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Abstract

In this thesis we provide three different models of processes related
to immunity. Firstly, we describe a model of the T-cell mediated
anti-tumour immune response. We describe the anti-tumour im-
mune response as a set of cellular kinetic rate equations. T-cells
are assumed to act as binary agents (active/inactive) that evolve
with time according to a noisy linear threshold function. Using
the Kramers-Moyal expansion of the master equation, we are able
to describe the system as a closed set of ordinary differential equa-
tions. We find that there is a critical value of the ratio of helper to
cytotoxic T-cells that depends on the expression of MHC-I in tu-
mour cells. We demonstrate the effect that this interplay has on the
efficacy of the helper/cytotoxic T-cell ratio and MHC-I expression
as prognostic markers.

Secondly, we model infectious disease outbreak in populations
where individuals are vaccinated with a vaccine that reduces the
likelihood to transmit the disease to a small but finite value. We
study the SIR model on networks with nodes that belong to one of
several sub-populations with different individual transmissibility
and apply the cavity method to derive equations for the risk that a
node in a network will cause outbreak. We show that the threshold
for outbreak in populations split into vaccinated and unvaccinated
sub-populations, will depend upon the proportion of the popu-
lation that is vaccinated, as well as the density of links between
the vaccinated and unvaccinated sub-populations. Furthermore,
we show that the cavity method can be used to derive the dis-
tribution of risk in populations with heterogeneity in individual
transmissibility, and in some cases provide an exact expression for
this distribution.

The immune system is comprised of many different cell types, with
different functions. Within an organism, different cell types have
the same genetic make-up, but they differ in the set of genes that
are expressed. The last model presented in this thesis is concerned
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with determining the conditions that are necessary for gene regu-
latory networks to support a diverse set of stable gene expression
profiles, corresponding to different cell types. We consider a bi-
partite model of gene regulatory networks consisting of genes and
transcription factors. Gene expression is modelled as a Boolean
variable (on/off), that evolves according to synchronous Glauber
dynamics. Genes receive regulatory signals from transcription fac-
tors which are in turn synthesised by expressed genes. Our work
focuses particularly on self-regulation, where genes that contribute
to the synthesis of a transcription factor may be regulated by that
same transcription factor. We extend the dynamical cavity method
for systems with self-interactions and multi-node interactions to
derive a computationally feasible scheme for the dynamical anal-
ysis of our model. We show that networks with bidirectional,
multi-node interactions support multiple diverse gene expression
profiles, suggesting that self-regulation is an important feature of
multi-cellular life.

7



8



Contents

1 Introduction 13

2 A model of the T-cell mediated anti-tumour immune response 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Constructing a mathematical model . . . . . . . . . . . . . . . . 40

2.2.1 The adaptive anti-tumour immune response . . . . . . . 40
2.2.2 A statistical mechanics description of the immune system 44

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.1 Macroscopic dynamics of T-cell activation . . . . . . . . 52
2.3.2 Conditions for tumour eradication . . . . . . . . . . . . . 55
2.3.3 Tumour size with immune parameters . . . . . . . . . . 66
2.3.4 Optimal helper/cytotoxic ratio . . . . . . . . . . . . . . . 67
2.3.5 Time variation of MHC-I expression . . . . . . . . . . . . 69
2.3.6 Sobol Sensitivity Analysis . . . . . . . . . . . . . . . . . . 73

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Appendices 85
2.A Kramers-Moyal expansion of the master equation . . . . . . . . 85
2.B Fixed points under the assumption of slow T-cell activation . . 90
2.C Solution for time-dependent MHC-I expression . . . . . . . . . 93

3 Herd immunity in social contact networks with heterogeneous trans-
mission probabilities 95
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.2 Impact of vaccination on the epidemic risk in contact networks 100

9



3.2.1 Herd immunity with perfect vaccination in the SIR model
on structured networks . . . . . . . . . . . . . . . . . . . 101

3.3 Impact of vaccination with partial transmission . . . . . . . . . 111
3.3.1 Epidemic risk with heterogeneous transmissibility . . . 112
3.3.2 Herd immunity for vaccines with partial transmission . 116
3.3.3 Networks with correlated structure and transmissibility 118

3.4 Social distancing in populations with heterogeneous transmis-
sibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.5 Beyond the mean: distribution of risk in the SIR model . . . . . 128
3.5.1 Distribution of risk in networks with degree correlations 128
3.5.2 Distribution of risk in networks with heterogeneous trans-

mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.5.3 Risk distribution in the limit of large connectivity . . . . 138
3.5.4 Distributional equations of risk with node and link per-

colation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.6 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . 145

Appendices 149
3.A Risk with homogeneous transmission and node and link deletion149
3.B Stochastic simulations of the SIR model on networks . . . . . . 156
3.C Risk with heterogeneous transmission and link deletion . . . . 158
3.D An ensemble of networks linking nodes of similar or dissimilar

transmissability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4 Dynamics of gene regulatory networks with self-regulation 169
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.2 Model definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.3 Dynamical cavity method for bipartite systems with parallel

dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
4.4 Linear threshold model with self-interactions . . . . . . . . . . . 188

4.4.1 Equilibrium analysis of monopartite systems with self-
interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.4.2 Dynamics of monopartite spin systems with self-interactions194
4.5 Nonlinear model with correlated, multi-node interactions . . . 199

4.5.1 Dynamical analysis of systems with multi-node interac-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

4.5.2 Multiple attractors induced by self-regulation . . . . . . 203
4.6 OTA in the thermodynamic limit . . . . . . . . . . . . . . . . . . 209
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

10



Appendices 217
4.A Dynamical cavity approach to bipartite systems . . . . . . . . . 217
4.B Equilibrium analysis of (0,1) spins with parallel update and

self-interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
4.C Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . 230
4.D Dynamical cavity approach to systems with self-interactions . . 232
4.E One time approximation in the thermodynamic limit . . . . . . 234

5 Summary & Outlooks 243
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
5.2 Outlooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

A The cavity method for processes on networks 253
A.1 Static properties of networks . . . . . . . . . . . . . . . . . . . . 253
A.2 Dynamical processes on networks . . . . . . . . . . . . . . . . . 264

References 275

11



—————-

12



1
Introduction

Immunity is achieved through the interactions of many different types of cells,

each with their own distinct function. The immune system can therefore be

seen as a complex network of interactions, one that produces many interest-

ing phenomena. Immune cells work to locate sites of infection, recruit further

immune cells to help manage infection, and eliminate foreign pathogens. A

range of biological agents (attenuated microorganisms, surface proteins asso-

ciated with pathogens, mRNA etc) can be administered to a patient, to stim-

ulate the immune response, and provide immunity from particular infectious

diseases. Collectively, this broad range of pharmaceuticals are referred to as

vaccines.

Vaccines have transformed efforts to prevent the spread of infectious dis-

eases, and they have a long and storied history. The term vaccine originates

from the cowpox serum, used as an inoculation against smallpox, studied by

Edward Jenner in the late 18th century, who’s work is seen as a significant step

in the development of modern vaccination campaigns (1, 2). To understand

the impact that the advent of modern vaccination has had on society, one
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1. INTRODUCTION

only needs to consider the eradication of smallpox, as declared by the World

Health Organisation (WHO) in 1980 (3, 4, 5). This demonstrated the feasi-

bility of disease eradication by vaccination, and is a stark reminder of how

the importance of vaccination goes beyond the health of any one individual.

On the other hand, to understand the fragility of progress against infectious

diseases, one only needs to consider measles. As a result of vaccination there

was a 74% reduction in the global incidence of measles in the period 2000-

2015 (6). Eradicating measles was deemed to be feasible by the WHO, since

humans are the only hosts of the disease, measles is genetically stable, and all

geneotypes of measles are recognised by the same immune cells (7). This led

to the goal of the elimination of measles by 2020 in several WHO regions (8).

Despite these goals, the number of people who had received a first dose of

vaccine remains below the estimated vaccine coverage of 95% needed to pre-

vent disease outbreak. This can be attributed to a number of limiting factors

such as a lack of political resources, as well as the increased incidence of “vac-

cine hesitancy” (7, 9). The increase in skepticism, fueled by misinformation,

has been a cause of concern for the progress against measles, in particular

due to the outbreak of the disease in regions which had previously prevented

transmission, including within the UK, and strategies to counter this misin-

formation are seen as an important tool in the steps towards the elimination

of measles (9, 10).

A further difficulty in the control of infectious disease outbreaks is the

ability of infectious diseases to mutate and adapt when passing from host

to host, hampering vaccine effectiveness in the process. This was acutely

demonstrated by the alpha, delta and omicron variants that have spread glob-
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ally since the beginning of the COVID-19 pandemic (11, 12, 13) . The volatil-

ity of the spread of COVID-19, in part due to the incidence of new variants,

limits the comparison to more genetically stable diseases such as polio and

measles, and makes any discussion of a future steady-state of the pandemic

highly speculative. Possible end states of any infectious disease outbreak

could range from global eradication, regional elimination, endemicity (as the

disease becomes predictable and health systems adapt to cope with this ad-

ditional pressure), to a more permanently unpredictable scenario (14, 15).

Recently, the quantitative evidence that would indicate these different phases

was discussed (15). The fragile progress that has been made against dis-

eases that expert opinion deems eradicable, and the overwhelming challenges

posed by the pandemic of a mutating disease which risks immune evasion,

highlights the limits of vaccination campaigns. However, a quantitative as-

sessment of these challenges is feasible, and is surely necessary in the step

towards their solution.

Of course, the developments in the production of safe and effective vac-

cines is in part due to the increased understanding of the mechanisms that

govern the immune system. The immune system can be split into innate and

adaptive immunity. Innate immunity includes anatomical barriers that phys-

ically impede foreign pathogens from infecting the host (16). It is also me-

diated by a number of immune cells which coordinate an immune response

against foreign pathogens. One example, of the many, innate immune cells

is macrophages, primarily known for their ability to engulf and kill foreign

pathogens, in a process known as phagocytosis (16). They also invoke in-

flammation, recruiting further immune cells to the site of infection (16). This
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1. INTRODUCTION

includes cells that comprise the adaptive immune system, which differ from

innate immune cells by mediating an immune response that, unlike the innate

response, is specific to particular foreign pathogens.

The primary cells of the adaptive immune system are two distinct lin-

eages of lymphocytes, B-cells and T-cells, discovered in the 1960s (17, 18, 19).

The discovery of these cells and the molecular analysis of their receptors

(20, 21) complemented an early theory of how adaptive immunity mounts

a specific response to pathogens, known as clonal selection. This early the-

ory, posited by Burnet, suggested that cells of the adaptive immune system

were divided into many groups of cells of the same type, known as clones,

with each clone being specific to a particular pathogen. When exposed to

that pathogen, the cells of the clone would proliferate and coordinate the im-

mune response against that pathogen, whilst the other clones would not (22).

The receptors of T and B cells were found to bind to molecules associated with

specific pathogens, providing evidence of how the immune system recognises

pathogens.

When the receptors of B-cells and T-cells bind to these molecules, they can

differentiate into effector cells, which perform a myriad of functions in the

adaptive immune response. The primary response of B-cells is to differenti-

ate into antibody producing cells (23). These antibodies circulate in the host,

binding to the antigen which invoked the production of antibodies. Antibod-

ies neutralise the ability of viruses to infect host cells, and mark bacteria as a

target for phagocytosis by, for example, macrophages (16, 23). This is just one

way in which the cells of the adaptive immune system and innate immune

system co-operate to mount an effective immune response.
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T-cells differentiate into various effector cells, the majority of which are

categorised as helper and cytotoxic T-cells. Helper T-cells produce cytokines

that enhance the function of many immune cells, including the activation of

cytotoxic T cells and the proliferation of B-cells (16, 24). The main function of

cytotoxic T-cells is to kill cells infected with viruses which display the antigen

that invoked the T-cell response (16, 25). There is also a sub-population of T-

cells, regulatory T-cells, which have the opposite role, suppressing the activity

of immune cells, preventing damage caused by the immune response such as

autoimmunity (16, 26). In auto-immune conditions, such as coeliac disease,

diabetes and inflammatory bowel disease, the immune system targets normal,

healthy cells, leading to a detrimental impact on health.

Another example of the immune system having a deleterious effect on

health is the immune response against cancer, first documented in the 19th

century (27, 28). It is now known that tumours produce antigens, proteins

which are recognised by immune cells, and that these trigger an anti-tumour

immune response mediated by T cells (29). The picture is complicated, how-

ever, as tumour cells are not equally immunogenic. For example, some tu-

mour cells show a loss of surface molecules which cytotoxic T-cells are re-

quired to bind to if they are to eliminate tumour cells (30, 31). This creates a

selective pressure as the immune system preferentially kills tumour cells with

higher immunogenicity, allowing less immunogenic tumour cells to thrive.

Due to their high level of mutation, tumour cells from the same tumour are

known to be genetically diverse, and this provides many criteria for which se-

lective pressures may emerge, via interactions between tumour cells and their

environment (32, 33). It is not only the ability of tumours to evolve to avoid
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1. INTRODUCTION

the anti-tumour immune response that complicates the immune response to

cancer. Some subsets of immune cells, such as macrophages and regulatory T

cells have an explicitly pro-tumour function and are recruited to form part of

the tumour environment and aid tumour growth (34, 35, 36, 37, 38). Therefore,

although there is an immune response that eliminates tumour cells, the affect

on cancer progression is unclear. In spite of this, modern therapeutics have

been developed that are designed to augment tumour immunity. A significant

example is CAR T-cell therapy, during which a sample of T-cells is taken from

a patient and is used to produce genetically modified T-cells in vitro, which

are then injected into the patient. These modified T-cells express a receptor

that can bind to tumour cells without the aid of a surface molecule, MHC-I,

which is often down regulated in the progression of cancer (39). These thera-

pies have seen success in the treatment of blood cancers, (40, 41, 42), but their

efficacy against solid tumours is mixed, which shows that it is not the recog-

nition of antigens alone that dampens anti-tumour immunity, but also the

interactions with the complex tumour environment (43). This is evidenced by

the improved efficacy of CAR T-cell therapy in combination with checkpoint

blockers, another immunotherapy which targets mechanisms of tumour im-

mune evasion (44, 45). The challenge is to build a quantitative and systemic

view of the interactions between the constituent parts of the immune system

and the tumour environment in order to develop immunotherapies to their

full potential.

Understanding the system-wide behaviour of the immune response is

complicated by the diversity of immune cells, since there are many types

of immune cells, each with their own function that may vary with their en-
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vironment. As a result of this, the immune response is a highly dynamic

set of processes, which can be experimentally resolved when focusing on just

a few interactions, but becomes more intractable when focusing on system

wide behaviour. The advent of single cell RNA technologies, which allow

experimentalists to categorise cells via the expression of different genes, has

given insight into the diversity of immune cells and its connection with sys-

tem wide function, since the activation of immune cells is modulated by gene

transcription (46, 47). For example, it was recently found that macrophages in

the lungs of mice differed in function, depending on whether the cells were

localised near nerve tissue or blood vessels (48). This demonstrates how single

cell studies, in combination with studies of cell function and spatial position,

can be used to deduce the relationship between heterogeneity in cells and im-

mune function. In some sense the immune system is a model system to study

cell differentiation, since the molecular reaction that triggers differentiation is

sometimes well known; for example, the differentiation of a naive T or B cell to

an activated cell is caused by the binding of their receptor to its cognate anti-

gen (49). Immune cells that partially share the same developmental lineage,

may have drastically different function due to differences in gene expression.

It remains one of the key challenges in molecular biology to understand how

differences in gene transcription lead to differences in the physiology and

function of cell types, sometimes called the genotype-phenotype relationship.

To understand how immune cells interact with their environment and with

each other to control the immune response, it will be necessary to improve

our understanding of the genotype-phenotype relationship. Understanding

this relationship may also reveal new therapeutic targets. Achieving this goal
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1. INTRODUCTION

will require the integration of data at multiple scales - transcriptomics, pro-

teomics, metabolomics, physiology - and mathematical modelling (50, 51, 52).

Our understanding of immunity has made serious positive changes to so-

ciety. Vaccinations provide us with the best tools to control infectious disease

outbreaks. Underpinning this is an increased understanding of the immune

system at the cellular and molecular level, which has only improved since

the advent of modern single cell analyses. The challenges, however, are clear.

How best to design vaccination campaigns against disease and population

behaviours that are unpredictable is an open question. Despite success in the

technology behind vaccine development, it is also clear that the clinical use of

the immune system is yet to reach its full potential, with the anti-tumour im-

mune response being just one example of this. More fundamentally, improve-

ments in the understanding of gene regulation are necessary to understand

immune cell diversity and for the identification of new therapeutic targets.

Due to the amount known about molecular causes for cellular differentiation,

the study of gene regulation in the immune system may also elucidate the

genotype-phenotype relationship. Each of these challenges can be understood

as complex systems of interacting agents.

