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Abstract

In this thesis we examine homogeneous spaces from the viewpoint of spin geometry, with a

particular focus on the existence (or non-existence) of special spinor fields and their corresponding

geometric structures. Recalling that a reductive homogeneous space M = G/H has an elegant

description of its geometrically relevant bundles (e.g. the tangent bundle, frame bundle, bundles

of tensors and differential forms, etc.) as homogeneous bundles associated to the H-principal

bundle G→ G/H, the natural objects of study are the (G-)invariant sections of these bundles.

Under certain topological conditions on the isotropy representation, there exists a G-invariant

spin structure and associated spinor bundle onM = G/H (see [DKL22, Prop. 1.3]), and we shall

be interested in the invariant sections of the latter. By working at the origin o = eH ∈ G/H,

finding invariant objects can be reduced to a purely representation-theoretic problem, which we

approach using various results from classical invariant theory, among other methods.

Chapter 3 is devoted to the exposition of [AHL23] (joint work with I. Agricola and M.-A. Lawn),

where we have obtained a classification of the invariant spinors on the nine realizations of the

sphere as a Riemannian homogeneous space. Partial results for a few of the simpler cases have

appeared in, or may be deduced from, [Wan89], however a full classification and description of

the invariant spinors and their related geometric structures has before now not been attempted.

In each case we give an explicit basis for the space of invariant spinors, using the realization of

the spin representation in terms of exterior forms, and describe the differential equations they

satisfy (e.g. Killing, generalized Killing, etc.). Notably, we construct (to our knowledge) the first

examples of generalized Killing spinors whose associated endomorphism field has four distinct

eigenvalues. Where relevant, we also explore the relationships between the invariant spinors

and certain invariant tensors and differential forms (and their related G-structures); these are

compared with known results from the literature.
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Chapter 4 presents the work [Hof22], which deals mainly with invariant spinors on homogeneous

3-Sasakian spaces, (M = G/H, g, ξi, ηi, φi)
3
i=1. The dimensions of the spaces of invariant forms

of degree ≤ 3 on these spaces have appeared already in [DOP20]. We build on this to obtain a

complete description of the invariant φ1-(anti-)holomorphic differential forms of all degrees, as

well as an explicit description of the space of invariant spinors, which to the author’s knowledge

has never appeared beyond the isolated case of Sp(n)/ Sp(n− 1) treated in [AHL23]. We show

that the invariant spinors are spanned by the Clifford products of invariant differential forms

with a certain invariant Killing spinor. It is well-known that a simply-connected 3-Sasakian

manifold of dimension 4n− 1 admits n+ 1 linearly independent Killing spinors [Bär93], and

a partial construction of these spinors as sections of certain subbundles E−
i , i = 1, 2, 3 of the

spinor bundle is given in [FK90], however this description is incomplete for spaces of dimension

> 19. We complete this description in the homogeneous case, giving an explicit basis for the

space of Killing spinors carried by a homogeneous 3-Sasakian space. It follows from our result

that any Killing spinor on a homogeneous 3-Sasakian space is invariant.

Chapters 5 and 6 are based on joint work with I. Agricola. We consider 3-(α, δ)-Sasaki spaces,

which can be viewed as deformations of 3-Sasakian spaces [AD20]. The first half of the chapter

contains a novel examination of the behaviour of certain Killing spinors on 3-Sasakian spaces

under such deformations; we give a detailed proof of the new spinorial field equation satisfied

by the deformed Killing spinors on the resulting 3-(α, δ)-Sasaki space. The second half of the

chapter studies the dual compact/non-compact pairs of homogeneous 3-(α, δ)-Sasaki spaces

described in [ADS21, Remark 3.1.1c]. We modify the dualization construction of Kath in [Kat00]

to obtain an identification of the spinor bundles for these dual pairs, and show that there is a

natural correspondence between deformed Killing spinors on the two spaces.



Statement of Originality

The work presented in this thesis is my own except where explicitly noted otherwise, and all

joint work is clearly indicated on page 8. Parts of this thesis have previously appeared in

[AHL23, Hof22].
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Breakdown of Joint Work

Chapter 3 is based on [AHL23], which is joint work with Prof. Dr. habil. Ilka Agricola and

Dr. Marie-Amélie Lawn. The idea to study spinors using the exterior forms approach was

due to Dr. Lawn, and the body of the paper was written by me, with the exception of: the

introduction, abstract, Section 4.1, Remark 5.9, and certain parts of the preliminaries section,

which were written by Dr. Lawn; and Remark 5.3, the paragraph before Proposition 3.4, and

the paragraph after Proposition 4.7, which were written by Prof. Agricola. These parts are

not included directly in this thesis (rather, they are cited as needed). Prof. Agricola and Dr.

Lawn also proposed extensive revisions to the initial drafts and provided valuable references

and historical insights on the topic.

Chapters 5 and 6 are based on joint work with Prof. Dr. habil. Ilka Agricola. The idea to

study deformations of Killing spinors in the 3-(α, δ)-Sasaki setting and their associated dual

spinors was due to Prof. Agricola, and the calculations and writing were carried out by me, with

extensive revisions of initial drafts proposed by Prof. Agricola.
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1
Introduction

The existence of special spinor fields on a Riemannian manifold efficiently encodes a great

deal of geometric information, and is relevant, for example, to the study of immersion theory,

Einstein metrics, holonomy theory, and G-structures, among others [Fri98, Wan89, Bär93, Fri80,

ACFH15]. The most extensively investigated special spinors are the real Riemannian Killing

spinors, i.e. those satisfying the differential equation ∇g
Xψ = ±1

2
X · ψ for any vector field X,

whose existence places strong constraints on the geometry of the underlying manifold. Indeed,

it was shown by Friedrich in [Fri80] that Killing spinors are eigenspinors realizing the lower

bound for eigenvalues of the Dirac operator, and that any manifold carrying such spinors is

Einstein with scalar curvature R = n(n− 1). The classification of complete simply connected

manifolds with real Killing spinors was subsequently accomplished by Bär in [Bär93], where it

was shown that they correspond to parallel spinors (or equivalently, to a reduction of holonomy)

on the metric cone. Comparing with Wang’s classification of geometries carrying parallel spinors

[Wan89], one sees that Killing spinors are in fact somewhat rare and, beyond isolated cases

in dimensions 6 and 7, are carried only by Riemannian manifolds (M2n−1, g) such that the

holonomy of the metric cone (M×R, g+r2dr) reduces to a subgroup of SU(n) or Sp(n/2). These

are precisely the round spheres, Einstein-Sasakian and 3-Sasakian manifolds (see e.g. [BG99]),

and these spaces play an outsized role in spin geometry. Importantly, 3-Sasakian manifolds may

be considered in full generality from the perspective of spin geometry due to Kuo’s result that

they admit a reduction of the structure group of the tangent bundle to the simply-connected

subgroup {1} × Sp(n− 1) of SO(4n− 4) and hence are necessarily spin [Kuo70]. Similarly, it is

well-known that simply-connected Einstein-Sasakian manifolds and spheres of any dimension

are spin (see e.g. [LM89, BG99]). Chapters 3 and 4 of this thesis are devoted to the study of

these three classes of manifolds from the spinorial viewpoint, with a particular focus on the

extent to which their global geometric structures are determined by their spinors. Chapters

9
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5 and 6 examine the behaviour of Killing spinors under deformations of 3-Sasakian metrics

to 3-(α, δ)-Sasaki metrics, and how the resulting deformed Killing spinors behave under the

duality between positive (αδ > 0) and negative (αδ < 0) homogeneous 3-(α, δ)-Sasaki spaces

fibering over Wolf spaces.

Spheres:

The spinorial properties of round spheres have been studied for some time now. Strikingly, their

spinor bundles may be trivialized by a basis of Riemannian Killing spinors for either of the

constants ±1
2
(see e.g. [CGLS86, Prop. 11, Cor. 2], the latter of which is credited to J. Rawnsley

by the authors of that paper), and for an explicit construction in stereographic coordinates of

these Killing spinors, see e.g. Example 2 on p. 37 of [BFGK91]. This starkly contrasts with the

behaviour of the tangent bundles of these spheres, which fail to admit even a single non-vanishing

vector field in even dimensions (due to the Hairy Ball Theorem), emphasizing the power of

the spin geometry approach to capture geometric information otherwise unavailable via the

usual tensorial approach to geometry. Indeed, spheres constitute one of the most basic classes

of spin manifolds, however, apart from Killing spinors on round spheres, very little is known

about them from the perspective of spin geometry. Moroianu and Semmelmann approached

this issue in [MS14a, MS14b] by investigating, for the cases of round spheres and Einstein

manifolds, the so-called generalized Killing equation: ∇g
Xψ = A(X) · ψ for any vector field X,

where A ∈ Sym2(TM) denotes a symmetric endomorphism field. They showed that in certain

dimensions any generalized Killing spinor on a round sphere is in fact a Killing spinor (i.e. the

endomorphism A is a multiple of the identity), and gave a description of the case where the

endomorphism A has precisely two distinct eigenvalues. In Chapter 3 we approach the issue

from a different angle, focusing instead on non-round metrics. Specifically, we specialize to the

case of homogeneous spheres, which Montgomery and Samelson showed in [MS43] are limited

Lie group Manifold Isotropy Subgroup Invariant Spin Structure ([DKL22])

SO(n) Sn−1 SO(n− 1) No
U(n) S2n−1 U(n− 1) No
SU(n) S2n−1 SU(n− 1) Yes
Sp(n) S4n−1 Sp(n− 1) Yes
Sp(n) Sp(1) S4n−1 Sp(n− 1) Sp(1) n even
Sp(n)U(1) S4n−1 Sp(n− 1)U(1) n even
G2 S6 SU(3) Yes
Spin(7) S7 G2 Yes
Spin(9) S15 Spin(7) Yes

Table 1.1: Homogeneous Spheres and Invariant Spin Structures
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to a relatively short list of possibilities (see Table 1.1).

The invariant spin structures on homogeneous spheres were classified by Daura Serrano, Kohn,

and Lawn in [DKL22] (see the final column of Table 1.1 above), and we build upon this using

representation-theoretic arguments to obtain a classification of the invariant spinors carried by

these spaces and a description of the related geometries. Additionally, we note that many of

these invariant spinors are generalized Killing spinors, which are interesting from the perspective

of immersion theory [Fri98]. Our findings are summarized in the following theorem:

Theorem. The dimension of the space of invariant spinors for each realization of the sphere as

a homogeneous space is given in Table 1.2. For the realizations admitting non-trivial invariant

spinors, we find:

(1) A pair of linearly independent generalized Killing spinors with two eigenvalues on (S2n−1 =

SU(n)/ SU(n− 1), ga,b), and a related invariant α-Sasakian structure for α =
√
an

2b
√
n−1

;

(2) A 2n-dimensional space of invariant spinors on (S4n−1 = Sp(n)/ Sp(n− 1), ga⃗), expressed in

terms of the structure tensors of the invariant 3-Sasakian structure;

• For n = 2, four linearly independent invariant generalized Killing spinors with four

eigenvalues;

(3) A generalized Killing spinor with two eigenvalues on (S7 = Sp(2) Sp(1)/ Sp(1) Sp(1), ga,b);

(4) An invariant α-Sasakian structure on (S4n−1 = Sp(n)U(1)/ Sp(n− 1)U(1), ga,b,c) for α =

a
bΩ

= a
2cΩ

, together with a pair of linearly independent invariant spinors not associated to

the α-Sasakian structure and which, for n > 2 are not generalized Killing spinors;

• For n = 2, a pair of linearly independent invariant generalized Killing spinors with

three eigenvalues;

(5) An invariant Killing spinor (resp. a pair of linearly independent invariant Killing spinors)

on the round sphere S6 = G2 / SU(3) (resp. the round sphere S7 = Spin(7)/G2);

(6) An invariant spinor on (S15 = Spin(9)/ Spin(7), ga,b) satisfying a differential equation

depending on the 3-form determined by the spinor via the squaring construction.

Finally, we investigate these spheres within the context of non-integrable geometries and adapted

connections. Roughly speaking, non-integrable geometries are given by G-structures which

the Levi-Civita connection fails to preserve under parallel transport, and it is well-known that

such structures are closely related to the existence of special spinors in low dimensions (see e.g.
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[FKMS97, Iva04, CS07, ACFH15]). As such, the Levi-Civita connection is poorly adapted to

the G-geometry, necessitating instead the use of other, more compatible, connections. In this

vein, the existence of a so-called characteristic connection, i.e. a metric G-connection with totally

skew-symmetric torsion tensor, has by now been thoroughly studied for many different groups

G (see e.g. [FI02, Iva04, Agr06]). Similarly, for homogeneous spaces, a particularly useful choice

is the Ambrose-Singer connection, whose parallel sections correspond to G-invariant objects;

indeed this connection coincides with the Levi-Civita connection in the case of symmetric spaces,

allowing us to view homogeneous geometries as a torsion analogue of symmetric geometries. For

each of the cases in Table 1.1 we find the Ambrose-Singer connection (by explicitly calculating

its torsion tensor), determine the torsion type, and discuss the relationship of its parallel spinors

with the non-integrable geometries in Table 1.2.

Lie group dimC Σinv Notable Spinors Geometric Structures

SO(n) 0
U(n) 0

SU(n) 2 generalized Killing α-Sasakian (α =
√
an

2b
√
n−1

)

Sp(n) 2n deformed Killing 3-(α, δ)-Sasaki
Sp(n) Sp(1) 1 (n = 2), 0 (n ̸= 2) generalized Killing (n = 2) co-calibrated G2 (n = 2)
Sp(n)U(1) 2 (n even), 0 (n odd) generalized Killing (n = 2) α-Sasakian ( a

bΩ
= a

2cΩ
= α)

G2 2 Killing nearly Kähler
Spin(7) 1 Killing nearly parallel G2

Spin(9) 1

Table 1.2: Invariant Spinors and Geometric Structures on Homogeneous Spheres

Throughout the chapter we shall refer to Hermitian and quaternionic spheres; we would like to

clarify that this refers not to Hermitian or quaternionic structures on the spheres themselves

but rather the fact that they are realized as homogeneous spaces via the action of a group on a

Hermitian or quaternionic vector space.

3-Sasakian Manifolds:

In Chapter 4 we shed new light on the correspondence between (3-)Sasakian structures and

Killing spinors by giving an explicit construction of the former in terms of the latter:

Theorem. Let (M, g) be a Riemannian spin manifold carrying a pair ψ1, ψ2 of Killing spinors

(resp. four Killing spinors ψ1, ψ2, ψ3, ψ4) for the same Killing number λ ∈ {1
2
, −1

2
}. If the vector

field ξψ1,ψ2 defined by the equation

g(ξψ1,ψ2 , X) := ℜ⟨ψ1, X · ψ2⟩



13

for all X ∈ TM has locally constant non-zero length (resp. if the vector fields ξψ1,ψ2 , ξψ3,ψ4

are orthogonal and have locally constant non-zero lengths), then this vector field determines

a Sasakian structure on M (resp. these vector fields determine a 3-Sasakian structure on M).

Conversely, any Einstein-Sasakian (resp. 3-Sasakian) structure on a simply-connected manifold

arises by this construction.

Using a new argument valid in all dimensions, this theorem generalizes previous results of

Friedrich and Kath in dimensions 5 and 7 [FK88, FK89, FK90], which were proved by employing

certain special spinorial properties occuring in these dimensions.

In the latter sections of Chapter 4 we concern ourselves mainly with 3-Sasakian manifolds, which

initially appeared over fifty years ago in [Kuo70, Udr69], among others. Notable milestones

in the subject include Konishi’s construction of 3-Sasakian structures on certain principal

SO(3)-bundles over quaternionic Kähler manifolds of positive scalar curvature [Kon75], and

the result that, if the Reeb vector fields are complete, then the leaf space of the associated

3-dimensional foliation is a quaternionic Kähler orbifold [BGM94]. Indeed, these results show

that 3-Sasakian manifolds lie between quaternionic Kähler geometries below and hyperKähler

geometries above, emphasizing the fact that they provide natural examples of interesting odd

dimensional quaternionic geometries.

Previous work on 3-Sasakian manifolds from the spinorial perspective includes e.g. [FK90, AF10],

which give a thorough and elegant accounting of the situation in dimension 7, however until now

very little is known about these spaces in higher dimensions. In Chapters 4.2, 4.3, and 4.4 of

this thesis we provide, in arbitrary dimension, a detailed spinorial picture of the homogeneous

3-Sasakian spaces, which were classified in [BGM94]. Using Kuo’s Sp(n− 1)-reduction together

with the description of these spaces in terms of 3-Sasakian data in [DOP20], we apply our new

invariant theoretic approach developed in [AHL23, Section 4.1] to give a classification of the

invariant spinors:

Theorem. For a homogeneous 3-Sasakian manifold (M4n−1 = G/H, g, ξi, ηi, φi), the space of

invariant spinors forms an algebra under the wedge product, and is isomorphic to the algebra of

invariant φ1-anti-holomorphic differential forms,

Σinv ≃ Λ0,•
inv(T

∗
CM).

Furthermore, this algebra is generated by the forms y1 :=
1√
2
(ξ2+iξ3) and ω := −1

2
(Φ2|H+iΦ3|H),

where Φi := g(−, φi(−)).
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Finally, we use this to give a complete description of the invariant Killing spinors on homogeneous

3-Sasakian spaces. Indeed, a partial construction of the Killing spinors on 3-Sasakian manifolds

is given in [FK90] as sections of certain rank two subbundles of the spinor bundle, however this

description can produce at most six linearly independent Killing spinors and is thus incomplete

for spaces of dimension > 19. In Chapter 4.4 we resolve this issue in the homogeneous setting,

obtaining the following result:

Theorem. If n ≥ 2 then the space of invariant Killing spinors on a simply-connected homoge-

neous 3-Sasakian manifold (M4n−1 = G/H, g, ξi, ηi, φi) has a basis given by

ψk := ωk+1 − i(k + 1)y1 ∧ ωk, −1 ≤ k ≤ n− 1,

where we use the conventions ω−1 = 0 and ω0 = 1. If n = 1 then the space of invariant Killing

spinors has a basis given by 1, y1. Furthermore, if (M, g) ≇ (S4n−1, ground) then any Killing

spinor is invariant.

As a consequence, we deduce explicit formulas for the Killing spinors which recover the homoge-

neous 3-Sasakian strucuture via the preceding construction.

3-(α, δ)-Sasaki Manifolds:

In Chapters 5 and 6 we investigate the spinorial properties of 3-(α, δ)-Sasaki manifolds–a

new class of almost 3-contact manifolds introduced by Agricola and Dileo in [AD20], which

encapsulate in a single framework the notion of 3-(α-)Sasakian structures and the quaternionic

Heisenberg group, among others. In general 3-(α, δ)-Sasaki manifolds are not Einstein (see

[AD20, Prop. 2.3.3]) and hence do not admit Riemannian Killing spinors, however by viewing

such structures as deformations of 3-Sasakian structures by the two real parameters α, δ, we

prove in Chapter 5 that 3-(α, δ)-Sasaki manifolds admit spinors satisfying a certain deformed

Killing equation:

Theorem. Any 3-(α, δ)-Sasaki manifold (M, g, φi, ξi, ηi) carries at least two linearly independent

spinors satisfying

∇g
Xψ =

α

2
X · ψ +

α− δ

2

3∑
p=1

ηp(X)Φp · ψ for all X ∈ TM.

Next we focus on the homogeneous case; specifically, the duality between compact and non-

compact homogeneous 3-(α, δ)-Sasaki spaces fibering over a symmetric base (see [ADS21, Remark
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3.1.1]). Their construction exploits the duality between compact and non-compact symmetric

spaces to obtain a notion of duality for the total spaces of the fibrations, and is similar to

Kath’s T -duality construction for Riemannian/pseudo-Riemannian pairs [Kat00]. In Chapter 6

we build upon Kath’s construction to examine the relationship between the deformed Killing

spinors of a compact/non-compact homogeneous 3-(α, δ)-Sasaki dual pair, and find that they

correspond in a one-to-one manner:

Theorem. Suppose that M and M ′ are a dual pair of homogeneous 3-(α, δ)-Sasaki spaces

of dimension 4n− 1, and identify the spinor modules Σ ∼= Σ′ ∼= Λ•C2n−1. If ψ is an invariant

spinor satisfying the deformed Killing equation

∇g
Xψ =

α

2
X · ψ +

α− δ

2

3∑
i=1

ηi(X)Φi · ψ for all X ∈ TM,

then the corresponding spinor ψ′ onM ′ is also invariant and satisfies the corresponding deformed

Killing equation

∇g′

Xψ
′ =

α′

2
X · ψ′ +

α′ − δ′

2

3∑
i=1

η′i(X)Φ′
i · ψ′ for all X ∈ TM,

where α′ := α, δ′ := −δ.

This result generalizes Kath’s correspondence between Killing spinors on T -dual pairs [Kat00],

and emphasizes that our notion of deformed Killing spinors is a natural one. Finally, we

examine in detail the situation in dimension 7, and determine the behaviour under the duality

construction of the canonical and auxiliary spinors ψ0, ψi := ξi · ψ0, i = 1, 2, 3 introduced in

[AF10, AD20].
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2
Preliminaries

In this chapter we give basic definitions and background related to the spin representation,

spinors on homogeneous spaces, and (homogeneous) Sasakian, 3-Sasakian, and 3-(α, δ)-Sasaki

structures. For a thorough introduction to these topics, among others, we recommend [LM89,

BFGK91, BGM94, BG99, Fri00, BG08, AD20, DOP20].

2.1 The Spin Representation via Exterior Forms

Throughout this thesis we shall make use of the realization of the spin representation in terms of

exterior forms. This realization is well-known in the context of representation theory, however

its application to spin geometry and the study of spinors has not yet been widely adopted

outside of [CGLS86, Wan89]. For a detailed description of this construction we refer the reader

to [GW09, Chapter 6.1.2] (beware their different convention for the Clifford relation), and for

its application to spinorial calculations on homogeneous spaces see [AHL23]. We briefly recall

here the basic definitions and properties insofar as they relate to this work.

Let (V = R2n−1, g) be the standard Euclidean inner product space and {e1, . . . , e2n−1} the usual

orthonormal basis. Letting φ : V → V denote the almost complex structure on (Re1)⊥ given by

φ(e2j) = e2j+1, φ(e2j+1) = −e2j,

the complexification of V can be written as a direct sum

V C = C0 ⊕ L⊕ L′, (2.1)

where C0 := Ce1 and L (resp. L′) denotes the space of φ-holomorphic (resp. φ-anti-holomorphic)

17
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vectors. Explicitly, these spaces are given by

L := spanC{xj :=
1√
2
(e2j − ie2j+1)}n−1

j=1 , L′ := spanC{yj :=
1√
2
(e2j + ie2j+1)}n−1

j=1 . (2.2)

Letting u0 := ie1, we define an action of V on the algebra Σ := Λ•L′ of φ-anti-holomorphic

forms via

u0 := − Id|Σeven + Id|Σodd , xj · η := i
√
2 xj⌟η, yj · η := i

√
2 yj ∧ η, (2.3)

where Σeven and Σodd denote the even and odd graded parts of Σ = Λ•L′. Recalling the definition

of the complex Clifford algebra,

Cl(V C, gC) := T (V C)/(v ⊗ w + w ⊗ v = −2gC(v, w)1),

one easily verifies using the identities (5.43) in [GW09] that the action (2.3) descends to a

representation of Cl(V C, gC) on Σ. Solving for the real orthonormal basis vectors e1, . . . , e2n−1

in (2.2) gives

e1 = −iu0, e2j =
1√
2
(xj + yj), e2j+1 =

−i√
2
(yj − xj), ∀ j = 1, . . . , n− 1,

and the corresponding action on Σ (i.e. the Clifford multiplication) is given by

e1 = i Id|Σeven − i Id|Σodd , e2j · η = i(xj⌟η + yj ∧ η), e2j+1 · η = (yj ∧ η − xj⌟η), (2.4)

for all η ∈ Σ. We also note that there is an equivalent realization of this representation in terms

of Kronecker products. Indeed, if we define subspaces Uj := Λ•Cyj = C1⊕ Cyj of the spinor

module Σ then we have

Σ = Λ•L′ = Λ•(Cy1 ⊕ · · · ⊕ Cyl) ∼= U1 ∧ · · · ∧ Ul,

giving the vector space isomorphism

Σ ∼= U1 ⊗ · · · ⊗ Ul.

Explicitly, this isomorphism is given by identifying yj1 ∧ · · · ∧ yjp ∈ Λ•L′ with u1 ⊗ · · · ⊗ ul ∈



19 2.1. The Spin Representation via Exterior Forms

U1 ⊗ · · · ⊗ Ul, where

uj :=

yj if j ∈ {j1, . . . , jp},

1 if j /∈ {j1, . . . , jp}.

Under this identification we have

End(Σ) ∼= End(U1)⊗ · · · ⊗ End(Ul).

With the choice of ordered bases {1, yj} for the Uj, the representation (2.3) of Cl(V C, gC) is

realized by the Kronecker products

u0 7→ −H ⊗ · · · ⊗H,

xj 7→ i
√
2 H ⊗ · · · ⊗H ⊗

0 1

0 0


︸ ︷︷ ︸
jth place

⊗Id⊗ · · · ⊗ Id,

yj 7→ i
√
2 H ⊗ · · · ⊗H ⊗

0 0

1 0


︸ ︷︷ ︸
jth place

⊗Id⊗ · · · ⊗ Id,

where H := diag[1,−1]. The corresponding operators associated to the real orthonormal basis

e1, . . . , en are

e1 7→ i H ⊗ · · · ⊗H,

e2j 7→ i H ⊗ · · · ⊗H ⊗

0 1

1 0


︸ ︷︷ ︸
jth place

⊗Id⊗ · · · ⊗ Id,

e2j+1 7→ H ⊗ · · · ⊗H ⊗

0 −1

1 0


︸ ︷︷ ︸
jth place

⊗Id⊗ · · · ⊗ Id.

Remark 2.1.1. In odd dimensions there is another inequivalent irreducible representation of

the Clifford algebra, obtained by replacing the action of u0 in (2.3) with u0 := Id|Σeven − Id|Σodd .

The corresponding operator for the real orthonormal basis vector is

e2l+1 = −i Id|Σeven + i Id|Σodd ,
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and, in the Kronecker product setting,

u0 7→ H ⊗ · · · ⊗H, e2l+1 7→ −iH ⊗ · · · ⊗H.

In this thesis we will always use the representation described in (2.3).

Remark 2.1.2. It is possible to similarly define the spin representation for even dimensional

spaces by deleting the C0 factor in the decomposition (2.1) and the corresponding operators u0,

e1 in (2.3) and (2.4).

2.2 Spinors on Homogeneous Spaces

Let M = G/H be a reductive homogeneous space for a semisimple group G, and fix a reductive

decomposition g = h⊕⊥ m which is orthogonal with respect to the Killing form on g. In this

section we review the construction of some geometrically relevant bundles as homogeneous

bundles associated to the projection G→ G/H. For a more detailed introduction to reductive

homogeneous spaces we refer to [Arv03], and for examples illustrating the process of finding

invariant spinors we recommend [BFGK91, Chapters 4.5, 5.4].

Letting π : G→ G/H denote the projection map, the tangent space ToM at the origin o := eH

is naturally identified with m ∼= ker deπ. The other tangent spaces are therefore obtained by

displacements of m under the isometries in G, leading to the realization of the tangent bundle

as a homogeneous bundle via

TM = G×Ad|H m,

where π : G → G/H is viewed as a principal H-bundle. The natural representation of

H = StabG(o) on ToM (by letting h ∈ H act via dho : ToM → ToM) is called the isotropy

representation, and it is isomorphic to the restricted adjoint representation AdH : H → GL(m),

h 7→ Ad(h)|m. Under this identification, an invariant Riemannian metric on M correponds to

a inner product g : m×m → R with the property that Ad|H(H) ⊆ SO(m, g) ⊆ GL(m); for an

invariant metric, the oriented frame bundle is then given as a homogeneous bundle via

PSO = G×Ad|H SO(m, g).

Suppose now that there exists a lift of the isotropy representation to the spin group, i.e. a group

homomorphism Ãd|H such that the diagram in Figure 2.1 commutes. Such a lift induces a spin
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Spin(m, g)

H SO(m, g)

2:1
Ãd|H

Ad|H

Figure 2.1: Homogeneous Spin Structure

structure and spinor bundle as homogeneous bundles via

PSpin := G×
Ãd|H

Spin(m, g), ΣM := PSpin ×σ Σ = G×
σ◦Ãd|H

Σ, (2.5)

where σ : Spin(m) → Aut(Σ) denotes the spin representation. Furthermore, for a connected

isotropy group H, this was shown to be the unique G-invariant spin structure on M = G/H by

Daura Serrano, Kohn, and Lawn in [DKL22] (see also the earlier works [CG88, HS90], which

consider certain special cases). For the cases in Table 1.1 which don’t admit invariant spin

structures, we consider instead (and without further mention) the double coverings described in

the closing remarks of [DKL22], which do admit invariant spin structures. We note that the

corresponding group actions on the sphere are non-effective, however the calculations in Chapter

3 are done at the Lie algebra level and are therefore not affected.

In Chapters 4, 5, and 6 of this thesis we shall mainly be concerned with 3-Sasakian and

3-(α, δ)-Sasaki spaces, which are necessarily spin due to Kuo’s reduction of the structure group

of the tangent bundle to the (simply-connected) symplectic group of the horizontal distribution

[Kuo70, Thm. 5]. For a simply-connected homogeneous 3-Sasakian or 3-(α, δ)-Sasaki space,

denote by m = mV ⊕mH the splitting into vertical and horizontal distributions. Invariance of

the structure tensors implies that the image of H under the isotropy representation is contained

in the above reduction, i.e.

Ad|H(H) ⊆ {1} × Sp(mH) ⊆ SO(m),

and one therefore obtains a (unique) lifting of the isotropy representation and the associated

G-invariant spin structure as above. Throughout the thesis we will always use this invariant

spin structure when considering simply-connected homogeneous 3-Sasakian and 3-(α, δ)-Sasaki

spaces.

In light of the associated bundle construction of the spinor bundle in (2.5), spinors are identified
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with H-equivariant maps φ : G→ Σ, i.e. maps satisfying

φ(gh) = ∆ ◦ Ãd|H(h−1) · φ(g) ∀g ∈ G, h ∈ H. (2.6)

The G-invariant spinors correspond precisely to the constant H-equivariant maps φ : G→ Σ,

and we denote by Σinv ⊆ ΣM the subbundle of such spinors. Equivalently, it follows from (2.6)

that invariant spinors correspond to trivial subrepresentations of σ ◦ Ãd|H : H → GL(Σ).

One may similarly realize the bundles of k-tensors and differential k-forms onM as homogeneous

bundles via

⊗kTM = G×(Ad|H)⊗k m⊗k, ΛkTM = G×Λk(Ad|H) Λ
km,

and invariant sections then correspond to trivial H-subrepresentations of m⊗k and Λkm respec-

tively. The representation theoretic problem of finding trivial subrepresentations is approached

in this thesis using results from classical invariant theory, together with computer calculations

in LiE ([LCL88]) for certain cases involving the exceptional Lie groups.

Finally, we have the following definition which is valid for any spin manifold (not necessarily

homogeneous):

Definition 2.2.1. A spinor ψ on a Riemannian spin manifold (M, g) is called a (Riemannian)

Killing spinor for the constant λ ∈ C if it satisfies

∇g
Xψ = λX · ψ for all X ∈ TM.

It is a remarkable result of Friedrich that the existence of a non-trivial Killing spinor on a

connected spin manifold (Mn, g) implies that the metric is Einstein and has scalar curvature

R = 4n(n− 1)λ2 (see [Fri80, BFGK91]). We shall refer interhangeably to Riemannian Killing

spinors and Killing spinors, and, unless otherwise stated, we will only consider real Killing

spinors (i.e. those with λ ∈ R) in this thesis. By rescaling the metric if necessary, one can

assume that any (non-parallel) real Killing spinor has λ = ±1
2
.

2.3 Sasakian and 3-Sasakian Structures

Let us briefly define Sasakian and 3-Sasakian structures and discuss some of their properties,

following the exposition in [BGM94].
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Definition 2.3.1. A Sasakian structure on a Riemannian manifold (M, g) is a unit length

Killing vector field ξ such that the endomorphism field φ := −∇gξ satisfies

(∇g
Xφ)(Y ) = g(X, Y )ξ − η(Y )X

for all X, Y ∈ TM (where ∇g denotes the Levi-Civita connection). It is customary to denote a

Sasakian structure by (M, g, ξ, η, φ), where η := ξ♭. The vertical and horizontal distributions

are defined by

V := Rξ, H := ker η,

and the vector field ξ is called the Reeb vector field. The fundamental 2-form is defined by

Φ(X, Y ) := g(X,φ(Y )) ∀X, Y ∈ TM.

Here we collect several basic properties of Sasakian manifolds:

Proposition 2.3.2. (Based on [BGM94, Prop. 2.2]). If (M, g, ξ, η, φ) is a Sasakian manifold,

then

φ2 = − Id+η ⊗ ξ, η(ξ) = 1, φ(ξ) = 0, Im(φ) ⊆ H, dη = 2Φ,

0 = Nφ(X, Y ) := [φ(X), φ(Y )] + φ2[X, Y ]− φ[φ(X), Y ]− φ[X,φ(Y )] + dη(X, Y )ξ,

0 = g(φ(X), Y ) + g(X,φ(Y )), g(φ(X), φ(Y )) = g(X, Y )− η(X)η(Y ),

for all X, Y ∈ TM .

In a similar spirit, we have the notion of a 3-Sasakian structure, which consists of three orthogonal

Sasakian structures whose Reeb vector fields satisfy the relations of the imaginary quaternions

under the Lie bracket:

Definition 2.3.3. A 3-Sasakian structure on a Riemannian manifold (M, g) consists of three

Sasakian structures (g, ξi, ηi, φi), i = 1, 2, 3 such that the Reeb vector fields ξi, i = 1, 2, 3 are

orthogonal and satisfy

[ξi, ξj] = 2ξk

for any even permutation (i, j, k) of (1, 2, 3). It is customary to denote a 3-Sasakian structure by

(M, g, ξi, ηi, φi), omitting the “i = 1, 2, 3”. The vertical and horizontal distributions are defined
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by

V := spanR{ξi}i=1,2,3, H := ∩i=1,2,3 ker(ηi),

and the vector fields ξi, i = 1, 2, 3 are called the Reeb vector fields. The fundamental 2-forms

are defined by

Φi(X, Y ) := g(X,φi(Y )) ∀X, Y ∈ TM.

In addition to the identities in Proposition 2.3.2, the tensors defining a 3-Sasakian structure

satisfy certain “pseudo-quaternionic” compatibility relations:

Proposition 2.3.4. (Based on [BGM94, Eqn. (2.4)] and [AD20, Eqn. (1.5)]). If (M, g, ξi, ηi, φi)

is a 3-Sasakian manifold, then

φi = φj ◦ φk − ηk ⊗ ξj = −φk ◦ φj + ηj ⊗ ξk

φi(ξj) = −φj(ξi) = ξk, ηi = ηj ◦ φk = −ηk ◦ φj,

for any even permutation (i, j, k) of (1, 2, 3).

Remark 2.3.5. Just as any two of i, j, k ∈ H generate the third, one sees that any two Sasakian

structures with orthogonal Reeb vector fields generate a 3-Sasakian structure (see e.g. [FK90, p.

556]).

For calculations on 3-Sasakian manifolds, we will often exploit a particularly nice choice of local

frame:

Definition 2.3.6. Let (M, g, ξi, ηi, φi) be a 3-Sasakian manifold. A local frame e1, . . . , e4n−1 of

TM is called adapted if

ei = ξi, e4p+i = φi(e4p), for all i = 1, 2, 3, p = 1, . . . , n− 1.

For 3-Sasakian manifolds we recall that there is a particularly useful choice of metric connection

adapted to the geometry: the so-called canonical connection (see [AD20, Section 4], where this

connection is introduced for the more general class of 3-(α, δ)-Sasaki manifolds). We review its

main properties here:

Theorem 2.3.7. (Based on [AD20, Section 4]). For a 3-Sasakian manifold (M, g, ξi, ηi, φi),
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the canonical connection ∇ is the unique metric connection with skew torsion such that

∇Xφi = −2(ηk(X)φj − ηj(X)φk) for all X ∈ TM.

The derivatives of the other structure tensors are

∇Xξi = −2(ηk(X)ξj − ηj(X)ξk), ∇Xηi = −2(ηk(X)ηj − ηj(X)ηk),

and the torsion 3-form is given by T =
∑3

i=1 ηi ∧ dηi.

Finally, we recall from [FK90] certain subbundles of the spinor bundle which will be highly

relevant for our purposes:

Theorem 2.3.8. (Based on [FK90, Thm. 1] and Theorem 1 in [BFGK91, Chapter 4.2]). If

(M, g, ξi, ηi, φi) is a 3-Sasakian manifold (resp. a simply-connected Einstein-Sasakian manifold,

by allowing only i = 1), then the bundles

E±
i := {ψ ∈ ΣM : (±2φi(X) + ξi ·X −X · ξi) · ψ = 0 ∀X ∈ TM}, i = 1, 2, 3

have bases consisting of Riemannian Killing spinors for the constants ∓1
2
. With respect to the

Clifford algebra representation described in Chapter 2.1 (i.e. the representation with u0 · η± =

∓η±), the ranks of these bundles are given in Table 2.1.

dim(M) rank(E+
i ) rank(E−

i )

1 (mod 4) 1 1
3 (mod 4) 0 2

Table 2.1: Ranks of the Bundles E±
i

2.4 Homogeneous 3-Sasakian Spaces

First, we recall Boyer, Galicki, and Mann’s classification of homogeneous 3-Sasakian spaces:

Theorem 2.4.1. (Based on [BGM94, Thm. C]). The homogeneous 3-Sasakian spaces (M4n−1 =

G/H, g) are precisely

S4n−1 ∼=
Sp(n)

Sp(n− 1)
, RP4n−1 ∼=

Sp(n)

Sp(n− 1)× Z2

,
SU(n+ 1)

S(U(n− 1)× U(1))
,

SO(n+ 3)

SO(n− 1)× Sp(1)
,

G2

Sp(1)
,

F4

Sp(3)
,

E6

SU(6)
,

E7

Spin(12)
,

E8

E7

,



2.4. Homogeneous 3-Sasakian Spaces 26

where the permissible values of n are as follows:

G Sp(n) SU(n+ 1) SO(n+ 3)

n n ≥ 1 n ≥ 2 n ≥ 4

This classification was obtained by proving that any homogeneous 3-Sasakian space fibers over

a Wolf space with a finite list of possibilities for the fiber, and then using the classification of

Wolf spaces in [Wol65]. Recently, a new proof of the classification was obtained in [GRS23]

using root systems of complex simple Lie algebras to construct homogeneous 3-Sasakian spaces.

