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Abstract
Purpose: In this paper, we study unimodality conditions for distribu-
tions that describe markets with stochastic demand. Such conditions
naturally emerge in the analysis of game-theoretic models of market com-
petition (Cournot games) and supply chain coordination (Stackelberg
games). Methods: We express the price elasticity of expected demand
in terms of the mean residual life (MRL) function of the demand distri-
bution and characterize optimal prices or equivalently, points of unitary
elasticity, as fixed points of the MRL function. This leads to economic
interpretable conditions on the demand distribution under which such
fixed points exist and are unique. Results: We find that markets with
increasing price elasticity of expected demand that eventually become
elastic correspond to distributions with decreasing generalized mean
residual life (DGMRL) and finite second moment. DGMRL distribu-
tions strictly generalize the widely used increasing generalized failure rate
(IGFR) distributions. We further elaborate on the relationship of the two
classes, link their limiting behavior at infinity and examine moment and
closure properties of DGMRL distributions that are important in eco-
nomic applications. Conclusions: The DGMRL unimodality condition
is useful in the analysis of optimal decisions under uncertainty in settings
that are not covered by the widely-used IGFR condition; thus, it can be
of broader interest to the game-theory and operations research literature.

Keywords: Price elasticity of expected demand, decreasing generalized mean
residual life, increasing generalized failure rate, unimodality, fixed points,
revenue maximization, stochastic demand
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2 A Generalization of the IGFR Unimodality Condition

1 Introduction
Game-theoretic models of market competition are predominantly based on the
principle of utility maximization by participating agents, competing sellers
and buyers. To make meaningful economic predictions through such mod-
els, it is often desirable, if not necessary, to ensure analytical tractability of
the involved utility and revenue functions [6, 27, 58]. Accordingly, a large
strand of the operations research literature is concerned with the study of eco-
nomically interpretable “unimodality” conditions, i.e., conditions that ensure
“well-behaved” utility functions, and, hence, unique equilibrium or optimal
strategies for the agents, [12, 15, 28, 34].

When agents’ decisions are made under uncertainty, unimodality condi-
tions refer to properties of the probability distribution of the underlying source
of uncertainty. The most widely used unimodality condition in this line of
research is the increasing generalized failure (IGFR) property [32, 56]. A prob-
ability distribution with cumulative distribution function F and probability
density function f is said to have the IGFR property if its generalized fail-
ure rate (GFR), g(x) := xf(x)

1−F (x) , is non-decreasing in x for all x such that
F (x) < 1. IGFR distributions include most distributions that are commonly
used in economic applications [2, 47].1

The IGFR unimodality condition naturally emerges in the context of rev-
enue maximization under stochastic demand [31, 33]. Specifically, in a single
item market, when the seller posts a price p and the buyer’s reservation price,
α, is randomly drawn from a distribution F , then the seller’s expected demand
is E (D (p | α)) = 1 − F (p) and, hence, its expected revenue is p(1 − F (p)).
Here, D (p | α) is the demand at price p given that the buyer’s realized type
is α. In this context, the IGFR condition has a clear economic interpretation.
In particular, the GFR function, g (x), corresponds to the price elasticity of
demand and, hence, the assumptions that g (x) is increasing and eventually
exceeds 1 capture the economic intuition of increasing and eventually elastic
demand. As a result, the seller’s optimal price, p∗, coincides with the point of
unitary price elasticity, g(p∗) = 1, [32].

However, when applied to game-theoretic settings, an important shortcom-
ing of the IGFR unimodality condition is that it concerns the instantaneous
or local behavior of the underlying probability distribution. Thus, when sell-
ers’ revenue (utility) maximization requires information about the whole range
of the demand distribution, then the IGFR condition may fail to provide a
meaningful unimodality condition.

Such problems can be captured by the following common abstraction. A
seller is selling to a market with stochastic demand level, α, that is realized
after the seller sets their price. In this case, α no longer describes the demand
for a single item, but rather the demand for multiple items (whole market).

1The GFR function was introduced in economic applications by [52], who used it to model
income distributions. It was further studied in the same context by [3] and [4] who provided an
alternative definition of the IGFR property without requiring the existence of a density.
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Accordingly, the seller’s expected revenue function is given by

R (p) = pE (D (p | α)) (1)

where the expectation, E, is taken over the distribution of α or, equivalently,
over the seller’s belief about it. The seller’s objective is to determine the opti-
mal price p∗ that maximizes R (p). By differentiating R (p), the seller’s first
order condition can be written as

p = − E (D (p | α))
d

dpE (D (p | α))
(2)

Given that ε (p) := − dE(D(p|α))/E(D(p|α))
dp/p is the price elasticity of expected

demand [57], the solutions of (2) correspond to the points of unitary price
elasticity of expected demand.

However, even if we assume that D (p | α) is continuous and naturally
non-increasing in p, equation (2) may have a single, multiple, or even no
solutions. As argued above, in this setting, the IGFR condition does not
directly apply to yield a unimodality condition since the expression in eq. (2)
requires information about the whole range of the distribution, i.e., evaluation
of the conditional expectation and its derivative, and not only about its local
behavior at the current demand level.2

The above abstract formulation captures a wide range of game-theoretic
models with potentially multiple sellers and buyers that naturally emerge
in operations research and economic problems. Such problems involve equi-
librium uniqueness in horizontal quantity competition (Cournot games)
[12, 28, 29, 34], equilibrium prices in markets with bandwagon effects, i.e.,
markets in which demand leads to more demand [36], and supply chain coor-
dination in vertical markets (Stackelberg games) with demand uncertainty
[15, 35, 38, 44] among others.

Model and Results
Motivated by the shortcomings of the IGFR property to simplify the sellers’
pricing problem in these game-theoretic settings, we seek to formulate an
alternative unimodality condition on the distribution of the random demand
that will yield a unimodal revenue function in equation (1) and, as a result, a
unique solution to equation (2).