To elucidate the mechanisms that govern key phenomena related to each

of these challenges, we shall require methods from statistical mechanics. Sta-

tistical mechanics is comprised of many techniques developed to analyse the

behaviour of large systems of many interacting agents. Traditionally, these

agents were particles, and statistical mechanics was used to understand the

emergence of the macroscopic behaviour of materials from the microscopic

behaviour of atoms. Over time, statistical mechanics has been shown to be
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a more encompassing scientific field of study, providing deep insight into

phenomena in, for example, economics, social sciences, and the biological sci-

ences. In this thesis we propose a model of (i) the T-cell mediated anti-tumour

immune response, (ii) the spread of epidemics in populations which are in-

oculated with a vaccine which reduces the transmissibility of an individual,

and (iii) gene expression dynamics with self-regulation. Each of these models

makes use of techniques from statistical mechanics and in several cases we

are required to extend these techniques in order to handle the novel features

of the systems we consider. Additionally, these phenomena act at different

biological scales; cell-to-cell interactions, person-to-person disease transmis-

sion, and intracellular gene regulation. In studying these distinct phenomena

this thesis demonstrates the wide applicability of statistical mechanics.

Chapter 2 details the model of the T-cell mediated anti-tumour immune

response. Looking at the literature we identified an apparent contradiction in

the reported efficacy of CD4+/CD8+ as a biomarker for prognosis in cancer

(53, 54, 55). This biomarker has seen success as a prognostic marker in dis-

eases associated with poor immune function (56, 57, 58, 59). An additional

marker for prognosis in cancer that has been of recent interest is MHC-I. As

we detail in Chapter 2, T-cells bind to this molecule on the surface of tumour

cells and trigger apoptosis (60). Measurements of MHC-I have shown success

as an independent marker for prognosis in cancer (61, 62). Our hypothesis

was that since there is a mechanistic interplay between helper T-cells, an im-

portant subset of CD4+ cells, cytotoxic T-cells, an important subset of CD8+

cells, and MHC-I, incorrect conclusions about the efficacy of these markers

may be drawn when they are considered separately. To demonstrate this, we
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1. INTRODUCTION

proposed a minimal model of the interplay between the helper/cytotoxic T-

cell ratio and MHC-I expression in tumour cells. We describe the adaptive

immune response as a set of cellular reactions, and use the principals of rate

kinetics to derive a set of ODEs describing the change of cell concentrations

with time. Where our work differs from earlier work of the anti-tumour im-

mune response (63, 64) is that we describe T-cells as stochastic agents, discrete

variables which update their state based upon the concentration of other cells

which comprise the stimuli for T-cell activation. To study the dynamics of this

system we use non-equilibrium statistical mechanics to derive closed expres-

sions for the average activation of T-cells. We find that in our model statistical

fluctuations about the average may be neglected, such that our model is de-

scribed by a closed set of ODEs. When studying the long-time dynamics

of this system, we derive a condition for the elimination of tumours, which

states that there is a critical value of MHC-I expression, below which a tu-

mour is eliminated. This critical value depends on the helper/cytotoxic T-cell

ratio, and provides an explanation for how contradictions in the reported effi-

cacy of MHC-I and CD4+/CD8+ may be affected by their use as independent

markers.

In Chapter 3 we investigate the spread of epidemics in populations in-

oculated with a vaccine that reduces transmissibility of infected individuals.

Previously, the spread of infectious diseases has been studied as a percola-

tion process on networks of social contacts (65, 66). The theory of percolation

considers removing nodes (or edges) from a network at random with some

probability, and studies the effect that this has on the collective properties

of the network (67). In particular, it has been shown that if nodes (edges)
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are removed with high enough probability, the network will become discon-

nected, such that the network will not contain a set of connected nodes whose

size is a finite fraction of the number of nodes in the network N in the limit

N → ∞ (67). This set of nodes is known as a giant connected component

(GCC), and the theory of percolation has derived conditions for the existence

of a GCC for networks drawn from different random graph ensembles (67). In

the Susceptible-Infected-Recovered (SIR) model of epidemics, which we study

in Chapter 3, infections pass from one node to another, and when nodes re-

cover from an infection, the nodes are assumed to have immunity from future

infections. This creates a unidirectional dynamics which is inherently out-

of-equilibrium. In a similar vein to the derivation of the condition for the

existence of GCC in graph ensembles, an epidemic threshold can be derived

for networks in which nodes follow SIR dynamics (and other similar models

where nodes can not become susceptible after recovery) (65, 66). This is a

critical value of the transmissibility of the disease, below which the infection

of an individual will not cause an outbreak across the network.

One can consider vaccination in the SIR model on networks by studying

node deletion; a vaccinated node is removed from the network, such that the

disease may not be transmitted along any of its links in the network. One

can then show how vaccinating individuals affects the epidemic threshold,

and hence understand the proportion of individuals that must be vaccinated

to prevent further outbreak, demonstrating the principles of herd immunity.

These models are also used for the design of vaccination strategies, comparing

different methods of selecting which nodes should be vaccinated given a finite

vaccine supply (68, 69, 70, 71). Since the original pioneering work, focus has
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been on increasing the realism of such models. Often this involves considering

more realistic network structures, such as networks with power law degree

distribution, which have been shown to lack a percolation threshold, and

are in fact always susceptible to outbreak (72, 73, 74). More recently, focus

has been given to competitive and cooperative disease dynamics (75, 76, 77),

percolation on multiplex networks which encode higher order structure (78,

79), and differences in the predicted epidemic threshold from contact tracing

and reality (80).

In this chapter we study how the probability that a single infected node

causes an outbreak can be computed in the presence of node heterogeneities.

Namely, nodes may recover at different rates. This calculation is non-trivial,

due to the dependence on all possible routes that an infection may travel

along the network. For sparsely connected networks, which social networks

are often observed to be, the calculation may be computed using message-

passing or cavity methods. The cavity method originates in statistical physics

and, in brief, it uses a recursive argument to derive a set of equations that

describe the properties of nodes. It does so by considering how the properties

of a given node are influenced by its neighbouring nodes. This reasoning is

applied in a recursive fashion: the properties of the neighbouring nodes will

depend on their neighbours, and so on. A general introduction to the cavity

method, which details this argument, is provided in Appendix A. While pre-

vious works have studied the effect of heterogeneity in the recovery/infection

rates on the risk of epidemics (see e.g (65, 81)), in this chapter we demonstrate

how these methods may be applied to networks with node heterogeneities

and strong degree correlations. We consider a population split into groups of
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different transmissibility, and define a random graph ensemble from which

networks can be drawn with strong degree correlations, where correlations

are driven by differences in the transmissibility of nodes. This allows us to

study the effect of degree correlations between groups of nodes with differ-

ent rates of recovery. For such networks, we can derive new expressions for

the epidemic threshold and the average probability that a node causes an

outbreak, and show how they change with node heterogeneities and degree

correlations. Extending more recent methods, we also demonstrate how the

cavity method can be used to compute the distribution of these probabilities.

In some cases, it is possible to yield a closed expression for this distribution,

such that one can explore how differences in the transmissibility of individ-

uals in the network, and the correlations between individuals of different

transmissibility, affect the shape of the distribution. Our methods provide a

theoretical framework to compare the efficacy of vaccination strategies when

a vaccine can not prevent infection, but can reduce the overall transmissibility

of infectious individuals.

After developing techniques for the steady-state analysis of complex net-

works, in Chapter 4 we study their dynamics. In particular we study a model

of gene regulatory networks (GRNs). In our model the expression of genes is

a Boolean variable, such that a gene is is either expressed or not. Randomly

connected Boolean networks as models of gene regulation date back to the

pioneering work of Kauffman (82, 83). In our case, the state of the genes

evolve synchronously in discrete time steps such that all genes update their

current state simultaneously, based upon the state of the genes at the previ-

ous time step. The expression of a gene at a given time point is determined
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by some noisy function of the states of genes responsible for its regulation.

Earlier studies of Boolean networks in the field of cybernetics, (84), focused

on simple topologies and have remained influential during a resurgence of

interest in the behaviour of complex networks (85). In our case, we consider

a network with a large number of nodes, and heterogeneity in the number

of genes that regulate each gene. Due to the many degrees of freedom that

characterise complex systems such as this, a statistical approach is necessary

to obtain analytical results. The dynamical analysis of complex systems is an

open area of research, however, several techniques have been developed for

the study of large many-body systems including dynamical mean field the-

ory (86, 87, 88), dynamical replica theory (89, 90, 91, 92), generating functional

analysis (93, 94, 95) and the dynamical cavity method (87, 96, 97, 98). The net-

works we consider are directed and sparsely connected, which earlier work

has shown can be analysed using the dynamical cavity method (98). This

work studied GRNs with bidirectional links or multi-node interactions, where

the state of a node depends on the combined state of nodes it interacts with. In

Chapter 4 we provide two new developments to the study of sparse, directed

networks by considering (i) systems with self-interactions, and (ii) systems

with bidirectional links and multi-node interactions. The dynamical cavity

method can be used to provide a set of equations which approximate the dy-

namics of our model. We demonstrate the regimes where this approximation

is accurate, and where this approximation breaks down. As a result of our

study we are able to show that networks with bidirectional and multi-node

interactions support a diverse set of multiple stable gene expression profiles,

as observed in multi-cellular life.
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In the fifth and final chapter, we provide a summary of the thesis. In do-

ing so, we highlight areas of outlook for potential future investigations, in

some cases providing initial formulae. Lastly, we provide an introduction to

the cavity method, which several results in this thesis rely on, in an appendix

to the thesis. In this appendix we apply the cavity method to simpler prob-

lems than discussed in the main chapters of the thesis, to provide a general

overview of both the static and dynamical cavity method. References cited in

all chapters are listed in the bibliography at the end of the thesis.
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2
A model of the T-cell mediated anti-tumour

immune response

2.1 Introduction

It is now known that tumours evoke an immune response, which can alter the

growth and makeup of a tumour. Greater understanding of the anti-tumour

immune response has led to the development of immunotherapies, which

have seen some degree of success in clinical trials, particularly in cancers of

the blood (42, 99, 100, 101, 102). However, the use of these therapies in solid

cancers and conversion to the clinic still remains a challenge as was pointed

out by (103).

The immune system can be seen as a network of interacting cells, with

many different cell types working together to perform a wide-ranging and

robust function against pathogens. In addition to this, tumours are rapidly

evolving parts of this network. A systemic understanding of the mechanisms

of the anti-tumour immune response is, therefore, vital in the development of

immunotherapies. The sheer complexity, however, of the immune response
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to tumours necessitates focusing on just a subset of processes. With this in

mind this chapter seeks to address the adaptive, T-cell dependent anti-tumour

immune response.

T-cells are lymphocytes, a group of white blood cells, distinguished from

other lymphocytes by their unique receptor known as the T-cell receptor

(TCR). TCRs are specific to foreign antigens (a part of a protein recognised by

a TCR) such that they typically do not bind with molecules associated with

healthy cells. A given TCR can recognise many different antigens, a property

known as the cross-reactivity of T-cells (104, 105). If an antigen is recognsied

by a TCR, we say that TCR is specific to that antigen. T-cells can be split

into two main sub-types: helper and cytotoxic T-cells. Antigens are taken up

and processed by professional antigen presenting cells (APCs) which present

them as a peptide on the surface molecule MHC-II. Helper T-cells can then

activate by binding to MHC-II which displays the antigen that the TCR is

specific to. Activated helpers can then activate cytotoxic T-cells which elimi-

nate cells that present a cognate antigen (an antigen that is recognised by the

TCR) via MHC-I. The T-cell dependent response eliminates infected cells, but

is also invoked by tumours (106).

A common experimental technique in immunology is immunostaining,

which uses antibodies that bind to specific proteins, to sort cells. Helper

T-cells are known for their high expression of the protein CD4, and cyto-

toxic cells for high CD8. For this reason, they are commonly referred to as

CD4+ and CD8+ cells, respectively. A decrease in the CD4+/CD8+ ratio ,

measured from blood samples, is considered to be a good prognostic marker

for conditions associated with immunodeficiency such as HIV (56, 57), and
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aging (58, 59). It should be noted that subsets of T-cells other than helper

and cytotoxic T-cells contribute to the CD4+ and CD8+ sub-populations. For

example, in blood, regulatory T-cells account for 5 − 10% of CD4+ T-cells

(107). In cancer, regulatory T-cells are typically more prevalent, making up

20− 50% of CD4+ cells in some tumours (108). For this reason, changes in

the CD4+/CD8+ ratio in these two contexts are not directly comparable.

Indeed, there are many different subsets of CD4+ and CD8+ cells involved

in the immune response to tumours, as has been previously reviewed (109).

The majority of CD8+ T-cells in tumours are cytotoxic T-cells. In human tu-

mour cultures, high levels of cytotoxic T-cell activity have been shown against

tumours derived from the same host as the T-cells, but not against tumours

from different hosts, due to the highly specific cytotoxic T-cell mediated re-

sponse (110, 111). Indeed, studies in lung cancer (112) and melanoma (113)

have shown that the presence of cytotoxic T-cells is associated with longer sur-

vival and tumour regression. For these reasons, cytotoxic CD8+ T-cells play

a major role in anti-tumour immunity and have formed the basis of many

immunotherapies (114).

In addition to CD8+, there are several subsets of CD4+ T-cells which are

major contributors to tumour immunity, some of which contribute to the anti-

tumour immune response, other which suppress anti-tumour immunity, and

some with a more ambiguous role (109). A clear contributor to anti-tumour

immunity are Th1 cells. These cells are distinguished by their secretion of the

cytokines IFN-γ and TNF-α, generally seen to promote anti-tumour immu-

nity (115). The main mechanism for this is the interaction between Th1 and

cytotoxic T-cells. This was demonstrated by adoptive cell therapies, where
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the transfer of Th1 cells was unsuccessful in tumour rejection unless CD8+

cells were also transferred (116). Additionally, IFN-γ is a cytokine associated

with inflammation, such that it induces the recruitment of leukocytes to the

site of immunosurveillance - indeed patients treated with IFN-γ have shown

increased counts of total leukocytes (117, 118).

In contrast to the Th1, regulatory T-cells (Tregs) are more clearly associ-

ated with pro-tumour immune function. These cells are distinguished by the

expression of the biomarkers CD4+CD25+FoxP3+ (119, 120). Experimentally,

the effect of transferring CD8+ T-cells either with or without CD25+ T-cells

(the original biomarker used to classify Tregs) in mice with melanoma has

been studied (106, 121). In these studies, CD8+ mediated anti-tumour immu-

nity was suppressed when CD4+CD25+ T-cells were absent, demonstrating

the functional link between Tregs and the CD8+ mediated immunity. It was

later shown that Tregs produce cytokines which promote the exhaustion of

CD8+ T-cells (such that they lose their ability to function) in the tumour en-

vironment, and hence suppress anti-tumour immunity (122). In addition to

the exhaustion of T-cells, Tregs have a myriad of other immunosuppressant

functions such as the suppression of antigen presentation in DCs, and the

suppression of helper T-cell function (123). Although the mechanisms of Treg

cells are suppressive, there are, however, studies which show that high levels

of Tregs are associated with good prognosis, potentially due to the inhibition

of other suppressive T-cells (120).

Th2 and Th17 cells have a more ambiguous role in the tumour immune

response. Adoptive cell therapy with Th2 cells has been shown to invoke

inflammation leading to tumour cell eradication (124). Th2 cells also pro-
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duce cytokines which both promote and inhibit tumour immunity: they ac-

tivate suppressive immune cells, inhibit antigen presenting cells, and recruit

eosinophils (which kill tumour cells) to the tumour site (125). Th17 cells

are distinguished by their high levels of the the excretion of cytokine IL-17.

Increased levels of Th17 have been seen across cancers and were shown to

stimulate the proliferation of naive T-cells, suggesting that Th17 have an anti-

tumour function (126). However, the role of Th17 is heavily context depen-

dent: it has been shown that they have pro- and anti-tumour function in

different cancers. Pro-tumour function includes increased tumour cell prolif-

eration and recruitment of immune cells. Conversely, anti-tumour function is

seen in the enhancement of the cytotoxic and natural killer response (127).

The myriad of functions that different sub-types of CD4+ cells have shows

how the value of CD4+/CD8+ is heavily context dependent. Solid tumours

are a porous mixture of tumour cells, immune cells and healthy tissue cells.

T-cells can infiltrate tumours and the CD4+/CD8+ ratio of infiltrating T-cells

can be measured from tumour samples. A low CD4+/CD8+ of infiltrating

T-cells has been considered as a marker for prognosis across several cancer

types including: cervical (128), breast (129, 130), lung, liver, testicular and

colorectal cancers (53). Tumours from a cohort of breast, lung, colorectal,

liver and testicular cancers, were surveyed (53) and it was found that low

intra-epithelial CD4+/CD8+ was associated with early stage cancer due to

an expanded CD8+ population, and that later stage cancers were associated

with low CD4+/CD8+ due to a loss of the CD4+ population. In addition to

these results in solid cancers, a low CD4+/CD8+ ratio in the blood correlated

with poor survival in chronic lymphocytic leukemia (CLL) (131). Despite
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the evidence that across cancer types a low CD4+/CD8+ ratio is a sign of

poor prognosis, patients with low CD4+/CD8+ ratio of tumour infiltrating

T-cells were found to have significantly improved survival in separate studies

of colorectal cancer (54) and ovarian cancer (55), contradicting these studies.

There are many factors, biological and immunological, which could ac-

count for the prognostic variability in the CD4+/CD8+ ratio. Overall T-cell

infiltration, i.e the density of T-cells in a tumour, may account for this vari-

ability in tumours, as the absolute number of T-cells will affect the strength

of the immune response. As one would expect, the density of T-cells has also

been shown to correlate with prognosis in cancer (132, 133). However, recent

results have shown that the tumour reactivity of infiltrating T-cells, which re-

flects the proportion of TCRs that are specific to tumour associated antigens,

is low in cancers where infiltration is a marker for prognosis (134). Therefore,

the infiltration of specific T-cells may also lead to variability in prognostic

markers.