Previously, and also from the algebraic point of view, the invariant connections on homogeneous

3-Sasakian spaces were studied in detail in [DOP20]. Importantly, they gave a characterization

of these spaces in terms of purely Lie theoretic data called 3-Sasakian data:

Theorem 2.4.2. (Based on [DOP20, Def. 4.1, Thm. 4.3]). LetM4n−1 = G/H be a homogeneous

space with connected isotropy group H, satisfying the following properties:

(i) g is compact;

(ii) g is simple and there is a Z2-graded decomposition g = g0 ⊕ g1 such that g0 = sp(1)⊕ h;

(iii) There exists an hC-module U of complex dimension 2(n− 1) such that gC1
∼= C2 ⊗ U as a

module for gC0
∼= sp(1)C ⊕ hC, where C2 is the standard representation of sp(1)C ∼= sl(2,C).

Then there is a homogeneous 3-Sasakian structure (ξi, ηi, φi) on M = G/H determined by the

tensors

ξ1 :=

i 0

0 −i

 , ξ2 :=

0 −1

1 0

 , ξ3 :=

 0 −i

−i 0

 , φi =
1

2
ad(ξi)|sp(1) + ad(ξi)|g1 ,

g := − 1

4(n+ 1)
κ|sp(1)×sp(1) −

1

8(n+ 1)
κ|g1×g1 ,

where κ denotes the Killing form of g. Furthermore, the Nomizu map of the Levi-Civita

connection ∇g is given by

Λg(X)Y =


1
2
[X, Y ]m if X, Y ∈ sp(1) or X, Y ∈ g1,

0 if X ∈ sp(1), Y ∈ g1,

[X, Y ]m if X ∈ g1, Y ∈ sp(1),

(2.7)

where subscript m denotes projection onto the reductive complement m := sp(1)⊕ g1.
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Indeed, they proved that all simply-connected homogeneous 3-Sasakian spaces can be constructed

from 3-Sasakian data, and they gave an explicit description of the data in each case which will

be extremely useful for our purposes.

Finally, we recall the result of Agricola, Dileo, and Stecker that, in the homogeneous case, the

Nomizu map of the canonical connection (see Theorem 2.3.7) takes a simple form:

Proposition 2.4.3. (Based on [ADS21, Prop. 4.2.1]). For a homogeneous 3-Sasakian space,

the Nomizu map Λ of the canonical connection ∇ is given by

Λ(X) =

− ad(X) if X ∈ V,

0 if X ∈ H.
(2.8)

2.5 3-(α, δ)-Sasaki Structures

In this section we recall the basic definitions and properties of 3-(α, δ)-Sasaki manifolds. These

structures generalize 3-Sasakian structures (which are recovered by setting α = δ = 1), however

we shall take a different viewpoint than that presented in Chapter 2.3 in order to emphasize the

role played by the real constants α, β; we will follow instead the notation and exposition laid

out in the foundational paper [AD20].

Definition 2.5.1. (Almost contact, almost contact metric, normal, contact metric, Reeb vector

field, horizontal and vertical spaces, fundamental 2-form, α-Sasakian). An almost contact

manifold (M2n−1, ξ, η, φ) consists of an odd-dimensional manifold M2n−1 together with a vector

field ξ (the Reeb vector field), a 1-form η, and an endomorphism field φ ∈ End(TM) satisfying

φ2 = −Id + η ⊗ ξ, η(ξ) = 1.

The tensors ξ, η give rise to a decomposition TM = V ⊕H into vertical and horizontal spaces

V := spanR{ξ}, H := ker η,

and it is well-known (see e.g. [Bla10, Chapter 4.1]) that there exists a Riemannian metric g

which is compatible with the almost contact structure in the following sense:

g(φ(X), φ(Y )) = g(X, Y )− η(X)η(Y ) for all X, Y ∈ TM. (2.9)
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By considering separately the horizontal and vertical directions, we note that the compatibility

equation (2.9) simply encodes the fact that the metric g is φ-invariant in the horizontal directions

and renders H ⊥ V and ||ξ||2 = 1. The fundamental 2-form is defined by Φ := g(·, φ(·)). An

almost contact metric manifold (M, g, ξ, η, φ) consists of an almost contact manifold (M, ξ, η, φ)

together with a compatible metric g, and, if the additional condition

dη = 2αΦ, α ∈ R \ {0}

is satisfied, this is called an α-contact metric manifold (or simply a contact metric manifold

in the case α = 1). An almost contact manifold (M, ξ, η, φ), is called normal if the (modified)

Nijenhuis tensor

Nφ(X,Y ) := [φ(X), φ(Y )] + φ2[X,Y ]− φ[φ(X), Y ]− φ[X,φ(Y )] + dη(X,Y )ξ, X, Y ∈ TM

vanishes. A normal α-contact metric manifold is called α-Sasakian (or simply Sasakian if

α = 1).

Remark 2.5.2. It follows immediately from [BG99, Prop. 2.1.2, Prop. 2.1.3] that a Sasakian

manifold (in the sense of Definition 2.3.1) is a 1-Sasakian manifold in the sense of the preceding

definition, so the notion of α-Sasakian structures is truly a generalization of Sasakian structures.

Next, we define the corresponding “deformed” objects generalizing 3-Sasakian manifolds. By

Remark 2.3.5, 3-Sasakian manifolds are determined by just a pair of Sasakian structures, so any

generalization of α-Sasakian structures to the 3-contact setting should depend only on a pair of

real parameters, which we call α, δ.

Definition 2.5.3. (Almost 3-contact, almost 3-contact metric, 3-(α, δ)-Sasaki). In a similar

spirit to the previous definition, an almost 3-contact manifold (M4n−1, ξi, ηi, φi)i=1,2,3 consists

of a manifold M of dimension 4n− 1 together with three almost contact structures (ξi, ηi, φi)

satisfying

φi = φj ◦ φk − ηk ⊗ ξj = −φk ◦ φj + ηj ⊗ ξk,

φi(ξj) = −φj(ξi) = ξk,

ηi = ηj ◦ φk = −ηk ◦ φj,

for all even permutations (i, j, k) of (1, 2, 3). There is again a splitting TM = V ⊕H into vertical
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and horizontal spaces defined by

V := spanR{ξi}i=1,2,3, H := ∩i=1,2,3 ker(ηi).

The horizontal restrictions φi|H satisfy the defining relations of the quaternions,

φi|H ◦ φj|H = φk|H

for all even permutations (i, j, k) of (1, 2, 3), so in particular this defines a quaternionic contact

structure. The action of φ1, φ2, φ3 in the vertical directions is determined by

φi(ξj) = ξk

for all even permutations (i, j, k) of (1, 2, 3). Notably, it is known from [Kuo70] that any

almost 3-contact manifold (M, ξi, ηi, φi) admits a metric g which is compatible in the sense of

(2.9) with all three almost contact structures, and the data (M, g, ξi, ηi, φi) is called an almost

3-contact metric manifold. A 3-(α, δ)-Sasaki manifold is an almost 3-contact metric manifold

(M, g, ξi, ηi, φi) satisfying the additional equation

dηi = 2αΦi + 2(α− δ)ηj ∧ ηk

for all even permutations (i, j, k) of (1, 2, 3).

Remark 2.5.4. Clearly this notion contains the 3-Sasakian spaces (α = δ = 1), however it

also contains many other interesting classes such as the Einstein 3-α-Sasakian spaces (α = δ),

parallel spaces (δ = 2α), degenerate spaces (δ = 0), and a second Einstein metric (δ = (2n+1)α,

where dimM := 4n− 1).

Remark 2.5.5. While 3-(α, δ)-Sasaki manifolds do not in general admit Riemannian Killing

spinors, one expects to recover the Killing spinors in the 3-Sasakian case (α = δ = 1) as members

of a family satisfying a deformed Killing spinor equation. Using a modified version of the

argument in [FK90] we will prove in Chapter 5 the existence of such spinors in all dimensions.

Next we recall that, while it is impossible in general to find a nice connection parallelizing all

the structure tensors of a 3-(α, δ)-Sasaki manifold, there is nonetheless a good choice available,

generalizing the canonical connection of a 3-Sasakian manifold (see Theorem 2.3.7):

Theorem 2.5.6. (Based on Theorem 4.1.1 and the discussion in Section 4 of [AD20]). Let
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(M, g, ξi, ηi, φi) be a 3-(α, δ)-Sasaki manifold. Then M admits a unique metric connection ∇

with skew torsion such that, for some function β ∈ C∞(M),

∇Xφi = β(ηk(X)φj − ηj(X)φk) ∀X ∈ Γ(TM).

Furthermore the function β is determined by β = 2(δ − 2α) and the torsion of ∇ is the 3-form

T =
3∑
i=1

ηi ∧ dηi + 8(δ − α)η1 ∧ η2 ∧ η3.

The derivatives of the structure tensors are given by

∇Xφi = β(ηk(X)φj − ηj(X)φk), ∇Xξi = β(ηk(X)ξj − ηj(X)ξk), ∇Xηi = β(ηk(X)ηj − ηj(X)ηk),

and, in particular, are parallel in the horizontal directions.

The connection ∇ from Theorem 2.5.6 is called the canonical connection of the 3-(α, δ)-Sasaki

structure. It is an important member of the class of metric connections with parallel skew

torsion, which were studied in detail in [CMS21].

Finally, we review the algebraic description from [ADS21] of homogeneous 3-(α, δ)-Sasaki spaces

fibering over Wolf spaces in terms of generalized 3-Sasakian data, generalizing the 3-Sasakian

data recalled above in Theorem 2.4.2. Indeed, by omitting the compactness requirement in the

definition of 3-Sasakian data (correspondingly, omitting assumption (i) in Theorem 2.4.2), they

define the notion of generalized 3-Sasakian data and prove:

Theorem 2.5.7. (Based on [ADS21, Thm. 3.1.1 and Prop. 4.2.2]). Let M4n−1 = G/H be a

homogeneous space with connected isotropy group H, satisfying the following properties:

(i) g is simple and there is a Z2-graded decomposition g = g0 ⊕ g1 such that g0 = sp(1)⊕ h;

(ii) There exists an hC-module U of complex dimension 2(n− 1) such that gC1
∼= C2 ⊗ U as a

module for gC0
∼= sp(1)C ⊕ hC, where C2 is the standard representation of sp(1)C ∼= sl(2,C).

Suppose also that αδ > 0 if G is compact and αδ < 0 if G is non-compact. Then there is a

homogeneous 3-(α, δ)-Sasaki structure (ξi, ηi, φi) on M = G/H determined by the tensors

ξ1 := δ

i 0

0 −i

 , ξ2 := δ

0 −1

1 0

 , ξ3 := δ

 0 −i

−i 0

 , φi =
1

2δ
ad(ξi)|sp(1) +

1

δ
ad(ξi)|g1 ,

g := − 1

4δ2(n+ 1)
κ|sp(1)×sp(1) −

1

8αδ(n+ 1)
κ|g1×g1 ,
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where κ denotes the Killing form of g. Furthermore, the Nomizu map Λg of the Levi-Civita

connection ∇g is given by

Λg(X)Y =


1
2
[X, Y ]m if X, Y ∈ sp(1) or X, Y ∈ g1,

(1− α
δ
)[X, Y ]m if X ∈ sp(1), Y ∈ g1,

α
δ
[X, Y ]m if X ∈ g1, Y ∈ sp(1),

(2.10)

where subscript m denotes projection onto the reductive complement m := sp(1)⊕ g1.

It is clear that taking G compact and substituting α = δ = 1 above recovers the result

from [DOP20] for the homogeneous 3-Sasakian case (cf. Theorem 2.4.2). Furthermore, for

homogeneous 3-(α, δ)-Sasaki manifolds fibering over Wolf spaces, a simple expression for the

Nomizu map of the canonical connection (recalled in Theorem 2.5.6) is available:

Proposition 2.5.8. (Based on [ADS21, Prop. 4.2.1]). If (M = G/H, g, ξi, ηi, φi) is a homoge-

neous 3-(α, δ)-Sasaki manifold fibering over a Wolf space, then the Nomizu map of the canonical

connection is given by

Λ(X) =


δ−2α
δ

ad(X) if X ∈ V ,

0 if X ∈ H.
(2.11)

2.6 Invariant Metric Connections on Homogeneous Spaces

By applying translations, any invariant connection on G/H is uniquely determined by its

value at the origin o := eH, and a similar principle applies to invariant spinorial connections.

Under the identification m ∼= To(G/H), it follows from a result of Nomizu in [Nom54], later

generalized by Wang in [Wan58], that an invariant metric connection corresponds to the data of

an Ad(H)-equivariant Nomizu map

Λ : m → so(m). (2.12)

Explicitly, the relationship between the Nomizu map Λ and the covariant derivative ∇ associated

to the connection is

(∇X̂ω)o = Λ(X)ωo, X ∈ m,
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for any invariant tensor (or invariant differential form) ω, where X̂ is the fundamental vector

field associated to X ∈ m and the action of Λ(X) ∈ so(m) on ωo is the natural one (see [ANT23,

Chapter 6] for a modern treatment of the topic). Moreover, by [KN69, Prop. 2.3], the torsion

and curvature tensors of ∇ are given at the origin by

To(X, Y ) = Λ(X)Y −Λ(Y )X − [X, Y ]m, (2.13)

Ro(X, Y ) = [Λ(X),Λ(Y )]−Λ([X, Y ]m)− ad([X, Y ]h), (2.14)

for all X, Y ∈ m. Composing (2.12) with the Lie algebra isomorphism spin(m) ∼= so(m) gives

the Nomizu map

Λ̃ : m → spin(m)

associated to the spin lift ∇̃ of ∇, and the covariant derivative at the origin of an invariant

spinor ψ can be similarly described via

(∇̃X̂)oψ = Λ̃(X) · ψo,

where the action of Λ̃(X) on ψ0 is via the spin representation.

For an invariant Riemannian metric g, the Nomizu map Λg : m → so(m) of the Levi-Civita

connection is given by

Λg(X)Y =
1

2
[X, Y ]m + U(X, Y ), ∀X, Y ∈ m, (2.15)

where the symmetric (2, 0)-tensor U is determined by

2g(U(X, Y ), Z) = g([Z,X]m, Y ) + g(X, [Z, Y ]m). (2.16)

For a proof of this fact we refer to [Nom54, Thm. 13.1], noting that there is a sign error in

Equation (13.1).

Another geometrically significant invariant connection is the Ambrose-Singer connection, some-

times called the canonical connection, whose horizontal distribution is generated by left trans-

lations of m ⊂ g. Such a connection is unique after fixing a reductive complement m. In

this thesis we shall always refer to this as the Ambrose-Singer connection, and reserve the

term canonical connection for the distinguished metric connection on 3-(α, δ)-Sasaki manifolds

recalled in Theorem 2.5.6. The Ambrose-Singer connection has Nomizu map identically equal
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to zero,

ΛAS ≡ 0,

and it parallelizes all invariant tensors [KN69, Prop. 2.7]. Noting that the Ambrose-Singer

connection coincides with the Levi-Civita connection if and only if its torsion tensor vanishes, it

is evident from (2.13) that they coincide precisely when the underlying space is symmetric. One

sees furthermore that the Ambrose-Singer torsion is totally skew-symmetric (i.e. a 3-form) if

and only if g is a naturally reductive metric,

g([X, Y ]m, Z) + g(Y, [X,Z]m) = 0, ∀X, Y, Z ∈ m.

Fixing notation, the Levi-Civita and Ambrose-Singer connections, their corresponding Nomizu

maps, and their torsion tensors will be denoted by ∇g, ∇AS, Λg, ΛAS, and T g, TAS respectively.

By abuse of notation we shall denote the corresponding spinorial connections also by ∇g, ∇AS,

and the associated spinorial Nomizu maps by Λ̃g, Λ̃AS. Any other connections used will be

introduced in the relevant sections.

2.7 Metric Connections with Torsion

Let (Mn, g) be an n-dimensional Riemannian manifold. In certain situations it will be advanta-

geous to consider metric connections other than the Levi-Civita connection which are better

adapted to the geometry at hand. Such connections are uniquely determined by their torsion

tensor, and for a detailed introduction to the subject we refer to [Agr06]. The space of possible

torsion tensors is given by

T := {T ∈ TM⊗3 : T (X, Y, Z) + T (Y,X,Z) = 0},

and it splits as an O(n)-representation into three inequivalent irreducible submodules,

T ≃ Tvec ⊕ Tskew ⊕ TCT,

called torsion classes. Metric connections with torsion in these three spaces are called vectorial,

totally skew-symmetric, and cyclic traceless respectively.
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For a metric connection ∇, the difference tensor is defined by

A(X, Y ) := ∇XY −∇g
XY.

We note that the space

Ag := {A ∈ TM⊗3 : A(X, Y, Z) + A(X,Z, Y ) = 0}

of possible difference tensors is isomorphic to T as O(n)-representations via

T (X, Y, Z) = A(X, Y, Z)− A(Y,X,Z), (2.17)

A(X, Y, Z) =
1

2
(T (X, Y, Z)− T (Y, Z,X) + T (Z,X, Y )). (2.18)

Let ∇ be a metric connection with torsion T ∈ T and difference tensor A ∈ Ag. With respect

to an arbitrary orthonormal frame e1, . . . , en, we define the trace

c12(A) :=
n∑
i=1

A(ei, ei,−).

The images of the torsion classes under the isomorphism (2.18) are given in [TV83, Chap. 3] by

Ag
vec = {A ∈ Ag : A(X, Y, Z) = g(X, Y )g(V, Z)− g(X,Z)g(V, Y ), V ∈ TM},

Ag
skew = {A ∈ Ag : A(X, Y, Z) + A(Y,X,Z) = 0},

Ag
CT = {A ∈ Ag : SX,Y,ZA(X, Y, Z) = 0, c12(A) = 0},

as well as explicit formulas for the projections of A onto each class,

Avec(X, Y, Z) = g(X, Y )ϕ(Z)− g(X,Z)ϕ(Y ), (2.19)

Askew(X, Y, Z) =
1

3
SX,Y,ZA(X, Y, Z), (2.20)

ACT(X, Y, Z) = A(X, Y, Z)− Avec(X, Y, Z)− Askew(X, Y, Z), (2.21)

where ϕ(v) := 1
n−1

c12(A)(v) for all v ∈ TM . Formulas for the projections of T onto the three

torsion classes may then be easily deduced using (2.17). We shall make frequent use of the

formulas in this section to calculate the torsion type of the Ambrose-Singer connection for each

case in Table 1.1.



35 2.8. Matrix Lie Algebras

2.8 Matrix Lie Algebras

Let us fix notation related to matrix Lie algebras. We will use E
(n)
i,j (resp. F

(n)
i,j ) throughout to

denote the elementary skew-symmetric n × n matrix (resp. the elementary symmetric n × n

matrix),

E
(n)
i,j =

i j


...

i −1 . . .

j . . . 1
...

, F
(n)
i,j =

i j


...

i 1 . . .

j . . . 1
...

.

We also adopt the convention that F
(n)
i,i is the diagonal matrix with 1 in the (i, i) position and

zeros elsewhere. The following commutator relations will be used extensively throughout the

thesis for calculations involving matrix Lie algebras.

[E
(n)
i,j , E

(n)
k,l ] =

E
(n)
j,l if i = k,

0 if i, j, k, l distinct,

[E
(n)
i,j , F

(n)
k,l ] =



F
(n)
j,l if i = k, j ̸= l, k ̸= l,

2(F
(n)
j,j − F

(n)
i,i ) if i = k, j = l, k ̸= l,

(δi,kF
(n)
j,k − δj,kF

(n)
i,k ) if k = l,

0 if i, j, k, l distinct,

[F (n)
p,q , F

(n)
r,s ] =



−E(n)
q,s if p = r, q ̸= s, p ̸= q, r ̸= s,

(−δq,rE(n)
p,r − δp,rE

(n)
q,r ) if p ̸= q, r = s,

0 if p = q, r = s,

0 if p, q, r, s distinct,

[λ1F
(n)
p,q , λ2F

(n)
r,s ] =



λ3F
(n)
q,s if p = r, q ̸= s, p ̸= q, r ̸= s,

2λ3(F
(n)
p,p + F

(n)
q,q ) if p = r, q = s, p ̸= q,

λ3(δq,rF
(n)
p,r + δp,rF

(n)
q,r ) if p ̸= q, r = s,

2δp,rλ3F
(n)
p,p if p = q, r = s,

0 if p, q, r, s distinct,
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where (λ1, λ2, λ3) is an even permutation of the imaginary quaternions (i, j, k). Note that this

doesn’t cover all possible cases, however the rest can be deduced from above using skew-symmetry

(resp. symmetry) of the matrices E
(n)
i,j (resp. F

(n)
i,j ). We shall use B0 to denote the bilinar form

on the space of matrices (of the appropriate size, depending on context) given by

B0(X1, X2) := −ℜ tr(X1X2). (2.22)

After fixing an invariant inner product on m, an orthonormal basis will be denoted by

e1, . . . , edimm, and the shorthand ei1,...,ip := ei1 ∧ · · · ∧ eip for differential forms will be used.



3
Invariant Spinors on Homogeneous Spheres

This chapter contains joint work with Prof. Dr. habil. Ilka Agricola and Dr. Marie-

Amélie Lawn which has appeared, in large part, in [AHL23] (see page 8).

3.1 Classical Spheres, Part I: Spheres over R and C

3.1.1 Symmetric Spheres, Sn−1 = SO(n)/ SO(n− 1)

The isotropy representation here is the standard representation of SO(n− 1) on Rn−1, which

is irreducible, hence the only invariant metrics correspond to negative multiples of the Killing

form (equivalently, positive multiples of B0). We remark that any such metric is naturally

reductive. The embedding SO(n − 1) ↪→ SO(n) may be realized as the the lower right hand

(n− 1)× (n− 1) block, and we choose the reductive complement m = so(n− 1)⊥ with respect

to the Killing form. Explicitly,

so(n) = spanR{E
(n)
i,j }1≤i<j≤n,

so(n− 1) = spanR{E
(n)
i,j }2≤i<j≤n,

and

m = spanR{E
(n)
1,j }2≤j≤n.

One sees immediately from the main proposition in [Wan89] that these standard round spheres

are not very interesting from the viewpoint of homogeneous spin geometry:

Theorem 3.1.1. The spheres Sn−1 = SO(n)/ SO(n− 1) do not admit a non-trivial invariant

spinor for any choice of invariant metric.

37
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Remark 3.1.2. Since any invariant metric on Sn−1 = SO(n)/ SO(n−1) is normal homogeneous,

and in particular naturally reductive, the Ambrose-Singer connection always has totally skew-

symmetric torsion, TAS ∈ Tskew (in fact, TAS = 0 since the space is symmetric). This also

applies to the other two realizations of the sphere with irreducible isotropy representation,

S6 = G2 / SU(3) and S
7 = Spin(7)/G2.

3.1.2 Hermitian Spheres, S2n−1 = U(n)/U(n− 1)

The isotropy representation splits into one copy of the trivial representation R and one copy

of R2n−2 ∼= Cn−1, leading to a 2-parameter family of invariant metrics. Note, however, that

the Killing form is no longer non-degenerate so more care must be taken when choosing a

reductive complement. The embedding U(n− 1) ↪→ U(n) may be realized as the lower right

hand (n− 1)× (n− 1) block, leading to the realization of Lie algebras given by

u(n) = spanR{E
(n)
j,k , iF

(n)
p,q }1≤j<k≤n

p,q=1,...n
,

u(n− 1) = spanR{E
(n)
j,k , iF

(n)
p,q }2≤j<k≤n

p,q=2,...n
,

and one verifies that

m := spanR{iF
(n)
1,1 , E

(n)
1,j+1, iF

(n)
1,j+1}1≤j≤n−1

is a reductive complement. The two irreducible isotropy submodules are given by

m1 := spanR{iF
(n)
1,1 }, m2 := spanR{E

(n)
1,j+1, iF

(n)
1,j+1}1≤j≤n−1,

and the 2-parameter family of invariant metrics is given by

ga,b := aB0|m1×m1 + bB0|m2×m2 , a, b > 0.

These spheres are the complex analog of the previous case and, as such, one may deduce a

similar result about the space of invariant spinors from [Wan89] by noting that m2 ≃ Cn−1 is

isomorphic to the standard representation of U(n−1) and that the spinor modules in dimensions

2n− 2 and 2n− 1 are naturally identified. Here we give an alternative elementary proof of this

result:

Theorem 3.1.3. The spheres S2n−1 = U(n)/U(n − 1) do not admit a non-trivial invariant
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spinor for any choice of invariant metric.

Proof. The basis e1, . . . , e2n−1 for m given by

e1 :=
1√
a
iF

(n)
1,1 , e2j :=

1√
2b
E

(n)
1,j+1, e2j+1 :=

1√
2b
iF

(n)
1,j+1,

for j = 1, . . . , n− 1 is orthonormal with respect to ga,b, and the isotropy algebra is spanned by

the operators

ad(E
(n)
j,k ) = e2j−2 ∧ e2k−2 + e2j−1 ∧ e2k−1,

ad(iF (n)
p,q ) = e2p−2 ∧ e2q−1 + e2q−2 ∧ e2p−1 (p ̸= q),

ad(iF (n)
p,p ) = e2p−2 ∧ e2p−1.

where 2 ≤ j < k ≤ n and p, q = 2, . . . , n. In particular the lifts of the operators ad(iF
(n+1)
p,p ) act

on the spinor bundle via Clifford multiplication by 1
2
e2p−2 · e2p−1, and the result then follows by

noting that if ψ ∈ Σinv then

0 = ||e2p−2 · e2p−1 · ψ||2 = ⟨e2p−2 · e2p−1 · ψ, e2p−2 · e2p−1 · ψ⟩ = ⟨ψ, ψ⟩ = ||ψ||2.

Next, we calculate the Ambrose-Singer torsion and determine its type:

Proposition 3.1.4. For any a, b > 0 the sphere (S2n−1 = U(n)/U(n− 1), ga,b) has Ambrose-

Singer torsion of type Tskew ⊕ TCT, given by

TAS(e1, e2j) =
1√
a
e2j+1, TAS(e1, e2j+1) =

−1√
a
e2j,

TAS(e2j, e2l) = TAS(e2j+1, e2l+1) = 0, TAS(e2j, e2l+1) =
δj,l

√
a

b
e1,

for all j, l = 1, . . . , n− 1. The projection of TAS onto Tskew is

TAS
skew :=

(
a+ 2b

3b
√
a

) n−1∑
j=1

e1 ∧ e2j ∧ e2j+1,

with TAS = TAS
skew if and only if a = b (i.e. ga,b is a multiple of the Killing form).

Proof. Straightforward calculation of the commutator relations, and subsequent application of
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(2.13), (2.19)-(2.21) and the isomorphism (2.17).

3.1.3 Special Hermitian Spheres, S2n−1 = SU(n)/ SU(n− 1)

The isotropy group SU(n−1) ↪→ SU(n) may be realized as the lower right hand (n−1)× (n−1)

block. We take the reductive complement m := su(n− 1)⊥, where the orthogonal complement

is taken with respect to B0. At the level of Lie algebras,

su(n) = spanR{iF (n)
p,q , E

(n)
p,q , i

( n∑
l=2

F
(n)
l,l − (n− 1)F

(n)
1,1

)
, i(F (n)

r,r − F
(n)
r+1,r+1)}1≤p<q≤n

r=2,...,n
,

su(n− 1) = spanR{iF (n)
p,q , E

(n)
p,q , i(F

(n)
r,r − F

(n)
r+1,r+1)}2≤p<q≤n

r=2,...,n
,

and

m = spanR{i
( n∑
l=2

F
(n)
l,l − (n− 1)F

(n)
1,1

)
, iF

(n)
1,p , E

(n)
1,p }p=2,...,n.

The isotropy representation splits into one copy of the trivial representation and one copy of the

standard representation, m ≃ m1 ⊕m2, leading to the 2-parameter family of invariant metrics

ga,b := aB0|m1 + bB0|m2 , a, b > 0.

A ga,b-orthonormal basis of m is given by {ei}2n−1
i=1 , where

e1 :=
1√

an(n− 1)

( n∑
l=2

iF
(n)
l,l − (n− 1)iF

(n)
1,1

)
, e2p :=

1√
2b
E

(n)
1,p+1, e2p+1 :=

i√
2b
F

(n)
1,p+1,

for p = 1, . . . , n− 1, and the two isotropy summands are given explicitly in terms of this basis as

m1 = spanR{e1}, m2 = spanR{e2, . . . , e2n−1}.

The complexified algebra su(n)C has a Cartan subalgebra spanned by

τk :=
1√

k(k + 1)

( k+1∑
p=2

F (n)
p,p − kF

(n)
k+2,k+2

)
, k = 1, . . . , n− 2,

τn−1 := i
√
ae1,
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and the elements τ1, . . . , τn−2 span a Cartan subalgebra for the complexified isotropy algebra

su(n− 1)C. A straightforward calculation then gives,

Proposition 3.1.5. The above Cartan subalgebra of su(n− 1)C acts on mC via

ad(τk)e2p =



−i√
k(k+1)

e2p+1 if p ≤ k,

ik√
k(k+1)

e2p+1 if p = k + 1,

0 if p ≥ k + 2,

ad(τk)e2p+1 =



i√
k(k+1)

e2p if p ≤ k,

−ik√
k(k+1)

e2p if p = k + 1,

0 if p ≥ k + 2,

and ad(τk)e1 = 0 for k = 1, . . . , n− 2.

Corollary 3.1.6. The isotropy representation maps the above Cartan subalgebra of su(n− 1)C

into so(mC, gCa,b)
∼= so(2n− 1,C) as the operators

τk 7→ ad(τk)|mC =
−i√

k(k + 1)

(
k∑
p=1

e2p ∧ e2p+1 − ke2k+2 ∧ e2k+3

)
, (3.1)

for k = 1, . . . , n− 2.

Theorem 3.1.7. Using the above orthonormal basis and the corresponding description of the

spinor module from Chapter 2.1, the space of invariant spinors on (S2n−1 = SU(n)
SU(n−1)

, ga,b) for

any a, b > 0 is given by

Σinv = spanC{ψ+ := 1, ψ− := y1 ∧ y2 ∧ · · · ∧ yn−1}.

Proof. Considering the spin lifts of the operators in (3.1), one notes that ãd(τk)|mC · ψ = 0 for

all k = 1, . . . , n− 2 if and only if e2p · e2p+1 · ψ = e2p+2 · e2p+3 · ψ for all p = 1, . . . , n− 2. Note

that this condition is necessarily satisfied if ψ ∈ Σinv. Using the Clifford multiplication formulas

(2.4), one finds

e2p · e2p+1 · ψ = i(xp⌟+ yp∧)(yp ∧ −xp⌟)ψ = · · · = i[ψ − 2yp ∧ (xp⌟ψ)],

e2p+2 · e2p+3 · ψ = i(xp+1⌟+ yp+1∧)(yp+1 ∧ −xp+1⌟)ψ = · · · = i[ψ − 2yp+1 ∧ (xp+1⌟ψ)],

and hence Σinv ⊆ spanC{1, y1∧y2∧· · ·∧yn−1}. Thus it suffices to show that there are two linearly

independent invariant spinors. Since the isotropy representation decomposes as the sum of one

copy of the trivial representation and one non-trivial module, the number of invariant spinors is

independent of the choice of a, b > 0. In particular we consider the round metric, corresponding
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to the parameters a = n−1
n
, b = 1

2
, together with its usual SU(n)-invariant Sasakian structure

(see [DGP18] for a more detailed description). Denoting by (φ, ξ := e1, η := ξ♭) the Sasakian

structure tensors, we recall from Theorem 2.3.8 (using slightly different notation) that the spaces

E± := {ψ ∈ Γ(ΣM) : (±2φ(X) + ξ ·X −X · ξ) · ψ = 0 ∀X ∈ TM}

satisfy dim(E+ + E−) = 2, and hence it suffices to show that they have a basis consisting of

invariant spinors. One also remarks from [DGP18] that φ is an invariant tensor (in fact, using

their setup one finds the explicit algebraic description φ = n−1
n

ad(ξ)). Let ϕ ∈ Γ(E+), so that

(2φ(X) + ξ ·X −X · ξ) · ϕ = 0 for all X ∈ TM.

Since φ and ξ are both invariant tensors, it suffices to consider this defining equation at the

origin (i.e. for X ∈ m). By performing a similar type of calculation as in the proof of [Kat00,

Prop. 7.1], it follows that for any g0 ∈ SU(n) we have

((2φ(X) + ξ ·X −X · ξ) · (g0ϕ))(g) = (2φ(X) · (goϕ) + ξ ·X · (g0ϕ)−X · ξ · (g0ϕ))(g)

= ((2φ(X) + ξ ·X −X · ξ) · ϕ)(g−1
0 g)

= 0,

where we have slightly abused notation to denote a spinor and the corresponding SU(n− 1)-

equivariant map SU(n) → Σ by the same symbol. One argues similarly for ϕ ∈ Γ(E−). This

shows that the spaces E± are representations of SU(n). But dim(E±) ≤ 2 (see Table 2.1), and

thus they must be trivial representations for n ≥ 3, proving the result in these cases. For n = 2

the isotropy group is trivial SU(1) = {e}, so every spinor is invariant. The spinor module in

this dimension is 2-dimensional, so in particular there are two linearly independent invariant

spinors.

Remark 3.1.8. The fact that the space of invariant spinors is 2-dimensional also follows as a

consequence of the main proposition in [Wan89] together with the natural identification of the

spinor modules in dimensions 2n − 2 and 2n − 1, by noting that the isotropy representation

acts trivially on Re1.

Remark 3.1.9. A priori, choosing a different orthonormal basis for m can lead to different

expressions for the invariant spinors, since the identification from Chapter 2.1 of spinors with
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(algebraic) exterior forms is very much basis dependent. This runs counter to the natural

expectation that the invariants here should be spanned by 1 and the anti-holomorphic volume

form, however, by choosing a well-suited orthonormal basis for m one can avoid this problem.

Indeed, our chosen ga.b-orthonormal basis {ei} is adapted to the invariant almost complex

structure φ :=
√

a(n−1)
n

ad(e1) on m2 = (Re1)⊥ in the sense that φ(e2p) = e2p+1 for p =

1, . . . , n − 1. This gives m2 the structure of a complex representation (which is isomorphic

to the standard representation of SU(n − 1) on Cn−1), and complexifying the full isotropy

representation therefore gives:

mC = (m1 ⊕m2)
C ≃ (R⊕m2)

C ≃ C⊕m2 ⊕m∗
2.

In particular, this shows that the image of the isotropy representation lies inside gl(L) ⊆ so(mC)

(see [AHL23, Section 4.1.2] for the details of this inclusion), which by [AHL23, Prop. 4.5] then

implies that Σ ≃ Λ0,•m as complex representations. It follows that the spinors ψ+ = 1 and

ψ− = y1 ∧ · · · ∧ yn−1 are unaffected by orthonormal changes of adapted basis, since they are

unaffected when viewed as anti-holomorphic forms. More generally, this argument shows that it

is possible to choose expressions for the spinors in a consistent way whenever G/H admits an

invariant orthogonal almost complex structure or an invariant almost contact metric structure,

corresponding to the cases G = SU(n), Sp(n), Sp(n)U(1), and G2 in this chapter.

Next, we calculate the Ambrose-Singer torsion and determine its type:

Proposition 3.1.10. For any a, b > 0 the sphere (S2n−1 = SU(n)/ SU(n−1), ga,b) has Ambrose-

Singer torsion of type Tskew ⊕ TCT, given by

TAS(e1, e2p) = −
√

n

a(n− 1)
e2p+1, TAS(e1, e2p+1) =

√
n

a(n− 1)
e2p,

TAS(e2p, e2q) = TAS(e2p+1, e2q+1) = 0, TAS(e2p, e2q+1) =
−δp,q

√
an

b
√
n− 1

e1,

for all p, q = 1, . . . , n− 1. The projection of TAS onto Tskew is

TAS
skew := − (a+ 2b)

√
n

3b
√
a(n− 1)

n−1∑
p=1

e1 ∧ e2p ∧ e2p+1,

with TAS = TAS
skew if and only if a = b.

In order to differentiate the invariant spinors ψ± from Theorem 3.1.7, we note that the Nomizu

map corresponding to ∇ga,b may be described in terms of the Lie bracket on su(n) as follows:
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Lemma 3.1.11. The Nomizu map for the Levi-Civita connection is given by

Λga,b(x1)x2 = 0, Λga,b(x)y = (1− a

2b
)[x, y]m,

Λga,b(y)x =
a

2b
[y, x]m, Λga,b(y1)y2 =

1

2
[y1, y2]m,

for x, x1, x2 ∈ m1, y, y1, y2 ∈ m2, where [ , ]m denotes the orthogonal projection of the Lie bracket

onto m ⊆ su(n).

These formulas may be proved by directly checking that Λga,b is skew-symmetric with respect to

ga,b and satisfies Λga,b(v)w −Λga,b(w)v − [v, w]m = 0 for all v, w ∈ m. Combining the preceding

proposition and lemma gives:

Corollary 3.1.12. The Nomizu map of the Levi-Civita connection on (S2n−1 = SU(n)/ SU(n−

1), ga,b) is given in terms of the orthonormal basis e1, . . . , e2n−1 by

Λga,b(e1) = (1− a

2b
)

√
n

a(n− 1)

n−1∑
l=1

e2l ∧ e2l+1, Λga,b(e2p) = − 1

2b

√
an

n− 1
e1 ∧ e2p+1,

Λga,b(e2p+1) =
1

2b

√
an

n− 1
e1 ∧ e2p,

for p = 1, . . . , n− 1.

Lifting these to the spin bundle and applying them to ψ± gives:

Theorem 3.1.13. The invariant spinors ψ± are generalized Killing spinors, i.e. ∇ga,b
X ψ± =

A±(X) · ψ±, for the endomorphisms

A+ := λ1 Id|m1 + λ2 Id|m2 , A− := (−1)nA+,

where λ1 :=
(2b−a)

√
n(n−1)

4b
√
a

, λ2 :=
√
an

4b
√
n−1

.

Proof. The proof proceeds by direct calculation. As an example, we show that the desired

equation holds for ψ+ in the direction of X = e1. Using the preceding corollary, we differentiate

at the origin o = eH:

Λ̃ga,b(e1) · ψ+ =
1

2
(1− a

2b
)

√
n

a(n− 1)

n−1∑
l=1

e2l · e2l+1 · ψ+

=
2b− a

4b

√
n

a(n− 1)

n−1∑
l=1

i(xl⌟+ yl∧)(yl ∧ −xl⌟)1
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=
2b− a

4b

√
n

a(n− 1)

n−1∑
l=1

i =

(
(2b− a)

√
n(n− 1)

4b
√
a

)
i = λ1e1 · ψ+.

