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a b s t r a c t 

Adversarial training is widely used to improve the robustness of deep neural networks to adversarial at- 

tack. However, adversarial training is prone to overfitting, and the cause is far from clear. This work sheds 

light on the mechanisms underlying overfitting through analyzing the loss landscape w.r.t. the input. We 

find that robust overfitting results from standard training, specifically the minimization of the clean loss, 

and can be mitigated by regularization of the loss gradients. Moreover, we find that robust overfitting 

turns severer during adversarial training partially because the gradient regularization effect of adversar- 

ial training becomes weaker due to the increase in the loss landscape’s curvature. To improve robust 

generalization, we propose a new regularizer to smooth the loss landscape by penalizing the weighted 

logits variation along the adversarial direction. Our method significantly mitigates robust overfitting and 

achieves the highest robustness and efficiency compared to similar previous methods. Code is available 

at https://github.com/TreeLLi/Combating- RO- AdvLC . 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Over the past decade, the progress of deep neural networks 

DNNs) [1] has significantly improved the accuracy of machine in- 

elligence in many pattern recognition tasks such as image recog- 

ition [2] . However, deep neural networks are vulnerable to adver- 

arial attacks where artificial, human-imperceptible, perturbations 

re applied to the input space causing the accuracy of well-trained 

etworks to easily be reduced to (almost) zero [3] . This issue, of 

dversarial vulnerability, has received considerable, and increasing, 

ttention in the community [4] . Furthermore, a great concern has 

een raised in society regarding the safety of DNN-based systems 

s more and more such systems are deployed in the real world. 

To date, adversarial training (AT) has been the most success- 

ul technique to improve the adversarial robustness of DNNs. How- 

ver, adversarially robust generalization requires much more data 

5] and robust training is therefore easier than standard training 

o overfit under the same data setting. Compared to benign over- 

tting [6] in standard training, adversarially robust overfitting is 

ore problematic and can significantly harm robust performance 

7,8] . Particularly, robust overfitting [7] is a form of overfitting 
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here, even if the robust accuracy on the training data consis- 

ently increases, the test robustness drops after a certain epoch, 

sually around the first decay of the learning rate in the middle 

f training. Catastrophic overfitting [8] refers to the phenomenon 

n which robustness against multi-step adversaries suddenly col- 

apses to zero over the course of a few epochs during training, 

hile robustness against single-step adversaries soars to 100%. Ro- 

ust overfitting is prevalent across multiple datasets and perturba- 

ion models, while catastrophic overfitting has, so far, only been 

emonstrated for single-step AT in normal adversarial settings. 

This paper aims to explain the causes of overfitting in adversar- 

al training, focusing on robust overfitting. This is achieved through 

nalyzing how the loss landscape w.r.t. the input, specifically the 

rst- and the second-order gradients (the slope and curvature, re- 

pectively), evolve during training. First, we observe that standard 

raining, in common with adversarial training, suffers from the 

eneralization issue of adversarial robustness and shares a similar 

attern of loss gradients. We demonstrate that the robust gener- 

lization issue stems from minimizing the predictive loss on the 

lean input, which is implicitly implemented in adversarial train- 

ng, and can be mitigated by either subtracting clean loss from 

dversarial loss or regularizing loss gradients. Moreover, we show 

hat the effectiveness of training adversarial examples, and con- 

omitantly the strength of the gradient regularization effect of ad- 

ersarial training, decreases with the loss landscape’s increasing 
under the CC BY-NC-ND license 
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urvature throughout training. The weakening regularization en- 

bles gradients to become larger, and hence, aggravates overfitting. 

To tackle robust overfitting, we propose a new regularizer, 

hich is combined with adversarial training to smooth the loss 

andscape. The proposed method regularizes the weighted differ- 

nce between the logit output of the clean input and its adversarial 

ounterpart. The intuition here is to force an arbitrary point within 

he small radius around the input to have the same output as the 

nput. Empirical result shows that this method effectively smooth 

he loss landscape and mitigates against robust overfitting. Com- 

ared to previous best practices, our proposal achieves the high- 

st adversarial robustness of all assessed works and is significantly 

ore computationally efficient. 

. Related work 

Adversarial training is commonly formulated as a min-max op- 

imization problem as shown in Eq. (1) , where the inner loop 

earches for the strongest adversarial examples and the outer loop 

earches for the best parameters to minimize the loss on the gen- 

rated adversarial examples. 

in 

θ
E (x,y ) ∼D [ max 

δ∈B(x,ε) 
L (x + δ, y ; θ )] (1) 

ast gradient sign method (FGSM) and Projected gradient descent 

PGD) are two representative methods for solving the inner max- 

mization problem. FGSM [3] perturbs each pixel by a constant 

budget) according to the sign of the gradients. PGD [9] performs a 

ulti-step search, with each step using FGSM to perturb the result 

rom the last step and then projecting the perturbation back to the 

onstrained radius. From this perspective, FGSM can be considered 

o be PGD with only one step named PGD1. FGSM AT [3] is widely

ccepted as the least expensive training scheme due to its single- 

tep nature. However, it suffers badly from catastrophic overfitting 

8] a.k.a. label leaking [10] and gradient masking [11] . In contrast, 

ulti-step PGD AT is much more effective [9] and seems immune 

rom catastrophic overfitting [10,12] . Nevertheless, it is extremely 

ime-consuming due to the iterative inner optimization process, 

nd hence, scales poorly to large datasets. Recently, [7] report that 

GD AT, albeit effective, also overfits in another manner called ro- 

ust overfitting. 

Initially, [8,13] attributed catastrophic overfitting to the rigid 

erturbation size of FGSM and [8,14,15] combined FGSM with ran- 

om initialization to diversify the perturbation size and success- 

ully prevent catastrophic overfitting. However, this result was later 

efuted by [16] who showed that it is the direction, not the size, of 

he perturbation that dominates catastrophic overfitting and as a 

esult the methods proposed in [8,15] , as well as PGD2 AT, suffer 

he overfitting problem given a larger perturbation budget or more 

raining iterations. Besides, [13,16] observed that the loss surface 

.r.t. the input becomes highly curved as a result of catastrophic 

verfitting. Consequently, single-step adversaries fail to accurately 

pproximate optimal adversarial examples. In other words, the ad- 

ersarial examples used during training become easier to classify. 

Many approaches have been proposed to solve robust overfit- 

ing, but the cause is not fully explained. [7] tested several well- 

stablished approaches to prevent overfitting in standard training 

nd found that none of them outperforms simply stopping early. 

owever, subsequent empirical results show that robust overfit- 

ing can be mitigated by proper label and weight smoothing, a 

ethod called Knowledge Distillation with Standard-trained and 

dversarially-trained self-teachers (KDSA) [17] , and by data aug- 

entation through a method called Consistency [18] . The corre- 

ation between the flatness of the weight loss landscape and the 

obust generalization gap is formally identified by [19] where they 

lso propose an algorithm called adversarial weight perturbation to 
2

mooth the weight loss landscape. Recently, [20] found that robust 

verfitting is caused by learning to over-confidently predict some 

hard” data points in the training set. The current work comple- 

ents the existing literature by analyzing the input loss landscape 

hich has never been done before in the context of investigating 

he cause of robust overfitting. 

Our proposed regularizer belongs to the family of methods that 

mooth the loss landscape. Existing methods can be categorized 

s regularizing first-order (slope), second-order (curvature) and 

hole-order gradients. In practice, only first-order gradients can be 

irectly constrained [21] , while the others are too expensive to reg- 

larize directly. Therefore, modern approaches approximate higher- 

rder gradients through proxies. The typical proxy is the distance 

or dissimilarity) between the model’s output in response to an in- 

ut and its output to a neighboring example. By minimizing this 

istance the loss landscape is smoothed. The neighbor can be ran- 

omly sampled or searched for by (approximately) maximizing the 

forementioned distance within a small radius around the input. 

he output here usually refers to the logits or the first-order gra- 

ients. 

Particularly, CURE [22] penalizes the difference between the 

rst-order gradients of the input and its FGSM-like adversarial ex- 

mple. GradAlign [16] minimizes the cosine dissimilarity between 

he first-order gradients of the input and its randomly sampled 

eighbor. LLR [23] searches for the neighbor where the linear ap- 

roximation is maximally violated and penalizes the linear viola- 

ion between the input and the neighbor as well as the the l 1 norm

f first-order loss gradients. All these three methods require double 

ackpropagation, which is computationally expensive. Hence, other 

ethods try to avoid this expense by replacing the gradients with 

he outcome of a forward pass. LogitAlign [24] randomly samples 

he neighbor and penalizes the Kullback-Leibler (KL) divergence of 

he logits between the adversarial example generated for the input 

nd the adversarial example generated for the neighbor. Consis- 

ency [18] generates the neighbor by augmentation and minimizes 

he Jensen-Shannon (JS) divergence of the output probabilities be- 

ween the adversarial examples of the input and its neighbor. Both 

ogitAlign and Consistency require the generation of one additional 

dversarial example which can be extremely expensive if an iter- 

tive attack is used. RST [25] and UAT [26] search for the neigh- 

or with the maximum KL divergence to the original example, and 

hen minimizes the same KL divergence to enforce the smooth- 

ess. This iterative search pipeline makes it hard to scale especially 

hen combined with adversarial training. 

