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Abstract

The sense of touch, acting as a connection between humans and surroundings, is a stretch
of audio and video information. People have been striving to pursue higher productivity
and quality in the telecommunication system by proposing schemes combining with voice,
capture, and sensory feedback since last decades. To achieve the transmission of force
feedback from remote environment is thus the objective and research concentrates on
bilateral teleoperation systems.

Traditional bilateral teleoperation systems are not only requiring a large amount of
network resources, but sensitive to the transmission delay. From the previous research,
the possible communication delay of a bilateral teleoperation system ranges from one to
several hundred milliseconds. However, even a small communication delay or packet loss
in the communication channel can affect the system’s stability and transparency. Therefore,
kinesthetic data reduction techniques are required in bilateral teleoperation systems. The
current scheme to reduce the high-rate haptic data transmission employs a mathematical
threshold to transmit data selectively based on human perceptual limitations, which is
called perceptual deadband (PD)-based codecs. It describes the perceptual thresholds by
pairwise comparison. However, the current perceptual threshold is not sufficiently accurate
to describe some types of stimuli in practice, including kinesthetic perception, and human
time perception. Moreover, pairwise comparison is required to be made in each collected
kinesthetic data; this wastes memory and time.

Due to various aforementioned limitations of deploying PD-based codecs in real
bilateral teleoperation systems, I believe that novel mathematical models controlling
kinesthetic data transmission should be proposed, so that the transmission status of the
newly collected data will be determined by the model directly, without any comparison.
In this thesis, three different machine learning algorithms are used for kinesthetic data
reduction over the haptic communication network. By comparing with conventional PD-
based codecs for kinesthetic data reduction, proposed techniques perform better in different
aspects. Such a system with kinesthetic data reduction techniques is shown in this thesis to
reduce the kinesthetic data transmission effectively.

The first idea for reducing kinesthetic data transmission is, by deploying long-short
term memory (LSTM)-based data reduction modules, to control the transmission status of
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each data. Current PD-based codecs is not practical in dealing with time series data, as
pairwise comparison is required before each transmission. Therefore, a novel mathematical
model for deriving the the transmission status of each collected data is proposed based
on LSTM networks. This model is trained from Weber’s law of just noticeable difference
(JND), in which explains humans’ perceptual limitation.

The second idea is reducing the size of kinesthetic data in each transmission. Dimen-
sionality reduction techniques (DRTs) are introduced to map original kinesthetic data
in high dimensions to corresponding embeddings in low dimensions. This is novel, un-
precedented in abandoning the concept of selective transmission (reducing the amount
of data transmission), and applying DRTs on each collected kinesthetic data for reducing
the network offload respectively. More specific, three different dimensionality reduction
techniques, including principal component analysis (PCA), stacked auto-encoder(SAE) and
uniform manifold approximation and projection (UMAP), are stated and compared with
each other. Moreover, for reconstructing dimensions of kinesthetic data from low to origi-
nal, three different data reconstruction techniques are used in terms of three dimensionality
reduction techniques.

The third idea is clustering kinesthetic data with unsupervised learning techniques,
by which realizing selectively transmitting kinesthetic data. Even though LSTM-based
mathematical models can reduce the transmission of kinesthetic data effectively, labels
of each data are deriving from existing PD-based codecs. In order to deal with original
unlabelled kinesthetic data, unsupervised clustering techniques are introduced to classify
each sample into different clusters in terms of intra-cluster similarities and inter-cluster
distances. Unsupervised clusterings can find internal features of the dataset which may
be ignored by humans. What’s more, we select kinesthetic data in a part of clusterings to
transmit over the network, and compare it with PD-based and LSTM-based kinethetic data
reduction techniques.

We also improve the accuracy of prediction models in bilateral teleoperation systems
with the assistance of gradient boosting decision tree (GBDT) algorithm. Prediction models
are required since operator needs to estimate the force feedback when no data is received.
Current PD-based predictive scheme assumes the future value is related to last one or two
received data, which is too simple to describe this whole prediction. Therefore, GBDT,
which is acknowledged as the most accurate and commonly used predictive algorithm is
introduced to improve the whole accuracy and transparency of the system.
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Chapter 1

Overview

1.1 Introduction

There is an endless attitude for people to pursue higher productivity and quality of expe-
rience in remote communication. In the past decades, humans have made great success
in transmitting audio-visual signals. However, the sense of touch, acting as a connection
between humans and their surroundings, is achievable beyond audio and video information.
Therefore, there exists a prospect of building a communication system which proposes
schemes combined with voice, capture, and sensory feedback. In reality, many haptic-
related industries have emerged in various fields, including medical teleoperation, remote
exploration, dive detection, etc., which enables human users to fully immerse into the
remote environment and perform complicated tasks in a distance.

Thanks to these ambitions, achieving immersive experience becomes possible, it can
provide users with comprehensive sensory feedback —— auditory, visual, and haptic. With
increasing quality, the presence of users and feeling of togetherness are realized at the level
of voice or video conferences. For instance, the prevalence of working from home and on
video conference platforms during the pandemic, which offers users attend the meeting in
a distance from workplace. While the feeling of being present in a remote environment is
clearly available with these systems, a complete immersion cannot be realized without the
possibility of physical interaction with the remote environment.

Attempting to fulfil the wish of transmitting the sense of feeling to the distance, a
real-time teleoperation system for exchanging the action and reaction information between
the master and the slave have been developed. In other words, a bilateral teleoperation
system which supports simultaneous data transmission from master to slave side and slave
to master side has been proposed. Unlike a bidirectional system which transmits data in
both directions (send and receive) but not at the same time, a bilateral system allow data to
be transmitted simultaneously. These bilateral teleoperation systems provide users with
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1.1 Introduction

multimodal sensor information about the remote environment, while allowing the remote
robotics to interact with the environment by following users’ movements. Furthermore,
haptic data is normally divided into two categories, kinesthetic and tactile information.
All the haptic data including position, velocity, force, torque, texture can be included in
kinesthetic data. Simultaneously, data recording vibrations produced when touching on
different surfaces, is termed tactile data. In this thesis, we use the word haptic to refer to
the kinesthetic components of position/velocity and force.

Using a bilateral teleoperation system with haptic feedback, a complete immersion into
a distant environment is possible for users. Users can execute tasks without being physically
present but with the feeling of being there. From previous research, a bilateral teleoperation
system consists normally of three different components, including the human operator
side/master system (OP), the teleoperator side/slave system (TOP), and the communication
link which connects the OP with the TOP [1]. A bilateral multimodal sensor information
exchange between the master and slave system occurs during the teleoperation process.

Nevertheless, communication of haptic information for teleoperation systems imposes
strong demands on the communication network. The sampling rate of haptic devices is
normally 1 kHz or may be higher to maintain the transparency of the system. The collected
data is packetized and transmitted at the same rate [2–4]. Therefore, for communicating
kinesthetic information in teleoperation system, thousands of haptic data packets per
second must be transmitted between the master and the slave devices.

This means that due to the consumption of a large amount of network resources, the
possible communication delay of a bilateral teleoperation system ranges from one to
several hundred milliseconds [2]. In practice, the communication delay depends on the
geographic distance and the communication facility. The delay may reach several seconds
in a long-distance communication system, such as space communication system [93].
The implications of this delay are not restricted to user frustration. As many studies have
shown, even a small communication delay or packet loss in the communication channel
can affect the system’s stability and transparency [5]. As a result, techniques to reduce
the transmission of haptic data or packets should be proposed in bilateral teleoperation
systems.

The theoretical basis for data or packet reduction for teleoperation systems is Weber’s
Law of Just Noticeable Differences (JND). Weber’s Law is based on human perceptual
limitations. The so-called perceptual deadband based (PD-based) approach was first
introduced in [6–9]. This law states that the JND between two stimuli, which is the
minimum change in the magnitude of a stimulus that the human can be aware of, is
ordinarily proportional to its magnitude. The JND model currently used describes the
perceptual thresholds for pairwise comparison, which is resource-consuming in practice.
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This thesis will present three novel haptic data reduction schemes which reduces the
potential transmission rate more effectively relative to traditional PD-based codecs.

The first scheme proposes a novel mathematical model to control the transmission of
time series of kinesthetic data. Recurrent neural networks (RNNs) with long short-term
memory (LSTM) architecture are utilized to derive the mathematical model by labelling
the JND. The second scheme reduces the packet size of haptic data during the transmission.
Nearly all of the previous data reduction techniques strive to selectively transmit haptic data
with super high dimensions. This thesis proposes a novel pipeline to solve the compression-
recovery problem of haptic signals, and specifically compares three typical dimensionality
reduction techniques (DRTs) to reduce the size of each transmitted data. The third scheme
aims at clustering original unlabelled kinesthetic data in terms of unsupervised learning
algorithms. Two different unsupervised clustering techniques, k-means clustering and
hierarchical clustering, are introduced to classify kinesthetic data into different optimal
clusters. Moreover, only data in a part of clusters will be transmitted over the network,
which reduces the amount of data transmission effectively.

Three solutions to reduce the haptic data transmission by means of either deriving new
mathematical models or DRTs are introduced and analysed in this thesis.

Furthermore, in order to fill in the non-transmitted sample on the TOP, predictive
coding is proposed to estimate future haptic data from that previously received. The
current predictive model is both simple and inefficient [27–29]. This thesis deploys the
gradient boosting decision tree (GBDT) to predict the haptic data when the difference
between newly collected sample and the one previously transmitted is imperceptible to
the operator. In other words, a predictive sample is produced on the slave side once the
newly collected sample on the master side is within the deadzone of the previous one.
Comparisons between GBDT-based predictive and traditional schemes are discussed in
this thesis.

Up to now, I have published one conference paper [95]. Meanwhile, one paper has
been accepted by IEEE Internet of Things Journal with minor revisions [? ], and the other
one is still under review [97].

1.2 Bilateral Teleoperation Systems

This thesis presents a novel and feasible scheme with the deployment of two different
haptic data reduction techniques to cope with the stability and transparency issue resulting
from the transmission delay of the network. Bilateral systems with haptic data reduction
modules are explained briefly below.
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In tradition, there is a bilateral multimodal sensor information exchange between the
master and slave system during the teleoperation process. Initialy, the local operator
receives the command from the human, which produces a signal consisting of the velocity
and position of the robot. Those signals are usually sampled in 1ms [2–4]. Later, when
the signal transmits over the communication link, the slave robot follows the received
position or velocity commands. Correspondingly, there will be some haptic feedback from
the TOP side when the remote robot interacts with the environment. The haptic, visual,
and audio signals captured from the slave side are sent back and displayed to the master.
This type of position-force or velocity-force teleoperation system is proposed and widely
used in [10–12]. Another architecture called the position-position teleoperation system is
first proposed and used in [13]. As the name implies, the master sends its position signals
to the slave, and it also receives the slave’s position signals. In this type of teleoperation
system, the main haptic feedback is the slave motion signals, which are rendered on the
master side. In this thesis, we mainly consider the force feedback during the teleoperation
process.

Normally, a number of studies over the past 2 decades have found that the optimal
vibration frequency for haptics ranges from 100 to 300 Hz [14, 15]. For more complex
haptic signals that include different types of tactile sensations, such as pressure or texture,
the maximum frequency content can be in the range of 200 ro 400 Hz [14]. A 1 kHz
sampling frequency is typically sufficient to capture the maximum frequency content of
haptic signals. The Nyquist theorem states that the sampling rate should be at least twice
the maximum frequency content of the signal to avoid aliasing. In the case of haptic
signals, the Nyquist frequency would be half of the maximum frequency content, which
is usually in the range of a few hundred Hz. Therefore, a sampling frequency of 1 kHz
provides a sufficient margin for the Nyquist frequency to be well above the maximum
frequency content of haptic signals. Besides, using a 1 kHz sampling frequency allows for
the use of anti-aliasing filters. An anti-aliasing filter is a low-pass filter that removes any
frequency content above the Nyquist frequency before the signal is sampled. This ensures
that any frequency content above the Nyquist frequency does not create spurious signals
in the digital signal. For a 1 kHz sampling frequency, the Nyquist frequency is 500 Hz.
Therefore, an anti-aliasing filter can be used to remove any frequency content above 500
Hz.

The underlying principle of traditional bilateral teleoperation systems is depicted in
Fig. 1.1. The OP applies a force of Fi on the master manipulator and moves it by Xi at the
velocity of Ẋi. These position and velocity measurements are transmitted to the TOP over
a communication channel. The manipulator on the slave side follows the received position
and velocity signals and interacts with the environment. The reaction force measurements
produced during the interaction Fxi are fed back to the master.
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The traditional bilateral teleoperation system not only requires a large amount of
network resources, but is sensitive to transmission delay. Therefore, haptic data reduction,
or packet rate reduction, is required in teleoperation systems. As argued above, the current
scheme to reduce the high-rate haptic data transmission employs a mathematical threshold
to transmit data selectively based on human perceptual limitations. As we have seen,
Weber’s Law states that the JND between two stimulus, which is the minimum change
in the magnitude of a stimulus that the human can be aware of, is ordinarily proportional
to its magnitude. The current JND model, also termed PD-based codecs, describes the
perceptual thresholds by pairwise comparison. However, in practice, Weber’s law cannot
be applied when dealing with a time series of force or velocity values. The current JND
perceptual threshold is not sufficiently accurate to describe some types of stimuli in practice,
including kinesthetic perception, and human time perception [16–19]. Moreover, pairwise
comparison is required to be made in each collected kinesthetic data; this wastes memory
and time. In addition, there is no fault tolerance of current JND perceptual threshold and
therefore once the comparison is wrong, the fault will remain.

Due to various aforementioned limitations of deploying PD-based codecs in real
bilateral teleoperation systems, I believe that novel mathematical models controlling
kinesthetic data transmission should be proposed, so that the transmission status of the
newly collected data will be determined by the model directly, without any comparison. As
long as the mathematical model is derived, the new haptic data produced on both master
and slave side can swiftly determine whether or notit should be transmitted.

Since humans are living in a 3-dimensional world, each visible or sensible physical
measurement can be represented by a 3-dimensional vector. Simultaneously, as is shown in
1.1, both position/velocity and force data is in high dimensions. Human operators control
the master robot, and move it with a velocity of ẋi at position xi. The position/velocity
data is transmitted to the slave side over the communication channel, and thus the received
position and velocity data is xiR and ẋiR . The slave follows received instructions, and
interacts with the remote environment. Furthermore, corresponding force feedback data fxi

is transmitted back to human operators on the master side. Received force feedback can
be represented as fxiR . In a position-force teleoperation architecture, the position/velocity
data is typically represented with six dimensions, while the force data is three. However,
the force data is a vector along three different axes (x,y,z). The magnitude of the frictional
force in the tangential direction (along x&y axes) of a moving object is always proportional
to the pressure it experiences in the vertical direction (along z axis). Inspired by this
phenomenon, force data along z axis needs not to be transmitted as long as the frictional
force in the tangential direction is given, and vice versa. Moreover, it allows us to extend
this idea to position/velocity data. As is stated above, haptic data with full dimensions
is collected, packetized, and transmitted at a rate of 1 kHz or higher. This is novel,
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unprecedented in abandoning the concept of selective transmission (reducing the amount
of data transmission), and applying DRTs on each collected kinesthetic data for reducing
the network offload respectively. This DRT-based kinesthetic data transmission scenario
will be analysed in this thesis. The simulation performance and feasibility will also be
discussed. In addition, unsupervised clustering techniques are introduced to classify
original kinesthetic data without labeling data before training process. Kinesthetic data is
segregated into different clusterings, while data belonging to certain groups is transmitted
over the network.

To accomplish a logical thread in deriving the fractional allocation strategies, the thesis
has been organised as follows.

Fig. 1.1 Overview of a Conventional Bilateral Teleoperation System

1.3 Background & State of the Art

The bilateral teleoperation system was first realized by Goertz and his team in the 1940s,
when they developed a mechanical pantograph introducing the concept of bilateral teleop-
eration. Since then, mechanical manipulators were built to manage the nuclear material of
a nuclear reactor [20]. The objective of the bilateral teleoperation system is to provide a
better haptic perception to the operator, while they perform a remote operation task. The
generalisation of the concept of haptic communications which extended the audiovisual
communications was first proposed in Feb. 2012 [8]. Apart from this, the 1ms-challenge
in haptic communications was first given in [8], which prospected the overall time delay
should be less than 1 ms in haptic communications.

Following this, numerous schemes have emerged aiming to accomplish the 1ms-
challenge. The original scheme refers to haptic data reduction techniques. Kinesthetic
data reduction techniques are mainly based on two approaches: statistical, and perceptual
schemes [21].

The statistical scheme aims at using the statistics of the haptic signals to compress the
packet size. For instance, for kinesthetic data of 1 degree of freedom (DoF), lossy data
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compression and decompression methods have been achieved by using discrete cosine
transform (DCT) or wavelet packet transform (WPT) [22, 23]. These methods made
contributions by using transformation basis to compress the data, concentrating the energy
of the original signal in data packets of a smaller size.

The perceptual scheme focuses on reducing the packet over the communication network.
The first packet rate reduction for networked control system was believed to be proposed
in [24]. This work supposes a fixed threshold, of which only samples containing changes
higher than it are transmitted. The receiver reacts to missing samples by holding the value
of the most recently received sample. However, the threshold given by [24] has strong
limitations as a fixed value instead of a dynamic one fluctuating with the human perception.
With the development of exploiting Weber’s law of JND in [25], [26] proposed a dynamic
threshold which changes with the previous transmitted sample. Since then, the so-called
PD-based approach was put forward and introduced in [6–9]. In order to fill in the non-
transmitted sample on the TOP, predictive coding is proposed to estimate future haptic data
from previously received one. The simplest but also the least efficient prediction method is
called the zero-order hold (ZOH) predictor. As long as the receiver does not receive any
data at each sampling time, the receiver will hold the value of the last sample it received.
In addition, in [27] and [28], a first-order linear predictor (FOLP) was given. During the
non-transmission period, the receiver generates linearly increasing/decreasing samplesz
with the slope of the last two samples, till receiving the next one. This simple predictor
can lead to a significantly decreased packet rate, up to 90-95%, without deteriorating in
the system. Furthermore, [29] deployed a third-order autoregressive (AR) model for
three-dimensional position and force data. This model computed the adaptive coefficients
from initialization and training processes, with the algorithm then deciding whether the
training values needed to be updated either from the predicted data or the current real data
by taking into account the JND threshold.

Nevertheless, the compression of tactile signals is beyond the scope of this thesis. The
interested reader is therefore referred to [30, 31]

RNN & LSTM. For a bilateral teleoperation system, the haptic data reduction can
be regarded as building a transmission threshold for time-varying sequences. Recurrent
neural networks are a class of neural networks (NNs) dealing with time-series sequential
data inputs or outputs. By introducing feedback to feedforward (FF) neural network, the
relationship between data input and output is captured by RNNs. Despite of that, there
exists a significant limitation of RNN models, called vanishing gradient effect. The state
information of each cell integrates over time. In practice, the ability to backpropagate an
error through a long range time interval becomes extremely difficult. Therefore, LSTM
units, recurrent modules which enable long-range learning were first proposed in [60].
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LSTM units have hidden state augmented with nonlinear mechanisms to allow state to
propagate without modification, be updated, or be reset, using simple learned gating
functions. LSTM has had successful application in many fields, such as speech recognition
[32], language translation [33], and human activity recognition [34].

The advantages of LSTMs for modeling sequential data are twofold. First, LSTM
models are straightforward to fine-tune end-to-end. The produced model is convincing
even though no empirical models have been derived before. For example, [36] eliminates
the need for complex multi-step pipelines in speech recognition by training a deep bidirec-
tional LSTM that maps spectrogram input to text. The model produces convincing text
translations even without a language model or pronunciation dictionary.

Second, LSTMs are flexible enough to deal with inputs or outputs of varying lengths,
such as text or video. We next describe a unified framework to combine recurrent models
such as LSTMs with deep convolutional networksin order to form end-to-end trainable
networks capable of complex visual and sequence prediction tasks. For example, [33] and
[37] use a multi-layer LSTM encoder and decoder to translate sentences from English to
French.

DRT. Dimensionality reduction technique is a method that can map the data from the
original high dimensional data to low dimensional data during the measurement, which
aims to decrease the required storage space, achieve a faster transmission and use less
transmission time [42]. The basis of dimensionality reduction techniques is to use the data
with reduced dimensionality to represent the original data as much as possible. According
to previous research, dimensionality reduction techniques have been applied in numerous
fields, including recognition system [43], wireless network security [44], and disease
prediction [45].

This thesis proposes a pipeline to solve the compression-recovery problem of haptic
signals, and specifically compares three typical dimensionality reduction algorithms to
reduce the size of each transmitted data. The first is principle component analysis (PCA).
This a common approach to data analysis, is often used to reduce the dimensionality of
high-dimensional data, and can extract the main feature components of the data [47]. PCA
is attractive as it is a linear method that uses the mathematical method to transfer high-
dimensional datasets to low-dimensional datasets whilst keeping the principal components.
The principal component of data is extracted by calculating the eigenvalue and eigenvector
of the covariance matrix, which will be explained in 2.4. The previous research in [46]
has proved that principal components could cover 70-80% of data variation. Moreover,
PCA is a reversible technique which allows data with reduced dimensions to recover its
original dimension via a simple computation.
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The second algorithm is stacked auto-encoder (SAE). This neural network consists of
several layers of sparse autoencoders, where output of each hidden layer is connected to
the input of the successive hidden layer. The benefit of SAE is that it provides a version of
raw data with much detailed and promising feature information, which is used to train a
classifier with a specific context, and achieve better accuracy than training with raw data
[48].

The third algorithm is uniform manifold approximation and projection (UMAP), which
is a novel manifold learning technique for dimension reduction. UMAP is constructed
from a theoretical framework based in Riemannian geometry and algebraic topology. Due
to its good performance on data visualisation, UMAP has been applied in different fields,
including hyper-spectral data [50], page management [51], as well as voice separation
[52]. Generally, UMAP could be described as adopting the local manifold approximation
principles and generating the local fuzzy structure to create high-dimensional topology;
it then should consider building a similar topology in low-dimensionality. Additionally,
UMAP optimizes the difference between the original and new topology by using the
cross-entropy function [49]. The progress of fuzzy topology creation could be divided into
two phrases. One is the manifold of the approaching data; another is the representation
of simple fuzzy sets for approaching manifold building. The result is a practical scalable
algorithm that applies to real world data. Furthermore, UMAP has no computational
restrictions on embedding dimension, making it viable as a general-purpose dimension
reduction technique for machine learning [49].

Unsupervised Clustering Techniques. Unsupervised clustering technique is an approach
which works for datasets that have no outcome (target) variable, nor any information
about the relationship between observations, that is unlabeled data. In real life, it is
arduous to produce a labelled data set if the volume of data is large or the research is
difficult. Furthermore, even if the labelling is done manually, the speed of labelling is
much slower than the speed of data production. As for kinesthetic data, the collected data
is originally unlabelled, although we can label them by transmission status. In order to
reduce the workloads of creating labels for each data, 2 unsupervised clustering techniques
are introduced.

K-means is one of the most common-used unsupervised learning algorithms for solving
the well-known clustering problem [87]. K-means has now been improved and extended
by many scholars and applied to a wide range of fields. Kapil, Chawla and Ansari clarified
that clustering algorithms including K-means, have been used in software engineering,
statistics, data mining, image analysis, machine learning, web cluster engines and text
mining in various disciplines to infer groups in large amounts of data, such algorithms
group objects into clusters, making the objects in one cluster more homogeneous with
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other clusters [88]. Moreover, K-means algorithm saves time and increases the speed of
clustering. As mentioned in [89], on image data classification using K-means, clustering
or grouping of data is the key initial process in image processing. In this case, there is a
dramatic increase in the size of enterprise databases which contain large amounts of text
and images. These huge databases need to be mined and accurate decisions made in a
short period of time. Therefore, the concept of image segmentation plays a useful role in
clustering as it is time-saving and efficient.