Corollary 3.1.14. The spinors ψ± are Killing spinors if and only if a = 2b(n−1)
n

, leading to

λ1 = λ2 =
1

2
√
2b
. The round metric corresponds to the parameters a = n−1

n
, b = 1

2
(cf. [DGP18]),

in which case we recover the usual Sasakian Killing spinors for the constants 1
2
, −1

2
(or 1

2
, 1

2
,

depending on n).

Generalizing the usual Sasakian structure, we have:

Proposition 3.1.15. The sphere (S2n−1 = SU(n)
SU(n−1)

, ga,b) admits:

(i) a compatible invariant normal almost contact metric structure for all a, b > 0.

(ii) a compatible invariant α-contact structure if and only if α =
√
an

2b
√
n−1

.

(iii) a compatible invariant α-K-contact structure if and only if α =
√
an

2b
√
n−1

.

In particular there exists a compatible invariant α-Sasakian structure if and only if α =
√
an

2b
√
n−1

.

Proof. In order for the structure to be invariant, the only choices for the Reeb vector field are

ξ = ±e1. We note that the 2-form Φ := ga,b(·, φ(·)) is invariant if and only if

Φ ∈ (Λ2m2)
SU(n) ≃ spanR{ad ξ|m2},

and the metric compatibility condition ga,b(φ(X), φ(Y )) = ga,b(X, Y ) − ga,b(ξ,X)ga,b(ξ, Y ) is

satisfied if and only if

φ =

√
a(n− 1)

n
ad ξ.

A tedious but straightforward Lie algebra computation then shows that the Nijenhuis tensor

vanishes for any values of a, b, and the structure is α-contact (dη = 2αΦ) and α-K-contact

(∇g
Xξ = −αφ(X)) if and only if α =

√
an

2b
√
n−1

.

Remark 3.1.16. More generally, for the parameters a = −(n−1)ϵ
n

, b = 1
2
one has the Berger

metrics gϵ (see e.g. [DGP18]), with ϵ = −1 corresponding to the round metric. We would like

to determine the spinorial equations satisfied by the invariant spinors ψ± with respect to the

invariant connections constructed in [DGP18]. In order to deal only with the Riemannian case,

we will require ϵ < 0. Let us focus on dimensions not equal to 5, 7 (n ̸= 3, 4), in which case
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there is a 1-parameter family of invariant connections with skew torsion,

∇s = ∇gϵ − ϵs Φ ∧ η, s ∈ R, (3.2)

with torsion T s = −2ϵs Φ∧ η, where Φ is the invariant 2-form defined in Section 2.2 of [DGP18]

and η is the metric dual of ξ := e1.

Generalizing Theorem 3.1.13, we have:

Proposition 3.1.17. For n ̸= 3, 4 the invariant spinors ψ± on (S2n−1 = SU(n)
SU(n−1)

, gϵ) satisfy the

generalized Killing equation with torsion,

∇s
Xψ+ = As+(X) · ψ+, ∇s

Xψ− = As−(X) · ψ−,

for the endomorphisms

As+ := A+ − ϵs(n− 1)

2
Id|m1 +

ϵs

2
Id|m2 ,

As− := A− − (−1)nϵs(n− 1)

2
Id|m1 +

(−1)nϵs

2
Id|m2 .

Proof. Suppose that a = −(n−1)ϵ
n

, b = 1
2
. With respect to our chosen orthonormal basis {ei}2n−1

i=1 ,

the invariant 2-form Φ takes the form

Φ = −
n−1∑
p=1

e2p ∧ e2p+1 = −
n−1∑
p=1

e2p ∧ φ(e2p),

where φ = (n−1)
√
−ϵ

n
ad(e1). One easily calculates,

Φ · ψ+ = (n− 1)ξ · ψ+, Φ · ψ− = (−1)n(n− 1)ξ · ψ−, ξ · e2p · ψ+ = e2p+1 · ψ+,

ξ · e2p · ψ− = (−1)ne2p+1 · ψ−, ξ · e2p+1 · ψ+ = −e2p · ψ+, ξ · e2p+1 · ψ− = (−1)n+1e2p · ψ−.

We now consider all possible cases:

1. If Z = ξ then Z⌟T s = −2ϵs Φ, and we have

∇s
ξψ+ = ∇gϵ

ξ ψ+ − 1

2
ϵsΦ · ψ+ = A+(ξ) · ψ+ − 1

2
ϵs(n− 1)ξ · ψ+,

∇s
ξψ− = ∇gϵ

ξ ψ− − 1

2
ϵsΦ · ψ− = A−(ξ) · ψ− − 1

2
ϵs(n− 1)(−1)nξ · ψ−.
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2. If Z = e2p or Z = e2p+1 then Z⌟T s = 2ϵs φ(Z) ∧ η = −2ϵs η ∧ φ(Z), and we have

∇s
e2p
ψ+ = ∇gϵ

e2p
ψ+ − 1

2
ϵsξ · e2p+1 · ψ+ = A+(e2p) · ψ+ +

1

2
ϵse2p · ψ+,

∇s
e2p
ψ− = ∇gϵ

e2p
ψ− − 1

2
ϵsξ · e2p+1 · ψ− = A−(e2p) · ψ− +

1

2
ϵs(−1)ne2p · ψ−,

∇s
e2p+1

ψ+ = ∇gϵ
e2p+1

ψ+ +
1

2
ϵsξ · e2p · ψ+ = A+(e2p+1) · ψ+ +

1

2
ϵse2p+1 · ψ+,

∇s
e2p+1

ψ− = ∇gϵ
e2p+1

ψ− +
1

2
ϵsξ · e2p · ψ− = A−(e2p+1) · ψ− +

1

2
ϵs(−1)ne2p+1 · ψ−.

Remark 3.1.18. For n = 3, 4 the families of invariant metric connections with skew torsion are

larger, and depend on certain special tensors available in these dimensions [DGP18]. We omit

these cases here in the interest of brevity.

3.2 Classical Spheres, Part II: Spheres over H

In this section we consider the quaternionic spheres S4n−1 = Sp(n)·K
Sp(n−1)·K where K = {1}, U(1), or

Sp(1). Under an appropriate identification of the reductive complements in the three cases, the

isotropy representations may be viewed as extensions of the standard representation of Sp(n− 1)

on R4n−4 to the group Sp(n− 1) ·K. In particular, this allows us to easily deduce the invariant

spinors for the latter two cases from those for K = {1}. In each case we find an explicit basis

for the space of invariant spinors and discuss the relevant geometric structures at play.

3.2.1 Standard Quaternionic Spheres, S4n−1 = Sp(n)/ Sp(n− 1)

This is the case corresponding to K = {1}. The isotropy representation splits into three copies

of the trivial representation and one copy of the standard representation of Sp(n− 1) on R4n−4,

m ≃
4⊕
i=1

mi, where mi ≃ R (i = 1, 2, 3), m4 ≃ R4n−4.

Up to isometry, there is a 4-parameter family of invariant metrics (see [Zil82]), and these are

given by rescaling B0 separately on the isotropy components:

ga⃗ := a1B0|m1×m1 + a2B0|m2×m2 + a3B0|m3×m3 + a4B0|m4×m4 , a1, a2, a3, a4 > 0. (3.3)
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We now give an explicit description of m, together with a ga⃗-orthonormal basis, which will be

needed for subsequent calculations. The embedding Sp(n − 1) ↪→ Sp(n) may be realized as

the lower right hand (n− 1)× (n− 1) block, and we take m := sp(n− 1)⊥ with respect to the

Killing form, κsp(n) := −4(n+ 1)B0. We then have, at the level of Lie algebras,

sp(n) = spanR{iF (n)
p,p , jF

(n)
p,p , kF

(n)
p,p , iF

(n)
r,s , jF

(n)
r,s , kF

(n)
r,s , E

(n)
r,s } p=1,...,n,

1≤r<s≤n

sp(n− 1) = spanR{iF (n)
p,p , jF

(n)
p,p , kF

(n)
p,p , iF

(n)
r,s , jF

(n)
r,s , kF

(n)
r,s , E

(n)
r,s } p=2,...,n,

2≤r<s≤n

and

m = spanR{iF
(n)
1,1 , jF

(n)
1,1 , kF

(n)
1,1 , iF

(n)
1,p , jF

(n)
1,p , kF

(n)
1,p , E

(n)
1,p }p=2,...,n. (3.4)

A ga⃗-orthonormal basis is then given by

e1 :=
1

√
a1

iF
(n)
1,1 , e2 :=

−1
√
a2

kF
(n)
1,1 , e3 :=

1
√
a3

jF
(n)
1,1 , e4p :=

1√
2a4

jF
(n)
1,p+1, (3.5)

e4p+1 :=
1√
2a4

kF
(n)
1,p+1, e4p+2 :=

1√
2a4

iF
(n)
1,p+1, e4p+3 :=

1√
2a4

E
(n)
1,p+1, (3.6)

for p = 1, . . . , n− 1, and the isotropy summands are

m1 = Re1, m2 = Re2, m3 = Re3, m4 = spanR{e4, . . . , e4n−1}.

We define the vertical and horizontal spaces by V :=
⊕3

i=1mi and H := m4 respectively; these

will be relevant to our discussion of the 3-(α, δ)-Sasaki subfamily of metrics appearing later in

the section. From [AHL23, Eqn. (37)], we have:

Theorem 3.2.1. Using the above ga⃗-orthonormal basis and the corresponding description of the

spinor module from Chapter 2.1, the space of invariant spinors on (S4n−1 = Sp(n)/ Sp(n−1), ga⃗)

for any a1, a2, a3, a4 > 0 is given by

Σinv = spanC{ωj, y1 ∧ ωj}n−1
j=0 ,

where ω :=
∑n−1

i=1 y2i ∧ y2i+1.

Remark 3.2.2. We note that the choice of invariant metric in the preceding theorem is

immaterial, since the isotropy representation acts trivially in the vertical directions. Thus, by

choosing the 3-Sasakian metric, the result also follows from Theorem 4.3.10. The fact that the
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space of invariant spinors is 2n-dimensional may also be deduced from the main proposition in

[Wan89] by noting that the spinor module Σ4n−1 in dimension 4n− 1 is the tensor product of C2

with the spinor module Σ4n−4 in dimension 4n− 4, and the isotropy representation acts trivially

on the span of e1, e2, e3. Explicitly, the proposition in [Wan89] gives n linearly independent

Sp(n− 1)-stabilized spinors in Σ4n−4, and one then takes the tensor products of these with a

basis of C2 to obtain 2n invariant spinors in Σ4n−1. Our approach has the added benefit of

providing an explicit description of the spinors, and allowing us to treat the cases G = Sp(n),

Sp(n) Sp(1), and Sp(n)U(1) in a unified way.

Before discussing the 3-(α, δ)-Sasaki case in more detail, we first calculate the Ambrose-Singer

torsion in the general case and determine its type:

Proposition 3.2.3. For any a1, a2, a3, a4 > 0 the sphere (S4n−1 = Sp(n)/ Sp(n − 1), ga⃗) has

Ambrose-Singer torsion of type Tskew ⊕ TCT, given by

TAS(e1, e2) =
−2

√
a3√

a1a2
e3, TAS(e1, e3) =

2
√
a2√

a1a3
e2, TAS(e2, e3) =

−2
√
a1√

a2a3
e1,

TAS(e1,−)|m4 =
1

√
a1

Φ1|m4 , TAS(e2,−)|m4 =
1

√
a2

Φ2|m4 , TAS(e3,−)|m4 =
1

√
a3

Φ3|m4 ,

TAS(e4p, e4q) = TAS(e4p+1, e4q+1) = TAS(e4p+2, e4q+2) = TAS(e4p+3, e4q+3) = 0

TAS(e4p, e4q+1) =
−δp,q

√
a1

a4
e1, TAS(e4p, e4q+2) =

−δp,q
√
a2

a4
e2, TAS(e4p, e4q+3) =

−δp,q
√
a3

a4
e3,

TAS(e4p+1, e4q+2) =
−δp,q

√
a3

a4
e3, TAS(e4p+1, e4q+3) =

δp,q
√
a2

a4
e2, TAS(e4p+2, e4q+3) =

−δp,q
√
a1

a4
e1,

for p, q = 1, . . . , n− 1, where Φ1,Φ2,Φ3 are defined formally as in (3.12)-(3.14). The projection

of TAS onto Tskew is

TAS
skew = −2

3

(
a1 + a2 + a3√

a1a2a3

)
e1 ∧ e2 ∧ e3 +

1

3

3∑
i=1

(
ai + 2a4
a4
√
ai

)
ei ∧ Φi|m4 , (3.7)

with TAS = TAS
skew if and only if a1 = a2 = a3 = a4.

3.2.1.1 Spinors on 3-(α, δ)-Sasaki spheres

Among the metrics (3.3), we consider in this subsection the distinguished subfamily of 3-(α, δ)-Sasaki

metrics gα,δ. Following the notation and setup of Theorem 2.5.7, and noting that the Killing

form on sp(n) is κsp(n) := −4(n+ 1)B0, we define the 3-(α, δ)-Sasaki structure tensors

ξ1 := iδF1,1, ξ2 := −kδF1,1, ξ3 := jδF1,1, (3.8)
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gα,δ :=
1

δ2
B0|V×V +

1

2αδ
B0|H×H, φp :=

1

2δ
ad(ξp)|V +

1

δ
ad(ξp)|H, (3.9)

for p = 1, 2, 3. Noting that gα,δ is obtained from ga⃗ by setting a1 = a2 = a3 =
1
δ2
, a4 =

1
2αδ

, we

inherit from (3.5)-(3.6) the gα,δ-orthonormal basis

er := ξr, e4p := j
√
αδF

(n)
1,p+1, e4p+1 := k

√
αδF

(n)
1,p+1, (3.10)

e4p+2 := i
√
αδF

(n)
1,p+1, e4p+3 :=

√
αδE

(n)
1,p+1, (3.11)

for r = 1, 2, 3 and p = 1, . . . , n − 1. The fundamental 2-forms Φr(X, Y ) := g(X,φr(Y )) are

given in terms of this basis by

Φ1 = −ξ2 ∧ ξ3 −
n−1∑
p=1

(e4p ∧ e4p+1 + e4p+2 ∧ e4p+3), (3.12)

Φ2 = ξ1 ∧ ξ3 −
n−1∑
p=1

(e4p ∧ e4p+2 − e4p+1 ∧ e4p+3), (3.13)

Φ3 = −ξ1 ∧ ξ2 −
n−1∑
p=1

(e4p ∧ e4p+3 + e4p+1 ∧ e4p+2). (3.14)

Remark 3.2.4. It is worth noting that the spinors ωj, y1 ∧ ωj appearing in Theorem 3.2.1

have an interpretation in terms of the 3-(α, δ)-Sasaki structure tensors. Indeed, using the spin

representation described in Chapter 2.1 one has

y1 =
1√
2
(ξ2 + iξ3), ω = −1

2
(Φ2|H + iΦ3|H).

Finally, before discussing the situation in dimension 7, we recall the existence of the second

Einstein metric on a 3-Sasakian manifold:

Remark 3.2.5. It was shown in [BGM94] that a 3-Sasakian manifold admits (uniquely up

to homothety) a second Einstein metric of positive scalar curvature, which differs from the

3-Sasakian metric by a rescaling along the fibres of the canonical fibration. In dimension 7 it is

known from [FKMS97] that this scaling factor is 1
5
, and, more generally, it was shown in [AD20,

Prop. 2.3.3] that a 3-(α, δ)-Sasaki manifold of dimension 4n− 1 is Riemannian Einstein if and

only if δ = α or δ = (2n+ 1)α; in particular, comparing with (3.9) easily recovers the factor of

1
5
in the 7-dimensional 3-Sasakian case. It was furthermore shown in [FKMS97] that the second

Einstein metric admits a proper nearly parallel G2-structure (equivalently, a unique Killing
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spinor up to scaling), and we shall see in the following example that this spinor turns out to be

the canonical spinor of the 3-(α, δ)-Sasaki structure.

Example 3.2.6. In this example we consider in more detail the 3-(α, δ)-Sasaki 7-sphere,

(S7 = Sp(2)/ Sp(1), gα,δ), and compare the spinors from Theorem 3.2.1 with those described

previously in [AF10, AD20]. At the Lie algebra level, we decompose sp(2) = sp(1)⊕⊥κsp(2)
m,

where

sp(1) = spanR

{
iF

(2)
2,2 , jF

(2)
2,2 , kF

(2)
2,2

}
,

V = spanR

{
ξ1 := iδF

(2)
1,1 , ξ2 := −kδF (2)

1,1 , ξ3 := jδF
(2)
1,1

}
,

H = spanR

{
e4 := j

√
αδF

(2)
1,2 , e5 := k

√
αδF

(2)
1,2 , e6 := i

√
αδF

(2)
1,2 , e7 :=

√
αδE

(2)
1,2

}
,

m := V ⊕H,

and orthogonality is with respect to the Killing form κsp(2) = −12B0 on sp(2). By Theorem

2.5.7, the 3-(α, δ)-Sasaki structure is given by the tensors gα,δ, ξp, φp, (p = 1, 2, 3) described

above. The above basis for m is gα,δ-orthonormal, and adapted to the 3-(α, δ)-Sasaki structure

in the sense of Definition 2.3.6, i.e. the fundamental 2-forms are given by

Φ1 = −(ξ2,3 + e4,5 + e6,7), Φ2 = −(ξ3,1 + e4,6 − e5,7), Φ3 = −(ξ1,2 + e4,7 + e5,6).

Using the spin representation described in Chapter 2.1, it follows from Theorem 3.2.1 that the

space of invariant spinors is

Σinv = spanC{1, ω, y1, y1 ∧ ω},

where ω := y2 ∧ y3.

Let us illustrate in detail the process of finding these invariant spinors by hand. To begin, one

finds that the isotropy operators are given by

ad(iF
(2)
2,2 )|m = e4,5 − e6,7, ad(jF

(2)
2,2 )|m = −e4,7 + e5,6, ad(kF

(2)
2,2 )|m = −e4,6 − e5,7. (3.15)

Now, applying the first operator in (3.15) to aritrary η ∈ Σ = Λ•L′ gives

˜
ad(iF

(2)
2,2 ) · η =

1

2
(e4 · e5 − e6 · e7) · η
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=
1

2
[i(x2⌟+ y2∧) (y2 ∧ −x2⌟)η − i(x3⌟+ y3∧) (y3 ∧ −x3⌟)η] ,

and hence

˜
ad(iF

(2)
2,2 )|m · 1 = 0,

˜
ad(iF

(2)
2,2 )|m · y1 = 0,

˜
ad(iF

(2)
2,2 )|m · y2 = −iy2,

˜
ad(iF

(2)
2,2 )|m · y3 = iy3,

˜
ad(iF

(2)
2,2 )|m · (y1 ∧ y2) = −iy1 ∧ y2,

˜
ad(iF

(2)
2,2 )|m · (y2 ∧ y3) = 0,

˜
ad(iF

(2)
2,2 )|m · (y1 ∧ y3) = iy1 ∧ y3,

˜
ad(iF

(2)
2,2 )|m · (y1 ∧ y2 ∧ y3) = 0.

The kernel of this operator is therefore given by

ker
˜

ad(iF
(2)
2,2 )|m = spanC{1, y2 ∧ y3, y1, y1 ∧ y2 ∧ y3}.

Continuing similarly for the other two operators in (3.15) and taking the intersection of the

three kernels gives

Σinv =

(
ker

˜
ad(iF

(2)
2,2 )|m

)
∩
(
ker

˜
ad(jF

(2)
2,2 )|m

)
∩
(
ker

˜
ad(kF

(2)
2,2 )|m

)
= spanC{1, y2∧y3, y1, y1∧y2∧y3}.

Remark 3.2.7. The canonical spinor ψ0 and three auxiliary spinors ψr := ξr · ψ0 (r = 1, 2, 3)

described in Theorem 4.5.2 of [AD20] are given in terms of the above basis of Σinv by

ψ0 =
1√
2
(ω + iy1), ψ1 =

1√
2
(iω + y1), ψ2 =

1√
2
(−1 + iy1 ∧ ω), ψ3 =

1√
2
(−i+ y1 ∧ ω).

Let us now differentiate the spinors ψi, i = 0, 1, 2, 3 from Remark 3.2.7 and compare to the

spinorial equations in [AD20, Thm. 4.5.2]. Using the expression for the Nomizu map from

Theorem 2.5.7, we calculate

Λgα,δ(ξ1) = δξ2,3 + δ(1− α

δ
)(e4,5 + e6,7), Λgα,δ(ξ2) = δξ3,1 + δ(1− α

δ
)(e4,6 − e5,7),

Λgα,δ(ξ3) = δξ1,2 + δ(1− α

δ
)(e4,7 + e5,6), Λgα,δ(e4) = α(−ξ1 ∧ e5 − ξ2 ∧ e6 − ξ3 ∧ e7),

Λgα,δ(e5) = α(ξ1 ∧ e4 + ξ2 ∧ e7 − ξ3 ∧ e6), Λgα,δ(e6) = α(−ξ1 ∧ e7 + ξ2 ∧ e4 + ξ3 ∧ e5),

Λgα,δ(e7) = α(ξ1 ∧ e6 − ξ2 ∧ e5 + ξ3 ∧ e4).

Lifting these to the spin bundle and calculating in the spin representation, as we did above

for the isotropy operators, then gives the desired generalized Killing equations in [AD20, Thm.
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4.5.2]:

∇gα,δ

X ψ0 =

−3α
2
X · ψ0 X ∈ H,

2α−δ
2
X · ψ0 X ∈ V ,

∇gα,δ

X ψi =


2α−δ

2
ξi · ψi X = ξi,

3δ−2α
2

ξj · ψi X = ξj (j ̸= i),

α
2
X · ψi X ∈ H,

(3.16)

for i = 1, 2, 3. For example, one calculates

˜Λgα,δ(ξ1) · ψ0 =
δ

2

[
i(x1⌟+ y1∧)(y1 ∧ −x1⌟)

1√
2
(ω + iy1)

]
+

(δ − α)

2

[
i(x2⌟+ y2∧)(y2 ∧ −x2⌟)

1√
2
(ω + iy1)

]
+

(δ − α)

2

[
i(x3⌟+ y3∧)(y3 ∧ −x3⌟)

1√
2
(ω + iy1)

]
=
δ

2

[
i(x1⌟+ y1∧)

1√
2
(−i+ y1 ∧ ω)

]
+

(δ − α)

2

[
i(x2⌟+ y2∧)

1√
2
(iy2 ∧ y1 − y3) + i(x3⌟+ y3∧)

1√
2
(iy3 ∧ y1 + y2)

]
=

iδ

2
√
2
[−iy1 + ω] +

i(δ − α)

2
√
2

[(iy1 − y2 ∧ y3) + (iy1 + y3 ∧ y2)]

=
(2α− δ)

2

1√
2
(y1 + iω) =

(2α− δ)

2
ψ1 =

(2α− δ)

2
ξ1 · ψ0.

Later, we will show in Proposition 6.3.5 that the second equation in (3.16) (for the auxiliary

spinors ψr, r = 1, 2, 3) is equivalent to the deformed Killing equation (5.1) in dimension 7.

We conclude the 7-dimensional example by observing that substituting the parameters for the

second Einstein metric, g2 := gα,δ|δ=5α (see Remark 3.2.5), into (3.16) gives

∇g2
Xψ0 = −3α

2
X · ψ0, ∇g2

Xψi =


−3α

2
ξi · ψi X = ξi,

13α
2
ξj · ψi X = ξj (j ̸= i),

α
2
X · ψi X ∈ H.

In particular, this shows that ψ0 is the Killing spinor determining the proper nearly parallel

G2-structure described in [FKMS97].

Finally, before discussing the general invariant metrics (3.3) in more detail, we compare the

Ambrose-Singer connection to the canonical connection of the 3-(α, δ)-Sasaki structure introduced

in [AD20]:

Corollary 3.2.8. The canonical connection of the 3-(α, δ)-Sasaki space (S4n−1 = Sp(n)/ Sp(n−
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1), gα,δ) coincides with the Ambrose-Singer connection if and only if the 3-(α, δ)-Sasaki structure

is parallel (δ = 2α).

Proof. We have seen that gα,δ is obtained from ga⃗ by setting a1 = a2 = a3 =
1
δ2

and a4 =
1

2αδ
.

Recalling that the canonical connection has skew torsion (Theorem 4.4.1 in [AD20]), if the two

connections are assumed to coincide then Proposition 3.2.3 implies a1 = a2 = a3 = a4, hence

δ = 2α. Conversely, if δ = 2α then a1 = a2 = a3 = a4 =
1

4α2 , and Proposition 3.2.3 implies that

the Ambrose-Singer connection has skew torsion given by

TAS = −4α e1 ∧ e2 ∧ e3 + 2α
3∑
i=1

ei ∧ Φi|m4 .

The result then follows by comparing this to Theorem 4.4.1 in [AD20].

3.2.1.2 General Invariant Metrics on Sp(n)/ Sp(n− 1)

We now leave the 3-(α, δ)-Sasaki setting and return to the general invariant metrics (3.3). In

order to differentiate the invariant spinors from Theorem 3.2.1, it is helpful to compare ga⃗ with

the round (3-Sasakian) metric, g′ := gα,δ|α=δ=1; they are related by

ga⃗ = b1g
′|m1×m1 + b2g

′|m2×m2 + b3g
′|m3×m3 + b4g

′|m4×m4 ,

where bi := ai (i = 1, 2, 3) and b4 := 2a4. We denote by {ei} the ga⃗-orthonormal basis defined in

(3.5)-(3.6), and by {ei} the g′-orthonormal basis defined by setting α = δ = 1 in (3.10)-(3.11).

By adapting the proof of Proposition 2.33 in [BHM+15], we obtain:

Lemma 3.2.9. The Levi-Civita connection 1-forms ωi,j := ga⃗(∇ga⃗ei, ej) and ω
′
i,j := g′(∇g′ei, ej)

are related by

ωi,j(ek) =
1

2

(
Θp
q,r +Θq

p,r

)
ω′
i,j(ek) +

1

2

(
Θq
p,r −Θr

p,q

)
ω′
j,k(ei) +

1

2

(
Θr
p,q −Θp

q,r

)
ω′
i,k(ej)

for ei ∈ mp, ej ∈ mq, ek ∈ mr, where Θl
m,n :=

√
bl

bmbn
.

Proof. Let ei, ej, ek,Θ
l
m,n be as in the statement of the lemma. Using the Koszul formula and

the fact that ∇g′ is torsion-free, we calculate

ωi,j(ek) = ga⃗(∇ga⃗
ek
ei, ej) =

1

2
[−ga⃗([ei, ek]m, ej)− ga⃗([ek, ej]m, ei)− ga⃗([ei, ej]m, ek)]
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=
1

2

[
−Θq

p,rg
′([ei, ek]m, ej)−Θp

q,rg
′([ek, ej]m, ei)−Θr

p,qg
′([ei, ej]m, ek)

]
= −1

2
Θq
p,rg

′(Λg′(ei)ek −Λg′(ek)ei, ej)−
1

2
Θp
q,rg

′(Λg′(ek)ej −Λg′(ej)ek, ei)

− 1

2
Θr
p,qg

′(Λg′(ei)ej −Λg′(ej)ei, ek),

and the result then follows from the fact that ∇g′ is metric (for g′).

In dimension 7, this comparison with the round metric allows us to easily find new examples of

generalized Killing spinors:

Proposition 3.2.10. The spinors ψi, i = 0, 1, 2, 3 on the 7-sphere (S7 = Sp(2)
Sp(1)

, ga⃗), defined as

in Remark 3.2.7, are generalized Killing spinors for the endomorphisms

Ai = λi,1 Id|m1 + λi,2 Id|m2 + λi,3 Id|m3 + λi,4 Id|m4 , i = 0, 1, 2, 3,

with eigenvalues

λ0,p =


1
2
(−Θp

p+1,p+2 +Θp+1
p,p+2 +Θp+2

p,p+1)− (Θ4
p,4 −Θp

4,4) p = 1, 2, 3,

−1
2
(Θ1

4,4 +Θ2
4,4 +Θ3

4,4) p = 4,

λk,p =


1
2
(−Θp

p+1,p+2 +Θp+1
p,p+2 +Θp+2

p,p+1)− (Θ4
p,4 −Θp

4,4) k = p and p = 1, 2, 3,

1
2
(−Θp

p+1,p+2 +Θp+1
p,p+2 +Θp+2

p,p+1) + (Θ4
p,4 −Θp

4,4) k ̸= p and p = 1, 2, 3,

1
2
(−Θk

4,4 +Θk+1
4,4 +Θk+2

4,4 ) p = 4,

where k = 1, 2, 3, and the indices k, k + 1, k + 2, p, p+ 1, p+ 2 on the right hand side are taken

modulo 3.

Proof. Using the preceding lemma together with the explicit formulas for the Nomizu map of

the round 7-sphere (set α = δ = 1 in Example 3.2.6), we obtain:

Λga⃗(ep) = (Θp
p+1,p+2 −Θp+1

p,p+2 −Θp+2
p,p+1) Φp|V − (Θ4

p,4 −Θp
4,4) Φp|H, p = 1, 2, 3,

Λga⃗(e4) = −Θ1
4,4e1,5 −Θ2

4,4e2,6 −Θ3
4,4e3,7, Λga⃗(e5) = Θ1

4,4e1,4 +Θ2
4,4e2,7 −Θ3

4,4e3,6,

Λga⃗(e6) = −Θ1
4,4e1,7 +Θ2

4,4e2,4 +Θ3
4,4e3,5, Λga⃗(e7) = Θ1

4,4e1,6 −Θ2
4,4e2,5 +Θ3

4,4e3,4,

where the indices p, p+ 1, p+ 2 are taken modulo 3, and Φp are the forms defined by replacing

each ei with ei (and replacing each ξi with ei, i = 1, 2, 3) in (3.12)-(3.14). The result then follows
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by lifting these operators and calculating the Clifford products with ψi, i = 0, 1, 2, 3 in the spin

representation.

Remark 3.2.11. By choosing the metric parameters a1, a2, a3, a4 in (3.3) appropriately, the

endomorphisms Ai from the preceding proposition can be arranged to have 4 distinct eigenvalues,

providing, to the author’s knowledge, the first example of generalized Killing spinors whose

endomorphism has four distinct eigenvalues (see [AF10, AD20] for examples of generalized

Killing spinors with two or three distinct eigenvalues). We also note that, in the case of the

3-(α, δ)-Sasaki metric (b1 = b2 = b3 =
1
δ2
, b4 =

1
αδ
), we have

Θp
q,r = Θ4

p,4 = |δ|, Θp
4,4 = |α| for p, q, r ∈ {1, 2, 3}.

Since S4n−1 is compact we have, by convention, αδ > 0 (cf. Theorem 2.5.7), and thus α and δ

have the same sign. If α, δ > 0, then the generalized Killing equations in Proposition 3.2.10

immediately recover the known equations (3.16). If α, δ < 0, then we recover the equations

(3.16) up to a factor of −1, corresponding to the fact that replacing α, δ with −α,−δ in the

orthonormal basis (3.8), (3.10)-(3.11) gives a basis with the opposite orientation.

Somewhat surprisingly, performing a similar deformation of the 3-Sasakian Killing spinors

in dimensions larger than 7 is not guaranteed to produce generalized Killing spinors, as the

following proposition shows:

Proposition 3.2.12. Let ψ = µ11 + µ2y1 ∧ ωn−1 ∈ E−
1 (µ1, µ2 ∈ C) be an invariant Killing

spinor for the round metric on S4n−1 = Sp(n)/ Sp(n − 1). If n > 2, then the spinor ψ on

(S4n−1 = Sp(n)
Sp(n−1)

, ga⃗) defined by the same formula is a generalized Killing spinor if and only if

b2 = b3 = b4. If b2 = b3 = b4, then ψ is a generalized Killing spinor for the endomorphism

A =
1

2

[
(1− 2n)Θ1

2,2 + 2nΘ2
1,2

]
Id|m1 +

1

2
Θ1

2,2 Id|m2⊕m3⊕m4

with at most two distinct eigenvalues.

Proof. Using Lemma 3.2.9, the Nomizu map for the Levi-Civita connection of ga⃗ takes the

same form as in the proof of the preceding proposition, with e4 replaced with e4p, e5 replaced

with e4p+1, and so on. Using the spin representation described in Chapter 2.1, one sees that

Clifford multiplication by Φ2|H and Φ3|H (resp. Φ2|V and Φ3|V) changes the degree of the

spinors 1 and y1 ∧ ωn−1 by two (resp. one). On the other hand, Clifford multiplication by a
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vector changes the degree by at most one. Thus, by comparing the degrees of Λ̃ga⃗(e2) · ψ and

Λ̃ga⃗(e3) · ψ with elements of m · ψ, we see that if ψ is a generalized Killing spinor and n > 2

then Θ4
2,4 −Θ2

4,4 = 0 = Θ4
3,4 −Θ3

4,4. Simplifying these equations gives b2 = b3 = b4, as desired.

Conversely, if b2 = b3 = b4 then lifting the Nomizu operators and calculating the Clifford product

with ψ in the spin representation gives the result.

The preceding proposition shows that attempting to produce generalized Killing spinors with a

certain number of distinct eigenvalues by rescaling the isotropy components of metrics carrying

Killing spinors is not a straightforward process. Indeed, if one starts with an arbitrary invariant

Killing spinor for the round metric on S4n−1 = Sp(n)/ Sp(n − 1), which, as we shall prove

in Chapter 4.4, may be written as a linear combination of ψk := ωk+1 − i(k + 1)y1 ∧ ωk

(−1 ≤ k ≤ n− 1), the resulting system of algebraic equations determining precisely which linear

combination of the ψk’s is needed is difficult to solve. It remains to be understood why this

deformation technique works in some situations but not others, and whether it can be used to

produce other interesting examples of generalized Killing spinors.

3.2.2 S3-Quaternionic Spheres, S4n−1 = Sp(n) Sp(1)
Sp(n−1) Sp(1)

This is the case corresponding to K = Sp(1). We begin by discussing the general case, then pass

to the 7-dimensional setting, where the invariant spinor is related to the exceptional G2-geometry

available in this dimension. Using [AHL23, Eqn. (24)], we have at the level of Lie algebras

sp(n)⊕ sp(1) = spanR{(iF (n)
p,q , 0), (jF

(n)
p,q , 0), (kF

(n)
p,q , 0), (E

(n)
r,s , 0), (0, i), (0, j), (0, k)}1≤p≤q≤n

1≤r<s≤n
,

sp(n− 1)⊕ sp(1) = spanR{(iF (n)
p,q , 0), (jF

(n)
p,q , 0), (kF

(n)
p,q , 0), (E

(n)
r,s , 0), (iF

(n)
1,1 , i), (jF

(n)
1,1 , j), (kF

(n)
1,1 , k)}2≤p≤q≤n

2≤r<s≤n
,

and for a reductive complement we take the orthogonal complement m := (sp(n− 1)⊕ sp(1))⊥

with respect to the Killing form κ on sp(n)⊕ sp(1),

κ((A, z), (A′, z′)) := −4(n+ 1)B0(A,A
′) + 8ℜ(zz′). (3.17)

The isotropy representation decomposes into two inequivalent irreducible summands, m ≃

m1 ⊕m2, leading to the 2-parameter family of invariant metrics,

ga,b := −aκ|m1×m1 − bκ|m2×m2 , a, b > 0.
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A ga,b-orthonormal basis for m is given by

ξ1 :=
1

Ω

(
iF

(n)
1,1 ,−

(
n+ 1

2

)
i

)
, ξ2 :=

1

Ω

(
−kF (n)

1,1 ,

(
n+ 1

2

)
k

)
, ξ3 :=

1

Ω

(
jF

(n)
1,1 ,−

(
n+ 1

2

)
j

)
,

e4p :=
1

2
√
2b(n+ 1)

(jF
(n)
1,p+1, 0), e4p+1 :=

1

2
√
2b(n+ 1)

(kF
(n)
1,p+1, 0),

e4p+2 :=
1

2
√
2b(n+ 1)

(iF
(n)
1,p+1, 0), e4p+3 :=

1

2
√

2b(n+ 1)
(E

(n)
1,p+1, 0)

for p = 1, . . . , n − 1, where Ω :=
√

2a(n+ 1)(n+ 3). In terms of this basis, the two isotropy

summands are

m1 := spanR{ξ1, ξ2, ξ3}, m2 := spanR{e4, . . . , e4n−1}.

From [AHL23, Prop. 4.7] we obtain:

Theorem 3.2.13. Using the above orthonormal basis and the corresponding description of the

spinor module from Chapter 2.1, the space of invariant spinors on (S4n−1 = Sp(n) Sp(1)
Sp(n−1) Sp(1)

, ga,b) for

any a, b > 0 is trivial unless n = 2, in which case dimC Σinv = 1. In this case, the 1-dimensional

Σinv is contained in the span of y1 and ω :=
∑n−1

i=1 y2i ∧ y2i+1.

Proof. The result follows directly from [AHL23, Prop. 4.7] by noting that ω =
∑n−1

i=1 y2i ∧ y2i+1

is the symplectic form stabilized by sp(2n− 2,C).

The 1-dimensional space of invariant spinors obtained in dimension 7 is explicitly constructed

in Example 3.2.15, which appears immediately after the following proposition describing the

Ambrose-Singer torsion in the general case:

Proposition 3.2.14. For any a, b > 0 the sphere (S4n−1 = Sp(n) Sp(1)
Sp(n−1) Sp(1)

, ga,b) has Ambrose-Singer

torsion of type Tskew ⊕ TCT, given by

TAS(ξ1, ξ2) =
(n− 1)

Ω
ξ3, TAS(ξ1, ξ3) = −(n− 1)

Ω
ξ2, TAS(ξ2, ξ3) =

(n− 1)

Ω
ξ1,

TAS(ξ1,−)|m2 =
1

Ω
Φ1|m2 , TAS(ξ2,−)|m2 =

1

Ω
Φ2|m2 , TAS(ξ3,−)|m2 =

1

Ω
Φ3|m2 ,

TAS(e4p, e4q) = TAS(e4p+1, e4q+1) = TAS(e4p+2, e4q+2) = TAS(e4p+3, e4q+3) = 0

TAS(e4p, e4q+1) =
−aδp,q
bΩ

ξ1, TAS(e4p, e4q+2) =
−aδp,q
bΩ

ξ2, TAS(e4p, e4q+3) =
−aδp,q
bΩ

ξ3,

TAS(e4p+1, e4q+2) =
−aδp,q
bΩ

ξ3, TAS(e4p+1, e4q+3) =
aδp,q
bΩ

ξ2, TAS(e4p+2, e4q+3) =
−aδp,q
bΩ

ξ1,

for p, q = 1, . . . , n− 1, where Φ1,Φ2,Φ3 are defined formally as in (3.12)-(3.14). The projection
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of TAS onto Tskew is

TAS
skew =

(
n− 1

Ω

)
ξ1 ∧ ξ2 ∧ ξ3 +

1

3

(
2

Ω
+

a

bΩ

) 3∑
i=1

ξi ∧ Φi|m2 ,

with TAS = TAS
skew if and only if a = b.