To achieve this, we first express the first order condition, equation (2), in
terms of the mean residual life (MRL) function of the underlying demand dis-
tribution. The MRL function is defined as m (p) := E (α − p | α > p) whenever
F (p) < 1 (cf. equation (3)), see [30, 51]. This allows us to show that solutions

2A technical restriction of the IGFR condition is that it is confined to distributions that are
defined over connected intervals [32]. This limits the real-life economic applications that can be
studied under the IGFR condition, for example by excluding settings in which sellers maintain
beliefs (demand distributions) over disjoint intervals that correspond to low, modal, and high
(extreme) demand realizations.
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of the first order condition of the seller’s revenue function are precisely solu-
tions of the fixed point equation p = m (p) for p > 0, cf. Lemma 2. This implies
that a sufficient condition for the unimodality of the seller’s expected revenue
function is that the MRL function of the associated stochastic demand has a
unique fixed point.

As a result, our aim is to study fixed points of the MRL function and derive
conditions under which such fixed points exist and are unique. To study this
problem, we introduce the generalized mean residual life (GMRL) function,
ℓ (p) := m (p) /p, cf. equation (6). In the current context, the GMRL func-
tion has an important economic interpretation: it is the inverse of the price
elasticity of expected demand, cf. equation (7). It follows that fixed points,
p∗ = m (p∗), of the MRL function which maximize the seller’s expected rev-
enue correspond to prices with unitary price elasticity, i.e., ℓ (p∗) = 1. If the
expected demand has increasing price elasticity and eventually becomes elas-
tic, then such a fixed point exists and is unique. In terms of the demand
distribution this is equivalent to saying that ℓ (p) is decreasing, i.e., that it has
the decreasing generalized mean residual life (DGMRL) property, and that it
eventually becomes less than 1.This is the main result of Section 2 which is
formulated in Theorem 1.

An immediate implication of Theorem 1 is that markets with increasing
price elasticity of expected demand can be modelled via DGMRL distributions.
Recall that when demand uncertainty corresponds to the buyer’s valuation
for a single product unit, increasingly elastic markets are described by dis-
tributions with increasing generalized failure rate (IGFR), see [33, 56]. This
provides a natural motivation to study the relationship between IGFR and
DGMRL distributions and compare their properties. In Theorem 2, we pro-
vide an alternative proof to the well-known fact (see [4, 24]) that DGMRL
distributions generalize the IGFR distributions and establish that the converse
is also true if the MRL function is log-convex. A commonly used distribution
that is DGMRL but not IGFR is the Birnbaum-Saunders distribution for spe-
cific values of its parameters, cf. Example 1. In contrast to IGFR and IFR
distributions, we also find that if a distribution is DGMRL, then its logarith-
mic transformation does not necessarily satisfy the more restrictive decreasing
MRL (DMRL) property, cf. Example 4.

We next turn to the study of moments of DGMRL distributions. In a result
that is similar in flavor to Theorem 2 of [32], we show that the moments of
DGMRL distributions with unbounded support are linked to their limiting
behavior at infinity (cf. Theorems 3 and 4). Specifically, if the GMRL function
tends to c ≥ 0 as p → +∞, then for any n > 0, its (n + 1)-th moment is
finite if and only if c < 1/n. This implies, that markets with increasing and
eventually elastic demand, i.e., for which ℓ (p) < 1 for every p sufficiently large,
correspond to DGMRL distributions with finite second moment.

Finally, we examine closure properties of DGMRL and DMRL distribu-
tions that are useful in economic modelling, and compare our findings with
[47] and [2]. Such properties capture settings in which sellers update their
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information about the demand distribution or aggregate different demands. In
mathematical terms, these updates are expressed via increasing or decreasing
transformations and convolutions (Theorem 5, Corollary 1) and scale transfor-
mations or truncations, (Theorem 6). We conclude the paper with a discussion
of the current results along with open questions in Section 5.

Other related works
Related unimodality and elasticity conditions are studied in [6, 25, 41] and,
in a spirit more similar to ours, in [2, 32, 56] and [27]. The DGMRL condi-
tion that is analyzed in the current paper, has been first identified as a useful
unimodality property in the context of Nash equilibrium uniqueness in hori-
zontal Cournot competition [34] and of Stackelberg equilibrium uniqueness in
vertical markets with multiple competing retailers [35, 37].

The MRL and GMRL functions have been studied by [20] and [18] and
more recently by [1] in the context of reliability and statistics with scarce ref-
erences to game-theoretic applications. However, in economics and operations
research, the MRL and GMRL functions naturally arise in pricing or inven-
tory problems under demand uncertainty. A non-exhaustive list of the former
includes [11, 13, 21, 48, 49] and more recently [9, 10, 42]. Concerning optimal
inventory decisions, [43, 53, 54], and references cited therein, study the tail of
the distribution of the source of uncertainty, see e.g., [54], Lemma 1 and [53],
equation (2). The DGMRL condition leads to a succinct formulation and, in
some cases, a refinement of these results.

Finally, under various perspectives, demand uncertainty in supply chains
(Stackelberg games) has been studied in [9, 10] for linear demand functions3

and by [15, 39, 57] and [38] for general distributions (i.e., beyond the linear
model), but typically, under the more restrictive IFR and absolute continuity
assumptions on the demand distribution. By contrast, the current analysis only
requires that F is continuous. This is satisfied as long as the distribution of
the random demand is atomless, i.e., as long as there do not exist single points
with positive probability, even if the distribution is supported over disjoint
intervals. In technical terms, this means that our results do not require F to
be absolutely continuous, i.e., to have a density f = F ′. In fact, our analysis
extends even to singular distributions, see [36].

2 The DGMRL Unimodality Condition
2.1 Preliminaries
Recall from Section 1 that we are concerned with solutions of equation (2), p =
− E(D(p|α))

d
dpE(D(p|α)) , which describe the first order conditions for the maximization of

the revenue function in equation (1), R (p) = pE (D (p | α)). In the following

3Both papers study the trade-off between generality of technical assumptions on the demand
distribution and limitations on the demand curve. Their results offer novel perspectives on the
micro foundations of the linear demand model, e.g., as a good approximation of various demand
curves, and justify its use in a wider than previously thought spectrum of economic modelling.
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exposition, we focus on the particular instantiation of the additive demand
model introduced by [45], with the common assumption of linear deterministic
component, studied (among others) in [10, 22, 48] and [37]. In Section 2.3,
we will show how this analysis readily generalizes to more general demand
functions (as e.g., the ones used in [12, 40] and in references cited therein).

