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Single-Modality Supervised Joint PET-MR Image
Reconstruction

Guillaume Corda-D’Incan, Julia A. Schnabel, Fellow, IEEE, Alexander Hammers, and Andrew J. Reader

Abstract—We present a new approach for deep learned joint
PET-MR image reconstruction inspired by conventional synergis-
tic methods using a joint regularizer. The maximum a posteriori
expectation-maximization algorithm for PET and the Landweber
algorithm for MR are unrolled and interconnected through a
deep learned joint regularization step. The parameters of the
joint U-Net regularizer and the respective regularization strengths
are learned and shared across all the iterations. Along with
introducing this framework, we propose an investigation of the
impact of the loss function selection on network performance. We
explored how the network performs when trained with a single or
a joint-modality loss. Finally, we explored under which settings
a joint reconstruction was beneficial for MR reconstruction by
using various undersampling factors. The results obtained on
2D simulated data show that the joint networks outperform
conventional synergistic methods and independent deep learned
reconstruction methods. For PET, the network trained with only a
PET loss achieves a better global reconstruction accuracy than the
version trained with a weighted sum of PET and MR loss terms.
More importantly, the former further improves the reconstruction
of PET-specific features where MR-guided methods show their
limit. Therefore, using a single-modality loss to supervise the
training while still reconstructing the two modalities in parallel
leads to better reconstructions and improved modality-unique
lesion recovery in our proposed framework. For MR, while the
same effect is observed, joint reconstruction gains only occur in
the presence of highly undersampled data. Single-modality loss
joint reconstruction results are also demonstrated on 3D clinical
PET-MR datasets.

I. INTRODUCTION

POSITRON emission tomography (PET) is a nuclear
medicine imaging technique that permits the tracking of in

vivo biological processes. It is widely used for oncology and
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neurodegenerative disorder detection and staging. The image
reconstruction problem derived from PET measured data is ill-
posed. Due to limited detection efficiencies and other physical
limitations, sinograms exhibit high noise levels making the
inverse problem unstable. The injected radiotracer dose is
limited to prevent potentially dangerous side effects on patients
and technicians. Furthermore, scanning time is reduced to
improve patient comfort. These measures further reduce the
number of true annihilation photons collected by the scanner.
Iterative methods such as the maximum likelihood expectation-
maximization (MLEM) [1] or the ordered subsets EM (OSEM)
algorithm [2] are used to reconstruct PET images in routine
scans. In the presence of low-count data, these algorithms fit
the noise contained in the sinograms and can generate images
of poor quality, which could complicate physician diagnoses.
Regularization can help to limit the impact of noisy data on the
reconstructed images. Early termination of the reconstruction
algorithm, post-smoothing of noisy reconstructed images with
a Gaussian kernel, or the introduction of prior information into
the reconstruction algorithm are clinically used regularization
techniques [31]. The latter offers the highest quality for low-
count (LC) data reconstruction. The main drawback arising
from this strategy is the absence of knowledge of the optimal
prior for a given task. Numerous priors have been proposed
based on common beliefs and using known functionals with
desirable properties [12].

Magnetic resonance imaging (MRI) is a non-invasive imag-
ing technique allowing imaging of tissue morphology with
high resolution and various contrasts. It is used to detect a
vast range of conditions, from epilepsy to cancer. MRI data
acquisition is inherently slow due to anatomical and hardware
limitations. Accelerated MRI can be performed by collecting
fewer k-space samples, which can introduce aliasing artifacts
in the reconstructed MR image. Parallel imaging (PI) permits
further reduction of the scanning time where multiple receiver
coils collect data on various sub-parts of the object in the
scanner. This process allows a reduction in the number of
phase-encoding steps performed and, therefore, a reduction
in the scanning time. An alternative for accelerating MR
data acquisition is compressed sensing (CS). CS permits the
collection of fewer measurements than the Nyquist theorem
requires by using incoherent undersampling and assuming the
signal to be sparse in some domain. Non-linear reconstruction
algorithms are needed for CS reconstruction. Similarly to
iterative PET reconstruction, regularization methods for PI and
CS help achieve higher image quality by removing artifacts and
reducing noise but face similar challenges.

Since the introduction of commercial hybrid PET-MR scan-
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ners a decade ago, the simultaneous acquisition of PET and
MR data has mainly been exploited for the generation of at-
tenuation maps [32]. The PET and MR data are independently
reconstructed, discarding potentially diagnostically valuable
joint and complementary information. The main reason for
this omission lies in the complexity of designing joint priors
capable of exploiting common information while preserving
modality-unique features. Some methods proposed exploit-
ing structural similarity using second-order total generalized
variation (TGV) [7] or parallel level sets (PLS) [8]. They
have shown better recovery capabilities for modality-specific
structures than MR-guided PET reconstruction methods, and
have demonstrated that MR benefits from PET guidance under
specific settings. However, notable sensitivity to relative signal
intensities and contrast of PET-MR images was observed.
Mehranian et al. [3] proposed a joint prior defined as the sum
of weighted multi-modal quadratic priors, providing state-of-
the-art results for synergistic PET-MR reconstruction.

Deep learning (DL) recently opened up a new medical image
reconstruction era. It allows learning of the form of the priors
- or their gradients - embedded in conventional reconstruction
algorithms. Whether for PET or MR, deep learned model-
based image reconstruction (MBIR) emerged as a promising
methodology outperforming conventional methods. The first
deep learned joint method, Syn-Net [6], was built based on
this idea. Two conventional reconstruction algorithms (one for
each modality) were unrolled and interconnected whilst the
regularizers and their respective strengths were learned.

We propose a new framework for deep learned joint PET-
MR reconstruction through this work. Similarly to Syn-Net, the
MAPEM algorithm [26] for PET, and the Landweber algorithm
[13] for MR, are unrolled and interconnected through the
regularization step. A joint prior is represented as a U-Net
[27] whose parameters are shared across all the iterations. The
network is afterward trained using a single-modality loss to
supervise the joint reconstruction. The limited number of train-
able parameters and the simpler architecture offer advantages
over previously proposed deep learned joint methods such as
Syn-Net.