The remainder of the section is devoted to discussion of the 7-dimensional example, S7 =

Sp(2) Sp(1)
Sp(1) Sp(1)

. We shall explicitly determine the invariant spinor in this dimension, and discuss how

it fits into the larger picture of the well-known correspondence between spinors and G2-structures

in dimension 7.

Example 3.2.15. Following the setup outlined above, the isotropy algebra is

sp(1)⊕ sp(1) =
{(
iF

(2)
2,2 , 0

)
,
(
jF

(2)
2,2 , 0

)
,
(
kF

(2)
2,2 , 0

)
,
(
iF

(2)
1,1 , i

)
,
(
jF

(2)
1,1 , j

)
,
(
kF

(2)
1,1 , k

)}
,

and the two isotropy summands m1, m2 are given by

m1 = spanR

{
1√
30a

(
iF

(2)
1,1 ,

−3i

2

)
,

1√
30a

(
−kF (2)

1,1 ,
3k

2

)
,

1√
30a

(
jF

(2)
1,1 ,

−3j

2

)}
=: {ξ1, ξ2, ξ3},

m2 = spanR

{
1√
24b

(
jF

(2)
1,2 , 0

)
,

1√
24b

(
kF

(2)
1,2 , 0

)
,

1√
24b

(
iF

(2)
1,2 , 0

)
,

1√
24b

(
E

(2)
1,2 , 0

)}
=: {e4, e5, e6, e7}.

The basis {ξ1, ξ2, ξ3, e4, e5, e6, e7} for m = m1 ⊕m2 is orthonormal with respect to the invariant

metric ga,b described above, and we shall also denote ei := ξi (i = 1, 2, 3) in certain places.

Fixing the associated Clifford algebra representation as in Chapter 2.1, and letting ω := y2 ∧ y3,

we have,

Theorem 3.2.16. For any a, b > 0, the space of invariant spinors on (S7 = Sp(2) Sp(1)
Sp(1) Sp(1)

, ga,b) is

given by

Σinv = spanC{ψ0 =
1√
2
(ω + iy1)}.

Proof. Considering [AHL23, Prop. 4.7, Cor. 4.8] and the spinors ψi, i = 0, 1, 2, 3 from Remark

3.2.7, the space of invariant spinors is the subspace of spanC{ψ0, ψ1, ψ2, ψ3} annihilated by the
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spin lifts of the three additional isotropy operators

ad(iF
(2)
1,1 , i)|m =2ξ2 ∧ ξ3 + e4 ∧ e5 + e6 ∧ e7, ad(jF

(2)
1,1 , j)|m = 2ξ1 ∧ ξ2 + e4 ∧ e7 + e5 ∧ e6,

ad(kF
(2)
1,1 , k)|m =2ξ1 ∧ ξ3 − e4 ∧ e6 + e5 ∧ e7.

A calculation similar to Example 3.2.6 then gives the result.

In order to differentiate the spinor ψ0, we remark the commutator relations

[V ,V ] ⊆ V ⊕ (sp(1)⊕ sp(1)), [V ,H] ⊆ H, [H,H] ⊆ V ⊕ (sp(1)⊕ sp(1)),

and one then finds that the Nomizu map for the Levi-Civita connection is given by

Λga,b(V )W =



1
2 [V,W ]m V,W ∈ V,

(1− a
2b)[V,W ]m V ∈ V,W ∈ H,

a
2b [V,W ]m V ∈ H,W ∈ V,

1
2 [V,W ]m V,W ∈ H.

In terms of our chosen basis, for m1 this takes the form

Λga,b(ξ1) =
1√
30a

(−1

2
ξ2 ∧ ξ3 + (1− a

2b
)e4 ∧ e5 + (1− a

2b
)e6 ∧ e7),

Λga,b(ξ2) =
1√
30a

(
1

2
ξ1 ∧ ξ3 + (1− a

2b
)e4 ∧ e6 − (1− a

2b
)e5 ∧ e7),

Λga,b(ξ3) =
1√
30a

(−1

2
ξ1 ∧ ξ2 + (1− a

2b
)e4 ∧ e7 + (1− a

2b
)e5 ∧ e6),

and likewise for m2,

Λga,b(e4) =

√
a

2b
√
30

(−ξ1 ∧ e5 − ξ2 ∧ e6 − ξ3 ∧ e7), Λga,b(e5) =

√
a

2b
√
30

(ξ1 ∧ e4 + ξ2 ∧ e7 − ξ3 ∧ e6),

Λga,b(e6) =

√
a

2b
√
30

(−ξ1 ∧ e7 + ξ2 ∧ e4 + ξ3 ∧ e5), Λga,b(e7) =

√
a

2b
√
30

(ξ1 ∧ e6 − ξ2 ∧ e5 + ξ3 ∧ e4).

Applying the spin lifts of these operators to ψ0 gives:

Proposition 3.2.17. The spinor ψ0 is a generalized Killing spinor, ∇ga,b
X ψ0 = A(X) · ψ0, for

the endomorphism

A =
(2a− 5b)

4b
√
30a

Id|m1 −
√
3a

4b
√
10

Id|m2 ,



61 3.2. Classical Spheres, Part II: Spheres over H

and it is a Riemannian Killing spinor if and only a = b ( ⇐⇒ ga,b is a multiple of the second

Einstein metric).

As in Remark 3.2.5, we briefly discuss the second Einstein metric in this case:

Remark 3.2.18. Here, the 3-Sasakian metric (the round metric) is given by ga,b|a= 5
24
,b= 1

24
and

the second Einstein metric is given by rescaling by 1
5
on the vertical component, yielding the

normal homogeneous metric ga,b|a=b= 1
24
. From Theorem 3.2.16 and Proposition 3.2.17, we see

that the 1-dimensional space of invariant spinors in this example is spanned by the Killing

spinor determining the proper nearly parallel G2-structure on (S7 = Sp(2) Sp(1)
Sp(1) Sp(1)

, ga,b|a=b).

We now recall (see e.g. [FKMS97, ACFH15]) the well-known fact that a unit length spinor ψ in

dimension 7 induces a G2-structure, via the 3-form

ωψ(X, Y, Z) := ⟨X · Y · Z · ψ, ψ⟩. (3.18)

In particular, by comparing Proposition 3.2.17 with [Agr06, Table 6] and [ACFH15, Lemma

4.5], one sees that the G2-structure on (S7 = Sp(2) Sp(1)
Sp(1) Sp(1)

, ga,b) induced by ψ0 is cocalibrated for all

a, b > 0 and nearly parallel when a = b.

Proposition 3.2.19. The G2-form induced by ψ0 is given with respect to our chosen orthonormal

basis by

ωψ0 = −e123 + e145 + e167 + e246 − e257 + e347 + e356 = −η1 ∧ η2 ∧ η3 −
3∑
i=1

ηi ∧ Φi|H

and is invariant.

Proposition 4.4 in [ACFH15] says that the intrinsic torsion of this G2-structure is given by

Γ = −2
3
A⌟ωψ0 , where the contraction of an endomorphism into a 3-form means the 3-form

composed with the endormorphism in the first argument: (A⌟ωψ0)(X, Y, Z) := ωψ0(A(X), Y, Z).

Considering the G2-connection ∇n := ∇ga,b − Γ, one easily verifies ∇nψ0 = 0, as expected. We

also find:

Proposition 3.2.20. The torsion T n of the G2-connection ∇n is a 3-form if and only if a = b.

When a = b,

T n =
−1√
30a

ωψ0

is given by a multiple of the G2-form, and thus in particular is invariant and ∇n-parallel.
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Proof. From ∇n = ∇ga,b − Γ we see that the difference tensor between ∇n and ∇ga,b is −Γ =

2
3
A⌟ωψ0 , and thus the torsion is a 3-form if and only if (X, Y, Z) 7→ 2

3
ωψ0(A(X), Y, Z) is totally

skew-symmetric. Clearly this happens precisely when A is a multiple of the identity, which

occurs if and only if a = b. When a = b we have A = −
√
3

4
√
10a

Id and thus the torsion of ∇n is

given by

T n = −2Γ = −2(−2

3
A⌟ωψ0) =

−1√
30a

ωψ0 .

Remark 3.2.21. From [FI02] it is known that the characteristic connection ∇c (which exists in

this example since the G2-structure is cocalibrated) is unique, so when a = b it coincides with

∇n. When a ̸= b we need to find a different way to describe ∇c. Using Theorem 4.8 in [FI02],

and taking into account that our G2-structure is cocalibrated and differs from the reference

G2-form in [FI02] by an orientation-reversing change of basis, the torsion 3-form of ∇c is given

by

T c = −1

6
⟨dωψ0 , ∗ωψ0⟩ωψ0 + ∗dωψ0 . (3.19)

In order to compute T c using (3.19), we first prove the following lemma:

Lemma 3.2.22. The Hodge dual and exterior derivative of ωψ0 are given by

(i) ∗ωψ0 = −e4567 + e2367 + e2345 + e1357 − e1346 + e1256 + e1247,

(ii) dωψ0 =
a+5b
b
√
30a

(∗ωψ0) +
−5a+5b
b
√
30a

e4567.

Proof. The first claim is straightforward. The proof of the second claim proceeds by a lengthy

yet straightforward computation using the above expression of the Nomizu map Λga,b together

with the identity d =
∑7

i=1 ei ∧∇ga,b
ei .

Recalling (e.g. from [Agr06, Table 6]) that a G2-structure ω is nearly parallel if and only if dω

is a non-zero scalar multiple of ∗ω, the preceding lemma also gives an alternate proof of the fact

that the G2-structure induced by ψ0 is nearly parallel if and only if a = b.

Corollary 3.2.23. The characteristic connection ∇c is given by

∇c = ∇ga,b − 1

2

(
a

b
√
30a

ωψ0 +
5a− 5b

b
√
30a

e123

)
,
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and the defining 3-form ωψ and defining spinor ψ0 are both ∇c-parallel.

Proof. Using (3.19) and the preceding lemma, we calculate

T c = −1

6
⟨ a+ 5b

b
√
30a

(∗ωψ0) +
−5a+ 5b

b
√
30a

e4567, ∗ωψ0⟩ωψ0 + ∗
(
a+ 5b

b
√
30a

(∗ωψ0) +
−5a+ 5b

b
√
30a

e4567

)
=

(
−7(a+ 5b)

6b
√
30a

+
−5a+ 5b

6b
√
30a

)
ωψ0 +

(
a+ 5b

b
√
30a

ωψ0 +
−5a+ 5b

b
√
30a

e123

)
= − a

b
√
30a

ωψ0 −
5a− 5b

b
√
30a

e123.

The fact that ∇cω = 0 = ∇cψ0 follows since ∇c is a G2-connection.

A natural question is whether there are other invariant differential forms. To that end, one

finds:

Proposition 3.2.24. Up to taking Hodge duals, the invariant differential forms on (S7 =

Sp(2) Sp(1)
Sp(1) Sp(1)

, ga,b) are given in Table 3.1.

Proof. By hand, or using the LiE computer algebra package ([LCL88]), one finds that the

dimensions of the spaces of invariant 1-, 2-, and 3-forms on Sp(2)/ Sp(1) are 3, 6, and 10

respectively. Bases for these spaces are then given by {ηi}3i=1, {Φi|V ,Φi|H}i=1,2,3, and {η1 ∧ η2 ∧

η3} ∪ {ηi ∧ Φj|H}i,j=1,2,3 respectively. The result then follows by checking which elements in

these spans are invariant under the additional three isotropy operators described in the proof of

Theorem 3.2.16.

k dimΛkinv Basis for Λkinv
0 1 1
1 0 0
2 0 0
3 2 ωψ0 , ξ1,2,3

Table 3.1: Invariant Differential Forms on (S7 = Sp(2) Sp(1)
Sp(1) Sp(1)

, ga,b)

Noting from the preceding proposition that there are no invariant 1-forms, one obtains:

Corollary 3.2.25. The space (S7 = Sp(2) Sp(1)
Sp(1) Sp(1)

, ga,b) does not admit an invariant Einstein-

Sasakian or 3-Sasakian structure for any values of a, b > 0.
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3.2.3 S1-Quaternionic Spheres, S4n−1 = Sp(n)U(1)
Sp(n−1)U(1)

This is the case corresponding to K = U(1). Viewing U(1) as a subgroup of Sp(1) via

eiθ 7→ cos θ+ i sin θ+0j +0k, and from [AHL23, Eqn. (24)], we have at the level of Lie algebras:

sp(n)⊕ u(1) = spanR{(iF (n)
p,q , 0), (jF

(n)
p,q , 0), (kF

(n)
p,q , 0), (E

(n)
r,s , 0), (0, i)}1≤p≤q≤n

1≤r<s≤n
,

sp(n− 1)⊕ u(1) = spanR{(iF (n)
p,q , 0), (jF

(n)
p,q , 0), (kF

(n)
p,q , 0), (E

(n)
r,s , 0), (iF

(n)
1,1 , i)}2≤p≤q≤n

2≤r<s≤n
.

Note that the Killing form of sp(n)⊕ u(1) fails to be non-degenerate, so in order to choose a

reductive complement we instead take the orthogonal complement with respect to the restriction

of the inner product κ from (3.17) to the subalgebra sp(n)⊕ u(1) ⊂ sp(n)⊕ sp(1),

m := (sp(n− 1)⊕ u(1))⊥κ .

The isotropy representation splits into one copy of the trivial representation and two non-

isomorphic irreducible representations:

m ≃ m1 ⊕m2 ⊕m3,

where dimR m1 = 1, dimR m2 = 2, and dimR m3 = 4(n− 1). This gives a 3-parameter family of

invariant metrics,

ga,b,c := −aκ|m1×m1 − bκ|m2×m2 − cκ|m3×m3 , a, b, c > 0.

In particular, by manually checking the sectional curvatures, one finds that the round metric is

given by the parameters

a =
n+ 3

8(n+ 1)
, b =

1

4(n+ 1)
, c =

1

8(n+ 1)
.

For general a, b, c > 0, a ga,b,c-orthonormal basis for m is given by

ξ1 :=
1

Ω

(
iF1,1,−

(
n+ 1

2

)
i

)
, ξ2 :=

1

2
√
b(n+ 1)

(−kF1,1, 0) , ξ3 :=
1

2
√
b(n+ 1)

(jF1,1, 0) ,

e4p :=
1

2
√
2c(n+ 1)

(jF1,p+1, 0), e4p+1 :=
1

2
√

2c(n+ 1)
(kF1,p+1, 0),

e4p+2 :=
1

2
√
2c(n+ 1)

(iF1,p+1, 0), e4p+3 :=
1

2
√

2c(n+ 1)
(E1,p+1, 0),
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for 1 ≤ p ≤ n − 1, where Ω :=
√

2a(n+ 1)(n+ 3), and, in terms of this basis, the isotropy

summands are

m1 = spanR{ξ1}, m2 = spanR{ξ2, ξ3}, m3 = spanR{e4p, e4p+1, e4p+2, e4p+3}n−1
p=1 .

From [AHL23, Eqn. (41)] we obtain:

Theorem 3.2.26. Using the above orthonormal basis and the corresponding description of the

spinor module from Chapter 2.1, the space of invariant spinors on (S4n−1 = Sp(n)U(1)
Sp(n−1)U(1)

, ga,b,c)

for any a, b, c > 0 is trivial unless n is even. If n is even,

Σinv = spanC{ωn/2, y1 ∧ ω(n−2)/2},

where ω :=
∑n−1

i=1 y2i ∧ y2i+1.

Proof. This follows directly from [AHL23, Eqn. (41)]. Alternatively, one can argue exactly as in

the proof of Theorem 3.2.16, using only the spin lift of the operator

ad(iF
(n)
1,1 , i)|m = ξ2 ∧ ξ3 − Φ1. (3.20)

In order to differentiate these spinors, we calculate:

Lemma 3.2.27. The Nomizu map for the Levi-Civita connection of ga,b,c is given by

Λga,b,c(x1)x2 =
1

2
[x1, x2]m, Λga,b,c(x)y = (1− a

2b
)[x, y]m, Λga,b,c(y)x =

a

2b
[y, x]m,

Λga,b,c(y1)y2 =
1

2
[y1, y2]m, Λga,b,c(x)z = (1− a

2c
)[x, z]m, Λga,b,c(z)x =

a

2c
[z, x]m,

Λga,b,c(z1)z2 =
1

2
[z1, z2]m, Λga,b,c(y)z = (1− b

2c
)[y, z]m, Λga,b,c(z)y =

b

2c
[z, y]m,

for all x, x1, x2 ∈ m1, y, y1, y2 ∈ m2, z, z1, z2 ∈ m3.

Proof. This is a straightforward calculation using the fact that κ is ad-invariant and the

commutator relations

[m1,m1] = 0, [m1,m2] ⊆ m2, [m1,m3] ⊆ m3, [m2,m2] ⊆ m1 ⊕ (sp(n− 1)⊕ u(1)),

[m2,m3] ⊆ m3, [m3,m3] ⊆ m1 ⊕m2 ⊕ (sp(n− 1)⊕ u(1)).
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Remark 3.2.28. In terms of our chosen basis, the operators in the preceding lemma take the

form

Λga,b,c(ξ1) =
2(1− a

2b
)

Ω
ξ2 ∧ ξ3 +

(1− a
2c
)

Ω

n−1∑
p=1

(e4p ∧ e4p+1 + e4p+2 ∧ e4p+3),

Λga,b,c(ξ2) =
a

bΩ
ξ3 ∧ ξ1 +

(1− b
2c
)

2
√
b(n+ 1)

n−1∑
p=1

(e4p ∧ e4p+2 − e4p+1 ∧ e4p+3),

Λga,b,c(ξ3) =
a

bΩ
ξ1 ∧ ξ2 +

(1− b
2c
)

2
√
b(n+ 1)

n−1∑
p=1

(e4p ∧ e4p+3 + e4p+1 ∧ e4p+2),

in the vertical directions and, in the horizontal directions,

Λga,b,c(e4p) = − a

2cΩ
ξ1 ∧ e4p+1 −

√
b

4c
√
n+ 1

(ξ2 ∧ e4p+2 + ξ3 ∧ e4p+3),

Λga,b,c(e4p+1) =
a

2cΩ
ξ1 ∧ e4p +

√
b

4c
√
n+ 1

(ξ2 ∧ e4p+3 − ξ3 ∧ e4p+2),

Λga,b,c(e4p+2) = − a

2cΩ
ξ1 ∧ e4p+3 +

√
b

4c
√
n+ 1

(ξ2 ∧ e4p + ξ3 ∧ e4p+1),

Λga,b,c(e4p+3) =
a

2cΩ
ξ1 ∧ e4p+2 −

√
b

4c
√
n+ 1

(ξ2 ∧ e4p+1 − ξ3 ∧ e4p).

In contrast to the previous section, here we do have an invariant vector field, namely ξ1, leading to

the possibility of invariant almost contact structures. The following proposition gives necessary

and sufficient conditions for the existence of various types of these structures:

Proposition 3.2.29. The sphere (S4n−1 = Sp(n)U(1)
Sp(n−1)U(1)

, ga,b,c) admits:

(i) a compatible invariant normal almost contact metric structure for all a, b, c > 0.

(ii) a compatible invariant α-contact structure if and only if a
bΩ

= a
2cΩ

= α.

(iii) a compatible invariant α-K-contact structure if and only if a
bΩ

= a
2cΩ

= α.

In particular there exists a compatible invariant α-Sasakian structure if and only if a
bΩ

= a
2cΩ

= α.

Proof. Following a similar argument as in the proof of Proposition 3.1.15, the only choices for

the Reeb vector field are ξ := ±ξ1. We claim that the 2-form Φ := ga,b,c(·, φ(·)) is invariant if
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and only if

Φ ∈ (Λ2m2)
Sp(n−1)U(1) ⊕ (Λ2m3)

Sp(n−1)U(1) ≃ spanR{ad ξ|m2} ⊕ spanR{ad ξ|m3}. (3.21)

The proof of the claim consists of two parts: First, by noting that m1, m2,m3 are irreducible

and have pairwise distinct dimensions, we see that any invariant 2-form has trivial m1 ⊗ m2,

m1 ⊗ m3, and m2 ⊗ m3 components. Second, we note that Λ2m1 = 0 (for dimension reasons)

and that each Λ2mi (i = 2, 3) has a real 3-dimensional space of Sp(n − 1)-invariant 2-forms,

corresponding to the quaternionic structure

Ii := Φ1|mi
, Ji := Φ2|mi

, Ki := Φ3|mi
, i = 2, 3.

Imposing the additional condition of U(1)-invariance is equivalent to also requiring I-complex

linearity, giving (Λ2mi)
Sp(n−1)U(1) ≃ spanR{Ii} = spanR{ad ξ|mi

} for i = 2, 3.

Returning to the main proof, (3.21) is equivalent to φ = λ1 ad ξ|m2⊕λ2 ad ξ|m3 for some λ1, λ2 ∈ R,

and the metric compatibility condition ga,b,c(φ(X), φ(Y )) = ga,b,c(X, Y )− ga,b,c(ξ,X)ga,b,c(ξ, Y )

necessitates λ1 = Ω/2, λ2 = Ω, i.e.

φ =
Ω

2
ad ξ|m2 ⊕ Ωad ξ|m3 .

One then calculates that the Nijenhuis tensor vanishes for any values of a, b, c, and the structure

is α-contact (dη = 2αΦ) and α-K-contact (∇g
Xξ = −αφ(X)) if and only if a

bΩ
= a

2cΩ
= α.

Solving the equations in the preceding proposition for a, b, c, we immediately obtain:

Corollary 3.2.30. For each fixed α > 0, the invariant α-Sasakian structures occur in a

1-parameter family:

a = 8λ2α2(n+ 1)(n+ 3), b = 2λ, c = λ, (λ > 0). (3.22)

In particular, the round metric occurs for the parameter λ = 1
8(n+1)

.

In contrast to the case G = Sp(n), we shall see in the following remark that the relationship

between invariant Einstein-Sasakian structures and invariant Killing spinors is more complicated

for G = Sp(n)U(1), stemming from the fact that this group has a non-trivial 2-dimensional

complex representation.
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Remark 3.2.31. We remark that the above 2-form Φ takes the form (3.12). Therefore, if an

invariant Einstein-Sasakian structure exists then Theorem 2.3.8 and Proposition 4.3.11 imply

that there are two linearly independent Killing spinors inside E−
1 = spanC{1, y1 ∧ ωn−1}. If

n = 1 then dimCΣ = 2, and it follows that Σ = E−
1 is spanned by two linearly independent

(non-invariant) Killing spinors. In fact, for all n ≥ 1, one sees from Theorem 3.2.26 that the

intersection of E−
1 with the space of invariant spinors is trivial, so the Killing spinors spanning

E−
1 are not invariant. This contrasts with the behaviour in the cases G = Sp(n), SU(n), where

the spaces E±
i had bases of invariant spinors. Indeed, in each of the three cases G = Sp(n) U(1),

Sp(n), SU(n+1) it is easy to see using Kath’s arguments from [Kat00, Prop. 7.1, Thm. 7.1] that

there is a G-representation on E±
i which must be trivial in the latter two cases for dimensional

reasons. However, unlike the other two groups, G = Sp(n)U(1) has a nontrivial 2-dimensional

representation, which is what allows the Killing spinors spanning E−
1 to be non-invariant in this

case. This behaviour is somewhat surprising; one would intuitively expect the Killing spinors

associated to an invariant Einstein-Sasakian structure to also be invariant.

Theorem 3.2.32. The sphere (S4n−1 = Sp(n)U(1)
Sp(n−1)U(1)

, ga,b,c) admits an invariant generalized Killing

spinor if and only if n = 2. If n = 2 there exists a pair ψ0, ψ1 of linearly independent invariant

generalized Killing spinors,

∇ga,b,c
X ψi = Ai(X) · ψi, i = 0, 1,

for the endomorphisms

A0 :=
a

2Ω
(
1

c
− 1

b
) Id|m1 +

(
a

2bΩ
−

(1− b
2c
)

2
√
3
√
b

)
Id|m2 +

(
− a

4cΩ
−

√
b

4c
√
3

)
Id|m3 ,

A1 :=
a

2Ω
(
1

c
− 1

b
) Id|m1 +

(
a

2bΩ
+

(1− b
2c
)

2
√
3
√
b

)
Id|m2 +

(
− a

4cΩ
+

√
b

4c
√
3

)
Id|m3

with at most three distinct eigenvalues.

Proof. Suppose there exists an invariant generalized Killing spinor ∇ga,b,c
X ψ = A(X) · ψ and,

using Theorem 3.2.26, write ψ = λ1ω
n
2 + λ2y1 ∧ ω

n−2
2 for some λ1, λ2 ∈ C. Let us examine the

spin lift of the operator Λga,b,c(e4p). One calculates

1

2
ξ1 · e4p+1 · ψ =

i

2

[
λ1

(n
2
y2p+1 ∧ ω

n−2
2 − y2p ∧ ω

n
2

)
+ λ2

(
n− 2

2
y1 ∧ y2p+1 ∧ ω

n−4
2 − y1 ∧ y2p ∧ ω

n−2
2

)]
,

1

2
ξ2 · e4p+2 · ψ =

1

2

[
λ1

(n
2
y1 ∧ y2p ∧ ω

n−2
2 − y1 ∧ y2p+1 ∧ ω

n
2

)
+ λ2

(
y2p+1 ∧ ω

n−2
2 − n− 2

2
y2p ∧ ω

n−4
2

)]
,
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1

2
ξ3 · e4p+3 · ψ =

1

2

[
λ1

(n
2
y1 ∧ y2p ∧ ω

n−2
2 + y1 ∧ y2p+1 ∧ ω

n
2

)
+ λ2

(
y2p+1 ∧ ω

n−2
2 +

n− 2

2
y2p ∧ ω

n−4
2

)]
,

and the explicit formula from Remark 3.2.28 then gives

Λ̃ga,b,c(e4p) · ψ = −

(
ianλ1
8cΩ

+

√
bλ2

4c
√
n+ 1

)
y2p+1 ∧ ω

n−2
2 +

(
iaλ2
4cΩ

+
nλ1
2

)
y1 ∧ y2p ∧ ω

n−2
2

+

(
iaλ1
4cΩ

)
y2p ∧ ω

n
2 −

(
ia(n− 2)λ2

8cΩ

)
y1 ∧ y2p+1 ∧ ω

n−4
2

In order for the right hand side of this expression to be equal to the Clifford product of a (real)

tangent vector with ψ, one sees that such a vector must be of the form se4p + te4p+1 for some

s, t ∈ R. Comparing with

(se4p + te4p+1) · ψ =

(
insλ1
2

− ntλ1
2

)
y2p+1 ∧ ω

n−2
2 + (isλ1 + tλ1)y2p ∧ ω

n
2

+

(
−i(n− 2)sλ2

2
+

(n− 2)tλ2
2

)
y1 ∧ y2p+1 ∧ ω

n−4
2

+ (−isλ2 − tλ2)y1 ∧ y2p ∧ ω
n−2
2

gives the necessary conditions

(
iaλ1
4cΩ

)
y2p ∧ ω

n
2 = (isλ1 + tλ1)y2p ∧ ω

n
2 ,(

iaλ2
4cΩ

+
nλ1
2

)
y1 ∧ y2p ∧ ω

n−2
2 = −(isλ1 + tλ1)y1 ∧ y2p ∧ ω

n−2
2 .

If n ̸= 2 then y2p ∧ ω
n
2 and y1 ∧ y2p ∧ ω

n−2
2 are non-zero (the latter is non-zero independent of

n), and we have (
iaλ1
4cΩ

)
= −

(
iaλ2
4cΩ

+
nλ1
2

)
.

It follows by taking the real part of both sides that λ1 = λ2 = 0, i.e. ψ ≡ 0 is trivial. For n = 2,

lifting the operators in Remark 3.2.28 and applying them to the spinors

ψ0 :=
1√
2
(ω + iy1), ψ1 := ξ1 · ψ0 =

1√
2
(iω + y1)

gives the result.

Next, we calculate the Ambrose-Singer torsion and determine its type:

Proposition 3.2.33. For any a, b, c > 0 the sphere (S4n−1 = Sp(n)U(1)
Sp(n−1)U(1)

, ga,b,c) has Ambrose-



3.2. Classical Spheres, Part II: Spheres over H 70

Singer torsion of type Tskew ⊕ TCT, given by

TAS(ξ1, ξ2) = − 2

Ω
ξ3, TAS(ξ1, ξ3) =

2

Ω
ξ2, TAS(ξ2, ξ3) = − 2a

bΩ
ξ1,

TAS(ξ1,−)|m3 =
1

Ω
Φ1|m3 , TAS(ξ2,−)|m3 =

1

2
√
b(n+ 1)

Φ2|m3 , TAS(ξ3,−)|m3 =
1

2
√
b(n+ 1)

Φ3|m3 ,

TAS(e4p, e4q) = TAS(e4p+1, e4q+1) = TAS(e4p+2, e4q+2) = TAS(e4p+3, e4q+3) = 0

TAS(e4p, e4q+1) = −aδp,q
cΩ

ξ1, TAS(e4p, e4q+2) = −
√
bδp,q

2c
√
n+ 1

ξ2, TAS(e4p, e4q+3) = −
√
bδp,q

2c
√
n+ 1

ξ3,

TAS(e4p+1, e4q+2) = −
√
bδp,q

2c
√
n+ 1

ξ3, TAS(e4p+1, e4q+3) =

√
bδp,q

2c
√
n+ 1

ξ2, TAS(e4p+2, e4q+3) = −aδp,q
cΩ

ξ1,

for p, q = 1, . . . , n− 1, where Φ1,Φ2,Φ3 are defined formally as in (3.12)-(3.14). The projection

of TAS onto Tskew is

TAS
skew = −

(
2a+ 4b

3bΩ

)
ξ1,2,3 +

(
a+ 2c

3cΩ

)
ξ1 ∧ Φ1|m3 +

(
b+ 2c

6c
√
b(n+ 1)

)
3∑
i=2

ξi ∧ Φi|m3 ,

with TAS = TAS
skew if and only if a = b = c.

Before studying the situation in dimension 7 in more detail, we conclude our discussion of the

general case with a description of the invariant differential forms of degree k ≤ 3:

Proposition 3.2.34. The invariant differential forms of degree less than or equal to 3 on

(S4n−1 = Sp(n)U(1)
Sp(n−1)U(1)

, ga,b,c) are given in Table 3.2.

Proof. The result for degrees k = 0, 1 is clear, and for k = 2 it follows from the proof of

Proposition 3.2.29. For k = 3 one proceeds as in the proof of Proposition 3.2.24 (a description of

the Sp(n− 1)-invariant forms in general dimension can be found in Corollary 4.3.7, for example),

using only the additional operator (3.20).

k dimΛkinv Basis for Λkinv
0 1 1
1 1 ξ1
2 2 Φ1|m2 , Φ1|m3

3 4 ξ1,2,3, ξ1 ∧ Φ1|m3 , (ξ2 ∧ Φ2|m3 + ξ3 ∧ Φ3|m3), (ξ2 ∧ Φ3|m3 − ξ3 ∧ Φ2|m3)

Table 3.2: Invariant Forms of Low Degree on (S4n−1 = Sp(n)U(1)
Sp(n−1)U(1)

, ga,b,c)

In what follows, we examine more closely the generalized Killing spinors in dimension 7 and

compare with the known results for the round (3-Sasakian) metric and the second Einstein

metric (see [FKMS97, AF10, MS14b]).
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Remark 3.2.35. In the case of an invariant Sasakian metric, substituting (3.22) into the

endomorphisms from Theorem 3.2.32 gives

A0 =
1

2
Id|m1⊕m2 +

−
√
6λ− 1

2
√
6λ

Id|m3 , A1 =
1

2
Id|m1⊕m2 +

−
√
6λ+ 1

2
√
6λ

Id|m3 .

It is clear that A0 is never a multiple of the identity map, and A1 is a multiple of the identity

if and only if λ = 1/24, which occurs precisely when ga,b,c is the round metric (see Corollary

3.2.30). When λ = 1/24, we have

A0 =
1

2
Id|m1⊕m2 −

3

2
Id|m3 , A1 =

1

2
Id .

In this case there are three linearly independent Killing spinors (the invariant Killing spinor ψ1

and two non-invariant linearly independent Killing spinors inside E−
1 ), and the result of [FK90]

then implies the existence of a 3-Sasakian structure, as expected. Starting with the generalized

Killing spinor ψ0, the existence of a 3-Sasakian structure also follows from [MS14b, Thm. 4.10],

which notes moreover that ψ0 corresponds to the canonical spinor described in [AF10] for a

general 3-Sasakian manifold of dimension 7 (and we then see that ψ1 = ξi · ψ0 corresponds to

one of the auxiliary spinors described therein).

Finally, as in Remark 3.2.5, we comment on the second Einstein metric in this example:

Remark 3.2.36. Here, the second Einstein metric is given by ga,b,c|a= 1
24
,b= 1

60
,c= 1

24
, and it is clear

that this metric is not part of the family (3.22). Substituting these values of a, b, c into the

endomorphisms from Theorem 3.2.32 gives

A0 = − 3

2
√
5
Id, A1 = − 3

2
√
5
Id|m1 +

13

2
√
5
Id|m2 +

1

2
√
5
Id|m3 ,

so ψ0 is the Killing spinor determining the proper nearly parallel G2-structure and ψ1 is a

generalized Killing spinor with 3 distinct eigenvalues.

3.3 Exceptional Spheres

3.3.1 S6 = G2 / SU(3)

The isotropy representation here is irreducible, so the only invariant metrics are obtained from

multiples of the Killing form. For convenience we choose the invariant inner product g = B0 on
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g2, and consider the reductive complement m := (su(3))⊥ with respect to this inner product.

Following the notation of Proposition A.3, we have

g2 = spanR{ν1, . . . , ν14}, su(3) = spanR{ν1, . . . ν8},

and for m we take the g-orthonormal basis given by

m = spanR{e1, . . . , e6}, where ei :=

ν8+i i = 1, 2, 4, 6,

−ν8+i i = 3, 5.

The motivation for this choice of basis relates to the existence of an invariant nearly Kähler

structure; it is well-known that S6 = G2 / SU(3) admits a unique invariant nearly Kähler structure

up to sign [EL51]. Indeed, it appears as one of the four cases in Butruille’s classification of

homogeneous nearly Kähler 6-manifolds [But05, But10]. Inhomogeneous examples were later

constructed in [CV15, FH17], and a nice overview of the topic of nearly Kähler 6-manifolds can

be found in [ABF18]. For (S6 = G2 / SU(3), g), a direct calculation (by hand or using computer

algebra software) shows that the 1-dimensional space of invariant 2-forms is spanned by

J = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6.

In particular, the invariant almost complex structures are ±J and the given basis {ei} is adapted

to J in the sense that J(e1) = e2, J(e3) = e4, J(e5) = e6. This property allows us to give an

easy proof of the following theorem:

Theorem 3.3.1. Using the above orthonormal basis and the corresponding description of the

spinor module from Remark 2.1.2, the space of invariant spinors on (S6 = G2 / SU(3), g) is

given by

Σinv = spanC{1, y1 ∧ y2 ∧ y3},

and the spinors ψ± := 1± y1 ∧ y2 ∧ y3 are Riemannian Killing spinors,

∇g
Xψ± = ± 1

2
√
3
X · ψ±.

Proof. Since the orthonormal basis {ei} is adapted to the invariant almost complex structure

J , it follows from Remark 3.1.9 that Σ ≃ Λ0,•m as complex representations of SU(3), and the
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space of invariants is therefore spanned by 1 and the complex volume form y1 ∧ y2 ∧ y3 (see e.g.

[FH91, Prop. F.10]).

Remark 3.3.2. The preceding theorem can also be proved directly, by performing a similar

calculation as in Example 3.2.6, using the operators

ad(ν1)|m =
1

2
(e1,2 − e3,4), ad(ν2)|m =

1

2
(e3,5 + e4,6), ad(ν3)|m =

1

2
(−e3,6 + e4,5),

ad(ν4)|m =
1

2
(e1,6 − e2,5), ad(ν5)|m =

1

2
(−e1,5 − e2,6), ad(ν6)|m =

1

2
(−e1,4 + e2,3),

ad(ν7)|m =
1

2
(e1,3 + e2,4), ad(ν8)|m =

1

2
√
3
(−e1,2 − e3,4 + 2e5,6).

and

Λg(e1) =
1

2
√
3
(e3,6 + e4,5), Λg(e2) =

1

2
√
3
(e3,5 − e4,6), Λg(e3) =

1

2
√
3
(−e1,6 − e2,5),

Λg(e4) =
1

2
√
3
(−e1,5 + e2,6), Λg(e5) =

1

2
√
3
(e1,4 + e2,3), Λg(e6) =

1

2
√
3
(e1,3 − e2,4).

Remark 3.3.3. It is noted in [AHL23, Remark 5.3] that the spinors ψ± induce the nearly

Kähler structure J via

J(X) · (ψ±)0 = iX · (ψ±)0 for all X ∈ TM,

where (ψ±)0 denotes the projection onto the even half-spinor module Σ0 ⊆ Σ (the fact that

this relation uniquely defines an almost complex structure is a consequence of the injectivity

of Clifford multiplication by real tangent vectors). This is a special case of the well-known

relationship between Killing spinors and nearly Kähler structures in dimension 6, see e.g.

[Gru90, BFGK91, ACFH15].

Next, we calculate the Ambrose-Singer torsion and determine its type:

Proposition 3.3.4. The sphere (S6 = G2 / SU(3), g) has Ambrose-Singer torsion of type Tskew

given by

TAS =
1√
3
(−e1,3,6 − e1,4,5 − e2,3,5 + e2,4,6).

3.3.2 S7 = Spin(7)/G2

The isotropy representation is again irreducible, so we use the invariant metric induced by the

inner product g = B0 on spin(7), and choose the reductive complement m := (g2)
⊥ with respect
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to this inner product. Following the notation of Proposition A.4, we have

spin(7) = {ν1, . . . , ν14, ν ′15, . . . , ν ′21}, g2 = {ν1, . . . ν14}, m = {e1, . . . , e7},

where ei := ν ′14+i. A straightforward calculation in the spin representation gives:

Theorem 3.3.5. (cf. [Wan89, §3 Case 4]). Using the above orthonormal basis and the

corresponding description of the spinor module from Chapter 2.1, the space of invariant spinors

on (S7 = Spin(7)/G2, g) is given by

Σinv = spanC{−1 + y1 ∧ y2 ∧ y3},

and the spinor ψ := −1 + y1 ∧ y2 ∧ y3 is a Riemannian Killing spinor,

∇g
Xψ =

√
3

4
√
2
X · ψ.