. Revisiting the formulation of adversarial attack and training 

This section reviews how gradients are exploited/sacrificed to 

ffect the model’s output, and suppressed/encouraged in adver- 

arial training. In addition, it proposes the concept of adversar- 

al effectiveness and develops a method to measure it. More im- 

ortantly, it uncovers the correlation between the effectiveness of 

he training adversarial examples and the strength of implicit gra- 

ient regularization in adversarial training. We acknowledge that 

he theoretical analysis used here has been explored previously in 

ther works [27–29] to derive conclusions such as the first- and 

econd-order gradients are the two main sources of adversarial 

ulnerability, and to identify the correspondence between adver- 

arial training and gradient regularization. Some of these previous 

nsights are discussed in detail below, and are used to inspire or 

upport our contribution. We extend the existing analysis to con- 

ider the interaction among gradients of different orders in adver- 

arial attack and training and the connection between them. 

The following notation is adopted: x ∈ R 

d is a sample whose 

round truth label is y in dataset D and is perturbed by δ ∈ 

(x, ε) to fool the network. B(x, ε) denotes the ε-ball around the 
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xample x with a specific distance measure ( � ∞ 

in this paper). δi 

s the perturbation applied along the dimension x i . The network 

s parameterized by θ and the predictive loss is L (x, y ; θ ) or L (x )

or short. According to Taylor’s theorem, adversarial loss can be ap- 

roximated by the sum of clean loss and adversarial variance (AV): 

 (x + δ) ≈L (x ) + 

1 

1! 

d ∑ 

i 

∇ x i L (x )(x i + δi − x i ) 

+ 

1 

2! 

d ∑ 

i, j 

∇ 

2 
x i x j 

L (x )(x i + δi − x i )(x j + δ j − x j ) 

≈L (x ) + 

d ∑ 

i 

∇ x i L (x ) δi + 

1 

2 

d ∑ 

i, j 

∇ 

2 
x i x j 

L (x ) δi δ j ︸ ︷︷ ︸ 
adversarial variance (AV) 

(2) 

here ∇ x i L (x ) is the first-order gradient of L (x ) w.r.t. the input

ariable x i and ∇ 

2 
x i x j 

L (x ) refers to the second derivative of L (x )

.r.t. the input variables x i and x j . From this perspective, robust 

ccuracy increases with an increase in clean accuracy or a decrease 

n the magnitude of the loss gradients. 

AV in the above equation is expanded only up to the second- 

rder gradients for simplicity and computational feasibility, but the 

nalysis below applies to the higher order gradients as well. It 

ssumes that the network is twice differentiable. Because ReLU- 

etworks are not twice differentiable, we validate our claims for 

eLU networks experimentally, and the results are reported in A.2 . 

.1. The effectiveness of adversarial attack 

Since it has no impact on the clean loss L (x ) , an adversarial

ttack manipulates the perturbation to maximize adversarial loss 

 Eq. (2) ) via the adversarial variance: 

max 
∈B(x,ε) 

[ 

d ∑ 

i 

∇ x i L (x ) δi + 

1 

2 

d ∑ 

i, j 

∇ 

2 
x i x j 

L (x ) δi δ j 

] 

(3) 

ny non-zero gradient contributes to the adversarial vulnerabil- 

ty and, individually, a greater gradient magnitude implies a larger 

ulnerability. Attacks exploit (sacrifice) the vulnerability from a 

ertain gradient by aligning (misaligning) it with its perturbation 

ounterpart to make a positive (negative) contribution to adversar- 

al variance. A gradient aligns with a perturbation when they have 

he same sign. 

The theoretical upper bound of AV is: 

d ∑ 

i 

| ∇ x i L (x ) | + 

ε2 

2 

d ∑ 

i, j 

∣∣∇ 

2 
x i x j 

L (x ) 
∣∣ (4) 

here each single perturbation δi reaches the budget ε and all gra- 

ients, while multiplied by their corresponding perturbation coun- 

erpart, contribute positively to adversarial variance. Note | · | de- 

otes the absolute value. This only occurs when there is no conflict 

mong gradients so that the perturbation is able to align with all 

radients simultaneously: 

∀ i ∈ { 1 , ..., d} : sign (∇ x i L (x )) = sign (δi ) 

 i, j ∈ { 1 , ..., d} : sign (∇ 

2 
x i x j 

L (x )) = sign (δi δ j ) (5) 

s a simple example of gradient conflict consider the situation 

here the signs of the gradients ∇ x i , ∇ x j , and ∇ 

2 
x i x j 

are positive,

ositive and negative respectively. No values for δi and δ j can make 

 x i L (x ) δi , ∇ x j L (x ) δ j and ∇ 

2 
x i x j 

L (x ) δi δ j all positive at the same

ime. Gradient conflict is common in practice, because δi is shared 

mong gradients of differing-orders involving x . 
i 

3 
When gradients conflict, some gradients must be sacrificed in 

rder to exploit others. Optimal adversaries will be those that best 

rade-off between conflicting gradients, and the adversarial vari- 

nce achieved by such optimal adversaries is the practical upper 

ound ( Eq. (3) ). The gap between the practical and theoretical 

ounds depends solely on the intensity of gradient conflict regard- 

ess of the specific adversary, and they are equivalent if there is no 

onflict. 

Finding the optimal adversary is intractable. Hence, contempo- 

ary attack methods attempt to approximate it. A worse approxi- 

ation produces a less effective adversarial example, for example 

y sacrificing a significant gradient to exploit a trivial one. Theo- 

etically, the effectiveness of an adversarial example is measured 

y the current AV divided by its theoretical upper bound: 

 (x,y ) ∼D 

[
L (x + δ, y ; θ ) − L (x, y ; θ ) 

Eq . (4) 

]
(6) 

Ideally, the term in the denominator should be the theoretical 

aximal adversarial variance, to reflect the intensity of the gra- 

ient conflict and the quality of approximation. However, solving 

oth the theoretical (up to infinite order) and the practical upper 

ounds is infeasible, so in our experiments we adopt a reasonably 

trong attack, PGD50, to approximate the maximum (see A.1 for 

alidation). This practical effectiveness measure ( Eq. (7) ) excludes 

he effect of gradient conflict and actually reflects the relative ef- 

ectiveness relationship between the assessed attack and PGD50. 

 (x,y ) ∼D 

[
L (x + δ, y ; θ ) − L (x, y ; θ ) 

L (x + δ∗, y ; θ ) − L (x, y ; θ ) 

]
(7) 

here δ and δ∗ are the perturbations generated by the assessed 

ttack and PGD50 respectively. The effectiveness of the assessed 

ttack becomes closer to that of PGD50 as this measure gets closer 

o 1. 

.2. Relating adversarial gradient regularization to attack 

ffectiveness 

Adversarial training optimizes the weights, θ , to minimize ad- 

ersarial loss, which can be translated into minimizing clean loss 

nd adversarial variance ( Eq. (2) ). AV is the sum of many products 

f the gradient and the perturbation. To minimize one product, θ
s updated towards increasing (decreasing) the gradient if its per- 

urbation counterpart is negative (positive) and, consequently, the 

agnitude of the gradient increases if they align and decreases 

f not. Taking ∇ x i L (x ) δi as an example, its gradient with respect

o the parameter is δi ∇ 

2 
x i θ

L (x ) . At each iteration, θ is updated by

lδi ∇ 

2 
x i θ

L (x ) adding a variation −lδi [ ∇ 

2 
x i θ

L (x )] 2 in theory to the

radient ∇ x i L (x ) . The quadratic sub-gradient is always positive, 

nd l is the learning rate, so how the gradient varies depends only 

n the direction of the perturbation. From this perspective, adver- 

arial training is equivalent to standard training plus a regularizer 

n all gradients: 

in 

θ

[ 

L (x ) + 

d ∑ 

i 

∇ x i L (x ) δi + 

1 

2 

d ∑ 

i, j 

∇ 

2 
x i x j 

L (x ) δi δ j 

] 

(8) 

he sign of the perturbation determines if the corresponding gra- 

ient is encouraged to reduce or increase, and the size of the per- 

urbation determines the trade-off between gradient regularization 

nd accuracy. We call this implicit gradient regularization effect 

adversarial gradient regularization” to distinguish it from explicit 

radient regularization [21,22,30] . 