Specifically, let D (p | α) = (α − p)+, where α denotes the random demand
level. We assume that α is a non-negative random variable with continuous
cumulative distribution function (cdf) F , tail F̄ := 1 − F and finite expecta-
tion4, Eα < +∞. For the support of α, let L := sup {p ≥ 0, F (p) = 0} ≥ 0 and
H := inf {p ≥ 0 : F (p) = 1} ≤ +∞. Using this notation, (2) can be expressed
in terms of the mean residual life (MRL) function, defined as

m (p) :=

E (α − p | α > p) = 1
F̄ (p)

∫ +∞

p

F̄ (u) du, if p < H

0, otherwise
(3)

The term MRL stems from the widespread use of this function in reliabil-
ity theory, see, e.g., [51] or [30]. In the current context, equation (2) can be
conveniently expressed in terms of the MRL function m (p). To see this, we
will use that under mild analytical assumptions on D (p | α), we have that
d

dpE (D (p | α)) = E
(

∂
∂p D (p | α)

)
, [17]. However, in the specific case that

D (p | α) = (α − p)+, this can be derived in a straightforward way as shown
in Lemma 1.

Lemma 1 If α is a non-negative random variable with finite expectation Eα <

+∞ and continuous distribution function F , then d
dpE (α − p)+ = E

(
∂(α−p)+

∂p

)
=

−F̄ (p) for any p > 0.

Proof Let Kh (α) := − 1
h

[
(α − p − h)+ − (α − p)+

]
and take h > 0. Then,

Kh (α) = 1{α>p+h} + α − p

h
1{p<α≤p+h} and therefore limh→0+ Kh (α) = 1{α>p}.

Since 0 ≤ Kh (α) ≤ 1 for all α, the dominated convergence theorem implies
that limh→0+ E (Kh (α)) = P (α > p). In a similar fashion, one may show that
limh→0− E (Kh (α)) = P (α ≥ p). Since the distribution of α is non-atomic,
P (α > p) = P (α ≥ p) and hence, limh→0 E (Kh (α)) = F̄ (p). By the definition of
Kh (α), it follows that limh→0 E (Kh (α)) = − d

dpE (α − p)+, as claimed. □

Note that, if additionally, α is an absolutely continuous random variable
with F ′ = f almost everywhere, for some density function f , one can easily
verify that the derivative m′ (p) exists and is given by

m′ (p) = h (p) m (p) − 1 (4)

4For one of our results, Theorem 1, we will also require that Eα2 is also finite. However, unless
stated otherwise, we do not make this assumption.
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where h (p) = f (p) /F̄ (p) denotes the hazard rate function of α, see e.g., [8]. In
any case, using Lemma 1, the following formulation of (2) is now immediate.

Lemma 2 In the linear demand case, D (p | α) = (α − p)+, the seller’s first order
condition, (2), can be written as

p = m (p) (5)
where m (p) denotes the MRL function of the demand distribution.

Proof Since (α − p)+ is non-negative, we may write

E (α − p)+ =
∫ ∞

0
P
(
(α − p)+ > u

)
du =

∫ ∞

p

F̄ (u) du,

for 0 ≤ p < H, see [7]. Using (3), we thus, have E (α − p)+ = m (p) F̄ (p) and (2)
takes the form p = m (p). □

To study this equation, we introduce the generalized mean residual life
(GMRL) function, ℓ (p) := m (p) /p, for 0 < p < H, cf. (6), which corresponds
to the inverse of the price elasticity of expected demand. It follows that prices
p∗ with unitary price elasticity which maximize the seller’s expected revenue,
satisfy ℓ (p∗) = 1 or equivalently p∗ = m (p∗). Under the assumption that F is
absolutely continuous, with F ′ = f , (2) takes the form ph (p) = 1, for p < H,
where h (p) := f (p) /F̄ (p) is the hazard rate function of α.

2.2 Unimodality of the Seller’s Revenue Function
Our goal in this Section is to establish necessary and sufficient conditions
for the unimodality of the seller’s revenue function. This is the statement
of Theorem 1, which crucially relies on the expression of the price elasticity
of expected demand via the generalized mean residual life (GMRL) function
which is derived next.

From the seller’s revenue maximization perspective, we are interested in
conditions for the existence and uniqueness of solutions of (5). Based on the
previous analysis in Section 2.1, solutions of (2) are precisely solutions of the
fixed point equation p = m (p) for p > 0. Thus, our aim will be to study fixed
points of the MRL function. To study this problem, we define the generalized
mean residual life (GMRL) function

ℓ (p) := m (p)
p

= 1
pF̄ (p)

∫ +∞

p

F̄ (u) du (6)

for all 0 < p < H. We say that a random variable D has the DGMRL property,
if ℓ (p) is non-increasing in p for 0 < p < H. While the MRL function at a
point p expresses the expected additional demand given that current demand
has reached (or exceeded) the threshold p, the GMRL function expresses the
corresponding expected additional demand as a percentage of the current
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demand. From an economic perspective, ℓ (p) has an appealing interpreta-
tion, since it is the inverse of the price elasticity of the expected demand,
ε (p) := −p · d

dpE (D (p | α)) /E (D (p | α)),

ℓ (p) = m (p)
p

=
(

F̄ (p)
m (p) F̄ (p)

· p

)−1

= ε (p)−1 (7)

Thus, demand distributions with the DGMRL property precisely capture mar-
kets of goods with increasing price elasticity of expected demand. Moreover,
together with (5), (7) implies that the seller’s revenue is maximized at prices
p∗ with unitary price elasticity of expected demand. In non-trivial, realistic
problems, demand eventually becomes elastic, see also [32]. Accordingly, let
p1 := sup {p ≥ 0 : ℓ (p) ≥ 1} and assume that p1 < +∞ or equivalently that
the price elasticity of expected demand, eventually becomes greater than 1. For
a continuous distribution F with finite expectation Eα, such that F (0) = 0,
we have that m (0) = Eα > 0 and hence, p1 > 0. Combining the above, we
obtain necessary and sufficient conditions for the unimodality of the seller’s
revenue function R (p), or equivalently for the existence and uniqueness of a
solution of (5).

Theorem 1 Suppose that α is a random variable with continuous distribution F ,
F (0) = 0, and finite expectation, such that p1 < +∞. The seller’s revenue function
R (p) = pE (α − p)+ is maximized at all points p∗ with unitary elasticity of expected
demand, i.e., at all points p∗ that satisfy ℓ (p) = 1 or equivalently, p∗ = m (p∗). If
ℓ (p) is strictly decreasing, then a fixed point p∗ exists and is unique.