A key stage in the progression of tumours is the down-expression of MHC-

I, a cell surface molecule with which immune cells interact (60). Despite evi-

dence for MHC-I expression correlating with prognosis, the relationship with

tumour growth is less clear. The total absence of MHC-I in breast tumours

has been shown to activate a group of innate immune cells, natural killer (NK)

cells, which can kill cells without MHC-I recognition (135). However, studies

of colorectal cancer showed that tumours with high MHC-I were found in

patients with longer survival times and that MHC-I could be used as an in-

dependent marker of prognosis (61, 62). To complement the results seen with

breast cancer, the total absence of MHC-I in colorectal cancer also showed
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longer patient survival times compared with low MHC-I expression, due to

the activation of NK cells (61). To summarise, MHC-I expression impacts the

growth of tumours in vivo, with low expression favouring tumour growth,

while high expression leading to longer patient survival. The exception is tu-

mours with an absence of MHC-I which trigger an innate immune response

from NK cells. This stresses the importance of tumour heterogeneity: low

MHC-I expression, due to a large proportion of cells down-expressing MHC-

I, will prevent a sufficient T-cell response, but the low level of MHC-I will also

interrupt the response from NK cells.

There is a mechanistic interplay between the CD4+/CD8+ ratio and MHC-

I expression. This is because cytotoxic cells, which form the majority of CD8+

cells, bind to MHC-I in order to eliminate tumour cells. In spite of this fact

there is a lack of data measuring the CD4+/CD8+ ratio and MHC-I together.

One study has shown that the prognostic value of T-cell markers improves

when MHC-I expression is also considered (136). Additionally, the loss of

MHC-I in pancreatic cancer has been shown to lead to a lower level of in-

filtration by cytotoxic T-cells (133). Cytotoxic T-cell infiltration was found

to be a marker of prognosis, however, MHC-I alone was not. Our hypothe-

sis is that the interplay between CD4+/CD8+, T-cell infiltration, and MHC-I

could explain the differences in prognostic value for these parameters across

individual tumours and different cancers. To address this we create a mathe-

matical model, starting from known cellular processes to derive system-wide

behaviour. The aim is to see if such a model captures this interplay and ex-

plains potential variation in the prognostic value of CD4+/CD8+ and MHC-I.

As research has turned towards systemic modelling of the immune system
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there has been an increase in mathematical and computational approaches to

modelling challenges in immunology. Mathematical models used are mainly

deterministic, comprised of ordinary differential equations (ODEs). Such mod-

els usually fall into two extremes: either, the model is low dimensional,

‘macroscopic’, and does not fully capture the systemic behaviour of the sys-

tem; or it is high dimensional, ‘microscopic’, with a large number of unknown

parameters; usually this makes statistical evaluation of these models with

real data difficult. Furthermore, ODE models also fail to capture the inherent

stochasticity of biological processes. In this paper we consider a model that lies

between these two approaches, keeping the model to a few key parameters,

whilst also including inherent stochasticity of microscopic behaviour.

Anti-tumour immunity has been a popular subject of mathematical mod-

elling, as recently reviewed by (137). Models of the T-cell mediated immune

response to tumours can be categorised by the sub-populations of T-cells that

they consider. The pioneering work of (63) modelled the cytotoxic T-cell pop-

ulation interacting with immunogenic tumour cells in a predator-prey type

model, and is a work that has continued to influence more recent modelling

efforts (138, 139, 140). Similarly, more recent work has also focused on a model

of tumour cells and immune cells which limit the growth of tumour cells, as-

sumed to be mostly comprised of cytotoxic T-cells (141). This work differs

significantly from (63) by modelling competition between immunogenic and

immunoresistant sub-populations of tumour cells. Recent work has also ex-

tended the approach of (63) to model the explicit interaction between helper

and cytotoxic T-cells (64, 142). Both works focus on analytical results, and are

perhaps most in common with the research presented in this chapter. They
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are, however, both deterministic models, and our work deviates from them in

this respect.

Previous work has also accounted for the interaction between the helper,

cytotoxic and regulatory T-cell subsets (143). However, analytical results were

found to be intractable due to the complexity of the model, and the results rely

instead on numerical simulation. More recently, a model of the interaction

between helper, regulatory, and cytotoxic T-cells has been studied via fixed

point analysis (144). This model considers how the over stimulation of the

helper T-cell response can enhance the response of regulatory T-cells, and in

turn limit the cytotoxic response. The interaction between effector CD8+ T-

cells and regulatory T-cells have also been modelled to produce a probabilistic

model that determines prognosis based on the ratio of these T-cell subsets

(145).

In our work we model the interplay between the helper/cytotoxic T-cell

ratio and the expression of MHC-I in tumours explicitly. Although our model

is also a system of ODEs which describe the change in concentration of cells,

our model differs from previous efforts by including the stochastic dynamics

of T-cell activation. The latter is used in the derivation of our model, but

our analysis is based on non-equilibrium statistical mechanics, as similarly

implemented by (146) to study the role of the helper/suppressive T-cell ratio

in the B-cell response to antigens, allowing us to describe the macroscopic

behaviour of the system deterministically. The work contained in this chapter

differs from (146) as it focuses explicitly on the helper/cytotoxic ratio and its

interplay with MHC-I, including the effect of time-dependent MHC-I expres-

sion. Statistical mechanics has a rich recent history in modelling the immune
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system (147, 148, 149, 150, 151, 152) and here we use it to address the unique

modelling challenges that tumour immunology poses. In doing so we derive

a condition for the eradication of tumours which reveals a critical threshold of

MHC-I expression. This threshold is found to depend on the helper/cytotoxic

T-cell ratio, T-cell infiltration, and T-cell specificity.

In this work, we exclude the effects of NK cells and macrophages, focus-

ing exclusively on the T-cell dependent response. This allows our model to

be kept to a few key parameters that can be analysed in full. As previously

discussed, NK cells play a dominant role when MHC-I is totally absent, a case

which is less relevant for our model. The role of macrophages in the tumour is

a double edged sword, with macrophages eliminating tumour cells, and also

forming part of the bulk tumour, and has been modelled previously (153). It

has been shown empirically that the presence of macrophages in tumours im-

pedes cytotoxic T-cells in reaching tumour cells (154) and hence macrophages

may affect the prognostic value of the helper/cytotoxic T-cell ratio. In this

work we focus on the interactions between helper and cytotoxic T-cells, and

do not model macrophages explicitly. We note, however, that the presence

of macrophages would not alter the interactions between helper T-cells, cyto-

toxic T-cells, and tumour cells that we consider in our model. Additionally,

while we do not focus on the interaction of helper and regulatory T-cells, we

note that our model can implicitly account for immunosuppressive effects,

that will include the function of regulatory T-cells. The result of this work is

a low dimensional model with just a few important parameters, derived from

known immunological and biological mechanisms.

The remaining sections of this chapter will be organised as follows: in
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Figure 2.1: Summary of cellular interactions between tumour cells (C), antigen
presenting cells (APCs), helper T cells (Th) and cytotoxic T cells (Tc) in anti-
tumour immune response.

Sec. 2.2 we will introduce our mathematical model for tumour-immune in-

teractions, in Sec. 2.3 we will present four key results that are of biological

relevance and we will provide a discussion that assesses how our results fit

in with the questions raised by the literature. We will discuss benefits and

limitations of our modelling approach as well as pathways for future work in

Sec. 2.4. Technical details are described in the appendices at the end of this

chapter.
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2.2 Constructing a mathematical model

2.2.1 The adaptive anti-tumour immune response

Tumour cells express antigens that are recognised by the immune system. Tu-

mour antigens are typically the result of a mutation that leads to a change in

the peptide presented in complex with MHC-I, but may also be proteins, asso-

ciated with normal cells, with aberrant high expression on tumour cells (155).

In both cases, the antigens distinguish the tumour cell from normal cells and

can invoke an immune response. As tumour cells grow and divide, they may

undergo apoptosis and release antigenic material into the tumour environ-

ment which is then taken up and processed by antigen presenting cells (156).

Additionally, living tumour cells can release antigens in extracellular vesicles,

which may also be taken up and processed by antigen presenting cells to stim-

ulate other immune cells (157, 158) (although recently these have been shown

to contribute to the inhibition of anti-tumour immunity and hence exhibit a

dual role in tumour immunity (159, 160, 161)).

Antigen presenting cells, such as dendritic cells (162, 163, 164, 165) and

B-cells (166, 167, 168), migrate to the tumour environment, take up antigens,

process them internally into peptides, and display them on their surface in

complex with MHC-II. Naive CD4+ cells which have not been exposed to

antigen may bind to this peptide-MHC complex via their TCR, if their TCR

is specific to that antigen, and will differentiate into various effector T-cells,

including Th1, Th2, Th17 and Treg cells (162, 165, 166, 169). In our model

we focus on the Th1 lineage. Th1 cells have two important functions. Firstly,

Th1 cells secrete cytokines that induce the increase in number of APCs. This
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includes cytokines that stimulate the proliferation B-cells (23, 170) and cy-

tokines which stimulate the maturation of DCs which then recruit further DCs

(24, 164, 171, 172, 173). Secondly, and most crucially, Th1 cells also secrete cy-

tokines that provide help to activate cytotoxic T-cells (116, 174). Finally, CD8+

cells must bind with MHC-I to differentiate into cytotoxic T-cells which may

then induce tumour cell death via cytolysis. (116, 163, 175).

The interactions in the anti-tumour immune response that we have de-

scribed can be written as a series of cellular kinetic rate reactions. Here we

list the full set of reactions that we model. By describing the immune response

in this way, we can use the law of mass action to write a series of ODEs for

further analysis. In our model we consider a population of the following

cells: i) tumour cells, C, ii) antigen presenting cells, which we separate into

two states, either without tumour antigen presented on MHC-II, B, or with

tumour antigen presented on MHC-II, P, and iii) T-cells which we split into

cytotoxic, Tc, and helper T-cells, Th, which may be active or inactive, where we

indicate the active populations by T∗c and T∗h . When we refer to helpers, we

are considering the Th1 subset of T-cells, as it is these cells that mediate T-cell

help for cytotoxic T-cells. The interactions between these cells, summarised

in Figure 2.1, are described by the following reactions:

• Tumour cells, C, replicate at a constant rate r ,

C r−→ 2C. (2.1)

• Tumour cells compete for resources such that there is a maximum con-
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centration of tumour cells, ρc, in a finite volume

C + C
r/ρc−−→ C. (2.2)

• Professional antigen presenting cells, B, such as dendritic cells (162, 163,

164, 165) and B-cells (166, 167, 168), capture antigens, process them into

peptides, and display them in complex with surface molecules MHC-II,

P ,

B + C
π+

⇄
π−

P + C. (2.3)

• Helper T-cells, Th, bind to MHC-II molecules which present a tumour

associated peptide antigen and activate (162, 165, 166, 169),

Th + P W−→ T∗h + P. (2.4)

• Cytotoxic T-cells, Tc, are activated, T∗c , by binding to MHC-I molecules

on the surface of tumour cells that displays a peptide antigen, with the

help of cytokines secreted by activated helpers (116, 174),

Tc + T∗h + C W ′−→ T∗c + T∗h + C. (2.5)

• Activated helpers induce an increase in the number of antigen present-

ing cells. For example, activated helper T-cells stimulate the prolifera-

tion of B-cells (23, 170), and also stimulate the maturation of DCs which
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then release cytokines that recruit further DCs (24, 164, 171, 172, 173)

T∗h + B λ−→ T∗h + 2B (2.6)

• To ensure that there is a finite pool of APCs in our model, we assume

that professional antigen presenting cells maintain homeostasis by com-

peting at rate δ for the same resources,

B + B δ−→ B. (2.7)

• Activated cytotoxic T-cells eliminate tumour cells after docking to an

MHC-I molecule which presents a tumour associated peptide antigen

(116, 163, 175),

T∗c + C κ−→ T∗c . (2.8)

The ‘killing’ rate, κ, is proportional to the rate at which cytotoxic cells

bind and induce cytotoxic death, k, and the expression of MHC-I, γ,

which can decrease throughout the development of the tumour. This is

such that κ = kγ. For the remainder of this paper we set k = 1 and,

without loss of generality, focus on the expression of MHC-I, γ ∈ [0, 1],

with γ = 0 corresponding to no tumour cells expressing MHC-I and

γ = 1 corresponding to maximum MHC-I expression in the tumour. In

principle, γ will vary with time, but to simplify the analysis we assume

for now that it is constant and comment later on the effect of time-

dependent γ. We note that γ is, specifically, the expression of MHC-I

in tumour cells i.e. molecules which are bound to tumour associated
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antigens and thus involved in the interaction with cytotoxic T cells, as

oppose to bulk expression of MHC in the tumor environment. We would

expect, however, these two quantities to be proportional to each other.

2.2.2 A statistical mechanics description of the immune sys-

tem

We consider a solid tumour to occupy a space of fixed volume V. This volume

is comprised of cells including helper and cytotoxic T-cells, professional anti-

gen presenting cells and tumour cells. We represent the number of tumour

cells, antigen presenting cells, and antigen presenting cells with MHC-II pep-

tide complex, by the variables [C], [B] and [P], respectively. We then choose

to present our model in terms of the concentration of these cells, as exper-

imentally raw cell counts are collected for a given volume or sample. The

concentration of each of these cells is simply given by their number over the

volume of the solid tumour, c = [C]/V, b = [B]/V and p = [P]/V. The vol-

ume is permeable such that T-cells can move freely from the periphery into

the solid tumour. We consider there to be a large population of T-cells, each

labelled by an index i = 1, . . . , N, such that the density of T-cells, ρ = N/V,

is finite. T-cells can be divided in two sub-types: helper and cytotoxic. We

describe the sub-type of each T-cell i by a binary variable ηi,

ηi =


1, if T-cell i is a helper T-cell

0, if T-cell i is a cytotoxic T-cell
(2.9)
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that we regard as random, with distribution

P(η) = ϵδη,1 + (1− ϵ)δη,0 (2.10)

where the parameter ϵ ∈ [0, 1] controls the proportion of helper and cytotoxic

T-cells, such that if ϵ = 0 all T-cells are cytotoxic, while if ϵ = 1 all T-cells

are helpers. The helper/cytotoxic ratio is given by R = ϵ/(1− ϵ). In prin-

ciple this ratio should be time-dependent, as one would expect the number

of helper and cytotoxic T-cells in the tumour environment to vary with time.

However, in our model we consider a large population of T-cells with a fixed

helper/cytotoxic ratio, and instead consider the dynamics of T-cell activation,

as we detail later.

Each T-cell has receptors known as T-cell receptors (TCRs). If a TCR can

bind an antigen peptide it is said to be specific to that antigen. If a TCR is

not specific to a tumour associated antigen, the T-cell will not form part of

the anti-tumour immune response. Indeed, it is not necessary that all T-cells

in the tumour environment are specific to tumour associated antigens, and

so the density of T-cells alone is not sufficient to describe the level of T-cell

mediated anti-tumour immunity. To account for this we introduce a binary

random variable ξi

ξi =


1, if T-cell i is specific to tumour antigen

0, otherwise
(2.11)
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drawn from the distribution

P(ξ|η) =
[
Aηδξ,1 +

(
1− Aη

)
δξ,0
]

(2.12)

such that Aη ∈ [0, 1] controls the fraction of T-cells of type η that are specific

to tumour associated antigens. This is such that A0 describes the fraction

of cytotoxic T-cells that bind to MHC-I with tumour antigen peptide, and

A1 the fraction of helper T-cells that bind to MHC-II with tumour antigen

peptide. In general there may be differences in the size of the helper and

cytotoxic pools of T-cells that are specific to tumour antigens, however, in

the lack of detailed knowledge about such differences, we assume statistical

independence of η and ξ such that Aη = A ∀η = 0, 1.

The evolution of T-cells is described in Section 2.2.1 by equations (2.4)

and (2.5). As these are cellular kinetic rate equations we could derive a set

of ODEs that describe the change in concentration of the active and inactive

cytotoxic T-cells, Tc and T∗c , and the active and inactive helper T-cells Th and

T∗h . However, we shall take an alternative approach, and derive equations for

the fraction of cytotoxic and helper T-cells that are active at a given point in

time. As it shall later turn out, this approach will lead to a lower dimensional

system of equations than if we derived ODEs from each of the cellular kinetic

rate equations in Section 2.2.1. Since the activation of T-cells evolves with

time over the course of the immune response, each T-cell can be described by
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a time-dependent state variable σi(t) where,

σi(t) =


1, if T-cell i is activated at time t

0, otherwise.
(2.13)

During the immune response, T-cell activation occurs through a TCR-dependent

pathway. The TCR of cytotoxic and helper T-cells bind to the peptide com-

plex of MHC-I and MHC-II, respectively. Upon binding, some condition is

met such that the T-cell activates. The precise nature of the activation of T-

cells is debated, but there is evidence to suggest that sufficient binding time

is required for activation (176, 177, 178, 179, 180). Due to noise, inherent in bi-

ological systems, T-cells are likely to bind and unbind in a stochastic manner,

therefore we treat T-cell activation as a stochastic process, following previous

studies of T-cell activation in the literature (146, 151, 181, 182).

