genes from healthy 

individuals where the copy of gene has been deleted [327].These were supplied in Ensembl 

ID format. I also used 386 HS genes used as a training set in Shihab et al., 2017 [315]. These 

were collected from a paper that identified loss-of-function tolerant genes [129]. After 

converting to Ensembl ID with g:Progiler 350 genes remained. After removing duplicates 

906 HS genes remained. 
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5.2.1.4 GTEX 

I downloaded the haplotype expression matrix from GTEx Portal for all GTEx tissues that 

were obtained from WASP-filtered RNA-seq data 

(phASER_WASP_GTEx_v8_matrix.gw_phased.txt.gz). This contains the number of reference 

and alternative reads for each haplotype. I removed tissues where the number of individuals 

was below 100 (bladder, cervix and fallopian tube samples). I used the 

GTEx_Analysis_v8_Annotations_SampleAttributesDS.txt file to obtain tissue information for 

each sample in the haplotype expression matrix. I counted the reference allele ratio for 

genes where there were at least 20 individuals and the coverage for the gene was at least 

20× per individual. I only used autosomal genes. I separated genes into those that were 

present in the HIS gene list, grey list, HS list and unknown (the rest).  

 

5.2.2 GTEX HAPLOINSUFFICIENCY ANALYSIS 

I compared the allelic ratios between HIS, grey, unknown and HS genes in all GTEx tissues 

that had over 100 samples. Initially, I compared genes from all tissues pooled together. 

There were 6,645 HIS genes; 13,030 HS genes; 142,109 grey genes and 241,837 unknown 

genes. 

For haploinsufficiency analysis, I was interested in how large the standard deviation of the 

allelic ratios is across individuals, and how far the mean for allelic ratio was from 0.5. 

Therefore, I generated a flipped data set where when the reference allele ratio was over 

0.5, I subtracted 1 from the ratio so that the value would always be 0.5 or below. For this, I 

measured the mean and standard deviation for each gene across individuals in all tissues. 

This was performed on HIS, grey, unknown and HS gene samples. 

Following this, for each gene, I selected the tissue where it was expressed most highly, using 

the median gene transcripts per million (TPM) (GTEx_Analysis_2017-06-

05_v8_RNASeQCv1.1.9_gene_tpm.gct.gz) across individuals for each gene. I plotted the 

reference allele ratio for each gene only from the highest expressing tissue.  
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The statistical significance for both of these analyses was calculated with a two-sided Mann-

Whitney-Wilcoxon test with Bonferroni correction. 

 

5.2.3 PAC AGAINST WASP AND STANDARD ALIGNMENT 

HAPLOINSUFFICIENCY ANALYSIS 

I obtained a haplotype expression matrix with standard alignment of RNA-seq reads to the 

reference genome (phASER_GTEx_v8_matrix.gw_phased.txt.gz) and with WASP-filtered 

alignment (phASER_WASP_GTEx_v8_matrix.gw_phased.txt.gz) from the GTEx Portal. I 

selected samples from whole blood only. I downloaded aligned RNA-seq data for 670 whole 

blood samples from the GTEx Portal and converted these files back to raw FASTQ sequence 

files with SAMtools. These were then used as an input for PAC (selecting the GRCh38 

reference genome), together with phased genetic variant calls from WGS data (obtained 

from the GTEx, phASER_GTEx_v8_merged.vcf.gz). I used the haplotype level data obtained 

from PAC for the HIS analysis.  

I generated a random gene list which consisted of 5% genes from the GTEx haplotype 

expression matrix (2664 genes) from all tissues. 2663 genes were expressed in PAC, 2664 

genes were expressed in WASP-filtered alignment and 2664 genes were expressed in 

standard alignment. I selected autosomal HIS, grey, HS and random gene sets that were 

expressed in at least 20 individuals with >=20× coverage. After filtering, PAC had 201 HIS, 

4766 grey, 449 HS and 645 random genes; WASP-filtered data had 179 HIS, 4353 grey, 413 

HS and 571 random genes; and standard alignment had 190 HIS, 4592 grey, 439 HS and 606 

random genes.  

I then compared the allelic ratios between gene lists in different methods and the statistical 

significance was calculated with a two-sided Mann-Whitney-Wilcoxon test with Bonferroni 

correction. 
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5.2.4 G×E ANALYSIS 

To study G×E interactions, I obtained raw RNA-seq reads for cadmium-treated 

Lymphoblastoid Cell Lines (LCL), Induced Pluripotent Stem Cells (iPSC), and iPSC-derived 

cardiomyocytes from six individuals from the Sequence Read Archive (SRA) under BioProject 

PRJNA694697 [102]. I obtained the phased genetic variant calls from WGS within the 1000 

Genomes Project [17]. Together these RNA-seq reads and phased variants were submitted 

into PAC (selecting the GRCh38 reference genome). I used the site-level allele counts 

obtained from the PAC analysis. I compared the results from PAC to the standard alignment 

data that were also obtained from PAC. PAC generates alignment to the reference genome 

with STAR filtered for properly paired and uniquely mapped reads.  

For each individual and in all cell types, I selected sites with at least 20× coverage in PAC and 

standard alignment. I then identified heterozygous sites under significant ASE in 

cardiomyocytes using a binomial test (P<0.05/18,537 tests, which is the mean number of 

sites tested per sample across all methods and individuals, and ensures significance 

thresholds are comparable across methods), but were not under ASE in LCLs or iPSCs 

(P>0.05 in these cases). I then compared genes containing the significant ASE site to genes 

previously identified as potentially playing a role in coronary artery disease [328]. 
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5.3 RESULTS 

5.3.1 HAPLOINUSFFICIENCY 

5.3.1.1 DETECTING HAPLOINSUFFICIENT GENES ACROSS GTEX TISSUES 

HIS genes do not tolerate decrease in gene dosage, and it would be expected that their 

allelic ratios are less likely to tolerate changes from 1:1. If some changes from this ratio can 

be tolerated, it would be further expected that allelic ratios should not vary across healthy 

individuals. These features offer an excellent opportunity to utilise ASE analysis to 

potentially predict HIS genes. These genes are clinically relevant yet often difficult to 

identify and study. The current prediction methods incorporate multiple features; however, 

ASE has not been applied to this field yet. Therefore, I explored the utility of ASE to identify 

haploinsufficient genes.  

In a healthy individual, HIS genes do not tolerate disturbances in gene dosage. Therefore, 

one may expect the allelic ratios at heterozygous sites within HIS genes to be restricted in 

one of two ways:  

1) ASE may be limited overall and the reference allele ratio should be close to 50% in all 

individuals. 

2) ASE may be limited in variance, and the reference allele ratio is expected to have low 

standard deviation across individuals, but not necessarily be fixed around a mean of 

50%.  

 Under these assumption models, I expect a mean reference allele ratio closer to 50%, 

and a standard deviation in the reference allele ratio that is lower, in HIS genes when 

compared to HS genes. 

To test these models, I first compared the mean allelic ratios and standard deviation of the 

allelic ratios in genes that are expressed in all GTEx tissues that had data available for over 

100 individuals in each case. I calculated the reference allele ratio for each gene in WASP-

filtered alignment. If the ratio was above 0.5, I subtracted 1 from the ratio to obtain the 

absolute distance from 1:1 ratio. I then plotted the mean (Figure 39) and standard deviation 

(Figure 40) of the reference allele ratio for known HIS genes, genes predicted to be HIS 
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(grey), known HS genes and the rest of the genes (unknown) expressed in GTEx tissues, and 

compared these features between groups. The unknown gene list will contain yet-to-be-

discovered HIS genes and HS genes. Because most human genes are HS [308], these are 

expected to be the majority. 

As expected, the mean (P-value=1.202×10-79, U-stat=5.045×107) was significantly closer to 

0.5 and standard deviation (SD) (P-value=1.008×10-49, U-stat=3.766×107) was significantly 

smaller in HIS genes compared HS genes; also compared to unknown genes (mean: P-

value=7.494×10-237, U-stat=9.934×108 and SD: P-value=7.763×10-161, U-stat=6.472×108), 

perhaps again reinforcing the idea that the majority of genes with unknown classification 

are likely to be HS. 

The mean (P-value=1.000, U-stat=4.713×108) was not significantly different between HIS 

and grey genes, however, SD of allelic ratio was significantly smaller in HIS genes than grey 

genes (P-value=4.355×10-02, U-stat=4.813×108). This reflects that the prediction methods 

that generated the grey list likely accurately assign genes as HIS, but also that potentially 

some predicted HIS genes are not genuine HIS genes as the standard deviation differs 

between the groups.  

The mean was significantly closer to 0.5 and SD was significantly smaller in the grey gene list 

than HS genes (mean: P-value=2.616×10-218, U-stat=1.080×109; and SD: P-value=1.066×10-

169, U_stat=7.897×108), and unknown genes (mean: P-value=0.000, U_stat=2.126×1010; and 

SD: P-value=0.000, U-stat=1.358×1010). 

The mean was also significantly closer to 0.5 (P-value=1.307×10-29, U-stat=1.669×109) and 

SD (P-value=1.721×10-23, U-stat=1.492×109) was significantly smaller in HS than in unknown 

genes. 

These results suggest that there may be some predictive power in ASE for predicting HIS 

genes because these results support the hypothesis that HIS genes have a significantly 

smaller mean allelic ratio and standard deviation in their allelic ratios than known HS genes. 

These results also show that ASE analysis can differentiate unknown genes from HIS genes 

in terms of mean and standard deviation of allelic ratios, the majority of which are expected 
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to be HS as these are by large the most common genes, potentially indicating HIS predictive 

potential. 