Proof To establish the first part, it remains to check that any point satisfying (5)
corresponds to a maximum under the assumption that ℓ (p) is strictly decreas-
ing. Clearly, ℓ (p) is continuous and since m (0) = Eα < +∞, we have that
limp→0+ ℓ (p) = +∞. Hence, for values of p close to 0, demand is inelastic and the
seller’s revenue increases as prices increase. However, the limiting behavior of ℓ (p) as
p approaches H from the left may vary, depending on whether H is finite or not. If H
is finite, i.e., if the support of α is bounded, then limp→H− ℓ (p) = 0. Hence, in this
case, demand eventually becomes elastic and a critical point p∗ ∈ (0, H) that maxi-
mizes R (p) always exists. The assumption that ℓ (p) is strictly decreasing, establishes
the uniqueness of p∗. If H = +∞, then an optimal solution p∗ may not exist because
the limiting behavior of m (p), as p → +∞, may vary, see e.g., the Pareto distribu-
tion in Example 3. However, under the assumption that ℓ (p) is strictly decreasing
and that p1 < +∞, such a critical p∗ exists and is unique. □

Remark 1 The assumption p1 < +∞ is equivalent to the condition that the distribu-
tion of α has finite second moment. Indeed, as we show in Theorem 3, if the support
of α is unbounded, and ℓ (p) is decreasing, then, limp→+∞ ℓ (p) < 1 if and only if Eα2

is finite. The assumption of strict monotonicity eliminates intervals with m (p) = p,
in which multiple consecutive solutions occur. However, it may be relaxed to weak
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monotonicity without significant loss of generality. This relies on the explicit charac-
terization of distributions with MRL functions that contain linear segments which is
given in Proposition 10 of [20]. Namely, m (p) = p on some interval J = [a, b] ⊆ [L, H]
if and only if F̄ (p) p2 = F̄ (a) a2 for all p ∈ J . If J is unbounded, this implies that α
has the Pareto distribution on J with shape parameter 2. In this case, Eα2 = +∞, see
Example 3, which is precluded by the requirement that p1 < +∞. Hence, to replace
strict by weak monotonicity, it suffices to exclude distributions that contain intervals
J = [a, b] ⊆ [L, H] with b < +∞ in their support, for which F̄ (p) p2 = F̄ (a) a2 for
all p ∈ J .

2.3 General Demand Functions
While in the above presentation we used the linear demand model, the results
readily extend to more general demand forms. In particular, consider the
functional form (which includes the linear or constantly elastic cases)

p(Q) =
{

α − βQn+1, if n ̸= −1,

α − β log Q, if n = −1,

that is used in [12, 40] and references cited therein. In this formulation, the
quantity, Q, is the free variable (and thus, the interpretation of the problem
changes accordingly). These functions constitute instantiations of the more
general form

p(Q) = α − g(Q),
where g(Q) is an arbitrary function (a similar formulation holds if we choose
price as the free variable, but in this part we stick without loss of generality
with Q as the variable of choice to be in line with the referenced papers). In
this case, using again (3), it is straightforward to verify that the seller’s revenue
function becomes R(Q) = Q ·f(Q) = Qm(g(Q))F̄ (g(Q)). Thus, assuming that
α is absolutely continuous (to simplify the calculations), the derivative of the
seller’s revenue is

d

dQ
Qm(g(Q))F̄ (g(Q)) = −Qm(g(Q))f(g(Q))g′(Q) + m(g(Q))F̄ (g(Q))+

+ Qm′(g(Q))g′(Q)F̄ (Q)

= −Qm(g(Q))f(g(Q))g′(Q) + m(g(Q))F̄ (g(Q))+

+ Q [m(g(Q))h(g(Q)) − 1] g′(Q)F̄ (Q)

= F̄ (g(Q)) [m(g(Q)) − Qg′(Q)]

where we used equation (4) for the second equality. This leads to the first
order condition

Qg′(Q) = m(g(Q)),
that can be viewed as generalized fixed point equation. For instance, if g(Q) =
Q, we recover the previous analysis (with quantity instead of price as the
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decision variable) of the linear model. Similarly, if g(Q) = bQn for n > 0 as in
[12, 40], then we derive the equation nbQn = m(bQn) which after a variable
transformation bQn → x leads to the (scaled) fixed point equation x = 1

n m(x).
Extension of the current results to more general demand function remains

an interesting open questions. In this direction, the framework of [50] provides
a promising starting point to study, for instance, transformations related to
the inverse function, g−1(Q).

3 Properties of DGMRL Distributions
Section 2 motivates the study of DGMRL distributions as class of distributions
that arise naturally in a seller’s pricing optimization problem when the seller
is facing a linear stochastic demand. It turns out, that the class of DGMRL
distributions is general enough to include as a subclass the IFR, DMRL and
IGFR distributions that are widely used in revenue management applications.
This statement along with several analytical and closure properties of the
DGMRL distributions are established next.

For the remaining part, let X ∼ F be a non-negative random variable,
with support in L, H as in Section 1, continuous distributions function F , tail
F̄ := 1 − F and finite expectation EX < +∞. Let m (x) denote the MRL
function of X, as defined in (3), and ℓ (x) denote the GMRL function of X, as
defined in (6). We say that distribution X has the decreasing MRL (DMRL)
property, or simply that X is DMRL, if m (p) is non-increasing in p for p < H.

3.1 The DGMRL and IGFR Classes of Distributions
To compare the IGFR and DGMRL classes, we restrict attention to non-
negative, absolutely continuous random variables. We, then have

Theorem 2 If X is a non-negative, absolutely continuous random variable, with
EX < +∞, then
(i) If X is IGFR, then X is DGMRL.
(ii) If X is DGMRL and m (x) is log-convex, then X is IGFR.