The strength of adversarial gradient regularization, assuming 

radients with larger magnitude have more space to regularize, is 
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pproximately measured by AV. Strength decreases, roughly speak- 

ng, with more gradients sacrificed or not fully exploited i.e. less 

ffective adversarial examples. 

. The causes of robust overfitting 

This section presents two accounts for robust overfitting 

hrough the analysis of input loss landscape. We first find that ro- 

ust overfitting stems from the minimization of the clean loss and 

an be alleviated by gradient regularization. Secondly, we demon- 

trate that the training adversarial examples degenerate as the loss 

andscape curves, which weakens adversarial gradient regulariza- 

ion, and hence, aggravates robust overfitting. In summary, we ar- 

ue that robust overfitting results from the clean optimization and 

elaxed adversarial gradient regularization. 

We adopt input gradient norm (IG) and hessian spectrum 

HS) to measure the slope and the curvature of the loss sur- 

ace respectively. IG is the � 1 norm of first-order gradients, i.e. 

 | ∇ x L (x, y ; θ ) | | 1 , and HS is the � 1 norm of the top 20 eigenvalues 

f the Hessian. We used the power iteration method [28] to ap- 

roximate the top- N eigenvalues by PyHessian [31] , since directly 

omputing the Hessian and its spectrum is computationally expen- 

ive and was beyond our available resources. The validity of using 

he top 20 eigenvalues to analyze curvature has been previously 

erified by [28,32] . We realize that the ReLU activation function in 

ur models is not twice differentiable, which damages the faith- 

ulness of HS as a measure of curvature. Nevertheless, additional 

xperiments (A.2) verify that HS is still effective enough to indi- 

ate the variation of the curvature for ReLU-networks. We measure 

G and HS for both the training and validation data, which are re- 

erred to using the subscripts t and v respectively in the following 

ext. Note that while IG is calculated using the whole data set, due 

o computational resource constraints, HS is averaged over a sub- 

et of 20 0 0 samples. The accuracy of this approximation is verified 

n A.3 . 

All experiments were performed using the following set-up un- 

ess specified otherwise. To allow comparison with related works, 

he models’ architecture was wide-ResNet34. The dataset was CI- 

AR10 [33] with augmentations of random horizontal flip and ran- 

om crop with 4 pixel padding. Stochastic gradient descent (SGD) 

as used to train models for 200 epochs with learning rate of 

0.1, 0.01, 0.001], annealing at epochs 100 and 150. The momen- 

um was 0.9, the weight decay was 1e-4, and the batch size was 

00. The predictive loss was CrossEntropy. Experiments were run 

n Tesla V100 and A100 GPUs. The default perturbation budget ε
or both adversarial training and evaluation was 8/255 under � ∞ 

nd the step size was ε/ 4 for multi-step attacks. Adversarial ro- 

ustness was evaluated by PGD50. FGSM-R AT refers to FGSM ad- 

ersarial training with random initialization as [8] but the step size 

s still ε. 

.1. Robust overfitting from clean optimization 

We argue that standard training suffers from robust overfitting 

s well. We observe that adversarial vulnerability, measured by 

dversarial variance as discussed in Section 3.1 , evolves similarly 

n standard and adversarial training. As shown in Fig. 1 , for both 

tandard and adversarial training, throughout the training process 

here is a consistent increase in the gap of adversarial variance 

etween training and test data. This suggests that both training 

aradigms overfit worse in terms of adversarial robustness dur- 

ng training. Therefore, we argue that robust overfitting also ex- 

sts in standard training. Note that the robust accuracy in standard 

raining (which is close or equal to 0 for both data sets) does not 

ppear to be like the conventional robust overfitting phenomenon 
4 
ecause it is dominated by adversarial variance whose value is 

verwhelmingly greater than the corresponding clean loss value. 

These results demonstrate that robust overfitting in adversar- 

al training results from the minimization of clean loss i.e. stan- 

ard training. Adversarial optimization is theoretically equivalent 

o the minimization of clean loss plus gradient regularization 

 Section 3.2 ), so standard training is implicitly implemented dur- 

ng adversarial training. In fact, robust overfitting appears milder 

n adversarial training compared to how it is in standard training 

ccording to Fig. 1 . Moreover, these two training schemes present 

 similar pattern in the evolution of not only adversarial variance 

ut also loss gradients: especially the novel divergent behavior of 

G on the various sets after the first decay of the learning rate that 

aises a significant gap between adversarial vulnerability on train- 

ng and test data. 

To verify, we perform an ablation experiment by subtracting a 

ortion of the standard training from FGSM-R AT (“FGSM-R AT - 

T”). We train a set of models using the loss below with α ranging 

rom 0 to 1. 

 (x + δ) − αL (x ) (9) 

s α was increased, the impact of clean optimization on the 

eight update was reduced and the gap between adversarial losses 

f training and test data i.e. the severity of robust overfitting was 

hrunk (see Fig. 2 ). This confirms our claim that there is a correla- 

ion between robust overfitting and clean optimization. 

.2. Regularizing gradients to mitigate overfitting 

Robust overfitting can be mitigated by regularizing loss gradi- 

nts. We hypothesize this based on the observation that adver- 

arial training suffers from milder robust overfitting compared to 

tandard training. To evaluate this hypothesis, we apply an input 

radient regularizer, the squared l 2 -norm of first order loss gradi- 

nts, to standard training (“ST + IGR”): 

 (x ) + β| | ∇ x L (x ) | | 2 2 (10) 

s can be seen in Fig. 2 as β is increased, gradient regularization 

urns stronger and the gap between adversarial losses of training 

nd test data is reduced more significantly. This hypothesis is fur- 

her evaluated in the adversarial training setting in Section 5.2 . 

.3. Relaxed gradient regularization in AT 

Another account for robust overfitting in adversarial training is 

he relaxation of its implicit gradient regularization i.e. the regu- 

arization strength drops during training (as theoretically discussed 

n Section 3.2 ). This can be easily confirmed empirically: see Fig. 3 ,

hich shows a strong correlation between regularization strength 

nd adversarial effectiveness. Specifically, it shows that the ef- 

ectiveness of training adversarial examples declines consistently 

hroughout training. Furthermore, adversarial examples, generated 

y the methods whose optimization ability is sensitive to the ge- 

metry of loss landscape, become less effective with the increase 

n the loss landscape’s curvature. Common adversaries such as 

GSM and PGD are all gradient-based, and thus, sensitive to some 

xtent. Intuitively, growing curvature implies a wavier loss surface 

here the complexity of optimization is increased for gradient- 

ased optimizers. Consequently, the quality of approximation drops 

f the optimizer is not effective at finding a solution in the wavy 

oss surface. Overall, the strength of adversarial gradient regular- 

zation decreases, so the underlying model overfits more severely 

egarding adversarial robustness, as the loss landscape becomes in- 

reasingly complicated. 

Increased curvature has been observed before in catastrophic 

verfitting [16,22] , but to the best of our knowledge, this is the 
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Fig. 1. IG, HS and loss for standard and adversarial training on validation and training data sets. Adversarial loss (Adv. loss) is computed based on the adversarial examples 

generated by PGD20, and adversarial variance (AV) is the difference between adversarial and clean loss (see Eq. (2) ). Lines are smoothed with a moving average over 5 

epochs for improved clarity. 

Fig. 2. How the gap between adversarial losses on training and test sets develops 

as training progresses. (left) FGSM-R AT with clean loss subtracted as in Eq. (9) . 