This article is structured as follows. Section II covers the
theory behind PET and MR conventional reconstruction meth-
ods as well as joint methods and explores how DL can be used
for medical imaging. Section III details the proposed method,
the data used, and the various reference methods implemented
to compare with our method. Section IV presents the results
obtained and the comparison of the various PET and MR
reconstruction methods in 2D and 3D. Section V concludes
and discusses potential limitations as well as eventual improve-
ments.

II. BACKGROUND

A. Model-based image reconstruction

Model-based image reconstruction (MBIR) algorithms iter-
atively reconstruct an unknown image x ∈ RN from measured
data y ∈ RM . The variational problem considered is formulated
as follows:

x̂ = argmin
x

f(x; y) + βR(x) (1)

where f is the data fidelity term ensuring consistency between
the estimate and the measured data, R is a penalty term mea-
suring the discrepancy of x with respect to the set of realistic
images based on prior knowledge, and β is the regularization
strength.

B. PET image reconstruction

For PET imaging, the data consistency term f used is the
negative Poisson log-likelihood defined by:

f(x; y) = −
∑
i

yi log(yi) + yi + log(yi!) (2)

with y = NLPx+r+s, where NLP ∈ RM×N is the product of
the normalization, attenuation, and x-ray transform matrices,
and r + s ∈ RM is the expected number of randoms and
scatters. Conventionally, regularizers with specific properties,
such as convexity, are selected for simplicity and to provide
convergence guarantees. When convex and differentiable priors
are used, Equation (1) can be solved using the forward-
backward splitting (FBS) algorithm [25]:

xReg = xk − γβ∇R(xk) (3a)

xk+1 = argmin
x

f(x|y)− 1

2γ

∥∥x − xReg
∥∥2 (3b)

By using a surrogate of the negative log-likelihood [14],
the proximal mapping in Equation (3b) can be reformulated,
and a closed-form solution is obtained [4]. The maximum a
posteriori (MAP) estimate is then computed using a three-
step algorithm. At each iteration, data consistency (4a), reg-
ularization (4b), and fusion steps (4c) are performed. The final
forward-backward splitting EM algorithm (FBSEM) reduces
to:

xReg = xk − γβ∇R(xk) (4a)

xEM =
xk

(NLP)T1
(NLP)T

y

NLPxk + r+ s
(4b)

xk+1 =
2xEM

1− νxReg +
√
(1− νxReg)2 + 4νxEM

(4c)

with ν =
1

γ(NLP)T1

As demonstrated in Bowsher’s method [12], anatomical in-
formation can be incorporated to improve image quality.
Nonetheless, the use of MR images may lead to incorrect PET
reconstructions. Despite numerous methods proposed, both
traditional and deep learning-based, MR-guided regularization
often imposes too much of the anatomical structure. PET-
specific lesions may be smoothed out or eliminated, while MR-
specific lesions may become visible in the reconstructed PET
image, impeding such methods’ clinical applicability. Overall,
whether anatomical information is used or not, conventional
priors are hand-crafted and, therefore, likely not optimal for
multiple tasks.
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C. MR image reconstruction

For MR reconstruction, a least-squares problem can be
formulated, and f is defined as follows:

f(u;b) = ∥b − UFCu∥22 (5)

with u the MR image, b the k-space data, U the undersampling
process, F the discrete Fourier transform and C the coil sensi-
tivity maps (CSMs). Conventional methods use the Landweber
algorithm [8] or iterative SENSE [9] with the conjugate gradi-
ent (CG) algorithm (CG-SENSE), amongst others. Similarly to
PET reconstruction, the regularized Landweber algorithm can
be regarded as three steps:

uDC = (UFC)∗(UFCuk − b) (6a)

uReg = ∇R(uk) (6b)

uk+1 = uk − α(uReg + λuDC) (6c)

where (UFC)∗ is the conjugate transpose of the matrix UFC,
α and λ are the step size and regularization strength, and DC
stands for data consistency. A vast diversity of priors have also
been proposed in the literature for MR reconstruction, such as
total variation (TV) regularization as well as dictionary learning
[17], [18].

D. Conventional joint PET-MR image reconstruction

In joint reconstruction, an optimization problem composed
of one data consistency term for each modality and a joint
regularization term is considered. The objective function can
be expressed as follows:

x̂, û = argmin
x,u

fPET (x; y) + fMR(u;b) +R(x,u;β, λ) (7)

where β and λ are the regularization strengths for PET and MR,
respectively. The complexity of joint regularized reconstruction
arises from the choice and design of the prior. PET and MR
exhibit distinct contrasts and fundamentally different noise
distributions. Nonetheless, they are coupled by the underlying
anatomy. The joint regularizer has a dual task: exploiting
common structures and boundaries to guide one modality with
the other while preserving unique features from each modality.
Additionally, the prior must not be sensitive to different pixel
intensities between PET and MR.

Knoll et al. [7] proposed a joint reconstruction framework
based on the multi-modal second-order TGV. Since the TV
introduces staircase artifacts, the TGV is preferred. Ehrhardt
et al. [8] proposed a comparison of a joint TV with a
Frobenius norm and a joint PLS prior. They demonstrated
that the joint PLS prior is superior to the joint TV and that
both modalities benefit from joint reconstruction by exploiting
common structures. Mehranian et al. [3] extended the widely
used quadratic prior to synergistic PET and multi-contrast
MRI reconstruction. The regularizer is defined as a sum of
mutually weighted quadratic priors updated every iteration.
The MAPEM algorithm is used for PET, whereas the MR
is reconstructed using CG-SENSE. The mutual weights are
calculated after every MAPEM and CG-SENSE iteration using
the current image estimates. To cope with various resolutions

and intensity values, a different set of weights is computed for
each modality by first mapping the images used for guidance
into the space of the guided image. The weights are obtained
by taking the product of Gaussian similarity kernels calculated
between voxel j and b in a given neighborhood Nj for each
image. The results reported in [3] set the reference for syn-
ergistic PET-MR reconstruction. However, the main drawback
of this method is the high number of hyperparameters to fine-
tune. The number of sub-iterations for PET and MR (same
for T1 and T2), the number of global iterations, the regular-
ization strengths, and the standard deviation of the Gaussian
kernels lead to a total of nine hyperparameters. The increase
in the number of additional parameters is also observed in
independent reconstruction as reported in [22] for CS-MRI.
Nonetheless, combined with the long duration of synergistic
PET-MR image reconstruction, it becomes extremely time-
consuming and complex to optimize this method rigorously.
Moreover, based on our implementation, we noticed that a set
of hyperparameters leading to the best reconstruction results
for one modality does not necessarily give the best results for
the other modality. This observation is at the root of the loss
function investigation presented in section III.