For simplicity, we assume that T-cells update their activation state at reg-

ular time intervals of duration ∆ (while it is unlikely that T-cells update at

regular time intervals, this choice is temporary, as we will eventually send

∆ → 0 to retrieve continuous time dynamics), according to a linear threshold

function,

σi(t + ∆) = θ

(
ηiξi p(t) + (1− ηi)ξic(t)

1
V

N

∑
j=1

σj(t)ηjξ j − ϕ(t)− Tzi(t)

)
,

(2.14)

where θ(x) = 1 for x > 0 and 0 otherwise, and zi(t) is a zero-averaged ran-

dom variable with suitably normalised variance mimicking fast noise in the
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biological environment or stochasticity in T-cell activation. This modelling

choice for the activation of T-cells is a coarse-grained description, which ne-

glects details of specific molecular interactions involving TCRs, opting instead

to represent such details as source of stochasiticity. The parameter T controls

the noise level, such that the activation dynamics is fully stochastic for T → ∞

and it is deterministic for T = 0. In the absence of noise (T = 0), equation

(2.14) states that a T-cell i will activate if it receives a strong enough acti-

vation signal from the environment, i.e. if the activation signal is above a

certain threshold ϕ(t). The activation signal depends on the nature of the

T-cell, helper or cytotoxic, and it is given by the first and second term in

the round brackets, respectively. According to the interactions described in

equations (2.4) and (2.5) a helper T-cell i (i.e. ηi = 1) will activate if it is

specific to tumour antigens (i.e. ξi = 1) and there is a sufficient concentra-

tion p(t) of antigen presenting cells with tumour associated antigens, while

a cytotoxic T-cell (ηi = 0) will activate if it is specific to tumour antigens (i.e.

ξi = 1) and it is sufficiently co-stimulated by tumour cells and active, tumour

specific helpers, whose concentrations are c(t) and V−1 ∑N
j=1 σj(t)ηjξ j, respec-

tively. The threshold ϕ(t) mimics any barrier that T-cells need to overcome to

activate, including immunosuppressive effects due to T-cell exhaustion and

inactivation via Treg cells. Noise (i.e. T > 0) can be interpreted as the amount

that T-cells deviate from their deterministic activation rules. In addition to the

binding and unbinding of T-cells to MHC-I, noise may also account for alter-

native activation pathways. For example, cytotoxic T-cells may not necessarily

need helper T-cells to activate, they can be directly activated by APCs.

We note that equation (2.14) models reactions (2.4) and (2.5) in the pres-
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ence of noise, at the microscopic level of individual T-cells. As we previously

mentioned, alternatively one could model (2.4) and (2.5) at population level,

via reaction kinetics (i.e. ODE) equations for the densities of active and in-

active T-cells, valid under the assumptions of a well-mixed system and neg-

ligible fluctuations due to discreteness of cells. Noise could be included at

population level, by introducing a reaction for spontaneous activation and

deactivation of T-cells, whose rates would lead to additional free parameters

in the model. Our approach starts instead from stochastic equations for the

microscopic cell states, which do not require the above assumptions and keep

the number of free parameters to a minimum. Macroscopic cell densities,

such as those involved in reaction kinetics, can be obtained within our ap-

proach, as sums of microscopic variables, e.g. the density of active T-cells that

are specific to tumour antigens can be retrieved as V−1 ∑N
i=1 ξiσi.

Next, we write differential equations for the concentrations of tumour and

antigen presenting cells in the local environment, by modelling the cellular

reactions in (2.1)-(2.8) at population level. Their evolution can be written in

the following way,

dc
dt

=

[
r− γ

1
V

N

∑
i=1

σi(1− ηi)ξi

]
c− rc2

ρc
(2.15)

db
dt

= b

(
λ

1
V

N

∑
i=1

σiηiξi − δb

)
(2.16)

dp
dt

= π+bc− π−p. (2.17)

We see here that the dependence on T-cell activation, described by the stochas-
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tic variable σi(t), means that the concentrations c, b and p are also subject to

stochastic fluctuations.

Equation (2.15) contains three terms describing the change in tumour cell

concentration with time, dc
dt . The first term states that c will increase at a rate

r proportionally with c, corresponding to equation (2.1). The second term

describes the effect of the T-cells on the tumour cells as in equation (2.8): a

sum is taking over all the T-cells, and a non-zero contribution is only made

by T-cells which are cytotoxic, specific to tumour cells and active, i.e. when

σi = 1 − ηi = ξi = 1. Therefore, the second term states that tumour cells

will be killed at a rate κ = γ and proportionally with the concentration of

tumour cells and the fraction of active, specific cytotoxic T-cells. Finally, the

third term states that in the absence of the second term, i.e the T-cell response,

the tumour cells will reach a carrying capacity concentration ρc, as described

in equation (2.2).

The equations for db
dt can similarly be annotated. The first term states that

antigen presenting cells will proliferate due to the presence of active helper T-

cells at rate λ, as in equation (2.6). The second term describes competition at

constant rate δ, as described in equation (2.7). We note that one could rewrite

equation (2.16) in the following way,

db
dt

= Kb
(

1− b
Nb

)
(2.18)

K = λ
1
V

N

∑
i=1

σiηiξi (2.19)

Nb =
λ

δ

1
V

N

∑
i=1

σiηiξi (2.20)
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such that b follows a logistic growth model with replication rate K and carry-

ing capacity Nb. We highlight that the replication rate and carrying capacity

of the APCs is not fixed, but dependent on the level of immune activity, in

this case the fraction of active helper T-cells. The first and second terms in dp
dt

correspond to the reactions described in (2.3) and account for the antigen up-

take and presentation by antigen presenting cells at rate π+, and the reverse

process where a receptor is freed for the uptake of new antigen, at rate π−,

respectively. When a cell from our naive APC population, B, engages with

an antigen, it is still able to uptake further antigen. Hence, cells from our acti-

vated population of APCs, P, are still effectively cells in the naive population,

B, but with less capacity to uptake further antigen. In principle, this means

that equation (2.16) should contain a term reflecting the loss of naive APCs

becoming activated APCs, − 1
n π+bc, where n is the total number of antigens

that APCs can present, and a gain term reflecting the reverse process + 1
n π−p.

The capacity of APCs to present antigen on MHC-II is reportedly large. For

DCs the number of MHC-II molecules is O(106) (162, 183) (although we note

the number of MHC-II molecules that display a specific antigen has been esti-

mated to be a small fraction of this, 0.1% (184)), and for B-cells the number of

antigen receptors is O(105) (185). For our purposes, we consider n to be large,

such that terms O(1/n) can be neglected. We note that in what follows we

focus on the steady state of our model, and as it turns out these terms would

vanish anyway in the steady state. This is because equation (2.17) would also

have to include terms + 1
n π+bc and − 1

n π−p, which cancel the respective terms

in equation (2.16) at the fixed point.
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2.3 Results

2.3.1 Macroscopic dynamics of T-cell activation

From a set of cellular reactions we have started to build a set of differential

equations, with the inclusion of a microscopic description of T-cells. As they

stand we can not solve equations (2.15)-(2.17) directly, due to the dependence

on the stochastic variables σi(t). To make analytical progress we define the

macroscopic observables,

m(σ) =
1
V

N

∑
i=1

σiηiξi (2.21)

a(σ) =
1
V

N

∑
i=1

σiξi, (2.22)

where σ ∈ {0, 1}N, representing the density of active, specific helpers and the

density of active, specific T-cells, respectively. With these definitions equations

(2.15)-(2.17) can be written as follows,

dc
dt

=

[
r− γ (a(σ)−m(σ))− rc

ρc

]
c (2.23)

db
dt

= b (λm(σ)− δb)

dp
dt

= π+bc− π−p.

We now seek to derive the time evolution of the macroscopic observables

a(σ) and m(σ). To this purpose, we must specify the statistical properties of

the activation noise. Information about the latter is very scarce in biological

literature (181, 186, 187). A natural choice would be to assume a Gaussian
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distribution of noise however, for convenience of analysis and without loss

of generality, we consider a distribution of noise more common in statistical

physics (see 2.A for details).

While our expressions for c, b and p evolve in continuous time, equation

(2.14) shows that T-cells evolve in discrete time steps of duration ∆. However,

from equation (2.14) one can derive the continuous time master equation for

time-dependent probability Pt(σ). To do so, one assumes that T-cells are up-

dated sequentially, where in a given time step ∆, a T-cell is selected from the

population with uniform probability. Formally, one then sets the magnitude

of the time step to ∆ = 1/N in equation (2.14), and takes the limit N → ∞ as

detailed in 2.A. Biologically, this means that we assume that the population

of T-cells is sufficiently large, such that the state of the population of T-cells,

σ, evolves continuously, i.e in any infinitesimal duration of time we expect

that at least one T-cell to update its activation state. Equations for the time

evolution of the macroscopic observables a(σ) and m(σ) are also derived in

2.A. It will turn out that fluctuations of these quantities around their averages,

m(t) = ∑σ Pt(σ)m(σ) and a(t) = ∑σ Pt(σ)a(σ), vanish as the number of T-

cells, N, is sent to infinity and that the evolution of these averages is governed

by the equations

dm
dt

= −m +
ρ

2

〈
ηξ

[
1 + tanh

(
β

2
(ηξ p + (1− η)ξcm− ϕ(t))

)]〉
η,ξ
(2.24)

da
dt

= −a +
ρ

2

〈
ξ

[
1 + tanh

(
β

2
(ηξ p + (1− η)ξcm− ϕ(t))

)]〉
η,ξ

.

In the above the density of T-cells ρ = N
V is assumed to be finite when N → ∞
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and ⟨. . . ⟩η,ξ denotes the average over the joint distribution,

P(η, ξ) = lim
N→∞

1
N ∑

i
δη,ηi δξ,ξi . (2.25)

As stated earlier, we assume that P(η, ξ) = P(η)P(ξ), i.e. the probability of

a T-cell having a cognate receptor to the tumour associated antigens is not

dependent on whether T-cell i is helper or cytotoxic. Equations (2.10) and

(2.12) may then be used to compute the averages in (2.24).

Finally, we take equations (2.23) and replace m(σ) and a(σ) with their

thermodynamic averages m and a, which is equivalent to a mean-field ap-

proximation, that we show in the appendix to be exact in the limit N → ∞.

This allows us to get a small, closed system of ODEs,

dc
dt

=

[
r− γ(a−m)− rc

ρc

]
c (2.26)

db
dt

= b (λm− δb)

dp
dt

= π+bc− π−p

dm
dt

= −m +
ϵAρ

2

[
1 + tanh

(
β

2
(p− ϕ(t))

)]
da
dt

= −a +
Aρ

2

[
1 + ϵ tanh

(
β

2
(p− ϕ(t))

)
+ (1− ϵ) tanh

(
β

2
(cm− ϕ(t))

)]
.

By describing the T-cell dependent anti-tumour immune response with ODEs

we have neglected the role of spatial heterogeneity in the evolution of tu-

mours. This was done in the spirit of capturing the interplay between the

CD4+/CD8+ T-cell ratio and MHC-I expression with a simple model, amenable

to analytical solution. In principle one could model spatial heterogeneity in
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the T-cell dependent immune response by making the variables ϵ and A func-

tions of spatial position. This would result in c, b and p becoming spatially-

dependent. However, further considerations would need to be made to ac-

count for cellular drift in space. By neglecting spatial dependencies, our

approach is equivalent to modelling a small, macroscopic region of a solid

tumour where spatially-dependent variables can be regarded as uniform.

2.3.2 Conditions for tumour eradication

We use the system of equations (2.26) to derive a set of conditions which will

qualitatively describe how the anti-tumour immune response changes with

parameters of the model. First, we write the system of equations in a more

compact way by defining the vector x = (c, b, p, m, a) such that ẋ = F(x),

where each component of the vector F is the RHS of the corresponding ODE.

Second, we find fixed points of the dynamics from ẋ = 0 and analyse their

stability by inspecting the eigenvalues of the Jacobian ∂F/∂x. The system will

allow for fixed points if the activation threshold ϕ(t), accounting for immuno-

suppressive effects, is stationary. In the remainder of this work, we will focus

on a vanishing stationary threshold ϕ(t) = 0 ∀t. In this case our model will

provide a lower limit on the size of the tumour, as immunosuppressive sig-

nals reduce the anti-tumour immune response. We find that there are two

fixed points which, subject to some condition, are stable. There are two other

fixed points but they are always unstable. The potentially stable fixed points

are given by,

x1 = (0,
λm∗

δ
, 0, m∗, a∗), (2.27)
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where m∗ = ϵAρ
2 and a∗ = Aρ

2 and

x2 = (c∗,
λm∗

δ
,

π+λ

π−δ
c∗m∗, m∗, a∗) (2.28)

where c∗, m∗ and a∗ are the solution to the system of equations

c∗ =
ρc(r− γ(a∗ −m∗))

r
(2.29)

m∗ =
ϵAρ

2

(
1 + tanh

(
βπ+λ

2π−δ
c∗m∗

))
(2.30)

a∗ =
Aρ

2

(
1 + ϵ tanh

(
βπ+λ

2π−δ
c∗m∗

)
+ (1− ϵ) tanh

(
β

2
c∗m∗

))
. (2.31)

The fixed point x1 corresponds to tumour eradication, c∗ = 0, whereas x2

corresponds to tumour escape, c∗ ̸= 0. The size of the tumour at x2 varies

with the parameters of the system. When T-cells are all cytotoxic, ϵ = 0,

there is no signal from helper cells m∗ = 0, and all T-cell signal comes from

cytotoxic cells, a∗ = Aρ
2 , resulting in a tumour below the carrying capacity,

c∗ = ρc

(
1− γAρ

2

)
. However, when all T-cells are helpers, ϵ = 1, we have that

the net T-cell signal is equivalent to the helper T-cell signal, m∗ = a∗, and

that the tumour reaches the carrying capacity, c∗ = ρc. From analysis of the

eigenvalues of the Jacobian ∂F/∂x we find that x1 is stable when,

γ > γc =
2r
Aρ

(1 + R) (2.32)

when this condition is not met x1 is unstable. To assess the stability of x2 we

should analyse the eigenvalues of the Jacobian evaluated at x2, however the

eigenvalues are found to be non-trivial and a condition for stability based on

56



2.3 Results

a single parameter as in (2.32) is not tractable.

To make progress analytically, we shall reduce the dimensionality of our

system by considering the timescales at which the different processes in our

model occur. To begin we define r̃ = rτc and γ̃ = γτc where τc is a constant

that will set the relative rate of reactions that govern tumour cell concentra-

tion, and r̃ and γ̃ are the redefined rate of tumour replication and MHC-I

expression, respectively. Substituting our expressions for r and γ into our

expression for dc
dt in (2.26), we can write,

τc
dc
dt

=

[
r̃− γ̃(a−m)− r̃c

ρc

]
c. (2.33)

Similarly, we may define λ̃ = λτp, δ̃ = δτp and π̃± = π±τp where τp is a

constant that will set the relative rate of reactions that govern antigen presen-

tation. Our expressions for db
dt and dp

dt in (2.26) may then be written,

τp
db
dt

= b
(
λ̃m− δ̃b

)
(2.34)

τp
dp
dt

= π̃+bc− π̃−p. (2.35)

We now scale time such that our equations evolve on the timescale defined by
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t = ττc. In this case the system of equations (2.26) becomes,

dc
dτ

=

[
r̃− γ̃(a−m)− r̃c

ρc

]
c (2.36)

τp

τc

db
dτ

= b
(
λ̃m− δ̃b

)
(2.37)

τp

τc

dp
dτ

= π̃+bc− π̃−p. (2.38)

1
τc

dm
dτ

= −m +
ϵAρ

2

[
1 + tanh

(
β

2
p
)]

(2.39)

1
τc

da
dτ

= −a +
Aρ

2

[
1 + ϵ tanh

(
β

2
p
)
+ (1− ϵ) tanh

(
β

2
cm
)]

. (2.40)

We now assume that τc ≫ τp such that the processing and presentation of

antigens is fast relative to the replication and cell-mediated death of tumour

cells. To support this assumption, we refer to the immunological literature.

Firstly, it has been shown that the rate at which surface MHC-II is endocy-

tosed in immature and mature DCs is on the timescale of about an hour:

a study found immature DCs to endocytose 70% of their MHC-II surface

molecules in 80 minutes, with mature DCs only endocytosing 15% in the

same time period, as MHC-II half-life is known to be longer in the mature

state (188). While this may suggest that mature DCs lose the ability to take

up and present fresh antigen, it has been shown, in mice, that both imma-

ture and mature DCs take up and present fresh antigen in vivo after just 30

minutes of exposure to antigen (189). To assess the timescale at which the

concentration of tumour cells evolves, we note that in solid cancers, tumour

cell doubling times in vitro are approximately 30 hours, as has been measured

in ovarian (190) as well as breast and lung cancer (191) cancer cell lines. With

this in mind, we consider antigen presentation to be a fast process relative
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to the evolution of tumour cell concentration, and take τp
τc
→ 0. This implies

that equations (2.37) and (2.38) reach their stable nullcline, b = λ̃m
δ̃

= λm
δ

and p = π+λmc
π−δ

which we note depend on the original, unscaled, parameters.