Proof. This follows from the same type of calculation as in Example 3.2.6, using the operators

ad(ν1)|m =
1

2
(e2,3 − e6,7), ad(ν2)|m =

1

2
(−e2,4 − e3,5), ad(ν3)|m =

1

2
(−e2,5 + e3,4),

ad(ν4)|m =
1

2
(e4,7 − e5,6), ad(ν5)|m =

1

2
(−e4,6 − e5,7), ad(ν6)|m =

1

2
(e2,7 − e3,6),

ad(ν7)|m =
1

2
(−e2,6 − e3,7), ad(ν8)|m =

1

2
√
3
(e2,3 − 2e4,5 + e6,7),

ad(ν9)|m =
1

2
√
3
(2e1,7 − e2,5 − e3,4), ad(ν10)|m =

1

2
√
3
(2e1,6 + e2,4 − e3,5),

ad(ν11)|m =
1

2
√
3
(−2e1,3 + e4,7 + e5,6), ad(ν12)|m =

1

2
√
3
(2e1,2 + e4,6 − e5,7),

ad(ν13)|m =
1

2
√
3
(2e1,5 + e2,7 + e3,6), ad(ν14)|m =

1

2
√
3
(−2e1,4 + e2,6 − e3,7),

Λg(e1) =
1

2
√
6
(e2,3 + e4,5 + e6,7), Λg(e2) =

1

2
√
6
(−e1,3 − e4,7 − e5,6),

Λg(e3) =
1

2
√
6
(e1,2 − e4,6 + e5,7), Λg(e4) =

1

2
√
6
(−e1,5 + e2,7 + e3,6),

Λg(e5) =
1

2
√
6
(e1,4 + e2,6 − e3,7), Λg(e6) =

1

2
√
6
(−e1,7 − e2,5 − e3,4),

Λg(e7) =
1

2
√
6
(e1,6 − e2,4 + e3,5).

Next, we calculate the Ambrose-Singer torsion and determine its type:
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Proposition 3.3.6. The sphere (S7 = Spin(7)/G2, g) has Ambrose-Singer torsion of type Tskew

given by

TAS =
1√
6
(−e1,2,3 − e1,4,5 − e1,6,7 + e2,4,7 + e2,5,6 + e3,4,6 − e3,5,7).

3.3.3 S15 = Spin(9)/ Spin(7)

The isotropy representation in this case splits into two non-equivalent modules (one copy of

the spin representation and one copy of the standard representation), hence there is a two-

dimensional family of invariant metrics. Indeed, include spin(7) ⊆ spin(9) as in Proposition

A.4 and set m := (spin(7))⊥, where orthogonality is taken with respect to the Killing form on

spin(9). Explicitly, in the notation of Proposition A.4,

spin(9) = spanR{ι(ν1), . . . , ι(ν14), ι(ν ′15), . . . , ι(ν ′21), ν ′22, . . . , ν ′36},

spin(7) = spanR{ν ′22, . . . , ν ′36},

and

m = spanR{ê1, . . . , ê15}, where êi := ν ′21+i.

The two irreducible isotropy summands are given by

mF := spanR{ê1, . . . , ê7}, mB := spanR{ê8, . . . , ê15},

corresponding to the tangent spaces of the fiber and base respectively of the octonionic Hopf

fibration,

S7 =
Spin(8)

Spin(7)
↪→ S15 =

Spin(9)

Spin(7)
→ S8 =

Spin(9)

Spin(8)
. (3.23)

The two-dimensional family of invariant metrics is parameterized by

ga,b := aB0|mF×mF
+ bB0|mB×mB

, a, b > 0,

and a ga,b-orthonormal basis of m is given by {ei}15i=1, where

ei :=


1√
a
êi if i = 1, . . . , 7,

1√
b
êi if i = 8, . . . , 15.

(3.24)
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By manually checking the sectional curvatures, one finds that the round metric corresponds to

the parameters a = 1
2
, b = 1

8
and we recall (see e.g. [Zil82]) that the round metric is the only

member of the family ga,b which can be isometric to one of the metrics for G = U(n), SU(n),

Sp(n), or Sp(n) Sp(1) considered in previous sections. In the following proposition we give a

complete description of the invariant differential forms:

Proposition 3.3.7. Up to taking Hodge duals, the invariant differential forms on (S15 =

Spin(9)/ Spin(7), ga,b) are given in Table 3.3, where ω ∈ Λ3m, Ψ ∈ Λ4m and their exterior

derivatives are defined by the formulas in Appendix B, and pri,j denotes the projection onto

ΛimF ⊗ ΛjmB.

k dimΛkinv Basis for Λkinv
0 1 1
1 0 0
2 0 0
3 1 ω
4 2 dω,Ψ
5 1 dΨ
6 0 0
7 4 pr1,6(ω ∧ dω), pr3,4(ω ∧ dω), ∗(ω ∧ dΨ), ∗(Ψ ∧Ψ)

Table 3.3: Invariant Differential Forms on (S15 = Spin(9)/ Spin(7), ga,b)

In particular, this shows that the invariant differential forms on S15 = Spin(9)/ Spin(7) are

generated by ω and Ψ and their derivatives, and in what follows we shall examine more closely

the geometric and spinorial features of these forms.

Remark 3.3.8. The 4-form Ψ is purely horizontal, i.e. Ψ ∈ Λ4mB, and the horizontal component

of dω is a multiple of Ψ. One finds that Ψ is not invariant for the larger group Spin(8), hence

it does not descend to an invariant 4-form on the base space S8 = Spin(9)/ Spin(8) of the

octonionic Hopf fibration (3.23).

In the following theorem we describe the space of invariant spinors:

Theorem 3.3.9. Using the above ga,b-orthonormal basis and the corresponding description of the

spinor module from Chapter 2.1, the space of invariant spinors on (S15 = Spin(9)/ Spin(7), ga,b)

is given by

Σinv = spanC{ψ},

where

ψ :=
1

2
√
2
(−iy1,5 + y1,2,3 + y2,5,7 − y3,5,6 + iy1,2,4,7 − iy1,3,4,6 − iy4,5,6,7 + y2,3,4,6,7),
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and we use the notation yi1,...,ip := yi1 ∧ · · · ∧ yip. It satisfies the spinorial equation

∇g
ei
ψ =


(

a−2b
40b

√
2a

)
ω · ei · ψ if i = 1, . . . , 7,(

a+2b
16b

√
2(a−4b)

)
ω · ei · ψ +

( √
a

16(a−4b)

)
dω · ei · ψ if i = 8, . . . , 15.

(3.25)

Proof. We follow the same procedure as in Example 3.2.6. To differentiate ψ, we note that the

Nomizu map of the Levi-Civita connection is given by

Λg(X)Y =



1
2
[X, Y ]m if X, Y ∈ mF ,

(1− a
2b
)[X, Y ]m if X ∈ mF , Y ∈ mB,

1
2b
[X, Y ]m if X ∈ mB, Y ∈ mF ,

1
2
[X, Y ]m if X, Y ∈ mB.

The fact that the spinorial equation (3.25) depends only on the invariant 3-form ω suggests that

there is an intrinsic relationship between ψ and ω. Indeed, the spinor ψ determines ω via the

squaring construction:

ω(X, Y, Z) = −2⟨(X ∧ Y ∧ Z) · ψ, ψ⟩ for all X, Y, Z ∈ TM,

where ⟨·, ·⟩ denotes the usual Hermitian inner product on the spinor bundle. Conversely, (3.25)

shows that ω determines ψ up to first order. In general, for each integer k ≥ 0 the squaring

construction determines an invariant k-form ω(k) via

ω(k)(X1, . . . , Xk) := ℜ⟨(X1 ∧ · · · ∧Xk) · ψ, ψ⟩ for all X1, . . . Xk ∈ TM, (3.26)

and one can ask whether ψ is related to other invariant forms from Table 3.3 by this construction.

Proposition 3.3.10. Up to taking Hodge duals, the differential forms obtained from the invariant

spinor ψ via the squaring construction are given in Table 3.4.

Proof. Note that invariance of ψ implies that each ω(n) is invariant too, and thus Proposition

3.3.7 greatly limits the possibilities for ω(n). One immediately sees that ω(1) = ω(2) = ω(6) = 0,



3.3. Exceptional Spheres 78

and the case k = 3 is given above. Examining next the case of 4-forms, we consider the projection

pr2,2(dω) = dω +
3
√
a

b
√
2
Ψ

of the invariant 4-form dω onto Λ2mF ⊗ Λ2mB, and it is easy to see that {Ψ, pr2,2(dω)} is a

basis for the space of invariant 4-forms. Writing ω(4) = λ1Ψ + λ2pr2,2(dω), a straightforward

calculation in the spin representation shows that

ω(4)(e8, e9, e10, e11) = 0, ω(4)(e1, e2, e8, e11) = −1

2
,

hence λ1 = 0 and λ2 = −
√
a

2
√
2
(by comparing with the formulas in Appendix B) Similarly, for

5-forms, one calculates

ω(5)(e1, e8, e10, e12, e15) = 0 ̸=
√

2

a
= dΨ(e1, e8, e10, e12, e15),

and we conclude from Table 3.3 that ω(5) = 0. In degree 7, we write

ω(7) = λ1pr1,6(ω ∧ dω) + λ2pr3,4(ω ∧ dω) + λ3(∗(ω ∧ dΨ)) + λ4(∗(Ψ ∧Ψ))

as a linear combination of the 7-forms from Table 3.3. A straightforward calculation gives

ω(7)(e1, e8, e9, e10, e11, e12, e13) =
1

2
, ω(7)(e1, e2, e3, e8, e9, e10, e11) = 1

ω(7)(e3, e4, e5, e6, e7, e13, e14) =
1

2
, ω(7)(e1, e2, e3, e4, e5, e6, e7) = −1,

and it then follows from the formulas in Appendix B that

λ1 = − b
√
2

18
√
a
, λ2 =

√
a

6
√
2
, λ3 = −

√
a

8
√
2
, λ4 = − 1

14
.

For higher degrees, we note that the squaring construction is compatible with the Hodge star in

the following sense: For any multi-index I = {i1, . . . , ik}, define a multi-vector eI := ei1∧· · ·∧eik ,

and recall that ∗eI = sign(I ∪ Î)eÎ , where Î = {1, 2, . . . , 15} \ I (with union and complement

taken as ordered sets). Since eI∧(eÎ) = sign(I∪ Î)e1∧e2∧· · ·∧e15 acts on the spin representation

by sign(I ∪ Î) Id, we then have

ω(k)(eI) = ℜ⟨eI · ψ, ψ⟩ = sign(I ∪ Î) ℜ⟨eI · eI · eÎ · ψ, ψ⟩ = (−1)
k(k+1)

2 sign(I ∪ Î) ℜ⟨eÎ · ψ, ψ⟩
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= (−1)
k(k+1)

2 ω(15−k)(∗eI),

and it follows that ω(15−k) = (−1)
k(k+1)

2 ∗ ω(k). In particular, the forms ω(k) with k ≥ 8 are

determined by those in Table 3.4.

k ω(n)

0 1
1 0
2 0
3 ω

4 −
√
a

2
√
2
pr2,2(dω)

5 0
6 0

7 − b
√
2

18
√
a
pr1,6(ω ∧ dω) +

√
a

6
√
2
pr3,4(ω ∧ dω)−

√
a

8
√
2
∗ (ω ∧ dΨ)− 1

14
∗ (Ψ ∧Ψ)

Table 3.4: Forms on (S15 = Spin(9)/ Spin(7), ga,b) obtained from ψ via the squaring construction

Finally, we calculate the Ambrose-Singer torsion and determine its type:

Proposition 3.3.11. For any a, b > 0 the sphere (S15 = Spin(9)/ Spin(7), ga,b) has Ambrose-

Singer torsion of type Tskew ⊕ TCT, given by

TAS(ei,−) =
1

2
√
2a
ei⌟ω (i = 1, . . . , 7), TAS(ei,−) = ω′

i (i = 8, . . . , 15),

where ω′
i are the (0, 2)-tensors determined by

ω′
i(ej, ek) =


1

2
√
2a
ω(ei, ej, ek) if j < k,

√
a

2b
√
2
ω(ei, ej, ek) if j > k,

0 if j = k.

The projection of TAS onto Tskew is

TAS
skew =

(a+ 2b)

6b
√
2a

ω,

with TAS = TAS
skew if and only if a = b.

3.4 Generalized Killing Spinors on Round Spheres

In this section we revisit our findings for the round metric in each case, and compare with the

known results of Moroianu and Semmelmann [MS14a, MS14b]. In Section 4 of [MS14b] it is
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shown that, for the round sphere Sn (n ≥ 3), if there exists a generalized Killing spinor with

exactly two eigenvalues, then those eigenvalues are equal to 1
2
, −3

2
(up to a change of orientation)

and they occur with multiplicity m 1
2
and m− 3

2
= m 1

2
+ 1 respectively. Furthermore, they show

that if such a spinor exists, then n = 3 or 7, giving the multiplicities (m 1
2
,m− 3

2
) = (1, 2) or

(3, 4). In what follows we examine each of the 3- and 7-dimensional cases from our classification

and determine whether, when equipped with the round metric, they admit invariant generalized

Killing spinors with exactly two eigenvalues.

(I). G = SO(4), SO(8), U(2), or U(4). By Theorems 3.1.1 and 3.1.3 there are no invariant

spinors to consider in these cases.

(II). G = SU(2) ∼= Sp(1). By Theorem 3.1.7 and Corollary 3.1.14, the round metric ga,b|a=b= 1
2

admits a pair of invariant Killing spinors for the constant 1
2
, but no invariant generalized

Killing spinors.

(III). G = Sp(1) Sp(1) or Sp(1)U(1). By Theorems 3.2.13 and 3.2.26 there are no invariant

spinors to consider in these cases.

(IV). G = Sp(2). Considering Example 3.2.6 with the round metric gα,δ|α=δ=1, one recovers the

canonical spinor described in [AF10, AD20], consistent also with [MS14b, Thm. 4.10].

(V). G = Sp(2) Sp(1). The round metric in this case is given by ga,b|a= 5
24
, b= 1

24
. Substituting

these values of a and b into the endomorphism A from Proposition 3.2.17 shows that the

spinor ψ0 from Theorem 3.2.16 is an invariant generalized Killing spinor with two distinct

eigenvalues, and the associated endomorphism is consistent with [MS14b, Thm. 4.10];

this theorem also implies the existence of a 3-Sasakian structure with ψ0 as the canonical

spinor, however this structure cannot be invariant as a consequence of Corollary 3.2.25.

(VI). G = Sp(2)U(1). The round metric in this case is given by ga,b,c|a= 5
24
, b= 1

12
, c= 1

24
, and by

Corollary 3.2.30, there is a compatible invariant Sasakian structure. By Remark 3.2.35,

the spinor ψ0 from Theorem 3.2.32 is an invariant generalized Killing spinor with two

distinct eigenvalues, and the associated endomorphism is consistent with [MS14b, Thm.

4.10]; as in the previous case this theorem also implies the existence of a non-invariant

3-Sasakian structure with ψ0 as the canonical spinor (non-invariance in this case follows

from the fact that the space of invariant vectors is 1-dimensional).

(VII). G = Spin(7). In this case, for any invariant metric, the 1-dimensional space of invariant

spinors consists of Killing spinors.



4
Homogeneous (3-)Sasakian Structures from the Spinorial

Viewpoint

This chapter contains work which has appeared in the preprint [Hof22].

4.1 The (3-)Sasakian Structures Induced by Killing Spinors

In this section we expain how to construct Sasakian and 3-Sasakian structures from Riemannian

Killing spinors, generalizing the constructions of Friedrich and Kath in dimensions 5 and 7 [FK88,

FK89, FK90]. By considering the rank two subbundles E−
i ⊆ ΣM defined in [FK90] (recalled

in Theorem 2.3.8), we also show that all Sasakian and 3-Sasakian structures on connected,

simply-connected Einstein-Sasakian or 3-Sasakian manifolds arise from this construction. In

this chapter we shall only consider real Killing spinors for the Killing numbers λ = ±1
2
.

Generalizing to arbitrary dimension the 1-form and dual vector field considered in [FK88] (also

those considered in [FK90, Section 5], [BFGK91, Chapter 4.4], and, by letting the two spinors

in Definition 4.1.1 be multiples of each other, the 1-form considered in [FK89, Section 4]), we

make the following definition:

Definition 4.1.1. Let (M, g) be a Riemannian spin manifold. Given a pair of spinors ψ1, ψ2,

the associated 1-form ηψ1,ψ2 and its metric dual ξψ1,ψ2 (the associated vector field) are defined by

ηψ1,ψ2(X) := ℜ⟨ψ1, X · ψ2⟩, ξψ1,ψ2 := η♯ψ1,ψ2
, for all X ∈ TM, (4.1)

where ⟨·, ·⟩ denotes the usual Hermitian metric on the spinor bundle and ℜ is the real part. We

81
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also define the associated endomorphism field φψ1,ψ2 by

φψ1,ψ2(X) := −1

2
(X⌟dηψ1,ψ2)

♯, for all X ∈ TM. (4.2)

Remark 4.1.2. Observe that the operator ℜ in (4.1) is unnecessary when ψ1 ∈ Riψ2, since

skew-symmetry of the Clifford multiplication with respect to the Hermitian product ⟨ , ⟩ ensures

that ⟨iψ,X · ψ⟩ is purely real. Thus, by setting ψ1 = iψ2 in (4.1), our definition recovers the

1-form and vector field considered in [FK89, Section 4] and [BFGK91, Chapter 1.5]. We also

note that it is possible to choose non-vanishing spinors ψ1, ψ2 such that the associated vector

field ξψ1,ψ2 is identically zero. This is necessarily the case when ψ1 = ψ2, for example.

As we will frequently encounter the tensors (4.1), (4.2) and their derivatives, we summarize here

some relevant well-known facts:

Lemma 4.1.3. Let (M, g) be a Riemannian spin manifold with spinor bundle ΣM , and denote

by ⟨ , ⟩ the usual Hermitian scalar product on the fibers of ΣM .

(i) Differentiation of the Hermitian product ⟨ , ⟩ commutes with ℜ, i.e.

X(ℜ⟨φ, ψ⟩) = ℜ(X⟨φ, ψ⟩)

for all X ∈ TM and all spinors φ, ψ ∈ Γ(ΣM).

(ii) For any spinor ψ ∈ Γ(ΣM) and any vector fields X, Y ∈ TM we have

ℜ⟨X · ψ, Y · ψ⟩ = g(X, Y ) ||ψ||2.

(iii) If ψ is a Riemannian Killing spinor then the length function ||ψ|| is constant on each

connected component of M .

Proof. These can be found elsewhere throughout the literature; in the interest of comprehen-

siveness we recall the proofs here.

(i) One easily calculates:

X(ℜ⟨φ, ψ⟩) = 1

2
X(⟨φ, ψ⟩+ ⟨φ, ψ⟩) = 1

2
X(⟨φ, ψ⟩+ ⟨ψ, φ⟩)

=
1

2
(⟨∇g

Xφ, ψ⟩+ ⟨φ,∇g
Xψ⟩+ ⟨∇g

Xψ, φ⟩+ ⟨ψ,∇g
Xφ⟩)
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=
1

2

(
⟨∇g

Xφ, ψ⟩+ ⟨∇g
Xφ, ψ⟩+ ⟨φ,∇g

Xψ⟩+ ⟨φ,∇g
Xψ⟩

)
= ℜ⟨∇g

Xφ, ψ⟩+ ℜ⟨φ,∇g
Xψ⟩ = ℜ(X⟨φ, ψ⟩).

(ii) Using the skew-symmetry of the Hermitian product with respect to Clifford multiplication,

we calculate:

ℜ⟨X · ψ, Y · ψ⟩ = −ℜ⟨ψ,X · Y · ψ⟩ = ℜ⟨ψ, Y ·X · ψ⟩+ ℜ⟨ψ, 2g(X, Y )ψ⟩

= ℜ⟨Y ·X · ψ, ψ⟩+ 2g(X, Y ) ||ψ||2 = ℜ⟨Y ·X · ψ, ψ⟩+ 2g(X, Y ) ||ψ||2

= −ℜ⟨X · ψ, Y · ψ⟩+ 2g(X, Y ) ||ψ||2,

and the result follows.

(iii) Let ψ be a Riemannian Killing spinor for the Killing number λ. Differentiating the square

of the norm with respect to any X ∈ TM and using skew-symmetry of the Hermitian

product with respect to Clifford multiplication gives:

X||ψ||2 = X⟨ψ, ψ⟩ = ⟨∇g
Xψ, ψ⟩+ ⟨ψ,∇g

Xψ⟩ = λ⟨X · ψ, ψ⟩+ λ⟨ψ,X · ψ⟩ = 0.

Since one of the defining conditions of a Sasakian structure involves the exterior derivative of

the Reeb 1-form, we also need an identity relating dηψ1,ψ2 to the spinors ψ1, ψ2. Generalizing

the identity calculated by Friedrich and Kath in the proof of [FK89, Thm. 2], we have:

Lemma 4.1.4. If (M, g) is a Riemannian spin manifold carring a pair of Killing spinors ψ1, ψ2

(not necessarily linearly independent) for the same Killing number λ, then the exterior derivative

of the 1-form ηψ1,ψ2 is given by

dηψ1,ψ2(X, Y ) = 2λℜ⟨ψ1, (Y ·X −X · Y ) · ψ2⟩ for all X, Y ∈ TM. (4.3)

Remark 4.1.5. Recalling the squaring construction (3.26), we have ηψ1,ψ2 = −ω(1) by definition,

and it follows from the preceding lemma that dηψ1,ψ2 = 4λω(2).

We now describe the relationship between the length of the vector field ξψ1,ψ2 and the kernel of

dηψ1,ψ2 :
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Lemma 4.1.6. If ψ1, ψ2 are Killing spinors (not necessarily linearly independent) for the

same Killing number λ, then the length function ℓ := ||ξψ1,ψ2|| is locally constant if and only if

ξψ1,ψ2⌟dηψ1,ψ2 = 0.

Proof. One easily sees from the calculation on [BFGK91, p. 30] that ξψ1,ψ2 is a Killing vector

field (actually they prove this only for the case ψ1 = iψ2, but the same argument works in

general by using Lemma 4.1.3(i)). Therefore we have

1

2
dηψ1,ψ2(X, Y ) = g(∇g

Xξψ1,ψ2 , Y ) for all X, Y ∈ TM (4.4)

(see e.g. [Bla76, p. 64], noting the slightly different conventions), and the result then follows

from the calculation

X(ℓ2) = Xg(ξψ1,ψ2 , ξψ1,ψ2) = 2g(∇Xξψ1,ψ2 , ξψ1,ψ2) = dηψ1,ψ2(X, ξψ1,ψ2).

For a Sasakian structure (g, ξ, η, φ) one always has ξ⌟dη = 0, so we see from the preceding

lemma that it is necessary for ℓ to be locally constant (and non-zero) in order for the tensors

1
ℓ
ξψ1,ψ2 ,

1
ℓ
ηψ1,ψ2 ,

1
ℓ
φψ1,ψ2 to constitute a Sasakian structure. We now arrive at the first main result

of this section, which shows that for Killing spinors this condition is also sufficient:

Theorem 4.1.7. Suppose that (M, g) is a Riemannian spin manifold carrying a pair ψ1, ψ2 of

Killing spinors (not necessarily linearly independent) for the same Killing number λ ∈ {1
2
, −1

2
},

and suppose furthermore that ℓ := ||ξψ1,ψ2|| is locally constant and non-zero. Then, the tensors

ξ :=
1

ℓ
ξψ1,ψ2 , η :=

1

ℓ
ηψ1,ψ2 , φ :=

1

ℓ
φψ1,ψ2

determine a Sasakian structure on (M, g).

Proof. By [BG99, Prop. 2.1.2], it suffices to show that ξ is a unit length Killing vector field and

the (1, 1)-tensor α(X) := −∇g
Xξ satisfies

(∇g
Xα)Y = g(X, Y )ξ − η(Y )X. (4.5)

It is clear that ||ξ|| = 1 by construction, and we have already seen in the proof of Lemma 4.1.6

that ξψ1,ψ2 is a Killing vector field (as ℓ is constant on each connected component of M we then
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have that ξ = 1
ℓ
ξψ1,ψ2 is a Killing vector field as well). The identity (4.5) has a very elegant

proof in terms of conformal Killing forms, i.e. differential forms Θ ∈ ΛkT ∗M satisfying

∇g
XΘ =

1

k + 1
X⌟dΘ− 1

n− k + 1
X∗ ∧ δΘ, (4.6)

where δ : ΛkT ∗M → Λk−1T ∗M denotes the codifferential and X∗ is the 1-form dual to X via

the Riemannian metric1. Indeed, from Remark 4.1.5 we have dη = 1
ℓ
dηψ1,ψ2 = 4λ

ℓ
ω(2), thus

by [Sem03, Prop. 2.2] dη is a conformal Killing form (using the fact that ψ1, ψ2 are Killing

spinors, hence twistor spinors–see e.g. [BFGK91]). The existence of the Killing spinors ψ1, ψ2

for the Killing number λ ∈ {1
2
, −1

2
} implies that (Mn, g) is Einstein with scalar curvature

4n(n − 1)λ2 = n(n − 1) (see [Fri80, BFGK91]), and the result then follows by [Sem03, Prop.

3.4].

In fact, we shall prove in the next theorem that, any Einstein-Sasakian structure on a simply-

connected manifold arises from this construction. To that end, we recall from Theorem 2.3.8

(using slightly different notation) the bundles

E± := {ψ ∈ ΣM : (±2φ(X) + ξ ·X −X · ξ) · ψ = 0 ∀X ∈ TM}.

For our purposes here, it is important to recall that rank(E−) ≥ 1 and that E− has a basis

consisting of Killing spinors for the constant 1
2
. Using these bundles, we prove:

Theorem 4.1.8. If (M2n−1, g, ξ, η, φ) is a simply-connected Einstein-Sasakian manifold, then

the Sasakian structure (ξ, η, φ) arises from the preceding construction.

Proof. Let ψ ∈ Γ(E−) be a (non-trivial) Killing spinor for the Killing number λ = 1
2
, and assume

without loss of generality that ||ψ|| = 1 (if not, by Lemma 4.1.3(iii), we may rescale it to unit

length using locally constant functions). Defining ψ′ := −ξ · ψ, we note that ψ′ ∈ Γ(E−), since

ξ anti-commutes in the Clifford algebra with the operators (−2φ(X) + ξ ·X −X · ξ) defining

the bundle E−. Furthermore, ψ′ is a Killing spinor due to the calculation

∇g
Xψ

′ = −∇g
X(ξ · ψ) = −(∇g

Xξ) · ψ − ξ · ∇g
Xψ = φ(X) · ψ − 1

2
ξ ·X · ψ

=
1

2
(ξ ·X −X · ξ) · ψ − 1

2
ξ ·X · ψ = −1

2
X · ξ · ψ =

1

2
X · ψ′,

where we have used the identity φ = −∇gξ and the condition defining E−. Using Lemma

1The author would like to thank Prof. Uwe Semmelmann for pointing out this argument.
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4.1.3(ii), we calculate

ηψ,ψ′(X) = ℜ⟨ψ,X · ψ′⟩ = −ℜ⟨ψ,X · ξ · ψ⟩ = g(X, ξ) ||ψ||2 = η(X)

for any X ∈ TM , hence ηψ,ψ′ = η (and also ξψ,ψ′ = ξ). As ℓ = ||ξψ1,ψ2|| = ||ξ|| = 1, it follows

from Theorem 4.1.7 that the pair ψ, ψ′ induces a Sasakian structure on (M, g), and, since

ξψ1,ψ2 = ξ, the two Sasakian structures must coincide (because φψ,ψ′ = −∇gξψ,ψ′ = −∇gξ = φ).

The proof for the case ψ ∈ Γ(E+), λ = −1
2
is similar.

As corollaries, we obtain analogous construction and uniqueness results for 3-Sasakian manifolds:

Theorem 4.1.9. Suppose (M, g) is a Riemannian spin manifold carrying Killing spinors

ψ1, ψ2, ψ3, ψ4 (not necessarily linearly independent) for the same Killing number λ ∈ {1
2
, −1

2
}. If

ξψ1,ψ2 and ξψ3,ψ4 are orthogonal vector fields with locally constant non-zero length, then the two

Sasakian structures induced by Theorem 4.1.7 determine a 3-Sasakian structure on (M, g).

Proof. This follows from Theorem 4.1.7 and the fact that two Sasakian structures with orthogonal

Reeb vector fields uniquely determine a 3-Sasakian structure (see e.g. [FK90, p. 556] for the

construction of the structure tensors of the third Sasakian structure in terms of those of the

other two).

To prove a uniqueness result for 3-Sasakian manifolds analogous to Theorem 4.1.8, we consider

the three bundles E−
i from Theorem 2.3.8. Indeed, performing the argument from the proof of

Theorem 4.1.8 for each of the three Sasakian structures individually yields:

Theorem 4.1.10. If (M4n−1, g, ξi, ηi, φi) is a simply-connected 3-Sasakian manifold, then the

3-Sasakian structure arises from the preceding construction.

Let us briefly compare our results with those of Friedrich and Kath in the 5- and 7-dimensional

setting. These can be found in [FK88], [FK89, Section 4], [FK90, Sections 5, 6], and also

appeared subsequently in the book chapters [BFGK91, Chapters 4.3, 4.4]. In dimension 5,

their construction uses the fact that the spin representation of Spin(5) acts transitively on the

unit sphere in the spinor module (which no longer holds in dimension > 9 [MS43]). Given a

non-zero spinor ψ, this allows them to arrange a particular choice of frame in which a unique

unit length solution ξ ∈ TM5 to the equation ξ · ψ = iψ is readily apparent. For a non-zero

Killing spinor ψ, and under an appropriate normalization of the scalar curvature, they then show

that this vector field ξ determines a Sasakian structure. Similarly, given an orthonormal pair
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of Killing spinors ψ1, ψ2 in dimension 7, Friedrich and Kath use the orthogonal decomposition

ΣM7 = Cψ1 ⊕⊥ (TM7 · ψ1) to find a unique unit length vector field ξ satisfying ξ · ψ1 = ψ2,

which goes on to become the Reeb vector field of a Sasakian structure. This decomposition

of the spinor bundle occurs as a coincidence in dimension 7, and fails in higher dimensions

since the dimension of the spinor module grows much faster than the dimension of the manifold.

In both cases, Friedrich and Kath note that their vector field ξ is dual to the 1-form defined

essentially by (4.1), but there is no mention of the fact that this 1-form can be taken as the

starting point to perform such a construction in arbitrary dimension, as we have done here.

Aside from the preceding comments about dimension, we also note that our results are slightly

different in spirit: Friedrich and Kath prove that a Killing spinor in dimension 5 (resp. two

Killing spinors in dimension 7) defines a specific unit length vector field which is in fact the

Reeb vector field of a Sasakian structure. On the other hand, our Theorem 4.1.7 requires the

assumption that the vector field ξψ1,ψ2 induced by a pair of Killing spinors has locally constant

positive length; this is then shown in Theorem 4.1.8 to be a reasonable assumption in the

sense that simply-connected Einstein-Sasakian manifolds always carry spinors ψ1, ψ2 such that

||ξψ1,ψ2|| = 1, so no cases are lost by imposing this. The similarities and differences are much

the same when comparing [FK90, Section 6] to our Theorem 4.1.9.

4.2 Invariance of Spinors and their Associated (3-)Sasakian

Structures

Given the relationship described above it is natural to ask whether, on a homogeneous manifold,

invariance of a (3-)Sasakian structure implies invariance of the associated unit spinors and vice

versa. One already sees from [AHL23, Remark 4.43] that the homogeneous sphere S4n−1 =

Sp(n)U(1)
Sp(n−1)U(1)

equipped with the round metric (which is invariant and carries an invariant Einstein-

Sasakian structure) admits non-invariant Killing spinors ψ ∈ Γ(E−
1 ). However, it turns out

that if one applies Theorem 4.1.7 to a pair of invariant Killing spinors then the resulting

Sasakian structure must also be invariant, as we prove in this section. This suggests that an

invariant spinor is a more fundamental geometric object than an invariant (3-)Sasakian structure,

capturing more of the homogeneity data of the space. To begin, we have the following lemma:

Lemma 4.2.1. For any X ∈ Rk and θ ∈ ΛpRk, the identity

θ ·X −X · θ = ((−1)p + 1) X⌟θ + ((−1)p − 1) X ∧ θ (4.7)
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holds in the Clifford algebra.

Proof. The Clifford algebra identities

X · θ = (X ∧ θ)− (X⌟θ), θ ·X = (−1)p[X ∧ θ +X⌟θ]

appear as Equations (1.4) in Chapter 1.2 of [BFGK91], and the result follows by subtracting

them.

Considering a 2-form T =
∑

i<j Tijei ∧ ej ∈ Λ2Rk ∼= so(k) and its spin lift T̃ = 1
2

∑
i<j Tijei · ej,

we immediately obtain the corollary:

Corollary 4.2.2. Let T ∈ so(k) be a skew-symmetric linear transformation and T̃ ∈ spin(k) its

spin lift under the Lie algebra isomorphism so(k) ∼= spin(k). Then, for any X ∈ Rk, the identity

T̃ ·X −X · T̃ = T (X) (4.8)

holds in the Clifford algebra.

These formulas also easily generalize for the commutator of a 2-form with a form of arbitrary

degree:

Lemma 4.2.3. Let T ∈ so(k) be a skew-symmetric linear transformation and T̃ ∈ spin(k) its

spin lift under the Lie algebra isomorphism so(k) ∼= spin(k). Then, for any θ ∈ Λ•Rk, the

identity

T̃ · θ − θ · T̃ = T (θ), (4.9)

holds in the Clifford algebra, where T (θ) refers to the standard action of so(k) on Λ•Rk.

Proof. It suffices to prove the result for T = ei ∧ ej and θ = el1 ∧ · · · ∧ elp . We calculate:

T̃ · θ − θ · T̃ =
1

2

(
ei · ej · el1 · · · · · elp − el1 · · · · · elp · ei · ej

)
=


0 i, j ∈ {l1, . . . , lp} or i, j /∈ {l1, . . . , lp},

ei · ej · θ otherwise

= T (θ).
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Finally, we show that the Clifford product of an invariant vector or differential form with an

invariant spinor is again invariant.

Lemma 4.2.4. If (M = G/H, g) is a homogeneous spin manifold carrying an invariant spinor

ψ, then θ · ψ ∈ Σ is invariant for any invariant form θ ∈ Λkinvm, k ≥ 0.

Proof. For any isotropy operator h ∈ h ⊆ so(m), it follows from (4.9) that

h̃ · θ · ψ − θ · h̃ · ψ = h(θ) · ψ.

Invariance of ψ and θ gives h̃ · ψ = 0 = h(θ), hence h̃ · θ · ψ = 0 as desired.

With these lemmas, it is easy to prove that invariant Killing spinors induce invariant (3-)Sasakian

structures via the construction from Chapter 4.1:

Theorem 4.2.5. If (M = G/H, g) is a Riemannian homogeneous spin manifold carrying a

pair ψ1, ψ2 of invariant spinors, then the associated tensors ξψ1,ψ2, ηψ1,ψ2, and φψ1,ψ2 are also

invariant. In particular, if ψ1, ψ2 are invariant Killing spinors for the same Killing number

λ ∈ {1
2
, −1

2
}, and ξψ1,ψ2 has locally constant positive length ℓ > 0, then the induced Sasakian

structure (1
ℓ
ξψ1,ψ2 ,

1
ℓ
ηψ1,ψ2 ,

1
ℓ
φψ1,ψ2) is invariant.

Proof. We show that the tensors ξψ1,ψ2 , ηψ1,ψ2 , φψ1,ψ2 are invariant. Using (4.8) and invariance

of g, ⟨ , ⟩, ψ1, and ψ2, we calculate:

g([h, ξψ1,ψ2 ], X) = −g(ξψ1,ψ2 , [h,X]) = −ℜ⟨ψ1, [h,X] · ψ2⟩

= −ℜ⟨ψ1,
( ˜ad(h)|m ·X −X · ˜ad(h)|m

)
· ψ2⟩ = −ℜ⟨ψ1, ˜ad(h)|m ·X · ψ2⟩

= ℜ⟨ ˜ad(h)|m · ψ1, X · ψ2⟩ = 0

for all h ∈ h, X ∈ m, hence ξψ1,ψ2 and ηψ1,ψ2 = ξ♭ψ1,ψ2
are invariant. Invariance of φψ1,ψ2 then

follows from (4.2), completing the proof.

By the same argument, one also obtains the analogous result in the 3-Sasakian setting:

Theorem 4.2.6. If (M = G/H, g) is a Riemannian homogeneous spin manifold carrying

invariant Killing spinors ψ1, ψ2, ψ3, ψ4 for the same Killing number λ ∈ {1
2
, −1

2
}, and such

that ξψ1,ψ2 and ξψ3,ψ4 are orthogonal and have locally constant positive length, then the induced

3-Sasakian structure is invariant.
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4.3 Invariant Differential Forms and Spinors

Expanding upon the work [DOP20], in this section we describe the invariant φ1-(anti-)holomorphic

differential forms on homogeneous 3-Sasakian spaces. We also describe the invariant spinors

carried by these spaces, and the relationship between the forms and spinors. We would like to

emphasize that this approach exploits the exterior form viewpoint of the spin representation,

which greatly simplifies calculations and allows one to easily prove results for spaces of arbitrary

dimension.

Remark 4.3.1. Before discussing the invariant forms and spinors, we comment briefly about the

homogeneous 3-Sasakian space RP4n−1 ∼= Sp(n)
Sp(n−1)×Z2

. The isotropy group Sp(n− 1)× Z2 is not

connected, leading to non-uniqueness of lifts of the isotropy representation (see Figure 2.1), and,

consequently, non-uniqueness of homogeneous spin structures. Moreover, non-connectedness of

the isotropy group precludes us from the usual strategy of finding invariants at the level of Lie

algebras (since the exponential map in this case is not surjective). To avoid the intricacies of

this special situation, we exclude RP4n−1 from consideration in this chapter by requiring that

our homogeneous 3-Sasakian spaces be simply-connected; it is the only non simply-connected

space in Theorem 2.4.1.