Part (i) of Theorem 3, has already been stated by [4] and [24]. To derive
an alternative proof of part (i) and to establish part (ii) of Theorem 2, we
will use the notions of stochastic orderings, see [51] or [5]. Let Xi be random
variables with distribution, failure rate and MRL functions denoted by Fi, hi

and mi respectively, for i = 1, 2. X1 is said to be smaller than X2 in the
usual stochastic order, denoted by X1 ⪯st X2, if F2 (x) ≤ F1 (x) for all x ∈ R.
Similarly, X1 is said to be smaller than X2 in the failure or hazard rate order,
denoted by X1 ⪯hr X2, if h2 (x) ≤ h1 (x) for all x ∈ R. Finally, X1 is said to
be smaller than X2 in the mean residual life order, denoted by X1 ⪯mrl X2,
if m1 (x) ≤ m2 (x) for all x ∈ R.
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Proof Proof of Theorem 2. By Theorem 1 of [32], X is IGFR if and only if X ⪯hr λX
for all λ ≥ 1. By Theorem 2.A.1 of [51], if X ⪯hr λX, then X ⪯mrl λX. Now,
mλX (x) = λ · m (x/λ). Hence, for λ ≥ 1, X ⪯mrl λX is by definition equivalent to
m (x) ≤ mλX (x) for all x > 0, which in turn is equivalent to ℓ (x) ≤ ℓ (x/λ) for all
x > 0. As this holds for any λ ≥ 1, the last inequality is equivalent to ℓ (x) being
decreasing, i.e., to X being DGMRL.

To prove the second part of the Theorem, it suffices to show that m (x) /mλX (x)
is increasing in x, for 0 < x < H and all λ ≥ 1. Indeed, if this is the case, Theorem
2.A.2 of [51] implies that X ⪯mrl λX for all λ ≥ 1 is equivalent to X ⪯hr λX for
all λ ≥ 1, which as we have seen, is equivalent to X being IGFR. Since mλX (x) =
λm (x/λ) and m (x) is differentiable, m (x) /mλX (x) is increasing in x ∈ (0, H)
for all λ ≥ 1 if and only if d

dx

(
m(x)

λm(x/λ)

)
≥ 0, for all λ ≥ 1, i.e., if and only if

m′(x)
m(x) ≥ m′(x/λ)

λm(x/λ) , for all λ ≥ 1. This is equivalent to d
dx log (m (x)) being increasing

in x, i.e., to m (x) being log-convex. □

IFR IGFR

DMRL DGMRL

Fig. 1 Relationship between the IFR,
IGFR, DMRL and DGMRL classes of dis-
tributions. The IFR property implies the
IGFR and DMRL properties, which in turn
imply the DGMRL property. All inclusions
are proper. The DMRL property neither
implies nor is implied by the IGFR prop-
erty. Finally, Theorem 2-(ii) provides a
condition under which a DGMRL distribu-
tion is also IGFR.

Based on the proof of Theorem 2,
a DGMRL random variable X is not
IGFR if there exists λ ≥ 1 such
that X is smaller than λX in the
mean residual life order but not in
the hazard rate order. Although more
involved, the present derivation of
part (i) utilizes the characterization of
both IGFR and DGMRL in terms of
stochastic orderings – ⪯hr for IGFR
and ⪯mrl for DGMRL – and thus,
points to the sufficiency condition of
part (ii). Specifically, in view of the
proof of part (i), the proof of part (ii)
reduces to finding conditions, under
which, the mean residual life order implies the hazard rate order. Such con-
ditions are provided in Theorem 2.A.2 of [51]. However, as [51] already point
out, the condition of log-convexity is restrictive and indeed there are many dis-
tributions with log-concave MRL function that are nevertheless IGFR. Hence,
it would be of interest to obtain part (ii) of Theorem 2 under a more general
condition.

Conceptually, the GFR and GMRL functions differ in the same sense that
the FR and MRL functions do. Namely, while the GFR function at a point
x provides information about the instantaneous behavior of the distribution
just after point x, the GMRL function provides information about the entire
expected behavior of the distribution after point x. As the IGFR is trivially
implied by the IFR property, the same holds for the DGMRL and DMRL
properties. The relationships between all four classes are shown in Figure 1.
The IGFR property does not imply, nor is implied by the DMRL property.
However, the former seems more inclusive than the latter, cf. [1], Table 3
and [2], Table 1. Conversely, DMRL distributions that are not IGFR can be



Springer Nature 2021 LATEX template

12 A Generalization of the IGFR Unimodality Condition

Fig. 2 Birnbaum-Saunders distribution for a = 6, β = 5. The GFR function (left panel) is
not monotone increasing in contrast to the price elasticity of expected demand (right panel)
which is the inverse of the GMRL function.

constructed by considering random variables without a connected support.
This relies on the observation that if a distribution X is IGFR, then its support
must be an interval, see [33]. However, it remains unclear whether or not the
DMRL property implies the IGFR property when attention is restricted to
absolutely continuous random variables with connected support. A commonly
used distribution that is DGMRL but not IGFR is the Birnbaum-Saunders
distribution.

Example 1 (Birnbaum-Saunders distribution) The Birnbaum-Saunders (BS) distri-
bution, which is extensively used in reliability applications, see [23], provides an
example of a random variable which is DGMRL but not IGFR for certain values of
its parameters. The pdf of X is

f (x) = 1
2ax

√
2π

(√
x

β
+
√

β

x

)
exp

− 1
2a2

(√
x

β
−

√
β

x

)2
, for x > 0,

where a > 0 is the shape parameter and β > 0 is the scale parameter. In particular,
let X ∼ BS with parameters a = 6 and β = 5. Using the formula for f (x), Figure 2
can be obtained numerically. Implementing the BS distribution for different β and γ,
shows that, unlike other distribution families, as e.g., the Gamma or Beta, the shapes
of the GFR and GMRL functions of the BS distribution depend largely on the exact
values of its parameters. For different values of its parameters, the BS distribution
has either increasing or bathtub-shaped (first decreasing and then increasing) MRL
function, [55].

Mixtures of DGMRL distributions over disjoint intervals
As mentioned above, IGFR random variables must have a connected support.
Under certain circumstances, this property poses restrictive limitations in eco-
nomic modelling. For instance, when a seller is uncertain about the exact
support of the demand, their belief can be naturally expressed as a mixture
of two or more distributions over disjoint intervals. In this case, even if each
individual distribution is IGFR, their mixture is certainly not. In this respect,
the DGMRL property is more promising since mixtures of IGFR distributions
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may still be DGMRL. However, in general, different mixtures of IGFR dis-
tributions may or may not be DGMRL even if the only difference is in the
mixing weights. Such a case is illustrated in Example 2.