Consequently, our system of equations is reduced to,

dc
dt

=
1
τc

[
r̃− γ̃(a−m)− r̃c

ρc

]
c (2.41)

dm
dt

= −m +
ϵAρ

2

[
1 + tanh

(
β

2
p
)]

(2.42)

da
dt

= −a +
Aρ

2

[
1 + ϵ tanh

(
β

2
p
)
+ (1− ϵ) tanh

(
β

2
cm
)]

(2.43)

with p = π+λmc
π−δ

.

At this stage we are faced with one of two options: either the evolution of

tumour cell concentration is faster than T-cell activation or vice versa. In the

literature, it has been shown that a single DC can interact with 5000 T-cells

an hour (192). This suggests that our variables describing the fraction of T-

cells that are active, m and a, will evolve on a much faster timescale than the

tumour cell concentration. If we accept this, and consider the case that T-cell

activation is faster than tumour cell division, we shall formally send 1
τc
→ 0.

We can study the solution to this system of equations (2.41)-(2.43) under the

assumption that 1
τc
≪ 1 via singular perturbation theory. The “inner” solution

to these equations, where it is assumed t = O(1), is found by sending 1
τc
→ 0

such that from equation (2.41),

dc
dt

= 0 (2.44)

=⇒ c = c(t = 0) = c0 (2.45)

59



2. A MODEL OF THE T-CELL MEDIATED ANTI-TUMOUR IMMUNE
RESPONSE

and the system of equations is reduced to,

dm
dt

= −m +
ϵAρ

2

[
1 + tanh

(
β

2
p0

)]
(2.46)

da
dt

= −a +
Aρ

2

[
1 + ϵ tanh

(
β

2
p0

)
+ (1− ϵ) tanh

(
β

2
c0m

)]
. (2.47)

with p0 = π+λmc0
π−δ

. On the other hand, the “outer” solution in singular pertur-

bation theory is found by rescaling time such that t = ττc, assuming τ = O(1)

(i.e. t = O( 1
τc
)), and sending τc → ∞. After rescaling time, equations (2.41)-

(2.43) become,

dc
dτ

=

[
r̃− γ̃(a−m)− r̃c

ρc

]
c (2.48)

1
τc

dm
dτ

= −m +
ϵAρ

2

[
1 + tanh

(
β

2
p
)]

(2.49)

1
τc

da
dτ

= −a +
Aρ

2

[
1 + ϵ tanh

(
β

2
p
)
+ (1− ϵ) tanh

(
β

2
cm
)]

. (2.50)

In the limit τc → ∞ we find that 1
τc

dm
dτ = 0 and 1

τc
da
dτ = 0 such that m and a

reach their nullclines

a =
Aρ

2

[
1 + ϵ tanh

(
β

2
p
)
+ (1− ϵ) tanh

(
β

2
cm
)]

(2.51)

m = F−1(c) (2.52)

where

F(m) =
2π−δ

βπ+λm
tanh−1

(
2m
ϵAρ

− 1
)

. (2.53)
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Hence, the outer solution is reduced to a single ODE,

dc
dτ

=

[
r̃− γ̃Aρ

2
(1− ϵ)

[
1 + tanh

(
βcF−1(c)/2

)]
− r̃c

ρc

]
c = f (c). (2.54)

Formally, the inner solution at t → ∞ should be equivalent to the outer

solution at τ → 0. If we consider the inner solution, equations (2.45)-(2.47), at

t→ ∞ we find that m and a will reach the fixed points of equations (2.46) and

(2.47) which are given by,

a =
Aρ

2

[
1 + ϵ tanh

(
β

2
p0

)
+ (1− ϵ) tanh

(
β

2
c0m

)]
(2.55)

m = F−1(c0). (2.56)

If we consider the outer solution at τ → 0, from equation (2.54) we have that

c will simply be set at its initial condition

lim
τ→0

c = c(τ = 0) = c0. (2.57)

If we then substitute c0 into the outer solution for a and m, given by equations

(2.51) and (2.52), we find that they are equivalent to the inner solution for a

and m in the limit t → ∞, given by equations (2.55) and (2.56). Hence, it is

the case that the inner solution at t → ∞ and the outer solution at τ → 0

are equivalent. One then expects that the inner and outer solutions match at

some intermediate timescale τ∗ where 1≪ τ∗ ≪ 1
τc

i.e. τ∗ = 1√
τc

.

As we are interested in the long time dynamics of our system, we consider

the outer solution at τ → ∞. In this case the tumour cell concentration c will
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reach one of two fixed points of equation (2.54), given by,

c∗ = 0 (2.58)

c∗ = ρc

(
1− γAρ

2r
(1− ϵ)

[
1 + tanh

(
βc∗F−1(c∗)/2

)])
(2.59)

corresponding to tumour eradication and large stable tumour formation, re-

spectively. The non-trivial fixed point, c∗ > 0, can be found using the relation

F−1(c∗) = m∗ via the numerical solution of (2.29)-(2.31).

To inspect the stability of the fixed points we evaluate the derivative f ′(c)

of the ‘velocity’ function defined in (2.54). The fixed point c∗ = 0 is stable

when f ′(0) < 0 giving us the condition γ > γc =
2r
Aρ

1
1−ϵ which is equivalent

to (2.32). The non-trivial fixed point c∗ > 0 will be stable when f ′(c∗) < 0,

yielding

γ < γ∗ =
2r
Aρ

(1 + R)
{

1− β

2
c∗
[

m∗ +
c∗

F′(m∗)

]
cosh−2 (βc∗m∗/2)

}−1

. (2.60)

We now have an expression for the critical value of MHC-I where the

fixed point c∗ ̸= 0 becomes unstable, γ∗, given by equation (2.60), and an

expression for the critical value of MHC-I where c∗ = 0 becomes unstable,

γc, given by equation (2.32). Since it is not necessary that γc = γ∗, there

is a possibility that either i) γ∗ < γ < γc and both fixed points are unstable

or ii) γc < γ < γ∗ and both fixed points are stable; this would suggest

that the dynamics are non-trivial and can not be analysed through linear

stability analysis alone. To investigate which, if any, of the two scenarios

is taking place, we perform limiting analysis of the stability condition. We
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first note that for meaningful values of m i.e 0 < m < ϵAρ which must be,

by definition, at most of order O(1), we can show that F′(m) > 0. The term
β
2 c∗
[
m∗ + c∗

F′(m∗)

]
cosh−2 (βc∗m∗/2) ∼ O( c∗2

exp(c∗)) < 1 which vanishes at both

c∗ → 0 and c∗ → ∞. It then follows from equations (2.59) and (2.60) that,

as γ→ 0+, c∗ → ρ−c =⇒ γ∗ ≥ γ+
c (2.61)

with equality at ρc → ∞. We can also look at the limit that the γ approaches

its critical value to find,

as γ→ γ−c , c∗ → 0+ and γ∗ → γ+
c . (2.62)

However, the exact value of γ∗ can only be found through numerical solution

of equations (2.29) and (2.30). We note that γ∗ can be written as function of

γ through its dependence on c∗. In the left panel of Figure 2.2 we plot γ∗ as a

function of γ and find that,

γ > γc =⇒ γ > γ∗ (2.63)

γ < γc =⇒ γ < γ∗ (2.64)

which implies that the fixed points exchange stability as γ→ γc.

From the analysis of the long time dynamics of the system (2.26), and

by taking into account different timescales of processes, we have shown that

there are two fixed points where c = 0 or c = c∗. If the MHC-I expression is

above some critical value, γ > γc, the fixed point c = 0 is stable and c = c∗ is

unstable, whereas the reverse is true if γ < γc. In doing so we have assumed

63



2. A MODEL OF THE T-CELL MEDIATED ANTI-TUMOUR IMMUNE
RESPONSE

Figure 2.2: Left: Critical value of MHC-I, γ∗ given by equation (2.60), where the
non-zero fixed point of equation (2.54) becomes stable/unstable. From equation
(2.60) γ∗ depends on γ through c∗, and so we plot this as a function of γ. Dashed
lines indicate the critical value of MHC-I, γc, where the fixed point c = 0 of
equation (2.54) becomes stable/unstable. The model parameters used are: tu-
mour replication rate r = 0.15, helper/cytotoxic ratio R = 1/3, and specific T-cell
density Aρ = 0.8. All other parameters are set to 1. Right: γ is plotted against
the helper/cytotoxic ratio R. Tumour cells are removed above the critical line
indicated by the solid line γ = γc. The model parameters used are: tumour
replication rate r = 0.2, specificity of T-cells A = 1 and density of T-cells ρ = 1.0.
Parameters have been chosen to clearly delineate the different regions of interest
i.e tumour escape c ̸= 0 and tumour eradication c = 0.

that τc ≫ 1. However, we find in 2.B that the fixed points of the system are

the same if we assume the reverse τc ≪ 1 (although the transient dynamics

will differ).

This shows that there is a critical value of MHC-I expression, above which

the tumour will be eradicated, and below which it will reach some stable tu-

mour size. Furthermore, the critical value of MHC-I depends linearly through

the helper/cytotoxic ratio R. To remove tumour cells a large population of

cytotoxic T-cells is required and this depends on the expression of MHC-I.

This is illustrated in Figure 2.2 (right panel). This implies that measuring

CD4+/CD8+ alone may yield incorrect understanding of tumour progression

in vivo since it also depends on the expression of MHC-I. With a low MHC-I
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expression, a CD4+/CD8+ ratio that would have been considered healthy for

high MHC-I expression would not lead to complete tumour eradication. We

note that this figure shows that higher CD8 and higher MHC-I are associated

with lower tumour size, consistent with current data (136).

The stability of the fixed points does not depend on the T-cell activation

noise level, β−1 = T. The noise does however affect the size of the escaped

tumour as shown in Figure 2.3, obtained by solving together equations (2.29)

and (2.30) numerically. In this figure we set r = 0.5 and A = ρ = γ = 1 to

ensure that the fixed point c = c∗ is stable. We also set ρc = 1000, but in this

case the choice is arbitrary as ρc will not affect the stability of c∗, only its size

and the time it takes for the fixed point to be reached. For β > 101 the change

in the tumour cell concentration becomes negligible due to the hyperbolic

tangent function that appears in (2.30) which saturates for large values of

β. An additional observation is the dependence of γc on the parameters A

and ρ in (2.32). These parameters, respectively, represent the specificity and

density of T-cells in the tumour. We refer to the product Aρ as the specific

infiltration of T-cells, as in combination these parameters describe the density

of T-cells that are involved in the anti-tumour immune response. We find that

γc is proportional to (Aρ)−1 which suggests that small changes in the specific

infiltration of T-cells may correspond to large changes in stable tumour cell

concentration.
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Figure 2.3: Equilibrium tumour concentration plotted as a function of inverse
T-cell activation noise β. Activation noise is increasing from right to left. The
tumour replication rate is r = 0.5, the carrying capacity concentration is ρc =
1000, and the MHC-I expression and specific tumour density are set to γ = A =
ρ = 1. The tumour cell concentration is normalised with respect to the carrying
capacity ρc.

2.3.3 Tumour size with immune parameters

This model provides predictions for the dependence of the size of the tumour,

given by equations (2.29) and (2.30), on different immune parameters. Figure

2.4 shows how the size of the tumour varies with MHC-I expression (left

panel) and infiltration of specific T-cells Aρ (right panel) and it shows that it

increases when the helper/cytotoxic ratio is larger. For a low helper/cytotoxic

ratio we see a discontinuity in the stable tumour size. This is due to the figure

showing the tumour size dynamically reached at equilibrium. Above the criti-

cal value of infiltration, which can also be found from (2.32), there are enough

T-cells to remove tumour cells, but below this value the tumour can grow to

a stable size that depends on all other parameters of the system. We note that

similar behaviour is seen in the left and right panels of 2.4. This is due to

66



2.3 Results

the parameters γ, A and ρ appearing as a product in the expression (2.59) for

the stable tumour cell concentration, suggesting that these parameters have

a functionally equivalent effect on the stable tumour cell concentration (in-

deed, in section 2.3.6, we quantify the sensitivity of the stable tumour cell

concentration to each of these parameters, and show that they have similar

impact).

A common problem with ODE models of immunology is that they require

temporal data for validation - which can be hard to come by for both practical

and ethical reasons. Our model is based upon immune dynamics but can

be used to produce predictions not based on time as in the case with the

figures discussed in this section. Concurrent measurements of MHC-I, T-cell

infiltration and CD4+/CD8+ are lacking in the literature (exceptions include

(136, 193)), but are examples of data which could be used to validate this

model.

2.3.4 Optimal helper/cytotoxic ratio

Another feature of this model is the ability to predict an optimal helper/cytotoxic

ratio R. Here we define optimal to mean yielding the lowest stable tumour

size when equation (2.54) equilibrates to the fixed point c = c∗. We param-

eterised the system such that the fixed point c = c∗ was always stable and

considered the numerical solution for the stable tumour cell concentration,

(2.29)-(2.31), for different values of R as shown in Figure 2.5. As the cytotoxic

T-cell pool decreases the tumour cell concentration increases, as expected.

However, if there are not enough helper cells to activate the cytotoxic pop-
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a) b)
Figure 2.4: Stable tumour cell concentration, c, against MHC-I expression, γ, in
(a) and against specific tumour T-cell infiltration, Aρ, in (b), displayed for two
different helper/cytotoxic T-cell ratios, R. To plot this on a logarithmically scaled
y-axis, we have plotted (1 + c)/ρc. Here the tumour replication rate is r = 0.15,
the activation noise is β−1 = 1, T-cell density is ρ = 1, the specificity in (a) is set to
A = 1, the MHC-I expression in (b) is γ = 0.7, and the carrying capacity is set to
ρc = 1000. The dashed vertical line indicates, for the case R = 1/3, the critical
value, predicted by equation (2.32), where the stable tumour cell concentration
in the long time limit becomes non-zero.

ulation, the tumour reaches a large size, corresponding to the peak around

R = 0. Note that even in absence of helper T-cells, cytotoxic T-cells may

still activate at finite noise levels (corresponding to activation via pathways

independent of helper cells.) This explains why at R = 0 the tumour cell

concentration is still below the carrying capacity ρc in Figure 2.5. An interest-

ing feature of this model is that it shows that there is a range of values of R

for which the tumour size is relatively small. This suggests that the immune

system is robust to changes in the helper/cytotoxic ratio. While we consider

this parameter fixed in our model, in principle it is a dynamic quantity. If the

helper/cytotoxic ratio varied dynamically within this region of of parameter

space, the variation in the stable tumour cell concentration would be negligi-

ble.
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Figure 2.5: Cell concentration of a tumour which has escaped plotted as a func-
tion of the helper/cytotoxic T-cell ratio R for β = 100, r = 0.8, A = γ = ρ = 1,
ρc = 1000. The tumour cell concentration has been normalised with the carrying
capacity ρc.

2.3.5 Time variation of MHC-I expression

In our model we have treated the expression of MHC-I, γ, as a constant,

however in principle it should evolve with time, γ = γ(t). As the tumour

progresses, tumour cells with low expression of MHC-I will evade the im-

mune response and will have an advantage over tumour cells that have high

MHC-I expression. This selective pressure means that the MHC-I expression

in the bulk tumour will decrease over time. Analytical progress with time

dependent MHC-I expression γ(t) is difficult, so to achieve this we reduce

our system of equations by assuming all T-cells are active i.e a = Aρ/2 and

m = ϵAρ/2. By fixing a and m to their maximum physical values, the system

of equations reduces to a single equation for the tumour cell concentration,

dc
dt

=

[
r− Āγ(t)− rc

ρc

]
c, (2.65)
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with

Ā =
Aρ(1− ϵ)

2
. (2.66)

We refer to this limit as a “best-case” scenario, since if a and m are allowed

to vary below their maximum value, the tumour concentration will be higher

than if locked at their maximum value. The solution of the above equation,

which we discuss in 2.C, is given by

c(t) =
c0ρce

∫ t
0 (r−Āγ(s))ds

ρc + c0r
∫ t

0 e
∫ s

0 (r−Āγ(s′))ds′ds
, (2.67)

where c0 is the initial condition c(t = 0) = c0. This solution requires knowl-

edge of γ(t). The latter has not been studied in the literature, however, we

can bound the solution for a family of γ(t) functions if we assume that the

maximum, γmax, and minimum, γmin, values of the function are known. We

find the upper bound to be

c(t) ≤ c0ρcet(r−Āγmin)

ρc +
c0r

r−Āγmax

(
et(r−Āγmax) − 1

) . (2.68)

The long-time behaviour of the upper bound in the above depends on γmin

as follows

c(∞) ≤


0, if γmin > r

Ā = γc

∞ otherwise,
(2.69)
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where we have recovered that for the tumour to be eradicated as t → ∞ we

require that γ > γc.

A tighter bound on c(t) can be found with a specific form of γ(t). In

particular, if we assume that the expression of MHC-I decays exponentially,

γ(t) = e−
t

τγ (2.70)

where τγ is the timescale of MHC-I decay, the solution can be bound as fol-

lows,

c0ρce
Āτγ

(
e
− t

τγ −1
)

ρce−rt + c0 (1− e−rt)
≤ c(t) ≤ c0ρceĀτγe

− t
τγ

ρce−rt+Āτγ + c0 (1− e−rt)
(2.71)

where in the above we have used
∫ t

0 ersds ≤
∫ t

0 ers+τγ Āe
− s

τγ ds ≤
∫ t

0 ers+τγ Āds.