E. Deep learning in medical image reconstruction

Deep neural networks (NNs), particularly convolutional NNs
(CNNs), allow learning an ensemble of kernels and non-
linear activation functions to approximate almost any mapping
[19]. They show tremendous efficiency in image processing
applications. In physics-informed DL, NNs are sparingly used
to learn only particular parts of the reconstruction process.
Unrolled methods mix conventional model-based Bayesian
algorithms with deep neural networks. The gradients of the
priors, the priors themselves, or the regularization strength
can be learned. Combining an image obtained from a data
consistency update and a regularization update at each iteration
limits unpredictable NN behaviors compared to direct methods,
without fully controlling them, as demonstrated in [23]. Ad-
ditionally, this methodology achieves faster convergence and
better performance with less training data, a crucial asset in
medical imaging where datasets are scarce. Various conven-
tional iterative algorithms have been unrolled for PET [4], [16],
and MR [5], [10], [15]. For more information, the reader is
referred to extensive reviews of DL methods for medical image
reconstruction [28], [29]. Only two methods have applied this
idea for deep learned joint PET-MR reconstruction to the best
of our knowledge. Syn-Net [6], which was later updated in
Dense Syn-Net [30], unrolls the FBS and Landweber algo-
rithms as in FBSEM-Net [4] and the variational network [5],
respectively. The two regularization steps corresponding to
Equations (4a) and (6b) are replaced by two neural networks.
PET and MR have separate regularizations, but both are inter-
modality guided. In this framework, the learned regularization
strengths, as well as the regularizers, are iteration-specific.
Dense Syn-Net increases the complexity of the network by
using all the previous PET and MR estimates to guide the
regularization in a given module. Additionally, it monitors
the training of each module by using iteration-dependent
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targets. However, these two frameworks have their limitations.
First, using iteration-dependent regularizers and regularization
strengths widens the gap with theoretical conventional joint
reconstruction and notably increases the number of trainable
parameters. Second, a different number of iterations is used
for PET and MR leading to an asymmetry. Finally, the overall
complexity of the architecture complicates the tracking of the
origins of the performance increase observed between the two
methods. This effect might be attributed to the introduction
of more trainable parameters in Dense Syn-Net due to the
regularizers’ additional input channels.

III. PROPOSED DEEP LEARNED JOINT PET-MR IMAGE
RECONSTRUCTION

A. Unrolled network for PET-MR image reconstruction

Based on the observations in sections II.D and II.E, a new
framework for deep learned joint reconstruction is proposed.
Starting from a similar framework to earlier architectures such
as Syn-Net and Dense Syn-Net, the MAPEM and Landweber
algorithms are unrolled (Fig. 1). Inspired by the successful
approach of conventional joint reconstruction by Mehranian
et al., a joint regularizer is used here as opposed to the two
aforementioned frameworks. In [3], CG-SENSE is used for
MR reconstruction. However, its convergence speed is much
higher than the MAPEM algorithm for PET reconstruction.
Therefore, the Landweber algorithm is selected due to its
comparable convergence speed with MAPEM. To avoid the
need to design a joint prior, a NN with a U-Net structure
is used instead (Fig. 2). The architecture selected is chosen
for its limited number of trainable parameters, 58k in 2D
and 160k in 3D, compared to architectures used for direct
reconstruction from measurement space. The AUTOMAP [35],
and DeepPET [36] frameworks, for instance, use architectures
with a number of trainable parameters ranging from 60 to 800
million. Avoiding over-parameterization of the joint regularizer
increases the network’s generalization ability with datasets
of limited size, which is likely to happen for clinical PET-
MR datasets. The NN noted F , has three input and output
channels, one for PET and two for MR, corresponding to
the real and imaginary parts of the image. Its weights are
randomly initialized and trained end-to-end, avoiding the need
for pre-training. A 60-iteration reconstruction is performed, and
the outputs are compared to reference images. The gradients
are then backpropagated through the 60 unrolled modules to
update the trainable parameters of F and the regularization
strengths. The same network parameters and regularization
strengths are shared across all the modules to stay close to the
design of conventional joint reconstruction methods and limit
the number of trainable parameters. Finally, unlike Syn-Net and
Dense Syn-Net, PET and MR are reconstructed with the same
number of iterations. The PET reconstruction is accelerated
thanks to the use of subsets (Niter = 10, Nsubsets = 6), and
PSF modeling is included in the system model (FWHM= 4
mm). The FWHM was chosen to match the reconstructions
of the Siemens e7 tools [33]. Algorithm 1 illustrates the
proposed joint unrolled network. The 6 in the index of the
MR estimate u6k+s of Algorithm 1 are due to the use of 6

subsets in the OSEM algorithm. A pass through a single subset
for PET reconstruction corresponds to one iteration for MR
reconstruction.