(right) Standard training with input gradients regularized as in Eq. (10) . Each line 

in the left (right) graph corresponds to a model trained with a different value of α

( β) in Eq. (9) ( Eq. (10) ). Particularly, the training becomes FGSM-R AT and standard 

training when α and β equals to 0 (red lines in both graph) which corresponds 

to the gap between the figures of adversarial losses in the Train and Val graphs of 

FGSM-R AT and standard training respectively in Fig. 1 . Lines are smoothed over 5 

epochs. 

fi

c

t

d

e

a

v

i

a

t

u

e

t

t

o  

s

b

l  

n

e

w

t

t  

F

i

w  

b

c

d

m

5

fi

i

o

i

p

F

c

a

rst time it has been observed in adversarial training without 

atastrophic overfitting. This phenomenon is counter-intuitive to 

he claimed correspondence between adversarial training and gra- 

ient regularization [22] . The cause of this phenomenon is hardly 

xplained in the existing literature. We argue that one possible 

ccount is, again, the relaxation of gradient regularization in ad- 

ersarial training. As gradient regularization is relaxed, adversar- 

al training becomes more similar to standard training so that 

dversarally-trained models become more like non-adversarially- 

rained models which have much larger HS ( Fig. 1 ). 
ig. 3. HS, IG, and the effectiveness of adversarial examples ( Eq. (7) ) for various adver

urvature increases from left to right and FGSM adversarial training (right figure) suffers

dversarial examples generated by PGD10 (or FGSM). Lines are smoothed as in Fig. 1 and

5 
To verify the correlation between the effectiveness and the reg- 

larization strength, we simulate the degeneration of adversarial 

xamples in training by manipulating the direction and the size of 

he perturbation. Specifically, we first generate a strong perturba- 

ion using PGD20 and then weaken it by either reducing the size 

f all perturbations by p% , or by flipping the sign of p% (randomly

ampled) perturbations. We then train an adversarially-trained ro- 

ust model on those manipulated examples for one epoch to al- 

ow the gradients to change. As shown in Fig. 4 a and Fig. 4 b, HS

egatively correlates to the effectiveness of the modified training 

xamples in both cases. 

Next, we test how the effectiveness of FGSM and PGD10 varies 

ith the change of curvature. Two strategies are adopted to al- 

er the curvature for a comprehensive validation. One is to reuse 

he models trained as described in the last paragraph ( Fig. 4 a and

ig. 4 b). Apart from that, we randomly select a checkpoint dur- 

ng training and perturb its parameters by uniform noise U(−s, s ) 

here s ∈ U(0 , 1) ( Fig. 4 c). As shown in Fig. 4 , the effectiveness of

oth adversaries declines approximately with the increase in the 

urvature in all cases. Moreover, FGSM’s effectiveness drops more 

ramatically than PGD10’s, indicating that the weaker adversary is 

ore sensitive to the curvature. 

. Combating robust overfitting 

The analysis in Section 4 provides the insight that robust over- 

tting in adversarial training is related to increasing curvature in 

nput loss landscape. Therefore, we propose to alleviate robust 

verfitting by smoothing the input loss landscape. Directly regular- 

zing curvature is, to our best knowledge, infeasible today, so our 

roposal regularizes the approximate curvature. Ideally, we want 
sarial training schemes. The training adversaries’ sensitivity to the loss surface’s 

 catastrophic overfitting. PGD10 (FGSM) Eff. refers to the effectiveness of training 

 effectiveness is computed over 20 0 0 samples like HS ( A.3 for verification). 
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Fig. 4. HS and the effectiveness of FGSM and PGD10 for randomly modified models (a), and how curvature and adversaries’ effectiveness vary as the size of perturbation 

decays (b), or the sign of perturbation flips (c). Each point in (a) represents a variant (model) of the selected adversarially-well-trained model. The X-axis in (b) is the 

multiplier applied to the perturbation, therefore, the perturbation becomes stronger and closer to the original perturbation from 0 to 1. The X-axis in (c) indicates the 

proportion of the perturbations whose sign is reversed, so 0 means no flip i.e. the original perturbation and 1 means all perturbations are flipped. The maximum reversal 

rate is limited to 0.5 since the reversed examples are no longer adversarial and catastrophic overfitting dominates the training once exceeded. Note that scales for HS in the 

subplots are different to clearly illustrate the trend. Train Adv. Eff. denotes the average effectiveness of the training examples during one-epoch of training. 
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he original input example and any neighboring example, within 

 certain distance like ε, to have the same output, i.e., a flat loss

andscape: 

in 

θ
max 

η∈B(x,ε) 
ρ( f (x + η; θ ) , f (x ; θ )) (11) 

here ρ(·) can be any distance or dissimilarity measure. The above 

nner maximization searches for the perturbation η so that the 

erturbed example differs most from the original example re- 

arding the similarity between their output. This paradigm has 

een implemented before with various strategies as discussed in 

ection 2 . Different from them, our method reuses the adversarial 

erturbation δ from the training pipeline to replace η to save the 

xpensive inner maximization: 

in 

θ
ρ( f (x + δ; θ ) , f (x ; θ )) (12) 

heoretically, δ is supposed to approximate η well since the per- 

urbation causing the largest loss variance ( δ’s objective) should 

lso change the prediction logits significantly ( η’s objective). 

Specifically, our new smoothing method, which we call Adver- 

arial Logits Consistency (AdvLC), penalizes the weighted sum of 

he difference between the logits for the clean input and its adver- 

arial counterpart: 

 reg (x i ) = 

C ∑ 

j 

w i, j o i, j (13) 

 i, j = 

∣∣ f j (x i + δ; θ ) − f j (x i ; θ ) 
∣∣ (14) 

 i, j = 

{
1 , if o i, j is top N in the batch 

0 , otherwise 
(15) 

here o i, j is the absolute difference for the j-th logit output for 

ample x i , and is weighted by w i j . Intuitively, the regularizer forces 

he model to output the same logits for both the clean and the 

orresponding adversarial example, i.e. no adversarial variance can 

e raised by attacks, so the loss landscape is flattened. 

w i, j is introduced to allow control of the strength of the reg- 

larization for each single logit difference, o i, j . In each batch, w i, j 

s made equal to 1 for each o i, j whose magnitude is in the top

within the batch, and w i, j = 0 otherwise. The aim is to alle- 

iate the over-regularization on the tiny logit differences for a 

etter trade-off between accuracy and robustness (see the com- 

arison in Section 5.5 where the unweighted variant, l 1 -norm, 

f our method shows a much worse trade-off between accuracy 

nd robustness compared to the weighted version). Note that the 

op N are selected among the entire mini-batch so it is possible 
6

or some examples to be totally unregularized. This is just one 

ossible implementation of the proposed strategy. Other variants 

nclude setting all weights equal to one, which is equivalent to 

imply using the l 1 -norm of the logit differences. Alternatively, set- 

ing w i, j = o i, j would be equivalent to using the squared l 2 -norm of

he logit differences. Results for these alternatives are reported in 

ection 5.5 . 

We acknowledge that the proposed method is likely to be sub- 

ptimal and an improvement might be expected if w was opti- 

ized for each difference term in an individual manner by some 

ore advanced hyper-parameter optimization technique. However, 

he focus here is to demonstrate the effectiveness of smoothness 

egularization on mitigating robust overfitting, so we decide to 

eave this exploration for future work. 

The overall objective is: 

 (x + δ) + λL reg (16) 

here λ is the factor trading-off adversarial loss against regular- 

zation. Note that two forward passes, f (x + δ; θ ) and f (x ; θ ) , are

n practice shared between adversarial training and regularization, 

o the only extra computational overhead is in the calculation of 

he regularization loss. The implementation details are provided in 

lgorithm 1 . 

Algorithm 1: The proposed AdvLC regularizer showing how it 

is combined with arbitrary adversarial training. The size of a 

mini-batch is M. 

for each batch do 

for i = 1 to M do 

δ = attack (x i , y i ) 

x ′ 
i 
= max ( min (x i + δ, 0) , 1) 

o i, j = | f j (x i ) − f j (x ′ 
i 
) | 

L i = L (x ′ 
i 
, y i ) 

end 

w 1 , 1 , ..., w M,C = weight(o 1 , 1 , ..., o M,C ) 

L reg = 

∑ M,C 
i, j 

w i, j o i, j 

L ov erall = ( 
∑ M 

i L i + λL reg ) /M 

θ = θ − l∇ θL ov erall 

end 

Our method by design improves on previous work ( Section 2 ) 

n terms of both efficiency and effectiveness. First, compared to 

16,21,22] the expensive computation of double backpropagation 

s reduced to one backward pass by replacing the first-order 
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Table 2 

Performance of PGD10 AT and its AdvLC-regularized variants on TinyImageNet. 

Training Accuracy Robustness Time 

PGD10 AT 44.71 19.74 1.143 

+ AdvLC-L1 43.65 21.10 1.161 

+ AdvLC-ours 43.93 22.64 1.161 
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radients with the logits. Second, compared to [16,18,22,23,25,26] 

dversarial examples are reused as the neighbor from the adver- 

arial training pipeline to save extra forward and backward passes 

or the generation of neighbor examples. Third, regularizing logits 

ariation along the adversarial direction, as well as the proposed 

eighting scheme, improves the trade-off between accuracy and 

obustness ( Section 5.2 ). 