If we now consider the long-time behaviour of c(t) we find that

ρce−Āτγ ≤ c(∞) ≤ ρc. (2.72)

The upper bound is now finite in the long time limit, and is equal to the

carrying capacity concentration, as would be expected. We see that the lower

bound of c(t) is also finite. The latter is due to γmin < γc. Therefore, according

to this model the exponential decay of MHC-I prohibits the eradication of

tumours. However, it is important to stress that if the decay rate is sufficiently

slow, the tumour cell concentration can become very small. All calculations

have been made under the assumption that ρ = N
V = O(1). We show in the

appendix that in this regime stochastic fluctuations are suppressed as V → ∞.
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However, for finite N, fluctuations become of the same order as the mean, and

can remove a small number of tumour cells in a finite time. Additionally, as

discussed in the introduction, we neglect the role of NK cells to focus on the

T-cell dependent response. However, at low MHC-I the NK cells play a more

dominant role, adding an additional deleterious effect upon tumour growth.

In addition to exponential decay we have also considered a sigmoidal de-

cay by defining

γ(t) =
1

1 +
(

t
τγ

)g , (2.73)

which is sigmoidal for g > 1 where g is the shape parameter. Furthermore, the

function approaches a step function as g≫ 1. In the left panel of Figure 2.6 we

plot the tumour concentration against time for different tumour replication

rate r and functional form of MHC-I expression γ(t). In the right panel of

Figure 2.6 we plot γ(t) for the corresponding curves in the left panel. In

particular, we compare sigmoidal and exponential decay of MHC-I. Figure

2.6 shows that in the case where the tumour is initially growing at a rate

faster than T-cell mediated death the behaviour changes significantly with the

functional form of γ(t). In the case of exponential MHC-I decay, the tumour

cell concentration exponentially increases towards saturation. However, with

a sigmoidal γ(t), the tumour concentration increases and reaches a plateau

then rapidly grows to saturation. No such difference is observed when the

tumour is initially removed by the T-cells. We note that when the rate of

T-cell mediated death is initially faster than the rate of replication, Figure

2.6 exhibits the “three Es” of cancer immunoediting first discussed by (194):
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a) b)
Figure 2.6: Time evolution of tumour cell concentration from numerical solution
of equation (2.65) (a) subject to exponential and sigmoidal MHC-I decay profiles
(b). We show results for two parameterisations: tumour replication rate r = 0.4,
timescale of MHC-I expression decay τγ = 350 (dotted lines); r = 0.5 and τγ =
200 (dashed lines). In all cases the initial tumour cell concentration is c0 = 20,
Ā = 0.375, and carrying capacity concentration ρc = 100. The shape parameter
for the sigmoidal decay function is g = 10. The tumour cell concentration has
been normalised with the carrying capacity ρc.

the tumour is initially eliminated, reaches a period of equilibrium, and then

escapes. This qualitative behaviour was also observed in a previous model

of helper/cytotoxic T-cell interactions in the anti-tumour immune response

(64). Our model suggests that the profile of γ(t) has a dominant effect on

the duration of the elimination, equilibrium and escape phases of tumour

progression. Experimental data revealing the longitudinal change in MHC-I

expression in tumours may explain the extent that MHC-I plays in tumour

equilibrium and escape.

2.3.6 Sobol Sensitivity Analysis

One may ask how sensitive our results are to the specific choice of parame-

ters of our model. In our model the tumour cell concentration is a non-linear
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function of 12 parameters. As a consequence of this it is difficult to under-

stand the impact each parameter has on the tumour cell concentration. To

better understand the sensitivity of our findings to choices of parameters, we

perform a global stability analysis. In doing so, we shall vary several parame-

ters concurrently, and deduce the impact that individual parameters, and the

interaction between parameters, has on the output of our model. In particular

we will perform a Sobol sensitivity analysis (195, 196, 197).

A Sobol sensitivity analysis assumes that the output of some model may

be expressed as Y = f (x1, . . . , xp) where Y is some scalar output of the model

that we are interested in, and x1, . . . xp are the p parameters of the model. The

variance in the model output is defined as,

V(Y) =
∫

P
f 2(x1, . . . , xp)dx1, . . . , dxp −

∫
P

f (x1, . . . , xp)dx1, . . . , dxp (2.74)

where P is the parameter space that defines the values that each of the param-

eters may take. In Sobol analysis, the function is decomposed into functions

of different combinations of parameters,

f (x1, . . . , xp) = f0 +
p

∑
i=1

fi(xi) +
p

∑
i=1

p

∑
j=i+1

fij(xi, xj) + · · ·+ f1,...,p(x1, . . . , xp).

(2.75)

As a result of this, it is possible to represent the variance in the model output

as a summation of variances associated with changes in individual parame-

ters, and combinations of different parameters. We may define the contribu-
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tion to the model variance from a set of parameters {xi1 , . . . , xin} as,

Vi1,...,in =
∫

Pn
f 2
i1,...,in(xi1 , . . . , xin)dxii . . . dxin , (2.76)

where Pn is the parameter space that defines the range of values parameters

{xi1 , . . . , xin} may take. The total variance is then given by,

V(Y) =
p

∑
i=1

Vi(Y) +
p

∑
i=1

p

∑
j=i+1

Vi,j + · · ·+ V1,...,p. (2.77)

To measure the contribution of a parameter, or a set of parameters, to the

variance in the model output, one may compute the the Sobol indices. The

first order Sobol indices are given by,

Si =
Vi

V(Y)
(2.78)

which is a measure of the contribution of an individual parameter xi to the

overall variance in the model output. Similarly, second order Sobol indices

are defined,

Sij =
Vij

V(Y)
(2.79)

which tells us how the interaction between parameters xi and xj contribute to

the overall variance in Y. In general, the nth Sobol index is given by,

Si1,...in =
Vi1,...,in
V(Y)

. (2.80)
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The total Sobol index of parameter xi is defined as the sum of all Sobol indices

involving parameter xi,

STi = Si + ∑
j ̸=i

Sij + . . . S1,...,p. (2.81)

Carrying out a Sobol sensitivity analysis requires computing the multiple

integrals in equation (2.76) over the parameter space we wish to assess the

model output variance. For complex models, this is typically intractable an-

alytically, and one must resort to numerical methods. Practically, this can be

computationally expensive, especially for models with many parameters that

may take a wide range of values. In our case we used the Python package

SALib to compute the Sobol indices in our sensitivity analysis (198). This

package solves these integrals using Monte Carlo methods, where the in-

tegrand is approximated as the sum of the integrand evaluated at random

points in the parameter space considered. The accuracy of such methods

will increase with the number of Monte Carlo samples, and typically high-

dimensional integrands require many samples for accurate approximations.

To perform the sensitivity analysis, we must first pick the output of our

model, the variance of which we will measure with respect to the model pa-

rameters. We choose the stable tumour cell concentration in the long time

limit as our model output, as it has been the focus of the preceding sections,

such that the sensitivity analysis will tell us how robust the results in the pre-

ceding section are to uncertainty in the parameter values. In Figure 2.7 we

show the first order and total Sobol indices for each of the parameters in our
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model. In this analysis we kept the carrying capacity ρc = 1000, as this will set

the scale of the stable tumour cell concentration we are considering, and will

keep different parameterisations comparable. Of the 11 parameters we vary

there are 5 with relatively high first order Sobol indices; namely, the tumour

replication rate, r, the expression of MHC-I, γ, the fraction of helper/cytotoxic

T-cells, ϵ, the specificity of T-cells, A, and the density of T-cells, ρ. The tumour

replication rate, r, contributes to over 50% of the variance in the tumour cell

concentration. Additionally, we see that for each of these parameters, the to-

tal Sobol index is higher than the first order, an indication that higher order

interactions between parameters may be important. However, higher order

Sobol indices were found to be small relative to their first order counterparts.

Hence, it is the direct influence of individual parameters, and not their inter-

actions, that plays the greatest role in the variance of the stable tumour cell

concentration. From this we identify the set of parameters (r, γ, ϵ, A, ρ) as the

most influential on the stable tumour cell concentration, and uncertainty in

the other parameters of our model will not affect the qualitative results of the

preceding section.

However, to further evaluate which set of parameters is the most influen-

tial on the variance in the stable tumour cell concentration, we performed a

test that evaluates our model across 3 independent sets of parameter values

sampled via the Sobol sequence as proposed in (199). From the Sobol anal-

ysis above, we rank the parameters according to their total Sobol index. We

then draw 3 sets of samples of parameters. In the first set, Set 1, we draw

1000 samples of each of the 11 parameters. In the second set, Set 2, we draw

1000 parameters, but set the n parameters with highest total Sobol index in
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our original analysis, to be equal to the values drawn in Set 1. In Set 3, we

draw 1000 parameters and set the 11− n parameters with lowest total Sobol

index to be equal to their values in Set 1. We then assess the correlation be-

tween the stable tumour cell concentration that is generated by these 3 sets of

parameter groups, for different values of n. In principle, if n = 11, then the

correlation between Set 1 and Set 2 should be 1, and Set 1 and Set 3 exactly

0. The correlations between Set 1, Set 2 and Set 3, for different values of n,

are shown in Table 2.1. We see that as we increase the number of parameters

of influence, n, the correlation between Set 1 and Set 2 increases, but the dif-

ference is negligible between n = 5 and n = 6. Furthermore, the correlation

between Set 1 and Set 3 decreases with increasing n, and the change is also

negligible between n = 5 and n = 6. This suggests that according to the Sobol

analysis of our model, the uncertainty in the tumour cell concentration is well

described by a set of n = 5 influential parameters; namely, r, γ, A, ϵ and ρ.

This gives us greater confidence in the results of the previous sections. In

particular, it suggests our choice to set ϕ = 0 will not significantly alter the

qualitative nature of our results.

2.4 Discussion

The complexities of tumour immunology require a systemic approach to bet-

ter understand cancer and inform treatment. Quantitative tools are being

used to a greater extent, due to the vast data produced by next generation

experimental technology; mathematical modelling being among them. Math-

ematical modelling can suffer from two extremes: models that include detail
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Figure 2.7: Total and first Sobol indices for each parameter in a global sensitivity
analysis. Model output is the tumour cell concentration at the fixed point of
the system of equations (2.26), and the Sobol indices describe the first order
and total contribution to the variance in the model output. 105 random samples
of parameters were taken, uniformly, from the following range of parameters:
r ∈ [0.01, 2], π± ∈ [0.01, 1], λ ∈ [0.01, 2], δ ∈ [0.01, 2], A ∈ [0, 1], ϵ ∈ [0, 1],
ρ ∈ [0.01, 1], β ∈ [10−3, 102], ϕ ∈ [−1, 1]. Carrying capacity for the tumour cell
concentration was fixed to ρc = 1000 in order to keep the model with different
parameterisations comparable.

Table 2.1: Pearson correlation coefficient between the stable tumour cell con-
centration for different sets of parameters. In Set 1, all parameters are sampled
uniformly from a range of parameters specified in the caption of Figure 2.7. Set 2
is a new set of parameters independently drawn from the same range of parame-
ter values, but the n parameters with highest total variance in the Sobol analysis
conducted to produce Figure 2.7 are set identical to that in Set 1. Set 3, is another
independent set of parameters, but the lowest 11− n parameters are set to be
equal to Set 1.

n Set 1 vs Set 2 Set 1 vs Set 3
2 0.628 0.306
3 0.662 0.333
4 0.774 0.330
5 1.000 0.147
6 1.000 0.147
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at the molecular level tend to focus on a small set of processes to achieve an-

alytical results at the expense of a systemic view; on the other hand, macro-

scopic models which achieve greater systemic resolution, tend to have a large

number of parameters, which makes statistical validation impractical, espe-

cially in absence of large data sets. In our work we used statistical mechanics

and dynamical systems approaches to analyse the anti-tumour response of

a simplified model of the adaptive immune system, comprising antigen pre-

senting cells, helper T-cells and cytotoxic T-cells. The end result is a system of

five ODEs that highlights the role in tumour growth of different parameters

linked to key cellular processes.

Previously, it has been shown empirically that the prognostic value of the

CD4+/CD8+ ratio, and the expression of MHC-I, are improved when con-

sidered in combination (136). Our work provides a simple model for the

mechanistic interplay between these two parameters during the anti-tumour

immune response, from which apparent contradictions in the literature can be

rationalised. In particular, our model suggests that, when using the CD4+/CD8+

ratio as a prognostic marker, the expression of MHC-I must also be taken into

account, due to its interplay with the helper/cytotoxic T-cell ratio, otherwise

this may risk incorrect prognosis. A good prognosis of clinical outcome has

been associated with different CD4+/CD8+ ratios across different cancers,

and this model suggests that this is due to variations in MHC-I expression.

If proved correct this could help to potentially unify efforts across different

cancers, something that can rarely be achieved. Our model also highlights

that the infiltration of specific T-cells is an important parameter, that will also

affect the growth of a tumour and could potentially obfuscate the prognos-
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tic value of CD4+/CD8+ and MHC-I. Recent work has shown that the TCR

repertoire of tumour infiltrating T-cells has low tumour reactivity (134). Our

model highlights the dramatic effect such a small pool of specific T-cells can

have on the prognostic value of CD4+/CD8+ and MHC-I. Encouragingly, the

model shows that the adaptive immune response is robust to changes in the

helper/cytotoxic ratio, as one would hope.

Our work has focused on modelling the immune response where MHC-

I expression is assumed to be constant to highlight its interplay with the

helper/cytotoxic ratio R. However, we have shown the role that MHC-I de-

cay can play in the evolution of tumours. The eradication of tumours will

depend on the minimum expression of MHC-I - if this is too low the T-cell re-

sponse will fail and other cells, most likely NK, are required for eradication,

otherwise the tumour will escape. In addition to this, our work highlights

the role that the profile of MHC-I decay can have on the growth of tumours.

To the best of our knowledge, there is no data measuring the time evolution

of MHC-I expression in tumours to be able to estimate this profile. How-

ever, availability of such data could confirm whether the variation in MHC-I

expression leads to periods of equilibrium in tumour growth.

One issue with mathematical models is that they often focus on the dy-

namics of immune cells, for which experimental data is rare. Although our

model is based on dynamics, we have provided results which focus on non-

temporal quantities that could be verified with standard measurements in

immunology. We hope our model can serve as a motivation for experimen-

tal investigation into the combined effect of CD4+/CD8+ and MHC-I, and

provide a useful theoretical framework to interpret results.

81



2. A MODEL OF THE T-CELL MEDIATED ANTI-TUMOUR IMMUNE
RESPONSE

The work presented here is a theoretical minimal model of the adaptive

immune system, and as such has limitations. For example, the model only

considers the adaptive immune response and does not explicitly take into

account innate immunity such as the natural killer cells and macrophages,

both of which play an important role in the anti-tumour immune response.

The benefit of our approach is the rigorous mathematics which can be anal-

ysed to understand qualitative behaviour, something which is often lost when

considering too many parameters.

A generally applicable feature of our work is the use of non-equilibrium

statistical mechanics to include an additional level of microscopic detail into

the modelling of cell concentrations with ODEs. Here our model has con-

sidered the activation and sub-type of T-cells, but this framework could also

be used to study other biological systems where constituent cells fluctuate

stochastically between different states, while interacting with other cell con-

centrations in the environment. For example, there is a long history of mod-

elling neurons as stochastic entities that fluctuate stochastically between two

states, quiescent or firing an electrical signal, (for examples see (200, 201, 202,

203)). On the other hand, neurons are known to be embedded in different

tissues, including muscles and the gut, where they conceivably interact with

other cells, whose concentrations may follow (approximately) deterministic

dynamics.

There are two potential extensions of our work we consider to be of par-

ticular interest. Firstly, as we have discussed, our work has neglected spa-

tial heterogeneity by modelling a small macroscopic area of a tumour which

can be regarded as uniform. Spatial heterogeneity plays an important role
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in the anti-tumour immune response, and the extension of the techniques

from non-equilibrium statistical mechanics to systems of PDEs could provide

important new results although at expense of increased model complexity.

Secondly, although we consider phenotypic heterogeneity implicitly when we

allow MHC-I to vary with time, we have not explicitly modelled competition

between tumour cell phenotypes. This model could be extended to account

for several tumour phenotypes, evolving with different rates, with hetero-

geneity in the T-cell response to each phenotype. Although this framework

is well adapted to such a scenario, analytical progress with multiple pheno-

types may provide an interesting avenue of investigation, elucidating the evo-

lutionary game between phenotypes. Another extension would be to adapt

this model to understand how tumours begin in the first place, including the

healthy tissue cells from which the tumour cells derive. Tumour immunology

is rich with complexity and bringing refined tools from statistical mechanics

may shed light on this complex system of processes.

83



2. A MODEL OF THE T-CELL MEDIATED ANTI-TUMOUR IMMUNE
RESPONSE

84



Appendices

2.A Kramers-Moyal expansion of the master equa-

tion

In this section, we derive a master equation for the probability Pt(σ) to ob-

serve a T-cell configuration σ ∈ {0, 1}N at time t, from the stochastic update

rule (2.14) and we will use it to derive equations for the time evolution of the

macroscopic variables a(σ) and m(σ). Denoting by P(x) =
∫ x
−∞ dz P(z) the

cumulative distribution function of the noise distribution P(z), the likelihood

to observe configuration σi at time t + ∆, given the T-cell configuration σ′ at

the earlier time step t, is, for any symmetric distribution P(z) = P(−z),

P(σi, t + ∆|σ′, t) = P(z ≤ (2σi − 1)β
(
ηiξi p(t) + (1− ηi)ξic(t)m(σ′)− ϕ(t)

)
.