Hierarchical clustering is another algorithm for clustering data. Ward showed that it is
often used in large-scale studies to form hierarchical groups of mutually exclusive datasets,
where the individual data within each dataset have the most similarity in terms of specified
characteristics [90]. Therefore, in contrast to K-means, which clusters the data itself, the
Hierarchical clustering algorithm is often used in studies that require analysis of the links
and correlations between clusters [81]. There are many more examples of hierarchical
clustering. Tomasini and Van Wassenhove point out the differences between commercial
and humanitarian supply chains and state that humanitarian supply chains must be able
to short periods for responding to multiple emergencies and provide feedback [91]. In
addition, hierarchical clustering and routing procedures for coordinating vehicle routes in
large-scale post-disaster distribution and evacuation activities are stated in [92].

GBDT. Gradient boosting decision tree is a powerful machine learning tool for achiev-
ing good predictive performances in many data mining and machine learning problems. It
has been widely used in many applications. For instance, online advertising [38], search
ranking [39], and instance transfer [40]. This algorithm can be applied to deal with two
types of problems, classification and regression problems. The base learners of GBDT are
decision trees, to which leaf nodes a real value is assigned [41].

As an iterative decision tree algorithm, GBDT consists of multiple decision trees, and
the conclusions of all trees are accumulated to derive the final answer. Therefore, the
prediction model in the form of an ensemble of weak prediction models, in other words, a
group of weaker decision trees, is derived after the training process.

In this thesis, GBDT algorithm is introduced to predict the haptic feedback since the
current ZOH, and FOLP models simply simulate the motion during 1 sampling interval as
either static or uniform. As illustrated above, the predictive values from both ZOH and
FOLP models are dependent on either 1 or 2 samples previously received [27, 28]. The
GBDT algorithm is allowed to train the model with the input and output data in a variety of
ranges of time, from beginning to the end, which is more realistic. The motion of human
OP is normally decided by a long-range time, instead of 1 or 2 ms. Although ZOH and
FOLP models are reasonable as the sampling frequency is normally greater than 1 kHz,
this thesis aims at delivering an more accurate model with diminished loss of transparency.
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1.4 Contributions

Kinesthetic data reduction techniques and predictive schemes are currently the most
flourishing areas in bilateral teleoperation systems. However, the combination of machine
learning and kinesthetic data analysis has been incorporated into this thesis, whereas
the majority of the exposed idea and analysis is the contribution of the author. The
contributions to the research community can be summarised as follows:

1. A bilateral teleoperation system with LSTM-based models for kinesthetic data
reduction has been proposed, as well as an algorithm for generating output labels for
the training process.

2. A bilateral teleoperation system with dimensionality reduction and data recon-
struction techniques has been proposed. Three different dimensionality reduction
techniques and corresponding data reconstruction techniques are used to deal with
kinesthetic data.

3. A bilateral teleoperation system with unsupervised clustering algorithms has been
proposed. Two different clustering algorithms are used to separate data into several
clusters.

4. A bilateral teleoperation system with GBDT-based predictive schemes has been
proposed.

5. A kinesthetic data collection experiment has been set up.

1.5 Organisation of the Thesis

To accomplish a logical thread in reducing kinesthetic data transmission in bilateral
teleoperation systems by using different machine learning algorithms, the thesis has been
organised as follows. In Chapter 2, various kinesthetic data reduction techniques are
proposed, where the potential kinesthetic data transmission under each data reduction
technique is derived. Also, a novel predictive scheme is also given. These are then utilised
in Chapter 3 to 5 to simulate kinesthetic data reduction; again, many metrics are used to
measure the performance of each data reduction technique. Additionally, the performance
analysis of proposed predictive scheme is discussed in Chapter 5 as well. Conclusions to
the entire thesis are drawn in Chapter 6, which are accompanied by suggestions on future
research taking the result of the whole thesis into account.

In more details, major contributions of Chapter 2 can be summarised as follows.
First, a brief introduction of Weber’s law of JND is given, which is the basis of the idea
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of kinesthetic data reduction. Then, a novel kinesthetic data reduction technique with
LSTM-based model is proposed. The labelling algorithm is evolved from Weber’s law
of JND, which helps LSTM network derive the relationship between kinesthetic data and
its transmission status. In addition, a bilateral teleoperation system with DRTs are also
proposed. Three different DRTs and data reconstruction techniques are given. This is
a completely new thought that abandons the traditional idea of selectively transmitting
kinesthetic data over the network, and instead reduces the size of each transmission. Also,
unsupervised clustering algorithms are used for comparison with supervised learning, and
two clustering algorithms are given. This is realised by separate a set of kinesthetic data
into several clusters, and only selected clusters of data is transmitted over the network.
Also, a novel predictive scheme based on GBDT is given. However, traditional ZOH and
FOLP schemes are both based on Weber’s law of JND.

The effort of Chapter 3 concentrates on setting up a kinesthetic data collection ex-
periment, and comparing the proposed LSTM-based mathematical model with PD-based
codecs. HPW-PSNR and transmission rate are two metrics to measure the performance of
models. Furthermore, in order to make the result more intuitive, figures of velocity and
force signals along three axes are given.

Chapter 4 aims at analysing the performance of three different DRTs, and compare
them with proposed LSTM-based model and PD-based codecs. First, for comparing
the performance of three DRTs, five metrics are used to test the embeddings under four
textures. Then, for testing the loss of transparency due to dimensionality reduction, HPW-
PSNR is used to measure the data recovered from three data reconstruction techniques.
Additionally, further comparison of DRTs with LSTM-based models and PD-based codecs
is also discussed.

In Chapter 5, we make efforts on simulations of unsupervised clustering and predictive
schemes. As an extension of supervised learning proposed in Chapter 3, labels are not
required when training kinesthetic data. Instead, several clusters can be derived when
dealing with a set of kinesthetic data. The first part of this chapter concentrates on finding
the optimal number of clusters for two clustering techniques. Then, transmission bits and
HPW-PSNR of unsupervised clustering techniques are used to compare with LSTM-based
models and PD-based codecs. Another part of this chapter is the analysis of proposed
GBDT-based predictive scheme. A further discussion of comparison with traditional ZOH
and FOLP schemes is also given.

Chapters 2 to 5 contain almost exclusively novel material with background information
kept to a minimum.
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Chapter 2

Various Kinesthetic Data Reduction
Techniques Proposed in a Bilateral
Teleoperation System

2.1 Introduction

This chapter proposes bilateral teleoperation systems with kinesthetic data reduction and
predictive modules for achieving the 1-ms challenge in haptic communications. Three
different kinesthetic data reduction techniques, and one predictive algorithm are introduced
in this chapter. Additionally, current bilateral teleoperation systems with PD-based codecs
and predictive scheme are also explained. The current kinesthetic data reduction technique
based on Weber’s law of JND is given in Section 2.2. Contributions of the author can be
found in Section 2.3 to Section 2.6, which are the proposal of a bilateral teleoperation
system with various machine learning techniques, including LSTM-based kinesthetic data
reduction models, dimensionality reduction and data reconstruction techniques, unsuper-
vised algorithms, and GBDT-based predictive schemes.

This chapter is structured as follows. The concept of Weber’s law of JND and its
application to kinesthetic data redctuction are given in Section 2.2. This law describes
the limitation of humans’ perception when distinguishing 2 similar stimulus, of which 1
stimuli is within the deadzone of the other. It shows that the range of this deadzone is
normally proportional to the magnitude of the reference stimuli. Therefore, PD-based
codecs based on Weber’s law of JND was proposed in bilateral teleoperation systems.
It was achieved by introducing some tolerable errors within the JND threshold which
are imperceptible to human OP. This codecs can selectively transmit kinesthetic data
by doing pairwise comparison, between the newly collected and last transmitted sample.
Additionally, prediction models were proposed to estimate the future samples from previous
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data. It can predict samples when no data is received on both OP and TOP sides. Two
current predictive schemes called ZOH and FOLP are also introduced.

In Section 2.3, bilateral teleoperation systems with LSTM-based models for kinesthetic
data reduction are proposed. It first analyses the drawback of current JND perceptual
threshold used in PD-based codecs, and concludes that a new mathematical threshold
should be proposed by avoiding pairwise comparison. LSTM netowrks have exhibited
many successful experiences when dealing with time-series of data [32–34]. Therefore,
Section 2.3 introduces kinesthetic data reduction in proposed teleoperation systems with
LSTM-based models. Later, the design of LSTM-based data reduction modules is given.
Mathematical expressions and functionalities of each gate are introduced in details. More-
over, the training process shows how LSTM networks inherit Weber’s law of JND by
labelling transmission status. An LSTM network with haptic data input and transmission
status output is thus proposed. We also describes effects of timesteps in label prediction;
that is the label in 1 ms can be affected by previous 1 to 100 samples.

When it comes to Section 2.4, a novel idea of reducing the size of kinesthtic data is
given, unprecedented in abandoning the concept of selective transmission (reducing the
amount of data transmission). This DRT-based kinesthetic data transmission scenario is
analysed in this section. This idea is inspired by the phenomenon that a physical law that
friction an object suffers is proportional to the pressure. Therefore, original force data
in R3 can be represented by a 2D vector. Therefore, bilateral systems with 3 different
DRTs (PCA, SAE and UMAP) for kinesthetic data reduction are given. However, data
reconstruction modules are proposed simultaneously, with which receivers can recover
dimensions from the reduced to the original. Three data reconstruction techniques are
given corresponding to three DRTs.

In Section 2.5, unsupervised clustering techniques are used to classify kinesthtic data
into different clusters; this idea allows data in a part of clusters to be transmitted over the
network. By abandoning the derivation of transmission status from Weber’s law of JND,
it extends the labelled training (supervised learning) in LSTM networks to unsupervised
learning. In this case, clusters are segregated by means of similarities of internal points and
the distances amongst external clusters. Bilateral teleoperation systems with 2 different
unsupervised techniques for kinsesthetic data reduction are given, including k-means and
agglomerative hierarchical clusterings. By selecting data in a portion of clusterings to be
transmitted, both k-means and hierarchical clustering techniques can effectively reduce the
kinesthetic data transmission over the network.

In Section 2.6, GBDT-based predictive scheme is proposed to increase th whole
accuracy of the whole bilateral teleoperation systems. In fact, GBDT is viewed as a
powerful and accurate machine learning tool to predict data with the help of several weak
learners. The predictive scheme and model update control strategy are also given in this

31



2.2 Basics in Weber’s Law of JND

section. Update control modules are required since it determines whether or not the current
GBDT model is accurate enough to predict force feedback. Also, the design of GBDT
modules is also described.

2.2 Basics in Weber’s Law of JND

2.2.1 The Concept of Weber’s Law of JND

Just noticeable Difference is the minimum amount of the stimulation that must be changed
to produce a significant variation in sensory experience. Ernst Weber, an experimental
psychologist in 19th century, found that the size of this difference which can be noticed by a
person appeared to be lawfully related to initial stimulus magnitude [25]. The relationship
can be expressed as:

JND :
∥∆⃗x∥
∥⃗x∥

= k (2.1)

Here, the stimulus is represented by vectors. x⃗ represents a reference stimuli, and ∆⃗x
represents the maximum increment or decrement of stimuli x⃗ which is still considered
an imperceptibly change (i.e., the JND) and k is a constant called the Weber parameter.
The interval [⃗x− ∆⃗x, x⃗+ ∆⃗x] is often referred to as the perceptual deadband. As for the
two slightly different stimulus, which are within in the deadband, it shows that the human
haptic sensory system gives the same feedback. Mostly, suppose users are asked to differ
the reference stimuli x⃗ from other stimulus contained in the respective deadband thresholds
defined by x⃗ and the constant k. In that case, they are unable to do so and would just
consider both as the same stimuli. This fact can be exploited to selectively skip packet
transmissions whenever similar enough stimulus can be estimated and displayed instead.
Broadly speaking, Weber’s law can be applied in various stimulus, including force, velocity,
inertia, and texture. Besides, the Weber parameter k is adjustable with the stimuli. For
example, as is given in [53], the JND when a human operator perceives force feedback
to the index finger is approximately 10%. As is given in the Table 2.1, values of k under
different physical properties can be found there.

Meanwhile, those physical properties are both vectors, which indicates that Weber’s
Law can be extended to the three-dimensional (3D) space in reality. Disparate from a linear
deadband in one-dimensionality, the perceptual deadzone can be assumed as a sphere in
3D case. As is shown in Fig. 2.1, the red line x⃗(t) refers to the compared haptic sample,
and black line ⃗x(t ′) represents the reference haptic sample. The red sphere represents the
deadzone of ⃗x(t ′). The radius of deadzone is normally proportional to the magnitude of
the reference sample ⃗x(t ′). Additionally, the Weber parameter k can be found in Table
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2.1. Once the magnitude of the reference stimuli and the weber parameter are determined,
the deadzone can be derived respectively. If the compared value lies in the deadzone of
reference value, then humans cannot feel any difference between x⃗(t) and ⃗x(t ′). Otherwise,
humans can distinguish between two stimuli.

Fig. 2.1 An Explanation of Deadzone [8]

Table 2.1 JND of human perceptual discrimination for haptic signals [8]

Physical property JND Experimental conditions

Force 10% arm/forearm
Movement 8%±4% arm/forearm
Stiffness 23%±3% arm/forearm
Viscosity 34%±5% arm/forearm
Inertia 21%±3.5% pinch-fingers, at 12 kg
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2.2.2 PD-based Codecs

The approach in [9, 54–57] termed PD-based codecs is based on Weber’s Law of JND,
which is the widest-spread technique to reduce the kinesthetic data transmission. In
general, PD-based codecs are achieved by introducing some tolerable errors within the
JND threshold which are imperceptible to human OP. This scheme can be expressed as:

If
∥x⃗(t)− ⃗x(t ′)∥
∥ ⃗x(t ′)∥

≤ kp Do not Transmit

Else Transmit a New Sample

(2.2)

where x⃗(t) is the data currently collected, ⃗x(t ′) is the last transmitted sample, ∥ ⃗x(t ′)∥
represents the magnitude of ⃗x(t ′), ∥x⃗(t)− ⃗x(t ′)∥ measures the difference between newly
collected and last transmitted data, and kp is the perceptual threshold parameter. In the
fact of PD-based codecs, the parameter kp can either be greater or smaller than the Weber
parameter k of the transmitted physical measurement. According to this scheme, the newly
collected data will only be transmitted if the relative difference between it and the data
last transmitted exceeds perceptual threshold. As long as kp is given, some unnecessary
kinesthetic data transmission can be selectively skipped.

Consequently, pairwise comparison can be found between the new and previously
transmitted sample. However, PD-based codecs is not suitable when dealing with a time
series of haptic data. Under the assumption of applying PD-base in practice, the comparison
time interval is less than 1 ms since the sampling rate is 1 kHz or higher. Within 1ms, the
memory should determine whether ot not the newly collected data is in the deadzone of
previously transmitted data. If it is out of the deadzone, new data should be overwritten in
memory.

It is thus clear that PD-based codecs not only increases the complexity of the whole
system, but wastes the limited memory resources. In order to avoid this pairwise compar-
ison, a mathematical model controlling the kinesthetic data transmission is urgent to be
proposed, so that the transmission status of the newly collected sample can determined as
long as it is collected.

2.2.3 PD-based Schemes with Predictive Coding

Prediction models for kinesthetic data are required to estimate the future samples from
previous data. As is shown in Fig. 2.2, an example of a PD-based kinesthetic data reduction
with predictive modules, two same predictive modules are deployed on the both master and
slave sides. When triggering the model, newly collected samples come to the predictive
module, and make a pairwise comparison with the data last transmitted in the JND verifier,
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which has been explained in (2.2). Normally, the predictor generates the predicted haptic
signal at every sample instant on the slave side. Once the transmission happens, the newly
transmitted/received data triggers the prediction model updates, and overwrites the data in
the memory. Also, the received data is used as the instruction from the OP.

Typically, there are two types of predictive schemes, called ZOH and FOLP. For each
scheme, we can represent is separately. For the ZOH scheme, it can be represented by:

OP : x⃗t(t) =

{
x⃗t(t), Predictive Model Updates

None, No Data Transmitted
(2.3)

TOP : x⃗r(t) =

{
x⃗r(t), Predictive Model Updates

x⃗r(t ′), No Data Received
(2.4)

where x⃗t(t) represents the current transmitted sample on the master side, and x⃗r(t) is the
current sample on the slave side either retrieving from the receiver or generated by the
predictor. Additionally, t ′ is the most recent time when the packets received by the slave
side. Therefore, in the ZOH predictive scheme, receiver holds the last value of the sample
it previously received till receiving a new sample.

For the FOLP scheme, the mathematical expression is as follows:

OP : x⃗t(t) =

{
x⃗t(t), Predictive Model Updates

None, No Data Transmitted
(2.5)

TOP : x⃗r(t) =


x⃗r(t), Predictive Model Updates

x⃗r(t ′)− x⃗r(t ′′)
t ′− t ′′

(t− t ′)+ x⃗r(t ′), No Data Received
(2.6)

Fig. 2.2 Overview of the PD-based Kinesthetic Data Reduction with Predictive Coding
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Different from ZOH predictors, the FOLP scheme predicts future samples by con-
necting last 2 points received at t ′ and t ′′ into a straight line. Therefore, FOLP is a linear
predictive scheme that receiver predicts the motion of TOP is uniform when no data
receives.

To visualize the actual and transmitted samples with predictive schemes, we assume
that an object is moving along one axis, in which case velocity data can be represented
by one-dimensional vectors. Therefore, an example of 1-DoF of actual and transmitted
samples with ZOH and ZOLP predictive schemes are sketched in Fig. 2.3 and Fig. 2.4. In
Fig. 2.3, 10 actual samples collected on the master side within 10 ms are given. However,
as is shown in Fig. 2.4, only a part of the kinesthetic data is transmitted over the network.
Also, the data reduction scheme is PD-based codecs. Therefore, as explained in (2.2), the
transmission kinesthetic data happens when the difference between predicted and newly
collected sample is perceptual to human operators. In this example, the samples above red
dashed lines are not transmitting. It is thus obvious that the samples to be transmitted over
the network under ZOP and FOLP predictive schemes are quite different.

Fig. 2.3 An Example of Collected Velocity Data When an Object Moving Along x Axis
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(a) An Example of Transmitted Velocity Data with ZOH Predictive Schemes When an Object
Moving Along x axis

(b) An Example of Transmitted Velocity Data with FOLP Predictive Schemes When an Object
Moving Along x axis

Fig. 2.4 An Example of Kinesthetic Data Reduction Scheme; In (a)&(b), the samples
above the red dashed lines are not transmitting, otherwise, they are transmitting over the
network
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2.3 A Bilateral Teleoperation System with LSTM-Based
Models for Kinesthetic Data Reduction

2.3.1 Motivation

As illustrated in Section 1.3, the current kinesthetic data reduction technique is based on
Weber’s Law [26, 6–9]. However, the current JND model is not accurate enough to deal
with a time series of kinesthetic data from three aspects: i) the accuracy of Weber’s law is
not high enough; ii) the pairwise comparison in Weber’s law is time-consuming; iii) the
fault tolerance of current JND perceptual threshold is zero.

In recent research, many researchers found that Weber’s law cannot represent humans’
deadzone for some types of stimuli in practice. In human time perception, Haigh et al have
found that the relationship sensitivity and duration on interval timing tasks is a reversed-J
shape or a U-shaped function, rather than a linear relationship predicted by Weber’s law
[16, 58]. As for tactile data, Heath et al have found that JNDs increased linearly with
increasing target object size when employing a manual estimation wherein the sizes were
increasing, which adhered to Weber’s law [17]. Moreover, Bhardwaj et al have found
that the best expression of deadzone is level crossing classifier, instead of Weber’s law,
when they asked human to respond if he/she feels any change in the stimuli in a kinesthetic
perception setup [18, 19].

From the angle of cost, the current JND perceptual threshold is a pairwise comparison
which is applied in all of the collected kinesthetic data. Within 1ms, the mathematical
model in memory should determine whether or not the newly collected data is in the
deadzone of previously transmitted data. If it is out of the deadzone, the new data should
overwrite the data in memory.

On top of that, the fault tolerance of current JND perceptual threshold is nearly
zero. A small error in the pairwise comparison can affect outcomes. Assuming that the
transmitted data is miswritten, or the comparison is wrong, this JND perceptual threshold
will keep running incorrectly since the current wrong value will be used for the following
comparisons.

In order to avoid this pairwise comparison, a mathematical model controlling the
kinesthetic data transmission should be proposed. The transmission status of the newly
collected data will be determined by the model directly without comparison, which reduces
the time cost and increases the reliability of the system. As is mentioned in Section 1.3,
multiple layers of LSTM networks can increase accuracy and maintain the stability of the
entire model, which is suitable for dealing with time series of kinesthetic data and building
a new data reduction threshold. The advantages of LSTM network can be concluded in
three aspects: i) LSTM network is more reliable since the long-term memory function can
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predict the value based on previous, sequential data; ii) LSTM network has been applied
in many fields successfully when dealing with a time series of data; iii) The transmission
status of newly collected kinesthetic data can be derived from the model directly.

A conventional LSTM network is given in Fig. 2.5, the cell can remember values
over arbitrary time intervals, and three gates regulate the flow of information into and out
of cells. Furthermore, the LSTM network can take inputs with different lengths. This
feature can adjust the model with different situations by resetting the number of timestep.
A timestep refers to the number which subjects the current sample to several previous
samples. For example, we assume the current sample has a relationship with the previous
100, then the timestep in this assumption is 100 ms. Additionally, when dealing with the
kinesthetic data with higher frequency, i.e., the force data during the surface exploration,
we can increase the timestep to derive a model fitting this situation.

Over and above that, LSTM networks have exhibited many successful experiences
when dealing with time-series of data [32–34]. This architecture utilizes model parameters
more efficiently than other architectures, converges faster, and outperforms deep FF neural
networks having an order of magnitude of more parameters. When it is applied in the
reality of kinesthetic data transmission in a bilateral teleoperation system, the transmission
status of currently collected data can be derived from the trained model immediately, and
the outcome is based on current and previous data, which is more applicable and reliable.

Fig. 2.5 A Conventional LSTM Network [59]
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2.3.2 System Model

The proposed system model is given in Fig. 2.6, and the most significant difference
between the proposed and conventional bilateral telecommunication system is data re-
duction modules for position/velocity data and force data. The data reduction module
for position/velocity data aims at selectively transmitting collected data according to the
mathematical model inside from master to slave side. Simultaneously, the force data
reduction module is used to control the force transmission from the slave to master side.

During teleoperation, as soon as the human triggers the OP, a sensor begins to collect
the position (x0,x1. . . ,xi, . . . ,xM) and velocity (ẋ0, ẋ1. . . , ẋi, . . . , ẋM) data of the moving
cursor. Both xi and ẋi are vectors. As stated above, the more packets encapsulating kines-
thetic data transmit over the haptic communication network, the less stable system will be.
Even a small-time delay or packet loss can cause the jitter of the whole system. Therefore,
data reduction modules are required in both OP and TOP side since the bi-directionality
of the system. As is shown in Fig. 2.6, the position/velocity data is transmitted from the
master to slave side, and the corresponding force feedback collected from the slave side is
sent back to the master side via backward channel. The data reduction module reduces
the amount of transmitted haptic data. Hence, the position/velocity data to be transmitted
is (x0, . . . ,xi, . . . ,x j, . . . ,xN) and (ẋ0, . . . , ẋi, . . . , ẋ j, . . . , ẋN), where N ≤ M. Those data
will pass through a radio channel and be received by the TOP. Since collected data on
the TOP is discrete with variant time steps due to the data reduction process, the TOP
should predict the motion when no kinesthetic data received. The data recovery module
aims at modifying the received haptic data into a time series version. In this case, the
FOLP is introduced in the TOP, assuming the OP is uniform during the receive inter-
val. Therefore, the output of the data recovery module in the TOP can be interpreted
as (x̃′0,x

′
1, . . . , x̃

′
i,x
′
i+1, . . . , x̃

′
j,x
′
j+1, . . . ,x

′
M) and ( ˙̃x′0, ẋ

′
1, . . . , ˙̃x′i, ẋ

′
i+1, . . . , ˙̃x′j, ẋ

′
j+1, . . . , ẋ

′
M),

Fig. 2.6 A Bilateral Teleoperation System with LSTM-Based Data Reduction Modules
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where x̃′i, x̃
′
j and ˙̃x′i, ˙̃x′j are the receiving position and velocity data at time i and j cor-

respondingly. Between 2 data receiving intervals, the detailed relationship of output data
from the data recovery module on the TOP side can be explained as:{

x′i+m = x̃′i + ˙̃x′i ∗mTs , i+m < j
ẋ′i+m = ˙̃x′i , i+m < j

(2.7)

where TOP received data at time i and j. Thenceforth, we can extend ( 2.7) to the whole
transmission time, and increase the size of the received position/velocity data from N to M.