Algorithm 1: Deep learned joint PET-MR image re-
construction

Initialize: x0 = 1,u0 = zero filled image, γ ∈ [0, 1],
Niters = 10, Nsubsets = 6 for k = 0 ... Niters − 1 do

for s = 0 ... Nsubsets − 1 do
xEM =

xk,s

(NLP)
T
1
(NLP)

T y

NLPxk,s + r+ s

uDC = (UFC)∗(UFCu6k+s − b)

xReg,uReg = F(xk,s,u6k+s)

xk+1,s =
2xEM

1− νxReg +
√
(1− νxReg)2 + 4νxEM

with ν =
1

γ(NLP)
T
1

u6k+s+1 = u6k+s − α(uReg + λuDC)
end

end

B. Single or multi-modality loss for supervised training

Typically, multi-output networks are monitored by multiple
loss functions, as shown in Figure 1. Nonetheless, the prob-
lem raised at the end of section II.D led us to perform a
systematic evaluation of the joint network performance with
respect to various losses. The performance when trained with
a weighted sum of PET and MR mean square error (MSE)
terms (Joint PM) is compared with the same network trained
with only one MSE term for PET (Joint P) or only one MSE
term for MR (Joint M). When a two-term loss is used, the
PET term is rescaled for each mini-batch at epoch ep by a

factor defined by
MSEMR

ep−1

MSEPET
ep−1

, such that the relative contributions

of the PET and MR losses to the overall loss are similar,
and both parts of the network are fairly trained. Based on
our experiment, the performance is negatively impacted when
the two terms are not rescaled. In addition to different losses,
various inputs are used to train the network to explore how
PET helps guide the MR regularization under specific settings.
Low-count (LC, 500k) and high-count (HC, 100M) data are
used for the PET input, whereas for MR, various acceleration
factors (R) are used from fully-sampled (R = 1 and noise-
free noted HQ M) to extremely undersampled (R = 8 and
noisy noted XUS M) k-space data. The PET and the MR
reconstruction parts of the joint network are also independently
trained to demonstrate the benefits of joint reconstruction. In
both cases, the independent reconstruction performance with
and without the guidance of a fully converged image from
the other modality is explored. The images used for guidance
are HC OSEM images for PET-guided MR reconstruction and
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Fig. 1: Joint PET-MR image reconstruction framework proposed with 60 unrolled iterations. The two parts of the network are connected
through the deep learned joint regularization represented by a deep neural network with a U-Net structure. DC=Data consistency.
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Fig. 2: U-Net architecture used as joint prior. MR images have two
channels for real and imaginary parts. The number of parameters is
58k in 2D and 160k in 3D.

fully-sampled noise-free Landweber reconstructions for MR-
guided PET reconstruction. In the case of pure independent
reconstructions, uniform input channels with a value of 1 are
used to ensure that the number of trainable parameters remains
the same as for the joint reconstruction. Therefore, all the
networks trained have 58k parameters in 2D. The naming of
each network is derived as follows: [Recon type] [Loss] [PET
input] [MR input]. The recon type can be joint or independent
(noted indep), and the loss can be PET only (noted P), MR only
(noted M), or both (noted PM). The PET input is LC or HC

data, while the MR input is characterized by the acceleration
factor R. Fully sampled data is denoted 1, mildly undersampled
data is denoted 4, and highly undersampled is denoted 8. Thus,
Joint P LC 4 corresponds to a joint reconstruction supervised
by only a PET loss term using LC data for the PET input and
undersampled k-space data with an acceleration factor of 4 for
the MR input data. Indep M 8 guidedHC corresponds to an
independent MR reconstruction using an acceleration factor of
8 and using HC PET reconstructions for guidance. More details
on the various models implemented can be found in Tables I
& II.

C. 2D hybrid dataset

The 2D datasets were composed of T1-weighted MPRAGE
MR images of patients suspected of epilepsy or dementia,
previously collected at St Thomas’ PET Center in London. To
simulate PET data, MR images were first segmented into grey
matter (GM), white matter (WM), cerebrospinal fluid (CSF),
skull, and skin using the SPM12 software. Random uptake
values of 96.0 ± 5.0 and 32.0 ± 5.0 (arbitrary units) were
assigned to GM and WM (3:1 ratio). Spherical lesions were
inserted with random radii (2-8 mm) and random locations.
The uptake value selected was 144.0 (1.5× of GM), and the
maximum number of lesions per image was limited to five.
Attenuation maps were generated by assigning attenuation
values of 0.13, 0.0975, and 0 cm−1 to the skull, tissues, and
air. Finally, the voxel sizes and shape of the MR images were
resampled from 230×230 and 1.04×1.04 mm2 to 172×172 and
2.08×2.08 mm2 to match those of the PET. Data augmentation
was performed by rotating PET-MR image pairs by five random
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TABLE I
SUMMARY OF THE NETWORKS TRAINED FOR JOINT PET-MR RECONSTRUCTION WITH THEIR RESPECTIVE LOSS FUNCTIONS, INPUTS,

AND TARGETS

No. Model
name

Loss
function

PET input
(counts)

PET target**
(counts)

MR input
(acceleration factor R)

MR target**
(R)

1 Joint PM LC 4 P+M 500k 100M 4 1*
2 Joint PM LC 8 P+M 500k 100M 8 1*
3 Joint P LC 4 P 500k 100M 4 -
4 Joint P LC 1 P 500k 100M 1* -
5 Joint M LC 4 M 500k - 4 1*
6 Joint M HC 4 M 100M - 4 1*
7 Joint M LC 8 M 500k - 8 1*
8 Joint M HC 8 M 100M - 8 1*

* If R = 1, no noise is introduced in the k-space data.
** PET targets are OSEM reconstructions (Niter = 10, Nsubsets = 6, PSF FWHM= 2.5 mm), MR targets are Landweber reconstructions (Niter = 60).