(2.82)
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For the Glauber choice P(x) = 1
2(1 + tanh x

2 ), the probability that T-cell i

changes, in a single time step, its state at time t is

Wt
i (σ) = Pt(Fiσ|σ) =

1
2

(
1 + (2σi − 1) tanh

(
βhi(t, σ)

2

))
(2.83)

where we have defined the ‘flip’ operator Fi such that Fiσ = (σ1, ..., 1 −

σi, ..., σN) and hi(t, σ) = ηiξi p(t) + (1− ηi)ξic(t)m(σ)− ϕ(t). Assuming that

the update of T-cells is sequential, i.e. at each time step one T-cell i, drawn at

random, is updated with likelihood Wt
i (σ), one obtains, for ∆ = 1/N and N

large, the following master equation

∂tPt(σ) = ∑
i

[
Pt(Fiσ)Wt

i (Fiσ)− Pt(σ)Wt
i (σ)

]
. (2.84)

From the master equation, the time evolution of the macroscopic variables

can be retrieved using the Kramers-Moyal (KM) expansion. To perform this

expansion we note that we can define the time-dependent probability distri-

bution of the macroscopic variables as

Pt(a, m) = ∑
σ

Pt(σ)δ(a− a(σ))δ(m−m(σ)) (2.85)

from which the master equation tells us,

∂tPt(a, m) = ∑
σ

δ(a− a(σ))δ(m−m(σ))
[
Pt(Fiσ)Wt

i (Fiσ)− Pt(σ)Wt
i (σ)

]
.

(2.86)

86



2.A Kramers-Moyal expansion of the master equation

Defining Ω(σ) = (m(σ), a(σ)) and relabelling the first term in our sum with

Fiσ → σ we have

∂tP(Ω) = ∑
σ

Pt(σ)Wt
i (σ) [δ(Ω−Ω(Fiσ))− δ(Ω−Ω(σ))] . (2.87)

We now define the change in the macroscopic parameter Ωµ(σ) (where

Ω0(σ) = m(σ) and Ω1(σ) = a(σ)) caused by a flip in a single T-cell i as

∆iµ(σ) = Ωµ(Fiσ) − Ωµ(σ) such that ∆i0(σ) = m(Fiσ) − m(σ) = 1
V (1 −

2σi)ηiξi and ∆i1(σ) = a(Fiσ)− a(σ) = 1
V (1− 2σi)ξi. The KM expansion can

then be carried out in powers of ∆iµ(σ),

∂tP(Ω) = ∑
i

∑
σ

Wt
i (σ)Pt(σ)

[
−∑

µ

∂2

∂Ωµ
δ [Ω−Ω(σ)]∆iµ(σ)

+
1
2 ∑

µν

∂2

∂Ωµ∂Ων
δ [Ω−Ω(σ)]∆iµ(σ)∆iν(σ) + ...

]
.

(2.88)

A special case where the dynamical equations close is found when

∑i Wt
i (σ)∆iµ(σ) = Ft

µ(Ω(σ), ...), where Ft
µ is some function that depends on

the microscopic variable σ, through the macroscopic variables only, Ω(σ). To
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this end we evaluate ∑i Wi
t(σ)∆iµ(σ) for the cases µ = 0, 1,

∑
i

Wt
i (σ)∆i0(σ) = ∑

i

1
2

(
1 + (1− 2σi) tanh

(
βhi(t, σ)

2

))
1
V
(1− 2σi)ηiξi

(2.89)

= −m(σ) +
1

2V ∑
i

ηiξi (2.90)

+
1

2V ∑
i

ηiξi tanh
(

β

2
(ηiξi p(t) + (1− ηi)ξic(t)m(σ)− ϕ(t))

)
(2.91)

= Ft
0(Ω(σ), c) (2.92)

and similarly,

∑
i

Wt
i (σ)∆i1(σ) = ∑

i

1
2

(
1 + (1− 2σi) tanh

(
βhi

2

))
1
V
(1− 2σi)ξi (2.93)

= −a(σ) +
1

2V ∑
i

ξi (2.94)

+
1

2V ∑
i

ξi tanh
(

β

2
(ηiξi p(t) + (1− ηi)ξic(t)m(σ)− ϕ(t))

)
(2.95)

= Ft
1(Ω(σ), c) (2.96)

where we have denoted c = (c, b, p) and note that from equations (2.15)-(2.17),

c only depends on σ through Ω(σ). Indeed, it is the case that

∑
i

Wt
i (σ)∆iµ(σ) = Ft

µ(Ω(σ), c) (2.97)

with no explicit dependence on σ. By substituting equation (2.97) into (2.88)
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the sum over σ can be taken; this constrains the macroscopic variable to its

average Ωµ(σ) = ∑σ Pt(σ)Ωµ(σ) = Ωµ(t) and yields,

∂tPt(Ω) = −
1

∑
µ=0

∂

∂Ωµ

[
P(Ω)Ft

µ(Ω, c)
]
+ ... (2.98)

Higher order terms in the KM expansion are shown to be proportional to V−d,

where d ≥ 1, and are therefore negligible in the limit that V is large. Equation

(2.98) in this limit reduces to the Liouville equation

dΩ

dt
= Ft(Ω, c) (2.99)

which is otherwise written,

dm
dt

= −m +
1

2V ∑
i

ηiξi

(
1 + tanh

(
β

2
(ηiξi p + (1− ηi)ξicm− ϕ(t))

))
(2.100)

da
dt

= −a +
1

2V ∑
i

ξi

[
1 + tanh

(
β

2
(ηiξi p + (1− ηi)ξicm− ϕ(t))

)]
. (2.101)

To simplify these equations further, we make use of the empirical joint distri-

bution of η and ξ,

P(η, ξ) =̂
1
N ∑

j
δη,ηj δξ,ξ j (2.102)

with averages over this distribution then defined as

⟨...⟩η,ξ = ∑
η,ξ

...P(η, ξ). (2.103)
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The macroscopic dynamics are then summarised by the following ODEs,

dm
dt

= −m +
ρ

2

〈
ηξ

[
1 + tanh

(
β

2
(ηξ p + (1− η)ξcm− ϕ(t))

)]〉
η,ξ

(2.104)

da
dt

= −a +
ρ

2

〈
ξ

[
1 + tanh

(
β

2
(ηξ p + (1− η)ξcm− ϕ(t))

)]〉
η,ξ

. (2.105)

This corresponds to a mean-field description of the evolution of the stochastic

variables Ωµ(σ). For large but finite values of V, Ωµ(σ) will fluctuate about

its mean value Ωµ =
〈
Ωµ(σ)

〉
σ

with fluctuations of order
√

∆iµ = O(V− 1
2 ).

2.B Fixed points under the assumption of slow T-

cell activation

In section 2.3.2 we evaluated the system of equations (2.26) under the as-

sumption that τc ≫ τp, deriving equations (2.41)-(2.43), and then studied this

reduced system of equations under the assumption that 1
τc
→ 0, such that

in our model tumour cell concentration evolves at a slower rate than T-cell

activation. In doing so, we derive expressions for the fixed points of a re-

duced system of equations. Here we show that the fixed points of the system

are identical if we assume that τc → 0, such that tumour cell concentration

evolves much faster than T-cell activation.

We can, again, study the solution to this system of equations (2.41)-(2.43)

under the assumption that τc → 0 via singular perturbation theory. Note that

now τc is our small parameter, as oppose to 1
τc

which we considered in section

2.3.2. The “outer” solution in this case assumes that t = O(1) and is found
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by sending τc → 0, such that from equation (2.41) τc
dc
dt = 0 and we have that

the tumour cell concentration will reach one of its nullclines,

c = 0 (2.106)

c = ρc

[
1− γ

r
(a−m)

]
(2.107)

and the system of equations is reduced to,

dm
dt

= −m +
ϵAρ

2

[
1 + tanh

(
β

2
p
)]

(2.108)

da
dt

= −a +
Aρ

2

[
1 + ϵ tanh

(
β

2
p
)
+ (1− ϵ) tanh

(
β

2
cm
)]

. (2.109)

with p = π+λmc
π−δ

.

The inner solution is found by rescaling time such that t = ττc, assuming

τ = O(1) (i.e. t = O( 1
τc
)), and sending τc → 0. After rescaling time, equations

(2.41)-(2.43) become,

dc
dτ

=

[
r̃− γ̃(a−m)− r̃c

ρc

]
c (2.110)

dm
dτ

= τc

(
−m +

ϵAρ

2

[
1 + tanh

(
β

2
p
)])

(2.111)

da
dτ

= τc

(
−a +

Aρ

2

[
1 + ϵ tanh

(
β

2
p
)
+ (1− ϵ) tanh

(
β

2
cm
)])

. (2.112)

We find that by sending τc → 0, m and a are set to their initial conditions,

dm
dτ

= 0 =⇒ m = m(τ = 0) = m0 (2.113)

da
dτ

= 0 =⇒ a = a(τ = 0) = a0. (2.114)
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Hence, by substituting m0 and a0 into equation (2.110) we find that the inner

solution is given by

dc
dτ

=

[
r̃− γ̃(a0 −m0)−

r̃c
ρc

]
c. (2.115)

If we send t → 0 in the outer solution and τ → ∞ in the inner solution,

we find in both cases that,

m = m0 (2.116)

a = a0 (2.117)

and

c
[

r̃− γ̃(a0 −m0)−
r̃c
ρc

]
= 0. (2.118)

Hence, the outer and inner solutions match in the expected limits.

As we are interested in the long-time dynamics of our system, we consider

the outer solution in the limit t→ ∞. In this limit m and a approach the fixed

point of equations (2.108) and (2.109) given by equations (2.52) and (2.51),

respectively. What remains is to determine which of the two nullclines of c,

equations (2.106) and (2.107), is stable. To do so, we assume that m and a have

reached the fixed points, given by equations (2.52) and (2.51), and substitute
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them into equation (2.41),

dc
dτ

=

[
r̃− γ̃Aρ

2
(1− ϵ)

[
1 + tanh

(
βcF−1(c)/2

)]
− r̃c

ρc

]
c, (2.119)

where we have used t = ττc, such that we are considering the fast evolution

of c when a and m are approaching the fixed point. This equation is iden-

tical to equation (2.54), the evolution of tumour cell concentration when we

considered τc ≫ 1. This implies that for both τc ≫ 1 and τc ≪ 1, the fixed

points of the system are the same, and share the same stability criteria. The

transient behaviour, however, will differ as shown by the differences in the

inner solution when considering either τc → 0 or 1
τc
→ 0.

2.C Solution for time-dependent MHC-I expression

The solution to the equation for tumour cell concentration in the “best-case

scenario” (2.65) can be found using symbolic computational software. In par-

ticular we used Mathematica, using the following line of code,

DSolve[{c’[t] == (r - A \[Gamma][t] - (r c[t])/rho )* c[t],

c[0] == c0}, c[t], t]

which yields equation (2.67) as a solution. To verify that this is the solution,

we compared the solution from Mathematica to the solution of equation (2.65)

using numerical integration. In the left of Figure 2.C.1 the trajectories of c(t),

computed by the numerical solution of equation (2.65), and from equation

(2.67), are overlapping. The right of Figure 2.C.1 shows that there is small

difference between the numerical solution of equation (2.65) and equation
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Figure 2.C.1: Left: Tumour cell concentration against time. Results are shown
from the numerical solution to equation (2.65), and the symbolic solution from
Mathematica (2.67). Right: For values of t ∈ [0, 100] we plot c(t) from the numer-
ical solution of equation (2.65), cI , against the solution from Mathematica (2.67),
cM. Annotation indicates mean square error. In left and right figures, parameter

values are: r = 0.2, Ā = 0.5, ρc = 100. MHC-I decayed according to γ(t) = e−
t

τγ

with τγ = 10.

(2.67). The error between them is of the same order of magnitude as the

precision of the numerical integrator used to generate this plot. This suggests

that the solution provided by Mathematica is correct.
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3
Herd immunity in social contact networks with

heterogeneous transmission probabilities

3.1 Introduction

In the previous chapter we have shown how heterogeneity in the immune

response of individuals (i.e differences in the CD4+/CD8+ T-cell ratio etc)

affects tumour progression. In this chapter we study how heterogeneities in

the immune response of individuals affect the collective, or herd, immunity of

populations to infectious diseases.

The study of compartmental models, where a population is split into, for

example, ‘Susceptible’, ‘Infected’ and ‘Recovered’ compartments in the SIR

model, have formed an important theoretical and computational basis for the

study of epidemics and design of vaccination campaigns. An increased un-

derstanding of contact networks, which detail physical contacts of a sustained

duration between individuals in a population (see e.g. (204)), has been com-

plemented by mathematical results for compartmental epidemic models on

networks. One such contribution is the prediction of an epidemic threshold
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dependent upon the rates of infection and recovery, as well as the contact

network topology (66, 205, 206). Many important results concerning the SIR

model on networks have been derived by message-passing approaches, also

known as the cavity method, including the size and risk of epidemics on

networks with arbitrary degree distributions (207) and degree correlations

(208, 209). The cavity method originated in statistical physics to solve models

of spin glasses (210). In brief, it is an iterative method, that considers the influ-

ence of the neighbours of a node on the state of that node. Similarly, the state

of the neighbours can be analysed through the influence of its own neigh-

bours. This reasoning can be applied iteratively, such that the cavity method

derives a set of iterative equations which describe the properties of each node

in the network as a function of the properties of their neighbours. A broader

introduction to the cavity method can be found in Appendix A. Recently,

these methods have been employed to model epidemic mitigation via contact

tracing apps (80) and competing strains of infectious diseases (75, 76, 77). In

addition to analytical results, the cavity method provides a set of equations

that allows for an efficient parallel numerical implementation, as opposed to

direct simulations of the SIR model, which are usually sequential and typically

marred by long computation times, scaling with the size and connectivity of

the network and the infection rate relative to the recovery rate.

One of the key problems that mathematical epidemiology has addressed is

the optimisation of vaccination strategies, i.e given a finite supply of vaccines,

who should be vaccinated to mitigate an epidemic. Previous work has stud-

ied vaccination strategies based upon network topology. Vaccination which

prioritises nodes of higher degree, i.e. people with a high number of social
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contacts, is known to lead to better outcomes in comparison with a random

vaccination campaign (211). Furthermore, it has been shown that vaccina-

tion using information beyond the degree can improve upon degree-based

strategies (69, 70). Recently, it has been shown that the condition for an epi-

demic in the SIR model is described by the eigenvalues of the Hashimoto

non-backtracking matrix (212, 213, 214). For a network with M edges, this

is a M × M matrix with Bj→i,m→ℓ = δjℓ(1− δim) where δij is the Kronecker

delta function, such that Bj→i,m→ℓ is non-zero when j = ℓ and m ̸= i. In other

words, Bj→i,m→ℓ is non-zero when the edges j→ i, m→ ℓ describe a path that

goes from m to ℓ but does not then return to m. The eigenvalues of this matrix

have been used to rank nodes for prioritisation of vaccination (71). The effi-

cacy of strategies initially explored on static networks, have also been studied

on temporal networks, which account for the time-varying nature of social

contacts (215). The benefit of modelling such strategies is that they provide

principles upon which vaccination campaigns can be based with only partial

knowledge of the contact network. For example, it can provide theoretical

insight into prioritising vaccination for parts of the population with higher

than average social connectivity. More generally, finding an optimal vaccina-

tion strategy is difficult, but has been studied in the context of ODE epidemic

models using methods from control theory (216, 217).

Vaccination is usually modelled by placing an individual into a separate

vaccinated compartment, such that vaccinated nodes block incoming infec-

tions, so that if enough people are vaccinated the infection can no longer

spread through the population, a phenomena referred to as herd immunity.

This assumes that a vaccine provides full protection against transmission of an
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infectious disease for any individual. In general, it may be desirable to relax

this assumption. For example, although the efficacy of a vaccine in preventing

symptoms is ascertained before approval for public use, it is more difficult to

determine how a given vaccine prevents transmission until data is collected

during or after vaccine roll-out. In this case, it may be desirable to assume

that vaccination reduces the transmissibility of an individual to a small but

finite value. Furthermore, it is also important to recognise that vaccines are

usually given to priority groups first, such as people with underlying health

conditions, medical staff, or people above a certain age. Due to the corre-

lated nature of social contacts (218, 219), prioritising vaccinations may lead

to correlations between the vaccinated status of a node and its topological

properties. Indeed recent work has explored vaccination strategies with an

age-structured variant of the SIR model, with a separate S/I/R compartment

for each (discrete) age group, with different rates of transmission from one

age group to another to account for different levels of social mixing between

them (220). Variation in the transmissibility of individuals has been explored

in previous works (66, 81, 221, 222), however, analytical results have been re-

stricted to the average risk or size of the epidemic. It has previously been

shown that there is high variability in the risk of individual nodes, due to

differences in the node environment (214, 223), which is neglected when only

considering the average risk. In our work, we show that this variability is

more prominent when transmissibility varies between individuals and focus

on how this impacts the distribution of risk.