 

 

 

 

 

Figure 39. The mean reference allele ratio (RAR) across individuals per gene in all GTEx tissues to detect HIS genes. 
The mean reference allele ratio (RAR) was significantly closer to 0.5 in haploinsufficient (HIS) or predicted haploinsufficient 
(grey) and haplosufficient (HS) and genes of the unknown haploinsufficiency status (unknown), pointing to the power of ASE 
to detect haploinsufficiency. The mean RAR was not significantly different between HIS and grey genes, suggesting that the 
existing HIS prediction tools might be able to detect HIS genes. P-value annotation legend: ns: 5.00×10-2 < p <= 1.00, *: 
1.00×10-2 < p <= 5.00×10-2, **: 1.00×10-3 < p <= 1.00×10-2, ***: 1.00×10-4 < p <= 1.00×10-3, ****: p <= 1.00×10-4.  
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Figure 40. The standard deviation of reference allele ratio (RAR) across individuals per gene in all GTEx tissues to detect 
HIS genes. 
The standard deviation (SD) of reference allele ratio (RAR)was significantly smaller in haploinsufficient (HIS) and 
haplosufficient (HS), predicted haploinsufficient (grey) and genes of the unknown haploinsufficiency status (unknown), 
suggesting ASE could potentially be used to differentiate HIS genes. P-value annotation legend: ns: 5.00×10-2 < p <= 1.00, *: 
1.00×10-2 < p <= 5.00×10-2, **: 1.00×10-3 < p <= 1.00×10-2, ***: 1.00×10-4 < p <= 1.00×10-3, ****: p <= 1.00×10-4. 
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5.3.1.2 DETECTING HAPLOINSUFFICIENT GENES FROM HIGHEST EXPRESSING TISSUES 

I then focused on tissues where the gene was most highly expressed, as this is probably 

more likely to select the tissues where the gene is most relevant and therefore may affect 

important downstream biological processes.  

To do this, for each gene, I selected the tissue where the median TPM across all GTEx 

individuals for that particular gene was highest. I calculated the reference allele ratio and 

flipped values above 0.5 as previously described. The mean and standard deviation of genes 

in the highest expressing tissues is presented in Figure 41 and 42, respectively.  

 

 

Figure 41. The mean reference allele ratio (RAR) across individuals per gene in different GTEx tissues. 
The mean reference allele ratio (RAR) appears to be closer to 0.5 in haploinsufficient (HIS) genes. Similarly, the predicted 
haploinsufficient (grey) gene list appears to have the majority of mean values close to 0.5, with some variation. 
haplosufficient (HS) and genes of the unknown haploinsufficiency status (unknown) deviate slightly in their mean, with more 
variation than in other gene lists.  
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Figure 42. The standard deviation of reference allele ratio (RAR) across individuals per gene in different GTEx tissues. 
The standard deviation (SD) of reference allele ratio (RAR) appears to be closer to 0 in haploinsufficient (HIS) genes. The 
predicted haploinsufficient (grey) gene list appears to have the majority of SD values close to 0, with some variation. 
haplosufficient (HS) and genes of the unknown haploinsufficiency status (unknown) deviate slightly more in their SD, with 
more variation than in other gene lists. 
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I then combined genes within HIS, grey, HS and unknown gene lists, and plotted the mean 

(Figure 43) and standard deviation (Figure 44). There was no significant difference between 

HIS and grey genes in the mean (P-value=8.105×10-2, U-stat=1.149×106) or SD (P-

value=3.235×10-1, U-stat=9.956×105) of allelic ratios, further suggesting that these two 

groups may contain a similar proportion of HIS genes.  

The mean was significantly closer to 0.5 (P-value=2.667×10-9, U-stat=1.383×105) and the SD 

(P-value=5.452×10-7, U-stat=8.814×104) of allelic ratios was significantly smaller in HIS than 

in HS genes. HIS genes also had a significantly closer mean to 0.5 (P-value=5.309×10-39, U-

stat=3.753×106) and a significantly smaller SD (P-value=7.941×10-32, U-stat=1.616×106) in 

allelic ratios than unknown genes. 

The mean was significantly closer to 0.5 and SD was significantly smaller in grey than in HS 

genes (mean: P-value=8.341×10-13, U-stat=2.640×106; SD: P-value=7.697×10-10, U-

stat=1.918×106), and unknown genes (mean: P-value=0.000, U-stat=7.249×107; SD: P-

value=0.000, U-stat=3.579×107).The same trend was seen for the mean (P-value=2.567×10-

15, U-stat=6.594×106) and standard deviations (P-value=1.134×10-11, U-stat=4.692×106) in HS 

and unknown genes. 

These results demonstrate that ASE can be exploited to differentiate between HIS and HS 

genes. The results also show that selecting tissue of the highest expression is not necessary 

to detect this signal. 

 

 



 
179 

 

Figure 43. The mean reference allele ratio (RAR) across individuals per gene to detect HIS genes in the highest expressing 
GTEx tissue.  
The mean reference allele ratio (RAR) was significantly closer to 0.5 in haploinsufficient (HIS) or predicted haploinsufficient 
(grey) and haplosufficient (HS) and genes of the unknown haploinsufficiency status (unknown) but not in grey genes. This 
again suggests that HIS and grey gene lists have similar proportions of HIS genes. The results also demonstrate ASE has the 
capability to differentiate HIS and HS genes in terms of mean RAR. P-value annotation legend: ns: 5.00×10-2 < p <= 1.00, *: 
1.00×10-2 < p <= 5.00×10-2, **: 1.00×10-3 < p <= 1.00×10-2, ***: 1.00×10-4 < p <= 1.00×10-3, ****: p <= 1.00×10-4. 
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Figure 44. The standard deviation of reference allele ratio (RAR) across individuals per gene to detect HIS genes in the 
highest expressing GTEx tissue. 
The standard deviation (SD) of reference allele ratio (RAR) was significantly smaller in haploinsufficient (HIS) or predicted 
haploinsufficient (grey) and haplosufficient (HS) and genes of the unknown haploinsufficiency status (unknown) 
demonstrating the power to differentiate HIS and HS genes. P-value annotation legend: ns: 5.00×10-2 < p <= 1.00, *: 1.00×10-

2 < p <= 5.00×10-2, **: 1.00×10-3 < p <= 1.00×10-2, ***: 1.00×10-4 < p <= 1.00×10-3, ****: p <= 1.00×10-4. 
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5.3.1.3 COMPARING PAC TO OTHER METHODS IN HAPLOINSUFFICIENCY DETECTION 

I compared how PAC performs in detecting HIS genes relative to WASP-filtered alignment 

and standard alignment. I obtained the gene expression matrix at the haplotype level from 

PAC for whole blood GTEx data for 670 individuals. I downloaded data for the same samples 

that were aligned to the reference genome (using a standard alignment approach) and 

WASP-filtered alignment from GTEx Portal. I calculated the reference allele ratios for HIS, 

grey, random and HS genes expressed in each method. Random gene sets consisted of 5% 

of the genes expressed in GTEx data for all tissues. This was used as a control gene set, 

although it is expected to consist mostly of HS genes, as these are the most common genes.  

Overall, the improved detection of allelic ratios in PAC data translated to a stronger 

statistical significance for HIS detection and included more genes (see methods). When 

comparing the mean allelic ratio (Figure 45) and standard deviation (Figure 46) of allelic 

ratios across individuals, there was no significant difference between HIS and grey, random 

and HS, and HIS and random in any of the methods. Between HIS and HS, there was no 

statistical difference in standard deviation, however, the mean was significantly closer to 0.5 

in HIS in all three methods (PAC: P-value=3.179×10-2, U-stat=5.204×104; WASP: P-

value=3.961×10-2, U-stat=4.282×104; standard alignment: P-value=1.492×10-2, U-

stat=4.870×104). In all 3 methods grey genes were significantly closer to 0.5 in mean allelic 

ratios than random (PAC: P-value=1.705×10-6, U-stat=1.736×106; WASP: P-value=2.094×10-4, 

U-stat=1.383×106; standard alignment: P-value=2.084×10-4, U-stat=1.544×106), and the 

same trend was seen when compared to HS genes (PAC: P-value=7.955×10-6, U-

stat=1.224×106; WASP: P-value=1.412×10-5, U-stat=1.031×106; standard alignment: P-

value=1.018e-5, U-stat=1.153e+06); however PAC showed the strongest effect size.  

The standard deviation was statistically smaller in grey than in random (PAC: P-

value=1.265×10-3, U-stat=1.389×106; WASP: P-value=3.888×10-2, U-stat=1.145×106; standard 

alignment: P-value=2.672×10-2, U-stat=1.281×106), and similarly when compared to the HS 

genes (PAC: P-value=5.133×10-3, U-stat=9.593×105; WASP: P-value=2.949×10-2, U-

stat=8.147×105; standard alignment: P-value=1.475×10-2, U-stat=9.107×105). As such, this 

work highlights how more accurate quantification of allelic reads increases the power to 

detect important biological signals in RNA sequencing data. 
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Figure 45. The mean reference allele ratio (RAR) across individuals per gene to detect HIS gene in PAC, WASP-filtered 
alignment and standard alignment. 
All methods are significantly closer to 0.5 in mean reference allele ratio (RAR) when comparing haploinsufficient (HIS) and 
haplosufficient (HS), predicted haploinsufficient (grey) and random and grey and HS. The latter two exhibited a stronger 
effect size in PAC. Genes on autosomes with >=20× coverage and present in all methods are shown. P-value annotation 
legend: ns: 5.00×10-2 < p <= 1.00, *: 1.00×10-2 < p <= 5.00×10-2, **: 1.00×10-3 < p <= 1.00×10-2, ***: 1.00×10-4 < p <= 1.00×10-

3, ****: p <= 1.00×10-4. 
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Figure 46. The SD of reference allele ratio (RAR) across individuals per gene to detect HIS genes in PAC, WASP-filtered 
alignment and standard alignment. 
All methods are significantly smaller in standard deviation (SD) reference allele ratio (RAR) when comparing predicted 
haploinsufficient (grey) and random and grey and haplosufficient (HS). PAC exhibited a stronger effect size in both cases. 
Genes on autosomes with >=20× coverage and present in all methods are shown. P-value annotation legend: ns: 5.00×10-2 
< p <= 1.00, *: 1.00×10-2 < p <= 5.00×10-2, **: 1.00×10-3 < p <= 1.00×10-2, ***: 1.00×10-4 < p <= 1.00×10-3, ****: p <= 1.00×10-

4.  
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ASE has many utilities, and to further demonstrate the benefit of improved allelic 

quantification with PAC in finding biologically informative events, I explored PAC in the 

context of G×E interactions [109]. For this, I obtained gene expression data from Findley et 
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Pluripotent Stem Cells, (iPSC) and iPSC-derived cardiomyocytes) from six individuals after 

exposure to different treatments. It has been shown with these data that conditional ASE 

(cASE), induced with treatment or in a particular cell type, were enriched for genes that are 

linked to disease-relevant phenotypes. For example, metal treatments such as cadmium in 

cardiomyocytes generated the largest overlap of 7 genes between cASE and putative 

disease genes for coronary artery disease [102], which is consistent with previous research 

showing that cadmium can promote atherosclerosis [329]. Cardiomyocytes are a highly 

relevant cell type for this disease.  