TABLE II
SUMMARY OF THE NETWORKS TRAINED FOR INDEPENDENT PET-MR RECONSTRUCTION WITH THEIR RESPECTIVE LOSS FUNCTIONS,

INPUTS, TARGETS, AND IMAGES USED FOR GUIDANCE

No. Model
name

Loss
function

PET input
(counts)

MR input
(acceleration factor R)

PET image
for guidance**

MR image
for guidance (R)**

1 Indep P LC P 500k - - -
2 Indep P LC guided P 500k - - 1*
3 Indep M 4 M - 4 - -
4 Indep M 4 guidedHC M - 4 100M -
5 Indep M 8 M - 8 - -
6 Indep M 8 guidedHC M - 8 100M -
7 Indep M 8 guidedGT M - 8 ∞† -

* If R = 1, no noise is introduced in the k-space data.
** PET images used as targets or for guidance are OSEM reconstructions (Niter = 10, Nsubsets = 6, PSF FWHM= 2.5 mm). MR images used as targets
or for guidance are Landweber reconstructions (Niter = 60).
† An infinite number of counts corresponds to the ground truth phantom image.

angles between 0 and 10°. Once the process was completed,
LC sinograms were simulated using a PSF of FWHM= 4 mm,
attenuation, normalization, and Poisson noise. Randoms and
scatters coincidences were not modeled in the 2D simulations
for simplicity. Each sinogram was a vector size of 172×252.
The targets were obtained by reconstruction of HC data using
the OSEM algorithm with Niter = 10, Nsubsets = 6, and PSF
modeling with FWHM= 2.5 mm. For MR data, the initial
MR images were forward-modeled to get the k-space data
which was subsequently undersampled. High levels of Gaus-
sian noise were then introduced to demonstrate the potential
of the proposed methods. The data obtained were multiplied
by eight simulated 2D CSMs to simulate a PI acquisition.
The final dataset was composed of 300 training pairs. The
test and validation sets comprised 47 and 50 samples, leaving
203 samples for training. Each sample was composed of the
sinogram and k-space data, the attenuation and normalization
factors, and the PET and MR targets.

D. 3D PET-MR clinical dataset

The clinical data for this study came from a dataset com-
posed of twenty-two patients suspected of epilepsy or dementia

who underwent a scan at St Thomas’ Hospital’s PET center in
London with a Siemens Biograph mMR. For PET, an injection
of ∼220 MBq [18F]FDG was performed with an uptake time
of ∼60 min. A standard Dixon and UTE sequences were
performed to generate the PET attenuation map. Simultane-
ously to the PET data acquisition, a T1-MPRAGE scan was
performed with the following acquisition settings: repetition
time: 1700ms, echo time: 2.63 ms, inversion time: 900 ms,
number of averages: 1, flip angle: 9°, and acquisition time
of 382 s. The original fully-sampled k-space data were not
available. Therefore, the same process as for the 2D simulated
data was used to generate k-space data. In the absence of
original MR data, the CSMs had to be simulated, inducing two
approximations. First, to generate 3D CSMs, the same CSMs
from section III.D were concatenated, leading to a cylindrical
geometry instead of a spherical one. Second, CSMs should
be patient-dependent, although the same was used for all the
patients in our datasets. MR images were subsequently rigidly
registered to PET images with the SPM12 software using a
normalized mutual-information cost function and default co-
registration parameters. For simplicity, the voxel sizes of the
MR images were mapped to the PET image voxel sizes. The
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PET targets were obtained by reconstructing a full 15 min
scan using the OSEM algorithm (10 iterations, 6 subsets, PSF
FWHM= 2.5 mm). Only the first two minutes of the scan
were used as input to simulate LC data. This choice induces
that the LC data have a different distribution than the HC data.
The later uptake, as well as higher counts, are inferred.

E. Network training

The networks were trained to map sinograms to OSEM re-
constructions of HC data and k-space data to fully sampled T1-
weighted MR images. The networks were implemented using
Python. PyTorch was used to implement the joint regularizer
and the fusion steps, whereas APIRL (GPU-assisted forward
and back projectors) was used for the PET data consistency
update [24]. The use of different libraries than PyTorch for
data consistency prevented the gradients from flowing through
these modules. However, this does not notably impact the
final performance of the network as discussed in Section V
[37]. An 8GB RAM GPU was used to train the networks for
2D data, while a 24GB RAM GPU was used to train the
networks for the 3D clinical PET-MR datasets. The training
was supervised by either a single MSE loss or by two MSE
loss functions. The maximum number of epochs used was
200 for 2D and 3D data. The Adam algorithm was used
to optimize the parameters of the network with a learning
rate of 5 × 10−4 for 2D and 1 × 10−4 for 3D data. The
training was stopped when the validation loss monotonously
increased or stagnated for 20 consecutive epochs. The network
parameters providing the lowest validation loss for PET and/or
MR were selected to evaluate the different methods. For the
training of 3D reconstructions, the networks with the maximum
unrolled modules fitting in memory were trained end-to-end.
This corresponded to 18 unrolled modules (3 iterations, 6
subsets).

F. Evaluation methods

The different versions of the joint and independent networks
were evaluated against conventional reconstruction methods
over 100 independent noise realizations. For PET reconstruc-
tion, the OSEM algorithm (10 iterations, 6 subsets), the
MAPEM algorithm with a quadratic prior (Q-MAPEM), and
with a Bowsher prior (B-MAPEM) were used. The MAPEM
reconstructions were run for 20 iterations and 6 subsets to
ensure the reconstruction’s convergence. B-MAPEM was set to
use k = 4 nearest neighbors. All the PET reconstruction meth-
ods used PSF modeling in the forward model with FWHM= 4
mm. For MR reconstruction, our method was compared to
SENSE and SENSE with a quadratic prior (Q-SENSE). We
also compared our deep learned joint reconstructions with the
synergistic method using mutually weighted quadratic priors
from [3] (wQ-Syn). To evaluate the different methods, their
performance was assessed using the normalized root mean
square error (NRMSE = RMSE

y , with y the mean of the
target dataset). The hyperparameters of the non-deep learned
methods were optimized with a grid search based on the MSE
criterion. The performance of the various methods was also

evaluated using the bias and standard deviation defined as
follows: RMSE =

√
bias2 + SD2 with:

bias =

√√√√√√
∑
j∈Ω

(x̄j − xRef
j )2∑

j∈Ω

(xRef
j )2

(8)

and:

SD =

√√√√√√√ 1

S

S∑
s=1

∑
j∈Ω

(x̄j − x
(s)
j )2∑

j∈Ω

(xRef
j )2

(9)

x̄j being the mean reconstructed value for voxel j, obtained by
averaging S = 100 independent noisy data realizations from
the same object, xRef being the ground truth image, different to
the target obtained by reconstruction of high-count data used to
train the networks, and Ω representing the set of image voxels.
Unrolled networks with 6, 30, and 60 modules were trained in
this study.