When the TOP interacts with the remote environment, force feedback is collected
correspondingly, which can be interpreted as (F0,F1. . . ,Fi, . . . ,FM). Each force data Fi is a
vector as well. Similarly, only a part of the original force data needs to be transmitted back
to the OP in a bilateral teleoperation system, which is (F0,Fi′. . . ,Fj′, . . . ,FN′),N′ ≤M. A
ZOH predictor is deployed on the OP to extend the size from N′ to M. Therefore, the output
of the data recovery module in the TOP can be interpreted as (F̃ ′0,F

′
1, . . . , F̃

′
i ,F

′
i+1, . . . , F̃

′
j ,

Fj+1, . . . ,FN′). Similarly, the relationship of data between two force data receiving intervals
can be explained as:

F ′i+m = F̃ ′i , i+m < j (2.8)

In this section, we concentrate on deriving a mathematical kinesthetic data reduction
model to reduce the size of transmission either from M to N (OP sends to TOP) or M to
N′ (TOP sends to OP). The proposed mathematical model is based on LSTM networks,
and assuming the data reduction module in OP is Θ, while Θ′ is in TOP. As long as the
threshold models are built, the relationship between the actual and transmitted velocity can
be shown as follow:

{
Θ(ẋi,Γ(ẋa, ẋa+1, . . . , ẋa+n−1, . . . , ẋa+N−1)) > 0 , Data transmits
Θ(ẋi,Γ(ẋa, ẋa+1, . . . , ẋa+n−1, . . . , ẋa+N−1)) ≤ 0 , Data remains

(2.9)

where ẋi is the actual velocity value, usually a 3D-vector, and Θ is a mathematical mapping
function between the actual velocity value and the threshold model, Γ is the trained model
derived from LSTM networks. Specifically, Θ is a mapping function generally built and
trained between the training data within the step and its corresponding output label in the
training process of LSTM networks. In order to retrieve the same type of output label from
the mathematical model, Θ holds in the test process. Γ is derived from a set of training
data with size N. It refers to the function of the data reduction module, affected by time
step n, training data size N and training data (ẋa, ẋa+1, . . . , ẋa+n−1, . . . , ẋa+N−1). The ( 2.9)
can be acknowledged as deriving the output label from the previously well-trained LSTM
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model as long as new data is collected. Γ indicates the implication between data at one
moment with previous data within a time step. Meanwhile, output labels of the training
data represent transmission states of each data, which are derived from Weber’s Law of
JND. If the label is −0.5, the input data is not transmitted; otherwise, it is transmitted,
when the label is 0.5. More details about the training process can be found in Section 2.3.3.
During the training process, Θ derives a mathematical model to map the input data and
output labels. Afterwards, in the test process, Θ gets a series of float numbers through the
trained mathematical model to predict transmission states of each collected data. In this
case, if the output label is greater than 0, the data should be transmitted, while not the other
way.

Correspondingly, it is the same to express the force data reduction module in the OP as
follow:

{
Θ′(Fi,Γ

′(Fa,Fa+1, . . . ,Fa+n−1, . . . ,Fa+N−1)) > 0 , Data transmits
Θ′(Fi,Γ

′(Fa,Fa+1, . . . ,Fa+n−1, . . . ,Fa+N−1)) ≤ 0 , Data remains
(2.10)

where Fi is the real 3D force feedback, Θ′ is the mathematical mapping function from
one data with all of its previous data within the time step to the output label, and
Γ′(Fi,Fa+1, . . . ,Fa+n−1, . . . ,Fa+N−1 is the trained model to indicate the inside relation-
ship of the training data and the time-step data.

As is shown above, an accurate LSTM-based data reduction model depends heavily on
the haptic training data.
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2.3.3 Design of LSTM-Based Data Reduction Modules

Data reduction modules aim at acquiring the transmission status of a time series of
kinesthetic data without pairwise comparison. Therefore, the mathematical model in the
module should be trained at first. As is shown in Fig. 2.7, a typical LSTM network is
in a chain structure, which is made up of a sequence of repeating neural networks and
numerous memory blocks called cells.

Fig. 2.7 An Overview of an LSTM Unit [59]

Normally, an LSTM unit is consisted of a a cell, an input gate, an output gate, and
a forget gate. Three gates control into and out of the information flow of each cell, and
the cell remembers values over arbitrary time intervals. In other words, the gates handles
memory, whereas the cells store information. As is shown in Fig. 2.7, for a cell c and at
time t, we have the following input-output relationships:

ft = σ(Wf [ht−1,xt ]+b f ) (2.11)

it = σ(Wi[ht−1,xt ]+bi) (2.12)

C̃t = tanh(Wu[ht−1,xt ]+bu) (2.13)
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Ct = ft⊙Ct−1 + it⊙C̃t (2.14)

Ot = σ(Wo[ht−1,xt ]+bo) (2.15)

ht = Ot⊙ tanh(Ct) (2.16)

where xt ∈Rn is the input vector, tanh(.) is the hyperbolic tangent function, and σ(.) stands
for the sigmoid function. xt can be collected velocity or force samples. Furthermore, ⊙
represents the element-wise product. ht and ht−1 ∈ Rl are the output values of the hidden
layers at time t and t−1, respectively. ht can be viewed as the filtered version of cell state
Ct as well. Traditionally, both σ(.) and tanh(.) are activation functions which define how
the weighted sum of the input is transformed into an output from nodes in different gates
of an LSTM network. In particular, an LSTM network uses the tanh(.) function for the
activation of the cell state, and the σ(.) function for the node output. σ(.) specifically,
it is the gating function of three gates (forget, write, output) which outputs non-negative
values in the LSTM network. It determines whether the current flow of information can
throughout the gates or not. Similarly, the output of tanh(.) can be positive or negative,
allowing both increments and decrements of the states. On the other hand, to overcome
the vanishing gradient problem, the second derivative of tanh(.) can sustain for a long
range before going to zero. Apart from these two activation functions, the rectified linear
unit (ReLU) activation function can also output values between 0 and 1, which can be
used to replace σ(.) function. In the meanwhile, the softsign function can be viewed
as an replacement of tanh(.). However, the training results have shown that the overall
loss (MSE) of the LSTM model with σ(.) and tanh(.) activation functions is the smallest
for two types of kinesthetic data(less than 10−4 for velocity signals, and 10−2 for force
signals). Besides, more activation functions can be found in [94].

Besides, the forget gate (the leftmost gate in Fig. 2.7) determines how many activations
of the previous cell state Ct−1 is preserved at Ct . It is decided by a sigmoid function. For
each number in the cell state Ct−1, it depends on the hidden state ht−1 and the current input
value xt and derives a number between 0 (forget this) and 1 (keep this). The write gate
(the middle gate in Fig. 2.7) determines how many activations from the current input xt

is preserved at cell state Ct . It is decided by a sigmoid function and a tanh function. The
sigmoid function determines whether to allow the current value changing the memory, 0
for no, and 1 for yes. The tanh function assigns weight to the data provided, determining
their importance on a scale of -1 to 1. The output gate (the rightmost gate in Fig. 2.7)
determines how many activations from the current cell state Ct is used as the output ht .
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The sigmoid function plays the same role as other gates, determine whether the current
input values allow to change the output data, 0 for no, and 1 for yes. And the tanh
function assigns weight to the current cell state, determining its relevance with ht on a
scale of -1 to 1. [ht−1,xt ] represents cascading two vectors into a longer vector. The weight
matrices Wk ∈Rn+l;k ∈ { f , i,o,u} and bias factors bk ∈Rl;k ∈ { f , i,o,u} are optimization
parameters shared among all cells. There are four sets of parameters which need to be
trained in an LSTM network, which are Wf &b f , Wi&bi, Wu&bu and Wo&bo. The detailed
formula derivation of training process can be viewed in [60].

Assuming a set of kinesthetic data with length N is used to train the model. The velocity
data (ẋa, ẋa+1, . . . , ẋa+N−1) is used to train position/velocity data reduction module, while
force data (Fa,Fa+1, . . . ,Fa+N−1) is used for training the force data reduction module.
Therefore, the input data is in shape of X ∈ RN×3. According to PD-based codecs, only a
small amount of will be transmitted over the network. Consequently, the velocity data can
be rewritten as ( ˜̇xa, ẋa+1, . . . , ˜̇xb, ẋb+1, . . . , ẋa+N−1), where ˜̇xa, ˜̇xb represents the velocity
data that is supposed to be transmitted at time a and b. Simultaneously, the force data can
be expressed as (F̃a,Fa+1, . . . , F̃b,Fb+1, . . . ,Fa+N−1). On top of that, labels of transmission
status should be given to each collected kinesthetic sample. The method to derive the label
Ht inherits Weber’s Law of JND, which can be derived as follows:

Ht =


−0.5, if

∥X⃗t− ⃗̃Xt−m∥
∥X⃗t∥

≤ α

0.5, if
∥X⃗t− ⃗̃Xt−m∥
∥X⃗t∥

> α

(2.17)

where Ht =−0.5 stands for the sample collected at time t is not transmitted, and Ht = 0.5
means the sample needs to be transmitted. X⃗t is the 3D-kinesthetic data at t, and ⃗̃Xt−m is
the previously transmitted data in the manner with PD-based codecs. α represents the
JND of perceptual discrimination for different kinesthetic signals, and normally α = 0.1.
In practice, all of the training and testing data needs to be normalized to the interval
[−0.5,0.5]. Moreover, the output label Ht ∈ RN×1 is a series of -0.5 and 0.5.

The training algorithms of two kinesthetic data reduction modules are described in
Table 2.2. The input of training data at t0 is Xtrain(t0) ∈ Rtimestep×3, which includes
kinesthetic data with the size of timestep from t = t0− timestep+ 1 to t = t0. In the
meanwhile, the output label Ht0 in this case is the transmission status derived from Weber’s
law of JND. For example, when timestep is 100, t0 is 1000, the corresponding output label
H[1000] is derived from X [901] to X [1000].

To summarize, the tasks of ( 2.17) is to generate labels for training data based on
Weber’s Law. As long as the training process goes smoothly, the trained model will
converge to PD-based approach. In addition, when each new data is generated, the
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transmission flag can be derived directly through the model without pairwise comparison,
which makes it more practical in real transmission. Moreover, the introduction of timestep
is more realistic; it claims the transmission flag of data in 1 ms can be affected by a portion
of previous data. In the traditional PD-based codecs, the transmission flag is only related
to the current and previously transmitted data, which does not take the series of haptic data
into account.

Algorithm 1: Training algorithms for two data reduction modules
Initialize: Let input vectors X is a time series of collected kinesthetic data of length
N; X [0] is transmitted, the corresponding output label H[0] = 0.5; The reference
value in memory V = X [0]; α = 0.1; timestep = 100ms; LSTM training data:
Xtrain = {}, Ytrain = {}

1. Normalise the input data: X̄ ← normalised(X)

2. for K← 1 to N do
a←∥X [k]−V∥/∥X [k]∥

if a≤ α then
H[K]←−0.5;

else
H[K]← 0.5

V ← X [k];

3. for i← timestep to N do
Xtrain.insert(X̄ [i− timestep : i])

Ytrain.insert(H[i−1])

4. //Building the LSTM Network//

5. ......

6. //Training Process//

7. ......

8. //Getting the Well-trained Mathematical Model//

Table 2.2 Training algorithms for two data reduction modules
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2.4 A Bilateral Teleoperation System with Dimensionality
Reduction and Data Reconstruction Techniques

2.4.1 Motivation

When observing the kinesthetic data carefully, we can find that all of the collected samples
are in high dimensions. For instance, the position/velocity data is consisted of 6-DoF
(3-DoF position + 3-DoF velocity), and the force data is normally represented by a 3-DoF
vector. These dimensional disasters can lead to difficulties such as sparse data during
transmission in the communication link or even affecting the prediction. In addition, linear
correlation between features can easily occur in high-dimensional features, which means
that some features are redundant. In the vast majority of cases, each type of data is a vector
along three different axes (x,y,z). According to physical law, the magnitude of the friction
of a moving object in the tangential direction (along x&y axes) is always proportional
to the pressure it experiences in the vertical direction (along z axis). This phenomenon
inspires us to reduce the size of force data transmission, even it allows us to extend the
idea to position/velocity data.

However, the current kinesthetic data size reduction techniques have only been tested
and achieved in 1-DoF. The first lossy kinesthetic data compression and decompression
is named DCT [22], similarly to the JPEG codec, it compresses force feedback with a
ratio of 20%. Furthermore, another compression method termed WPT proved with similar
performance to DCT [23]. Based on these problems, dimensionality reduction methods
are used on master and slave sides in this thesis, aiming to hold great promise in terms of
reduced transmission rates.

Dimensionality reduction aims to map the data from the original high dimensional data
to a low dimensional data through some ways. The principle of dimensionality reduction
is learning a mapping relation f : x→ y, in which x is the high points and y is the low
points after mapping. There are five benefits of dimensionality reduction: i) the storage
space is reduced; ii) less transmission time is required due to the smaller transmission size;
iii) Decreasing mistakes caused by useless information; iv) the degree of recognition is
elevating; v) the intrinsic anatomically features of the data can be found.

Generally, DRTs could be classified as linear and nonlinear dimensionality reduction.
The most popular and important linear techniques, such as PCA, mainly use mathe-
matical methods and geometric analysis to find the maximum variance direction from
high-dimensional data. Then the projection to the low dimension could keep the im-
portant information (the principal component). However, non-linear methods, such as
UMAP, could deal with complicated high-dimensional datasets. Related research has
shown that non-linear dimensionality reduction techniques could have a relative optimized
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performance on large datasets [61]. For instance, the non-linear method could find the
embedded space on a group of ‘Swiss Roll’ data in a 2-dimensional manifold embedded in
3-dimensional space since the linear method could not do that.

The basics of non-linear DRTs are also explained in [61]. Assuming we have a n×D
matrix which could also be denoted as Xn×D, which has n data vectors xi(i∈{1,2,3, . . . ,n})
of dimensionality D. Also,the intrinsic dimensionality of Xn×D is d. In general, the intrinsic
dimensionality datasets d of Xn×D is embedded into dimensionality D space via manifolds.
In fact, dimensionality reduction techniques aim to transfer the datasets in dimensionality
D to its intrinsic dimensionality d, and we named the new datasets Y . The proposed
methods to extract the manifold from the high dimensional space is non-linear DRTs. In
addition to this, the datasets Y not only keeps original information of X , but geometric
distribution.

Overall, DRT is a technology that could transfer high-dimensional data into low-
dimension data, so that the low-dimensional data could keep the useful original infor-
mation in a smaller space and avoid the dimension problems. Fig. 2.8 shows the basic
dimensionality reduction techniques that the original item has threedimension contains
x,y,z three axes, and the right part presented 2 two-dimensional images.

Fig. 2.8 An Overview of DRTs
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2.4.2 System Model

The proposed system is given in Fig. 2.9. Two dimensionality reduction modules are
deployed on both OP and TOP sides, aiming at reducing the size of each kinesthetic data
packet. On top of that, there are two data reconstruction modules on the master and slave
sides as well. The data reconstruction model targets on reconstructing the received data
from reduced dimensions to the original one. In this thesis, three different dimensionality
reduction techniques are applied, and each corresponding data reconstruction technique is
proposed separately.

During the teleoperation process, the human OP moves the cursor on the master side,
and a sensor starts collecting the position/velocity data of the cursor at the same time.
Assuming the sampling rate is 1kHz, then in the following M ms, the collected kinesthetic
data on the master side can be represented as:

XM×6 =


x1 y1 z1 ẋ1 ẏ1 ż1

x2 y2 z2 ẋ2 ẏ2 ż2
...

...
...

...
...

...
xM yM zM ẋM ẏM żM

 (2.18)

where {xi,yi,zi|i ∈ [1,M]} is the i-th position data, {ẋi, ẏi, żi|i ∈ [1,M]} represents the
corresponding velocity data, and we assume M is 1000 in the simulation. As is mentioned
in Section 2.4.1, the kinesthetic data transmitted from the OP to TOP is in a 6-dimensional
space. In order to reduce the delay of the whole system, the dimensionality reduction
module is deployed to reduce the transmitted data size. In this case, we assume the intrinsic
dimensionality of the position/velocity data is 3. Hence, the transmitted data can be
represented as:

YM×3 =


u1 v1 w1

u2 v2 w2
...

...
...

uM vM wM

 (2.19)

where {ui,vi,wi|i ∈ [1,M]} is the corresponding i-th transmitted data in a 3-dimensional
space. Later, this block of data Y is transmitted over the network. On the TOP side, the
received data can be represented as follows:
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Y ′M×3 =


u′1 v′1 w′1
u′2 v′2 w′2
...

...
...

u′M v′M w′M

 (2.20)

where {u′i,v′i,w′i|i ∈ [1,M]} is the i-th received data of 3-DoF on the TOP side. At the
current stage, the TOP cannot follow the command from the received 3-dimensional data
due to the motion of the OP is 6-dimensional. For the purpose of the motion of the
teleoperator synchronizes with the operator, a data reconstruction module is disposed on
the TOP to recover the received data from R3 to its original dimension R6.

The reconstructed position/velocity data is given as:

XRM×6 =


x1R y1R z1R ẋ1R ẏ1R ż1R

x2R y2R z2R ẋ2R ẏ2R ż2R
...

...
...

...
...

...
xMR yMR zMR ẋMR ẏMR żMR

 (2.21)

Then the teleoperator follows the command of XR, and starts the teleoperation with the
remote environment. There is also a force sensor on the remote robot to collect the force
data, which is normally in the 3-dimensional space R3. The collected force feedback on
the TOP side is:

FM×3 =


fx1 fy1 fz1

fx2 fy2 fz2
...

...
...

fxM fyM fzM

 (2.22)

where { fxi, fyi, fzi|i ∈ [1,M]} is the i-th collected force data on the TOP side. Due to the
bidirectionality of bilateral teleoperation systems, there is also a dimensionality reduction
module on the TOP to reduce the packet size of force data. In this case, we assume the
2-dimensional embedding concludes most of the force information. Subsequently, the
dimensionality reduction module decreases the transmitted force data to a 2-dimensional
space R2. And the transmitted force data from the slave side can be represented as:

EM×2 =


fu1 fv1

fu2 fv2
...

...
fuM fvM

 (2.23)
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As long as E is transmitted over the network, the received force data with reduced
dimensions on the OP side can be represented as:

E ′M×2 =


f ′u1 f ′v1

f ′u2 f ′v2
...

...
f ′uM f ′vM

 (2.24)

Likewise, a data reconstruction module raises dimensions of the received force data
from R2 to the original dimensions R3. The reconstructed force data on the OP side is as
follows:

FRM×3 =


fx1R fy1R fz1R

fx2R fy2R fz2R
...

...
...

fxMR fyMR fzMR

 (2.25)

Then when human feels the force feedback in ( 2.25), he/she will control the operator,
and new position/velocity data of the moving cursor will be collected afterwards. As is
shown above, the difference between the traditional and proposed bilateral teleoperation
system is the dimensionality reduction and data reconstruction modules.

Therefore, DRTs aims to reduce the packet size by finding the intrinsic dimensionality
out of the original dimensionality. Conversely, the data reconstruction modules raise the
space from the reduced dimensionality to its original one. As long as the kinesthetic data
with fewer dimensions is transmitted over the network, the possible distortion is inevitable.
In order to reconstruct the received kinesthetic data on the slave side, we use relatively
reconstructing approaches for three-dimensionality reduction techniques. Since the inverse
operation of PCA is proposed with itself [62], we can reconstruct the kinesthetic data with
inverse PCA on the slave side directly. Similarly, the inversion of SAE is achievable as
well as long as the data in input layer, hidden layer, output layer is represented properly.
However, UMAP is not inversible. Therefore, a neural network is trained and deployed to
discover the relationship between original and UMAP data. After the loss of the whole
neural network is acceptable, it will be able to reconstruct the received UMAP data on
both master and slave sides.
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Fig. 2.9 The Proposed Bilateral Telecommunication System with Dimensionality Reduction
and Data Reconstruction Modules

2.4.3 PCA-based Kinesthetic Data Reduction and Reconstruction
Techniques

As is illustrated in Section 2.4.2 above, the kinesthetic data collected on the master side
always has 6 dimensions, while the data on the slave side has 3, which can be represented
in ( 2.18& 2.22). Then, three DRTs are introduced to reduce the dimension of XM×6 and
FM×3 (M can be assumed as 1000). In this subsection, PCA is the main technique to reduce
the dimensionality of the collected data. Also, the inverse operation of PCA, the principle
which data reconstruction module obeyed, is also introduced.

The purpose of PCA is to find directions that maximizes the variance. If variance of
one variable is higher than others, the principal components can be biased in that direction.
Therefore, the first step of PCA is to zero-mean normalize each column of the data input,
which means subtracting the average value for each column. Normally, normalized data
input not only contains all of the information from the original data input, but also all the
features are at the same scale. Additionally, normalization is done to ensure that the first
principal component is in the direction of maximum variance.

For XM×6 , we can get X ′M×6 as:

X ′M×6 =


x′1 y′1 z′1 ẋ′1 ẏ′1 ż′1
x′2 y′2 z′2 ẋ′2 ẏ′2 ż′2
...

...
...

...
...

...
x′M y′M z′M ẋ′M ẏ′M ż′M

 (2.26)

where x′i = xi− x1+x2+. . .+xM
M , and this rule can be applied to every element of any column

vector in X ′. Then the corresponding covariance matrix C of X ′ with its eigenvalue λ and
eigenvector V⃗ can be calculated as:

C6×6 =
1
M

XT
6×MXM×6 (2.27)
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C6×6V⃗6×1 = λV⃗6×1 (2.28)

As the original data has 6 dimensions, the number of V⃗ and λ should be 6 as well.
According to the eigenvalue of λ , the top N values and corresponding eigenvectors should
be selected, where N is the number of the reduced dimension. And we select N = 3 in this
case. Then the selected eigenvectors can form another matrix P as:

P6×3 =
[⃗
V1 V⃗2 V⃗3

]
(2.29)

The matrix P is the chosen principal components, which maps the original 6-dimensional
space to a new 3-dimensional space by extracting the main feature components of the data.
Thus, the data with reduced dimensions YM×3 can be calculated as:

YM×3 = X ′M×6P6×3 (2.30)

As is explained above, P can only be derived if a kinesthetic dataset of size M (i.e.,
XM×6) is obtained. Therefore, both YM×3 and P6×3 are encapsulated and transmitted over
the network. On the TOP side, the received data can be represented by Y ′M×3, which is
given in ( 2.20). The received principal components can be represented as:

P
′
6×3 =

[⃗
V
′
1 V⃗

′
2 V⃗

′
3

]
(2.31)

Simultaneously, a data reconstruction model is deployed on the master side, raising the
reduced dimension to its original one. Specifically, PCA is an invertible algorithm which
allows the data with reduced dimensions to recover its original dimensions via a simple
calculation. As is given below, the reconstructed data XR can be calculated as either ( 2.32)
or ( 2.33):

XRM×6 = Y ′(P
′
)−1 (2.32)

XRM×6 = Y ′(P
′
)T (2.33)

Therefore, the kinesthetic data with reduced dimensions can not only be transmitted
over the network, but it can be recovered easily on the receiver with the assistance of
received chosen principal components P′. The case showing in this part has explained the di-
mensionality reduction and reconstruction process when transmitting the position/velocity
data from the OP to the TOP side. On top of that, PCA-based kinesthetic data reduction
modules can be used to transmit the force feedback from the TOP to OP as well. The only
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difference is the dimensionality of force data M is 3, and the reduced dimensions N can be
either 2 in this case.