I set to explore if PAC can provide additional information relative to the standard alignment 

to interpret biological function. For this, I obtained RNA-seq data from LCL, cardiomyocytes 

and iPSC treated with cadmium from six individuals. I aligned the RNA-seq data with PAC 

and standard alignment as a baseline to compare the results, it being the most common 

alignment method. I then identified cardiomyocyte cell-type specific heterozygous sites 

under ASE. With data obtained with PAC, the average number of heterozygous sites in an 

individual is 102, which shows a significant ASE in cardiomyocytes (binomial test, 

P<0.05/18,537 tests, which is the mean number of sites tested per sample across all 

methods and individuals), but not in LCLs or iPSCs (binomial test, P>0.05 uncorrected). 13 of 

these 102 heterozygous sites are within genes previously linked with coronary artery 

disease [328]. Data from standard alignment produced the same average number of 

cardiomyocyte specific ASE events per individual as PAC. Conversely, many of the 

heterozygous sites identified in standard alignment are different. In standard alignment, 8 

sites overlap putative coronary artery disease genes. When considering only heterozygous 

sites that show ASE in cardiomyocytes in a cell-type specific manner in PAC data only, I 

revealed four genes (GPX1, RETREG3, TCTA and PMVK) implicated in coronary artery 

disease. These would be missed using standard alignment. 
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5.4 DISCUSSION 

In this chapter, I explored the utility of ASE to understand biological mechanisms underlying 

cellular processes, and showed the value of performing these analyses with more accurate 

read count ratios at heterozygous sites, such as those generated with PAC. For this, I used 

two examples: haploinsufficiency and G×E interactions.  

 

5.4.1 HAPLOINSUFFICIENCY 

I used the GTEx data set to show that ASE can distinguish HIS genes from HS genes. This 

demonstrates that ASE can be used as a metric to predict HIS genes and may be informative 

when added to other genomic features within classification models. To date ASE has not 

been used in HIS prediction models, so expanding this work to include this measure may be 

more powerful. Haploinsufficiency is a feature of many devastating diseases, however, the 

study of these processes can be difficult due to a lack of power in population-level data to 

detect potential HIS genes. This may be further restricted in humans as HIS genes can be 

unviable as they are essential and expressed at early developmental stages [330-332]. 

Haploinsufficiency has been studied in animal models by gene deletions and cross-breeding, 

which is not possible in humans. There are studies that explore HIS genes in human cellular 

models [332], however, these do not always replicate results in vivo. Therefore, machine 

learning and other prediction methods offer an attractive approach to detect and study HIS 

genes. I propose ASE as a feature to be included in HIS models in the future. 

Selecting the tissue of highest expression did not increase the signal between HIS and HS 

genes. However, HIS genes have been reported to be expressed during development and to 

be more tissue-specific [308]. In this analysis I did not select tissue-specific gene expression 

but rather expression data from genes in tissues where it was expressed at the highest rate, 

so these results are not directly comparable.  

I next demonstrated that better read alignment with PAC not only allows the inclusion of 

many more genes for analysis but also shows higher statistical significance when detecting 
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HIS genes. In this analysis, PAC generated 22 more HIS genes with sufficient coverage 

compared to WASP-filtered alignment and 11 more genes than standard alignment to the 

reference genome. PAC also resulted in 36 more HS genes with sufficient coverage 

compared to WASP-filtered alignment and 10 more genes in standard alignment. PAC 

greatly increased the number of grey genes by 413 compared to WASP-filtered alignment 

and by 174 compared to standard alignment. Because there are a lot fewer HIS genes in the 

human genome, it is crucial not only to accurately quantify allelic ratios but also to not 

remove genes due to computational biases and data filtering. 

 

5.4.2 G×E INTERACTIONS 

Finally, I demonstrated that ASE can be a valuable tool in the study of G×E interactions. 

Improved quantification of allelic ratios was crucial in detecting genes under conditional ASE 

that were missed by standard alignment approaches. Some of these genes have been 

implicated in tissue relevant disease genes and are therefore likely to be informative of 

genuine events that would be interesting to study further. Although the number of 

heterozygous sites was similar between these methods, the standard alignment approach 

missed biologically relevant information. Given ASE analysis is able to capture a larger 

number of genes with G×E effects (that are missed by large eQTL studies such as GTEx and 

GEUVADIS [102]), ASE will become an increasingly important method in this field. 

 

5.4.3 RNA-SEQ FOR BIOLOGICAL RESEARCH 

The vast amount of RNA-seq data available offers multiple opportunities to answer 

important biological questions, if the data is handled and processed correctly and without 

bias. Another big limitation for utilising transcriptomics in a disease context arises from the 

availability of the disease-relevant tissue under certain environmental conditions. The 

environment has been shown to influence gene expression [333]. However, cell type 

contributes to gene expression changes more than environmental stimuli [102], which is 
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unsurprising given different cell types have larger differences in their function than in 

response to external stimulus.  

Some disease-relevant tissues might be difficult to access non-invasively, such as the brain 

or heart. Some genetic disorders are caused by mutations in enhancer regions that are 

specific to a particular developmental stage or cell type [334]. However, studies are 

emerging that demonstrate the utility of more accessible tissues to study diseases where 

the disease-relevant tissue is difficult to obtain. One study showed that LCLs from blood can 

be used to survey multiple neurodevelopmental rare diseases as these share isoform 

diversities and are able to test for a large number of neurodevelopmental genes [335]. In 

addition, it has also been demonstrated that combining iPSCs with blood RNA-seq from the 

same individual supports the discovery of outliers and thus candidate genes [336]. Similarly, 

combining transcriptome data from blood and fibroblasts also improved the diagnostic rate 

[337]. Therefore, ASE is only emerging with its possibilities and has many uses for disease 

research.  
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6. CONCLUSION 

6.1. THESIS SUMMARY 

Each tissue and cell type within an individual will have largely the same genome yet produce 

such different functions with distinct transcriptomes [103, 338]. The precise control of gene 

regulation is of paramount importance for cells to be able to adapt to different 

environments [94, 339, 340]. It has been shown that transcriptomic changes are manifested 

in many disease states [337, 341, 342]. Currently, most studies investigate transcriptomes 

with RNA-seq [343]. The most common way to study how genetic variants influence gene 

expression is eQTL analysis [69, 307]. Although eQTL analysis has been successful in 

identifying common variants associated with gene expression levels [69, 86, 91, 101, 279, 

344, 345], the research would benefit from focusing also on low-frequency and rare variants 

[346] using ASE analysis. ASE allows the study of allelic imbalance within a single individual, 

which can be highly advantageous for rare variants or in studies where the starting tissue 

might be scarce. Allelic imbalance is most often caused by regulatory variants. Additionally, 

since gene expression quantification can be influenced by experimental effects such as 

sequencing batch [347], ASE avoids many of these confounding issues, as the mRNA 

comparison is performed within an individual where the alleles share the same environment 

[122, 258].  

However, ASE has its own limitations, computational biases being the largest caveats. In 

Chapter 2, I developed PAC, a pipeline to reduce artefacts associated with ASE analysis. I 

tested the performance of PAC against highly accurate simulated genomic data. I tested PAC 

with parameters including RNA-seq read trimming and soft-clipping, rescuing multi-mapping 

reads and using improved phasing with phASER with read-aware mode. I refined PAC to a 

final version that introduced the lowest level of bias. Analysis using simulated data also 

revealed a large number of false positive and false negative variants from variant calling, 

which is known to confound the ASE analysis [348]. Further, I showed that PAC increases the 

number of retained reads and reduces biases, such as allelic ratios being closer to 1:1 in 

allelic counts. I performed a preliminary analysis on real data from wild-type samples, 
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showing that PAC increased the number of reads available for the analysis, reduced 

mapping bias, and was able to detect tissue-specific ASE events. 

In Chapter 3, I tackled the difficulty of running and reproducing results from genomics 

pipelines generated by different research groups [349]. I wrote PAC into Nextflow to 

streamline it and released PAC on my GitHub page to make it publicly available for the 

research community. Further, PAC utilises Docker to automate the download of multiple 

dependencies that are often difficult to install without computational competency. After, I 

compared how PAC performed against other commonly used methods, namely aligning 

RNA-seq reads to the reference genome and performing WASP-filtering prior to ASE calling. 

I showed that PAC retains more reads, which other methods discard, and assigns them 

correctly. PAC also reduces biases in allelic ratios when compared to the ground truth data, 

and I showed that this is maintained when the RNA-seq coverage was reduced. I showed 

that this improvement comes partially from regions near indels and other variants, where 

allelic ratios from PAC have significantly smaller differences from ground truth than other 

methods.  