.1. Benchmarking the proposed regularizer 

We follow the same setting as in Section 4 except for the the 

hanges noted below. The model architecture was a PreActRes- 

et18 [34] . The baseline single-step adversarial training method 

as FGSM-N AT [24] and the multi-step one was PGD10 AT. The 

obust accuracy was evaluated against the state-of-the-art attack 

utoAttack [35] using Torchattacks [36] to exclude the false secu- 

ity of obfuscated gradients [12] . 

To train our method, λ ( Eq. (16) ) was 0.5 (0.3) for FGSM- 

 (PGD10) AT combined with stochastic weight averaging (SWA) 

17] and 0.55 (0.4) when not. N ( Eq. (15) ) is fixed to 100 (i.e.

op 10% given a batch size of 100 and 10 classes) for all train-

ng methods. The smoothness regularizers we compared to include 

GR [21] , CURE [22] , GradAlign [16] , LogitAlign [24] and Consis- 

ency [18] (see Section 2 ). Their strength was 120 0 (10 0 0), 150 0

1500), 7 (6), 100 (50) and 50 (50) in order for FGSM-N (PGD10) 

T. For Consistency, the temperature τ was set to 1 (i.e. no tem- 

erature scaling) since we observed a false security regarding PGD 

obustness when using the original value of 0.5. Moreover, we 

xed the distance between the input and neighbor in CURE to be 

· sign (∇ x L (x )) since the original setting was less effective in our 

xperiments. All the above hyper-parameters were optimized us- 

ng grid search. Finally, we also compared against KDSA [17] (see 

ection 2 ) and its SWA combined version. This approach was im- 

lemented using the original configuration, except SWA was en- 

bled from the 50 th epoch since this achieved higher robustness in 

ur experiments. 

We also validated the generalization ability of our method 

n TinyImageNet [37] , which is a subset of large-scale natural 
able 1 

erformance of various regularization methods combined with single and multiple step ad

or the most robust, or “best”, checkpoint and at the end of training. The best checkpoin

hose values gives an indication of the severity of overfitting. IG and HS were measured at

ini-batch on a Tesla V100 in seconds. The best result is highlighted for each metric in e

s indicated by the value after the ± sign. 

Training Accuracy (%) Robustn

best end diff. best 

Standard 44.25 ± 5.22 94.88 ± 0.18 -50.63 2.61 ±
FGSM-N AT 83.51 ± 0.15 83.72 ± 0.15 -0.21 41.77 ±
+ IGR 80.90 ± 0.48 83.56 ± 0.20 -2.66 43.96 ±
+ CURE 81.32 ± 0.49 82.45 ± 0.46 -1.14 44.18 ±
+ GradAlign 80.73 ± 0.32 81.35 ± 0.21 -0.62 41.03 ±
+ LogitAlign 81.26 ± 0.28 82.04 ± 0.28 -0.78 43.72 ±
+ Consistency 81.21 ± 0.37 82.75 ± 0.22 -1.54 45.70 ±
+ KDSA 84.40 ± 0.15 85.20 ± 0.24 -0.80 43.77 ±
+ KDSA+SWA 84.03 ± 0.33 85.17 ± 0.15 -1.15 45.80 ±
+ AdvLC 81.06 ± 0.23 82.70 ± 0.24 -1.64 47.07 ±
+ AdvLC+SWA 79.46 ± 0.19 82.14 ± 0.11 -2.68 48.96 ±
PGD10 AT 83.40 ± 0.21 83.58 ± 0.20 -0.19 46.50 ±
+ IGR 81.43 ± 0.28 83.50 ± 0.23 -2.08 46.45 ±
+ CURE 80.65 ± 0.03 82.67 ± 0.28 -2.02 46.24 ±
+ GradAlign 81.52 ± 0.54 82.28 ± 0.38 -0.76 45.01 ±
+ LogitAlign 81.30 ± 0.27 81.93 ± 0.47 -0.63 46.59 ±
+ Consistency 81.66 ± 0.27 81.95 ± 0.12 -0.29 48.11 ±
+ KDSA 84.15 ± 0.18 85.15 ± 0.23 -1.00 47.92 ±
+ KDSA+SWA 83.81 ± 0.55 84.73 ± 0.40 -0.92 49.58 ±
+ AdvLC 81.16 ± 0.36 82.23 ± 0.40 -1.07 48.73 ±
+ AdvLC+SWA 79.70 ± 0.20 82.09 ± 0.11 -2.39 50.55 ±

7 
mage dataset ImageNet [2] . To stabilize the training, we linearly 

ncreased at each epoch the regularization strength, λ, of our 

ethod (or the l 1 norm variant of our method) from 0 at the start 

o 0.15 (or 0.07) at the end. The robust accuracy was evaluated 

gainst APGD50 [35] with 5 random starts, instead of AutoAttack 

ecause the latter attack required more GPU memory than we had 

vailable. Otherwise, the same settings were used as for the exper- 

ments with CIFAR10. 

.2. Accuracy and robustness 

Our method, AdvLC, achieves the highest best and end ro- 

ustness in both single- and multi-step AT groups in Table 1 . 

he results are further improved when combined with SWA. Our 

ethod is the only one that improves single-step FGSM-N AT to 

utperform multi-step PGD10 AT. Furthermore our method en- 

bles single-step FGSM-N AT to produce higher robustness than 

ulti-step PGD10 AT combined with the regularizors IGR, CURE, 

radAlign and LogitAlign. Importantly, this dramatic robustness 

ain is not attained at the cost of a large reduction in accuracy 

ompared to that obtained by other smoothing techniques. Com- 

ared to KDSA, our approach shows higher robustness both with 

nd without SWA. However, KDSA exhibits greater accuracy com- 

ared to AdvLC and even the non-regularized baselines. 

Almost all regularized training methods, except FGSM-N+IGR, 

roduce lower IG and HS and a smaller gap between the best and 

nd robust accuracy (”robustness diff.” column) compared to the 

orresponding baselines, confirming their effectiveness in smooth- 

ng the loss landscape and mitigating robust overfitting. IGR is 

ess effective in alleviating robust overfitting because IG t , even 
versarial training on CIFAR10. Clean accuracy, and robust accuracy, were measured 

t was selected based on PGD5 robustness on the test set. The difference between 

 the end of training on the test set. Time is an average measured for processing one 

ach block. The results are averaged over multiple runs and the standard deviation 

ess (%) IG HS Time 

end diff. 

1.24 0.00 ± 0.00 2.61 276.0 17.22 0.017 

0.29 34.19 ± 0.13 7.58 48.00 0.230 0.047 

0.20 35.98 ± 0.39 7.98 25.04 0.059 0.130 

0.22 39.33 ± 0.06 4.84 18.87 0.018 0.162 

0.52 33.95 ± 0.21 7.08 34.50 0.074 0.162 

0.39 38.38 ± 0.27 5.34 28.72 0.054 0.095 

0.27 43.53 ± 0.26 2.17 17.48 0.032 0.095 

0.31 42.15 ± 0.18 1.62 21.17 0.052 0.062 

0.08 45.04 ± 0.18 0.76 19.11 0.052 0.062 

0.18 42.71 ± 0.41 4.36 20.14 0.049 0.054 

0.09 48.14 ± 0.17 0.82 14.16 0.020 0.054 

0.34 40.42 ± 0.22 6.08 30.90 0.117 0.326 

0.14 41.90 ± 0.43 4.55 21.20 0.051 0.425 

0.21 42.38 ± 0.81 3.86 17.90 0.020 0.445 

0.45 38.96 ± 0.65 6.06 28.27 0.063 0.445 

0.03 43.42 ± 0.68 3.17 22.03 0.038 0.656 

0.22 47.66 ± 0.30 0.45 14.77 0.026 0.658 

0.07 46.15 ± 0.18 1.77 19.40 0.050 0.348 

0.14 49.26 ± 0.08 0.32 16.79 0.042 0.348 

0.22 45.11 ± 0.43 3.62 18.03 0.033 0.337 

0.33 49.73 ± 0.06 0.82 13.90 0.018 0.337 
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Table 3 

Performance of FGSM-N AT and its AdvLC-regularized variants using different distance measures on CIFAR10. The format of this table is the same as, and described in the 

caption of, Table 1 . 

Training Accuracy (%) Robustness (%) IG HS Time 

best end diff. best end diff. 