Example 2 (Mixture of Uniform distributions on disjoint intervals) Let U (L, H)
denotes the uniform distribution on (L, H) and let X1 ∼ U (1, 2) with cdf F1 and
X2 ∼ U (3, 4) with cdf F2. Further, let Xλ with cdf Fλ = λF1 + (1 − λ) F2 for
λ ∈ (0, 1) describe the seller’s belief about the demand. Both X1, X2 are IFR, hence
IGFR, DMRL and DGMRL.

The support of Xλ is not connected, hence Xλ is not IGFR for 0 < λ < 1.
Contrarily, the GMRL ℓλ of Xλ is given by

ℓλ (x) =


λℓ1 (x) + (1 − λ) ℓ2 (x) , 0 < x ≤ 1

λ (2 − x) ℓ1 (x) + (1 − λ) ℓ2 (x)
λ (2 − x) + (1 − λ) , 1 ≤ x ≤ 2

ℓ2 (x) , 2 ≤ x < 4

Hence, ℓλ (x) is decreasing for x /∈ [1, 2]. For x ∈ [1, 2], a direct substitution shows
that ℓ1/4 (x) is decreasing over [1, 2], hence X1/4 is DGMRL, while ℓ3/4 (x) is first
decreasing and then increasing, as shown in Figure 3 and hence X3/4 is not DGMRL.

Fig. 3 The GMRL function of Xλ for λ =
1/4 (solid) and λ = 3/4 (dotted).

The derivation of necessary
and/or sufficient conditions under
which such mixtures retain the
DGMRL property, i.e., the deriva-
tion of closure properties under
mixtures of the DGMRL class of
distributions, remains an interest-
ing open question. In a related
study that may prove useful in this
direction, [46] confirm that mix-
tures of standard IFR (and hence
DGMRL) distributions, e.g., exponential, may not be DGMRL (it may be
bathtub-shaped), and derive sufficient conditions under which asymptotical
monotonicity is retained.

3.2 Limiting Behavior & Moments of DGMRL
Distributions

The moments of DGMRL distributions with unbounded support are closely
linked with the limiting behavior of the GMRL function ℓ (x), as x → +∞.

Theorem 3 Let X be a non-negative DGMRL random variable with EX < +∞ and
lim

x→+∞
ℓ (x) = c. If β > 0, then c < 1

β , if and only if EXβ+1 < +∞. In particular,

c = 0 if and only if EXβ+1 < +∞ for every β > 0.
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For the proof of Theorem 3, we utilize the theory of regularly varying
distributions, see [16, 20] and [19]. First, observe that if X is a non-negative
random variable, then by a simple change of variable, one may rewrite5 ℓ (x)
in (6) as ℓ (x) =

∫ +∞
1

F̄ (ux)
F̄ (x) du. Since we have assumed that EX < +∞, ℓ (x)

is well defined. We say that F̄ is regularly varying at infinity with exponent
ρ ∈ R, if F̄ (ux) /F̄ (x) → uρ for all u ≥ 0 as x → +∞. In this case, we write
F̄ ∈ RV (ρ). If F̄ (ux) /F̄ (x) → ∞ for 0 < u < 1 and F̄ (ux) /F̄ (x) → 0 for
u > 1 as x → +∞, then we say that F̄ is rapidly varying at infinity with
exponent −∞ or simply that F̄ is rapidly varying, in symbols F̄ ∈ RV (−∞).
If F̄ ∈ RV (ρ) with ρ ∈ R, then we can write F̄ as F̄ (u) = uρZ (u), where Z is
regularly varying at infinity with exponent ρ = 0. In this case, we say that Z
is slowly varying at infinity and write Z ∈ SV. [16], see Section VIII.8, shows
that if Z (u) > 0 and Z ∈ SV, then the integral

∫ +∞
0 uρZ (u) du is convergent

for ρ < −1 and divergent for ρ > −1. We are now ready to prove Theorem 3.

Proof Proof of Theorem 3. Let c > 0. Then, the convergence of ℓ (x) to some c ∈
(0, +∞) is equivalent to F̄ being regularly varying at infinity with exponent −1 − 1

c ,
in symbols F̄ ∈ RV

(
−1 − 1

c

)
, see Proposition 11(b) of [20]. Hence, there exists a

function Z ∈ SV, such that F̄ (x) = x−1− 1
c Z (x). Since X is non-negative, this

implies that for any β > 0, we may write EXβ+1 =
∫ +∞

0 (β + 1) uβF̄ (u) du =
(β + 1)

∫ +∞
0 uβ−1− 1

c Z (u) du. Using [16], the latter integral converges for β < 1
c and

diverges for β > 1
c . For c = 1

β , we employ the approach of [32] and compare X with
a random variable Y ∼ Pareto (1, β + 1), where 1 is the location parameter and β +1
the shape parameter. In this case mY (x) = x/β and EY β+1 = +∞, which may be
used to conclude that EXβ+1 = +∞ as well. To see this, observe that since ℓ (x) is
decreasing to 1/β by assumption, we have that mX (x) ≥ x/β = mY (x) and hence
Y ⪯mrl X. Moreover, mY (x)

mX (x) = 1
β · 1

ℓ(x) , which by assumption increases in x for all
x > 0. This implies that Y is smaller than X in the hazard rate order, see Theorem
2.A.2 of [51], and hence also in the usual stochastic order, i.e., Y ⪯st X. Hence,
EXβ+1 ≥ EY β+1 = +∞.

If c = 0, then F̄ (x) is rapidly varying with exponent −∞, i.e., F̄ ∈ RV (−∞), see
Proposition 11(c) of [20]. It is known, see [14], that all moments of rapidly varying
distributions are finite. Conversely, if EXβ+1 < +∞ for every β > 0, then it is a
straightforward implication that c = 0. □

Theorem 3 is comparable to Theorem 2 of [32], which states an analogous
result for IGFR distributions. Theorem 4 establishes the link between the two.