In Chapter 4, I applied PAC to population-level data in order to validate PAC as a method 

and showed it improves allelic quantification relative to other commonly used methods. I 

showed that PAC better recapitulates eQTL signals from GTEx whole blood samples than 

standard alignment or WASP-filtered data. I also showed that allelic ratios from 6 different 

GTEx tissues obtained either with PAC or the other methods do not correlate with allelic 

ratios derived from nanopore data. This is most likely due to the read depth, filtering steps 

that remove reads, and high error rates associated with long-read sequencing. I then 

demonstrated that PAC best replicated the enrichment of genes that were under ASE in the 

ground truth simulated data when compared to standard alignment or WASP-filtered data. 

This demonstrates that accurate alignment can significantly impact the interpretation of the 

downstream analysis. In this analysis, I used simulated data in order to have a ground truth 

baseline for methods comparison. However, it uncovers the errors that would be made in 

real data. I then explored if genes under ASE would be enriched for regulatory regions 

relative to non-ASE genes. I showed that genes under ASE are indeed significantly enriched 

for enhancer sequences in healthy individuals  
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In Chapter 5, I studied the utility of ASE in a disease context. First, I explored 

haploinsufficiency, where deviation from normal gene dosage causes a disease state [310]. 

Because these diseases tend to be rare, they are often difficult to study. Currently, there are 

many efforts to develop prediction methods to discover HIS genes [308, 315], however, ASE 

has not been used in this context. I showed that allelic ratios significantly differ between 

known HIS and HS genes in GTEx tissues. I observed the same result when considering only 

tissues where each gene was most highly expressed, indicating that this filter is not required 

to uncover potential HIS genes. When I compared PAC to standard alignment and WASP-

filtered data, PAC showed higher statistical significance between allele ratios of HIS and HS 

genes in whole blood GTEx samples. Thus, I demonstrated that improved allelic 

quantification can be utilised as a parameter to predict HIS genes, which is important for 

better understanding human disease. Finally, I showed that improved detection of genes 

under ASE with PAC helped to identify disease relevant genes that were under G×E 

interactions. These genes were missed with a standard alignment approach. This again 

demonstrates the downstream consequences of computational biases in interpreting 

biologically relevant findings. Together the results from this chapter show the value of ASE 

analysis in identifying disease relevant genes. 

 

6.2. THESIS IMPROVEMENTS AND FURTHER DIRECTIONS FOR 

RESEARCH 

As with any research, the work carried out for this thesis has limitations, which I will review 

in this section. The main limitation of PAC is the computational time and power required to 

run the pipeline. With five test GTEx samples of average depth of ∼44 million paired-end 

reads, PAC takes an average of 12 h and 6 min to generate the site and gene-level ASE data 

per sample, whereas generating these data from standard alignment takes an average of 3 h 

and 28 min with the same computational set up. This is a considerably longer time, which is 

mostly explained by the steps generating diploid genomes and subsequently aligning the 

RNA-seq reads multiple times. Within this time, PAC does however provide with standard 

alignment data as well. However, the PAC tool was primarily generated for the purpose of 
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rare variant and rare disease analysis where the sample sizes are usually smaller than for 

population-level studies such as eQTL or GWA studies. With more time I would have liked to 

develop PAC v2 that would have had more options for the user. For example, many large 

sequencing and genomics projects release RNA-seq reads aligned to the reference genome. 

With the current version of PAC, these need to be converted to raw reads. A useful option 

would be to skip the initial steps (process prepare_star_genome_index and process 

rnaseq_mapping_star) of aligning reads to the reference genome if the user has a BAM file 

available. With the current methods, the BAM file needs to be converted to unaligned RNA-

seq reads first. 

Another limitation of PAC is that the accuracy of diploid genomes it generates depends on 

the quality of phased variants that are supplied for PAC. The human genome contains tens 

of thousands of rare variants [40] which pose difficulty in variant calling and phasing, with 

commonly used methods that are based on population-level information. It has been 

demonstrated that genes under ASE are more likely to have a rare variant near them [350], 

which might be important for the regulation of the genes. Variant calling is also known to be 

especially inaccurate in regions with structural variation and this biases ASE. For example, a 

duplicated region will cause one allele to be expressed twice as high, while the other allele is 

unchanged [151]. Indeed, I have shown that the most commonly used variant calling 

approach with GATK introduces a large number of false positive and false negative variants. 

Better phasing methods will improve genomics analysis pipelines outside of the ASE field as 

well, however, it is beyond the scope of this thesis.  

There are other tools available that generate and align to diploid personalised genomes 

[218, 219, 271]. However, these do not provide easy-to-use pipelines for users, nor do they 

adopt any of the other filtering steps that PAC performs. In addition to diploid genomes, 

there are also other methods to include individual variation into the reference genome, 

including incorporating multiple population reference genomes instead of one linear 

reference to reduce reference bias [184] or graph genomes [351-353]. Similarly, these are 

also computationally expensive as the number of variants increases. However, it would be 

interesting to explore how the performance of PAC would be affected by incorporating 

these types of references instead of a diploid genome. 
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With more time and resources, it would have been interesting to explore nanopore data in 

more detail and in particular why the correlation between allelic ratios from short and long-

read data is so poor. Ideally, I would have liked to use the same samples to obtain my own 

nanopore data and short-read RNA-seq data at the same time, as transcriptomics data is 

sensitive to environmental perturbations. Long-read sequencing can sequence whole 

transcripts and therefore offers an incredible resource to overcome many limitations 

associated with short-read sequencing, in particular for ASE detection. Longer reads 

overcome issues with splice variants and phasing that can bias ASE analysis. Splice isoforms 

can be difficult to deal with and ignoring them can lead to biases when inferring the ASE at 

the gene level [354].  

Another limitation of transcriptomics in the disease context is that it needs relevant tissue 

[37] as gene expression varies across tissues and environmental conditions [86, 355, 356], 

and the genomic regions that contribute to disease have been shown to be concentrated in 

transcribed regions [2]. It is often not possible to obtain disease-relevant tissues from a 

living donor. Reprogramming somatic cells to pluripotent cells offers an alternative to 

obtaining relevant tissues. Indeed, in Chapter 2, I used iPSC-derived neuronal cells to test 

PAC, which offered a way to explore the changes in ASE during development. Another way 

to measure gene expression of the target tissue is to use biofluids such as blood. It has been 

shown that extracellular RNA is released from cells which is bound to extracellular vesicles 

or RNA-binding proteins or lipoproteins to protect from degradation, and therefore can be 

informative for certain diseases [357]. As ASE has been used to detect disease genes [132, 

168, 358, 359], it could offer avenues to study disease without invasive tissue biopsies, 

some of which might not be possible. 

Taken together, in this thesis, I have developed a novel computational pipeline that 

improves ASE detection and quantification and shows that this improved allelic 

quantification has biological implications. With more time I would have explored ASE in rare 

disease samples where I believe PAC would have had the biggest impact. PAC maximises the 

number of reads while maintaining accuracy; therefore, disease cohorts with small sample 

sizes would benefit from such a tool. Another avenue I would have liked to explore is ASE in 

diseases where the disease mechanism involves haploinsufficiency such as Kabuki 

syndrome. It would be interesting to see how allelic ratios in HIS genes implicated in such 
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diseases would differ from those in healthy individuals. Lastly, I believe improved ASE 

detection with PAC would be a valuable addition to HIS gene prediction tools.  
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APPENDIX 

 

APPENDIX 1. PAC REFERENCE MANUAL 

 

 

REFERENCE MANUAL FOR PAC 

 

 

The PAC reference manual provides with detailed information on PAC software. The manual 

starts with description how to obtain and run PAC. Following this, a description of each 

process within the PAC, starting from first to last process, is described. 
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1.1 SOFTWARE SETUP 

 

PAC requires Nextflow, Java v8+, and a docker or singularity (depending on the profile the 

user selects). 

To download PAC, download it from the GitHub with the following command: 

git clone https://github.com/anna-saukkonen/PAC.git 

 

To download Nextlow, run following command: 

curl -fsSL get.nextflow.io | bash 

 

  

https://github.com/anna-saukkonen/PAC.git
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1.2 PAC PROCESSES 

 

This sections describes each process within PAC, as the software is written. However, once a 

process has available input files available from previous processes, it will start running to 

speed up the run time by parallelisation. See thesis section 3.3 for more information. 

 

1.2.1 SETTING PARAMETERS 

/* 

 * Defines some parameters in order to specify the refence genomes 

 * and read pairs by using the command line options 

 */ 

 

params.genome        = params.genomes[ params.genome_version 

]?.genome 

params.annot         = params.genomes[ params.genome_version 

]?.annot 

params.gencode_bed   = params.genomes[ params.genome_version 

]?.gencode_bed 

 

// Check if genome exists in the config file 

if (params.genomes && params.genome_version && 

!params.genomes.containsKey(params.genome_version)) { 

    exit 1, "The provided genome '${params.genome_version}' is not 

available. Currently the available genomes are 

${params.genomes.keySet().join(", ")}. Please check your spelling." 

} 

 

if (!params.variants) exit 1, "Path to phased variants has to be 

specified!" 

if (!params.reads) exit 1, "Path to reads has to be specified!" 

if (!params.id) exit 1, "Sample ID not supplied, needs to be same as 

in the VCF" 
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Channel 

  .fromFilePairs(params.reads) 

  .ifEmpty { exit 1, "Cannot find any reads matching: ${reads}\nNB: 

Path needs to be enclosed in quotes!\n"} 

  .into {reads_ch; reads_ch1; reads_ch2; reads_ch3} 

 

The first step, although not a process, checks that all essential parameters are specified 

when executing PAC. The essential parameters are the genome version, path to RNA-seq 

reads, path to variants VCF file, and sample ID. If any of these are missing, PAC stops the run 

and gives an error message stating which parameter is missing. This section also places RNA-

seq reads into multiple channels as multiple processes take them as inputs. 