FGSM-N AT 83.51 ± 0.15 83.72 ± 0.15 -0.21 41.77 ± 0.29 34.19 ± 0.13 7.58 48.00 0.230 0.047 

+ l 1 81.09 ± 0.41 82.88 ± 0.16 -1.80 46.01 ± 0.51 40.04 ± 0.90 5.97 26.00 0.146 0.054 

+ KL 80.83 ± 0.53 82.74 ± 0.05 -1.91 46.29 ± 0.22 41.12 ± 0.40 5.17 25.58 0.075 0.055 

+ JS 81.18 ± 0.21 82.73 ± 0.32 -1.55 46.69 ± 0.31 41.75 ± 0.39 4.94 23.76 0.061 0.055 

+ Nuclear 80.82 ± 0.19 82.64 ± 0.18 -1.82 46.52 ± 0.25 42.51 ± 0.22 4.01 21.70 0.062 0.055 

+ Squared l 2 80.73 ± 0.22 82.79 ± 0.51 -2.06 47.00 ± 0.23 41.73 ± 2.10 5.28 21.72 0.058 0.054 

+ ours 81.06 ± 0.23 82.70 ± 0.24 -1.64 47.07 ± 0.18 42.71 ± 0.41 4.36 20.14 0.049 0.054 
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Data will be made available on request. 
on-regularized, drops at the later stage of training as observed in 

ig. 1 . GradAlign hardly reduces the gap between the best and end 

obustness and, even worse, makes the robustness less than that 

f the baseline. We attribute this ineffectiveness to the usage of 

osine Similarity since it only matches the gradient direction and 

gnores the variation in the gradient norm. All first-order gradient 

pproaches, IGR, CURE and GradAlign, fail to improve the best ro- 

ustness when combined with PGD10 AT suggesting that regular- 

zing first-order gradients is insufficient to improve multi-step ad- 

ersarial training. Last, we observe that all smoothness regularizers 

acrifice accuracy for robustness. 

.3. Efficiency 

Our method is the most efficient among all regularization ap- 

roaches and adds only trivial computational overhead to the base- 

ines as shown in Table 1 . CURE and GradAlign are the most expen-

ive methods in the single-step group, requiring 3 times as much 

ompute time as ours due to the double backpropagation. When 

ombined with multi-step AT, LogitAlign and Consistency are the 

ost time-consuming ones, taking almost 2 times as long as ours, 

ince they generate another adversarial example for regularization 

sing the expensive training adversary PGD10. KDSA is also less 

fficient than the proposed method because it requires two more 

orward passes to get the output of two teacher models. Further- 

ore, KDSA in practice can be costlier than it appears in the table 

ince two teacher models have to be well trained beforehand, and 

he time consumed in doing this is not counted in the reported 

imes. 

.4. Generalisation 

Our approach also generalizes well to the alternative dataset 

inyImageNet. As shown in Table 2 , it significantly improves the 

obustness of the baseline PGD10 AT with only a trivial additional 

omputational cost. Besides, the proposed weight scheme consis- 

ently boosts the trade-off between accuracy and robustness when 

ompared to the non-weighted version of our method i.e. l 1 norm 

ariant (see Section 5 ). 

.5. Ablation analysis 

The effects of the specific form of regularisation method used, 

q. (13) to Eq. (15) , was explored and the results are shown in

able 3 . It can be seen that the proposed weight scheme achieves 

he best trade-off between accuracy and robustness among all the 

valuated distance measures while preserving the same efficiency. 

ur method attains a considerably higher robustness, and a sim- 

lar accuracy, compared to the l 1 -norm. It achieves a slightly bet- 

er accuracy than the squared l 2 -norm, and a similar robustness. 

t outperforms KL and Nuclear regarding both accuracy and ro- 

ustness. It improves the robustness of JS by a relatively consid- 
8 
rable amount while its accuracy is just slightly behind JS’s. It was 

bserved that the results for both l 1 -norm and squared l 2 -norm 

ere more varied than those for the proposed method. This can be 

een in the higher standard deviation in the results particularly at 

he end of training. They can be stabilized, at the cost of poorer 

obustness, by weakening the regularization. Overall, the perfor- 

ance gain of the proposed method, although marginal, validates 

ur choice of regularization method (see Section 5 ). Moreover, by 

omparing the results in Table 3 with those in Table 1 it can be

een that regardless of what distance measure is used, the pro- 

osed regularization method consistently produces higher robust- 

ess with single-step adversarial training than all previously pro- 

osed methods. 

. Conclusion 

This work contributes towards understanding the overfitting 

echanism and improving the robust generalization of adversar- 

al training. First, we theoretically discuss the function of input loss 

radients in adversarial attack and training, and the correlation be- 

ween the effectiveness of training adversarial examples and the 

trength of implicit gradient regularization in adversarial training. 

e then analyze how the slope and the curvature of input loss 

andscape evolve during adversarial training particularly when ro- 

ust overfitting occurs. We find that robust overfitting (1) stems 

rom the minimization of clean loss; (2) turns severer with the 

ecrease in the strength of gradient regularization as a result of 

ncreasing curvature in the input loss landscape and the degen- 

ration of training adversarial examples. Based on these insights, 

e hypothesize and verify that robust overfitting can be mitigated 

y smoothing the loss landscape. Last, we propose a new smooth- 

ng method, AdvLC, that regularizes the logits variance along the 

dversarial direction in a weighted way. It outperforms existing 

ethods significantly in terms of both robustness and efficiency. 

One limitation of this work is that we have not explained 

hy optimizing clean loss leads to robust overfitting especially the 

ovel divergent behavior of IG on seen and unseen data. Another 

imitation is that the proposed method, like all other smoothness 

egularizers, sacrifices accuracy for robustness. Future work might 

sefully explore these two problems to enhance understanding 

bout robust overfitting and to further improve the performance 

f adversarial training. 
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ppendix A. Empirical verification of approximations 

This section empirically verifies several approximations used in 

he main text. 

1. PGD convergence 

We conduct experiments to show that PGD50, used in comput- 

ng the effectiveness of adversarial examples, is a good approx- 

mation of the optimal adversary. Empirical result suggests that 

0 steps is enough for the optimizer, projected gradient descent 

PGD), to converge within the ε-ball. As shown in Fig. A1 , both ro-

ust accuracy and adversarial loss reach steady-state values once 

he number of steps is increased to 50 or more. The exception is 

he loss on the validation set which continues to grow until the 

aximum number of iterations tested i.e. 200. However, this ex- 

eption does not affect our analysis since in this work all adversar- 

al examples’ effectiveness is computed with respect to the training 

ata. We acknowledge the existence of other more advanced ad- 

ersaries like [35] outperforming PGD, in other words, potentially 

ffering a more faithful approximation. Nevertheless, we choose 

GD50 since the gap between the adversarial losses achieved is 

rivial and PGD is easier to implement and widely accepted in 

any other works. 

2. HS validity 

We first illustrate how the non-twice-differentiability of ReLU- 

etworks affects the value of Hessian. The intermediate calculation 

etween the loss function and the input consists of: 

 (x, y ; θ ) = L (s (g(x )) , y ; θ ) (A.1) 

here s (·) denotes the softmax layer and g(·) refers to the whole 

etwork whose outputs are logits. The first-order gradients of the 

oss w.r.t. the input, using chain rule, are: 

∂L 

∂x 
= 

∂L 

∂s 

∂s 

∂g 

∂g 

∂x 
(A.2) 

nd the second-order gradients, using the product rule, are: 

∂ 2 L 

∂x 2 
= 

∂[ ∂L 
∂s 

∂s 
∂g 

] 

∂x 

∂g 

∂x 
+ 

∂L 

∂s 

∂s 

∂g 

∂ ∂g 
∂x 

∂x 
(A.3) 
Fig. A1. How robust accuracy and adversarial loss vary with the increase in 

9 
ssuming modern ReLU-networks, g(·) is a piecewise linear func- 

ion made up of ReLU activation and linear layer, so its second- 

rder gradients are zeros and the above equation reduces to: 

∂ 2 L 

∂x 2 
= 

∂[ ∂L 
∂s 

∂s 
∂g 

] 

∂x 

∂g 

∂x 
(A.4) 

owever, we know that, although the second derivatives are 

ero, the first-order gradients of g(·) change dramatically at the 

oints where the input to ReLU equals zero. This reduced Hessian 

 Eq. (A.4) ) thus does not reflect the full curvature of the loss sur-

ace. 