2.4.4 SAE-based Kinesthetic Data Reduction and Reconstruction
Techniques

SAE uses back propagation unsupervised learning to extract features and adapts features
to represent high-dimensional input. It tries to learn an identity function to make the input
and output signal as consistent as possible.

As is depicted in Fig. 2.10, the proposed dimensionality reduction and reconstruction
module is consisted of 5 layers, 1 input layer, 1 output layer, 2 hidden layers and 1 encoded
layer. Assuming the input represents the position/velocity data transmitted from the master
to slave side, which is given in ( 2.18). The encoded layer derives the data with reduced
dimensions, which refers to the embedding in this module. Additionally, the input and
output layer have the same dimensions, which indicates that the commands from the OP to
the TOP should remain the same data format. The embedding is the data to be transmitted
over the network. In the hidden layer, the data is reduced to a 4-dimensional space at first,
and further reduced in the encoded layer. The embedding can be derived from the encoded
layer, and the embedding Y is of 3-DoF space, which can be represented as [⃗u v⃗ w⃗].

The reconstruction process is in contrast to the dimensionality reduction process. Corre-
spondingly, it maps from 3-dimensional embedding to a 4-dimensional space in the hidden
layer, and outputs the final reconstructed data in the output layer. The reconstruction model
of position/velocity data should be deployed on the slave side, which helps reconstructing
the embedding to its original dimensions.

Fig. 2.10 The Proposed SAE-based Dimensionality Reduction and Reconstruction Module
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The relationship of the data in the encoded and input layer can be represented as
follows:

hWWW e1,WWW b1,WWW e2,WWW e2 = f (WWW e2 · f (WWW e1X +bbbe1)+bbbe2) (2.34)

Y = hWWW e1,WWW b1,WWW e2,WWW e2 (2.35)

where WWW e1, bbbe1 are weights and biases for the left hidden layer 1, and WWW e2, bbbe2 are the
weights and biases for the encoded layer. The activation function f (·) can usually be set as
sigmoid or tanh function.

Similarly, the reconstruction process from the encoded layer to the output layer can be
represented as the following formula:

XR = f (WWW d2 · f (WWW d1Y +bbbd1)+bbbd2) (2.36)

where WWW d1, bbbd1 are weights and biases for the right hidden layer 1, and WWW d2, bbbd2 are the
weights and biases for the output layer. Then the learning objective is as the following
formula shows:

minL(X ,XR) =
1
M

min∥X−XR∥2 (2.37)

where M is the size of data, and L can be defined as the loss between original input and
reconstructed value. In this case, mean squared error (MSE) is used as the loss function.
Set θ = {WWW e1,WWW b1,WWW e2,WWW e2,WWW d1,WWW f 1,WWW d2,WWW f 2}, then the target optimal objective of
the SAE-based data reduction and reconstruction module can be:

θ =
1
M

argmin
θ

min∥X−XR∥2 (2.38)

Therefore, The training process aims at finding the best value of each parameter in θ

to minimize the MSE. When a well-trained network is proposed, the input to the encoded
layer can be used as the dimensionality reduction model, meanwhile, the encoded layer to
the output can be viewed as the data reconstruction model.

The design of SAE-based position/velocity dimensionality reduction and reconstruc-
tions modules have been discussed above. It is not surprised to know that the architecture
of 2 modules for the force feedback is alike. The only difference is the design of the hidden
layer and encoded layer, as the data input in a 3D space for force data. Assuming the
embedding is in a 2D space, then the hidden layer can be ignored. Only 2 neurons are
created in the encoded layer.
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2.4.5 UMAP-based Kinesthetic Data Reduction and Reconstruction
Techniques

UMAP is a non-linear dimensionality reduction technique which consists in constructing a
weighted graph that favors the preservation of local distances over global distances. UMAP
is constructed from a theoretical framework based in Riemannian geometry and algebraic
topology. Four main hyper-parameters are introduced to control the performance of UMAP,
which are the number nearest neighbours k, and the minimum distance dmin. In machine
learning, hyper-parameters are parameters whose value are used to control the learning
process. By contrast, the values of other parameters (typically node weights) are derived
via training. Normally, hyper-parameters are tuned to improve the performance of the
algorithm before training process.

As is given in ( 2.18), the input dataset transmitted from the master to slave side can be
represented as XM×6 = [xxx1,xxx2, . . . ,xxxM]T , where xxxi ∈ R6|i = 1,2, ...,M is the i-th sample
with 6 dimensions. The first phase of UMAP is viewed as the construction of a weighted
k-neighbour graph. Given an input hyper-parameter k, one should compute the k nearest
neighbours for each xxxi and get the set ηi = {xxxi1,xxxi2 , ...,xxxik} under the metric d, where xxxi j

represents the j-th nearest neighbour to xxxi. For instance, d can be the Euclidean distance
between two samples. This computation can be performed via any nearest neighbour
or approximately nearest neighbour search algorithm. Then for each xxxi, we will find its
nearest neighbour and the distance. Let

ρi = min{d(xxxi,xxxi j)|1≤ j ≤ k,1≤ i≤M,d(xxxi,xxxi j)> 0} (2.39)

and set σi to be the value as:

k

∑
j=1

exp(
−max(dmin,d(xxxi,xxxi j)−ρi)

σi
) = log2 k (2.40)

where ρi denotes the local-connectivity constraint which ensures xxxi connects to at least one
other point with an edge of weight 1, σi is a normalization factor defining the Riemannian
metric local to the point xi, and dmin is the minimum distance which controls how tightly
UMAP is allowed to pack points together. In practice, dmin, quite literally, provides the
minimum distance apart that points are allowed to be in the low dimensional representation.
Low values of dmin will result in clumpier embeddings, while large values will focus on
the preservation of the broad topological structure instead. In this case, dmin is 10−4.

Afterwards, a weighted directed graph (UMAP graph) Ḡ = (V,E,w) is built, where V
denotes the set of vertices, E is the set of edges, and w is the set of weight for each edge.
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In this case, V is the input set XM×6, and E = {(xxxi,xxxi j)|1 ≤ j ≤ k,1 ≤ i ≤M}. And we
define the weight function w as:

w(xxxi,xxxi j) = exp(
−max(dmin,d(xxxi,xxxi j)−ρi)

σi
) (2.41)

Due to the whole algorithm is based on Riemannian metric, each point has a local
metric associated with it, illustrating that the local metric of different points is incompatible.
For instance, d(xxxi,xxx j), the distance from xi to x j, can be inconsistent with d(xxx j,xxxi), the
distance from xxx j to xxxi. Therefore, one can think of the weight of an edge as akin to
the probability that the given edge exists. Moreover, each edge in the graph is directed
with different weight. Let AM×M be the weighted adjacency matrix of Ḡ, which can be
represented as:

AM×M =


0 w(xxx1,xxx2) w(xxx1,xxx3) · · · w(xxx1,xxxM)

w(xxx2,xxx1) 0 w(xxx2,xxx3) · · · w(xxx2,xxxM)

w(xxx3,xxx1) w(xxx3,xxx2) 0 · · · w(xxx2,xxxM)
...

...
... . . . ...

w(xxxM,xxx1) w(xxxM,xxx2) w(xxxM,xxx3) · · · 0

 (2.42)

where each element w(xxxi,xxx j)|i ̸= j is the weight of edge (xxxi,xxx j) in the graph Ḡ. If edge
(xxxi,xxx j) is not existed in E, then the weight w(xxxi,xxx j) is 0. In other words, there are only k
non-zero values in each row of AM×M. It is clear that A is an unsymmetrical matrix.

In order to merge two discordant edges with weights w(xxxi,xxx j) and w(xxx j,xxxi) together,
we need to compute the probability of at least one edge exists. The combined weight can
be calculated as:

w((xxxi,xxx j),(xxx j,xxxi)) = w(xxxi,xxx j)+w(xxx j,xxxi)−w(xxxi,xxx j)w(xxx j,xxxi) (2.43)

Then we will apply ( 2.43) to the proposed directed graph Ḡ. Then the corresponding
undirected weighted graph G whose adjacency matrix B can be represented as:

B = A+AT −A◦AT (2.44)

where ◦ denotes the Hadamard (or pointwise) product. For each element Ai j of A, it can be
interpreted as the probability that directed edge from xxxi to xxx j exists, then Bi j in B is the
probability that at least one of the two directed edges (either from xxxi to xxx j or from xxx j to xxxi)
exists. Hence, a new undirected weighted UMAP graph G is sketched, whose adjacency
matrix is given by B.

Lastly, the coordinates yyyi ∈ R3, i = 1,2, . . . ,M of the data points in the lower dimen-
sional space (3D space) can be defined by the force-directed graph layout algorithm, which
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utilizes a set of attractive forces Fa applied along edges and a set of repulsive forces Fr

applied among vertices. Any force-directed layout algorithm requires a description of
both the attractive and repulsive forces. This algorithm proceeds by iteratively applying
attractive and repulsive forces at each edge or vertex, which amounts to a non-convex
optimization problem. By slowly decreasing the attractive and repulsive forces, the con-
vergence to a local minimum is guaranteed. The attractive and repulsive force between
vertices i and j can be represented as:

Fa
i, j =

−2ab∥yyyi− yyy j∥2(b−1)

1+∥yyyi− yyy j∥2(b−1)
w(xxxi,xxx j)(yyyi− yyy j) (2.45)

Fr
i, j =

2b(1−w(xxxi,xxx j))(yyyi− yyy j)

(ε +∥yyyi− yyy j∥2)(1+a∥yyyi− yyy j∥2b)
(2.46)

where a, b, ε are hyper-parameters.
The forces given above are derived from gradients optimizing the edge-wise cross-

entropy between the weighted graph G, and an equivalent weighted graph H constructed
from the points {yyyi|i = 1,2, . . . ,M}. That is, we are seeking to position points yyyi such that
the weighted graph H induced by those points most closely approximates the graph G ,
where we measure the difference between weighted graphs by the total cross entropy over
all the edge existence probabilities. Since the weighted graph G captures the topology of the
source data, and thus a good low-dimensional representation of the overall topology of the
data is provided by the equivalent weighted graph H constructed from {yyyi|i = 1,2, . . . ,M}.

Therefore, there are 2 phases to construct the graph H. The first phase is to build
the fuzzy topological representation, as is described above. The second phase is to
simply optimize the low-dimensional representation to have as close a fuzzy topological
representation as possible, as measured by cross-entropy.

For the phase 1, spectral embeddings in low dimensional space should be initialized.
As the weighted undirected graph G and its adjacency matrix BM×M are given, we can
derive the degree matrix DM×M for G as follows:

DM×M =


k 0 0 · · · 0
0 k 0 · · · 0
0 0 k · · · 0
...

...
... . . . ...

0 0 0 · · · k

 (2.47)

This matrix is always diagonal. The degree of a vertex yyyi is the i-th element in the
diagonal, which represents the number of edges such that {yyyi,yyy j} is an edge for any yyy j

also in the vertex set. Then the Laplacian matrix of G can be derived as:
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LM×M = DM×M−AM×M (2.48)

Then decompose the Laplacian matrix L by:

LM×M = D1/2LsysD1/2 (2.49)

where Lsys is called the symmetrically normalized Laplacian matrix. The elements of Lsys

are thus given by:

Lsym
i, j =


1, if i = j and Di,i ̸= 0

− 1√
Di,iD j, j

, if i ̸= j

0, otherwise

(2.50)

Then the eigenvectors and eigenvalues of LM×M can be calculated as:

LM×MV⃗M×1 = λV⃗M×1 (2.51)

By sorting the eigenvalues from large to small, the top 3 eigenvalues out of 6 can be
found. Correspondingly, the eigenvectors [⃗V1 V⃗2 V⃗2]M×3 are used to form the initialization
of YM×3. As long as the embeddings in H are derived, the weight of edges also needs to be
derived. A smooth approximation of the membership strength between two points in the
low dimensional space can be defined as:

Φ(yyyi,yyy j) =
1

1+a(∥yyyi− yyy j∥)2b (2.52)

where a, b are parameters to be trained to fit against the curve Ψ, which is given as:

Ψ(yyyi,yyy j) =

{
1 , if ∥yyyi− yyy j∥ ≤ dmin

exp(−(∥yyyi− yyy j∥)−dmin) , otherwise
(2.53)

where dmin is the preferred minimum distance between 2 vertices given in 2.40 and 2.41.
The reason for fitting the curve Φ against Ψ, instead of using Ψ directly, is saving the time
and memory cost. Also, Φ has been tested to be the most efficient in the curve family [49].
Furthermore, a≈ 1.929, b≈ 0.7915, and dmin = 0.001 are the default values.

Then we need to optimize the positions of the embeddings in the lower dimension so
that the weighted graph H induced by those points most closely approximates the graph
G. In this case, we measure the difference between 2 weighted graphs by the total cross
entropy over all the edge existence probabilities. As is described above, the probability of
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an edge exists between 2 points i and j in H can be derived from ( 2.52), which can be
represented as:

v(yyyi,yyy j) =
1

1+a(∥yyyi− yyy j∥)2b (2.54)

Then we simplify the notations, w(yyyi,yyy j) to wi, j, representing the weight of edge
{yyyi,yyy j} in the low dimensional space, and v(xxxi,xxx j) to vi, j, the weight of edge {xxxi,xxx j} in
the original space. Hence, the cross entropy can be derived as:

CUMAP =
M

∑
j ̸=i, j=1

M

∑
i ̸= j,i=1

[
vi j log2(

vi j

wi j
)+(1− vi j) log2(

1− vi j

1−wi j
)

]
(2.55)

Finally, by using stochastic gradient descent (SGD) with respect to CUMAP in python,
the embeddings in the low dimensional space (i.e., yyyi,1 ≤ i ≤ M) are optimized. The
optimization process involves minimizing a cost function that measures the discrepancy
between the high-dimensional and low-dimensional representations of the data. SGD
works by iteratively adjusting the parameters of the low-dimensional representation to
minimize the cost function. The algorithm does this by computing the gradient of the cost
function with respect to the parameters, and updating the parameters in the direction of
the negative gradient. Theoretically, one can use SGD to approach the minimum of any
differentiable function [63].

However, UMAP is an inevitable DRT, the data with reduced dimensions will be
reconstructed from an LSTM network with multiple layers and neurons. The functional
API of Tensorflow in Python can handle LSTM networks with arbitrary layers and neurons
in each layer, even multiple inputs or outputs [64], which is applicable in reconstructing
data. As is shown in Fig. 6, an example of the an LSTM model, the input is in 3D space
R3, output is in 6-dimensional space R6, and four hidden layers with different neurons.
The MSE of the model is the loss function of this model, which is same with ( 2.37).
Functional API is flexible for creating models with different layers and neurons. The layers
and neurons can be added if a higher and more precise reconstructed data is required.

In addition, UMAP can be used to reduce the dimensionality of force feedback in
the same way. The force data with reduced dimensions is transmitted from TOP to OP,
and the data reconstruction module on the OP side recovers the received data to original
dimensions by another LSTM network.
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Fig. 2.11 An Example of Functional API for Reconstructing Data From UMAP
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2.5 A Bilateral Teleoperation System with Unsupervised
Clustering Algorithms for Kinesthetic Data Reduction

2.5.1 Motivation

Recalling the aforementioned kinesthetic data reduction techniques applying in bilateral
systems in Section 2.3, a novel mathematical model for selectively transmitting kinesthetic
data is proposed. By using original data as input and transmitting labels as output, a well-
trained LSTM network can be derived. However, as is given in ( 2.17), transmitting labels
are derived from Weber’s law of JND, illustrating that the newly proposed kinesthetic data
reduction model expends applicability of dealing with time series kinesthetic data. LSTM
network, as a type of supervised learning, focuses on building machine learning models on
labelled datasets. It is somehow arduous to produce labelled datasets where the original
kinesthetic data is unlabelled. Furthermore, even if the labelling is done, the speed of
labelling is much slower than the speed of data production. Although this time cost does
not affect real-time label predictions in LSTM networks, the labelling process on original
kinesthetic data does increase the training time of the entire data reduction modules. So, to
classify unlabelled data, unsupervised learning algorithms are used.

This section aims at using unsupervised methods to segregate the kinesthetic data
into different clusterings so that data belonging to certain groups is transmitted over the
network, while the other part is not transmitted. Clustering is the process of dividing
samples into categories by the intrinsic relationship between the data without knowing any
sample labels in advance, resulting in the high similarity between samples of the same
category and low similarity between samples of different categories [73, 74]. It is a main
task of exploratory data analysis, and a common technique for statistical data analysis,
used in many fields, including pattern recognition, image analysis, information retrieval,
bioinformatics, data compression [75–79].

Comparing with the supervised learning, the previous research in [80] has mentioned
the advantages of unsupervised learning in 3 aspects: i)It can see what human minds
cannot visualize; ii) There is less complexity compared to the supervised learning task; iii)
It is reasonably easier to obtain unlabeled data.

As is given in Fig. 2.12, there are 2 labels represented with blue and red colours.
Supervised clustering can distinguish homogenous clusters (i.e., the cluster in which there
are samples from both classes), however unsupervised clustering algorithm may yield 2
or more clusters from 1 homogenous cluster. Therefore, different clusterings derived by
supervised and unsupervised algorithms can effect the transparency of the entire system.
Also, various unsupervised clustering algorithms can contribute to different clusterings.
Therefore, It is worth further simulating and analysing these 2 situations.
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(a) Supervised Clustering Algorithm

(b) Unsupervised Clustering Algorithm

Fig. 2.12 An Example of Clustering Algorithms
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2.5.2 K-means Clustering-based Models for Kinesthetic Data Reduc-
tion

K-means clustering is one of the most popular unsupervised learning algorithms that solve
the well-known clustering problem. It is a vector quantization method, originally from
signal processing, which aims at dividing n observations into k clusters in which each
observation belongs to the cluster with the cluster centroid, serving as a prototype of cluster.
Therefore, the selection of centroid for each cluster is the key of k-means clustering.

Following the position/velocity data given in ( 2.18), kp samples are arbitrarily selected
as initial cluster centroids in R6, which can be represented as [zzz1,zzz2, . . . ,zzzkp]. In the
simulation process, we assume kp = 2. Then a Euclidean distance matrix between each
sample and each centroid can be represented as:

DM×kp =


d1,1 d1,2 · · · d1,kp

d2,1 d2,2 · · · d2,kp
...

... . . . ...
dM,1 dM,2 · · · dM,kp

 (2.56)

where di, j|i ∈ [1,M], j ∈ [1,kp] represents the distance between i-th sample and j-th cen-
troid. di, j can be calculated as:

di, j = ∥xxxi− zzz j∥ (2.57)

The sample xxxi is classified according to the minimum distance principle. For each
sample, the minimum distance is di, ji , then xxxi is classified in to clustering c j. That is,
xxxi ∈ c j.

Then mean value of all the samples belonging to each clustering c j can be calculated
as the new centroid of c j, which can be calculated as:

zzz(2)j =
1

N(2)
i

∑
xxx(2)∈c j

xxx(2), j = 1,2, ...,kp (2.58)

where N(2)
i represents the number of samples belonging to cluster c j at the second iteration.

Subsequently, the sum of distance between each sample and the centroid of its new
cluster, also termed as the clustering criterion function can be calculated as:

E(2) =
kp

∑
j=1

∑
xxx(2)∈c j

∥xxx(2)− zzz(2)j ∥
2 (2.59)

Then a new distance matrix can be calculated based on new centroids. Correspondingly,
new clustering criterion function can be derived. This iteration ends till E is no longer
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changed, or the difference between the preceding two times is less than the set threshold,
then the clustering is finished. Otherwise, turn to (2.56) to continue iteration.

After the process mentioned above, original position/velocity data can be automatically
divided into kp clusters. Amongst these clusters, only a portion of data is transmitted
over the network. We sort the number of samples in each cluster, then the clusters
can be represented as C = {cn1,cn2, ...,cnkp}, where the corresponding number in each
cluster has a relationship of Nn1 > Nn2 > ... > Nnkp . Assuming data in top k′p clusters
of C is selected to transmit over the network, that is, C′ = {cn1,cn2, ...,ck′p}. Then the
correspondingly transmitted data from OP to TOP in Fig. 2.13 can be represented as
YM×6 = [xxx1,xxx2, . . . ,xxxi, . . . ,zzzk′p+1, . . . ,zzzk′p+2, . . . ,zzznkp, . . . ,xxxM]T , where xxxi ∈C′. Therefore,
the transmitted data consists of 2 parts, original data within C′ and centroids out of C′.

The data is transmitted over the network, and the data recovery module predicts the
position/velocity data between 2 receive intervals by following ( 2.7) that TOP moves
uniformly when no data receive. When interaction happens with the remote environment,
force data is being collected. The collected force data is divided into k f clusters by k-means
clustering, and only data in top k′f clusters is transmitted over the network. We can assume
that k f = 2. In the same way, as is given in ( 2.8), the data recovery module on OP side
recovers force feedback data during the interval of data receive. It assumes the actual force
feedback is equal to the previously received data, which is the value of centroid.

As is shown above, only kinesthetic data in a part of clusters is transmitted over the
network, which effectively reduces data transmission in bilateral teleoperation systems.

Fig. 2.13 A Bilateral Teleoperation System with Unsupervised Clustering-based Data
Reduction Modules
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2.5.3 Agglomerative Hierarchical Clustering-based Models for Kines-
thetic Data Reduction

Hierarchical Clustering is a kind of clustering algorithm that creates a hierarchical nested
clustering tree by calculating the similarity between data points of different categories. In
a clustering tree, the raw data points of different categories are the lowest layer of the tree,
and the top layer of the tree is the root node of a cluster. In contrast to k-means clustering,
which clusters the data itself, the hierarchical clustering algorithm is often used in studies
that require analysis of the links and correlations between clusters [81]. The agglomerative
algorithm of hierarchical clustering combines the two most similar data points among all
data points by calculating the similarity between two types of data points, and iterates this
process repeatedly.

In this section, the kinesthetic data reduction modules based on hierarchical clustering
are introduced. Simultaneously, data recovery modules are the same as principles men-
tioned before in Section 2.5.2, which are simply raised here. As long as the kinesthetic
data is collected, dissimilarity is measured by distance between pair of observation in the
hierarchical clustering , such as Euclidean distance. From ( 2.18), we can calculate the
distance between each samples as:

DM×M =


0 d1,2 d1,3 · · · d1,M

d2,1 0 d2,3 · · · d2,M

d3,1 d3,2 0 · · · d3,M
...

...
... . . . ...

dM,1 dM,2 dM,3 · · · 0

 (2.60)

where di, j|i∈ [1,M], j ∈ [1,M] represents the distance between i-th sample and j-th sample.
In this case, the Euclidean distance between 2 points can be calculated as:

di, j = ∥xxxi− xxx j∥, i, j = 1,2, ...,M (2.61)

It is clear that DM×M is a symmetric matrix due to each element is a norm. Amongst
the elements in DM×M, there exists a minimum distance apart from 0 between xxxa and xxxb.
Then xxxa and xxxa form 1 cluster called ca,b. The distance between each sample and certain
cluster can be calculated from average linkage, which is given as:

di,c =
∑xxx j∈c∥xxxi− xxx j∥

Nc
(2.62)

where Nc is the number of samples in cluster c. As a consequence, the new distance matrix
D(M−1)×(M−1) can be calculated as:
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D(M−1)×(M−1) =



0 d1,2 d1,3 · · · d1,ca,b · · · d1,M

d2,1 0 d2,3 · · · d2,ca,b · · · d2,M

d3,1 d3,2 0 · · · d2,ca,b · · · d3,M
...