 

1.2.2 PROCESS READ_LENGTH 

process read_length { 

 

  input: 

    set val(id), file(reads) from reads_ch  

 

  output: 

    file "readLength_file.txt" into readlen_file_ch 

 

  shell: 

  ''' 

  gunzip -c *_1.{fq,fastq}.gz | sed '2q;d' | wc -m | awk '{print $1-

1}' >> readLength_file.txt 

  ''' 

} 

 

readlen_file_ch.map { it.text.trim().toInteger() }.into { 

read_len_ch1; read_len_ch2; read_len_ch3; read_len_ch4; 

read_len_ch5; read_len_ch6 } 

 



 
221 

Input: This process takes in RNA-seq read files as input file. 

Process: Custom bash script calculates the read length.  

Output: The output is a file with read length value that is used in the downstream processes 

throughout PAC. 

 

Outside of the process the value from the output file is placed into different channels as 

multiple processes need this value. 

 

1.2.3 PROCESS PREPARE_STAR_GENOME_INDEX 

process prepare_star_genome_index { 

 

  input: 

    path genome from params.genome 

    path annot from params.annot 

    val x from read_len_ch1 

    val cpus from params.cpus 

 

  output: 

    path STARhaploid into genome_dir_ch 

 

  script: 

  """ 

  mkdir STARhaploid 

  STAR --runMode genomeGenerate \ 

       --genomeDir STARhaploid \ 

       --genomeFastaFiles ${genome} \ 

       --sjdbGTFfile ${annot} \ 

       --sjdbOverhang ${x} \ 

       --runThreadN ${cpus}  

  """} 
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Input: This process takes in the reference genome specified in options, annotation file, read 

length information from the previous process, and number of cpus as an optional input. 

Process: It then generates a genome index with STAR --runMode genomeGenerate.  

Output: The genome indices in STARhaploid directory. This step is necessary for standard 

alignment in the next process.  

 

1.2.4 PROCESS RNASEQ_MAPPING_STAR 

process rnaseq_mapping_star { 

 

  input:  

    path genome from params.genome  

    path STARhaploid from genome_dir_ch 

    set val(id), file(reads) from reads_ch1 

    val x from read_len_ch2 

    val id from params.id 

    val cpus from params.cpus 

 

  output:  

    tuple \ 

      val(id), \ 

      

path("${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.bam"), 

\ 

      

path("${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.bam.bai

") into aligned_bam_ch 

 

  script:  

  """ 

  # Align reads to genome 

  STAR --genomeDir STARhaploid \ 

       --readFilesIn ${reads} \ 
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       --readFilesCommand zcat \ 

       --runThreadN ${cpus} \ 

       --outSAMstrandField intronMotif \ 

       --outFilterMultimapNmax 30 \ 

       --alignIntronMax 1000000 \ 

       --alignMatesGapMax 1000000 \ 

       --outMultimapperOrder Random \ 

       --outSAMunmapped Within \ 

       --outSAMattrIHstart 0 \ 

       --outFilterIntronMotifs RemoveNoncanonicalUnannotated \ 

       --sjdbOverhang ${x} \ 

       --outFilterMismatchNmax ${(x-(x%13))/13} \ 

       --outSAMattributes NH nM NM MD HI \ 

       --outSAMattrRGline  ID:${id} PU:Illumina PL:Illumina 

LB:${id}.SOFT.NOTRIM SM:${id}.SOFT.NOTRIM CN:Seq_centre \ 

       --outSAMtype BAM SortedByCoordinate \ 

       --twopassMode Basic \ 

       --outFileNamePrefix ${id}.SOFT.NOTRIM.STAR.pass2. \ 

       --outSAMprimaryFlag AllBestScore 

  # Index the BAM file 

  samtools index 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.bam 

  """ 

} 

Input: This process takes in the reference genome, genome index generated from process 

prepare_star_genome_index, read length information from process read_length, the RNA-

seq reads, sample ID and number of cpus as an optional input.  

Process: The step aligns reads to the reference genome and indexes the BAM file with 

SAMtools index. This process provides the standard alignment that the user can use as a 

comparison for the PAC results. The output also feeds into the phaser_step. 

Output: BAM and BAM.bai files of mapped RNA-seq reads.  
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1.2.5 PROCESS CLEAN_UP_READS 

process clean_up_reads { 

 

  input: 

    tuple val(id), path(bam), path(index) from aligned_bam_ch 

    path variants from params.variants 

    val id from params.id 

    val cpus from params.cpus 

 

  output: 

    path ("STAR_original/phaser_version.bam") into phaser_ch 

    path ("STAR_original/phaser_version.bam.bai") into phaser_bai_ch 

    path 

("STAR_original/${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.o

ut.PP.UM.bam") into pp_um_ch 

 

  script: 

  """ 

  mkdir STAR_original 

  #KEEP ONLY PROPERLY PAIRED READS 

  samtools view -@ ${cpus} -f 0x0002 -b -o 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.PP.bam 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.bam 

  samtools index 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.PP.bam 

  #KEEP UNIQUELY MAPPED READS 

  samtools view -h 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.PP.bam | grep 

-P "NH:i:1\t|^@" | samtools view -bS - > 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.PP.UM.bam 

  samtools index 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.PP.UM.bam 

  #Create BAM compatible with PHASER: 

  gunzip -c ${variants} | grep -q 'chr' || (samtools view -h 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.PP.UM.bam | 

sed -e 's/chr//' >> phaser_version.sam; samtools view -bh 

phaser_version.sam >> phaser_version.bam; samtools index 

phaser_version.bam; rm phaser_version.sam) 
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  gunzip -c  ${variants} | grep -q 'chr' && (samtools view -bh 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.PP.UM.bam >> 

phaser_version.bam; samtools index phaser_version.bam) 

  mv phaser_version.bam STAR_original/phaser_version.bam 

  mv phaser_version.bam.bai STAR_original/phaser_version.bam.bai 

  mv 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.PP.UM.bam 

STAR_original/${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out

.PP.UM.bam 

  """ 

} 

Input: The process takes in the BAM files generated from process rnaseq_mapping_star, 

variants VCF file, sample ID and number of cpus as an optional input. 

Process: In this step the mapped RNA-seq reads are filtered. SAMtools is used to keep only 

properly paired (where the read orientation of read pairs is as expected and the gap 

between them is likely based on sequencing technology) and uniquely mapped (reads 

mapping to single location) reads. The BAM is then created that is compatible for 

downstream process phaser_step.  

Output: Properly paired and uniquely mapped BAM file, phaser_step process compatible 

BAM and BAI files in separate channels. 

 

1.2.6 PROCESS PHASER_STEP 

process phaser_step { 

 

  input: 

  path variants from params.variants 

  path ("phaser_version.bam") from phaser_ch 

  path ("phaser_version.bam.bai") from phaser_bai_ch 

  val id from params.id 

  val cpus from params.cpus 
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  output: 

  path ("${id}_output_phaser.vcf") into (phaser_out_ch1, 

phaser_out_ch2) 

 

  script: 

  """ 

  tabix -f -p vcf ${variants} 

  python2 /phaser/phaser/phaser.py --vcf ${variants} --bam 

phaser_version.bam --paired_end 1 --mapq 0 --baseq 10 --isize 0 --

include_indels 1 --sample ${id} --id_separator + --pass_only 0 --

gw_phase_vcf 1 --threads ${cpus} --o ${id}_output_phaser 

  gunzip ${id}_output_phaser.vcf.gz 

  rm phaser_version.bam 

  rm phaser_version.bam.bai 

  """ 

} 

Input: Variants VCF file, BAM and BAI files from process clean_up_reads, sample ID and 

number of cpus.  

Process: This step uses phASER to phase variants incorporating aligned RNA-seq reads. 

phASER uses a read-aware mode for phasing. It selects RNA-seq reads where there are two 

variants, that can be split across larger genomic distances due to splicing, hence it can 

incorporate variants over longer distances and thereby improve phasing. This allows better 

phasing of rare variants and longer haplotypes. 

Output: Phased variants VCF file.  

 

1.2.7 PROCESS CREATE_PARENTAL_GENOMES 

process create_parental_genomes { 

 

  input: 

    path genome from params.genome 

    path annot from params.annot 

    path ("${id}_output_phaser.vcf") from phaser_out_ch1 
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    val id from params.id 

    path gencode_bed from params.gencode_bed 

 

  output: 

    path ("STAR_2Gen_Ref/maternal.chain") into maternal_chain_ch 

    path ("STAR_2Gen_Ref/paternal.chain") into paternal_chain_ch 

    path ("STAR_2Gen_Ref/${id}_maternal.fa") into (mat_fa1, mat_fa2) 

    path ("STAR_2Gen_Ref/${id}_paternal.fa") into (pat_fa1, pat_fa2) 

    path ("STAR_2Gen_Ref/mat_annotation.gtf") into 

(mat_annotation_ch1, mat_annotation_ch2) 

    path ("STAR_2Gen_Ref/not_lifted_m.txt") into not_lift_m_ch 

    path ("STAR_2Gen_Ref/pat_annotation.gtf") into 

(pat_annotation_ch1, pat_annotation_ch2) 

    path ("STAR_2Gen_Ref/not_lifted_p.txt") into not_lift_p_ch 

    path ("STAR_2Gen_Ref/map_over.txt") into adjusted_ref_ch 

    path ("STAR_2Gen_Ref/${id}_output_phaser.mother.vcf.gz") into 

mothervcf_ch 

    path ("STAR_2Gen_Ref/${id}_output_phaser.father.vcf.gz") into 

fathervcf_ch 

    path ("STAR_2Gen_Ref/mat.bed") into mat_bed_ch 

    path ("STAR_2Gen_Ref/pat.bed") into pat_bed_ch 

  

  script: 