To verify the validity of HS in measuring the loss surface’s 

urvature for ReLU-networks, we compare the HS from ReLU- 

etworks ( HS relu ) with the gradient alignment from the same net- 

orks ( GA relu ), and the HS from dual-softplus-networks ( HS sp ). GA 

easures the curvature indirectly through the similarity between 

he first-order gradients of the input and its randomly perturbed 

eighbor within the ε-ball: 

 (x,y ) ∼D,η∼U([ −ε,ε] d ) [ cos (∇ x L (x, y ; θ ) , ∇ x L (x + η, y ; θ ))] (A.5)

here cos (·, ·) returns the cosine similarity between two inputs. 

alculating GA has the advantage that it does not involve second- 

rder gradients. A higher GA indicates a more linear loss surface 

.e. a smaller curvature. Another control is to compute HS for the 

ual network with all ReLU units replaced by softplus units. Soft- 

lus transforms the input as: 

oftplus (x ) = log(1 + e x ) (A.6) 

nd can be considered as a twice differentiable approximation to 

eLU. Therefore, HS should fully reflect the curvature for softplus 

etworks. All the remaining hyper-parameters were kept the same 

or a fairer comparison. The empirical results confirm that HS is a 

alid indicator of the loss surface’s curvature, because the trend of 

S relu aligns well with both GA relu and HS sp throughout adversarial 

raining, as shown in Fig. A2 . 

3. Sampling faithfulness 

Metrics like HS and the effectiveness of FGSM and PGD10 were 

veraged over 20 0 0 samples instead of the whole dataset due to 

onstraints on computational resources and time. Fig. A3 shows 

ow the values of these approximations vary as more samples are 

sed in the computation. The effectiveness values for both adver- 

aries are very stable and the results are almost identical when 

easured using 2k samples and 10k samples (i.e. the whole valida- 

ion set). In contrast, the estimated value of HS fluctuates acutely 

hen the number of samples is small. Nevertheless, averaging over 

0 0 0 samples ensures the deviation from the true value (averaged 

ver the whole dataset) to be reasonably small ( ±10% ). Therefore, 

he number 20 0 0 was chosen based on the balance between effi- 

iency and the faithfulness of the approximation. 
the number of steps in PGD for various datasets and training schemes. 
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Fig. A2. Correspondence, measured using the training data, between the HS from ReLU-networks and (a) the gradient alignment for the same networks, and (b) HS from 

softplus-networks. 

Fig. A3. Sensitivity of measurements as a function of the number of samples being averaged. The solid line indicates the true value of the measurements which is averaged 

over 10k samples (i.e. the whole validation set). The marked area is determined by the minimum and maximum of the estimation over the given number of samples in 10k 

trials. 

R

 

[

 

[  

[

[

[  

[  

[

[

eferences 

[1] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–
4 4 4, doi: 10.1038/nature14539 . 

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A.C. Berg, L. Fei-Fei, ImageNet Large Scale Visual 

Recognition Challenge, International Journal of Computer Vision 115 (3) (2015) 

211–252, doi: 10.1007/s11263-015-0816-y . 
[3] I.J. Goodfellow, J. Shlens, C. Szegedy, Explaining and Harnessing Adversar- 

ial Examples, in: International Conference on Learning Representations, 2015 . 
http://arxiv.org/abs/1412.6572 . 

[4] Z. Qian, K. Huang, Q.-F. Wang, X.-Y. Zhang, A survey of robust adversarial 
training in pattern recognition: Fundamental, theory, and methodologies, Pat- 

tern Recognition 131 (2022) 108889, doi: 10.1016/j.patcog.2022.108889 . https: 

//www.sciencedirect.com/science/article/pii/S0 0313203220 03703 . 
[5] L. Schmidt, S. Santurkar, D. Tsipras, K. Talwar, A. Madry, Adversarially Robust 

Generalization Requires More Data, Advances in Neural Information Processing 
Systems, volume 31, Curran Associates, Inc., 2018 . https://papers.nips.cc/paper/ 

2018/hash/f708f064faaf32a43e4d3c784e6af9ea-Abstract.html . 
[6] C. Zhang, S. Bengio, M. Hardt, Understanding Deep Learning Requires Rethink- 

ing Generalization, in: International Conference on Learning Representations, 

2017, p. 15 . 
[7] L. Rice, E. Wong, J.Z. Kolter, Overfitting in adversarially robust deep learn- 

ing, in: Proceedings of the 37th International Conference on Machine Learning, 
2020, p. 12 . 

[8] E. Wong, L. Rice, J.Z. Kolter, Fast is better than free: Revisiting adversar- 
ial training, in: International Conference on Learning Representations, 2020 . 

http://arxiv.org/abs/2001.03994 . 

[9] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards Deep Learning 
Models Resistant to Adversarial Attacks, in: International Conference on Learn- 

ing Representations, 2018 . http://arxiv.org/abs/1706.06083 . 
[10] A. Kurakin, I. Goodfellow, S. Bengio, et al., Adversarial Machine Learning at 

Scale, in: International Conference on Learning Representations, 2017 . http:// 
arxiv.org/abs/1611.01236 . 

[11] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, P. McDaniel, En- 

semble Adversarial Training: Attacks and Defenses, in: International Confer- 
ence on Learning Representations, 2018 . http://arxiv.org/abs/1705.07204 . 

12] A. Athalye, N. Carlini, D. Wagner, Obfuscated Gradients Give a False Sense of 
Security: Circumventing Defenses to Adversarial Examples, in: International 

Conference on Machine Learning, 2018 . http://arxiv.org/abs/1802.00420 . 
[13] H. Kim, W. Lee, J. Lee, Understanding Catastrophic Overfitting in Single-step 

Adversarial Training, in: AAAI Conference on Artificial Intelligence, 2020 . 
ArXiv: 2010.01799 

[14] J. Wang, H. Zhang, Bilateral Adversarial Training: Towards Fast Training of 

More Robust Models Against Adversarial Attacks, in: 2019 IEEE/CVF Inter- 
national Conference on Computer Vision (ICCV), IEEE, Seoul, Korea (South), 
10 
2019, pp. 6628–6637, doi: 10.1109/ICCV.2019.00673 . https://ieeexplore.ieee.org/ 
document/9009088/ . 

[15] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L.S. Davis, G. Tay-

lor, T. Goldstein, Adversarial Training for Free!, Advances in Neural Information 
Processing Systems, 2019 . http://arxiv.org/abs/1904.12843 . 

[16] M. Andriushchenko, N. Flammarion, et al., Understanding and Improving Fast 
Adversarial Training, in: Advances in Neural Information Processing Systems, 

2020, p. 12 . 
[17] T. Chen, Z. Zhang, S. Liu, S. Chang, Z. Wang, et al., Robust Overfitting 

may be mitigated by properly learned smoothening, in: International Con- 

ference on Learning Representations, 2021 . https://openreview.net/forum?id= 
qZzy5urZw9 . 

[18] J. Tack, S. Yu, J. Jeong, M. Kim, S.J. Hwang, J. Shin, Consistency Regularization 
for Adversarial Robustness, Proceedings of the AAAI Conference on Artificial 

Intelligence 36 (8) (2022) 8414–8422, doi: 10.1609/aaai.v36i8.20817 . https://ojs. 
aaai.org/index.php/AAAI/article/view/20817 . 

[19] D. Wu, S.-T. Xia, Y. Wang, Adversarial Weight Perturbation Helps Ro- 

bust Generalization, in: Advances in Neural Information Processing Sys- 
tems, volume 33, 2020, pp. 2958–2969 . https://papers.nips.cc/paper/2020/ 

hash/1ef91c212e30e14bf125e9374262401f-Abstract.html . 
20] Y. Dong, K. Xu, X. Yang, T. Pang, Z. Deng, H. Su, J. Zhu, Exploring Memorization

in Adversarial Training, in: International Conference on Learning Representa- 
tions, 2022 . https://openreview.net/forum?id=7gE9V9GBZaI . 