IV. RESULTS

A. 2D hybrid data

In order to assess the deep learned methods’ robustness to
various trainable parameter initializations, all the networks
were trained three times. Network names will be used in this
section to report the results as indicated in Tables I & II,
where full details on the training of each network are given.
All the networks were trained from scratch in this study.
However, the performance of the networks pre-trained with
a double-modality loss (Joint PM) and later fine-tuned with
a single-modality loss to obtain Joint P and Joint M was
evaluated. The same final performance was achieved, whether
the single-modality trained networks were pre-trained or not.
Based on this observation, it can be hypothesized that the
trainable parameter optimization process consistently reaches
close local minima of the highly non-convex loss surface.

1) PET reconstruction:
The results demonstrate the superiority of single-modality
supervised joint reconstruction for PET with the proposed
framework (Figures 3 & 4). Using identical input data,
Joint P LC 4 performs better than Joint PM LC 4 both qual-
itatively (Figures 3 & 4) and quantitatively (Figures 5 & 6)
with better PET-unique feature reconstruction. When high-
quality data are used for the MR input (R=1), the benefits
of joint reconstruction compared to MR-guided reconstruction
are also evident. Joint P LC 1 achieves the lowest NRMSE of
all methods over entire images. However, these results could
lead to incorrect diagnoses due to wrong lesion quantification.
When using fully sampled k-space data for joint networks or
high-quality MR images for independent reconstruction, risks
of misguidance are increased, leading to a potential loss of
PET-unique features. The network overuses high-quality MR
information. Nonetheless, the joint reconstruction allows better
recovery of PET-unique lesions than the MR-guided method
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OSEM 
no PSF

NRMSE=131.7±0.8%

OSEM 
PSF=4mm

NRMSE=74.4±0.8%

Q-MAPEM
!=0.01

NRMSE=70.6±0.6%

B-MAPEM
!=0.075, "=4

NRMSE=66.5±0.7%

wQ-Syn
!=0.01, #=0.4

NRMSE=68.5±0.9%
PET target

Joint_PM_LC_4
NRMSE=59.3±0.6%

Joint_P_LC_4
NRMSE=54.0±0.5%

Joint_P_LC_1
NRMSE=46.0±0.4%

Indep_P_LC
NRMSE=60.1±0.6%

Indep_P_LC_guided
NRMSE=49.6±0.4%

MR (R=1)
(for guidance)

Fig. 3: PET reconstructions of test data, the best mean and standard deviation of the NRMSEs calculated over the entire images from three
training runs are reported. Unless stated otherwise, all the methods used a PSF of 4mm in the system model. B-MAPEM used k=4 nearest
neighbors. The regularization strength β is reported when relevant. The joint methods on the bottom row unrolled 60 modules.

OSEM 
no PSF

NRMSE=15.0±2.0%

OSEM 
PSF=4mm

NRMSE=8.7±1.7%

Q-MAPEM
!=0.01

NRMSE=7.2±1.4%

B-MAPEM
!=0.075, "=4

NRMSE=15.4±1.3%

wQ-Syn
!=0.01, #=0.4

NRMSE=10.3±2.1%
PET target

Joint_PM_LC_4
NRMSE=13.5±0.6%

Joint_P_LC_4
NRMSE=10.9±0.7%

Joint_P_LC_1
NRMSE=18.2±1.4%

Indep_P_LC
NRMSE=7.7±0.8%

Indep_P_LC_guided
NRMSE=21.8±0.3%

MR (R=1)
(for guidance)

Fig. 4: PET reconstructions of test data, the best mean and standard deviation of the NRMSEs calculated over the PET lesion from three
training runs are reported. The PET and MR lesion only overlap over a few pixels.

Indep P LC guided. Having access to all the intermediate up-
dates of the MR ensures better guidance compared to indepen-
dent MR-guided methods. On the other hand, Joint P LC 4,
with lower-quality MR input data, achieves accurate PET
lesion recovery (Figures 4 & 6). The MR data simultaneously
reconstructed is not of high quality in that case. Thus, the joint
network learns to use it sparingly for guidance. The cause of
this behavior lies in the way the network is trained. Its main
goal is to reduce the PET MSE, which is a global loss, as much
as possible. The network will tend to overuse MR information,
as this process allows for the fastest and most efficient training

loss decrease.
Figure 7 shows the trade-off for the PET reconstruction

methods between global and local accuracy. Five regions of
interest (ROIs) of match and five ROIs of mismatches of size
5×5 pixels, caused by modality-unique lesions, were selected
in the test images. The NRMSE was computed for each method
and averaged over the five ROIs in the two cases. For the deep
learned methods, the best value from the three training runs
was retained. The average NRMSE for the regions of match
was then plotted against those of the regions of mismatch.
Three distinct clusters can be distinguished from this graph.
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Fig. 5: NRMSE for PET test data over entire images. The 3 bars for
the deep learned methods represent three different training runs.

Fig. 6: NRMSE for test data over PET lesion only. The 3 bars for
the deep learned methods represent three different training runs.

High-quality
MR image
or data

No MR
data

Undersampled
MR data

5

ROI of match
ROI of mismatch

Fig. 7: NRMSEs averaged over 5 regions of interest of match
and mismatch for PET test data. Three distinct clusters are visible:
methods using high-quality k-space or MR images, methods using
undersampled MR data, and methods with no MR guidance.