  """ 

  mkdir STAR_2Gen_Ref 

  java -Xmx10000m -jar /vcf2diploid_v0.2.6a/vcf2diploid.jar -id 

${id} -chr ${genome} -vcf ${id}_output_phaser.vcf -outDir 

STAR_2Gen_Ref > logfile.txt 

   

  liftOver -gff ${annot} STAR_2Gen_Ref/maternal.chain 

STAR_2Gen_Ref/mat_annotation.gtf STAR_2Gen_Ref/not_lifted_m.txt 

  liftOver -gff ${annot} STAR_2Gen_Ref/paternal.chain 

STAR_2Gen_Ref/pat_annotation.gtf STAR_2Gen_Ref/not_lifted_p.txt 

  liftOver ${gencode_bed} STAR_2Gen_Ref/maternal.chain 

STAR_2Gen_Ref/mat.bed STAR_2Gen_Ref/not_bed_lifted_m.txt 

  liftOver ${gencode_bed} STAR_2Gen_Ref/paternal.chain 

STAR_2Gen_Ref/pat.bed STAR_2Gen_Ref/not_bed_lifted_p.txt 
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  cat STAR_2Gen_Ref/chr1_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chr2_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chr3_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chr4_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chr5_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chr6_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chr7_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chr8_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chr9_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chr10_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chr11_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chr12_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chr13_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chr14_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chr15_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chr16_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chr17_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chr18_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chr19_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 
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  cat STAR_2Gen_Ref/chr20_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chr21_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chr22_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chrX_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chrY_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

  cat STAR_2Gen_Ref/chrM_${id}_maternal.fa >> 

STAR_2Gen_Ref/${id}_maternal.fa 

   

  cat STAR_2Gen_Ref/chr1_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chr2_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chr3_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chr4_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chr5_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chr6_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chr7_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chr8_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chr9_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chr10_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chr11_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chr12_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chr13_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 
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  cat STAR_2Gen_Ref/chr14_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chr15_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chr16_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chr17_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chr18_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chr19_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chr20_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chr21_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chr22_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chrX_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chrY_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

  cat STAR_2Gen_Ref/chrM_${id}_paternal.fa >> 

STAR_2Gen_Ref/${id}_paternal.fa 

   

  sed 's/\\*/N/g' STAR_2Gen_Ref/${id}_maternal.fa > 

STAR_2Gen_Ref/${id}_maternal.hold.fa 

  mv STAR_2Gen_Ref/${id}_maternal.hold.fa 

STAR_2Gen_Ref/${id}_maternal.fa 

   

  sed 's/\\*/N/g' STAR_2Gen_Ref/${id}_paternal.fa > 

STAR_2Gen_Ref/${id}_paternal.hold.fa 

  mv STAR_2Gen_Ref/${id}_paternal.hold.fa 

STAR_2Gen_Ref/${id}_paternal.fa 

  mv ${id}_output_phaser.vcf STAR_2Gen_Ref/${id}_output_phaser.vcf 

  cd STAR_2Gen_Ref/ 

   

  perl ${baseDir}/bin/adjust_reference.pl ${id}_output_phaser.vcf 

${id} 
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  perl ${baseDir}/bin/adjust_reference_vcf.pl 

${id}_output_phaser.vcf ${id} 

  grep "^#" ${id}_output_phaser.mother.vcf > 

${id}_output_phaser.mother.s.vcf 

  grep -v "^#" ${id}_output_phaser.mother.vcf | sort -k1,1V -k2,2g 

>> ${id}_output_phaser.mother.s.vcf 

  grep "^#" ${id}_output_phaser.father.vcf > 

${id}_output_phaser.father.s.vcf 

  grep -v "^#" ${id}_output_phaser.father.vcf | sort -k1,1V -k2,2g 

>> ${id}_output_phaser.father.s.vcf 

  mv ${id}_output_phaser.mother.s.vcf ${id}_output_phaser.mother.vcf 

  mv ${id}_output_phaser.father.s.vcf ${id}_output_phaser.father.vcf 

  bcftools view ${id}_output_phaser.mother.vcf -Oz -o 

${id}_output_phaser.mother.vcf.gz 

  bcftools view ${id}_output_phaser.father.vcf -Oz -o 

${id}_output_phaser.father.vcf.gz 

  tabix ${id}_output_phaser.father.vcf.gz 

  tabix ${id}_output_phaser.mother.vcf.gz 

  """ 

} 

Input: The reference genome, annotation file, phased variants VCF file from process 

phaser_step, sample ID and BED annotation file. 

Process: This step creates personalised parental genomes. The phased variants are 

incorporated into the reference genome using vcf2diploid, generating maternal and 

paternal genomes. liftOver is then used to generate GTF and BED files with adjusted 

genomic coordinates for maternal and paternal genomes. This is because the coordinates 

will be shifted due to indels present in the VCF file. The custom scripts generate maternal 

and paternal VCF files where the heterozygous site coordinates are shifted to the maternal 

and paternal genomes.  

Output: Maternal and paternal genomes, chain files for both genomes that are needed for 

liftOver (not needed in the downsteam process but output ensures files can be found on 

users’ system should they need them for their own analysis), maternal and paternal GTF and 

BED files, files containing regions not lifted for maternal and paternal genomes, maternal 

and paternal VCF files.  
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1.2.8 PROCESS STAR_REFERENCE_MATERNAL_GENOMES 

process STAR_reference_maternal_genomes { 

 

  input: 

    path ("STAR_2Gen_Ref/${id}_maternal.fa") from mat_fa1 

    path ("STAR_2Gen_Ref/mat_annotation.gtf") from 

mat_annotation_ch1 

    val x from read_len_ch3 

    val id from params.id 

    val cpus from params.cpus 

 

  output: 

    path Maternal_STAR into Maternal_STAR_ch   

 

  script: 

  """ 

  mkdir Maternal_STAR 

  STAR --runMode genomeGenerate --genomeDir Maternal_STAR --

genomeFastaFiles STAR_2Gen_Ref/${id}_maternal.fa --sjdbGTFfile 

STAR_2Gen_Ref/mat_annotation.gtf --sjdbOverhang ${x} --runThreadN 

${cpus} --outTmpDir mat 

  """     

 

} 

Input: Maternal genome and maternal GTF file from process create_parental_genomes, 

read length information from process read_length, sample ID and number of cpus. 

Process: This step generates maternal genome index with STAR --runMode 

genomeGenerate. This step feeds into map_maternal_gen_filter, where the RNA-seq reads 

are mapped to the maternal genomes. 

Output: Maternal genome indices in Maternal_STAR directory. 
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1.2.9 PROCESS STAR_REFERENCE_PATERNAL_GENOMES 

process STAR_reference_paternal_genomes { 

 

  input: 

    path ("STAR_2Gen_Ref/${id}_paternal.fa") from pat_fa1 

    path ("STAR_2Gen_Ref/pat_annotation.gtf") from 

pat_annotation_ch1 

    val x from read_len_ch4 

    val id from params.id 

    val cpus from params.cpus 

 

  output: 

    path Paternal_STAR into Paternal_STAR_ch 

     

  script: 

  """ 

  mkdir Paternal_STAR 

  STAR --runMode genomeGenerate --genomeDir Paternal_STAR --

genomeFastaFiles STAR_2Gen_Ref/${id}_paternal.fa --sjdbGTFfile 

STAR_2Gen_Ref/pat_annotation.gtf --sjdbOverhang ${x} --runThreadN 

${cpus} --outTmpDir pat 

  """     

 

} 

This process is identical to process STAR_reference_maternal_genomes above but it is 

performed on the paternal genome. 

 

1.2.10 PROCESS MAP_PATERNAL_GEN_FILTER 

process map_paternal_gen_filter { 

  tag "$id" 

  

  input: 

    path Paternal_STAR from Paternal_STAR_ch 
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    set val(id), file(reads) from reads_ch2 

    path ("STAR_2Gen_Ref/pat_annotation.gtf") from 

pat_annotation_ch2 

    path ("STAR_2Gen_Ref/${id}_paternal.fa") from pat_fa2 

    val x from read_len_ch5 

    val id from params.id 

    val cpus from params.cpus 

 

  output: 

    path 

("STAR_Paternal/${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.o

ut.PP.UM.bam") into (paternal_mapgen_ch1, paternal_mapgen_ch2) 

    path ("STAR_Paternal/${id}.RSEM.TEST.genome.PP.SM.bam") into 

pat_rsem_ch 

 

  script: 

  """ 

  STAR --genomeDir Paternal_STAR \ 

       --runThreadN ${cpus} \ 

       --quantMode TranscriptomeSAM \ 

       --readFilesIn $reads \ 

       --readFilesCommand zcat \ 

       --outSAMstrandField intronMotif \ 

       --outFilterMultimapNmax 30 \ 

       --alignIntronMax 1000000 \ 

       --alignMatesGapMax 1000000 \ 

       --outMultimapperOrder Random \ 

       --outSAMunmapped Within \ 

       --outSAMattrIHstart 0 \ 

       --outFilterIntronMotifs RemoveNoncanonicalUnannotated \ 

       --sjdbOverhang ${x} \ 

       --outFilterMismatchNmax ${(x-(x%13))/13} \ 

       --outSAMattributes NH nM NM MD HI \ 

       --outSAMattrRGline  ID:${id}.SOFT.NOTRIM PU:Illumina 

PL:Illumina LB:${id}.SOFT.NOTRIM SM:${id}.SOFT.NOTRIM CN:Seq_centre 

\ 
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       --outSAMtype BAM SortedByCoordinate \ 

       --twopassMode Basic \ 

       --outFileNamePrefix ${id}.SOFT.NOTRIM.STAR.pass2. \ 

       --outSAMprimaryFlag AllBestScore 

   

  samtools index 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.bam 

  #KEEP ONLY PROPERLY PAIRED READS 

  samtools view -@ ${cpus} -f 0x0002 -b -o 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.PP.bam 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.bam 

  samtools index 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.PP.bam 

  #KEEP UNIQUELY MAPPED READS 

  samtools view -h 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.PP.bam | grep 