In order to prove the first major result of this section, we will make use of the First Fundamental

Theorems of Invariant Theory for the classical complex simple Lie groups, which can be found

e.g. in [FH91, Sch08]; we will use the formulations presented in [Sch08] as these are more suited

to our purposes. We will also need the description of the exterior powers of the standard

representation of SO(n,C) as highest weight modules (see e.g. [GW09, Chapter 5.5.2]). We

summarize these results in the following three theorems:

Theorem 4.3.2. (Based on the First Fundamental Theorems in [Sch08, Section 5]). Let

SO(n,C) act on Cn by its standard representation and, if n = 2l is even, let Sp(2l,C) also act

by its standard representation. Denote by e1, . . . , en (resp. e∗1, . . . , e
∗
n) the standard basis for Cn

(resp. the images of the standard basis vectors under the isomorphism Cn ≃ (Cn)∗ given by the

non-degenerate bilinear form defining the group), and let

T := T (Cn ⊕ (Cn)∗)

denote the algebra of tensors on Cn ⊕ (Cn)∗, with the natural algebra multiplication given by

concatenation of tensors. The subalgebra of invariant tensors for the two groups are described
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up to mutations (i.e. permutations of the tensor factors) as follows:

(i) FFT for SO(n,C): The space T SO(n,C) of invariant tensors is the C-span of all mutations

of tensor products of flips of the tensors

det :=
∑
σ∈Sn

sign(σ)eσ(1) ⊗ · · · ⊗ eσ(n), I :=
n∑
i=1

ei ⊗ e∗i ,

where a flip means applying the isomorphism Cn ≃ (Cn)∗, ei 7→ e∗i or its inverse to one of

the tensor factors.

(ii) FFT for Sp(2l,C): The space T Sp(2l,C) of invariant tensors is the C-span of all mutations

of tensor products of p, p∗, I, where

p :=
l∑

i=1

(ei ⊗ el+i − el+i ⊗ ei), I :=
n∑
i=1

ei ⊗ e∗i .

Remark 4.3.3. Note that our T is defined slightly differently than the tensor algebra considered

in [Sch08]; we don’t require all the covariant and contravariant factors to be collected, i.e. we

don’t require elements of T to lie in T (Cn)⊗ T ((Cn)∗). To compensate for this, our notion of

mutations includes all permutations of the tensor factors, not just those that permute covariant

factors and contravariant factors amongst themselves (as was the definition in [Sch08]). It is

easy to see that our mutations intertwine the group action, and that invariant elements of

T are generated by invariant elements of T (Cn)⊗ T ((Cn)∗) by taking linear combinations of

mutations.

Theorem 4.3.4. (Based on [GW09, Thm. 5.5.11]). Denote by ω1, . . . , ωn−1 the fundamental

weights of SL(n,C), and ΛrCn the rth exterior power of the standard representation. The

representation ΛrCn is irreducible for all r = 1, . . . , n, with highest weight ωr for r = 1, . . . , n−1.

Theorem 4.3.5. (Based on [GW09, Thm. 5.5.13]). For n = 2l or 2l+1, let ω1, . . . ωl denote the

fundamental weights of SO(n,C), and ΛrCn the rth exterior power of the standard representation.

(i) For n = 2l + 1 ≥ 3: The representation ΛrCn is irreducible for all r = 1, . . . , n, with

highest weight ωr for r = 1, . . . , l − 1 and 2ωl for r = l.

(ii) For n = 2l ≥ 4: The representation ΛrCn is irreducible for r = 1, . . . , l − 1, with highest

weight ωr for r = 1, . . . , l − 2 and ωl−1 + ωl for r = l − 1. The representation ΛlCn splits

as the direct sum of two irreducible representations with highest weights 2ωl−1 and 2ωl.
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We begin with an easy result regarding the algebra of Sp(n)-invariant horizontal complex tensors

for the classical case of the 3-Sasakian round sphere:

Proposition 4.3.6. The algebra Tinv(m
C
H) of invariant horizontal complex tensors on the

3-Sasakian sphere (S4n−1 = Sp(n)
Sp(n−1)

, ground) is generated, up to mutations, by its degree 0 and 2

elements.

Proof. The isotropy algebra is h = sp(n − 1), and complexifying the isotropy representation

gives mC ≃ 3C⊕2C2n−2, where C2n−2 denotes the standard representation of hC = sp(2n−2,C).

Using the fact that C2n−2 is self-dual as an hC-representation, the space of horizontal complex

tensors is

T (mC
H) ≃ T (2C2n−2) ≃ T (C2n−2 ⊕ (C2n−2)∗) ≃ T , (4.10)

and the result follows from Theorem 4.3.2(ii).

As a consequence, we are able to deduce a description of the Sp(n)-invariant forms on the round

sphere:

Corollary 4.3.7. For any k ≥ 0, the space Λkinvm of invariant k-forms on the 3-Sasakian sphere

(S4n−1 = Sp(n)
Sp(n−1)

, ground) is spanned by wedge products of invariant 1- and 2- forms. Explicitly,

the invariant algebra Λ•
invm is spanned by elements of the form

τϵ1,ϵ2,ϵ3,a1,a2,a3 := ηϵ11 ∧ ηϵ22 ∧ ηϵ33 ∧ (Φ1|H)a1 ∧ (Φ2|H)a2 ∧ (Φ3|H)a3 ,

where ϵ1, ϵ2, ϵ3 ∈ {0, 1}, a1, a2, a3 ∈ Z≥0.

Proof. Any degree 2 horizontal tensor decomposes uniquely into symmetric and skew-symmetric

parts according to

mH ⊗mH ≃ S2(mH)⊕ Λ2(mH),

and this decomposition holds as H-representations. By Proposition 4.3.6, we then have that

Tinv(m
C
H) is generated, up to mutations, by its degree 0 elements together with its symmetric

and skew-symmetric degree 2 elements:

Tinv(m
C
H)/mut. ≃

⊕
k≥0

(mC
H ⊗mC

H)
⊗k
inv ≃

⊕
k≥0

(
S2
inv(m

C
H)⊕ Λ2

inv(m
C
H)
)⊗k

.
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But any tensor containing a factor from S2
inv(m

C
H), or any mutation of such a tensor, is symmetric

in at least two positions and therefore lies in the kernel of the projection onto the skew-symmetric

tensors. In particular, this shows that

Λ•
inv(m

C
H) ≃

⊕
k≥0

Λk
(
Λ2

inv(m
C
H)
)

(see Case 3(i) in the proof of Proposition 4.3.8 below for more details about the required

properties of the skew-symmetrization map), so the algebra of complex horizontal differential

forms is generated by its (degree 0 and) degree 2 elements. For U = C2n−2 the standard

representation of hC = sp(2n− 2,C), it is known that dimC Λ
2
invU = 1 (see [DOP20, p. 834]),

hence

dimC Λ
2
inv(m

C
H) = dimC Λ

2
inv(U ⊕ U) = 2 dimC Λ

2
invU + dimC(U ⊗ U)H

C
= 2 · 1 + 1 = 3

(since U is a self-dual HC-representation), and it follows that Λ2
inv(m

C
H) is spanned by Φ1|H,Φ2|H,

and Φ3|H (viewed as complex forms). In particular, together with the constant function 1, these

generate the complex algebra Λ•
inv(m

C
H) and also the real subalgebra Λ•

inv(mH). The result then

follows by noting that the isotropy representation acts trivially in the vertical directions.

In fact, we expect that Corollary 4.3.7 should hold for all homogeneous 3-Sasakian spaces (with

an additional generator Φ0 ∈ Λ2
inv(mH) for the case G = SU(n+ 1)), however the arguments for

the remaining cases become much harder (due to reducibility of mH in the SU(n+ 1) case, the

appearance of extra tensors in certain dimensions for the G = SO(n+ 3) case, and the lack of

invariant theoretic tools for the exceptional cases). It seems likely that other methods would

be needed to prove such a result in general. For this reason we now prove a somewhat weaker

result, but one which can be shown for all the cases and which will nonetheless be sufficient for

the purpose of finding the spaces of invariant spinors:

Proposition 4.3.8. If (M = G/H, g, ξi, ηi, φi) is a simply-connected homogeneous 3-Sasakian

space, then the algebras Λ•,0
inv(m

C
H), Λ

0,•
inv(m

C
H) of invariant horizontal φ1-(anti-)holomorphic forms

are generated by their degree 0 and 2 elements.

Proof. Employing the basis for sp(1) = spanR{ξ1, ξ2, ξ3} given in [DOP20, Eqn. (17)], the almost

complex structure φ1|H = ad(ξ1) acts on (mH)
C = (g1)

C via i Id on (1, 0) ⊗ U and −i Id on

(0, 1)⊗ U , hence the φ1-holomorphic (resp. φ1-anti-holomorphic) horizontal cotangent bundles
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are given by Λ1,0(mC
H) = (1, 0)⊗ U ≃ U (resp. Λ0,1(mC

H) = (0, 1)⊗ U ≃ U). Therefore we have

ΛkU ≃ Λk,0(mC
H) ≃ Λ0,k(mC

H) for all k ≥ 0, so it suffices to consider the invariant exterior forms

on U . We use this approach to treat the cases for G individually.

Case 1: G = Sp(n). Here the complexified isotropy group is Sp(n − 1)C ∼= Sp(2n − 2,C) and

we have U = C2n−2 (the standard representation). It then follows from Theorem 4.3.2(ii) that

ΛkinvU
∼= ΛkinvC2n−2 is generated by alternating tensor powers (i.e. wedge powers) of the 2-form

p ∈ Λ2C2n−2 stabilized by Sp(2n− 2,C).

Case 2: G = SU(n+ 1). The isotropy group in this case is H = S(U(n − 1) × U(1)), and we

consider separately the cases n > 2 and n = 2. When n > 2 we have U = Cn−1 ⊕ (Cn−1)∗,

with the action of hC ∼= sl(n− 1,C)⊕ u(1)C on U via the standard (resp. dual of the standard)

representation of sl(n,C) on Cn−1 (resp. (Cn−1)∗) and the action of 1 ∈ u(1)C ∼= C given by

1 · v =

(
1 +

n− 1

2

)
v, 1 · v′ = −

(
1 +

n− 1

2

)
v′ (4.11)

for all v ∈ Cn−1, v′ ∈ (Cn−1)∗ (see [DOP20, Section 4.5]). We then have

ΛkU ≃ Λk(Cn−1 ⊕ (Cn−1)∗) ≃
⊕
p+q=k

(ΛpCn−1)⊗ (Λq(Cn−1)∗), (4.12)

and examining the action of u(1)C in (4.11) shows that an element in one of the summands

on the right hand side of (4.12) is u(1)C-invariant if and only if it has the same number of

Cn−1 and (Cn−1)∗ factors. By Theorem 4.3.4, the SL(n − 1,C)-modules ΛpCn−1 and ΛqCn−1

are irreducible and non-isomorphic unless p = q, and it then follows from (4.12) that

dimC Λ
k
inv(U) =

1 if k is even and k ≤ dimC U ,

0 otherwise.
(4.13)

In particular one checks in a basis that ω1,0 := (Φ2|H − iΦ3|H) (resp. ω0,1 := (Φ2|H + iΦ3|H))

is an element of Λ2,0
inv(m

C) (resp. Λ0,2
inv(m

C)), and that the top power of ω1,0 (resp. ω0,1) is a

φ1-holomorphic (resp. φ1-anti-holomorphic) volume form. It follows that lower powers are

non-zero, hence they span the 1-dimensional spaces of invariant φ1-(anti-)holomorphic forms in

the relevant dimensions. The argument for n = 2 is similar, except one only needs to consider

the action of hC ∼= u(1)C via (4.11).

Case 3: G = SO(n+ 3). The isotropy group in this case is H = SO(n − 1) × Sp(1), and it is

shown in [DOP20, Section 4.3] that U = Cn−1 × Cn−1 with the following action of HC: identify
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each element (a, b) ∈ U with [a|b] ∈ Mat(n−1)×2(C) (i.e. the matrix with first column a ∈ Cn−1

and second column b ∈ Cn−1), and let SO(n− 1,C) act by left multiplication on the columns

of [a|b] and Sp(1)C ∼= Sp(2,C) by right multiplication on the rows. This gives decompositions

U ≃ Cn−1⊕Cn−1 as SO(n−1,C)-modules and U ≃ (C2)⊕(n−1) as Sp(2,C)-modules (direct sums

of the standard representation in both cases). Letting e1, . . . en−1 (resp. e∗1, . . . , e
∗
n−1) be the

standard basis vectors for the first (resp. second) copy of Cn−1 in the SO(n−1,C)-decomposition,

the ith copy of C2 in the Sp(2,C)-decomposition has basis ei, e
∗
i . In particular, on the ith copy

of C2 (which we shall henceforth denote by (C2)i) the symplectic form stabilized by Sp(2,C) is

given by

pi := ei ⊗ e∗i − e∗i ⊗ ei. (4.14)

For each pair i, j ∈ {1, . . . , n−1}, the copies (C2)i and (C2)j are isomorphic as Sp(2,C)-modules

via fi,j : ei 7→ ej, e
∗
i 7→ e∗j , and the natural extension of this map to tensors satisfies fi,j(pi) = pj .

By Theorem 4.3.2(ii), the Sp(2,C)-invariant tensors in T (C2) are spanned by mutations of

tensor powers of the symplectic form defining the group. The tensor algebra of U =
⊕n−1

i=1 (C2)i

is the direct sum of all possible tensor products of the spaces (C2)i, i = 1, . . . n− 1, hence the

Sp(2,C)-invariant tensors are spanned by mutations of tensor products of the symplectic forms

pi, i = 1, . . . , n− 1. We now consider separately the two subcases ΛkinvU with k = n− 1 and

k ̸= n− 1. It suffices to show that (4.13) holds in both subcases, as the result will then follow

by the same argument as in Case 2.

(i) k = n− 1: The symplectic forms pi have degree 2, hence (U⊗(n−1))inv can only be non-

trivial if n− 1 is even. We assume for the rest of the subcase that n− 1 = 2l. Multilinearly

expanding a tensor product of the form pi1 ⊗ · · · ⊗ pil , or any mutation thereof, one sees

that the vectors eis , e
∗
is , s = 1, . . . l appear in each term. Similarly, each term of the

SO(n− 1,C)-invariant tensor I =
∑n−1

i=1 ei ⊗ e∗i from Theorem 4.3.2(i) contains a pair of

vectors of the form ei, e
∗
i . The flips of I are precisely

I =
n−1∑
i=1

ei ⊗ e∗i , I1 :=
n−1∑
i=1

e∗i ⊗ ei, I2 :=
n−1∑
i=1

ei ⊗ ei, I3 :=
n−1∑
i=1

e∗i ⊗ e∗i , (4.15)

hence any mutation of an l-fold tensor product of flips of I has the property that, when

fully expanded, each term contains a pair of vectors of the form ei, e
∗
i or ei, ei or e

∗
i , e

∗
i

for some i = 1, . . . , n − 1. On the other hand, the SO(n − 1,C)-invariant tensor det =∑
σ∈Sn−1

sign(σ)eσ(1) ⊗ · · · ⊗ eσ(n−1) from Theorem 4.3.2(i) (and any mutation and/or flip
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thereof) has the property that, for each i = 1, . . . , n− 1, each term contains either exactly

one copy of ei or exactly one copy of e∗i . Said differently, linear combinations of mutations

of l-fold tensor products of pi, I, I1, I2, I3 have repeated indices in each term, whereas

linear combinations mutations of flips of det do not have any terms with repeated indices.

Comparing Theorem 4.3.2(i) with the above observation that the Sp(2,C)-invariant tensors

are spanned by mutations of tensor products of the pi, we then have that (U⊗(n−1))inv is

contained in the span of all mutations of (l-fold) tensor products of flips of I. Consider

the skew-symmetrization map Alt : T (U) → Λ•U given by

ui1 ⊗ · · · ⊗ uik 7→
∑
σ∈Sk

sign(σ)uσ(i1) ⊗ · · · ⊗ uσ(ik).

Indeed, any invariant exterior form, viewed as a skew-symmetric tensor, is mapped to a

positive multiple of itself under Alt, so it suffices to consider the image of (U⊗2l)inv under

Alt. Noting that the skew-symmetrizations of a tensor and any mutation of that tensor

agree up to sign, it follows that Λ2l
invU is contained in the span of all images under Alt of

l-fold tensor products of flips of I. Furthermore, since for any tensors α, β the exterior

form Alt(α⊗ β) agrees up to positive scaling with Alt(α) ∧ Alt(β), we have

Λ2l
invU ⊆ ΛlS, where S := spanC{Alt(I),Alt(I1),Alt(I2),Alt(I3)}.

One easily checks that Alt(I) = I − I1 = −Alt(I1), Alt(I2) = Alt(I3) = 0, and we note

furthermore that the tensor

I := Alt(I) =
n−1∑
i=1

(ei ⊗ e∗i − e∗i ⊗ ei) =
n−1∑
i=1

pi

is Sp(2,C)-invariant. Thus S = CI is the trivial HC-representation, and it follows that

Λ2l
invU = ΛlS = C(I ∧ · · · ∧ I) (l times). In particular we have shown that dimC Λ

n−1
inv U is

equal to 1 if n− 1 is even and 0 if n− 1 is odd.

(ii) k ̸= n− 1: Similarly to (4.12), taking the kth exterior power of the SO(n−1,C)-decomposition

U ≃ Cn−1 ⊗ Cn−1 gives

ΛkU ≃ Λk(Cn−1 ⊕ Cn−1) ≃
⊕
p+q=k

(ΛpCn−1)⊗ (ΛqCn−1) (4.16)

as SO(n− 1,C)-modules. If n− 1 is odd, then by Theorem 4.3.5(i) the (self-dual) SO(n−
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1,C)-modules ΛpCn−1,ΛqCn−1 in (4.16) are irreducible for all p, q and non-isomorphic

unless p = q or p = n− 1− q (the latter isomorphism being the Hodge star operator). The

case p = n− 1− q is excluded by the assumption k ̸= n− 1, so by self-duality we have that

(4.13) holds. If n−1 is even, then by Theorem 4.3.5(ii) the (self-dual) SO(n−1,C)-modules

ΛpCn−1,ΛqCn−1 in (4.16) are irreducible for p, q ̸= n−1
2

and non-isomorphic unless p = q or

p = n− 1− q. The assumption k ̸= n− 1 then ensures that (4.13) holds for all k ̸= n− 1.

Case 4: The Five Exceptional Spaces. These are the five spaces from Theorem 2.4.1 with G an

exceptional Lie group. Following [DOP20], we denote the corresponding 3-Sasakian data by

gs = gs0,⊕gs1, (gs1)
C ∼= C2 ⊗ U s, s = 1, 2, 3, 4, 5,

and we recall that the (hs)C-modules U s have been described in terms of highest weight modules

on [DOP20, p. 841]. This information is summarized in Table 4.1.

s = 1 s = 2 s = 3 s = 4 s = 5

Gs G2 F4 E6 E7 E8

Hs Sp(1) Sp(3) SU(6) Spin(12) E7

(hs)C A1 = sp(2,C) C3 = sp(6,C) A5 = sl(6,C) D6 = so(12,C) E7 = eC7
U s V (3) V (λ3) V (λ3) V (λ5) V (λ7)

Table 4.1: The Exceptional Homogeneous 3-Sasakian Spaces

Using the LiE computer algebra package ([LCL88]), one checks that (4.13) holds for each

s = 1, 2, 3, 4, 5, and the result in this case then follows by the same argument as in Case 2.

As a consequence, we immediately obtain a description of the invariant φ1-(anti-)holomorphic

forms on the full tangent bundle:

Theorem 4.3.9. If (M = G/H, g, ξi, ηi, φi) is a simply-connected homogeneus 3-Sasakian space,

then the invariant φ1-(anti-)holomorphic forms are given by

Λ•,0
inv(m

C) = spanC{ωk1,0, y1,0 ∧ ωk1,0}n−1
k=0 , Λ0,•

inv(m
C) = spanC{ωk0,1, y0,1 ∧ ωk0,1}n−1

k=0 ,

where

y1,0 := (ξ2 − iξ3), y0,1 := y1,0, ω1,0 := (Φ2|H − iΦ3|H), ω0,1 := ω1,0.
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Proof. Since the isotropy group acts trivially in the vertical directions, we have

Λ•,0
inv(m

C) = Λ•,0(mC
V)⊗ Λ•,0

inv(m
C
H)

∼= [1⊗ Λ•,0
inv(m

C
H)]⊕ [y1,0 ⊗ Λ•,0

inv(m
C
H)],

Λ0,•
inv(m

C) = Λ0,•(mC
V)⊗ Λ0,•

inv(m
C
H)

∼= [1⊗ Λ0,•
inv(m

C
H)]⊕ [y0,1 ⊗ Λ0,•

inv(m
C
H)],

and the result then follows from an analogous argument as in Case 2 in the proof of the

preceding proposition, where it was noted that 1, ω1,0 (resp. 1, ω0,1) are generators of Λ•,0
inv(m

C
H)

(resp. Λ0,•
inv(m

C
H)).

Using Theorem 4.3.9, we are now ready to prove the main result of the section:

Theorem 4.3.10. Let (M = G/H, g, ξi, ηi, φi) be a simply-connected homogeneous 3-Sasakian

manifold of dimension 4n− 1. For any adapted orthonormal basis of the reductive complement,

and the corresponding description of the spinor module from Chapter 2.1, the space of invariant

spinors is given by

Σinv = spanC{ωk, y1 ∧ ωk}n−1
k=0 , (4.17)

where ω :=
∑n−1

p=1 y2p ∧ y2p+1.

Proof. It is well-known that the 3-Sasakian structure on M gives a reduction of the structure

group of the tangent bundle to Sp(n− 1) ⊂ SO(4n− 1) (see [Kuo70, Thm. 5]). Furthermore,

since the 3-Sasakian structure on M = G/H is assumed to be homogeneous, we have that the

image of the isotropy representation ι is contained in this reduction:

ι(H) ⊆ Sp(n− 1) ⊆ SO(4n− 1).

The lifted action of Sp(n− 1) on Σ = Λ•L′ is given explicitly in [AHL23, Prop. 4.5] (see also

the discussion in [AHL23, Section 4.1.4]): since operators in the symplectic group (and hence

operators in ι(H)) are traceless, it is simply the usual action via exterior powers of the dual of

the standard representation. Thus ΣM ∼= Λ0,•(T ∗
CM) as homogeneous bundles, and the result

follows from Theorem 4.3.9 by noting that y1 =
1√
2
y0,1 and ω = −1

2
ω0,1.

One immediate consequence of this characterization of the invariant spinors is a simple description

of the bundle E−
1 from Theorem 2.3.8:

Proposition 4.3.11. If (M = G/H, g, ξi, ηi, φi) is a simply-connected homogeneous 3-Sasakian
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manifold, with an adapted basis for the reductive complement and the associated spinor module

as above, then

E−
1 = spanC{1, y1 ∧ ωn−1}.

Proof. As noted in the proof of [FK90, Thm. 1], the defining condition of E−
1 implies that

ej · φ1(ej) · ψ = ξ1 · ψ for all ψ ∈ Γ(E−
1 ) and all j = 2, . . . 4n− 1. Indeed, it is not hard to see

that the two conditions are equivalent, so it suffices to show that

e2p · e2p+1 · 1 = ξ1 · 1 and e2p · e2p+1 · (y1 ∧ ωn−1) = ξ1 · (y1 ∧ ωn−1)

for all p = 1, . . . , 2n− 1. Using the formulas (2.4), we calculate

e2p · e2p+1 = i(xp⌟ + yp∧) ◦ (yp ∧ − xp⌟) = i [xp⌟ ◦ yp ∧ −yp ∧ ◦xp⌟] ,

and hence

e2p · e2p+1 · 1 = i [xp⌟(yp ∧ 1)− yp ∧ (xp⌟1)] = i = ξ1 · 1,

e2p · e2p+1 · (y1 ∧ ωn−1) = i
[
xp⌟(yp ∧ y1 ∧ ωn−1)− yp ∧ (xp⌟(y1 ∧ ωn−1))

]
= −iy1 ∧ ωn−1 = ξ1 · (y1 ∧ ωn−1)

for all p = 1, . . . , 2n − 1. The penultimate equality follows by considering separately the

cases p = 1, p ̸= 1 and using the fact that ωn−1 is a multiple of y2 ∧ y3 ∧ · · · ∧ y2n−1, hence

yp ∧ (xp⌟ωn−1) = ωn−1 for p ̸= 1.

Remark 4.3.12. Note that the preceding proposition is an immediate consequence of Proposition

4.4.4 in the next section, where it is proved using a different method. We have also included it

here as an illustrative example of how to perform spinorial calculations using the exterior forms

realization of the spin representation.

In the proof of Theorem 4.3.10 we relied on the identification Σ ∼= Λ0,•
C (M) between invariant

φ1-anti-holomorphic forms and invariant spinors. A natural question then arises as to the

relationship between invariant real differential forms and invariant spinors. The next few results

are devoted to the exploration of this topic. From this point forward we fix, without further

mention, the Clifford algebra representation associated to an adapted basis, so that the invariant

spinors take the form (4.17).
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Lemma 4.3.13. Let (M = G/H, g, ξi, ηi, φi) be a simply-connected homogeneous 3-Sasakian

manifold of dimension 4n− 1. Then for any integer k ≥ 0 we have

Φ0 · ωk = 0, (4.18)

(Φ1|H) · ωk = 2i(2k − n+ 1)ωk, (4.19)

(Φ2|H) · ωk = 2(ωk+1 − k(n− 1)ωk−1), (4.20)

(Φ3|H) · ωk = −2i(ωk+1 + k(n− 1)ωk−1), (4.21)

where ω :=
∑n−1

p=1 y2p ∧ y2p+1 and we use the convention ω0 = 1.

Proof. These identities follow from a straightforward calculation in the spin representation.

First we consider Φ0 =
∑n−1

p=1 (e4p ∧ e4p+1 − e4p+2 ∧ e4p+3). For k ≥ 0, we calculate:

Φ0 · ωk =
n−1∑
p=1

(e4p ∧ e4p+1 − e4p+2 ∧ e4p+3) · ωk

= i
n−1∑
p=1

[(x2p⌟+ y2p∧)(y2p ∧ −x2p⌟)− (x2p+1⌟+ y2p+1∧)(y2p+1 ∧ −x2p+1⌟)]ω
k

= i
n−1∑
p=1

[x2p⌟(y2p ∧ ωk)− y2p ∧ (x2p⌟ω
k)− x2p+1⌟(y2p+1 ∧ ωk) + y2p+1 ∧ (x2p+1⌟ω

k)]

= i
n−1∑
p=1

[ωk − 2ky2p ∧ y2p+1 ∧ ωk−1 − ωk + 2ky2p+1 ∧ (−y2p)]

= 0.

The calculations for (Φi|H) · ωk, i = 1, 2, 3 are analogous, and we include them below for the

sake of completeness. For k ≥ 0, we calculate:

(Φ1|H) · ωk = −
n−1∑
p=1

(e4p ∧ e4p+1 + e4p+2 ∧ e4p+3) · ωk

= −i
n−1∑
p=1

[(x2p⌟+ y2p∧)(y2p ∧ −x2p⌟) + (x2p+1⌟+ y2p+1∧)(y2p+1 ∧ − x2p+1⌟)]ω
k

= −i
n−1∑
p=1

(−ky2p ∧ y2p+1 ∧ ωk−1 + ωk − ky2p+1 ∧ (−y2p) ∧ ωk−1

− ky2p ∧ y2p+1 ∧ ωk−1 + ωk − ky2p ∧ y2p+1 ∧ ωk−1)

= i(4kωk − 2(n− 1)ωk) = 2i(2k − n+ 1)ωk,
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(Φ2|H) · ωk = −
n−1∑
p=1

(e4p · e4p+2 − e4p+1 · e4p+3) · ωk

=
n−1∑
p=1

[(x2p⌟+ y2p∧)(x2p+1⌟+ y2p+1∧) + (y2p ∧ − x2p⌟)(y2p+1 ∧ − x2p+1⌟)]ω
k

=

(
n−1∑
p,q=1

2y2p ∧ y2p+1 ∧ y2q ∧ y2q+1

)
∧

(
n−1∑
q=1

y2q ∧ y2q+1

)k−1

+ k

(
n−1∑
p=1

(−2)

)
∧

(
n−1∑
q=1

y2q ∧ y2q+1

)k−1

= 2(ωk+1 − k(n− 1)ωk−1),

(Φ3|H) · ωk = −
n−1∑
p=1

(e4p · e4p+3 + e4p+1 · e4p+2) · ωk

= −i
n−1∑
p=1

[(x2p⌟+ y2p∧)(y2p+1 ∧ −x2p+1⌟) + (y2p ∧ − x2p⌟)(x2p+1⌟+ y2p+1∧)]ωk

= −i

(
n−1∑
p,q=1

2y2p ∧ y2p+1 ∧ y2q ∧ y2q+1

)
∧

(
n−1∑
q=1

y2q ∧ y2q+1

)k−1

− ik

(
n−1∑
p=1

2

)
∧

(
n−1∑
q=1

y2q ∧ y2q+1

)k−1

= −2i(ωk+1 + k(n− 1)ωk−1).

We immediately deduce:

Corollary 4.3.14. For i ∈ {0, 1, 2, 3}, let Si denote the complex span of the spinors (Φi|H)k · 1

with k = 1, . . . , 2n− 1. We have:

S0 = {0}, S1 = spanC{1}, S2 = S3 = spanC{ωk}n−1
k=0 .

Proof. The cases S0 and S1 are clear from the preceding lemma. From (4.20) we note that the

Clifford product of the form 1
2
Φ2|H with the spinor ωk is a monic degree (k + 1) polynomial

in ω, hence 1
2k
(Φ2|H)k · 1 is a monic degree k polynomial in ω. It is straightforward to see (by

induction) that

spanC{ 1
2k
(Φ2|H)k · 1}k0k=0 = spanC{ωk}k0k=0
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for any k0 ∈ {1, . . . , n− 1}, and the result for S2 follows. The proof for S3 is analogous.

This also gives a nice description of the invariant spinors in terms of the invariant real differential

forms:

Theorem 4.3.15. The space Σinv of invariant spinors on a simply-connected homogeneous

3-Sasakian manifold is spanned by Clifford products of invariant differential forms with the

invariant spinor 1 ∈ Σinv.

Proof. In light of Theorem 4.3.10, it suffices to show that spinors of the form ωk and y1 ∧ ωk

can be obtained as linear combinations of Clifford products of invariant differential forms with

1 ∈ Σinv. This follows from Corollary 4.3.14 by noting that ωk ∈ S2 and y1 ∧ ωk ∈ ξ2 · S2.

Remark 4.3.16. We would like to point out that the results of this section so far also hold in

the more general setting of compact simply-connected homogeneous 3-(α, δ)-Sasaki spaces; The

reason for this is that the generalized 3-Sasakian data used to define homogeneous 3-(α, δ)-Sasaki

structures coincides, in the case of a compact space, with the notion of 3-Sasakian data (compare

Theorems 2.4.2 and 2.5.7). In particular, the isotropy representation of a family of compact

homogeneous 3-(α, δ)-Sasaki spaces parameterized by α, δ > 0 is isomorphic to the isotropy

representation of the corresponding homogeneous 3-Sasakian space obtained by setting α = δ = 1.

The next section discusses Killing spinors on homogeneous 3-Sasakian spaces, which do not

carry over to the corresponding 3-(α, δ)-Sasaki spaces. Rather, certain deformations of Killing

spinors in the 3-(α, δ)-Sasaki setting are investigated in Chapter 5.

4.4 The Space of Riemannian Killing Spinors

We conclude the chapter with an explicit description of the Riemannian Killing spinors on a

homogeneous 3-Sasakian space:

Theorem 4.4.1. Let (M4n−1 = G/H, g, ξi, ηi, φi) be a simply-connected homogeneous 3-Sasakian

manifold, and fix a description of the spinor module relative to an adapted basis as in the previous

section. If n ≥ 2, then the space of invariant Killing spinors has a basis given by

ψk := ωk+1 − i(k + 1)y1 ∧ ωk, −1 ≤ k ≤ n− 1,

where we use the conventions ω−1 = 0 and ω0 = 1. If n = 1 then the space of invariant Killing

spinors has a basis given by 1, y1. Furthermore, if (M, g) ≇ (S4n−1, ground) then any Killing
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spinor is invariant.

Proof. Let Λ, Λg : m × m → m denote the Nomizu maps of the canonical and Levi-Civita

connections respectively. First we consider the horizontal directions X ∈ H. From (2.8) we have

Λ(X) = 0 for all X ∈ H, and thus any invariant Killing spinor ψ satisfies the algebraic equation

0 = Λ̃(X) · ψ = Λ̃g(X) · ψ +
1

4
(X⌟T ) · ψ =

1

2
X · ψ +

1

2

3∑
i=1

ξi · φi(X) · ψ (4.22)

for all X ∈ H. Assume first that n ≥ 2. Calculating in an adapted basis {e4p, e4p+1, e4p+2, e4p+3},
we find:

1

2
e4p · ωk +

1

2

3∑
i=1

ξi · φi(e4p) · ωk =
1

2

(
e4p · ωk + ξ1 · e4p+1 · ωk + ξ2 · e4p+2 · ωk + ξ3 · e4p+3 · ωk

)
=

1

2

(
2ix2p⌟ω

k + ξ2 · e4p+2 · ωk + ξ3 · e4p+3 · ωk
)

= ix2p⌟ω
k +

1

2

(
−y1 ∧ (y2p+1 ∧+x2p+1⌟)ω

k + y1 ∧ (y2p+1 ∧ −x2p+1⌟)ω
k
)

= ix2p⌟ω
k − y1 ∧ (x2p+1⌟ω

k)

and similarly,

1

2
e4p · (y1 ∧ ωk) +

1

2

3∑
i=1

ξi · φi(e4p) · (y1 ∧ ωk) = iy2p ∧ (y1 ∧ ωk) + y2p+1 ∧ ωk.

Writing

ψ :=
n−1∑
k=0

λkω
k +

n−1∑
k=0

λ′k(y1 ∧ ωk)

in terms of the basis from Theorem 4.3.10, we have

1

2
e4p · ψ +

1

2

3∑
i=1

ξi · φi(e4p) · ψ =

n−1∑
k=0

λk[ix2p⌟ω
k − y1 ∧ (x2p+1⌟ω

k)] +

n−1∑
k=0

λ′k[y2p+1 ∧ ωk + iy2p ∧ (y1 ∧ ωk)].

(4.23)

For the k = l index of the summations on the right hand side of (4.23), the degrees of the four

terms are 2l − 1, 2l, 2l + 1 and 2l + 2 respectively. Considering separately the even and odd

degree parts of (4.23), we are seeking solutions of

n−1∑
k=0

[iλkx2p⌟ω
k + λ′ky2p+1 ∧ ωk] = 0 =

n−1∑
k=0

[−λky1 ∧ (x2p+1⌟ω
k) + iλ′ky2p ∧ (y1 ∧ ωk)],
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or equivalently, solutions of the linear system of equations

λ′k = −i(k + 1)λk+1, −1 ≤ k ≤ n− 1.

This gives n+ 1 linearly independent spinors

ψk := ωk+1 − i(k + 1)y1 ∧ ωk, −1 ≤ k ≤ n− 1,

and a straightforward calculation of the other horizontal derivatives (by substituting X =

e4p+1, e4p+2, and e4p+3 into (4.22)) shows that these spinors satisfy the Killing equation in the

horizontal directions. In the vertical directions, one sees from Theorem 2.5.7 that the Nomizu

map for the Levi-Civita connection satisfies Λg(ξi) = ξj ∧ ξk for any even permutation (i, j, k) of

(1, 2, 3). Considering the spin lifts Λ̃g(ξi) =
1
2
ξj · ξk, another straightforward calculation in the

spin representation shows that any spinor of the form ωk or y1 ∧ωk satisfies the Killing equation

in the vertical directions, and we conclude that the ψk are Killing spinors in the case n ≥ 2.

Assuming now that n = 1, the horizontal distribution is trivial, and consequently Equation

(4.22) does not apply. In this dimension the spinor bundle has complex dimension equal to

n + 1 = 1 + 1 = 2, hence it is spanned by 1, y1, and the above argument for the vertical

directions shows that these are Killing spinors. The dimension of the space of Killing spinors

on a 3-Sasakian manifold (M4n−1, g) ≇ (S4n−1, ground) is equal to n+ 1 (see [Bär93]), and the

result follows.

Remark 4.4.2. The final assertion of Theorem 4.4.1–that any Killing spinor on a homogeneous

3-Sasakian space (M4n−1 = G/H, g) ≇ (S4n−1, ground) is invariant–was previously proved using

a different method in [Kat00, Thm. 7.1]: Kath showed that G has a representation on the space

of Killing spinors, and then deduced that any Killing spinor is invariant (equivalently, this

representation is trivial) by comparing in each case the dimension of the space of Killing spinors

with the dimension of the smallest non-trivial representation of G.

Remark 4.4.3. Let us comment briefly on the case of the round sphere. Using Bär’s correspon-

dence between Killing spinors on a manifold and parallel spinors on its cone ([Bär93]), it is easy

to see that the spinor bundle of the round sphere is parallelized by Killing spinors; the cone over

the round sphere is the Euclidean space of one dimension higher, which has trivial holonomy

and therefore a parallelization of its spinor bundle by parallel spinors. In particular, for the

3-Sasakian round sphere (S4n−1 = Sp(n)
Sp(n−1)

, g, ξi, ηi, φi), the Sp(n)-invariant Killing spinors ψk
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from Theorem 4.4.1 fail to span the whole spinor bundle when n > 1, so there exist non-invariant

Killing spinors in this case. An explicit construction of the Killing spinors on the round sphere

in stereographic coordinates can be found on [BFGK91, p. 37].

We conclude the chapter by exploring which of the invariant Killing spinors from Theorem 4.4.1

recover the invariant 3-Sasakian structure on (M = G/H, g, ξi, ηi, φi) via the construction in

Chapter 4.1. By Theorem 4.1.10 and the proof of Theorem 4.1.8, we see that in order to recover

the Sasakian structure (ξi, ηi, φi) it suffices to find a Killing spinor Ψ such that Ψ′ := −ξi ·Ψ is

also a Killing spinor. Thus we consider the subbundles Ei of the spinor bundle spanned (over

the space C∞(M) of smooth real-valued functions) by invariant spinors with this property:

Ei := spanC∞(M){Ψ ∈ κinv(M, g) : Ψ′ := −ξi ·Ψ ∈ κinv(M, g)}, i = 1, 2, 3,

where κinv(M, g) := spanC{ψk}n−1
k=−1 denotes the space of invariant Killing spinors. In fact,

it turns out that these subbundles coincide with the E−
i in the homogeneous setting, as the

following proposition shows:

Proposition 4.4.4. If (M = G/H, g, ξi, ηi, φi) is a simply-connected homogeneous 3-Sasakian

space, then Ei = E−
i for i = 1, 2, 3. Furthermore, each Ei has a basis ΨEi,0,ΨEi,1 given by

ΨE1,0 := 1, ΨE1,1 := y1 ∧ ωn−1, ΨE2,0 :=

⌊n−1
2

⌋∑
k=0

(−1)k

(2k + 1)!
ψ2k,

ΨE2,1 :=

⌊n
2
⌋∑

k=0

(−1)k

(2k)!
ψ2k−1, ΨE3,0 :=

⌊n−1
2

⌋∑
k=0

1

(2k + 1)!
ψ2k, ΨE3,1 :=

⌊n
2
⌋∑

k=0

1

(2k)!
ψ2k−1.