First, the methods that benefit from high-quality MR images
or fully sampled data. Composed of conventional and deep
learned methods, whether independent or joint, all the methods
in that group perform strongly for match areas but fail to
reconstruct regions of mismatch. A second group on the bottom

Fig. 8: Bias-standard deviation plot for PET reconstruction. Three
markers for each curve correspond to the results for 6, 30, and 60
iterations (from right to left). The uncertainties were too small to be
reported on this graph.

Joint_PM_LC_4 Joint_P_LC_4 Joint_P_LC_1 PET target

MR target

Fig. 9: PET-MR outputs for joint reconstruction. Joint P LC 4 and
Joint P LC 1 learn how to exploit MR information to guide the PET
without supervision. Joint P LC 4 partly removes aliasing artifacts.

right corner contains methods with no MR guidance, hence
the high performance for ROIs of mismatch. However, with
no anatomical guidance, the NRMSE over ROIs of match is
poor. Joint methods (deep learned and conventional) using
mildly undersampled data can be found in between. With
Joint P LC 4 performing the best, these methods find the best
balance between local and global accuracy.

Figure 8 depicts the bias-standard deviation plot. It illus-
trates how incorporating MR data for guidance enhances the
performance of the different techniques by reducing excessive
increases in standard deviation. The deep learned networks
were trained for 6, 30, and 60 iterations (markers from right
to left) to match the corresponding iteration of HC PET
data reconstruction. The bias is reduced when the number of
iterations increases. The standard deviation increase with the
number of iterations is limited compared to other methods for
Indep P LC guided and Joint P LC 1.

Figure 9 shows the PET and MR outputs obtained in
joint reconstruction for Joint PM LC 4 and when the joint
reconstruction is only supervised by a single-modality loss for
PET. Without any supervision of the MR reconstruction, joint
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PET
(for guidance)

Joint_PM_LC_4
NRMSE=30.9±0.2%

Joint_M_LC_4
NRMSE=30.4±0.1%

Joint_M_HC_4
NRMSE=29.4±0.2% MR target

Q-SENSE
#=0.3

NRMSE=71.5±0.2%
SENSE

NRMSE=202.1±0.8%

wQ-Syn
!=0.01, #=0.4

NRMSE=39.6±0.2%
Indep_M_4

NRMSE=30.0±0.2%

Indep_M_4
guidedHC

NRMSE=29.0±0.1%

Fig. 10: MR reconstructions of test data for noisy mildly undersam-
pled data (R=4). λ is the regularization strength.

networks learn how to exploit MR data to optimally guide the
PET reconstruction. In the case of Joint P LC 4, the network
partially removes aliasing artifacts caused by undersampled
data (R=4). Additionally, the analysis of these MR outputs
indicates that the current way to perform MR-guided PET
reconstruction using high-quality MR images might not be
optimal. The results suggest that a better alternative would be
to perform two pre-processing steps on the high-quality MR
image: 1) blurring and 2) increasing contrast between GM and
WM.

Fig. 11: NRMSE of MR test data over entire images for noisy mildly
undersampled data (R=4). The multiple bars for the deep learned
methods represent three different training runs.

2) MR reconstruction:
The benefits of PET guidance for R=4 are null. Figures 10 and
11 show that joint and independent methods achieve similar
performance. The PET information is not exploited by the
networks. The best method for low or moderate acceleration
factors is independent deep learned MR reconstruction.

The case of highly undersampled data (R=8) demonstrates
the benefits of inserting PET information into the reconstruc-
tion process. Visually, the structure becomes much clearer.
Figures 12 & 13 show that the best methods evaluated over

PET
(for guidance)

Joint_PM_LC_8
NRMSE=53.4±0.3%

Joint_M_LC_8
NRMSE=50.7±0.3%

Joint_M_HC_8
NRMSE=48.8±0.2% MR target

Q-SENSE
!=0.4

NRMSE=106.9±0.3%

wQ-Syn
"=0.01, !=0.4

NRMSE=77.6±0.4%
Indep_M_8

NRMSE=54.6±0.3%

Indep_M_8
guidedHC

NRMSE=46.5±0.2%

Indep_M_8
guidedGT

NRMSE=43.0±0.2%

Fig. 12: MR reconstructions of test data with R=8. The best mean, and standard deviation of the NRMSE calculated over the entire images
from three training runs are reported. The regularization strength λ is reported when relevant. The joint methods on the bottom row used 60
modules (i.e. 60 iterations).
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Fig. 13: NRMSE of MR test data over MR-unique lesions for noisy,
highly undersampled data (R=8). The multiple bars for the deep
learned methods represent three different training runs.

entire images are the ones using PET guidance. A ground truth
PET phantom was used to assess the impact of the guidance
of (unrealistically) high PET quality. Figure 12 shows how
such PET data could potentially impact the quality of the
reconstructed MR images. When the NRMSE is evaluated
over entire images, Indep M 8 guidedGT is the best method,
as expected. Nonetheless, this method shows its limitations

when ROIs of MR-unique lesions are considered (Figure 13).
Similarly to MR-guided PET reconstruction, the guidance be-
comes too strong, and MR-specific lesions are at risk of being
removed. The guidance of PET images does not induce the
same issues for joint methods demonstrating their superiority
for modality-specific features reconstruction again. PET image
quality being inherently low, the networks learn not to overuse
it for guidance. Therefore, no pre-processing for PET images
is required.

B. 3D clinical data

Unrolled network training is computationally and memory-
demanding. As a consequence, a joint network composed of
60 modules did not fit in the memory of a 24GB GPU. In
order to perform end-to-end training similar to 2D data, the
maximum number of modules fitting in memory was unrolled.
The resulting joint and independent networks consisted of
18 modules, corresponding to 3 iterations and 6 subsets for
accelerated PET reconstruction. To speed up the training, the
unrolled networks were initialized with OSEM reconstructions
of LC data with 7 iterations and 6 subsets (PSF modeling
with FWHM= 4 mm) and with Landweber reconstructions
for MR using 42 iterations. The results shown in Figures 14
& 15 are consistent with the results obtained for 2D data.