-P "NH:i:1\t|^@" | samtools view -bS - > 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.PP.UM.bam 

  samtools index 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.PP.UM.bam 

  mkdir STAR_Paternal 

  mv 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.PP.UM.bam 

STAR_Paternal/${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out

.PP.UM.bam 

  ##Create RSEM Files: 

  mkdir RSEM_MAT_GEN 

  /RSEM/rsem-prepare-reference -p ${cpus} --gtf 

STAR_2Gen_Ref/pat_annotation.gtf STAR_2Gen_Ref/${id}_paternal.fa 

RSEM_MAT_GEN/RSEM_MAT_GEN 

  /RSEM/rsem-calculate-expression --bam --output-genome-bam --

sampling-for-bam -p ${cpus} --paired-end  

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.toTranscriptome.out.bam 

RSEM_MAT_GEN/RSEM_MAT_GEN ${id}.RSEM.TEST 

  samtools view -@ ${cpus} -f 0x0002 -b -o 

${id}.RSEM.TEST.genome.PP.bam ${id}.RSEM.TEST.genome.bam 

  samtools sort -@ ${cpus} -o ${id}.RSEM.TEST.genome.PP.s.bam 

${id}.RSEM.TEST.genome.PP.bam 

  mv ${id}.RSEM.TEST.genome.PP.s.bam ${id}.RSEM.TEST.genome.PP.bam 

  samtools index ${id}.RSEM.TEST.genome.PP.bam 
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  samtools view -h ${id}.RSEM.TEST.genome.PP.bam | grep -P 

"ZW:f:1|^@" | samtools view -bS - > ${id}.RSEM.TEST.genome.PP.SM.bam 

  samtools index ${id}.RSEM.TEST.genome.PP.SM.bam 

  mv ${id}.RSEM.TEST.genome.PP.SM.bam 

STAR_Paternal/${id}.RSEM.TEST.genome.PP.SM.bam 

  """ 

 

} 

Input: Paternal genome indices from process STAR_reference_paternal_genomes, RNA-seq 

reads, paternal genome and GTF file from process create_parental_genomes, read length 

information from process read_length, sample ID and number of cpus.  

Process: In this step the RNA-seq reads are aligned to the paternal genome with STAR. The 

BAM file generated from this is indexed and filtered with SAMtools to keep only properly 

paired and uniquely mapped reads. 

RSEM is used to index the paternal genome. Following this, RSEM is used with the STAR 

transcriptome.bam to map the same RNA-seq reads with RSEM instead. In this case, reads 

that would map to multiple locations are not discarded but are allocated one location. All 

uniquely mapped reads are used to calculate the expression of each of these loci, and then 

the multi-mapping reads are allocated a location based on these weights. The allocation is 

based on probabilities based on ratios of uniquely mapped reads from genomic loci where 

the multi-mapping read aligns to. The file is then filtered with SAMtools to keep only 

properly paired reads. 

Output: BAM file of mapped reads to paternal genome and BAM file generated with RSEM. 

 

1.2.11 PROCESS MAP_MATERNAL_GEN_FILTER 

process map_maternal_gen_filter { 

  tag "$id" 

  input: 

    path Maternal_STAR from Maternal_STAR_ch 
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    set val(id), file(reads) from reads_ch3 

    path ("STAR_2Gen_Ref/mat_annotation.gtf") from 

mat_annotation_ch2 

    path ("STAR_2Gen_Ref/${id}_maternal.fa") from mat_fa2 

    val x from read_len_ch6 

    val id from params.id 

    val cpus from params.cpus 

 

  output: 

    path 

("STAR_Maternal/${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.o

ut.PP.UM.bam") into (maternal_mapgen_ch1, maternal_mapgen_ch2)  

    path ("STAR_Maternal/${id}.RSEM.TEST.genome.PP.SM.bam") into 

mat_rsem_ch 

 

  script: 

  """ 

  STAR --genomeDir Maternal_STAR \ 

       --runThreadN ${cpus} \ 

       --quantMode TranscriptomeSAM \ 

       --readFilesIn $reads \ 

       --readFilesCommand zcat \ 

       --outSAMstrandField intronMotif \ 

       --outFilterMultimapNmax 30 \ 

       --alignIntronMax 1000000 \ 

       --alignMatesGapMax 1000000 \ 

       --outMultimapperOrder Random \ 

       --outSAMunmapped Within \ 

       --outSAMattrIHstart 0 \ 

       --outFilterIntronMotifs RemoveNoncanonicalUnannotated \ 

       --sjdbOverhang ${x} \ 

       --outFilterMismatchNmax ${(x-(x%13))/13} \ 

       --outSAMattributes NH nM NM MD HI \ 

       --outSAMattrRGline  ID:${id}.SOFT.NOTRIM PU:Illumina 

PL:Illumina LB:${id}.SOFT.NOTRIM SM:${id}.SOFT.NOTRIM CN:Seq_centre 

\ 



 
238 

       --outSAMtype BAM SortedByCoordinate \ 

       --twopassMode Basic \ 

       --outFileNamePrefix ${id}.SOFT.NOTRIM.STAR.pass2. \ 

       --outSAMprimaryFlag AllBestScore 

  samtools index 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.bam 

  #KEEP ONLY PROPERLY PAIRED READS 

  samtools view -@ ${cpus} -f 0x0002 -b -o 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.PP.bam 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.bam 

  samtools index 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.PP.bam 

  #KEEP UNIQUELY MAPPED READS 

  samtools view -h 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.PP.bam | grep 

-P "NH:i:1\t|^@" | samtools view -bS - > 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.PP.UM.bam 

  samtools index 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.PP.UM.bam 

  mkdir STAR_Maternal 

  mv 

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out.PP.UM.bam 

STAR_Maternal/${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out

.PP.UM.bam 

  ##Create RSEM Files: 

  mkdir RSEM_MAT_GEN 

  /RSEM/rsem-prepare-reference -p ${cpus} --gtf 

STAR_2Gen_Ref/mat_annotation.gtf STAR_2Gen_Ref/${id}_maternal.fa 

RSEM_MAT_GEN/RSEM_MAT_GEN 

  /RSEM/rsem-calculate-expression --bam --output-genome-bam --

sampling-for-bam -p ${cpus} --paired-end  

${id}.SOFT.NOTRIM.STAR.pass2.Aligned.toTranscriptome.out.bam 

RSEM_MAT_GEN/RSEM_MAT_GEN ${id}.RSEM.TEST 

   

  samtools view -@ ${cpus} -f 0x0002 -b -o 

${id}.RSEM.TEST.genome.PP.bam ${id}.RSEM.TEST.genome.bam 

  samtools sort -@ ${cpus} -o ${id}.RSEM.TEST.genome.PP.s.bam 

${id}.RSEM.TEST.genome.PP.bam 

  mv ${id}.RSEM.TEST.genome.PP.s.bam ${id}.RSEM.TEST.genome.PP.bam 
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  samtools view -h ${id}.RSEM.TEST.genome.PP.bam | grep -P 

"ZW:f:1|^@" | samtools view -bS - > ${id}.RSEM.TEST.genome.PP.SM.bam 

  samtools index ${id}.RSEM.TEST.genome.PP.SM.bam 

  mv ${id}.RSEM.TEST.genome.PP.SM.bam 

STAR_Maternal/${id}.RSEM.TEST.genome.PP.SM.bam 

  """ 

} 

This process is identical to process map_paternal_gen_filter but performed on the maternal 

genome. 

 

1.2.12 PROCESS EXTRA_READS_RSEM  

process extra_reads_rsem { 

 

  input: 

    path 

("STAR_Maternal/${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.o

ut.PP.UM.bam") from maternal_mapgen_ch1 

    path ("STAR_Maternal/${id}.RSEM.TEST.genome.PP.SM.bam") from 

mat_rsem_ch 

    path 

("STAR_Paternal/${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.o

ut.PP.UM.bam") from paternal_mapgen_ch1 

    path ("STAR_Paternal/${id}.RSEM.TEST.genome.PP.SM.bam") from 

pat_rsem_ch 

    val id from params.id 

 

  output: 

    path ("Maternal.RSEM.bam") into mat_rsembam 

    path ("Paternal.RSEM.bam") into pat_rsembam 

 

  script: 

  """ 

  samtools view 

STAR_Maternal/${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out

.PP.UM.bam | cut -f1 | sort | uniq >> maternal_tags_UM.txt 



 
240 

  samtools view STAR_Maternal/${id}.RSEM.TEST.genome.PP.SM.bam | cut 

-f1 | sort | uniq > maternal_tags_UM.RSEM.txt 

  perl ${baseDir}/bin/filter_rsem.pl maternal 

  samtools view 

STAR_Paternal/${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out

.PP.UM.bam | cut -f1 | sort | uniq >> paternal_tags_UM.txt 

  samtools view STAR_Paternal/${id}.RSEM.TEST.genome.PP.SM.bam | cut 

-f1 | sort | uniq > paternal_tags_UM.RSEM.txt 

  perl ${baseDir}/bin/filter_rsem.pl paternal 

  samtools view -H STAR_Maternal/${id}.RSEM.TEST.genome.PP.SM.bam > 

Maternal.RSEM.sam 

  samtools view STAR_Maternal/${id}.RSEM.TEST.genome.PP.SM.bam | 

grep -Fwf extra.rsem.maternal.txt | sed -e 's/339\tchr/83\tchr/' | 

sed -e 's/355\tchr/99\tchr/' | sed -e 's/403\tchr/147\tchr/' | sed -

e 's/419\tchr/163\tchr/' >> Maternal.RSEM.sam 

  samtools view -bS Maternal.RSEM.sam -o Maternal.RSEM.bam 

  samtools view -H STAR_Paternal/${id}.RSEM.TEST.genome.PP.SM.bam > 

Paternal.RSEM.sam 

  samtools view STAR_Paternal/${id}.RSEM.TEST.genome.PP.SM.bam | 

grep -Fwf extra.rsem.paternal.txt | sed -e 's/339\tchr/83\tchr/' | 

sed -e 's/355\tchr/99\tchr/' | sed -e 's/403\tchr/147\tchr/' | sed -

e 's/419\tchr/163\tchr/' >> Paternal.RSEM.sam 

  samtools view -bS Paternal.RSEM.sam -o Paternal.RSEM.bam 

  """ 

} 

Input: Filtered BAM file from process map_maternal_gen_filter and 

map_paternal_gen_filter, RSEM sampled BAM files from map_maternal_gen_filter and 

map_paternal_gen_filter, and sample ID. 