Theorem 4 Let X be an absolutely continuous, non-negative random variable with
unbounded support and EX < +∞. If limx→+∞ g (x) exists and is equal to κ with
κ > 1 (possibly infinite), then

lim
x→+∞

ℓ (x) = 1/ (κ − 1) (8)

5By differentiating this expression, provided that F ′ = f almost everywhere, one obtains an
alternative straightforward proof that IGFR implies DGMRL.
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Proof Since EX < +∞, both limx→+∞
∫ +∞

x
F̄ (u) du and limx→+∞ xF̄ (x) are

equal to 0. To compute limx→+∞ ℓ (x) we use L’Hôpital’s rule. We have that
d

dx

∫ +∞
x

F̄ (u) du = −F̄ (x) and d
dx

(
xF̄ (x)

)
= F̄ (x) (1 − g (x)). Hence, under the

assumption that limx→+∞ g (x) = κ, we conclude that

lim
x→+∞

ℓ (x) = lim
x→+∞

1
g (x) − 1 = 1

κ − 1 .

□

The inverse relationship in the limiting behavior of ℓ (x) and g (x) in (8)
is similar in flavor to equation (2.1) of [8]. In the case that κ < +∞, Theorem
2 of [32] restricted to n > 1, follows from Theorems 2 and 3, and equation
(8). This approach also covers the case n = κ, which is not considered in the
proof by [32]. As for IGFR distributions, the Pareto distribution provides a
limiting case between decreasing and increasing GMRL distributions, since it
is the unique distribution with constant GMRL function.

Example 3 (Pareto distribution) Let X be Pareto distributed with pdf f (x) =
kLkx−(k+1)1{L≤x}, and parameters L > 0 and k > 1 (for 0 < k ≤ 1 we get
EX = +∞, which contradicts the basic assumptions of our model). To simplify, let
L = 1, so that f (x) = kx−k−11{1≤x}, F̄ (x) = x−k1{1≤x}, and EX = k

k−1 . The
mean residual life of X is given by m (x) = x

k−1 + k
k−1 (1 − x)+ and, hence, is decreas-

ing for x < 1 and increasing for x ≥ 1. However, the GMRL function ℓ (x) = 1
k−1 is

decreasing for 0 < x < 1 and constant for x ≥ 1, hence, X is DGMRL. Similarly, for
1 ≤ x the failure (hazard) rate h (x) = kx−1 is decreasing, but the generalized fail-
ure rate g (x) = k is constant and, hence, X is IGFR. In this case, the seller’s payoff
function, (1), becomes

R (x) = xm (x) F̄ (x) =


x
(

k

k − 1 − x
)

, if 0 ≤ x < 1

x2−k

(k − 1) , if x ≥ 1,

which diverges as x → +∞, for k < 2 and remains constant for k = 2. In par-
ticular, for k ≤ 2, the second moment of X is infinite, i.e., EX2 = +∞, and
also limx→+∞ ℓ (x) = 1

k−1 ≥ 1 and limx→+∞ g (x) = k ≤ 2, which agrees with
Theorem 3. On the other hand, for k > 2, there exists a unique fixed point
x∗ = k

2(k−1) , as expected.

Example 3 provides a motivation to further explore the relationship
between the properties of a DGMRL distribution X and its logarithmic trans-
formation, log (X). Specifically, similar to X being IGFR if and only if log (X)
is IFR, cf. Theorem 1 of [32], it is natural to ask whether X is DGMRL if
and only log (X) is DMRL. The intuition behind this conjecture is straight-
forward: the Pareto distribution is the boundary case for the DGMRL class
(has constant GMRL function), and log (X), which, in this case, is the expo-
nential distribution is the boundary case for the DMRL class, i.e., log (X)
has constant MRL function. Moreover, a property similar to the one stated in
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Fig. 4 The GMRL function, ℓ(x), of the distribution X of Example 4 (first panel) and the
MRL function, mL(x), of the transformed distribution log (X) (third panel). The second
and fourth panels show the sign of the derivatives of ℓ(x) and mL(x) respectively. It can be
seen that X is DGMRL, but log X is not DMRL.

Theorem 2 holds for IFR and DMRL distributions: IFR implies DMRL, and
DMRL together with concavity of the MRL function imply the IFR property,
cf. [51]. However, contrary to the above intuition, the following example shows
that this is not true.

Example 4 (X DGMRL does not imply that log (X) is DMRL) Consider a non-
negative random variable X. Let FL(x) := P (log (X) ≤ x) = F (ex) and fL(x) :=
exf(ex) denote the cumulative distribution and probability density function, respec-
tively, of the transformed random variable log (X). Then, the MRL function, mL (x),
of log (X) is given by

mL (x) = 1
F̄L(x)

∫ +∞

x

F̄L (u) du = 1
F̄ (ex)

∫ +∞

x

F̄
(
eu
)

du

= 1
F̄ (ex)

∫ +∞

ex

1
u

F̄ (u) du . (9)

Since 1/u is strictly decreasing, equation (9) trivially suggests that mL(x) ≤ ℓ(x) for
any x > 0. However, this does not provide a way to express mL(x) in terms of ℓ(x).

By contrast, to find a counterexample for the statement that X is DGMRL if and
only if X is DMRL, it suffices to find a distribution function, F , such that ℓ (x) =

1
xF̄ (x)

∫ +∞
x

F̄ (u) du is decreasing in x > 0, but mL (x) = 1
F̄ (x)

∫ +∞
x

1
u F̄ (u) du is not.

To see that such a function exists, let

s(x) :=
(

1 − 1
3x + 1

33x2
)

e−x, for x ≥ 6,

and let F̄ (x) := s(x)/s(6) for x ≥ 6, and F (x) = 1 for x ∈ [0, 6). It holds that F̄ (0) =
1, limx→+∞ F (x) = 0 and

∫∞
0 F̄ (u) du = 8 which imply that F̄ is a valid survival

function of a continuous, non-negative random variable with finite expectation. The
functions ℓ(x) and mL(x) are shown in Figure 4. It can be seen that X is DGMRL,
however, log (X) is not DMRL. The monotonicity of both functions, ℓ(x) and mL(x)
outside the illustrated intervals has been verified numerically and analytically (using
Matlab and Mathematica).6

6Our experiments (not presented here) suggest that the current counterexample is sensitive to
even minor changes in the coefficients of the polynomial in s(x). Thus, the relationship between
properties of X and log (X) is worth further exploring.
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4 Closure Properties of the DGMRL Class of
Distributions

[47] and [2] study closure properties of the IFR and IGFR classes under
operations that involve continuous transformations, truncations, and convo-
lutions. Such operations are important in economic applications, as they can
be used to model changes or updates in the seller’s beliefs (transformations
and truncations) or aggregation of demands from different markets (convo-
lutions). Resembling the IFR when compared to the IGFR class, the DMRL
class exhibits better closure properties than the DGMRL class.