Proof. We consider first the case (M4n−1, g) ≇ (S4n−1, ground). By Theorem 4.4.1 any Killing

spinor is invariant, thus it follows from the proof of Theorem 4.1.8 that E−
i ⊆ Ei. Therefore, in

order to show that E−
i = Ei it suffices to show that rank(Ei) ≤ 2. To find elements Ψ ∈ Ei, we

write Ψ =
∑n−1

k=−1 λkψk in terms of our basis of invariant Killing spinors and seek to determine

for which values of λ−1, . . . , λn−1 there exist Θ−1, . . . ,Θn−1 ∈ C satisfying

ξi ·Ψ =
n−1∑
k=−1

Θkψk. (4.24)

To show that rank(Ei) ≤ 2 for i = 1, 2, 3, we treat the subcases i = 1, 2, 3 individually:
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(i) i = 1: First, we note that

ξ1 · ψk = iωk+1 − (k + 1)y1 ∧ ωk.

Substituting this into (4.24), we are looking for solutions of

n−1∑
k=−1

λk[iω
k+1 − (k + 1)y1 ∧ ωk] =

n−1∑
k=−1

Θk[ω
k+1 − i(k + 1)y1 ∧ ωk],

or equivalently, solutions of the linear equations

iλ−1 = Θ−1, λn−1 = iΘn−1, iλk = Θk, λk = iΘk, for k = 0, . . . , n− 2.

The solutions of this system of equations necessarily have λk = Θk = 0 for all k ̸= −1, n−1,

hence E1 contained in the span of 1 and y1 ∧ ωn−1.

(ii) i = 2: Proceeding similarly as in the previous subcase, we first note that

ξ2 · ψk = iy1 ∧ ωk+1 + (k + 1)ωk.

Substituting this into (4.24) gives

n−1∑
k=−1

λk[iy1 ∧ ωk+1 + (k + 1)ωk] =
n−1∑
k=−1

Θk[ω
k+1 − i(k + 1)y1 ∧ ωk],

or equivalently, the linear system

(k + 1)λk = Θk−1, λk−1 = −(k + 1)Θk, for k = 0, . . . , n− 1.

These equations give rise to the recursive relation λk =
1

k+1
Θk−1 =

−1
k(k+1)

λk−2, whose space

of solutions lies within the span of the spinors ΨE2,0, ΨE2,1.

(iii) i = 3: Similarly to the previous two subcases, we first note that

ξ3 · ψk = y1 ∧ ωk+1 + i(k + 1)ωk.



107 4.4. The Space of Riemannian Killing Spinors

Substituting this into (4.24) gives

n−1∑
k=−1

λk[y1 ∧ ωk+1 + i(k + 1)ωk] =
n−1∑
k=−1

Θk[ω
k+1 − i(k + 1)y1 ∧ ωk],

which is equivalent to the linear system

i(k + 1)λk = Θk−1, λk−1 = −i(k + 1)Θk, for k = 0, . . . , n− 1.

These give the recursive relation λk =
−i
k+1

Θk−1 =
1

k(k+1)
λk−2, whose space of solutions lies

within the span of ΨE3,0, ΨE3,1.

Thus, for (M4n−1, g) ≇ (S4n−1, ground) we have shown that Ei = E−
i for i = 1, 2, 3, and that

{ΨEi,0,ΨEi,1} is a basis (over C∞(M)) for this vector bundle. But the defining equation for

E−
i is an algebraic equation depending only on the choice of adapted basis and the associated

Clifford multiplication, hence the result also holds for (M4n−1, g) ∼= (S4n−1, ground).

As noted above, it immediately follows that these spinors recover the homogeneous 3-Sasakian

structure via the construction in Chapter 4.1, giving a full picture of this construction in the

homogeneous 3-Sasakian setting:

Theorem 4.4.5. If (M = G/H, g, ξi, ηi, φi) is a simply-connected homogeneous 3-Sasakian

space then, for each i ∈ {1, 2, 3}, the Sasakian structure (ξi, ηi, φi) arises from the spinors

Ψi := ΨEi,0 and Ψ′
i := −ξi ·ΨEi,0 (or Ψi := ΨEi,1 and Ψ′

i := −ξi ·ΨEi,1) via the construction in

Chapter 4.1.

The values of the spinors ΨEi,0 and ΨEi,1, in terms of the basis of invariant spinors from Theorem

4.3.10, are tabulated for a few low dimensions in Table 4.2.

dim(M) ΨE1,0 ΨE2,0 ΨE3,0

7 1 ω − iy1 ω − iy1
11 1 ω − iy1 +

1
2
iy1 ∧ ω2 ω − iy1 − 1

2
y1 ∧ ω2

15 1 ω − iy1 +
1
2
iy1 ∧ ω2 − 1

6
ω3 ω − iy1 − 1

2
y1 ∧ ω2 + 1

6
ω2

dim(M) ΨE1,1 ΨE2,1 ΨE3,1

7 y1 ∧ ω 1 + iy1 ∧ ω 1− iy1 ∧ ω
11 y1 ∧ ω2 1 + iy1 ∧ ω − 1

2
ω2 1− iy1 ∧ ω + 1

2
ω2

15 y1 ∧ ω3 1 + iy1 ∧ ω − 1
2
ω2 − 1

6
iy1 ∧ ω3 1− iy1 ∧ ω + 1

2
ω2 − 1

6
iy1 ∧ ω3

Table 4.2: The Spinors ΨEi,0 and ΨEi,1 in Low Dimensions



5
Deformed Killing Spinors on 3-(α, δ)-Sasaki Manifolds

This chapter contains joint work with Prof. Dr. habil. Ilka Agricola (see page 8).

Let (M, g, ξi, ηi, φi) be a 3-(α, δ)-Sasaki manifold with Levi-Civita connection ∇g and canonical

connection ∇. We recall from Theorem 2.3.8 Friedrich and Kath’s rank two subbundles of the

spinor bundle:

E−
i := {ψ ∈ Γ(ΣM) : (−2φi(X) + ξi ·X −X · ξi) · ψ = 0 ∀X ∈ TM}, i = 1, 2, 3.

These were shown in [FK90] to have bases consisting of Killing spinors in the 3-Sasakian setting,

and will also be interesting in the 3-(α, δ)-Sasaki setting, where we will show that they carry

spinors satisfying the deformed Killing equation (5.1). To prove this, we shall adapt the method

of Friedrich and Kath in [FK90]. While their overall strategy still works in this new setting, the

curvature calculations become somewhat more complicated than in the 3-Sasakian case. We will

mitigate this by using the canonical connection for some arguments, in order to take advantage

of the identities calculated in [ADS23]. The main result of this chapter is the following theorem:

Theorem 5.0.1. On a 3-(α, δ)-Sasaki manifold (M, g, ξi, ηi, φi), the bundle E := E−
1 +E−

2 +E−
3

has a basis of spinors satisfying

∇g
Xψ =

α

2
X · ψ +

α− δ

2

3∑
p=1

ηp(X)Φp · ψ for all X ∈ TM. (5.1)

The rest of the chapter is devoted to the proof of Theorem 5.0.1.

108
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5.1 The Modified Spinorial Connection

In this section we introduce the modified connection ∇̂ on the spinor bundle and show that it

preserves the bundles E−
i , i = 1, 2, 3. To start, we recall that the Levi-Civita derivatives of the

3-(α, δ)-Sasaki structure tensors are given by:

Proposition 5.1.1. ([AD20, Prop. 2.3.2, Cor. 2.3.1]). If (M, g, ξi, ηi, φi) is a 3-(α, δ)-Sasaki

manifold then

(∇g
Y φi)X = α[g(X, Y )ξi − ηi(X)Y ]− 2(α− δ)[ηk(Y )φj(X)− ηj(Y )φk(X)] (5.2)

+ (α− δ)[ηj(Y )ηj(X) + ηk(Y )ηk(X)]ξi

− (α− δ)ηi(X)[ηj(Y )ξj + ηk(Y )ξk],

∇g
Y ξi = −αφi(Y )− (α− δ)[ηk(Y )ξj − ηj(Y )ξk], (5.3)

for any even permutation (i, j, k) of (1, 2, 3).

We now prove two technical lemmas that will be necessary for subsequent calculations:

Lemma 5.1.2. Let (M, g, ξi, ηi, φi) be a 3-(α, δ)-Sasaki manifold. If ψ ∈ Γ(E−
i ) and (i, j, k) is

an even permutation of (1, 2, 3), then

(−2φi(X) + ξiX −Xξi) · Φj · ψ = [8φk(X)− 2ξkX + 2Xξk − 4ηi(X)ξj + 4ηj(X)ξi] · ψ, (5.4)

(−2φi(X) + ξiX −Xξi) · Φk · ψ = [−8φj(X) + 2ξjX − 2Xξj − 4ηi(X)ξk + 4ηk(X)ξi] · ψ, (5.5)

for all X ∈ X(M).

Proof. We calculate in the Clifford algebra,

−2φi(X) · Φj = 2(2φi(X)⌟Φj − Φj · φi(X)) = 2(−2φj(φi(X))− Φj · φi(X))

= −4ηi(X)ξj + 4φk(X)− 2Φj · φi(X),

ξi ·X · Φj = ξi · (−2X⌟Φj + Φj ·X) = 2ξi · φj(X) + ξi · Φj ·X

= 2ξi · φj(X) + (−2ξi⌟Φj + Φj · ξi) ·X

= 2ξi · φj(X)− 2ξk ·X + Φj · ξi ·X,

−X · ξi · Φj = −X · (−2ξi⌟Φj + Φj · ξi) = 2X · ξk + (2X⌟Φj − Φj ·X) · ξi

= 2X · ξk − 2φj(X) · ξi − Φj ·X · ξi.
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Adding these equations and using the defining relation for E−
i gives

(−2φi(X) + ξiX −Xξi) · Φj · ψ = [4φk(X)− 2ξkX + 2Xξk] · ψ + [−4ηi(X)ξj + 2ξi · φj(X)− 2φj(X) · ξi] · ψ

= [4φk(X)− 2ξkX + 2Xξk] · ψ + [−4ηi(X)ξj + 4φi(φj(X))] · ψ

= [4φk(X)− 2ξkX + 2Xξk] · ψ + [−4ηi(X)ξj + 4φk(X) + 4ηj(X)ξi] · ψ

= [8φk(X)− 2ξkX + 2Xξk − 4ηi(X)ξj + 4ηj(X)ξi] · ψ.

The second equation, (5.5), is proved analogously.

The second technical lemma is an identity which arises from Friedrich and Kath’s calculations

for the 3-Sasakian case, and also holds for 3-(α, δ)-Sasaki manifolds:

Lemma 5.1.3. (Based on the proof of [FK90, Thm. 1]). If (M, g, ξi, ηi, φi) is a 3-(α, δ)-Sasaki

manifold and ψ ∈ Γ(E−
i ), then

[−2g(X,Y )ξi + 2ηi(X)Y − φi(Y )X +Xφi(Y )] · ψ + (−2φi(X) + ξiX −Xξi) ·
(
1

2
Y · ψ

)
= 0. (5.6)

Proof. This follows by the same calculation as on p.547 of [FK90] (note that their calculation

has a small typo on the second last line; the term “+XY ξ” should instead say “±XY ξ”).

Using the preceding lemmas, we now show:

Proposition 5.1.4. If (M, g, ξi, ηi, φi) is a 3-(α, δ)-Sasaki manifold then the modified spinorial

connection

∇̂Y ψ := ∇g
Y ψ − α

2
Y · ψ − α− δ

2

3∑
p=1

ηp(Y )Φp · ψ, Y ∈ TM, ψ ∈ ΣM

preserves the bundles E−
i , i = 1, 2, 3.

Proof. Let ψ ∈ Γ(E−
i ), and take (i, j, k) an even permutation of (1, 2, 3). Differentiating the

defining equation

(−2φi(X) + ξiX −Xξi)ψ = 0

with respect to Y gives

0 = [−2(∇g
Y φi)X − 2φi(∇g

YX) + (∇g
Y ξi)X + ξi(∇g

YX)− (∇g
YX)ξi −X(∇g

Y ξi)] · ψ

+ (−2φi(X) + ξiX −Xξi) · ∇g
Y ψ

= [−2(∇g
Y φi)X + (∇g

Y ξi)X −X(∇g
Y ξi)] · ψ (5.7)
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+ (−2φi(X) + ξiX −Xξi) ·

(
α

2
Y · ψ +

α− δ

2

3∑
p=1

ηp(Y )Φp · ψ

)

+ (−2φi(X) + ξiX −Xξi) · ∇̂Y ψ.

(i) If Y ∈ H then (5.7) simplifies, using Proposition 5.1.1, to

0 = [−2α(g(X,Y )ξi − ηi(X)Y )− αφi(Y )X + αXφi(Y )] · ψ + (−2φi(X) + ξiX −Xξi) ·
(α
2
Y · ψ

)
+ (−2φi(X) + ξiX −Xξi) · ∇̂Y ψ,

and the fact that the first two terms on the right hand side of the above equation sum to

zero follows immediately from (5.6).

(ii) If Y = ξi then Proposition 5.1.1 reduces (5.7) to

0 = (−2φi(X) + ξiX −Xξi) ·
(
α

2
ξi · ψ +

α− δ

2
Φi · ψ

)
+ (−2φi(X) + ξiX −Xξi) · ∇̂ξiψ,

whose first term vanishes due to the fact that Φi acts on E
−
i as a multiple of ξi, and ξi

anti-commutes with the operator defining E−
i .

(iii) If Y = ξj then (5.7) reduces to

0 = −2[α(ηj(X)ξi − ηi(X)ξj) + 2(α− δ)φk(X) + (α− δ)ηj(X)ξi − (α− δ)ηi(X)ξj ] · ψ

+ [(−αξk + (α− δ)ξk)X −X(−αξk + (α− δ)ξk)] · ψ

+ (−2φi(X) + ξiX −Xξi) ·
(
α

2
ξj · ψ +

α− δ

2
Φj · ψ

)
+ (−2φi(X) + ξiX −Xξi) · ∇̂ξjψ

= (α− δ)[−4φk(X)− 2ηj(X)ξi + 2ηi(X)ξj + ξkX −Xξk +
1

2
(−2φi(X) + ξiX −Xξi) · Φj ] · ψ

+ (−2φi(X) + ξiX −Xξi) · ∇̂ξjψ

(for the second equality we have again used (5.6) to eliminate some of the terms). The

vanishing of the first term then follows immediately by substituting (5.4).

(iv) For the case Y = ξk, one performs an analogous calculation using (5.5).
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5.2 Curvature and Torsion Identities for the Canonical

Connection

In this section we derive some curvature and torsion identities which will be useful later. We

denote by ∇g, ∇, ∇̂ the Levi-Civita, canonical, and modified connections, and by Rg, R, R̂

their respective curvature operators. For the purposes of our calculations, it will be convenient

to work in an adapted frame (in the sense of Definition 2.3.6), and to define the constant

β := 2(δ − 2α).

We begin by proving a curvature identity for the canonical connection:

Proposition 5.2.1. If (M, g, ξi, ηi, φi) is a 3-(α, δ)-Sasaki manifold and e1, . . . , e4n−1 an adapted

orthonormal (local) frame, then

4n−1∑
s=1

R(X, Y, es, φi(es)) =


4nαβΦi(X, Y ) X, Y ∈ H,

0 X ∈ V , Y ∈ H or X ∈ H, Y ∈ V ,

8nαβΦi(X, Y ) X, Y ∈ V .

Proof. We consider the cases one at a time:

(i) Suppose first that X, Y ∈ H. For horizontal es ∈ H and any even permutation (i, j, k) of

(1, 2, 3), it follows from [ADS23, Eqn. (2.6)] that

2αβΦi(X, Y ) = R(X, Y, es, φi(es)) +R(X, Y, φj(es), φk(es))

= R(X, Y, es, φi(es)) +R(X, Y, φj(es), φi(φj(es))),

and taking the sum over all es ∈ H then gives

2
4n−1∑
s=4

R(X, Y, es, φi(es)) = 2(4n− 4)αβΦi(X, Y ) (5.8)

(since φj(es) runs through the list ±e4, . . . ,±e4n−1 as s runs through 4, . . . , 4n − 1). In

the vertical directions, it follows from [ADS23, Eqns. (1.2), (2.5)] that R(X, Y, ξj, ξk) =

2αβΦi(X, Y ), and hence

3∑
s=1

R(X, Y, es, φi(es)) = 4αβΦi(X, Y ). (5.9)
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Combining (5.8) and (5.9) then gives the result in this case:

4n−1∑
i=1

R(X, Y, es, φi(es)) = [(4n− 4)αβ + 4αβ]Φi(X, Y ) = 4nαβΦi(X, Y ).

(ii) For the mixed cases, the first paragraph of [ADS23, Section 2.2] shows that R(X, Y ) is

the zero operator when X ∈ H, Y ∈ V or X ∈ V , Y ∈ H.

(iii) Suppose now that X, Y ∈ V, and without loss of generality write X = ξp, Y = ξq for

(p, q, r) an even permutation of (1, 2, 3). Letting es ∈ H, it follows from [ADS23, Eqns.

(2.4), (2.5)] respectively that

R(ξp, ξq, ξj, ξk) = −4αβ(δp,jδq,k − δp,kδq,j) = −4αβ(ηp ∧ ηq)(ξj, ξk) = 4αβΦr(ξj, ξk),

R(ξp, ξq, es, φies) = 2αβΦr(es, φies),

and combining these gives

4n−1∑
s=1

R(X, Y, es, φies) =
4n−1∑
s=1

R(ξp, ξq, es, φies) = 2[4αβΦr(ξj, ξk)] + 2αβ
4n−1∑
s=4

Φr(es, φies)

= 8αβΦr(ξj, ξk)− 2αβ(4n− 4)δi,r = −8αβδi,r − 8(n− 1)αβδi,r

= −8nαβδi,r = 8nαβΦi(ξp, ξq) = 8nαβΦi(X, Y ),

where we have calculated using an even permutation (i, j, k) of (1, 2, 3).

In order to re-translate the preceding curvature identity back in terms of the Levi-Civita

connection, it is necessary to prove several identities involving the canonical torsion:

Proposition 5.2.2. If (M, g, ξi, ηi, φi) is a 3-(α, δ)-Sasaki manifold and e1, . . . , e4n−1 an adapted

orthonormal (local) frame, then

4n−1∑
s=1

g(T (X, Y ), T (es, φi(es))) =



{−16(n− 1)α2 + 8α(δ − 4α)}Φi(X, Y ) X, Y ∈ H,

0 X ∈ H, Y ∈ V ,

0 X ∈ V , Y ∈ H,

8(δ − 4α)(2(n+ 1)α− δ)Φi(X, Y ) X, Y ∈ V ,
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and

4n−1∑
s=1

dT (X, Y, es, φies) =



{−16α2(2n− 1) + 8αβ}Φi(X, Y ) X, Y ∈ H,

0 X ∈ H, Y ∈ V ,

0 X ∈ V , Y ∈ H,

32(n− 1)α(δ − 2α)Φi(X, Y ) X, Y ∈ V .

Proof. From [ADS23, Eqns. (1.10), (1.11), (1.12)], the canonical torsion and its exterior derivative

satisfy

T (ξj , ξk) = 2(δ − 4α)ξi (5.10)

T (X,Y ) = 2α
3∑
p=1

[ηp(Y )φp(X)− ηp(X)φp(Y ) + Φp(X,Y )ξp]− 2(α− δ)Si,j,kηij(X,Y )ξk, (5.11)

dT = 4α2
3∑
p=1

Φp|H ∧ Φp|H + 8α(δ − 2α)Si,j,kΦi|H ∧ ηjk. (5.12)

We treat the cases one at a time:

(i) Suppose first that X, Y ∈ H. If es ∈ H, then substituting (5.10) and (5.11) and gives

g(T (X,Y ), T (ξj , ξk)) = g

2α
3∑
p=1

Φp(X,Y )ξp, 2(δ − 4α)ξi

 = 4α(δ − 4α)Φi(X,Y ),

g(T (X,Y ), T (es, φies)) = g

2α
3∑
p=1

Φp(X,Y )ξp, 2α
3∑
l=1

Φl(es, φies)ξl

 = −4α2Φi(X,Y ),

and hence

4n−1∑
s=1

g(T (X, Y ), T (es, φies)) = (4n− 4)[−4α2Φi(X, Y )] + 2[4α(δ − 4α)Φi(X, Y )]

= {−16(n− 1)α2 + 8α(δ − 4α)}Φi(X, Y ).

The formula

4n−1∑
s=1

dT (X, Y, es, φies) = {−16α2(2n− 1) + 8αβ}Φi(X, Y )

appears as [ADS23, Eqn. (3.4)] (note that we are working in dimension 4n− 1 rather than

4n+ 3).
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(ii) Suppose that X ∈ H, Y ∈ V or X ∈ V, Y ∈ H. If es ∈ H, then substituting (5.10) and

(5.11) gives

g(T (X, Y ), T (ξj, ξk)) = g

(
2α

3∑
p=1

[ηp(Y )φpX − ηp(X)φpY ], 2(δ − 4α)ξi

)

= 4α(δ − 4α)
3∑
p=1

[ηp(Y )g(φpX, ξi)− ηp(X)g(φpY, ξi)] = 0

and

g(T (X, Y ), T (es, φies)) = g

(
2α

3∑
p=1

[ηp(Y )φpX − ηp(X)φpY ], 2α
3∑
l=1

Φl(es, φies)ξl

)

= −4α2

3∑
p=1

[ηp(Y )g(φpX, ξi)− ηp(X)g(φpY, ξi)] = 0.

The formula (5.12) immediately implies that dT (X, Y, es, φies) = dT (X, Y, ξj, ξk) = 0.

Both of the desired formulas then follow by taking sums.

(iii) Suppose that X, Y ∈ V . If es ∈ H, then substituting (5.10) and (5.11) gives

g(T (X, Y ), T (ξj, ξk)) = 4α(δ − 4α)
3∑
p=1

[ηp(Y )g(φpX, ξi)− ηp(X)g(φpY, ξi)]

+ 4α(δ − 4α)Φi(X, Y )− 4(α− δ)(δ − 4α)ηjk(X, Y )

= 4α(δ − 4α)[2Φi(X, Y )] + 4α(δ − 4α)Φi(X, Y )

+ 4(α− δ)(δ − 4α)Φi(X, Y )

= −4(δ − 4α)2Φi(X, Y )

and

g(T (X, Y ), T (es, φies)) = g(T (X, Y ),−2αξi)

= −4α2

3∑
p=1

[ηp(Y )g(φpX, ξi)− ηp(X)g(φpY, ξi)]

− 4α2Φi(X, Y ) + 4α(α− δ)ηjk(X, Y )

= −4α2[2Φi(X, Y )]− 4α2Φi(X, Y )− 4α(α− δ)Φi(X, Y )

= [−16α2 + 4αδ]Φi(X, Y ),
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and it follows that

4n−1∑
s=1

g(T (X,Y ), T (es, φies)) = (4n− 4)[−16α2 + 4αδ]Φi(X,Y ) + 2[−4(δ − 4α)2Φi(X,Y )]

= 8(δ − 4α)(2(n+ 1)α− δ)Φi(X,Y ).

On the other hand, if es ∈ H, then (5.12) gives

dT (X, Y, es, φies) = 8α(δ − 2α)Sp,q,rΦp|H(es, φies)ηqr(X, Y ) = 8α(δ − 2α)Φi(X, Y ),

dT (X, Y, ξj, ξk) = 0,

and hence

4n−1∑
s=1

dT (X,Y, es, φies) = (4n− 4)[8α(δ − 2α)Φi(X,Y )] + 2[0] = 32(n− 1)α(δ − 2α)Φi(X,Y ).

5.3 Projection Identities and Flatness of the Modified

Connection

In this section we show that the restriction of the modified connection ∇̂ to E := E−
1 +E−

2 +E−
3

(the non-direct sum) is flat.

Proposition 5.3.1. If (M, g, ξi, ηi, φi) is a 3-(α, δ)-Sasaki manifold and ψ ∈ Γ(E−
i ), then the

orthogonal projection onto E−
i of the spinorial curvature Rg(·, ·)ψ associated to the Levi-Civita

connection is given by

prE−
i
Rg(X,Y )ψ =


{−2(n− 1)α(α− δ) + 1

2δ
2}Φi(X,Y ) ξi · ψ X, Y ∈ V,

{(2n− 1)αδ − (2n− 3
2)α

2}Φi(X,Y ) ξi · ψ X, Y ∈ H,

0 X ∈ H, Y ∈ V or X ∈ V, Y ∈ H.

Proof. From [ADS23, Section 1.2], the difference between R and Rg is expressed by

Rg(X, Y, Z, V ) = R(X, Y, Z, V )− 1

4
g(T (X, Y ), T (Z, V ))− 1

8
dT (X, Y, Z, V ). (5.13)

Letting e1, . . . , e4n−1 be an adapted frame, we recall from the proof of [FK90, Thm. 1] that

if ψ ∈ Γ(E−
i ) then ep · eq · ψ is orthogonal to E−

i unless eq = ep or ±φiep. Additionally, the
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defining relation for E−
i implies that es · φies · ψ = ξi · ψ (for es ̸= ξi). Using (5.13), we have:

prE−
i
Rg(X,Y )ψ =

1

4

4n−1∑
s=1

Rg(X,Y, es, φi(es)) es · φi(es) · ψ =
1

4

4n−1∑
s=1

Rg(X,Y, es, φi(es)) ξi · ψ

=
1

4

4n−1∑
s=1

(
R(X,Y, es, φi(es))−

1

4
g(T (X,Y ), T (es, φi(es)))−

1

8
dT (X,Y, es, φi(es))

)
ξi · ψ.

The result then follows by substituting the expressions from Propositions 5.2.1 and 5.2.2.

In order to prove that ∇̂ is flat on E−
i , we first compute the orthogonal projections of various

quantities onto E−
i :

Lemma 5.3.2. Let (M, g, ξi, ηi, φi) be a 3-(α, δ)-Sasaki manifold. For any ψ ∈ Γ(E−
i ) and any

even permutation (p, q, r) of (1, 2, 3), we have

(i) prE−
i
(Φp · ψ) = −δi,p(2n− 1)ξi · ψ,

(ii) prE−
i
(Φp · Φq · ψ − Φq · Φp · ψ) = 2δi,r(4n− 3)ξi · ψ,

(iii) prE−
i
((∇g

ξp
Φq) · ψ − (∇g

ξq
Φp) · ψ) = δi,r[−2δ + 8(n− 1)(α− δ)]ξi · ψ.

Proof. Letting ψ ∈ Γ(E−
i ), we prove the three identities one at a time.

(i) This follows by writing Φp = −1
2

∑4n−1
s=1 es ∧ φp(es) in an adapted frame and using

projE−
i
(es · φp(es) · ψ) = δi,p ξi · ψ

(see the proof of [FK90, Thm. 1]).

(ii) We use the relation V ⌟Φq = −1
2
(V · Φq − Φq · V ), which may be deduced by subtracting

Equations (1.4) in Chapter 1.2 of [BFGK91]. Considering first the horizontal part of Φp,

we calculate

Φp|H · Φq · ψ = −1

2

4n−1∑
s=4

es · φp(es) · Φq · ψ = −1

2

4n−1∑
s=4

es · [−2(φp(es)⌟Φq) + Φq · φp(es)] · ψ

= −1

2

4n−1∑
s=4

[−2es · φr(es) + es · Φq · φp(es)] · ψ

= −1

2

4n−1∑
s=4

[−2es · φr(es) + (−2es⌟Φq + Φq · es) · φp(es)] · ψ

= −2Φr|H · ψ + Φq · Φp|H · ψ +
4n−1∑
s=4

φp(es) · φq(es) · ψ,
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and similarly for the vertical part,

Φp|V · Φq · ψ = −ξq · ξr · Φq · ψ = −ξq · (−2ξr⌟Φq + Φq · ξr) · ψ = −ξq · (2ξp + Φq · ξr) · ψ

= −2ξq · ξp · ψ + (2ξq⌟Φq − Φq · ξq · ξr) · ψ

= −2Φr|V · ψ + Φq · Φp|V · ψ,

Adding the above two equations, we deduce:

(Φp · Φq − Φq · Φp) · ψ = −2Φr · ψ +
4n−1∑
s=4

φp(es) · φq(es) · ψ,

and projecting onto E−
i using part (i) of this lemma gives the result.

(iii) From Proposition 5.1.1 we calculate

(∇g
ξp
φq −∇g

ξq
φp) · ψ = 2(2α− δ)ηp ⊗ ξq − 2(2α− δ)ηq ⊗ ξp − 4(α− δ)φr

= 2(2α− δ)φr|V − 4(α− δ)φr

The result then follows by lowering indices and projecting onto E−
i using part (i) of this

lemma.

The final step in the proof of Theorem 5.0.1 is the following proposition:

Proposition 5.3.3. The restriction of the connection ∇̂ to E := E−
1 + E−

2 + E−
3 is flat, i.e.

R̂(·, ·)ψ ≡ 0 for all ψ ∈ Γ(E).

Proof. Suppose that ψ ∈ Γ(E−
i ). Using the definition

∇̂Xψ = ∇g
Xψ − α

2
X · ψ − α− δ

2

3∑
p=1

ηp(X)Φp · ψ,

we calculate, for any vector fields X, Y ,

∇̂X∇̂Y ψ = ∇̂X [∇g
Y ψ − α

2
Y · ψ − α− δ

2

3∑
p=1

ηp(Y )Φp · ψ]

= ∇g
X∇

g
Y ψ − α

2
X · ∇g

Y ψ − α− δ

2

3∑
p=1

[ηp(X)Φp · ∇g
Y ψ]−

α

2
∇g
X(Y · ψ) + α2

4
X · Y · ψ
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+
α(α− δ)

4

3∑
p=1

[ηp(X)Φp · Y · ψ]− α− δ

2

3∑
p=1

∇g
X [ηp(Y ) · Φp · ψ]

+
α(α− δ)

4

3∑
p=1

[ηp(Y )X · Φp · ψ] +
(α− δ)2

4

3∑
p,q=1

[ηp(Y )ηq(X)Φq · Φp · ψ]

= ∇g
X∇

g
Y ψ − α

2
X · ∇g

Y ψ − α− δ

2

3∑
p=1

[ηp(X)Φp · ∇g
Y ψ]−

α

2
[(∇g

XY ) · ψ + Y · ∇g
Xψ]

+
α2

4
X · Y · ψ +

α(α− δ)

4

3∑
p=1

[ηp(X)Φp · Y · ψ]

− α− δ

2

3∑
p=1

{(αΦp(X,Y ) + (α− δ)ηp+1,p+2(X,Y ) + ηp(∇g
XY ))Φp · ψ + ηp(Y )(∇g

XΦp) · ψ

+ ηp(Y )Φp · ∇g
Xψ}+

α(α− δ)

4

3∑
p=1

[ηp(Y )X · Φp · ψ] +
(α− δ)2

4

3∑
p,q=1

[ηp(Y )ηq(X)Φq · Φp · ψ],

and hence

R̂(X,Y )ψ = ∇̂X∇̂Y ψ − ∇̂Y ∇̂Xψ − ∇̂[X,Y ]ψ

= Rg(X,Y )ψ +
α2

4
(X · Y − Y ·X) · ψ +

α(α− δ)

2

3∑
p=1

[ηp(X)(Y ⌟Φp)− ηp(Y )(X⌟Φp)] · ψ

− (α− δ)
3∑
p=1

[αΦp(X,Y ) + (α− δ)ηp+1,p+2(X,Y )]Φp · ψ

− α− δ

2

3∑
p=1

[ηp(Y )(∇g
XΦp)− ηp(X)(∇g

Y Φp)] · ψ

+
(α− δ)2

4

3∑
p,q=1

[ηp(Y )ηq(X)− ηp(X)ηq(Y )] · Φq · Φp · ψ, (5.14)

where the indices p, p+ 1, p+ 2 are taken modulo 3. The result then follows by considering the

various cases of X, Y being in H,V and projecting onto E−
i , using the formulas from Proposition

5.3.1 and Lemma 5.3.2.

Finally, we calculate the action of the (Riemannian) Dirac operator on deformed Killing spinors:

Remark 5.3.4. If ψ ∈ Γ(E) is a spinor with ∇̂ψ = 0 then the Dirac operator acts on it via

Dψ =
4n−1∑
s=1

es · ∇g
esψ =

4n−1∑
s=1

es ·

(
α

2
es · ψ +

α− δ

2

3∑
p=1

ηp(es)Φp · ψ

)

= −(4n− 1)α

2
ψ +

α− δ

2

3∑
p=1

ξp · Φp · ψ.
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Spinorial Duality for Riemannian Homogeneous Spaces

Fibering Over a Symmetric Base

This chapter contains joint work with Prof. Dr. habil. Ilka Agricola (see page 8).

6.1 Duality of Extended Symmetric Data

Let us begin by defining certain Lie algebraic data generalizing the 3-Sasakian data recalled in

Theorem 2.4.2 (and the generalized 3-Sasakian data recalled in Theorem 2.5.7).

Definition 6.1.1. Extended symmetric data (g, h, k, g) consists of a triple of real Lie algebras

with h, k ⊂ g, together with an inner product g on g/h, such that the following properties hold:

(i) The Lie algebra g is semi-simple;

(ii) There is a Z2-grading g = g0 ⊕ g1 such that g0 = h⊕ k;

(iii) Under the natural identification g/h ∼= k⊕ g1, the inner product g takes the form

g = λ0κg|k×k + λ1κg|g1×g1 , λ0, λ1 ∈ R \ {0}, (6.1)

where κg denotes the Killing form of g.

The idea behind the preceding definition is that the Lie algebras (g, g0) constitute a Riemannian

symmetric pair, thus the pair (g, h) can be viewed as the Lie algebraic data of a homogeneous

space fibering over a symmetric base. Indeed, the Z2-grading g = g0 ⊕ g1, together with the

fact that k and h commute, gives the following commutator relations:

[h, h] ⊂ h, [k, k] ⊂ k, [h, k] = 0, [g0, g1] ⊂ g1, [g1, g1] ⊂ h⊕ k. (6.2)

120



121 6.1. Duality of Extended Symmetric Data

In particular one sees that (g, g0) satisfy the conditions of a Riemannian symmetric pair, as

desired. The cases of most interest for us, 3-Sasakian data and generalized 3-Sasakian data,

correspond to extended symmetric data with k = sp(1) satisfying the additional condition

Theorem 2.4.2(iii) (or equivalently, Theorem 2.5.7(ii)).

Remark 6.1.2. Associated to extended symmetric data (g, h, k, g) is the vector space

m := k⊕ g1

serving as a reductive complement to h ⊆ g. Conversely, the Lie algebra k may be recovered

from m via k = m ∩ g0. For this reason we shall also refer to (g, h,m, g) as extended symmetric

data. We shall also denote by mi := m ∩ gi, i = 0, 1 the components of m with respect to the

Z2-grading on g.

With the preceding remark in mind, we are ready to define our notion of duality at the Lie

algebra level:

Definition 6.1.3. Given extended symmetric data (g, h,m, g), we define (for the same k) the

dual extended symmetric data (g′, h,m′, g′) by setting

g′ := g0 ⊕ ig1 ⊂ gC,

m′ := k⊕ ig1 ⊂ g′,

and taking g′ to be the real inner product induced on m′ by extending g sesquilinearly to gC

and restricting to the real form g′ ⊂ gC.

In the preceding definition, the extension of g to the complexification is done sesquilinearly to

ensure that g′ is positive-definite (analogously to the duality for symmetric spaces). Let us

briefly compare Definition 6.1.3 with Kath’s notion of duality in [Kat00]. Apart from the fact

that Kath’s duality is between Riemannian and pseudo-Riemannian spaces, we note that it also

depends on a Lie algebra involution T , whose 1-eigenspace (resp. (−1)-eigenspace) indicates

which tangent directions on the compact side should correspond to tangent directions on the

non-compact side with positive norm squared (resp. negative norm squared). We do not make

use of such an involution, as the decomposition m = k⊕ g1 automatically keeps track of which

directions are to be modified. Rather, our duality construction is obtained from the duality

between compact and non-compact symmetric spaces, by dualizing the symmetric pair (g, g0).
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Definition 6.1.4. Let K be a connected Lie group with Lie algebra k. An extended symmetric

space (relative to K) is a connected reductive homogeneous space (M := G/H, g) with Lie

algebra decomposition as in Definition 6.1.1. Letting G′ be the connected subgroup of GC

corresponding to the real Lie subalgebra g′, we define the dual of (M, g) to be (M ′ := G′/H, g′).

In order to investigate the spinorial properties of the dual, we must first describe the special

orthogonal group SO(m′, g′) of the Riemannian metric g′. We define

so(m)0 := {A ∈ so(m) : A(k) ⊆ k and A(m1) ⊆ m1},

so(m)1 := {B ∈ so(m) : B(k) ⊆ m1 and B(m1) ⊆ k},

and the non-standard Lie bracket [[·, ·]] on so(m)0 ⊕ iso(m)1 given by

[[A1, A2]] := [A1, A2]so(m)C , [[A, iB]] := i[A,B]so(m)C , [[iB1, iB2]] := [B1, B2]so(m)C ,

where [ , ]so(m)C denotes the usual commutator in so(m)C. It is clear that the bracket [[·, ·]] is

constructed so that so(m)0 ⊕ iso(m)1 has the same commutators as so(m) = so(m)0 ⊕ so(m)1.

The following two lemmas and the subsequent proposition are analogous to [Kat00, Props. 6.1,

3.1, 4.1]:

Lemma 6.1.5. Let (g, h,m, g) be extended symmetric data, and (g′, h,m′, g′) the dual data. The

map τ : so(m)0 ⊕ iso(m)1 → so(m′, g′) given by

τ(A)(x) = A(x), τ(A)(iy) = iA(y), τ(iB)(x) = iB(x), τ(iB)(iy) = B(y),

for all A ∈ so(m)0, B ∈ so(m)1, x ∈ k, y ∈ m1 is an isomorphism of Lie algebras.