Process: Custom script gets the extra multi-mapping reads (which now only have one 

location allocated by weight in the previous step) that are aligned in RSEM, but not in STAR 

and creates a file extra.rsem.maternal/paternal.txt. Then a new RSEM BAM file is created 

containing only these extra reads. 

Output: BAM file for maternal and paternal extra reads that originally aligned to multiple 

locations, now with a single location.  
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1.2.13 PROCESS ADD_RSEMREADS_BAM  

process add_rsemreads_bam { 

  publishDir "$params.outdir/", mode: 'copy' 

 

  input: 

    path ("Maternal.RSEM.bam") from mat_rsembam 

    path ("Paternal.RSEM.bam") from pat_rsembam 

    path 

("STAR_Paternal/${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.o

ut.PP.UM.bam") from paternal_mapgen_ch2 

    path 

("STAR_Maternal/${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.o

ut.PP.UM.bam") from maternal_mapgen_ch2 

    path ("STAR_2Gen_Ref/map_over.txt") from adjusted_ref_ch 

    path ("${id}_output_phaser.vcf") from phaser_out_ch2 

    val id from params.id 

    val cpus from params.cpus 

    path 

("STAR_original/${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.o

ut.PP.UM.bam") from pp_um_ch 

    path ("STAR_2Gen_Ref/${id}_output_phaser.mother.vcf.gz") from 

mothervcf_ch 

    path ("STAR_2Gen_Ref/${id}_output_phaser.father.vcf.gz") from 

fathervcf_ch 

    path ("STAR_2Gen_Ref/mat.bed") from mat_bed_ch 

    path ("STAR_2Gen_Ref/pat.bed") from pat_bed_ch 

    path gencode_bed from params.gencode_bed 

 

 

  output: 

    path ("results*.txt") 

    path ("${id}_gene_level_ae.txt") 

     

  script: 

  """ 
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  samtools merge Maternal.RSEM.STAR.bam 

STAR_Maternal/${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out

.PP.UM.bam Maternal.RSEM.bam 

  samtools merge Paternal.RSEM.STAR.bam 

STAR_Paternal/${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out

.PP.UM.bam Paternal.RSEM.bam 

  samtools view Maternal.RSEM.STAR.bam | cut -f1 | sort | uniq >> 

maternal_tags.txt 

  samtools view Paternal.RSEM.STAR.bam | cut -f1 | sort | uniq >> 

paternal_tags.txt 

  cat maternal_tags.txt paternal_tags.txt | sort | uniq -u >> 

unique_tags.txt 

  cat maternal_tags.txt paternal_tags.txt | sort | uniq -d >> 

duplicate_tags.txt 

  samtools view Maternal.RSEM.STAR.bam | grep -Fwf 

duplicate_tags.txt >> tempout_mat.sam 

  samtools view Paternal.RSEM.STAR.bam | grep -Fwf 

duplicate_tags.txt >> tempout_pat.sam 

  sort -k 1,1 tempout_mat.sam > tempout_mat.sort.sam 

  sort -k 1,1 tempout_pat.sam > tempout_pat.sort.sam 

  perl ${baseDir}/bin/filter_2genomes.pl tempout_mat.sort.sam 

tempout_pat.sort.sam 

  cat maternal_wins.txt unique_tags.txt > maternal_wins_final.txt 

  cat paternal_wins.txt unique_tags.txt > paternal_wins_final.txt 

  samtools view -H Maternal.RSEM.STAR.bam > final_mat.sam 

  samtools view -H Paternal.RSEM.STAR.bam > final_pat.sam 

  samtools view Maternal.RSEM.STAR.bam | grep -Fwf 

maternal_wins_final.txt >> final_mat.sam 

  samtools view Paternal.RSEM.STAR.bam | grep -Fwf 

paternal_wins_final.txt >> final_pat.sam 

  samtools view -bS final_mat.sam -o final_mat.bam 

  samtools sort -@ ${cpus} -o final_mat.sorted.bam final_mat.bam 

  samtools index final_mat.sorted.bam 

  samtools view -bS final_pat.sam -o final_pat.bam 

  samtools sort -@ ${cpus} -o final_pat.sorted.bam final_pat.bam 

  samtools index final_pat.sorted.bam 

  perl ${baseDir}/bin/compare_basic_map.pl ${id}_output_phaser.vcf 

STAR_original/${id}.SOFT.NOTRIM.STAR.pass2.Aligned.sortedByCoord.out
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.PP.UM.bam ${id} results_1genome_${id}.SOFT.NOTRIM_baq.txt 

results_1genome_${id}.SOFT.NOTRIM.txt 

  perl ${baseDir}/bin/compare_2genomes.pl STAR_2Gen_Ref/map_over.txt 

${id}_output_phaser.vcf final_mat.sorted.bam final_pat.sorted.bam 

${id} results_2genomes_${id}.RSEM.STAR.SOFT.NOTRIM_baq.txt 

results_2genomes_${id}.RSEM.STAR.SOFT.NOTRIM.txt 

  tabix STAR_2Gen_Ref/${id}_output_phaser.mother.vcf.gz 

  tabix STAR_2Gen_Ref/${id}_output_phaser.father.vcf.gz 

  python2 /phaser/phaser/phaser.py --vcf 

STAR_2Gen_Ref/${id}_output_phaser.mother.vcf.gz --bam 

final_mat.sorted.bam --paired_end 1 --mapq 0 --baseq 10 --isize 0 --

include_indels 1 --sample ${id} --id_separator + --pass_only 0 --

gw_phase_vcf 1 --threads ${cpus} --o ${id}_mat_output_phaser 

  python2 /phaser/phaser/phaser.py --vcf 

STAR_2Gen_Ref/${id}_output_phaser.father.vcf.gz --bam 

final_pat.sorted.bam --paired_end 1 --mapq 0 --baseq 10 --isize 0 --

include_indels 1 --sample ${id} --id_separator + --pass_only 0 --

gw_phase_vcf 1 --threads ${cpus} --o ${id}_pat_output_phaser 

  python2 /phaser/phaser_gene_ae/phaser_gene_ae.py --

haplotypic_counts ${id}_mat_output_phaser.haplotypic_counts.txt --

features STAR_2Gen_Ref/mat.bed --id_separator +  --o 

${id}_maternal_phaser_gene_ae.txt 

  python2 /phaser/phaser_gene_ae/phaser_gene_ae.py --

haplotypic_counts ${id}_pat_output_phaser.haplotypic_counts.txt --

features STAR_2Gen_Ref/pat.bed --id_separator +  --o 

${id}_paternal_phaser_gene_ae.txt 

  perl ${baseDir}/bin/merge_gene_level.pl ${gencode_bed} 

${id}_maternal_phaser_gene_ae.txt ${id}_paternal_phaser_gene_ae.txt 

${id} 

  """ 

 

} 

Input: Maternal and paternal extra reads from RSEM generated in process 

extra_reads_rsem; BAM file of reads mapped to maternal and paternal genomes from 

map_maternal_gen_filter and map_paternal_gen_filter; map_over, and and maternal and 

paternal bed files with adjusted coordinates, and maternal and paternal phased VCF file 

from process create_parental_genomes, phased VCF file from process phaser_step, sample 

ID, number of cpus, properly paired and uniquely mapped reads to the reference genome 

from process clean_up_reads; and GENCODE BED file. 
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Process: For each parental genome, the STAR and RSEM BAM files are merged. Then PAC 

finds reads only aligned in one parent and not the other. When the reads are aligned in both 

maternal and paternal genomes, a custom script (filter_2genomes.pl) selects the best 

alignment for each read from the two alignments (scoring reads by the number of matching 

nucleotides minus two times the number of indel positions, drawing at random when the 

two alignments have equal scores). 

Then two custom scripts (compare_basic_map.pl and compare_2genomes.pl) are used to 

count the number of alleles at each heterozygous site. Initially, this is done with standard 

alignment. Then the same is performed for two genomes parental alignment using the 

liftOver variant files. 

Then phASER is used to generate the gene-level calculations using the VCF files and GTF files 

from each parent (generated in process create_parental_genomes). PAC then produces 

allele counts at haplotypic level using phASER Gene AE. 

Finally, the last custom script (merge_gene_level.pl) merges the gene level counts across 

the two parents. 

Output: The results files: site and haplotype level allelic counts and single genome alignment 

for comparison.   
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1.3 OUTPUT 

 

PAC generates 5 output files: 

• haplotype level ASE calls: 

6. ‘id’_gene_level_ae.txt 

 

Figure 1. Columns and their descriptions for haplotype level ASE results from PAC output. 
The ‘id’_gene_level_ae.txt contains this file format. 

 

• single nucleotide level ASE calls from PAC: 

7. results_2genomes_’id’.RSEM.STAR.SOFT.NOTRIM_baq.txt 

8. results_2genomes_’id’.RSEM.STAR.SOFT.NOTRIM.txt 

• single nucleotide level ASE calls based on standard single genome mapping 

for comparison: 

9. results_1genome_’id’.SOFT.NOTRIM_baq.txt 

10. results_1genome_’id’.SOFT.NOTRIM.txt 
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Figure 2. Columns and their descriptions for single nucleotide level ASE results from PAC output.  
The results_2genomes_ID.RSEM.STAR.SOFT.NOTRIM_baq.txt, results_2genomes_ID.RSEM.STAR.SOFT.NOTRIM.txt, 
results_1genome_ID.SOFT.NOTRIM_baq.txt and results_1genome_ID.SOFT.NOTRIM.txt contain this file format. 
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