...
... . . . ... . . . ...

dca,b,1 dca,b,2 dca,b,3 · · · 0 · · · dca,b,M
...

...
... . . . ... . . . ...

dM,1 dM,2 dM,3 · · · dM,ca,b · · · 0


(2.63)

Then, another minimum value apart from 0 can be selected from ( 2.63), which
contributes to another cluster. By doing this iteration, it continues looping till only one
cluster consists of all data points at the root of the tree. That is, there are M clusters each
consists of a single data point at the leaves. In other words, when D is a matrix of only 1
column and 1 row, the clustering ends. However, this process can be simplified by given a
default value of clustering, which can be the number of preferred clusters. In this case, L is
the number of position/velocity data clusters, normally equals to 10.

The selection of clusterings to be transmitted over the network is the same with itself in
Section 2.5.2. Only a part of position/velocity data in kp clusters is transmitted. In this case,
we assume kp = 4 The remaining part, such as hierarchical clustering force feedback is
similar with ( 2.60)-( 2.63), and the number of clusters to be transmitted k f can be assumed
as 4 as well. However, the force is normally in a 3D space, while position/velocity data
has a higher dimensionality.

To sum up, by selecting data in a portion of clusterings to be transmitted, both k-
means and hierarchical clustering techniques can effectively reduce the kinesthetic data
transmission over the network.

67



2.6 A Bilateral Teleoperation System with GBDT-Based Predictive Schemes

2.6 A Bilateral Teleoperation System with GBDT-Based
Predictive Schemes

2.6.1 Motivation

As the aforementioned predictive schemes in Section 2.2.3, force predictors should be
designed for the further reduction of kinesthetic data transmission. Predictive coding
is proposed to fill the blank of transmission and estimate future haptic data from data
previously received. Once the predictors are deployed in the teleoperation system, users
on the OP side can sense the force feedback from the predictor without any transmission
delay. However, the precondition of this assumption is that the proposed predictors should
be precise enough, without degrading the transparency of the whole system. From the
previous research, ZOH predictor, FOLP and the third-order predictor estimates the force
feedback from previous 1 or 2 data samples, which is not applicable to deal with a time
series of force feedback [27–29]. The previous techniques focused on the kinesthetic
data reduction duting the transmission time, while the loss of transparency due to the
reduction was not being considered. It is hard to believe that the future feedback can be
predicted from previous 1 or 2 samples without the degrading transparency. Therefore, the
rate of transmission and predictive accuracy should be considered simultaneously when
desigining the predictive scheme.

In order to increase the whole accuracy of the prediction in the whole system, GBDT
is introduced as its good performance in many prediction problems, including online
advertising [38], search ranking [39], and instance transfer [40]. From the previous
research, GBDT has been proved to provide predictive accuracy that other algorithms
cannot be trumped [65]. GBDT is a machine learning technique for optimizing the
predictive value of a model through successive steps in the learning process. Each iteration
of the decision tree involves adjusting the values of the coefficients, weights, or biases
applied to each of the input variables being used to predict the target value, with the goal
of minimizing the loss function (the measure of difference between the predicted and
actual target values). The gradient is the incremental adjustment made in each step of the
process; boosting is a method of accelerating the improvement in predictive accuracy to a
sufficiently optimum value.

As is shown in Fig. 2.14, an example of GBDT algorithm, it is clear to see that the
final output is consisted of several different trees. The labels of each tree should be the
loss between the actual and the predicted value. In each iteration, a new tree is delivered
based on the that loss. In one tree, each branch is split by a specific condition, for instance,
to minimize the sum of square error of different ways to split. Once a well-trained tree is
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delivered, the predictive value is the sum of each tree plus the original value of the weak
learner and the loss in each tree.

Fig. 2.14 Overview of GBDT Algorithm

2.6.2 System Model

The proposed system is depicted in Fig. 2.15. The design of data reduction and recovery
modules have been introduced in Section 2.2& 2.3. The data reduction module can either
be reducing the amount of transmission or the size of each packet. And the data recovery
(data construction) module transfers the discrete received data to the original form collected
on the OP side. It assumes the OP moves at a constant velocity during the interval of data
receive, then sends the command to the TOP side. Additionally, 2 same and well-trained
GBDT modules are deployed on the both OP and TOP sides. The update control module
is a JND-based verifier, which determines whether the current GBDT module should be
updated or not.

As long as one triggers the OP, a sensor starts collecting the position and veloc-
ity data of the system, which can be represented as (x0,x1. . . ,xi, . . . ,xM) and velocity
(ẋ0, ẋ1. . . , ẋi, . . . , ẋM). However, only a part of it is transmitted over the network, which is
(x0, . . . ,xi, . . . ,x j, . . . ,xN) and (ẋ0, . . . , ẋi, . . . , ẋ j, . . . , ẋN), where N ≤M. Simultaneously,
human can feel the force feedback predicted from the GBDT module on the master side,
which can be represented as:
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F ′i = Λ0(xi, ẋi|Xtrain) (2.64)

where F ′i represent the i-th predicted force data on the master side, xi and ẋi is the current
position/velocity data. Λ0 is the first well-trained data based on previously collected data
set Xtrain. Similarly, the GBDT module deployed on the TOP side can also be repre-
sented as Λ0. In order to make sure the transparency of the whole system retain at a high
level, the module on 2 sides should be updated once the degradation is detected. Later,
the position and velocity data is received on the TOP side. Correspondingly, the recon-
structed data is acquired from the data recovery module, which can be represented as Xr =

(x̃′0,x
′
1, . . . , x̃

′
i,x
′
i+1, . . . , x̃

′
j,x
′
j+1, . . . ,x

′
M) and Ẋr =( ˜̇x′0, ẋ

′
1, . . . , ˜̇x′i, ẋ

′
i+1, . . . , ˜̇x′j, ẋ

′
j+1, . . . , ẋ

′
M),

where x̃′i, x̃
′
j and ˜̇x′i, ˜̇x′j are the receiving position and velocity data at time i and j correspond-

ingly. The relationship data between two receive interval has been given in ( 2.7). The
TOP moves in the manner of the reconstructed data, and starts interacting with the environ-
ment. Therefore, a time series of force feedback is collected, which can be interpreted as
F = (F0,F1. . . ,Fi, . . . ,FM). At the same time, the update control module compares the real
force feedback with the predicted force feed back from the GBDT module. The predicted
force feedback from the GBDT module on the TOP side can be derived from:

F
′′
i = Λ0(Xr[i], Ẋr[i]|Xtrain) (2.65)

where Xr[i] and Ẋr[i] represent the i-th position/velocity data from data recovery module.
Afterwards, the update control module triggers the model update as long as the dif-

ference between the predicted and actual force is perceivable to human OP, which can be
defined as the following expression: k f =

∥Fi−F
′′
i ∥

∥Fi∥ > α f , Model Updates

k f =
∥Fi−F

′′
i ∥

∥Fi∥ ≤ α f , Model Remains
(2.66)

where α f is the Weber’s parameter for force, normally equals to 0.1.
Assuming the model needs to be updated at the k-th force data, then the new GBDT

model can be updated from the training data set with this new data, which can be written as
Λ1 : {Xtrain,(Xr[k], Ẋr[k],Fk)}. By extending this to n-th model updates, the corresponding
GBDT model can be represented as Λn : {Xtrain,(Xr[k], Ẋr[k],Fk), ...,(Xr[kn], Ẋr[kkn],Fkn)}.
During the model update process, the parameters to define the GBDT is transmitted over
the network from TOP to OP side, including leaf nodes, branches, the split condition, etc..
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Fig. 2.15 The Bilateral Teleoperation System with GBDT-based Predictive Modules

2.6.3 Design of GBDT-based Predictive Modules

The proposed GBDT-based predictive scheme, which concentrates on establishing a direct
mathematical map between position/velocity data and force feedback, aims at increasing
the perceptual transparency without a higher packet rate. Assuming that there exists a
training data set P of the OP’s velocity and position, which is successfully shared with TOP.
The motion of TOP defers to P and the corresponding data set U of force feedback from
the environment can be understood as a specific mathematical map based on P. Therefore,
a joined data set of P and U can be written as:

XtrainR×9 =


xxxp1 ẋxxp1 fff u1

xxxp2 ẋxxp2 fff u2
...

...
...

xxxpR ẋxxpR fff uR

 (2.67)

where R is the size of training data, xxxpi and ẋxxpi represent the i-the position/velocity data in
P, and fff ui

is the i-the force data in U . Additionally, all of the kinesthetic data are in 3D
space, which can be written as xxxpi, ẋxxpi, fff ui

∈ R3.
The GBDT model is an addition expression composed of K basis,

f̂ff i =
K

∑
m=1

Fm(xxxi, ẋxxi),Fm ∈ N (2.68)

in which N is the function space of total basis models.
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A loss function L reflects on the deviations between the predictive and actual values.
The most commonly used loss function is the squared loss function, which is given as
follows:

L =
R

∑
i=1

l( fff i, f̂ff i) =
1
2

R

∑
i=1

( fff i− f̂ff i)
2 (2.69)

A fabulous model is a balancing act of minimizing the deviations and suppressing the
overfitting of the model. Therefore, a regularized item for concealing the complexity is
introduced to the objective function Ob j,

Ob j =
R

∑
i=1

l( fff i, f̂ff i)+Ω(Fm) =
1
2

R

∑
i=1

( fff i− f̂ff i)
2 +Ω(Fm) (2.70)

where Ω represents the complexity of the basis. The complexity of a boosting tree is
subject to its depth and leaf nodes. If the number of leaf nodes in a tree is M and the value
of each node is w, the regular item for defining its complexity is

Ω(Fm) = γM+
1
2

λ

M

∑
j=1

w2
j , γ,λ ∈ R (2.71)

related to M and the norm of the features in the nodes, where γ , λ are constants.
GBDT is a forward optimization algorithm that the model is gradually established to

optimize the objective function from beginning to end. At t-th iteration, a regression tree
Ft is constructed to minimize the following regularized loss as the objective function:

Ob j(t) =
R

∑
i=1

l( fff i, f̂ff
(t)
i )+Ω(Ft) (2.72)

f̂ff
(t)
i =

t−1

∑
m=1

Fm(xxxi, ẋxxi) = f̂ff
(t−1)
i +Ft(xxxi, ẋxxi) (2.73)

Then the second-order approximation of the objective function by using Taylor series
can be written as:

Ob j(t) ≈
R

∑
i=1

[
l( fff i, f̂ff

(t−1)
i )+giFt(xxxi, ẋxxi)+

1
2

hiF2
t (xxxi, ẋxxi)

]
+Ω(Ft) (2.74)

where gi =
∂ l( fff i, f̂ff

(t)
i )

∂ f̂ff
(t−1)
i

and hi =
∂ 2l( fff i, f̂ff

(t)
i )

∂ f̂ff 2(t−1)
i

are the first and second-order derivatives of the

loss function. There is a constant item l( fff i, f̂ff
(t−1)
i ) which does not affect the objective so
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that we can ignore that item and rewrite ( 2.66) as:

Õb j
(t)

=
R

∑
i=1

[
giFt(xxxi, ẋxxi)+

1
2

hiF2
t (xxxi, ẋxxi)

]
+Ω(Ft) (2.75)

In each regression tree, there exists a function q mapping each sample to one of the
leaf nodes. Then we can use an alternative objective function as:

Õb j
(t)

=
T

∑
j=1

[(
∑
i∈I j

gi

)
w j +

1
2

(
∑
i∈I j

hi

)
w2

j

]
+Ω(Ft) (2.76)

Ω(Ft) = γT +
1
2

λ

T

∑
j=1

w2
j (2.77)

where I j = i|q(xi) = j is the sample set of j-th leaf, and w j is the assigned weight. T is
the number of leaf nodes in Ft , and γ and λ are constant parameters which control the
importance of regularizations. For optimizing the objective function, we can set the first-
order derivative of ( 2.76) to be 0, then the derived value of j-th leaf and the corresponding
value of the objective function are:

w∗j =−
∑i∈I j gi

∑i∈I j hi +λ
(2.78)

Õb j
(t)∗

=−1
2

T

∑
j=1

(∑i∈I j gi)
2

∑i∈I j hi +λ
+ γT (2.79)

The empirical loss function is squared loss, then gi = f̂ff
(t−1)
i − fff i, hi = 1. Moreover, for

traversing all the features and selecting the best splitting point, the gain of all the possible
splits for each leaf node is given by:

∆Ob j =
1
2

[
(∑i∈IL gi)

2

∑i∈IL hi +λ
+

(∑i∈IR gi)
2

∑i∈IR hi +λ
− (∑i∈I gi)

2

∑i∈I hi +λ

]
− γ (2.80)

where leaf node I is split into IL and IR. The regularization parameter γ can be interpreted
as the minimum threshold of the split gain. Leaf nodes splitting is recursively conducted
until a predefined depth.
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2.7 Conclusions

This chapter has proposed a bilateral teleoperation system with various machine learning
algorithms to reduce the kinesthetic data transmission over the network. Additionally, one
novel predictive scheme based on GBDT is also given for enhancing the performance
of predictive modules in bilateral teleoperation systems. The current data reduction and
predictive techniques are shown in Section 2.2. While the proposed systems in Section 2.3
to Section 2.6 will prove very useful in applying different machine learning techniques to
bilateral teleoperation systems, such as LSTM networks, DRTs, unsupervised clusterings,
and GBDTs. It was the aim to achieve the 1ms-challenge of bilateral teleoperation systems
throughout this thesis, from a novel mathematical model to derive the transmission status
of each data to a novel idea of reducing the size of kinesthetic data transmission and
kinesthetic data clustering. Essential foundations have been given in this thesis, with
generally known results kept to a minimum.

In Section 2.2, a brief historical background to Weber’s law of JND is given, ranging
from its infancy to the PD-based codecs and ZOH/FOLP predictive schemes. Weber’s
law of JND is a psychological model which calculates the degree to which a human
can distinguish between two stimuli. This relationship is linear which normally relates
to the magnitude of the reference stimulus. Then, PD-based codecs and two predictive
schemes based on the limitations of human perception are proposed. However, it is far
more enough to describe the limitations of human perception by a linear model. More
accurate mathematical models can thus be proposed, and further enhance the kinesthetic
data reduction and predictive modules in bilateral teleoperation systems. Thus, various
machine learning algorithms are proposed for this purpose.

In Section 2.3, LSTM networks are applied to solve the problem of selectively trans-
mitting kinesthetic data on top of PD-based codecs. As Weber’s law of JND is not the
best mathematical model to represent humans’ perception deadzone [16–19, 58], a more
accurate mathematical model determining the transmission status of kinesthetic data is
required to be proposed. Simultaneously, LSTM networks are good at dealing with time-
series data, which can be used as the tool to solve the problem. Furthermore, PD-based
codecs can help build LSTM networks by labelling the training dataset, i.e., using two
different values to represent the transmission status of each data. Then, a well-trained
LSTM network can be trained from original data and its corresponding labels by tuning
parameters. During the testing process, the LSTM network can predict the transmission
status of newly collected data based on last several data within the timestep. And practice
has proved that the transmission status of the current data is not only related to the last
transmitted data.
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In Section 2.4, DRTs and data reconstruction techniques are applied to solve the
problem of reducing the size of kinesthetic data transmission over the network. Generally,
it is totally a new idea by abandoning selective transmission of data, instead, using machine
learning algorithms to reduce the dimensionality of data. Since its novelty, three different
DRTs and data reconstruction techniques are proposed to see their performance compared
to PD-based codecs and LSTM-based models. DRTs aim at map raw data with high
dimensionality to its corresponding embedding in low space. Then, only embeddings will
be transmitted from the master to slave side. Data reconstruction techniques help recover
embeddings to its original high space. All of three DRTs are popular machine learning
algorithms for solving dimensionality reduction problems. And both PCA and SAE are
invertible algorithms of which their corresponding data reconstruction algorithms can
be derived directly from embeddings. An LSTM network has been build for recovering
UMAP embeddings to preferred data.

In Section 2.5, clustering techniques are applied to extend an unsupervised learning
solution to the problem of selective transmission of kinesthetic data. Different from output
labels required in supervised learning, unsupervised learning tries to separate data into
different clusters according to the internal properties of data. Thus, selective transmission
of data can be achieved by selecting a part of data clusters for transmission, and data in
those clusters outside the selection can be replaced by the centroid of its cluster. In this
case, the amounts of clusters and clusters for selective transmission in each clustering
technique should be discussed in a further step. However, we can see that unsupervised
clustering algorithms can also reduce kinesthetic data transmission theoretically.

In Section 2.6, GBDTs are applied to solve the problem of force prediction in bilateral
teleoperation systems. In order to achieve 1-ms challenge, a predictive module is deployed
on the master side to predict the forcec feedback from the slave side. However, current
predictive schemes are based on Weber’s law of JND, which results in high frequency model
updates due to inaccuracies. Thus, a more accurate predictive model should be proposed
to increase the stability of the whole system. GBDT is the most powerful prediction
algorithm, which gives predictions in the form of an ensemble of weak prediction models
(typically decision trees). A large amount of data is required to train the model. Predictive
models are deployed on the both master and slave side. The predictive model can be
updated as well once the perceptual difference is detected.
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Chapter 3

Simulation and Performance Analysis of
LSTM-Based Kinesthetic Data
Reduction Techniques

3.1 Introduction

The vital objective of this section is to investigate the transmission rate and transparency
of the proposed mathematical model. The transmission rate and transparency is considered
as two criteria to measure the performance of the system model. The haptic perceptually
weighted peak signal-to-noise ratio (HPW-PSNR) is introduced to measure the transparency
of the model. Furthermore, we compare the proposed model with the traditional PD-based
codecs in the situation of the same kinesthetic data sets. The main kinesthetic data collected
on the foam is used in the simulation.

In Section 3.2, experiments of kinesthetic data collection are stated in details. The
haptic device and tool for establishing virtual different environment are also given in this
section. Moreover, the format of collected kinesthetic data is denoted there.

There are 2 metrics for analysing the performance introduced in Section 3.3, which
are HPW-PSNR and transmission rate. HPW-PSNR is an objective quality measure
which is carefully weighted depending on the perceptual significance of the haptic signal
degradation. Additionally, data transmission rate refers to the percentage of collected
kinesthetic data to be transmitted over the network. This metric reflects on the impact of
data reduction techniques on the amount of data to be transmitted.

In Section 3.4, predicted labels from well-trained LSTM networks are given. Corre-
spondingly, the transmitted data along each axis is also shown. The proposed mathematical
model is efficient in reducing the transmitting packet rate of both velocity and force data.
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The transmission rate is less than 50% when LSTM-based kinesthetic data reduction
models are applied.

Besides, comparison with traditional PD-based codecs is given in Section 3.5. The
proposed LSTM-based model has a lower transmission rate for velocity signals than
PD-based codecs. Also, both models have similar results on transmission rate of force
data when deadband parameter is from 0.1 to 0.15. Otherwise, the proposed model
transmits less data than PD-based codecs. In addition, 2 models have similar performance
in maintaining transparency, while PD-based codecs have lower degradation for force data,
and LSTM-based models degrade less for velocity data.

Performance analysis under dragging is argued in Section 3.6. A higher transmission
rate is required when dragging, which is over 76.8% for force data, and 44.6% for velocity
data. As a result, the scale of friction is normally smaller than pressure, leading to a
different transmission rate.

Results analysis and their significance are given in Section 3.7. Two proposed LSTM-
based mathematical models can reduce kinesthetic data transmission in bilateral teleopera-
tion systems effectively. By comparing with current PD-based codecs, proposed models
can not only maintain a higher transparency of the system, but reduce kinesthetic data
transmission, which satisfies the objectives of our project.

3.2 Kinesthetic Data Collection

All of the collected kinesthetic data is shared in Chapter 3 to 5. Kinesthetic data includes
velocity, position, pressure, friction, inertia, etc., which is related to users’ movements
and the texture of the remote environment. Therefore, the premise of data collection
is to collect data on different textures with multiple motions as much as possible. We
divide human’s motions into two categories, which include dragging and tapping. Tapping,
also known as penetration, is when the cursor moves in a direction perpendicular to the
plane. And the contact force plays a big role in force data. Also, the position/velicity data
variation along the z-axis is more significant than the other 2 axes. Conversely, dragging
refers to the lateral movement on the plane. For instance, the cursor moves from point
A to B along the plane, where A, B are the points both on the plane. In this case, forces
suffered by the OP include friction and pressure. As is illustrated in Section 2.4.1, the
relationship between the friction and pressure is linear. On top of that, the kinesthetic
data is collected on 4 different textures, which are marble, wood, ceramic tiles and foam.
These four materials are various in roughness, viscosity and hardness, which are eligible
to represent the complicated and dynamic remote environment. Two metrics used to
distinguish different materials are the coefficient of dynamic friction µ and the viscosity
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3.2 Kinesthetic Data Collection

δ . µ is a value that shows the relationship between two objects and the normal reaction
between the objects that are involved. We utilized those 4 virtual materials preserved in
computer haptics and active interface (CHAI3D) to distinguish the environment, which
will be introduced in the following paragraph. Besides, the sampling rate in this experiment
is fixed at 1 kHz, which satisfies the requirement of haptic communications.

What’s more, the Phantom Omni haptic device is used in the experiment. As is shown
in Figure 5, it is a commercial, portable haptic device with 6 DoFs. It is based on a serial
architecture, which means that the handle is connected to the housing by a single serial
chain. The 6 DoFs include two 3D vectors, i.e. position and force. Moreover, the velocity
data of i-th sample can be approximately equal to the average velocity within in sampling
interval due to the 1 kHz high rate, which can be expressed by:

v⃗i =


0 , If i = 0

x⃗i− x⃗i−1

Ts
, Otherwise

(3.1)

where Ts = 1 ms.

Fig. 3.1 A Phantom Omni Device
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Additionally, to construct various remote environments and collect alternative data,
CHAI3D is introduced in this experiment, as is depicted in Fig 3.2. CHAI3D is an open
source set of C++ libraries for computer haptics, visualization and interactive real-time
simulation. Written entirely in C++, CHAI3D was designed to make it easier and more
intuitive for developers to create applications that combine 3D modelling with force-
feedback rendering capabilities. In the past 15 years, CHAI3D has developed into one of
the most popular open-source multi-platform haptic simulation frameworks and has been
used in a large number of research and production projects in various fields such as games,
games, simulators, educational software, and interactive art, scientific visualization and
medical applications.