Proof. Let x1, x2 ∈ k, y1, y2 ∈ m1, A ∈ so(m)0, and B ∈ so(m)1. Using the definitions of so(m)0,

so(m)1, and g
′, we calculate

g′(τ(A+ iB)x1, x2) + g′(x1, τ(A+ iB)x2) = g′(Ax1 + iBx1, x2) + g′(x1, Ax2 + iBx2)

= g(Ax1, x2) + g(x1, Ax2) = 0,

g′(τ(A+ iB)x1, iy1) + g′(x1, τ(A+ iB)(iy1)) = g′(Ax1 + iBx1, iy1) + g′(x1, iAy1 +By1)

= g(Bx1, y1) + g(x1, By1) = 0,

g′(τ(A+ iB)(iy1), iy2) + g′(iy1, τ(A+ iB)(iy2)) = g′(iAy1 +By1, iy2) + g′(iy1, iAy2 +By2)

= g(Ay1, y2) + g(y1, Ay2) = 0,
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hence τ(A+ iB) ∈ so(m′, g′). The map τ is a linear isomorphism, so it remains only to check

that it is a Lie algebra homomorphism. One the one hand, we calculate

τ [[A+ iB, C + iD]] = τ([A,C]so(m)C + [B,D]so(m)C + i[B,C]so(m)C + i[A,D]so(m)C),

and on the other hand,

[τ(A+ iB), τ(C + iD)]so(m′,g′)(x) = (τ(A+ iB) ◦ τ(C + iD))(x)− (τ(C + iD) ◦ τ(A+ iB))(x)

= τ(A+ iB)(Cx+ iDx)− τ(C + iD)(Ax+ iBx)

= ACx+ iADx+ iBCx+BDx− (CAx+ iCBx+ iDAx+DBx)

= τ([A,C]so(m)C + i[A,D]so(m)C + i[B,C]so(m)C + [B,D]so(m)C)(x)

in the k directions, and

[τ(A+ iB), τ(C + iD)]so(m′,g′)(iy) = (τ(A+ iB) ◦ τ(C + iD))(iy)− (τ(C + iD) ◦ τ(A+ iB))(iy)

= τ(A+ iB)(iCy +Dy)− τ(C + iD)(iAy +By)

= iACy + ADy +BCy + iBDy − (iCAy + CBy +DAy + iDBy)

= τ([A,C]so(m)C + i[A,D]so(m)C + i[B,C]so(m)C + [B,D]so(m)C)(iy)

in the m1 directions, completing the proof.

Lemma 6.1.6. Let (g, h,m, g) be extended symmetric data. If x ∈ k and y ∈ m1 then

ad(x) ∈ so(m)0, projm ◦ ad(y) ∈ so(m)1, Λg(x) ∈ so(m)0, Λg(y) ∈ so(m)1.

Proof. The first two items follow from the commutator relations (6.2). For the second two

items, we use the first two together with the standard implicit formula for the Nomizu map

(2.15). Indeed, letting x, x1, x2, x3 ∈ k and y, y1, y2, y3 ∈ m1 and using (2.16), (6.1), and (6.2),

we calculate

2g(U(x1, x2), y) = g([y, x1], x2) + g(x1, [y, x2]) = 0 + 0 = 0,

2g(U(x1, y), x2) = g([x2, x1], y) + g(x1, [x2, y]) = 0 + 0 = 0,

2g(U(y, x1), x2) = g([x2, y], x1) + g(y, [x2, x1]) = 0 + 0 = 0,

2g(U(y1, y2), y3) = g(projm[y3, y1], y2) + g(y1, projm[y3, y2]) = 0 + 0 = 0.
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Thus we have proved (x⌟U) ∈ so(m)0 and (y⌟U) ∈ so(m)1, and the result follows.

Proposition 6.1.7. Let (M, g) be an extended symmetric space, and (M ′, g′) its dual. In terms

of the identification τ , the Levi-Civita connection of (M ′, g′) has Nomizu map given by

Λg′(iy) = −τ(iΛg(y)), Λg′(x1)x2 = τ(Λg(x1))x2, Λg′(x)(iy) = −τ(Λg(x))(iy) + 2i[x, y].

for x ∈ k, y ∈ m1.

Proof. In order to show that the above expression for Λg′ induces a metric connection, it suffices

to check that Λg′(x) is skew-symmetric with respect to g′. Using (6.1), (6.2), Lemma 6.1.6, and

the fact that the image of τ lies in so(m′, g′), we calculate:

g′(Λg′(x1)x2, x3) + g′(x2,Λ
g′(x1)x3) = g′(τ(Λg(x1))x2, x3) + g′(x2, τ(Λ

g(x1))x3) = 0,

g′(Λg′(x1)x2, iy) + g′(x2,Λ
g′(x1)(iy)) = g′(τ(Λg(x1))x2, iy) + g′(x2,−τ(Λg(x1))(iy) + 2i[x1, y]) = 0,

g′(Λg′(x)(iy1), iy2) + g′(iy1,Λ
g′(x)(iy2)) = g′(−τ(Λg(x))(iy1) + 2i[x, y1], iy2)

+ g′(iy1,−τ(Λg(x))(iy2) + 2i[x, y2]) = 2λ1κg([x, y1], y2) + 2λ1κg(y1, [x, y2]) = 0.

To see that the given expression for Λg′ is torsion-free, we use the fact that Λg is torsion-free to

calculate:

Λg′(x1)x2 −Λg′(x2)x1 − projm′ [x1, x2] = τ(Λg(x1))x2 − τ(Λg(x2))x1 − [x1, x2]

= Λg(x1)x2 −Λg(x2)x1 − [x1, x2] = 0,

Λg′(x)(iy)−Λg′(iy)(x)− projm′ [x, iy] = −τ(Λg(x))(iy) + 2i[x, y] + τ(iΛg(y))(x)− [x, iy]

= −iΛg(x)y + i[x, y] + iΛg(y)x = 0,

Λg′(iy1)(iy2)−Λg′(iy2)(iy1)− projm′ [iy1, iy2] = −τ(iΛg(y1))(iy2) + τ(iΛg(y2))(iy1) + projm[y1, y2]

= −Λg(y1)y2 +Λg(y2)y1 + projm[y1, y2] = 0.

The result then follows from the fact that the Levi-Civita connection is the unique torsion-free

metric connection.

Finally we turn our attention to the spinorial properties of the dual pairs. Inspired by [Kat00,

Prop. 7.2], we have:

Proposition 6.1.8. If (M = G/H, g) and (M ′ = G′/H, g′) are a dual pair of extended symmetric

spaces, then M admits a homogeneous spin structure if and only if M ′ admits one.
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Proof. Both directions of the ‘if and only if’ statement are identical, so we prove only the

forward direction here. Supposing that (M = G/H, g) admits a homogeneous spin structure,

it follows from [DKL22, Prop. 1.3] that there is a lift Ãd : H → Spin(m) of the isotropy

representation Ad: H → SO(m), and it suffices to show that Ad′ : H → SO(m′) lifts to a map

Ãd′ : H → Spin(m′). If {v1, . . . , vk, w1, . . . , wl} is a g-orthonormal basis for m such that {vt}kt=1 is

a basis for k and {wt}lt=1 is a basis for m1, then {v1, . . . , vk, iw1, . . . , iwl} is a g′-orthonormal basis

for m′. The identification vt 7→ vt and wt 7→ iwt is anH-equivariant isometry σ : (m, g) → (m′, g′),

and we have Ad′(h) = σ ◦ Ad(h) ◦ σ−1 for all h ∈ H. Noting that the isometry σ naturally

extends to an isomorphism σ : Spin(m) → Spin(m′) (by viewing these inside the respective

Clifford algebras), we claim that the desired lift is given by Ãd′(h) := σ(Ãd(h)) for all h ∈ H.

Denoting by λ (resp. λ′) the covering map Spin(m) → SO(m) (resp. Spin(m′) → SO(m′)), this

follows from the calculation

λ′(Ãd′(h))(v) = λ′(σ(Ãd(h)))(v) = σ(Ãd(h)) · v · σ(Ãd(h))−1 = σ(Ãd(h) · σ−1(v) · Ãd(h)−1)

= σ
(
λ(Ãd(h))(σ−1(v))

)
= σ

(
Ad(h)(σ−1(v))

)
= Ad′(h)(v)

for all v ∈ m′.

6.2 Homogeneous 3-(α, δ)-Sasaki Dual Pairs

From this point forward we restrict attention to the case of generalized 3-Sasakian data,

corresponding to extended symmetric data with k = sp(1) satisfying the additional condition

(ii) in Theorem 2.5.7.

Definition 6.2.1. The dual of a 3-(α, δ)-Sasaki homogeneous space (M = G/H, g, ξi, ηi, φi) is

the 3-(α′, δ′)-Sasaki space obtained by applying the duality construction to the corresponding

generalized 3-Sasakian data, where α′ := α and δ′ := −δ.

Remark 6.2.2. For a 3-(α, δ)-Sasaki homogeneous space (M = G/H, g) fibering over a Wolf

space, it is easy to check that Proposition 6.1.7 is compatible with the explicit expression for

the Nomizu map of the Levi-Civita connection recalled in Theorem 2.5.7:

Λg′(x1)(x2) = τ(Λg(x1))x2 = Λg(x1)x2 =
1

2
[x1, x2],

Λg′(x)(iy) = −τ(Λg(x))(iy) + 2i[x, y] = −iΛg(x)y + 2i[x, y]

= −i(1− α

δ
)[x, y] + 2i[x, y] = (1− α′

δ′
)[x, iy],
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Λg′(iy)(x) = −τ(iΛg(y))x = −iΛg(y)x = −iα
δ
[y, x] =

α′

δ′
[iy, x],

Λg′(iy1)(iy2) = −τ(iΛg(y1))(iy2) = −Λg(y1)(y2) = −1

2
projsp(1)[y1, y2] =

1

2
projsp(1)[iy1, iy2].

We can also find a relationship between the canonical connections of a 3-(α, δ)-Sasaki dual pair:

Proposition 6.2.3. If (M, g) and (M ′, g′) are a dual pair of homogeneous 3-(α, δ)-Sasaki spaces

then the canonical connections Λ : m×m → m and Λ′ : m′ ×m′ → m′ are related by

Λ′(V )W =

τ(Λ(V ))W − 4α′

δ′
[V,W ] V ∈ sp(1),

0 V ∈ im1.

Proof. Noting that M and M ′ fiber over Wolf spaces, Proposition 2.5.8 gives

Λ(V )W =


δ−2α
δ

[V,W ] V ∈ sp(1),

0 V ∈ m1,

Λ′(V )W =


δ′−2α′

δ′
[V,W ] V ∈ sp(1),

0 V ∈ im1.

The result then follows by calculating, for V ∈ sp(1):

δ′ − 2α′

δ′
[V,W ] =

δ + 2α

δ
[V,W ] =

δ − 2α

δ
[V,W ] +

4α

δ
[V,W ] = τ(Λ(V ))W − 4α′

δ′
[V,W ]

Inspired by Theorem 7.2 in [Kat00], we have:

Theorem 6.2.4. Let (M, g) and (M ′, g′) be a dual pair of homogeneous 3-(α, δ)-Sasaki spaces

of dimension 4n−1, and identify the spinor modules Σ ∼= Σ′ ∼= Λ•C2n−1. If ψ : G→ Σ, ψ ≡ u is

a constant H-equivariant map whose corresponding spinor satisfies the deformed Killing equation

∇g
Xψ =

α

2
X · ψ +

α− δ

2

3∑
i=1

ηi(X)Φi · ψ, (6.3)

then the corresponding constant map ψ′ : G′ → Σ′, ψ′ ≡ u is also H-equivariant and induces a

spinor satisfying

∇g′

Xψ
′ =

α′

2
X · ψ′ +

α′ − δ′

2

3∑
i=1

η′i(X)Φ′
i · ψ′, (6.4)

where α′ := α, δ′ := −δ. Similarly, if ψ ≡ u is a parallel spinor for the canonical connection
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(∇Xψ = 0) then ψ′ ≡ u satisfies

∇′
Xψ

′ =

2α′Φ′
i · ψ′ − 2α′ξ′j · ξ′k · ψ′ X = ξ′i ∈ V ′,

0 X ∈ H′,

(6.5)

for any even permutation (i, j, k) of (1, 2, 3).

Proof. We would like to define an isometry θ : (m, g) → (m′, g′) in order to compare the two

spaces. The obvious choice is the identification x 7→ x, y 7→ iy used in the proof of Proposition

6.1.8, however this leads to a problem with the orientations of the two spaces. Indeed, using the

notation of [ADS21, Thm. 3.1.1], the Reeb vector fields of the dual pair are related by

ξ′i = δ′σi = −δσi = −ξi,

so an orthonormal frame {ξ1, ξ2, ξ3, e4, . . . , e4n−4} inside the standard orientation for (M, g)

would be identified with the frame {−ξ′1 − ξ′2,−ξ′3, ie4, . . . ie4n−4}, which is not oriented in the

standard way for the dual 3-(α′, δ′)-Sasaki space (M ′, g′). Thus we choose instead the isometry

θ := − Id|sp(1) ⊕ i Id|m1 ,

which identifies ξi with ξ′i. Then, under identification of the spinor modules as above, each

tangent vector V ∈ m and its image θ(V ) ∈ m′ act as the same operator by Clifford multiplication

(likewise for the extension of θ to tensors and differential forms). We recall from Theorem 2.5.7

that

φ′
i =

1

2δ′
ad(ξ′i)|sp(1) +

1

δ′
ad(ξ′i)|im1 =

1

2δ
ad(ξi)|sp(1) +

1

δ
ad(ξi)|im1 ,

and therefore Φ′
i = θ(Φi). In the horizontal directions, it follows from Lemma 6.1.6 and

Proposition 6.1.7 above, together with the explicit formula for the Nomizu map recalled in

Theorem 2.5.7, that

θ−1(Λg′(iy)) = θ−1(−τ(iΛg(y))) = θ−1(−α
δ
ad(iy)|sp(1) +

1

2
projsp(1) ad(iy)|im1)

=
α

δ
ad(y)|sp(1) +

1

2
projsp(1) ad(y)|m1

= Λg(y).
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Thus if ψ ≡ u is an invariant spinor satisfying (6.3), then we have

Λ̃g′(iy) · u = θ(Λ̃g(y)) · u = θ(
α

2
y) · u =

α′

2
(iy) · u,

where Λ̃g, Λ̃g′ denote the spin lifts of Λg, Λg′ . The situation in the vertical directions is

somewhat more complicated. Arguing as above, we have

θ−1(Λg′(ξi)) = θ−1(τ(Λg(ξi))|sp(1) − τ(Λg(ξi))|im1 + 2ad(ξi)|im1)

= Λg(ξi)|sp(1) −Λg(ξi)|m1 + 2ad(ξi)|m1 = Λg(ξi)|sp(1) −Λg(ξi) +Λg(ξi)|sp(1) + 2ad(ξi)|m1

= 2Λg(ξi)|sp(1) −Λg(ξi) + 2 ad(ξi)|m1 = ad(ξi)|sp(1) −Λg(ξi) + 2 ad(ξi)|m1

= −2δΦi −Λg(ξi)

(where for the final equality we have identified the endomorphism field ad(ξi)|sp(1) with the

2-form −2δΦi|V using the metric g). Taking the spin lift then gives

θ−1(Λ̃g′(ξi)) = −δΦi − Λ̃g(ξi),

or equivalently,

θ−1(Λ̃g′(ξ′i)) = −δ′Φi + Λ̃g(ξi),

and hence

Λ̃g′(ξ′i) · u = θ(−δ′Φi + Λ̃g(ξi)) · u = −δ′Φ′
i · u+ θ(Λ̃g(ξi)) · u

= −δ′Φ′
i · u+ θ(

α

2
ξi +

α− δ

2
Φi) · u = −δ′Φ′

i · u+
α′

2
ξ′i +

α′ + δ′

2
Φ′
i · u

=
α′

2
ξ′i · u+

α′ − δ′

2
Φ′
i · u.

It follows that

Λ̃g′(V ) · u =
α′

2
V · u+ α′ − δ′

2

3∑
i=1

η′i(V )Φ′
i · u, for all V ∈ m′,

proving the first part of the theorem. Assume now that ψ ≡ u is parallel for the canonical

connection. It is immediately apparent from Proposition 6.2.3 that Λ̃′(iy) ·u = 0 for all iy ∈ im1,

and in the vertical directions

θ−1(Λ′(ξ′i)) = θ−1

(
τ(Λ(ξ′i))−

4α′

δ′
ad(ξ′i)

)
= Λ(ξ′i)−

4α′

δ′
ad(ξ′i)
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= −Λ(ξi)− 4α′(φ′
i + φ′

i|sp(1)) = −Λ(ξi) + 4α′(Φ′
i + Φ′

i|V)

(where for the final equality we have identified skew-symmetric endomorphisms with differential

forms using the metric g′). Applying the spin lift of this operator to ψ ≡ u gives

Λ̃′(ξ′i) · u = 0 + 2α′Φ′
i · u− 2α′ξ′j · ξ′k · u,

as desired.

6.3 The Special Case of Dimension 7

Let us examine more closely the situation in dimension 7. To start, let (M7, g, φi, ξi, ηi) be any

7-dimensional 3-(α, δ)-Sasaki manifold (not necessarily homogeneous). It is shown in [AD20,

Thm. 4.5.1] that the canonical connection ∇ arises as the characteristic connection of the

G2-structure

ω := η1 ∧ η2 ∧ η3 +
3∑
i=1

ηi ∧ Φi|H (6.6)

defined naturally in terms of the 3-(α, δ)-Sasaki structure tensors. One then obtains a ∇-parallel

spinor ψ0 via the relationship described in [ACFH15] between unit spinors and G2-structures in

dimension 7. The spinor ψ0 is called the canonical spinor, and can equivalently be realized, as

in [AD20, Def. 4.5.1], as the unique spinor (up to sign) such that

∇ψ0 = 0, ω · ψ0 = −7ψ0, |ψ0| = 1.

The three auxiliary spinors are then defined via the Clifford products with the Reeb vector

fields,

ψ1 := ξ1 · ψ0, ψ2 := ξ2 · ψ0, ψ3 := ξ3 · ψ0.

Theorem 6.3.1. ([AD20, Thm. 4.5.2]). The canonical and auxiliary spinors are Riemannian
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generalized Killing spinors,

∇g
Xψ0 =


2α−δ

2
X · ψ0 X ∈ V ,

−3α
2
X · ψ0 X ∈ H,

∇g
Xψi =


2α−δ

2
ξi · ψi X = ξi,

3δ−2α
2

ξj · ψi X = ξj (j ̸= i),

α
2
X · ψi X ∈ H,

(6.7)

for i, j = 1, 2, 3.

We refer the reader to Chapter 3.2.1.1 for a detailed discussion of the homogeneous example

S4n−1 = Sp(n)/ Sp(n− 1), including explicit calculations of the invariant spinors, and formulas

for the canonical and auxiliary spinors in dimension 7.

Theorem 6.3.2. Suppose that (M = G/H, g) is a compact simply-connected 7-dimensional

homogeneous 3-(α, δ)-Sasaki space, and (M ′ = G′/H, g′) its non-compact dual. Under the

identification of spinor bundles Σ ∼= Σ′ as in Theorem 6.2.4, the canonical and auxiliary

spinors ψi, i = 0, 1, 2, 3 on (M, g) are given by constant H-equivariant maps G→ Σ, and the

corresponding spinors ψ′
i ∈ Σ′, i = 0, 1, 2, 3 are the canonical and auxiliary spinors of the dual

3-(α′, δ′)-Sasaki space (M ′, g′). In particular they are Riemannian generalized Killing spinors,

satisfying:

∇g′

Xψ
′
0 =


2α′−δ′

2
X · ψ′

0 X ∈ V ′,

−3α′

2
X · ψ′

0 X ∈ H′,

∇g′

Xψ
′
i =


2α′−δ′

2
ξ′i · ψ′

i X = ξ′i,

3δ′−2α′

2
ξ′j · ψ′

i X = ξ′j (j ̸= i),

α′

2
X · ψ′

i X ∈ H′,

(6.8)

for i, j = 1, 2, 3, where V ′, H′ denote the vertical and horizontal bundles respectively of M ′.

Proof. In dimension 7, one easily checks in a concrete realization of the spin representation that

the space E from Theorem 5.0.1 is 3-dimensional, and given by

E = spanC∞(M){ψ1, ψ2, ψ3}.

Since M is compact (and hence αδ > 0), the generalized 3-Sasakian data determining it also

determines a compact 7-dimensional 3-Sasakian homogeneous space. From the classification of

homogeneous 3-Sasakian spaces (see Theorem 2.4.1) it follows that M is either

S7 =
Sp(2)

Sp(1)
or

SU(3)

S(U(1)× U(1))
,
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(the case RP7 is excluded by the assumption that M is simply-connected) so in particular

G = Sp(2) or SU(3). To see that ψ0 is G-invariant, we note that it is determined up to sign as

a unit length element of the 1-dimensional (−7)-eigenspace for the action of ω on Σ; then, using

G-invariance of ω, we calculate at the origin

(ω · (g0ψ0))(g) = (ω · ψ0)(g
−1
0 g) = −7ψ0(g

−1
0 g) = −7(g0ψ0)(g), for all g0, g ∈ G.

This shows that the 1-dimensional space Cψ0 is a G-subrepresentation of Σ, and this subrep-

resentation must be trivial since G = Sp(2) or SU(3) (i.e. ψ0 corresponds to a constant map

G→ Σ). The auxiliary spinors ψi = ξi ·ψ0, i = 1, 2, 3 are then invariant as well by Lemma 4.2.4.

Next, we observe that the canonical G2-form ω′ of (M ′, g′), defined using the 3-(α′, δ′)-Sasaki

structure tensors analogously to (6.6), coincides with θ(ω), and hence its (−7)-eigenspace inside

Σ′ coincides with the span of ψ0. The auxiliary spinors of (M ′, g′) therefore coincide with ψi,

i = 1, 2, 3, and the spinorial equations (6.8) follow from Theorem 6.3.1 applied to M ′.

Similarly, for the canonical connection we find:

Proposition 6.3.3. Let (M = G/H, g) and (M ′, g′) be a dual pair of homogeneous 7-dimensional

3-(α, δ)-Sasaki spaces, and identify the spinor modules as in Theorem 6.2.4. Then an invariant

spinor ψ ≡ u on M is ∇-parallel if and only if the correponding spinor ψ′ ≡ u on (M ′, g′) is

∇′-parallel.

Proof. By symmetry of the ‘if and only if’ statement, it suffices to prove either implication. If

ψ ≡ u is a ∇-parallel spinor on M then Theorem 6.2.4 implies that the dual spinor ψ′ ≡ u

satisfies (6.5). Note that ψ is stabilized by G2 = stabSO(7)(ω), since the canonical connection is

a G2-connection (see [AD20, Remark 4.4.4]). The action of G2 on the spinor module Σ has only

one fixed spinor up to scaling (see part (d) of the main proposition in [Wan89]), so we conclude

that ψ is a multiple of the canonical spinor ψ0. The result then follows by substituting (6.9)

into (6.5).

Finally, for any 7-dimensional 3-(α, δ)-Sasaki manifold (not necessarily homogeneous) we compare

the spinorial equation satisfied by the auxiliary spinors (the second equation in (6.7)) to the

deformed Killing equation (5.1). A straightforward calculation in the spin representation gives:

Lemma 6.3.4. If (M7, g, ξi, ηi, φi) is a 7-dimensional 3-(α, δ)-Sasaki manifold, the canonical
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and auxiliary spinors satisfy

Φi · ψ0 = ψi, Φi · ψi = ξi · ψi, Φi · ψj = −3ξi · ψj,

for all i, j = 1, 2, 3 with i ̸= j. Furthermore, for any even permutation (i, j, k) of (1, 2, 3), the

canonical spinor satisfies

(Φi − ξj · ξk) · ψ0 = 0. (6.9)

The preceding lemma immediately gives:

Proposition 6.3.5. If (M7, g, ξi, ηi, φi) is a 7-dimensional 3-(α, δ)-Sasaki manifold, then a

spinor ψ ∈ Γ(E) satisfies the deformed Killing equation (5.1) if and only if it satisfies the second

equation in (6.7).

Proof. Using Lemma 6.3.4, we calculate

α

2
X · ψi +

α− δ

2

3∑
p=1

ηp(X)Φp · ψi =
α

2
X · ψi +

α− δ

2
(ηi(X)ξi − 3ηi+1(X)ξi+1 − 3ηi+2(X)ξi+2) · ψi,

where the indices i, i+ 1, i+ 2 are taken modulo 3. The result then follows by substituting the

various cases for X from (6.7).



A
An Explicit Construction of the Lie Algebras su(3), g2,

spin(7), and spin(9)

The calculations involved in finding the invariant spinors for the exceptional spheres in Table

1.1 can be greatly simplified by constructing in a unified manner the Lie algebra inclusions

su(3) ⊂ g2 ⊂ spin(7) ⊂ spin(9). This appendix is devoted to the exposition of this construction,

parts of which may be found in Chaper 4.4 of [BFGK91]:

Lemma A.1. (Based on Lemma 15 in Chapter 4.4 of [BFGK91]). The Lie algebra g2 (resp.

su(3)) may be realized as the stabilizer of one (resp. two) spinors in the real spin representation

ΣR
7 := R8 of spin(7). Explicitly, if ϵ1, . . . ϵ7 is the standard basis of R7 and ϕ1, . . . , ϕ8 is

the standard basis of the real spinor module ΣR
7 = R8, then g2 and su(3) are realized inside

spin(7) = spanR{ϵiϵj} via

g2 ∼= stabspin(7){ϕ1} ∼=


∑

1≤i<j≤7

ωi,jϵiϵj :

ω1,2 + ω3,4 + ω5,6 = 0,

− ω1,3 + ω2,4 − ω6,7 = 0, −ω1,4 − ω2,3 − ω5,7 = 0,

− ω1,6 − ω2,5 + ω3,7 = 0, ω1,5 − ω2,6 − ω4,7 = 0,

ω1,7 + ω3,6 + ω4,5 = 0, ω2,7 + ω3,5 − ω4,6 = 0,



su(3) ∼= stabspin(7){ϕ1, ϕ2} =


∑

1≤i<j≤7

ωi,jϵiϵj :

ω1,2 + ω3,4 + ω5,6 = 0,

ω1,3 = ω2,4, ω1,4 + ω2,3 = 0, ω1,5 = ω2,6,

ω1,6 + ω2,5 = 0, ω3,5 = ω4,6, ω3,6 + ω4,5 = 0,

ω1,7 = ω2,7 = · · · = ω6,7 = 0.


Remark A.2. In order to find bases for these Lie algebras we use the explicit realization of the
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spin representation obtained from the following matrices:

ρ(ϵ1) := E
(8)
1,8 + E

(8)
2,7 − E

(8)
3,6 − E

(8)
4,5 , ρ(ϵ2) := −E(8)

1,7 + E
(8)
2,8 + E

(8)
3,5 − E

(8)
4,6 ,

ρ(ϵ3) := −E(8)
1,6 + E

(8)
2,5 − E

(8)
3,8 + E

(8)
4,7 , ρ(ϵ4) := −E(8)

1,5 − E
(8)
2,6 − E

(8)
3,7 − E

(8)
4,8 ,

ρ(ϵ5) := −E(8)
1,3 − E

(8)
2,4 + E

(8)
5,7 + E

(8)
6,8 , ρ(ϵ6) := E

(8)
1,4 − E

(8)
2,3 − E

(8)
5,8 + E

(8)
6,7 ,

ρ(ϵ7) := E
(8)
1,2 − E

(8)
3,4 − E

(8)
5,6 + E

(8)
7,8

(see Chapter 4.4 in [BFGK91]). By substituting these into the equations of the preceding lemma

and subsequently orthogonalizing with respect to B0, one obtains:

Proposition A.3. A B0-orthonormal basis for g2 given by

ν1 :=
1

4
(ρ(ϵ1)ρ(ϵ2)− ρ(ϵ5)ρ(ϵ6)), ν2 :=

1

4
(ρ(ϵ3)ρ(ϵ5) + ρ(ϵ4)ρ(ϵ6)),

ν3 :=
1

4
(ρ(ϵ3)ρ(ϵ6)− ρ(ϵ4)ρ(ϵ5)), ν4 :=

1

4
(ρ(ϵ1)ρ(ϵ3) + ρ(ϵ2)ρ(ϵ4)),

ν5 :=
1

4
(ρ(ϵ1)ρ(ϵ4)− ρ(ϵ2)ρ(ϵ3)), ν6 :=

1

4
(ρ(ϵ1)ρ(ϵ5) + ρ(ϵ2)ρ(ϵ6)),

ν7 :=
1

4
(ρ(ϵ1)ρ(ϵ6)− ρ(ϵ2)ρ(ϵ5)), ν8 := −ρ(ϵ1)ρ(ϵ2)− 2ρ(ϵ3)ρ(ϵ4) + ρ(ϵ5)ρ(ϵ6)

4
√
3

,

ν9 :=
2ρ(ϵ1)ρ(ϵ7)− ρ(ϵ3)ρ(ϵ6)− ρ(ϵ4)ρ(ϵ5)

4
√
3

, ν10 :=
2ρ(ϵ2)ρ(ϵ7)− ρ(ϵ3)ρ(ϵ5) + ρ(ϵ4)ρ(ϵ6)

4
√
3

,

ν11 :=
ρ(ϵ1)ρ(ϵ3)− ρ(ϵ2)ρ(ϵ4)− 2ρ(ϵ6)ρ(ϵ7)

4
√
3

, ν12 :=
ρ(ϵ1)ρ(ϵ4) + ρ(ϵ2)ρ(ϵ3)− 2ρ(ϵ5)ρ(ϵ7)

4
√
3

,

ν13 :=
ρ(ϵ1)ρ(ϵ5)− ρ(ϵ2)ρ(ϵ6) + 2ρ(ϵ4)ρ(ϵ7)

4
√
3

, ν14 :=
ρ(ϵ1)ρ(ϵ6) + ρ(ϵ2)ρ(ϵ5) + 2ρ(ϵ3)ρ(ϵ7)

4
√
3

,

with the first 8 elements ν1, . . . ν8 forming a B0-orthonormal basis for the subalgebra su(3).

We now wish to extend this to B0-orthonormal bases of spin(7) and spin(9). Denoting by

ι : Mat8(R) ↪→ Mat9(R) the embedding as the lower right hand 8× 8 block, one has:

Proposition A.4. The basis {ν1, . . . , ν14} extends to a B0-orthonormal basis of spin(7) given by

{ν1, . . . , ν14, ν ′15, . . . , ν ′21} and a B0-orthonormal basis of spin(9) given by

{ι(ν1), . . . , ι(ν14), ι(ν ′15), . . . , ι(ν ′21), ν ′22, . . . , ν ′36}, where

ν ′15 :=
ρ(ϵ1)ρ(ϵ2) + ρ(ϵ3)ρ(ϵ4) + ρ(ϵ5)ρ(ϵ6)

2
√
6

, ν ′16 :=
ρ(ϵ1)ρ(ϵ3)− ρ(ϵ2)ρ(ϵ4) + ρ(ϵ6)ρ(ϵ7)

2
√
6

,

ν ′17 :=
ρ(ϵ1)ρ(ϵ4) + ρ(ϵ2)ρ(ϵ3) + ρ(ϵ5)ρ(ϵ7)

2
√
6

, ν ′18 :=
−ρ(ϵ1)ρ(ϵ5) + ρ(ϵ2)ρ(ϵ6) + ρ(ϵ4)ρ(ϵ7)

2
√
6

,

ν ′19 := −ρ(ϵ1)ρ(ϵ6) + ρ(ϵ2)ρ(ϵ5)− ρ(ϵ3)ρ(ϵ7)

2
√
6

, ν ′20 :=
ρ(ϵ1)ρ(ϵ7) + ρ(ϵ3)ρ(ϵ6) + ρ(ϵ4)ρ(ϵ5)

2
√
6

,
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ν ′21 := −ρ(ϵ2)ρ(ϵ7) + ρ(ϵ3)ρ(ϵ5)− ρ(ϵ4)ρ(ϵ6)

2
√
6

,

and

ν ′22 :=
√
2

(
E

(9)
2,3 −

√
3

2
ι(ν ′15)

)
, ν ′23 :=

√
2

(
E

(9)
2,4 +

√
3

2
ι(ν ′16)

)
, ν ′24 :=

√
2

(
E

(9)
2,5 +

√
3

2
ι(ν ′17)

)
,

ν ′25 :=
√
2

(
E

(9)
2,6 −

√
3

2
ι(ν ′19)

)
, ν ′26 :=

√
2

(
E

(9)
2,7 +

√
3

2
ι(ν ′18)

)
, ν ′27 :=

√
2

(
E

(9)
2,8 −

√
3

2
ι(ν ′20)

)
,

ν ′28 :=
√
2

(
E

(9)
2,9 +

√
3

2
ι(ν ′21)

)
, ν ′28+i :=

1√
2
E

(9)
1,1+i,

for all i = 1, . . . , 8.



B
Invariant Differential Forms on S15 = Spin(9)/ Spin(7)

Here we give explicit formulas, in terms of the basis (3.24), for the differential forms on

S15 = Spin(9)/ Spin(7) discussed in Chapter 3.3.3:

ω := −e1,8,9 + e1,10,11 + e1,12,13 − e1,14,15 − e2,8,10 − e2,9,11 + e2,12,14 + e2,13,15

− e3,8,11 + e3,9,10 + e3,12,15 − e3,13,14 − e4,8,12 − e4,9,13 − e4,10,14 − e4,11,15

− e5,8,13 + e5,9,12 − e5,10,15 + e5,11,14 − e6,8,14 + e6,9,15 + e6,10,12 − e6,11,13

− e7,8,15 − e7,9,14 + e7,10,13 + e7,11,12,

Ψ := e8,9,10,11 + e8,9,12,13 − e8,9,14,15 + e8,10,12,14 + e8,10,13,15 + e8,11,12,15

− e8,11,13,14 − e9,10,12,15 + e9,10,13,14 + e9,11,12,14 + e9,11,13,15

− e10,11,12,13 + e10,11,14,15 + e12,13,14,15,√
a

2
dω = e1,2,8,11 − e1,2,9,10 + e1,2,12,15 − e1,2,13,14 − e1,3,8,10 − e1,3,9,11 − e1,3,12,14 − e1,3,13,15

+ e1,4,8,13 − e1,4,9,12 − e1,4,10,15 + e1,4,11,14 − e1,5,8,12 − e1,5,9,13 + e1,5,10,14 + e1,5,11,15

− e1,6,8,15 − e1,6,9,14 − e1,6,10,13 − e1,6,11,12 + e1,7,8,14 − e1,7,9,15 + e1,7,10,12 − e1,7,11,13

+ e2,3,8,9 − e2,3,10,11 + e2,3,12,13 − e2,3,14,15 + e2,4,8,14 + e2,4,9,15 − e2,4,10,12 − e2,4,11,13

+ e2,5,8,15 − e2,5,9,14 − e2,5,10,13 + e2,5,11,12 − e2,6,8,12 + e2,6,9,13 − e2,6,10,14 + e2,6,11,15

− e2,7,8,13 − e2,7,9,12 − e2,7,10,15 − e2,7,11,14 + e3,4,8,15 − e3,4,9,14 + e3,4,10,13 − e3,4,11,12

− e3,5,8,14 − e3,5,9,15 − e3,5,10,12 − e3,5,11,13 + e3,6,8,13 + e3,6,9,12 − e3,6,10,15 − e3,6,11,14

− e3,7,8,12 + e3,7,9,13 + e3,7,10,14 − e3,7,11,15 + e4,5,8,9 + e4,5,10,11 − e4,5,12,13 − e4,5,14,15

+ e4,6,8,10 − e4,6,9,11 − e4,6,12,14 + e4,6,13,15 + e4,7,8,11 + e4,7,9,10 − e4,7,12,15 − e4,7,13,14

− e5,6,8,11 − e5,6,9,10 − e5,6,12,15 − e5,6,13,14 + e5,7,8,10 − e5,7,9,11 + e5,7,12,14 − e5,7,13,15

− e6,7,8,9 − e6,7,10,11 − e6,7,12,13 − e6,7,14,15 −
3ae8,9,10,11

2b
− 3ae8,9,12,13

2b
+

3ae8,9,14,15
2b

136
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− 3ae8,10,12,14
2b

− 3ae8,10,13,15
2b

− 3ae8,11,12,15
2b

+
3ae8,11,13,14

2b
+

3ae9,10,12,15
2b

− 3ae9,10,13,14
2b

− 3ae9,11,12,14
2b

− 3ae9,11,13,15
2b

+
3ae10,11,12,13

2b
− 3ae10,11,14,15

2b

− 3ae12,13,14,15
2b√

a

2
dΨ = e1,8,10,12,15 − e1,8,10,13,14 − e1,8,11,12,14 − e1,8,11,13,15 + e1,9,10,12,14 + e1,9,10,13,15

+ e1,9,11,12,15 − e1,9,11,13,14 − e2,8,9,12,15 + e2,8,9,13,14 + e2,8,11,12,13 − e2,8,11,14,15

− e2,9,10,12,13 + e2,9,10,14,15 + e2,10,11,12,15 − e2,10,11,13,14 + e3,8,9,12,14 + e3,8,9,13,15

− e3,8,10,12,13 + e3,8,10,14,15 − e3,9,11,12,13 + e3,9,11,14,15 − e3,10,11,12,14 − e3,10,11,13,15

+ e4,8,9,10,15 − e4,8,9,11,14 + e4,8,10,11,13 − e4,8,13,14,15 − e4,9,10,11,12 + e4,9,12,14,15

− e4,10,12,13,15 + e4,11,12,13,14 − e5,8,9,10,14 − e5,8,9,11,15 − e5,8,10,11,12 + e5,8,12,14,15

− e5,9,10,11,13 + e5,9,13,14,15 + e5,10,12,13,14 + e5,11,12,13,15 + e6,8,9,10,13 + e6,8,9,11,12

− e6,8,10,11,15 − e6,8,12,13,15 − e6,9,10,11,14 − e6,9,12,13,14 + e6,10,13,14,15 + e6,11,12,14,15

− e7,8,9,10,12 + e7,8,9,11,13 + e7,8,10,11,14 + e7,8,12,13,14 − e7,9,10,11,15 − e7,9,12,13,15

− e7,10,12,14,15 + e7,11,13,14,15.

We also record in Table B.1 the isotropy types of the forms ω,Ψ, dω, dΨ from Chapter 3.3.3, i.e.

the number of factors from each isotropy component. The isotropy types of all other invariant

forms in Table 3.3 may be easily deduced from these.

Form Isotropy Type

ω mF ⊗ Λ2mB

Ψ Λ4mB

dω (Λ2mF ⊗ Λ2mB)⊕ (Λ4mB)
dΨ mF ⊗ Λ4mB

Table B.1: Isotropy Types of Invariant Forms on S15 = Spin(9)/ Spin(7)
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[Udr69] Constantin Udrişte. Structures presque coquaternioniennes. Bulletin mathématique
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