Theorem 5 Let X be a non-negative, absolutely continuous, DMRL random variable
and let ϕ : R+ → R+ be a strictly increasing, concave and differentiable function.
Then, Y := ϕ (X) is DMRL.

Proof Let F denote the cdf of X, f its pdf and h its hazard rate. Then,
for y > 0, FY (y) = F

(
ϕ−1 (y)

)
and fY (y) = f

(
ϕ−1 (y)

) 1
ϕ′(ϕ−1(y)) ,

where ϕ−1 denotes the inverse of ϕ. Hence mY (y) =
(
F̄
(
ϕ−1 (y)

))−1 ·∫ +∞
y

F̄
(
ϕ−1 (u)

)
du =

(
F̄
(
ϕ−1 (y)

))−1 ·
∫ +∞

ϕ−1(y) F̄ (u) ϕ′ (u) du. By (4), and since
hY (y) = h

(
ϕ−1 (y)

)
· 1

ϕ′(ϕ−1(y)) , we conclude that m′
Y (y) = h

(
ϕ−1 (y)

)
·(

F̄
(
ϕ−1 (y)

))−1 ·
∫ +∞

ϕ−1(y) F̄ (u) ϕ′(u)
ϕ′(ϕ−1(y)) du −1. Concavity of ϕ implies that for

u > ϕ−1 (y), ϕ′(u)
ϕ′(ϕ−1(y)) ≤ 1. Thus, m′

Y (y) ≤ h
(
ϕ−1 (y)

)
m
(
ϕ−1 (y)

)
− 1 =

m′ (ϕ−1 (y)
)

≤ 0, since m (y) is decreasing by assumption. □

Hence, the class of absolutely continuous, DMRL random variables is
closed under strictly increasing, differentiable and concave transformations.
By Theorem 5, it is immediate that

Corollary 1 Let X be a non-negative, absolutely continuous, DMRL random
variable. Then,
(i) for any α > 0 and β ∈ R, αX + β is DMRL, (i.e., the DMRL class is closed
under positive scale transformations and shifting).
(ii) for any 0 < α ≤ 1, Xα is DMRL.

More results about the DMRL class can be found in [1, 30] and [51]. Turn-
ing to the DGMRL class, it is straightforward (thus omitted) to show that
the DGMRL property is preserved under positive scale transformations and
left truncations. For a random variable X with support in-between L and
H, and any α ∈ (L, H), the left truncated random variable Xα is defined as
Xα = X1{X≥α}.
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Theorem 6 Let X be a DGMRL random variable with support in-between L and H
with 0 ≤ L < H ≤ +∞. Then,
(i) for any λ > 0, the random variable λX is DGMRL (i.e., the DGMRL class is
closed under positive scale transformations).
(ii) for any α ∈ (L, H), the left truncated random variable Xα has the same GMRL
function as X on (α, H). In particular, the DGMRL class is closed under left
truncations.

Fig. 5 The price elasticity (inverse of the
GMRL function) for the convolution of 2
standard Log-logistic(k = 2) random vari-
ables.

In Proposition 1, [2] establish that
IGFR distributions are closed under
right truncations as well. It remains
unclear whether DGMRL distribu-
tions are also closed under right trun-
cations or not. On the other hand,
as expected, the DGMRL class inher-
its some closure counterexamples from
the IGFR class. [2] illustrate that
the IGFR property is not preserved
under shifting and convolutions. Both
of their examples establish the same
conclusions for the DGMRL property,
as shown below.

Using their notation, the GMRL function of the Pareto distribution of
the second kind (Lomax distribution) is ℓ (x) = 1

k−1
(

B−A
x + 1

)
, for x ≥ A,

where A denotes the location parameter. Hence, when A = 0 (i.e., no shift) or
A < B, the GMRL is decreasing, whereas, for A > B, the GMRL function is
increasing. Similar to the behavior exhibited by the GFR function, the GMRL
function is constant for A = B, and, in particular for A = B = 1, which cor-
responds to the standard Pareto distribution. To show that the IGFR class
is not closed under convolution, [2] consider the sum of two log-logistic dis-
tributions. The log-logistic distribution is IGFR, and, hence, DGMRL. Using
their formula for F , one may establish numerically that the price elastic-
ity ε (p) = ℓ (p)−1 is first increasing and then decreasing, as can be seen in
Figure 5.

5 Discussion and Conclusions
In this paper, we studied a novel unimodality condition for equilibrium unique-
ness in markets with stochastic demand. We expressed the price elasticity
of expected demand in terms of the mean residual life (MRL) function of
the demand distribution and characterized the seller’s optimal prices as fixed
points of the MRL function. This led to a novel description of markets
with increasingly elastic demand in terms of the properties of the under-
lying demand distribution and in turn, to a novel unimodality condition.
Namely, the seller’s optimal price in a stochastic market exists and is unique
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if the demand distribution has the decreasing generalized mean residual life
(DGMRL) property and finite second moment.

The GMRL function, and hence, the DGMRL unimodality condition, nat-
urally arise in the analysis of game-theoretic models of horizontal market
competition (Cournot games) [28, 34], supply chain coordination (Stackel-
berg games) [26, 35, 37] or inventory optimization under uncertainty, see, e.g.,
[43, 53, 54]. Importantly, these problems are not covered by the widely used
increasing generalized failure rate (IGFR) distributions, [32], because, in these
cases, revenue (utility) maximization requires information for the global (tail)
rather than the local (pointwise) behavior of the distribution of the underly-
ing source of uncertainty. Motivated by the fact that DGMRL distributions
strictly generalize IGFR distributions, we then studied properties of DGMRL
distributions.

Our results also open several directions for future research. These include
the extension of the current analysis to more general demand functions, i.e.,
the strengthening of the analysis in Section 2.3, e.g. via the framework of [50],
the derivation of less restrictive conditions for which DGMRL distributions
are IGFR, i.e., for which Theorem 2-(ii) holds, the derivation of conditions
under which the DMRL property implies the IGFR property, the study of
closure properties of the DGMRL class under mixtures of distributions, and,
importantly, from a game-theoretic perspective, the study of the MRL function
and the location or properties of its fixed points, i.e., seller’s optimal prices.
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