Fig. 3.2 An Experiment of Kinesthetic Data Collection

In each experiment, we collect kinesthetic data for each motion on each texture.
Therefore, there are totally eight datasets are collected. During the penetration process, we
slowly move the cursor perpendicular to the plane, ensuring minimal lateral displacements.
Oppositely, we try to maximize the lateral displacement range of dragging to distinguish it
from tapping. The collected haptic data format is given in Fig. 3.3. The standard kinesthetic
data in 1ms contains ten degrees, a 3D-force vector, a 3D-velocity vector, a 3D-position
vector and the sampling time. The velocity vector can be calculated easily from ( 3.1) by
taking the derivatives of the displacement. We find the displacement of cursor in 1 ms,
then calculate the corresponding velocity. The collected kinesthetic data is a time series of
data with 1ms sampling interval.
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Fig. 3.3 An Example of Kinesthetic Data Format

3.3 Performance Metrics

3.3.1 Transparency Test

In a bilateral teleoperation system, transparency refers to whether the mechanical impedance
felt by the OP is the same as the impedance of the environment [2]. The measurement of
transparency can be divided into subjective measurement and objective measurement. The
subjective measurement is how scientists measure what people say. For instance, Weber’s
law of JND is derived from many subjective measurements. On the flip side, the objective
measurement are quantifiable, unbiased, and mathematically calculable. A reliable and
quantitative way for measuring transparency signal is termed haptic perceptually weighted
peak signal -to-noise ratio (HPW-PSNR) [66]. It is an objective quality metric that care-
fully measures the perceptual significance of the signal degradation from weighting the
difference between the original and distorted signal. It enhances the standard peak-signal
to noise ratio (PSNR) measure while incorporating Weber’s law of JND. The mathematical
formulations are described as follow:
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MSE =
1
N ∑

n∈N
∥⃗vn−⃗̂vn∥2 (3.2)

HPW =

{
C , If ∥⃗vn−⃗̂vn∥ ≤ αv∥⃗vn∥

k(∥⃗vn−⃗̂vn∥−αv∥⃗vn∥)+C , Otherwise
(3.3)

HPW −PSNR = 10log10(
∥⃗vmax− v⃗min∥2

MSE×HPW
) (3.4)

where v⃗max and v⃗min are the maximum and minimum values of the original haptic signal v⃗,
and ⃗̂v represents the distorted signal. Haptic perceptually weight (HPW) denotes a haptic
perceptual weighting function. It is a pairwise function which consists of two parts. When
the transmitted signal is within the deadband of the original signal, HPW is a constant
(typically, C = 1 ). Otherwise, k is a penalty factor that weights haptic degradations beyond
the JND. The range of k is in the interval [0,1]. MSE represents the mean square function
of the original and transmitted signals. As is given in Table 2.1, the human perceptual
discrimination for velocity is 8%-12%. We assume αv = 0.1 in ( 3.3). Similarly, ( 3.3) and
( 3.4) can be used to do the transparency test of force signals. Normally, α f = 0.1.

3.3.2 Data Transmission Rate

Data transmission rate refers to the percentage of collected kinesthetic data to be transmitted
over the network. Due to the proposed data reduction techniques, only a part of the original
data is transmitted. This metric reflects on the impact of data reduction techniques on the
amount of data to be transmitted. It is easy to derive the following relationship as:

R =
Ntransmitted

N
×100% (3.5)

where Ntransmitted refers to the data to be transmitted derived from the data reduction
module, and N is the amount of collected kinesthetic data.
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3.4 Transmitted Signals From LSTM-based Data Reduc-
tion Techniques

In this section, the transmitted label prediction is given at first. Then the transmitted
and real velocity/force signals are compared. We give an example compare the real and
transmitted kinesthetic data when tapping on the foam surface. The label prediction is given
in Fig. 3.6, which explicitly shows the predicted label from the proposed LSTM-based
mathematical model. When label prediction is -1, the corresponding collected velocity
data is not transmitted. The newly collected velocity data is only transmitted when the
label is 1. As is given in Table 2.2, the normalized label prediction is a series of float
number, which lies between [−0.5,0.5]. Then a threshold is introduced to transfer these
float numbers to integers, which is give as bellow:

Ȳ [i] =

{
−1, If Y [i]≤ 0

1, If Y [i]> 0
(3.6)

where Y [i] is the predicted i-th transmission label derived from the LSTM-based model,
and Ȳ [i] is the corresponding transmission flag. After the de-normalizing, the prediction
label becomes a set of -1 and 1.

Fig. 3.4 An Experiment of Kinesthetic Data Collection
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Fig. 3.5 compares the actual and the predicted velocity by LSTM networks along the
three axes, which is then transmitted. The output data comes from well-trained LSTM
networks with multiple hidden layers. Specifically, the loss of LSTM networks is normally
less than 10−4 for velocity signals, and 10−2 for force signals. The figures of velocity data
consist of three parts: the velocity which is going to transmit over the network (purple part),
and the value is not transmitting (blue part). From the simulation results, only 42.8% of
velocity data will transmit over the network in the next 500 ms, which effectively reduces
the packeting rate, and HPW-PSNR is over 42 dB. Nevertheless, there is a distortion along
x-axis around 240-270 ms that the transmitted value is nearly -10 cm/s, while the real
velocity is greater. And the velocity has a sudden jump at 270 ms. This issue happens
mainly due to the mismatch between the trained model and the previously collected data
(within the timestep). As is mentioned in ( 2.9), the training process is not only dependent
on the collected data, but timestep and parameters in the LSTM network. This issue can be
solved by tuning parameters to retrain a model with lower loss or change the number of
timestep. However, the velocity is normally consisted of three axes, the distortion on one
axis cannot affect the prediction dramatically.
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(a) Transmitted & Real Velocity Comparison Along x Axis

(b) Transmitted & Real Velocity Comparison Along y Axis
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3.4 Transmitted Signals From LSTM-based Data Reduction Techniques

(c) Transmitted & Real Velocity Comparison Along z Axis

Fig. 3.5 Transmitted & Real Velocity Comparison Along Each Axis When Tapping on the
Foam Surface, Timestep=100 ms, µ = 0.8, δ = 0.9 N · s/m2

Simultaneously, we collected the haptic force feedback in the next 500ms, which is
shown in Fig. 3.7. As is illustrated before, the most force feedback during the penetration
process is produced along z-axis, which means force along the other 2 axes can be ignored.
In fact, the force along the x and y direction is less than 10% of the total. It is given that
the human perceptual discrimination for force is 10%. We assume α f = 0.1. Fig. 3.6
shows the predicted label of the force transmission. Therefore, only 40.4% of force data
will transmit over the network, and the corresponding HPW-PSNR is around 22 dB. The
minimum HPW-PSNR for force is 14 dB, which is also tolerable for the whole system.
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Fig. 3.6 Transmitted Label Prediction for Force

Fig. 3.7 Transmitted & Real Comparison Along Each Axis When Tapping on the Foam
Surface, Timestep=100 ms, µ = 0.8, δ = 0.9 N · s/m2
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To summarize, the proposed mathematical model is efficient in reducing the transmit-
ting packet rate of both velocity and force data. Over half of the kinesthetic data is not
transmitted. The haptic signal degradation of the system is low.

3.5 Comparison with PD-Based Codecs

This section compares the performance between the proposed LSTM-based data reduction
model and the conventional PD-based codecs. First, we compare the data transmission
rate of both velocity and force signals on different deadband parameters. The two models
are tested under the same dataset. As is shown in Fig. 3.8a, the rates are quite close when
the dead parameter is small (0.02-0.05). However, the difference becomes greater with
the increase of the deadband parameter. Therefore, it can be concluded that the proposed
model has a lower transmission rate for velocity signals than PD-based codecs.

Similarly, the comparison of transmission rate for force signal is given in Fig. 3.9a.
The PD-based codecs have a lower transmission rate when the deadband parameter is
small. Conversely, the LSTM-based model will transmit fewer data under greater deadband
parameters. Both models have similar results when deadband parameter lies in [0.1,0.15].
Therefore, it can be concluded that the proposed model is suitable for the situation of
higher deadband parameters, while the PD-based model fits the environment requiring
high transparency.

Fig. 3.8b& 3.9b compare the HPW-PSNR for both velocity and force signals under
the same dataset. As is shown in Fig. 3.8b, the transparency of the proposed model is
higher when transmitting the velocity signal. As for the force signal, the two models are
similar. Both of the models have degradation randomly. The minimum HPW-PSNR for the
LSTM-based model is 14 dB, and 21 dB for the PD-based codecs. However, the overall
of HPW-PSNRs for both models are greater than 22 dB. Therefore, both mathematical
models have similar performance for maintaining transparency, while PD-based codecs
have lower degradation.
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3.5 Comparison with PD-Based Codecs

(a) Comparison of Transmission Rate (Percentage) for Velocity Signal When Tapping on the Foam
Surface, Timestep=100 ms, µ = 0.8, δ = 0.9 N · s/m2

(b) Comparison of HPW-PSNR for Velocity Signal When Tapping on the Foam Surface When
Tapping on the Foam Surface, Timestep=100 ms, µ = 0.8, δ = 0.9 N ·s/m2, αv = 0.1, k = 1, C = 1,
N = 500

Fig. 3.8 Rate-PSNR Figure for Velocity Signals
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3.5 Comparison with PD-Based Codecs

(a) Comparison of Transmission Rate (Percentage) for Velocity Signals When Tapping on the Foam
Surface, Timestep=100 ms, µ = 0.8, δ = 0.9 N · s/m2

(b) Comparison of HPW-PSNR for Force Signals When Tapping on the Foam Surface,
Timestep=100 ms, µ = 0.8, δ = 0.9 N · s/m2, αv = 0.1, k = 1, C = 1, N = 500

Fig. 3.9 Rate-PSNR Figure for Force Signals
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3.6 Performance Analysis Under Different Motions

We simply classify the user’s motions into two categories: tapping and dragging. The
movement of dragging is much more complicated than tapping since it moves arbitrarily on
the surface. The tapping process normally means the motion that interacts with one or more
points on the surface. However, the dragging process mainly causes lateral movements
of the object on the surface. Thus, if we move the cursor in the same plane during the
experiment, the dragging motion can be represented by a figure which contains speed
along x and y axes. Additionally, the scale of friction is normally smaller than the pressure,
leading to a different transmission rate. In order to see the movement of the cursor in the
3D space more intuitively, velocity is replaced by speed data. Speed is a scalar representing
the magnitude of velocity. By using speed, original three velocity figures along x,y,z
axes can be simplified by one figure, as is given in Fig. 3.10. For the transmission of
velocity data, the corresponding HPW-PSNR is 40 dB, and transmission rate is 44.6%.
Simultaneously, for force data, HPW-PSNR is 33 dB and the transmission rate is 76.8%.
As is shown in Fig. 3.11, the friction is normally under 1N. Therefore, to keep the system’s
transparency, it is illustrated that more transmission of force is required when dragging
(over 75%).

Fig. 3.10 Transmitted & Real Speed Comparison When Dragging on the Foam Surface,
Timestep=100 ms, µ = 0.8, δ = 0.9 N · s/m2
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Fig. 3.11 Transmitted & Real Speed Comparison When Dragging on the Foam Surface,
Timestep=100 ms, µ = 0.8, δ = 0.9 N · s/m2

3.7 Conclusions

3.7.1 Discussion

In this chapter, two LSTM-based mathematical models are proposed for reducing both
velocity and force data transmission in bilateral teleoperation systems. Results have
shown that LSTM-based mathematical models can reduce the transmission rate effectively.
When αv = 0.1 and α f = 0.1, we can find that LSTM-based mathematical models allow
only 42.8% of velocity data and 38.6% of force data to be transmitted, which is smaller
than PD-based codecs. However, for velocity data, the transmission rate of the proposed
LSTM-based model is always smaller PD-based codecs, regardless of αv.

Apart from less data transmission, LSTM-based mathematical models can still maintain
the transparency of the system comparing to traditional PD-based codecs. For instance,
when αv = 0.1, HPW-PSNR of the LSTM-based mathematical model is 42.5 dB, which is
higher than traditional PD-based codecs. In this case, the proposed model can not only
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reduce the velocity data transmission, but increase the transparency of the whole system.
For force data, when α f = 0.1, HPW-PSNR of the LSTM-based mathematical model is 22
dB, which is slightly smaller than PD-based codecs. The transparency of the system with
proposed LSTM-based model does not degrade much.

Comparing to results of dragging, the transmission rate of in velocity and force data is
smaller. Since the friction (normally less than 2 N) is always smaller than pressure, it makes
sense that more kinesthetic data needs to be transmitted to maintain a high transparency.

Only results from one type of environment (foam) are given in this chapter. The reason
for this is that results are similar from other textures. However, friction on the foam is
smaller than the other three textures, which can be used to compare the performance
of the proposed model under different motions. When the friction is relatively equal to
pressure, i.e., dragging on the marble surface, transmission rates of kinesthetic data can be
reduced effectively (41.1% of velocity data and 37.4% of force data) without degrading
the transparency.

To summarize, LSTM-based mathematical models can replace current PD-based codecs
at a lower transmission rate without degrading the transparency of the system.
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3.7.2 Summary

Simulation results and analysis of the proposed LSTM-based kinesthetic data reduction
techniques are given in this chapter. We use the Phantom Omni haptic device to collect
data on the virtually built environment for collecting kinesthetic data. The kinesthetic data
format and the experimental process is also given in this chapter. Subsequently, we discuss
the methodology to build LSTM networks on the master and slave side. The training
algorithm for LSTM networks is also given.

As for the result analysis, it is illustrated that LSTM-based mathematical models
perform well in both data reduction and perceptual transparency. As for velocity data
transmission, only 42.8% of data is transmitted over the network with HPW-PSNR of
42.5 dB (αv = 0.1). Comparing with the PD-based codecs, the proposed model transmits
velocity signals with a lower rate than PD-based codecs as well as with less degradation.
As for force data transmission, only 38.6% of data is transmitted over the network with
HPW-PSNR of 22 dB (α f = 0.1).Comparing with the PD-based codecs, the proposed
model is suitable for the situation of higher deadband parameters. And both mathematical
models have similar performance for maintaining transparency, while PD-based codecs
have lower degradation. Additionally, for transmitting the force feedback of dragging, a
higher packet rate is required.

To summarize, the proposed LSTM-based bilateral teleoperation system shows good
performance when dealing with a time series of data. It has a higher performance for
velocity transmission than the conventional PD-based codecs. For force transmission,
the two systems perform similarly. But the proposed model determines the transmission
status of the newly collected kinesthetic data on both master and slave sides without a
pairwise comparison. The proposed LSTM-based perceptual threshold is more practical
and maintains the transparency. Therefore, we believe it will improve the practicality of
bilateral teleoperation systems in the future.
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Chapter 4

Simulation and Performance Analysis of
Dimensionality Reduction Techniques

4.1 Introduction

The previous chapter simulated and analysed the transmitted kinesthetic data from the
proposed LSTM-based data reduction techniques. Two metrics have been given to com-
pare the proposed model with PD-based codecs and LSTM-based models proposed in
section 2.3, which are HPW-PSNR and data transmission rate. In all cases, however, two
schemes can be used to reduce the kinesthetic data transmission, one is reducing the packet
rate,and the other is lowering the size of each packet. In this section, the simulation results
of three DRTs are given, analysed and compared with each other.

There are three metrics for analysing the results, while only two are introduced in
Section 4.2, including quatitative metrics of DRTs and bits transmission. Performance
metrics of DRTs, on the other hand, assess the data in low dimensions in terms of the
preservation of global and local structure. Five metrics for measuring different DRTs are
stated, which are Continuity (CON), Trustworthiness (TRU), Relative rank error (RRE),
KL divergences, and Accuracy (ACC). Additionally, bits transmission estimates the bits to
be transmitted over the network.

Simulation results of 3 DRTs are presented and explained in Section 4.3. The data
visualisation of the force data of 2 dimensions ia also presented. It is clear that the UMAP
has a good advantage of preserving both the local and global structure of the original data.

As for Section 4.4, the performance of 3 data reconstruction techniques are given. The
transparency based on HPW-PSNR shows that both LSTM networks and PCA reconstruc-
tion techniques perform similar , and better than SAE. Therefore, a further comparison
between is given in 4.5, by comparing the transmission bits of these 2 proposed techniques
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with traditional PD-based codecs. It is thus clear that LSTM network needs less average
bits transmission.

4.2 Performance Metrics

The kinesthtic data collection has been introduced in Section 3.2. Three different types of
performance metrics are introduced in this section, which are quantitative comparison of
DRTs, transmission bits and the transparency of the reconstructed signal. While the latter,
transparency test, has been introduced in Section 3.3.1.

4.2.1 Performance Quantitative Metrics of DRTs

Five performance metrics are used for quantitative comparison [67]. A k-NN matrix and a
rank matrix are used to calculate the metrics in this simulation. The k-NN matrix contains
the sample indices (from 0 to n−1) of k-th nearest neighbour of the current sample An×k.
The rank matrix contains Rn×n the rank of each sample to sample, whereas entry Ri j gives
the rank that sample j has to i (the how many ’closest’ neighbours among j and i).

CON measures a point in terms of the preservation of k-NNs from the embedding to
the original space (layer) [68]. The greater it is, the better preservation it holds. It can be
calculated as:

CON = 1−TCON

M

∑
i=1

∑
j∈N(l)

i,k , j/∈N(l′)
i,k

(r(l
′)

i, j − k) (4.1)

TCON =
2

Mk(2M−3k−1)
(4.2)

where TCON is the normalization term, r(l
′)

i, j is the rank of x(l
′)

j in the k-NN of x(l
′)

i , M is the

size of data set, N(l)
i,k is the set of indices to the k-NNs of x(l

′)
i . k is set as 50 in this case.

Similarly, TRU is going from the input to the embedding space. It measures a point in
terms of the preservation of k-NNs from the original to embedding space [69]. It can be
calculated as:

T RU = 1−TT RU

M

∑
i=1

∑
j∈N(l′)

i,k , j/∈N(l)
i,k

(r(l)i, j − k) (4.3)

TT RU =
2

Mk(2M−3k−1)
(4.4)
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where TT RU is the normalization term, r(l)i, j is the rank of x(l)j in the k-NNs of x(l)i . The
greater, the better.

As for the difference between the embedding and input data, RRE measures the
average of changes in neighbour ranks between two spaces [68]. It calculates the changes
in neighbour rank from embedding to input space first, then the changes from input to
embedding space. The average value of them form the average change, which can be
expressed as follows:

RRE =
MR(l,l′)

k +MR(l′,l)
k

2
(4.5)

MR(l,l′)
k = TRRE

M

∑
i=1

∑
j∈N(l)

i,k

|r(l)i, j − r(l
′)

i, j |

r(l)i, j

(4.6)

MR(l′,l)
k = TRRE

M

∑
i=1

∑
j∈N(l′)

i,k

|r(l
′)

i, j − r(l)i, j |

r(l
′)

i, j

(4.7)

TRRE =
1

M ∑
k
k′=1

|M−2k′|
k′

(4.8)

where TRRE is the normalization term. As is given from the definition of RRE, the smaller
change is, the better neighbour connectivity holds.

Those aforementioned three metrics are used to measure the local neighbourhood con-
nectivity between the input and embedding space. For measuring the global connectivity, a
sum of KL divergences is used [70]. It maps the Euclidean distance between each points
to probability distance in the original space at first. Then it measures the difference of
overall probability distance between the original and embedding space. In this case, the
greater, the global connectivity it has.

It can be represented as:

D =
M

∑
i=1

M

∑
j=1

∣∣∣∣∣∣e−
∥d(l)i, j ∥

2

2σ2

∣∣∣∣∣∣ (4.9)

KL =
1
D

M

∑
i=1

M

∑
j=1

e−
∥d(l)i, j ∥

2

2σ2

∥d(l′)
i, j ∥2

2σ2 −
∥d(l)

i, j ∥2

2σ2

 (4.10)

where D is the sum of the distances mapping from Euclidean space to Gaussian space,
which transfers distance to probability. d(l)

i, j represents the Euclidean distance between
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x(l)i and x( j)
i , d(l′)

i, j is the Euclidean distance between x(l)i and x(l
′)

i , and σ2 = 0.05 in this
experiment. The greater, the better.

ACC is a support vector machines (SVM) linear classifier working in the latent space,
space, calculated as follows: (i) using 5-fold cross-validation to evaluate the performance
of the embedding results under the linear kernel SVM classifier; (ii) calculating the overall
accuracy as the average of the five test accuracy numbers. It estimates the average accuracy
between the data in input space and embedding space. The larger, the better.

4.2.2 Bits Transmission

Previous researches have illustrated that 8 important bits are enough to represent each
float kinesthtic data by performing an exclusive-or operation between the predicted and
previously predicted value [71, 72]. Under this assumption, we assume that each haptic
data is encoded to 8 bits. Therefore, we can approximately estimate the bits transmitted
over network from the following formula:

Nb = 8∗Nt (4.11)

where Nt represents the amount of data to be transmitted, and Nb is the bits transmission.
For different DRTs, the bits transmitted can be different. For instance, the transmission
bits of data processed by PCA include the real transmission data and eigenvectors, as is
given in ( 2.32).

4.3 Results on Performances of Three Dimensionality Re-
duction Techniques

As is explained in Section 2.4.2, the original position/velocity data is in a 6 dimensional
space (R6), and dimensionality reduction module assumes the intrinsic dimensionality
of position/velocity data is 3. Therefore, the dimension of the low space is (R3) for
position/velocity data. However, for 3D force data, the space of embedding is 2, which
makes it easier to present the embeddings in this thesis.

Fig. 4.1 compared the distribution of embeddings used 3 different DRTs, i.e. PCA,
SAE and UMAP. We use force data collected on marble and do the simulation. Data
points are classified into 2 categories, blue and red. Blue points represent the data to be
transmitted over network, and red points are not transmitted. The classification is based
on JND, which is also given in ( 2.2). As is shown in Fig. 4.1a& 4.1b, both PCA and
SAE cannot classify the labelled kinesthetic data well and have much overlapped data.
But UMAP retains the labels of data effectively, while preserving many details in the
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4.3 Results on Performances of Three Dimensionality Reduction Techniques

learned manifolds. This result represents that UMAP has a higher local neighbourhood
connectivity due to the consideration of k-NNs. k is the hyper-parameter defined in ( 2.39)
and ( 2.40). For each embedding, the distribution of its 50 neighbours are preserved.

(a) PCA Embedding

(b) SAE Embedding
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4.3 Results on Performances of Three Dimensionality Reduction Techniques

(c) UMAP Embedding, NN = 50

Fig. 4.1 Distribution of Embeddings of Force Data Collected on marble Generated by PCA,
SAE and UMAP

The quantitative analyses on performances of 3 DRTs for different kinesthetic data
are given in Table 4.1 and 4.2. The comparison of 3 DRTs on position/velocity data
is in Table 4.1. The original space is R6, and the embedding space is R3. All of three
dimensionality reduction techniques preserve the local connectivity from the latent to input
really well. PCA performs better in CON and TRU, while UMAP has a smaller value in
RRE. KL represents the preservation of the global structure mapping from the embedding
to input space. UMAP takes the advantage of its maintenance in global structure and has a
smaller value in KL. Furthermore, ACC of UMAP has a smaller average value in all of
four environments, which represents that it delivers the best transformation for downstream
tasks.
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Table 4.1 Quantitative comparison on three DRTs for position/velocity data

PCA SAE UMAP
Material Metric

Marble

CON 0.988 0.982 0.961
TRU 0.987 0.951 0.961
RRE 0.062 0.036 0.021
KL 0.049 0.067 0.003

ACC 0.525 0.528 0.764

Wood

CON 0.965 0.920 0.975
TRU 0.963 0.915 0.982
RRE 0.065 0.074 0.014
KL 0.038 0.027 0.003

ACC 0.506 0.648 0.654

Ceramic Tiles

CON 0.980 0.987 0.975
TRU 0.978 0.987 0.987
RRE 0.051 0.015 0.013
KL 0.025 0.025 0.001

ACC 0.581 0.616 0.689

Foam

CON 0.985 0.984 0.973
TRU 0.984 0.987 0.984
RRE 0.063 0.032 0.015
KL 0.022 0.001 0.002

ACC 0.575 0.707 0.691
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4.3 Results on Performances of Three Dimensionality Reduction Techniques

Table 4.2 Quantitative comparison on three DRTs for force data

PCA SAE UMAP
Material Metric

Marble

CON 0.989 0.988 0.940
TRU 0.950 0.953 0.945
RRE 0.036 0.033 0.040
KL 0.010 0.013 0.002

ACC 0.694 0.694 0.828

Wood

CON 0.957 0.989 0.952
TRU 0.834 0.960 0.971
RRE 0.102 0.030 0.027
KL 0.007 0.020 0.002

ACC 0.842 0.842 0.932

Ceramic Tiles

CON 0.981 0.981 0.947
TRU 0.924 0.924 0.973
RRE 0.051 0.053 0.024
KL 0.009 0.012 0.002

ACC 0.804 0.922 0.984

Foam

CON 0.964 0.982 0.952
TRU 0.812 0.931 0.956
RRE 0.110 0.048 0.028
KL 0.013 0.035 0.002

ACC 0.754 0.754 0.821

To sum up, UMAP delivers the best transformation for both position/velocity and force
data in terms of the local and global connectivity. Furthermore, UMAP is allowed to pre-
serve more details in the learned manifolds with retaining the labels of data simultaneously.
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4.4 Results on Performances of Three Data Reconstruc-
tion Techniques

HPW-PSNR is a metric of measuring the perceptual significance of the signal degradation
from weighting the difference between the original and distorted signal, which has been
given in ( 3.2- 3.4). It is introduced in measuring the performance of data reconstruction
modules by comparing the original and reconstructed data.