21] A.S. Ross, F. Doshi-Velez, Improving the Adversarial Robustness and Inter- 

pretability of Deep Neural Networks by Regularizing their Input Gradients, 
in: AAAI Conference on Artificial Intelligence, 2018, p. 10 . https://aaai.org/ocs/ 

index.php/AAAI/AAAI18/paper/view/17337 . 
22] S.-M. Moosavi-Dezfooli, A. Fawzi, J. Uesato, P. Frossard, Robustness via 

Curvature Regularization, and Vice Versa, in: Proceedings of the IEEE/CVF Con- 
ference on Computer Vision and Pattern Recognition, 2019, pp. 9078–9086 . 

https://openaccess.thecvf.com/content _ CVPR _ 2019/html/Moosavi-Dezfooli _ 

Robustness _ via _ Curvature _ Regularization _ and _ Vice _ Versa _ CVPR _ 2019 _ paper . 
23] C. Qin, J. Martens, S. Gowal, D. Krishnan, K. Dvijotham, A. Fawzi, S. De, R. Stan-

forth, P. Kohli, Adversarial Robustness through Local Linearization, in: 33rd 
Conference on Neural Information Processing Systems (NeurIPS 2019), 2019, 

p. 10 . 
24] C. Zhang, K. Zhang, A. Niu, C. Zhang, J. Feng, C.D. Yoo, I.S. Kweon, Noise

Augmentation Is All You Need For FGSM Fast Adversarial Training: Catas- 
trophic Overfitting And Robust Overfitting Require Different Augmentation, 

arXiv:2202.05488 [cs] (2022) . ArXiv: 2202.05488 

25] Y. Carmon, A. Raghunathan, L. Schmidt, J.C. Duchi, P.S. Liang, et al., Unlabeled 
Data Improves Adversarial Robustness, in: Advances in Neural Information Pro- 

cessing Systems, 2019, p. 12 . 
26] J.-B. Alayrac, J. Uesato, P.-S. Huang, A. Fawzi, R. Stanforth, P. Kohli, Are Labels 

Required for Improving Adversarial Robustness? in: 33rd Conference on Neural 
Information Processing Systems (NeurIPS 2019), 2019, p. 10 . 

https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1412.6572
https://doi.org/10.1016/j.patcog.2022.108889
https://www.sciencedirect.com/science/article/pii/S0031320322003703
https://papers.nips.cc/paper/2018/hash/f708f064faaf32a43e4d3c784e6af9ea-Abstract.html
http://refhub.elsevier.com/S0031-3203(22)00708-7/sbref0006
http://refhub.elsevier.com/S0031-3203(22)00708-7/sbref0007
http://arxiv.org/abs/2001.03994
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1705.07204
http://arxiv.org/abs/1802.00420
http://refhub.elsevier.com/S0031-3203(22)00708-7/sbref0013
http://refhub.elsevier.com/S0031-3203(22)00708-7/sbref0013
https://doi.org/10.1109/ICCV.2019.00673
https://ieeexplore.ieee.org/document/9009088/
http://arxiv.org/abs/1904.12843
http://refhub.elsevier.com/S0031-3203(22)00708-7/sbref0016
https://openreview.net/forum?id=qZzy5urZw9
https://doi.org/10.1609/aaai.v36i8.20817
https://ojs.aaai.org/index.php/AAAI/article/view/20817
https://papers.nips.cc/paper/2020/hash/1ef91c212e30e14bf125e9374262401f-Abstract.html
https://openreview.net/forum?id=7gE9V9GBZaI
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17337
https://openaccess.thecvf.com/content_CVPR_2019/html/Moosavi-Dezfooli_Robustness_via_Curvature_Regularization_and_Vice_Versa_CVPR_2019_paper
http://refhub.elsevier.com/S0031-3203(22)00708-7/sbref0023
http://refhub.elsevier.com/S0031-3203(22)00708-7/sbref0024
http://refhub.elsevier.com/S0031-3203(22)00708-7/sbref0024
http://refhub.elsevier.com/S0031-3203(22)00708-7/sbref0025
http://refhub.elsevier.com/S0031-3203(22)00708-7/sbref0026


L. Li and M. Spratling Pattern Recognition 136 (2023) 109229 

[

[

[

[

[

[  

[

[

[

[

[

L
c

K
t

M

o
c

t
C

a

27] C.-J. Simon-Gabriel, Y. Ollivier, L. Bottou, B. Schölkopf, D. Lopez-Paz, First- 
Order Adversarial Vulnerability of Neural Networks and Input Dimension, in: 

International Conference on Machine Learning, PMLR, 2019, pp. 5809–5817. 
http://proceedings.mlr.press/v97/simon-gabriel19a.html . ISSN: 2640-3498 

28] Z. Yao, A. Gholami, Q. Lei, K. Keutzer, M.W. Mahoney, Hessian-based Analysis of 
Large Batch Training and Robustness to Adversaries, in: Advances in Neural In- 

formation Processing Systems, volume 31, 2018, pp. 4 94 9–4 959 . https://papers. 
nips.cc/paper/2018/hash/102f0bb6efb3a6128a3c750dd16729be-Abstract.html . 

29] S. Singla, E. Wallace, S. Feng, S. Feizi, Understanding Impacts of High-Order 

Loss Approximations and Features in Deep Learning Interpretation, in: Pro- 
ceedings of the 36th International Conference on Machine Learning, 2019, 

pp. 5848–5856. http://proceedings.mlr.press/v97/singla19a.html . ISSN: 1938- 
7228 Section: Machine Learning 

30] D. Jakubovitz, R. Giryes, Improving DNN Robustness to Adversar- 
ial Attacks using Jacobian Regularization, in: Proceedings of the Eu- 

ropean Conference on Computer Vision (ECCV), 2018, pp. 514–529 . 

http://openaccess.thecvf.com/content _ ECCV _ 2018/html/Daniel _ Jakubovitz _ 
Improving _ DNN _ Robustness _ ECCV _ 2018 _ paper.html . 

31] Z. Yao, A. Gholami, K. Keutzer, M.W. Mahoney, PyHessian: Neural Networks 
Through the Lens of the Hessian, in: 2020 IEEE International Conference on Big 

Data (Big Data), 2020, pp. 581–590, doi: 10.1109/BigData50022.2020.9378171 . 
32] C. Liu, M. Salzmann, T. Lin, R. Tomioka, S. Süsstrunk, On the Loss Land-

scape of Adversarial Training: Identifying Challenges and How to Over- 

come Them, Advances in Neural Information Processing Systems, volume 33, 
2020 . https://proceedings.neurips.cc/paper/2020/hash/f56d8183992b6c54c92c 

16a8519a6e2b-Abstract.html . 
11
33] A. Krizhevsky, Learning multiple layers of features from tiny images, Technical 
Report, 2009 . 

34] K. He, X. Zhang, S. Ren, J. Sun, Identity Mappings in Deep Residual Networks, 
in: Proceedings of the European Conference on Computer Vision (ECCV), 2016 . 

http://arxiv.org/abs/1603.05027 . 
35] F. Croce, M. Hein, Reliable Evaluation of Adversarial Robustness with an En- 

semble of Diverse Parameter-free Attacks, in: Proceedings of the 37th Interna- 
tional Conference on Machine Learning, 2020, p. 11 . 

36] H. Kim, Torchattacks: A PyTorch Repository for Adversarial Attacks, 2021, 

ArXiv:2010.01950 [cs], 10.48550/arXiv.2010.01950 
37] Y. Le, X. Yang, Tiny imagenet visual recognition challenge, CS 231N 7 (7) (2015) 

3 . 

in Li received a M.Sc. degree in computing from Imperial College London. He is 
urrently a Ph.D. student in computer science at the Department of Informatics, 

ing’s College London. His research interest includes adversarial robustness and in- 
erpretability of deep learning 

ichael Spratling received a B.Eng. degree in engineering science from Loughbor- 

ugh University and M.Sc. and Ph.D. degrees in artificial intelligence and neural 
omputation from the University of Edinburgh. He is currently Reader in Compu- 

ational Neuroscience and Visual Cognition at the Department of Informatics, King’s 
ollege London. His research is concerned with understanding the computational 

nd neural mechanisms underlying visual perception 

http://proceedings.mlr.press/v97/simon-gabriel19a.html
https://papers.nips.cc/paper/2018/hash/102f0bb6efb3a6128a3c750dd16729be-Abstract.html
http://proceedings.mlr.press/v97/singla19a.html
http://openaccess.thecvf.com/content_ECCV_2018/html/Daniel_Jakubovitz_Improving_DNN_Robustness_ECCV_2018_paper.html
https://doi.org/10.1109/BigData50022.2020.9378171
https://proceedings.neurips.cc/paper/2020/hash/f56d8183992b6c54c92c16a8519a6e2b-Abstract.html
http://refhub.elsevier.com/S0031-3203(22)00708-7/sbref0033
http://arxiv.org/abs/1603.05027
http://refhub.elsevier.com/S0031-3203(22)00708-7/sbref0035
http://refhub.elsevier.com/S0031-3203(22)00708-7/sbref0037

	Understanding and combating robust overfitting via input loss landscape analysis and regularization
	1 Introduction
	2 Related work
	3 Revisiting the formulation of adversarial attack and training
	3.1 The effectiveness of adversarial attack
	3.2 Relating adversarial gradient regularization to attack effectiveness

	4 The causes of robust overfitting
	4.1 Robust overfitting from clean optimization
	4.2 Regularizing gradients to mitigate overfitting
	4.3 Relaxed gradient regularization in AT

	5 Combating robust overfitting
	5.1 Benchmarking the proposed regularizer
	5.2 Accuracy and robustness
	5.3 Efficiency
	5.4 Generalisation
	5.5 Ablation analysis

	6 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	Appendix A Empirical verification of approximations
	A1 PGD convergence
	A2 HS validity
	A3 Sampling faithfulness

	References