OSEM 
PSF=4mm

NRMSE=122.0%
PET targetJoint_P_LC_4

NRMSE=90.4%
Joint_P_LC_1
NRMSE=86.3%

Indep_P_LC
guided

NRMSE=88.6%

OSEM 
PSF=0mm

NRMSE=282.0%

Fig. 14: PET real data reconstructions. The target was built by reconstruction of the full scan (15 minutes). The input of the various algorithms
was the first two minutes of the scan to simulate LC data. Only 18 modules were unrolled for real data. The reconstructions were initialized
with OSEM reconstructions (7 iterations, 6 subsets). The performance of the various methods is consistent with the results obtained for 2D
simulated data.
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Joint_M_HC_8
NRMSE=56.8%

MR targetSENSE
NRMSE=116.5%

Indep_M_8
NRMSE=58.5%

Indep_M_8
guidedHC

NRMSE=58.0%
Q-SENSE

NRMSE=100.5%

Fig. 15: MR real data reconstructions. The target was built by reconstruction of the noise-free fully-sampled k-space. The input of the various
methods corresponded to noisy, undersampled data with an acceleration factor of 8 using parallel imaging (8 coils). Only 18 modules were
unrolled for real data. The reconstructions were initialized with Landweber reconstructions (42 iterations). The performance of the various
methods is consistent with the results obtained for 2D simulated data.

The method with the lowest reconstruction error over entire
images is Joint P LC 1. Since the complete data for the scan
was not accessible, the HC targets of the clinical datasets
were reconstructed using only 15 minutes out of the 60-minute
scan. Consequently, high-quality features were lacking in the
targets, and so utilization of MR information by the networks
for reconstructing the LC data was not as strong as for the
simulated data case, where the targets were of much higher
quality. Higher-quality targets can allow a network to exploit
high-quality MR data to improve the reconstruction of LC data.
As no known areas of mismatch were present in the training
and test data, an analysis similar to the one performed on 2D
data is needed to assess the accuracy of the reconstruction on
ROIs of mismatch.

V. DISCUSSION & CONCLUSION

A new method for joint deep learned PET-MR reconstruction
is presented in this work. It is demonstrated that better results
are obtained for the proposed joint reconstruction framework
when the network is trained with a single-modality loss. Joint
networks trained for PET reconstruction only achieve better
accuracy than MR-guided methods globally. It is shown that us-
ing mildly undersampled data instead of fully sampled k-space
for the joint networks allows for better PET-unique feature
recovery. The results from joint reconstruction also indicate
that the current methods for MR-guided PET reconstruction

use suboptimal MR images for this task. The results also show
that joint methods become beneficial for MR reconstruction
only for highly undersampled data. Deep learned independent
methods remain the best for mildly undersampled MR data. In
future work, a small component performing a mapping between
PET and MR space could be added in order to reconstruct MR
images with their native high resolution. Finally, the under-
sampling pattern could also be learned to obtain an optimal
acquisition trajectory followed by an optimized reconstruction
[21], [34].

In this work, the various components of each module were
not all implemented in PyTorch. Thus, the backpropagation
of the gradients did not pass through the data consistency
updates of PET and MR. In order to assess the impact of
truncated backpropagation, forward and back projectors were
implemented in PyTorch. These were used to train the un-
rolled PET reconstruction Indep P LC, and the results were
compared with the same network trained without backpropa-
gation through the EM update. Three observations were made
from this investigation. The first was that the two networks
achieved very similar performance. Less than 3% of difference
in NRMSE was noted in favor of the network trained with
the correct backpropagation over three training runs. The
second observation was made on the loss function. As stated
before, the training and validation loss curves reached a very
close minimum, but the network with correct backpropagation
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reached that minimum a few epochs earlier. Finally, the differ-
ence in training time between the two implementations justified
the choice not to backpropagate through the EM module.
The naive implementations of the forward and back projec-
tors in PyTorch used were not optimized for fast execution.
Developing efficient projectors was out of the scope of this
article. Therefore, the forward and back projection operations
were notably longer in PyTorch than in Python. Training joint
networks for PET-MR reconstruction took approximately 15
hours, with 60 modules unrolled for 2D data (203 samples
in the training set) and no backpropagation through the EM
module. The training time was multiplied by five when the
PyTorch projectors were used. The current study necessitated
the training of more than 70 unrolled networks, it would have
become highly time-consuming if the PyTorch projectors were
used. More results on the impact of truncated backpropagation
versus accurate backpropagation can be found in [37] for
SPECT reconstruction.

It would be envisioned that with a much larger training set in
tandem with a more highly parameterized joint network, better
results would be achieved. However, medical data is scarce,
and this work emphasized the generalization of the proposed
method to unseen data. Under this particular regime, only
shallow networks with a limited number of trainable parameters
can perform well and reliably. Using deep networks with fewer
parameters offers significant advantages, such as greater speed,
but also limits the expressiveness of the network.

The networks were trained with a global loss but were
evaluated in local areas. The idea of introducing a new term
in the loss function dealing with local accuracy could be
considered. Nevertheless, it is challenging to design a local
loss and correctly balance its importance against the global
loss. Besides, the MSE loss heavily penalizes outliers. The
wrong quantification of a lesion should already be taken care
of with this loss alone. It could be of interest to look at regional
average errors to give an assessment of quantification within a
lesion in future work.

The various unrolled methods presented have not been
compared to post-processing networks. Since such results were
already proposed in the work of Mehranian and Reader [4] for
PET image reconstruction and in the work of Hammernik et
al. [20] for MR image reconstruction, it was decided to build
upon those previous findings rather than revisit the question
here.

Finally, the choice of the reconstruction algorithm for both
PET and MR is based on two previously published independent
reconstruction methods using unrolled networks: FBSEM-Net
for PET [4], and the VN for MR [5] unfolding Landweber’s
algorithm. However, in order to choose the best combination
of methods (proximal mapping, gradient descent, etc) for joint
PET-MR reconstruction of brain data, a systematic evaluation
of various methods such as in [20] should be performed.
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