Fig. 4.2 compares the HPW-PSNR of three different reconstructed velocity signals
with the original data. The original data is collected when the cursor contacting with
marble. There are totally 1000 data points are used to do the simulation and test apart
from the training data. As is mentioned before, the sampling rate of the device is 1 ms,
which means all of the test data is collected within 1000ms. As is shown in Fig. 4.2a,
the overall HPW-PSNRs of PCA and UMAP are better than that in SAE. The average
value of HPW-PSNR of PCA is -5.58 dB, and average HPW-PSNR value of UMAP is
-5.53 dB. Since HPW-PSNR is a metric of transparency between the reconstructed and
original signal, both PCA and UMAP preserve the transparency of velocity signal very
well, while UMAP performs slightly better than PCA. On top of that, it is interesting to
find that the three data reconstruction techniques’ HPW-PSNRs have the same trend of
increment and decrement. In other words, the derivations of three HPW-PSNRs are quite
close. As is shown in Fig. 4.2b, in the time slot 700-1000 ms, all of the values drop from
780 ms to 850 ms and 925 ms to 950 ms. They both increase from 950 to 1000 ms. It can
be concluded that all of three data reconstruction techniques have the same tendency of
upgrading or degrading the transparency, while LSTM networks for reconstructing UMAP
data performs better than inverse PCA and SAE.

Fig. 4.3 compares the HPW-PSNRs of three different reconstructed force signals with
the original data. The original force feedback is collected when the cursor moves on
the marble. It is obvious to see that the reconstruction from UMAP embedding has the
best performance with the average HPW-PSNR of 28.58 dB. The average HPW-PSNR
of PCA is approximately equal to that in LSTM network for UMAP data reconstruction,
and the average value is 28.28 dB. However, both LSTM network and PCA reconstruction
techniques perform better than SAE.

Test results of which data collected on wood, ceramic tiles and foam have the similar
results. Therefore, both inverse PCA and LSTM-based reconstruction techniques can be
used to reconstruct the embeddings.
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(a) Time=0-1000 ms

(b) Time=700-1000 ms

Fig. 4.2 Comparison of HPW-PSNR for Velocity Signals When Contacting with the Marble
Surface, µ = 0.9, δ = 0.4 N · s/m2, α f = 0.1, k = 1, C = 1, N = 1000
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LSTM-based Models

Fig. 4.3 Comparison of HPW-PSNR for Velocity Signals When Contacting with the Marble
Surface, µ = 0.9, δ = 0.4 N · s/m2, α f = 0.1, k = 1, C = 1, N = 1000, Time=0-1000 ms

4.5 Comparison of Bits Transmission over the Network
with PD-Based Codecs and LSTM-based Models

This section compares the bits transmitted over the network when applying different
dimensionality reduction techniques on kinesthetic data with PD-based codecs and LSTM-
based models. PD-based codecs illustrate that the kinesthetic data should be transmitted
over the network when the newly collected data is outside of the deadzone of the previously
transmitted data. Therefore, the perceptual threshold is a parameter to control the bits
transmitted over the network.

We assume that each kinesthetic data sampled in 1 ms (sampling rate is 1kHz) on each
dimension is encoded to 8 bits (1 byte), and 1000 samples are transmitted at the same time.
Comparisons of transmission bits for both position/velocity and force signals are shown
in Fig. 4.4. As is given, for position/velocity data, UMAP&SAE techniques transmit the
averagely smallest data comparing with PCA and PD-based codecs. The reason for PCA
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transmits larger data is that the eigenvector ( 2.32) should be transmitted over the network
for reconstructing data. Thus, it has more data to be transmitted. Comparing to PD-based
codecs and LSTM-based models, UMAP&SAE techniques only transmit more data when
deadband parameter αv is greater than 0.1. Normally, αv is 0.1, and all of four techniques
have the similar performance, while LSTM-based models transmit least data over the
network. However, the greater deadband parameter, the more degradation of transparency
will be introduced into the system. The ideal deadband parameter is less than or equal to
0.1, and in that case, three dimensionality reduction techniques transmit much smaller data
than PD-based codecs and LSTM-based models.

For force data, all of four techniques perform similarly when α f is 0.05. With the
increase of α f , PD-based codecs and LSTM-based models transmit less data. 0.05 is a
threshold value, when α f is smaller it, three DRTs are favoured. Otherwise, LSTM-based
models transmit less data over the network.

(a) Comparison of Bits Transmitted over the Network with Traditional PD-Based Codecs and
LSTM-based Model for Position/Velocity Data
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(b) Comparison of Bits Transmitted over the Network with Traditional PD-Based Codecs and
LSTM-based Models for Force Data

Fig. 4.4 Comparison of Bits Transmitted over the Network with PD-Based Codecs and
LSTM-based Models
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4.6 Conclusions

4.6.1 Discussion

In this chapter, results of the performance of three DRTs under four types of environment
are given in the beginning. Five metrics are introduced as the basis for verification. As is
given in Table 4.1 and Table 4.2, data with best test results in the same metric for different
DRTs is highlighted in bold text. It is clear that most of values in UMAP are highlighted
for both position/velocity and force signals, which indicates that UMAP can not only
preserve the global structure of original data, but also has higher accuracy. Simultaneously,
PCA and SAE have similar results, which is consistent with the observation of three DRTs
shown in Fig. 4.1. Additionally, UMAP performs better under smooth surfaces (lower µ)
since collected position/velocity and force data fluctuations are not obvious. When tapping
on marble, force data varies in a larger range, which complicates the global structure of
data.

Results of the performance of three data reconstruction techniques are given in sec-
tion 4.4. As for transparency test, LSTM-based models for reconstructing UMAP embed-
dings and inverse PCA preserve higher transparency than SAE for both position/velocity
and force signals. Only data collected on marble surfaces is presented in this chapter, since
UMAP performs worst on marble compared to the other three textures. However, Fig. 4.2
has shown that UMAP embeddings can be well reconstructed by LSTM network comparing
to the other two data reconstruction techniques. In fact, reconstructing UMAP embeddings
on other textures maintains higher transparency (average 3 dB in HPW-PSNR).

Comparison of transmission bits over the network with PD-based codecs and LSTM-
based models is given in section 4.5. Generally, those techniques with fewer transmission
bits are preferred. Both PD-based codecs and LSTM-mathematical models are mathe-
matical models which help bilateral teleoperation systems selectively transmit data. On
the contrary, DRTs aim at reducing transmission bits of each collected data. It is worth
discussing how we choose between these two ideas. As is shown in Fig. 4.4, there
exists a threshold that divides the selection of DRTs or mathematical models. As for
position/velocity data, when αv is less than 0.1, three DRTs are recommended. More
specifically, UMAP should be selected since it transmits less data than PCA, and maintains
higher transparency than SAE. Otherwise, when αv is greater than or equal to 0.1, LSTM-
based models should be selected as it transmits less data. Thus, the selection threshold for
position/velocity data is 0.1. Similarly, we can find the selection threshold for force data is
0.05. UMAP is preferred when α f is less than 0.05. When α f is equal to 0.05, two types
of techniques have similar results, while PD-based codecs transmit least data. When α f is

107



4.6 Conclusions

greater than 0.05, LSTM-based models are advised to reduce force data transmission over
the network.

To summarize, DRTs can reduce kinesthetic data transmission over the network ef-
fetively without degrading the transparency of the system. Among the proposed three
DRTs, UMAP outperforms the other two techniques in preservation of global and local
structure of the original data, and maintains good transparency in its corresponding data
reconstruction technique. When DRTs compare to PD-based codecs and LSTM-based
models, a selection of two types of techniques is required. In general, when the deadband
parameter is relatively high, LSTM-based models are recommended. When it is small,
UMAP can be a good choice.

4.6.2 Summary

In this chapter, we discussed the metrics for the performance of dimensionality reduction
(CON, TRU, RRE, KL ACC) and data reconstruction techniques (HPW-PSNR).

As for the result analysis, it is found that UMAP delivers the best transformation for
both position/velocity and force data from the angle of quantitative comparison. UMAP
has an average greater value in TRU, ACC, and an average smaller value KL and ACC.
Thus, UMAP performs well in both local and global structure, and has the best accuracy
out of three dimensionality reduction techniques. Comparing with the data reconstruction
techniques, both PCA and UMAP perform better than SAE, and the average values of
HPW-PSNR for PCA and UMAP are close. Additionally, all of three data reconstruction
techniques have the same tendency of upgrading or degrading the transparency when
dealing with the velocity signal.

Compared to the conventional PD-based codecs and LSTM-based model, all of three
proposed dimensionality reduction techniques can transmit smaller data with lower degra-
dation when deadband parameter is small. What’s more, UMAP and SAE transmit smaller
data bits than PCA since they do not need to transmit information for helping reconstructing
data.

To summarize, the proposed bilateral teleoperation system with UMAP dimensionality
reduction and data reconstruction modules shows good performance compared with the
other two techniques. It has higher performance for preserving both local and global
structure of the original data with learned manifolds. As for transparency, the reconstructed
values have a higher HPW-PSNR than others. As for bit transmission, it transmits the
smallest amount of the data over the network. We believe it has a bright future for reducing
the size of kinesthetic data transmission in the future.
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Chapter 5

Simulation and Performance Analysis of
Unsupervised Clustering Techniques and
GBDT-based Force Predictive Module

5.1 Introduction

Simulation results and performance analysis of two unsupervised clustering techniques and
a GBDT-based force feedback predictive technique are presented in this chapter. Results
of unsupervised clustering techniques for kinesthetic data reduction can be viewed as an
extension of proposed LSTM-based models in Chapter 3. More specifically, clustering
techniques ensure samples in the same cluster are more similar than those which in other
clusters. Furthermore, the clusters are well separated from each other. Also, results of
proposed GRDT-based predictive coding are also given to refine kinesthetic data reduction
models.

Three metrics for analysing the performance of unsupervised clustering techniques are
introduced in Section 5.2, which are Silhouette coefficient (SC), Calinski-Harabasz index
(CHI) and Davies-Bouldin index (DBI). They measure similarities of points in one cluster,
and separations amongst different clusters. Then the optimal number of cluster K can be
selected based on these metrics. In addition, the elbow method is introduced to estimate
the range of optimal number of clusters K for 2 clustering techniques.

In addition, we compare the proposed GBDT-based predictive technique with PD-
based codecs in three metrics, including transparency based on HPW-PSNR, predictive
rate and number of model updates. HPW-PSNR has been introduced in Section 3.3.1. The
predictive rate is a subjective metric which justifies whether thepredictive force feedback
is the feeling same with real one to human OP. Thus, Weber’s law of JND is used for the
subjective test. The number of model updates measures the stability of the system. Model
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updates will happen when the difference between predictive and real force feedback can
be felt by users. The new model will be sent over the network from the slave to master
side. Generally, a system requiring fewer model updates is more stable.

Then simulation results of two clustering techniques with different number of clusters
are presented in Section 5.3. First, we use the elbow method to find the range of optimal K
among the 2 clustering techniques. Then, optimal Ks are determined by looking into how
values of three metrics change with K.

In Section 5.4, clustering techniques for kinesthetic data reduction are compared with
LSTM-based models and PD-based codec. All of these techniques are tested under the same
dataset, which is collected when tapping on the foam surface within 500 ms. LSTM-based
models have a higher HPW-PSNR when αv is 0.1. Even though, clustering techniques have
higher HPW-PSNRs for force feedback. As for transmission rate, LSTM-based models
are more suitable for the situation with a higher deadband parameter, while unsupervised
clusterings can effectively reduce the transmission rate when deadband parameter is low.

Simulation results and performance analysis of GBDT-based force predictive technique
are given in Section 5.5. Compared with traditional ZOH and FOLP predictive schemes,
the proposed model maintains higher transparency and requires fewer model updates,
which shows that the GBDT predictive scheme is bette in both transparency and stability.

5.2 Performance Metrics

Three metrics for measuring the performance of two unsupervised clustering techniques
are discussed in Section 5.2.1. They mainly focus on measure the internal relationship (the
relationship between one object and its cluster) and external relationship (the relationship
between one cluster with other clusters). Elbow method is also introduced in this section. In
Section 5.2.2, two more metrics are introduced to test the proposed GBDT-based predictive
scheme. A subjective test model based on Weber’s law is given. Also, the amount of model
updates is another indicator to test the stability of the whole system.

5.2.1 Three Metrics for Analysing Unsupervised Clustering Tech-
niques

From kinesthetic data reduction techniques based on the unsupervised clustering proposed
in Section 2.5, the number of K in k-means clustering is normally given artificially. As for
hierarchical clustering, pairs of clusters are merged as one moves up until only 1 cluster
exists. However, it is so impractical to classify kinesthetic data to 1 cluster that a number
of cluster k should be predefined before hierarchical clustering as well. Therefore, metrics
for selecting the optimal K are given in this section.
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Silhouette coefficient (SC) measures how similar an object is to its own cluster (co-
hesion) compared to other clusters (separation) [82]. The score is bounded between
-1 for incorrect clustering and +1 for highly dense clustering. Scores around 0 indicate
overlapping clusters. For all the points i ∈Ci, the average dissimilarity of i to all other
objects of Ci can be defined as:

a(i) =
1

NCi−1 ∑
j∈Ci,i̸= j

d(i, j) (5.1)

where NCi is the number of points belonging to cluster Ci, and d(i, j) is the distance
between data points i and j in the cluster Ci. a(i) can be interpreted as a metric of how
well i is assigned to its cluster, the smaller the value, the better the assignment.

Let us consider another cluster C j which is different from Ci, then the average dissimi-
larity of i to all other objects of C j can be defined as:

d(i,C j) =
1

NC j
∑
j∈C j

d(i, j) (5.2)

where NC j is the number of points belonging to cluster C j, and d(i, j) is the distance
between data points i in the cluster Ci and j in the cluster C j.

After computing d(i,C j) for all clusters C j ̸=Ci, we select the smallest of those numbers
and denote it by:

b(i) = min
C j ̸=Ci

d(i,C j) (5.3)

In this case, the cluster C j is termed the neighbour of object i, for which this minimum
is attained (that is, b(i) = d(i,C j)). b(i) can be interpreted as a metric of how dissimilar i
is assigned to its neighbour, the greater the value, the better the assignment.

Then the Silhouette value of 1 data point i can be defined as:

s(i) =


1− a(i)

b(i)
,if a(i)< b(i)

0 ,if a(i) = b(i)

a(i)
b(i)
−1 ,if a(i)> b(i)

(5.4)

We can even write this in 1 formula:

s(i) =
b(i)−a(i)

max{a(i),b(i)}
(5.5)

The mean value of all s(i) in a cluster measures how tightly grouped all the points in
the cluster are. Meanwhile, the mean s(i) over all data points measures how appropriately
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that the data has been clustered. Thus, the term SC has been introduced for maximizing
the mean s(i) over all data of the dataset [83], which can be represented as:

SC = max
k

s̃(k) (5.6)

where k is a specific number of clusters, and s̃(k) represents the mean s(i) over all data of
the entire dataset when k clusters are given.

CHI can be used to evaluate the model without knowing the underlying ground-truth
labels, where the quantities and characteristics inherent to the dataset are used to verify
how well the clustering works [84]. It measures how similar an object is to its own cluster
compared to other clusters. The similarity of a point to its own cluster, termed as cohesion,
is estimated by distances from data points in a cluster to its cluster centroid, which can be
calculated as:

Co =
∑

K
k=1 ∑i∈Ck

d(i,ck)

N−K
(5.7)

where Ck is the k-th cluster, ck is the centroid of Ck, N is the total number of dataset, and K
is the number of cluster. Co can be interpreted as a metric of how similar the object is to
its cluster, the smaller the value, the dense it is.

As opposed to coherence, separation is estimated based on the distance of cluster
centroids from the global centroid, which can be represented as:

Se =
∑

K
k=1 nk ·d(c,ck)

K−1
(5.8)

where c is the global centroid, ck is the centroid of Ck, and K is the number of cluster. Se
can be interpreted as an indicator of the degree of segregation between each cluster, the
greater the value, the disconnection it is.

Therefore, CHI is given as:

CHI =
Se
Co

(5.9)

Higher value of CHI means the clusters are dense and well separated.
DBI is a method used for measuring the validity of clustering [85]. Measurement with

DBI is maximizing inter-cluster distances and minimizing intra-cluster distances amongst
points. The maximum of inter-cluster distance means difference between each cluster
is more clear. Simultaneously, the minimum of intra-cluster distance indicates that each
object in the cluster has a high level of similarity.

Separation of objects in a cluster is denoted as the average distance from data points to
the centroid, which can be calculated as:
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Si =
1

NCi
∑
j∈Ci

d( j,ci) (5.10)

where NCi is the number of points in the cluster Ci, ci is the centroid respectively, j
represents the j-th data point in the cluster, and d( j,ci) means the distance between j and
centroid ci.

Additionally, the distance between cluster Ci and C j denotes the separation of 2 clusters,
which can be calculated as:

Mi, j = d(ci,c j) (5.11)

Assuming Ri, j measures te performance of the clustering scheme. This metric, by
definition has to account for the separation Mi, j between the i-th and j-th cluster, which
ideally has to be as large as possible. Moreover, Si denotes the within cluster scatter for
cluster i, which has to be as low as possible. Hence, Ri, j can be constructed as:

Ri, j =
Si +S j

Mi, j
(5.12)

where Ri, j is a non-negative value.
Then DBI can be given by given the maximum Ri, j of the cluster Ci as:

DBI =
1
k

k

∑
i=1

max
i̸= j

Ri, j (5.13)

where k is the number of cluster.
Last but not least, elbow method is introduced to estimate the range of number of

clusters k. The method consists of plotting inertia (the sum of squared distances of samples
to their closest centroid) as a function of the number of clusters and choosing the elbow of
the curve as the number of clusters to use [86]. The value of inertia in elbow method can
be calculated as:

I =
N

∑
i=0

min
c j∈C

d(xi,c j)
2 (5.14)

An elbow plot shows at what value of k, the distance between the centroid of a cluster
and the other data points in the cluster is at its lowest. It is a heuristic to help us determine
the range of number of clusters.
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5.2.2 Predictive Rate

We define the prediction is successful when the human cannot notice the difference between
the predictive and actual force feedback, which obeys Weber’s law of JND. Otherwise, it
is a wrong prediction.

Therefore, the predictive rate can be expressed as follow:

R =
Np

N
×100% (5.15)

If ∥F⃗n− ⃗̂Fn∥ ≤ α f · ∥⃗̂Fn∥ Np plus 1

Else Np plus 0
(5.16)

where F⃗n is the n-th predictive force vector, and ⃗̂Fn is the reference force vector collected by
the sensor. α f is the noticeable threshold for force, which is 10% (8-12% in the Table 2.1).
Np represents the number of predicted samples which are indistinguishable for human from
the reference force feedback for the human OP, while N is the total amount of reference
force feedback collected by the sensor. The value of Np increases each time by 1 if the
predicted and real data is imperceptible. It is a subjective test which justifies whether the
predictive force feedback is the feeling same with real one to human OP.

5.2.3 Number of Model Updates

From the previous description of a bilateral teleoperation system with predictive schemes
in Section 2.5.2, model update control modules are required to synchronize the force
predictive module once the predicted value has a intolerable variance with the real one.

However, there is no doubt that the transmission of new predictive model via backward
channel can increase the time delay. On top of that, frequent model updates can make
the system unstable. Therefore, the fewer model updates, the better stability and less
transmission though the network.

The model update module triggers the updates by obeying ( 2.66). As long as the
difference between the predicted and real force feedback is perceivable to human OP, a
newly obtained model needs to be transmitted from the TOP to OP side. There are 2
predictive schemes in comparison, including proposed GBDT-based predictive scheme
and PD-based codecs. Both numbers of model updates are counted during the simulation
under different noticeable threshold for force α f .
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5.3 Determination of Number of Clusters in Unsupervised
Clustering Techniques

In this section, the kinesthetic data used is the same as in the previous Section 3.4& 3.5,
which is collected when tapping on the foam surface within 500 ms. Thus, a dataset
contains 500 sets of velocity data and another 500 sets of force data in R3 is used.

Fig. 5.1a and Fig. 5.1b show how inertia varies with the number of clusters K as it
grows. Inertia is the sum of squared distances of samples to their closest cluster centre.
In general, inertia decreases with an unstable slope. The elbow refers to a turning point
before which the slope decreases dramatically and after which the slope drops gently. For
both velocity and force data, inertia drops dramatically when K lies in the range 1 to 5.
Also, it drops relatively slowly when K is greater than 15. Thus, in this case, both optimal
Ks for velocity and force data in k-means clustering are in the scope of 5 to 15.

Nonetheless, the optimal Ks in hierarchical clustering are even greater according to the
figures depicted in Fig. 5.2a& 5.2b. Comparing to Fig. 5.1a and Fig. 5.1b, average inertia
of hierarchical clustering is greater than that of k-means clustering. Also, the downtrend
of inertia in hierarchical clustering is not as smooth as that in k-means clustering. For
velocity data in hierarchical clustering, we can subjectively determine that the optimal K
is 16 for which satisfies all the requirements of an elbow. Furthermore, the optimal K for
force data should be the point at which has the most significant change in slopes. That is,
K is 13. However, the aforementioned two elbow points are given subjectively, thus an
unbiased conclusion can be drawn from figures that both optimal Ks for velocity and force
data in hierarchy clustering range from 10 to 20.
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5.3 Determination of Number of Clusters in Unsupervised Clustering Techniques

(a) Elbow Method for Velocity Data in K-means Clustering

(b) Elbow Method for Force Data in K-means Clustering

Fig. 5.1 Elbow Method in K-means Clustering
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(a) Elbow Method for Velocity Data in Hierarchical Clustering

(b) Elbow Method for Force Data in Hierarchical Clustering

Fig. 5.2 Elbow Method in Hierarchical Clustering
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5.3 Determination of Number of Clusters in Unsupervised Clustering Techniques

(a) Three Metrics to Determine the Optimal K for Velocity Data in K-means Clustering

(b) Three Metrics to Determine the Optimal K for Force Data in K-means Clustering

Fig. 5.3 Three Metrics to Determine the Optimal K in K-means Clustering
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(a) Three Metrics to Determine the Optimal K for Velocity Data in Hierarchical Clustering

(b) Three Metrics to Determine the Optimal K for Force Data in Hierarchical Clustering

Fig. 5.4 Three Metrics to Determine the Optimal K in Hierarchical Clustering
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5.4 Comparison of Unsupervised Clustering Techniques, PD-based Codecs and
LSTM-based Kinesthetic Data Reduction Techniques

After giving a fuzzy range of optimal K for two unsupervised clustering techniques,
an accurate K can be determined under the judgement of three metrics (SC, DBI, and
CHI). As is mentioned in Section 5.2, the preferred number of clusters K should have a
lower value of DBI, and higher values of both SC and CHI, contributing to well separated
clusters in which objects are highly similar. Fig. 5.3a shows how values of three metrics
vary with the number of clusters K. The maximum of SC and CHI, and the minimum of
DBI are all marked in red. Therefore, for velocity data in k-means clustering, the optimal
K should be 6. Similarly, the optimal K for force data in k-means clustering is also 7 even
if the minimum of DBI is at 6. The difference between DBIs at 7 and 6 is 0.008, which is
too small to make a big difference.

When it comes to hierarchical clustering, the optimal K for velocity data is hard to
determine. As is depicted in Fig. 5.4a, three maximum and minimum distribute at three
different Ks. What’s more, values of three metrics fluctuate rapidly. Therefore, we choose
K = 10 as it creates minimum of clusters. For force data, the optimal K is 14 since the
value of SC changes steadily, and the difference between CHIs at 13 and 14 is 87.69, which
is small enough to be noticeable.

To sum up, the optimal K for two unsupervised clustering techniques are estimated by
elbow method at first. Then based on three metrics, the accurate optimal K for different
types of kinesthetic used in two techniques can be determined.

5.4 Comparison of Unsupervised Clustering Techniques,
PD-based Codecs and LSTM-based Kinesthetic Data
Reduction Techniques

This section compares the performance of unsupervised clustering techniques with tradi-
tional PD-based codecs and proposed LSTM-based kinesthetic data reduction techniques.
Only data in a part of clusters is transmitted over the network when unsupervised clustering
techniques are applied. Specifically, clusters hold maximum number of data are selected to
be transmitted. Otherwise, only centroids of other clusters are transmitted once. Concretely,
for k-means clustering techniques, top two clusters with the maximum size of data are
transmitted. Simultaneously, four clusters of data classified by the hierarchical clustering
is transmitted.

In the beginning, HPW-PSNRs of four kinesthetic data reduction techniques are com-
pared in Fig. 5.5& 5.6. For velocity data, the LSTM-based data reduction model perform
better than the other three techniques. It has nearly 3 dB greater than PD-based codecs.
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LSTM-based Kinesthetic Data Reduction Techniques

Meanwhile, k-means clustering, hierarchical clustering and PD-based codecs have similar
HPW-PSNR, which approximately equal to 39 dB.

However, unsupervised clustering techniques perform better when dealing with force
data. As is shown in Fig. 5.6, k-means has the highest value of HPW-PSNR at average
30 dB, which is 6 dB greater than PD-based codecs and 8 dB greater than LSTM-based
models. We can conclude that LSTM networks are suitable for reducing velocity data,
while unsupervised clusterings can be applied in force data.

Comparison of the transmission rate can be found in Fig. 5.7. As is shown in Fig. 5.7a,
the transmission rate of clustering techniques is a constant when the number of clusters
K and the number of top clusters kp&k f to be transmitted the network are given. In this
case, 40.6% of velocity signals is transmitted when using hierarchical clustering, and
37.0% for k-means clustering. On top of that, for velocity signals, Kkm is 6, Khie is 10,
TCkm is 2 and TChie is 4. Both unsupervised clusterings have similar rates of transmission.
Comparing with LSTM networks, less data requires to be transmitted when αv is from 0 to
0.1. Otherwise, clusterings perform better than traditional PD-based codecs except αv is
greater than 0.2.

We can draw similar conclusions when analysing the transmission rate for force signals.
In this case, Kkm is 7, Khie is 14, TCkm is 2 and TChie is 4. Comparing with LSTM-based
models and PD-based codecs, unsupervised clustering techniques have lower rates when
α f is less than or equal to 0.1. In this case, 36.8% of force signals is transmitted when
using hierarchical clustering, and 35.2% for k-means clustering. As long as α f is greater
than 0.1, LSTM-based models is supposed to be the first choice for reducing force data
transmission.

To put it concisely, unsupervised clustering techniques are suitable for the situation
of lower deadband parameters. In other words, when the difference between real and
predicted stimuli is easy to be observed by users, unsupervised clustering techniques can
be selected. For the transparency of the whole system is hard to degrade, i.e. a higher
deadband parameter, LSTM-based models can be used.
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5.4 Comparison of Unsupervised Clustering Techniques, PD-based Codecs and
LSTM-based Kinesthetic Data Reduction Techniques

Fig. 5.5 Comparison of HPW-PSNR for Force Signals When Tapping on the Foam Surface,
Timestep=100 ms, µ = 0.8, δ = 0.9 N · s/m2, αv = 0.1, k = 1, C = 1, N = 500
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5.4 Comparison of Unsupervised Clustering Techniques, PD-based Codecs and
LSTM-based Kinesthetic Data Reduction Techniques

Fig. 5.6 Comparison of HPW-PSNR for Force Signals When Tapping on the Foam Surface,
Timestep=100 ms, µ = 0.8, δ = 0.9 N · s/m2, αv = 0.1, k = 1, C = 1, N = 500
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5.4 Comparison of Unsupervised Clustering Techniques, PD-based Codecs and
LSTM-based Kinesthetic Data Reduction Techniques

(a) Comparison of Transmission Rate (Percentage) for Velocity Signals When Tapping on the Foam
Surface, Timestep=100 ms, µ = 0.8, Kkm = 6, Khie = 10, TCkm = 2, TChie = 4

(b) Comparison of Transmission Rate (Percentage) for Force Signals When Tapping on the Foam
Surface, Timestep=100 ms, µ = 0.8, Kkm = 7, Khie = 14, TCkm = 2, TChie = 4

Fig. 5.7 Comparison of Transmission Rate (Percentage) When Tapping on the Foam
Surface
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5.5 Transparency Comparison of GBDT-Based Predictive
Scheme, ZOH and FOLP Predictors

Transparency always reflects the fidelity of the predictive scheme. A predictive scheme
with higher transparency can not only reduce the overall latency effectively, but increase
the immersion of the users. In order to test the performance of the proposed scheme, we use
the collected force data when tapping on the marble surface. There are totally 1000 sets of
force data are used in this section. Before the testing process, a force data set of size 20000
has been used to train the GBDT model. After training 5000 epochs, the overall loss (MSE)
is less than 10−3. In this section, the proposed GBDT-based force predictive technique is
compared transparency with the traditional ZOH and FOLP predictors. HPW-PSNR and
predictive rate are used to measure the transparency. Moreover, whether the difference
between the predicted and real data is noticeable to the human OP is also discussed.
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5.5 Transparency Comparison of GBDT-Based Predictive Scheme, ZOH and FOLP
Predictors

(a) Time=0-1000 ms

(b) Time=150-400 ms

Fig. 5.8 Comparison of Real and ZOH-predicted Force Feedback When Tapping on the
Marble Surface, α f = 0.1
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5.5 Transparency Comparison of GBDT-Based Predictive Scheme, ZOH and FOLP
Predictors

(a) Time=0-1000 ms

(b) Time=150-400 ms

Fig. 5.9 Comparison of Real and FOLP-predicted Force Feedback (N) When Tapping on
the Marble Surface, α f = 0.1
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5.5 Transparency Comparison of GBDT-Based Predictive Scheme, ZOH and FOLP
Predictors

(a) Time=0-1000 ms

(b) Time=150-400 ms

Fig. 5.10 Comparison of Real and GBDT-predicted Force Feedback (N) When Tapping on
the Marble Surface, ne=1000, lr=0.01, α f = 0.1
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Predictors

As is shown in Fig. 5.8 to Fig. 5.10, comparisons with real and predicted force feed-
back obtained from three predictive schemes are given. The previous explanation in
Section 2.2.3 has illustrated that, when the difference between the predicted and real
value has a noticeable influence to users, predictive schemes will trigger model updates.
Therefore, it can be found that the trend of predicted data follows the real one in Fig. 5.8&
to Fig. 5.10. As is shown in Fig. 5.8b,the predicted force feedback is stepped, as the
predicted force back follows the last received data in ZOH scheme. Also, the predicted
force feedback from FOLP is linear in Fig. 5.9b. However, in Fig. 5.10b, the predicted
force feedback from the GBDT model is jagged since each prediction is from a leaf node
of a decision tree. The value of each node is fixed. On top of that, trends of both real and
predicted values are mostly the same, which benefits from trained GBDT models on both
OP and TOP sides before transmission.

Furthermore, the predictive rate of GBDT-predicted force is higher than the other two
schemes. In this case, we assume the noticeable threshold for force α f is 0.1, and the
corresponding predictive rate of GBDT models is 92.3%, 76.0% for ZOH schemes, and
83.4% for FOLP. Therefore, from the perspective of subjective tests, the GBDT-based
predictive scheme remains the highest quality of force feedback when predictive modules
are applied in bilateral teleoperation systems.

Another figure for describing the transparency of three different predictive schemes
is given in Fig. 5.11. The average HPW-PSNR of GBDT-predicted data is -21.2 dB,
which is higher than the other two schemes. The average HPW-PSNR of data predicted
by ZOH scheme is -24.50 dB, and -23.48 dB for FOLP scheme. What’s more, all of 3
predictive schemes have distortions in the time 0 to 400 ms. However, the distortion of
GBDT-predicted values become smoother after 400 ms, which follows the predicted force
simulation in Fig. 5.10b. In other words, GBDT predictive scheme can preserve better
transparency than the other two techniques in terms of predictive rate and HPW-PSNR.

Numbers of model updates for 3 different predictive schemes are depicted in Fig. 5.12.
The number of model updates reflects the stability of the entire system. The fewer model
updates, the more stable the system. Model updates happen when the difference between
the predicted and real value is perceivable to the user. Therefore, satisfactory predictive
schemes normally require fewer model updates, which means less data to be transmitted via
the backward channel. At the default perceptual threshold of α f = 0.1, the GBDT model
needs 77 model updates, while 171 times in FOLP schemes and 271 in ZOH schemes. All
of them can reduce the transmitted packets from the TOP to OP. As is concerned, only 77
model updates in GBDT, 171 in FOLP, and 271 in ZOH which are lower than 1000 (the
original amount of data packets transmitted in 1000 ms). Instead, it is obvious that the
number of updates for GBDT scheme is smaller than the other two schemes in terms of
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different deadband parameters. FOLP scheme is second stable, while ZOH scheme is the
most unstable predictive technique for bilateral teleoperation systems.

To summarize, the proposed GBDT-based predictive scheme can hold a higher accuracy
pf prediction than the other two traditional schemes from two aspects: i) predictive rate; ii)
transparency. Meanwhile, model updates of GBDT model is fewer, which guarantees the
stability of the whole system.

Fig. 5.11 Comparison of HPW-PSNR for Predicted Force Signals, α f = 0.1, k = 1, C = 1,
N = 1000, Time=0-1000 ms

130



5.5 Transparency Comparison of GBDT-Based Predictive Scheme, ZOH and FOLP
Predictors

Fig. 5.12 Comparison of Model Updates for Force Signals
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5.6 Conclusions

5.6.1 Discussion

In this chapter, results of the performance of two unsupervised clustering techniques are
given in the first part. Also, further comparison with PD-based codecs and proposed
LSTM-based mathematical model is also given. Kinesthetic data reduction module with
unsupervised clustering techniques can be viewed as selecting a subset of data in clusters for
transmission, and replacing the rest of the data with centroids of other clusters. Therefore,
unsupervised clustering techniques are similar to LSTM-based models, they both use
mathematical models to selectively transmit data in bilateral teleoperation systems.

The first step of realizing unsupervised clustering techniques is to find the optimal
number of clusters K. Therefore, elbow method is introduced by finding a turning point
of inertia, before which the slope decreases dramatically and after which the slope drops
gently. Then, approximate ranges for two unsupervised clustering techniques can be
determined. However, in Fig. 5.1 and Fig. 5.2, we can see that the average inertia of
hierarchical clustering is higher than that of k-means clustering, and the slope of inertia of
hierarchical clustering is not as smooth as that of k-means clustering. Thus, the range of K
of hierarchical clustering is slightly greater.

Based on the obtained ranges, three metrics, i.e., CHI, SC and DBI, are used to
determine the accurate K. The optimal values of these metrics are highlighted in red in
Fig. 5.3 and Fig. 5.4. For k-means clustering, it is obvious that K for velocity data is 6,
and 7 for force data. For hierarchical clustering, values of three metrics vary a lot with K,
which is caused by the rugged slope of inertia. We must find the value of K corresponding
to the closest values of the best value of the three indicators. Thus, 10 is selected as the K
for velocity data in hierarchical clustering, and 14 for force data.

Furthermore, comparison of unsupervised clustering techniques, PD-based codecs and
LSTM-based models is given. PD-based codecs and LSTM-based model can determine the
transmission status of each data as long as it is collected, however, like DRTs, unsupervised
clustering techniques can only determine the transmission status after collecting a certain
amount of data (M = 1000). From the results, we can see that the average HPW-PSNR
of LSTM-based mathematical model is 42.3 dB, which is approximately 3 dB higher
than that of the other three techniques. The reason for that can be interpreted as the
unsupervised clustering techniques can introduce more bias when dealing with high-
frequency signals. Nevertheless, when dealing with low-frequency signals, i.e., force
feedback, unsupervised clustering techniques perform better LSTM-based models and
PD-based codes. When it comes to the transmission rate, both αv = 0.1 and α f = 0.1
can be regarded as critical points for judging the separation of clustering techniques and

132



5.6 Conclusions

the performance of mathematical models. When deadband parameter is greater than 0.1,
LSTM-based mathematical model is preferred, otherwise, we can choose unsupervised
clusterings. Both k-means and hierarchical clusterings have similar performances in terms
of maintaining the transparency and data transmission rate.

The second part in this chapter analyses the performances of the proposed GBDT-based
predictive scheme by comparing it with ZOH and FOLP schemes in two aspects, i)the
overall predictive rate; ii)the amount of model updates. Comparing with two traditional
predictive schemes, GBDT-based scheme can increase the predictive rate effectively and
reduce the amount of model updates dramatically. The size of training data is 20000,
which is much bigger than the testing data size. Thus, compared to 76.0% predictive
rate for ZOH scheme 83.4% for FOLP, the overall predictive rate of the GBDT model is
92.3%, representing the GBDT-based predictive scheme remains the highest quality of
force in bilateral teleoperation systems. Besides, the highest HPW-PSNR of GBDT-based
predictive scheme also supports the above point.

As for the amount of model updates, GBDT-based predictive schemes also show good
performance in maintaining the stability of the whole system. Traditional ZOH and FOLP
schemes require far more model updates than GBDT-based schemes. This is because
GBDT-based schemes are trained before testing, and many potential model updates occur
during training. Thus, as long as a well-trained GBDT-based predictive model is derived,
its performance will far exceed that of traditional ZOH and FOLP schemes. However, a
large kinesthetic dataset is required prior to training.

5.6.2 Summary

In this chapter, we analysed two unsupervised clustering techniques in terms of trans-
parency and transmission rate. Also, we discussed three metrics to analyse the performance
of clustering techniques, which are SC, CHI and DBI.

As a result, by using the elbow method and comparing 3 metrics at different number of
clusters K, the optimal K for velocity data in k-means clustering is 6, and K is 7 for force
data. When it comes to hierarchical clustering, the optimal K for velocity data is 10, and K
is 14 for force data.

Compared to LSTM-based models and PD-based codecs, clustering techniques have
higher HPW-PSNRs for force feedback when α f = 0.1. However, the LSTM-based model
has higher HPW-PSNR when dealing with velocity data, and αv = 0.1. In terms of the
transmission rate, the LSTM-based model is more suitable for the case of high deadband
parameters, while unsupervised clusterings can effectively reduce the transfer rate when
the deadband parameters are low.
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In addition, three different predictive techniques are compared in terms of transparency
(predictive rate and HPW-PSNR) and stability (number of model updates). GBDT is a
machine learning-based algorithm which uses a group of boosting function to find the
mathematical relationship between the force feedback and position through classification.

We have found that GBDT schemes perform better than traditional ZOH and FOLP
schemes. From the angle of transparency, GBDT predictive schemes have a 8.9% higher
predictive rate than FOLP, and 16.3% higher than ZOH when α f = 0.1. What’s more, the
average HPW-PSNR for GBDT schemes is -21.2 dB, which is 3.3 dB greater than ZOH,
and 2.28 dB greater than FOLP. When it comes to the number of updates, the number of
model updates for GBDT schemes is only a half of the FOLP, while a third of the ZOH,
which means that GBDT schemes are much more stable than the other 3 schemes.

To summarize, the proposed bilateral teleoperation system with unsupervised clustering
techniques can shows good performance when dealing with velocity and force data as
long as the optimal number of clusters K is determined. As for transparency, clustering
techniques have a higher HPW-PSNR than LSTM-based models and PD-based codecs in
terms of force data. But for velocity data, LSTM-based models have a higher HPW-PSNR
than clustering techniques and PD-based codec. As for transmission rate, the proposed
bilateral teleoperation system with unsupervised clustering techniques can effectively
reduce the transmission rate when deadband parameter is lower than 0.1. Therefore, instead
of applying LSTM-based models, unsupervised clustering kinesthetic data reduction
techniques can be applied in the situation of requiring higher transparency.

Simultaneously, the proposed bilateral teleoperation system with GBDT predictive
schemes has higher performance for preserving the transparency and stability. The GBDT
model is the most popular predictive model in the industry, and it is employed on the haptic
communication system that can not only reduce the transmitted packets but enhance the
transparency in the whole system.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

It was the aim of this thesis to pose and answer many unsolved questions relating to
kinesthetic data reduction techniques in bilateral teleoperation systems. As with any
scientific work, it has brought up more questions than is has solved, some of which are
illuminated below. Before that, however, contributions of the thesis are glued together to
give a better picture of the choice of the research conducted.

In this thesis, the idea of kinesthtic data reduction in bilateral teleoperation systems
is introduced, thereby various machine learning algorithms are applied to the selective
transmission or downscaling of data size. It has been demonstrated that such ideas can
effectively reduce the kinesthetic data transmission over the network without significant
loss of transparency. The predictive scheme has also been improved by introducing GBDT
to derive a mathematical model. Thus, the performances of both data reduction and
predictive modules have been improved dramatically.

Bilateral teleoperation systems with kinesthetic data reduction and predictive modules
for achieving the 1-ms challenge in haptic communications are proposed in Chapter 2. It
has been reiterated that the instability due to the transmission delay in bilateral teleoperation
systems, proposing ideas to reduce the transmission delay is appropriate. Thus, the idea of
kinesthetic data reduction techniques have been proposed. Consecutive analysis throughout
the thesis therefore distinguished between three different data reduction techniques and
one predictive scheme.

Although the topic of PD-based codecs has been proposed for kinesthetic data reduction,
novel techniques based on machine learning algorithms have been obtained in Chapter 2.
Both LSTM-based mathematical model and unsupervised clusterings reduce kinesthetic
data transmission by selectively transmitting data. However, LSTM network is a supervised
learning which requires output labels during the training process. Unsupervised clusterings
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can train the model without any labels. Besides, DRTs can reduce the size of data
transmission each time, unlike selective transfers above. For increasing the predictive rate,
GBDT-based predictive scheme has been proposed, which can be derived by training a
large amount of kinesthetic data.

Simulation results and analysis of the proposed LSTM-based kinesthetic data reduction
techniques are given in Chapter 3. We use the Phantom Omni haptic device to collect
data on the virtually built environment for collecting kinesthetic data. The kinesthetic
data format and the experimental process is also given in this chapter. As for the result
analysis, it is illustrated that LSTM-based mathematical models perform well in both data
reduction and perceptual transparency. Compared to the PD-based codecs, LSTM-based
model transmits velocity/force signals with a lower rate than PD-based codecs as well
as with less degradation. And both mathematical models have similar performance for
maintaining transparency, while PD-based codecs have lower degradation. Additionally,
for transmitting the force feedback of dragging, a higher packet rate is required. Thefore,
we can see that LSTM-based mathematical model a higher performance for velocity
transmission than the conventional PD-based codecs. For force transmission, the two
systems perform similarly. Also, The proposed LSTM-based perceptual threshold is more
practical and maintains the transparency.

In Chapter 4, we discussed the metrics for the performance of dimensionality reduction
(CON, TRU, RRE, KL ACC) and data reconstruction techniques (HPW-PSNR). As a
result, DRTs can reduce kinesthetic data transmission over the network effetively without
degrading the transparency of the system. Among the proposed three DRTs, UMAP
outperforms the other two techniques in preservation of global and local structure of the
original data, and maintains good transparency in its corresponding data reconstruction
technique. Furthermore, comparison with LSTM-based mathmatical models and PD-based
codecs is also give. As a result, a selection of two types of techniques is required. In general,
when the deadband parameter is relatively high, LSTM-based models are recommended.
When it is small, UMAP can be a good choice.

In Chapter 5, we analysed two unsupervised clustering techniques in terms of trans-
parency and transmission rate. Also, we discussed three metrics to analyse the performance
of clustering techniques, which are SC, CHI and DBI. In addition, three different predictive
techniques are compared in terms of transparency (predictive rate and HPW-PSNR) and
stability (number of model updates). At first, we use Elbow method to determine the
optimal number of clusters in two types of clustering techniques. Compared to LSTM-
based models and PD-based codecs, clustering techniques have higher HPW-PSNRs for
force feedback. However, the LSTM-based model has higher HPW-PSNR when dealing
with velocity data. In terms of the transmission rate, the LSTM-based model is more
suitable for the case of high deadband parameters, while unsupervised clusterings can
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effectively reduce the transfer rate when the deadband parameters are low. We also find
that GBDT schemes perform better than traditional ZOH and FOLP schemes. From the
angle of transparency, GBDT predictive schemes have a higher predictive rate than both
FOLP and ZOH predictors. What’s more, the average HPW-PSNR for GBDT schemes is
greater. When it comes to the number of updates, the number of model updates for GBDT
schemes is only a half of the FOLP, while a third of the ZOH, which means that GBDT
schemes are much more stable than the other 3 schemes. Thus, it is a good choice to select
unsupervised clustering techniques when dealing with velocity and force data as long as
the optimal number of clusters K is determined. And unsupervised clustering kinesthetic
data reduction techniques can be applied in the situation of requiring higher transparency.

Altogether, the proposed bilateral teleoperation system with various kinesthetic data
reduction techniques can effectively reduce data transmission compared with conventional
PD-based codecs. LSTM-based model can be viewed as a trained version of PD-based
codecs, which produces higher transparency and requires lower transmission rate. Simulta-
neously, UMAP in DRTs has shown great performance when deadband is low. In the case
of that, UMAp could be a good choice. Besides, unsupervised clustering techniques have
higher transparency than PD-based codecs and LSTM-based models. When users need
a stable immersion to the remote environment, unsupervised clustering kinesthetic data
reduction techniques can be applied. Human operators can select types of data reduction
techniques to satisfy their requirements.

6.2 Future Work

In a further step, a bilateral teleoperation system with the cooperation of proposed kines-
thetic data reduction and predictive techniques can be analysed and discussed. In current
stage, for simplifying the system model and emphasizing kinesthetic data reduction, all
of the predictions from predictive scheme are from ZOH predictors. But the author has
illustrated that the novel GBDT-based predictive scheme has higher accuracy than ZOH
scheme. Analysis of the performance of one system with two different algorithms can be
discussed in the future.

Another issue is complexity of the model update in GBDT-based predictive schemes.
GBDT is an offline predictive strategy, and once the model changes, all of the parameters
in the model will change, which increase the potential offload of the network. An online
predictive scheme can be found in the future.

Other machine learning algorithms can be applied in dealing with time-series kines-
thetic data. For instance, the most popular transformer model, which is used to train Chat
Generative Pre-trained Transformer(ChatGPT). The transformer model is a powerful neural
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network architecture which captures long-range dependencies and models sequential data
more efficiently than previous models. Thus, a further discussion of transformer model
can be given in the future.

Additionally, the kinesthetic data collection experiment can be extended by moving the
cursor on different objects. Current data we collect is on a surface, however, effects of the
proposed models on different shape of surfaces can be discussed.

In conclusion, the ultimate purpose of this thesis was to positively contribute to kines-
thetic data reduction, proposed various bilateral teleoperation systems with different data
reduction techniques, and hopefully, to pose many questions that may catch the imagination
of future researchers.
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