After reviewing the cavity approach to vaccination that eliminates trans-

mission, we focus our study on vaccination with partial transmission by ex-
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tending the cavity approach to allow for heterogeneity in the transmission be-

tween individuals. At first we consider transmissibility and degree to be un-

correlated, and we derive the herd immunity threshold in this scenario, show-

ing that vaccination with partial transmission will always require a greater

proportion of the population vaccinated to achieve herd immunity. We then

relax the assumption that transmissibility and degree are uncorrelated to

show how these correlations affect epidemic risk. Using this framework,

we then study the impact of social distancing between groups of different

transmissibility, by deriving equations for the risk of an epidemic under link

percolation, where we consider the effect of removing links from the network

at random. In particular, we consider link percolation that targets either links

between nodes of high transmissibility, or nodes of high degree. To go be-

yond the average risk of an epidemic, we follow techniques that were recently

developed to analyse the distribution of node properties in large networks us-

ing the cavity method (223). In particular, we extend these methods to inves-

tigate the distribution of risk in networks with strong degree correlations and

heterogeneous transmissibility of individuals. Our analysis reveals a highly

non-trivial distribution of risk, even amongst nodes of the same degree and

transmissability. Finally, we extend the cavity approach for the distributional

equations of risk to account for node and link deletion. We comment that this

provides a succinct procedure to explore the impact of targeted vaccination

and social distancing strategies on the distribution of risk.

The remaining sections of this chapter are organised as follows. In Sec. 3.2

we review the cavity approach to the study of the steady state reached in the

SIR model on networks with arbitrary degree distributions and degree corre-
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lations. In Sec. 3.3 we extend the cavity method to account for a network with

nodes assigned to sub-types of different transmissibility, and provide a closed

set of equations for the average risk a node poses to the network. We consider

the cases where node transmissibility is and is not correlated with social con-

tact, separately. In Sec. 3.4 we derive equations for the average risk under link

percolation, and show how the choice of the links which are deleted affects

the risk. Sec. 3.5 demonstrates how the cavity method may be used to derive

the distributional equations of risk and how to solve these equations via a

population dynamics procedure. We conclude with a discussion of the theo-

retical value of our results and potential avenues for future work. Technical

details are described in the appendices at the end of the chapter.

3.2 Impact of vaccination on the epidemic risk in

contact networks

One of the main interests in the study of the risk of epidemics spreading on

contact networks is the exploration of vaccination strategies. A question that

arises, when assessing vaccination strategies, is what fraction of the popu-

lation needs to be vaccinated to achieve herd immunity. In this section we

consider the SIR epidemic model on contact networks and we show that this

question can be answered by studying a simple node percolation problem.
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3.2.1 Herd immunity with perfect vaccination in the SIR model

on structured networks

We consider the SIR model on an undirected network with N nodes and

adjacency matrix A. The elements Aij = Aji ∈ {0, 1} ∀ i, j denote presence

(Aij = 1) or absence (Aij = 0) of link for each pair of nodes (i, j) and Aii =

0 ∀ i. Following the formulation in (214), we assume that an infected node

may pass an infection to a neighbouring node in a short time interval dt

with probability βdt and an infected node recovers from an infection at a

time drawn from an ‘infectious time’ distribution, γ(t), normalised such that∫ ∞
0 dtγ(t) = 1, to ensure that an infected node eventually recovers. In order to

quantify the fraction of the population that needs to be vaccinated to achieve

herd immunity, we note that if a vaccine provides perfect immunity, its action

on an individual is functionally equivalent to deleting a node in the network,

as this prevents the spread of infection through that node and its links. In

order to incorporate the effect of node deletion we define a binary variable

σi ∈ {0, 1} which describes whether a node has been vaccinated (σi = 0) or

not (σi = 1). The probability ri(A) that an infection starting from a single

node i causes an outbreak across the bulk of the network, also called the risk

of node i, can be determined, via the cavity method.

The cavity method first assumes that the network we consider is a tree,

where between any two nodes there is a single path only. In such networks,

there are no cycles, a set of links which starts and ends at the same node. We

sketch a subsection of a tree in the left panel of Figure 3.1 where we show

node i and its neighbours j, k and ℓ, which are linked to further nodes in the

101



3. HERD IMMUNITY IN SOCIAL CONTACT NETWORKS WITH
HETEROGENEOUS TRANSMISSION PROBABILITIES

Figure 3.1: A sketch of a portion of a network that is a tree. We show four nodes,
i at the centre, with three neighbours j, k and ℓ. Nodes j, k and ℓ are shown
to have links to other nodes in the network (not sketched). Links with arrows
indicate the path that an infection can currently take. In the left panel, we show
the initial state of the network, a single node, in this case node i, is infected. It
can infect any of its neighbours j,k and ℓ. In the right panel, we show the network
after node i has infected nodes j and ℓ, and node i has recovered. The infection
can now spread to any of the nodes in the sub-tree rooted at node j or node ℓ.
The infection may not pass back to node i, as node i has recovered and can not
become susceptible to infection again. This means that node k, its neighbours,
and all other nodes in the sub-tree rooted at node k will not become infected in
the future, as the tree nature of the network means that there is no path from
node j or ℓ to nodes in the sub-tree rooted at k that does not pass through node
i. We indicate the sub-trees rooted at node j in the left panel.

network (not sketched). It is important to note that if we removed node i and

its links from this sketch, nodes j, k and ℓ would become disconnected, there

would be no path between them. Indeed, when node i is removed from the

network, the network separates into three distinct trees, rooted at nodes j, k

and ℓ. We refer to these as the sub-trees rooted at nodes j, k and ℓ.

In the cavity approach to the SIR model we then consider that the network

starts with a single infected node. In the left panel of Figure 3.1, node i is

initially infected and its neighbours (and nodes in the network not included

in the sketch) are all susceptible to infection. Node i may pass this infection

on to any of its neighbours. If it does so, the infected neighbour may in turn

spread the infection to one of its other neighbours. In the right panel of Figure

102



3.2 Impact of vaccination on the epidemic risk in contact networks

3.1 we sketch the scenario where node i has spread the infection to two of its

neighbours, and indicate the paths that the infection may now pass along,

noting that this does not include paths back to node i. The latter is due to the

unidirectional nature of the SIR model, the infection can not be passed back

to node i, since node i will either already be infected or will have recovered

and cannot become susceptible to infection again. If we now consider node j

in the right panel of Figure 3.1 after being infected by node i, we see that the

only way a node in the sub-tree rooted at node j may become infected is if j

first passes the infection to one of its neighbours. This is a consequence of the

network being a tree, there are no paths connecting the nodes in the sub-trees

rooted at node k and ℓ, to the nodes in the sub-tree rooted at j. Hence, if any

node in the sub-tree rooted at j is to become infected, the infection must first

spread from node j to its neighbours.

The cavity argument is to then say that the risk of node i will depend

upon the risk of its neighbours in a copy of the network where node i and

its links are removed, which is referred to as the i-cavity graph, which we

denote as A\i. We refer to the risk of a node j in the i-cavity graph, as the

cavity risk r(i)j (A). The risk of node i is the probability that while node i

is infectious, it infects at least one of the nodes in its neighbourhood which

then cause an epidemic in the remaining network. The remaining network

after node i is infected is equivalent to the i-cavity graph. Under the as-

sumption that the network is a tree, the cavity risks are independent of each

other, since when node i is removed, the i-cavity graph is formed of several

sub-trees rooted at each of the neighbours of node i, as can be seen if one

considers removing node i and its links from the left panel of Figure 3.1.
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This allows us to write that the probability that node i, in the time that it

is infectious, does not infect at least one of its neighbours which then cause

an epidemic, is given by,
∫ ∞

0 dt γ(t)∏j∈∂A
i

(
1−

(
1− e−βt) r(i)j (A)

)
, where the

product over the neighbourhood ∂A
i indicates that each cavity risk is inde-

pendent of each other. Note that, given the (random) time t ∈ [0, ∞), the

term (1 − e−βt) r(i)j (A) is the probability that node j, infected with proba-

bility (1− e−βt), causes an outbreak in the cavity graph A\i. In other words,∫ ∞
0 dt γ(t)∏j∈∂A

i

(
1−

(
1− e−βt) r(i)j (A)

)
is the time-averaged probability that

neighbourhood ∂A
i is not a source of outbreak in A\i. Finally, we note that for

i to cause an epidemic it must not be vaccinated, i.e σi = 1, such that the risk

of node i is given by,

ri(A) = σi

1−
∫ ∞

0
dt γ(t) ∏

j∈∂A
i

(
1−

(
1− e−βt

)
r(i)j (A)

) . (3.1)

In summary, equation (3.1) then states that the risk of node i, ri(A), is exactly

zero when i has been vaccinated, i.e. σi = 0, and otherwise equal to one

minus the probability that its neighbourhood ∂A
i is not a source of outbreak

in the cavity graph A\i. It is then argued that a similar equation is derived

for r(i)j (A). Due to the assumption that the network is a tree, the cavity risk

r(i)j (A) is unaffected by the nodes in the other trees rooted at the other neigh-

bours of i. Hence, to write an expression for r(i)j (A) we consider the risk of a

node in the sub-tree rooted at node j. In this case, we can apply exactly the

same reasoning as above, to the sub-tree rooted at j, such that the cavity risk
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r(i)j (A) is given the above equation with node i removed,

r(i)j (A) = σj

1−
∫ ∞

0
dt γ(t) ∏

ℓ∈∂A
j \i

(
1−

(
1− e−βt

)
r(j)
ℓ (A)

) . (3.2)

In writing these equations we have assumed that the network is a tree, and

in this case they are exact. However, for large random graphs the length of a

cycle typically grows logarithmically with the number of nodes in the network

(224). Such networks are referred to as locally tree-like, as if one looked at a

small fraction of connected nodes, it would be improbable to find a closed

cycle. Hence, for large random graphs which are locally tree-like, it has been

shown that these equations are a good approximation, and are exact in the

limit N → ∞. For a given contact network, one can solve the cavity equations

(3.1) and (3.2) numerically. Alternatively, in absence of true knowledge of the

contact network one can assume that it is random and use equations (3.1) and

(3.2) to derive equations for the global risk g(A) = 1
N ∑N

i=1 ri(A), which is

expected to be self-averaging (210) when N → ∞ and thus independent of its

microscopic details. Averaging (3.1) over all sites as shown in 3.A, one obtains,

for a single graph instance A

g(A) = ∑
σ

σ

[
P(σ|A)−∑

k
P(k, σ|A)

∫ ∞

0
dt γ(t) (1− α(t)ĝk(A))k

]
(3.3)

ĝk(A) = ∑
σ′

σ′
[

P(σ′|A)− ∑
k′≥1

W(k; k′, σ′|A)

W(k|A)

∫ ∞

0
dt γ(t) (1− α(t)ĝk′(A))k′−1

]

where we have denoted for brevity 1− e−βt = α(t). We have defined the like-

lihood to draw at random a node with degree k and label σ for the graph in-
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stance A as P(k, σ|A) = N−1 ∑i δσ,σi(A)δk,ki(A), with ki(A) = |∂A
i | denoting the

degree of node i and P(σ|A) = ∑k P(k, σ|A) the marginal distribution. Fur-

thermore, we have defined W(k; k′, σ′|A) = ∑ij Aijδk,ki(A)δk′,kj(A)δσ′,σj(A)/Nk̄(A)

as the likelihood that by drawing a link at random we choose a link with

a node of degree k at one end and a node with degree k′ and label σ′ at

the other. We denote by k̄(A) = N−1 ∑i ki(A) the mean degree. The dis-

tribution W(k; k′|A) = ∑σ W(k; k′, σ|A) is known as the degree correlations,

and W(k|A) = ∑k′ W(k; k′|A) is its marginal distribution. Here and below

we adopt the convention to denote a joint probability distribution of node

quantities across connected node pairs with W(. . . ; . . . ). We will consider

vaccination strategies based upon the degree of nodes, such that P(k, σ|A) =

P(k|A)P(σ|k) and W(k; k′, σ′|A) = W(k; k′|A)P(σ′|k′), where P(σ|k) models

the degree-dependent vaccination strategy.

In the limit of large networks, N → ∞, we expect fluctuations of intensive

network observables to vanish and their value on a single graph realisation

to coincide with their ensemble averaged value. Assuming that the degree

distribution and degree correlations display such self-averaging behavior in

the limit of large N, we average the cavity equations over a suitably defined

random graph ensemble, obtaining

g = ∑
σ

σ

[
P(σ)−∑

k
P(k, σ)

∫ ∞

0
dt γ(t) (1− α(t)ĝk)

k

]
(3.4)

ĝk = ∑
k′≥1

∑
σ′

W(k′|k)P(σ′|k′)σ′
[

1−
∫ ∞

0
dt γ(t) (1− α(t)ĝk′)

k′−1
]

(3.5)

where we have introduced the ensemble averages P(σ) = ⟨P(σ|A)⟩A, P(k, σ) =

106



3.2 Impact of vaccination on the epidemic risk in contact networks

⟨P(k, σ|A)⟩A, W(k′|k′) = ⟨W(k′|k, A)⟩A and ⟨k⟩ = ⟨k̄(A)⟩A, with ⟨ · ⟩A =

∑A ·P(A) and P(A) the probability over the set of symmetric adjacency ma-

trices A ∈ {0, 1}N(N−1)/2, which defines the random graph ensemble.

The set of equations (3.5) may be solved numerically. It is easy to check

that they always have a trivial solution ĝk = 0 ∀ k, corresponding to the ab-

sence of an epidemic outbreak, i.e. g = 0. The stability of this solution

depends upon the Jacobian, of the system of equations (3.5),

Mk,k′ =
∂ĝk
∂k′
∣∣∣
ĝk=0∀k

= (k′ − 1)W(k′|k)∑
σ′

σ′P(σ′|k′)T, (3.6)

where T =
∫ ∞

0 dt γ(t)α(t) is known as the transmissability of the nodes (207).

An epidemic will occur if the largest eigenvalue of the Jacobian, λM
1 , satisfies

the condition |λM
1 | > 1. The above result was first derived in (208), in absence

of node deletion. For uncorrelated networks, W(k′|k) = W(k′) and one has

ĝk = ĝ ∀ k ≥ 1 with

ĝ = ∑
σ

σ

[
P(σ)− ∑

k≥1
P(σ|k)kP(k)

⟨k⟩

∫ ∞

0
dt γ(t) (1− α(t)ĝ)k−1

]
≡ f (ĝ). (3.7)

We can find a condition for an epidemic to occur if we consider a graphical

argument for the solution to equation (3.7). Looking at the first derivative of

f (ĝ),

f ′(ĝ) = ∑
σ,k≥1

σP(σ|k)k(k− 1)P(k)
⟨k⟩

∫ ∞

0
dt γ(t) (1− α(t)ĝ)k−2 ≥ 0 (3.8)

we find that f (ĝ) is monotonically increasing. Additionally, by taking the
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second derivative,

f ′′(ĝ) = − ∑
σ,k≥1

σP(σ|k)k(k− 1)(k− 2)P(k)
⟨k⟩

∫ ∞

0
dt γ(t) (1− α(t)ĝ)k−2 ≤ 0

(3.9)

we find that f (ĝ) is convex. The graphical solution (which is reviewed in

Appendix A) then follows: if we sketch y = f (ĝ) and y = ĝ, solutions to (3.7)

are found at the intersections of these two curves. There is a trivial solution

ĝ = 0, but there is potentially a second solution. Due to the monotonic and

convex nature of f (ĝ), if y = f (ĝ = 0) passes above the diagonal y = ĝ,

eventually f (ĝ) will cross through the diagonal for some non-zero value of ĝ

(a sketch illustrating this argument, Figure A.1.2, can be found in Appendix

A). The condition for this to occur is given by f ′(0) > 1. By evaluating the

first derivative at ĝ = 0,

f ′(0) = ∑
σ,k≥1

σP(σ|k)k(k− 1)P(k)
⟨k⟩ , (3.10)

we can express the condition for an epidemic, f ′(0) > 1 as,

T >
⟨k⟩

∑k,σ σP(σ|k)k(k− 1)P(k)
. (3.11)

. Focusing on the simplest case of a random vaccination campaign, where

the variables {σi}N
i=1 do not depend on the network degrees and are random

i.i.d. with distribution

P(σ) = pδσ,1 + (1− p)δσ,0, (3.12)
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Figure 3.2: Global risk as a function of the infection rate β, for nodes with expo-
nential infectious time distribution γ(t) = ξe−ξt where ξ is the rate of node recov-
ery. Left: Results shown for an Erdös-Rényi (ER) graph with average connectivity
⟨k⟩ = 5 and nodes with mean infectious time ξ−1 = 1/2. Solid lines indicate the-
oretical predictions from the cavity equations (3.5) while symbols show results
from simulations on an ER graph of size N = 3000, averaged over 100 initial
sites of infection, and 20 runs starting from each site. The dashed line indicat-
ing the epidemic threshold is computed from equation (3.13), which simplifies
to pc = 1/T⟨k⟩ for ER graphs. Error bars show the standard deviation of the
risk across different initial sites of infection. Right: Theoretical predictions from
equation (3.5) are shown for graphs with Poissonian degree distribution with
⟨k⟩ = 3 and nodes with mean infectious time ξ−1 = 1.25. Results are shown for
graphs with neutral, assortative and disassortative degree correlations. Dashed
lines indicate the predicted epidemic threshold from the largest eigenvalue of
(3.6).

where (1− p) ∈ [0, 1] describes the fraction of nodes that are vaccinated, one

finds a critical value of p below which epidemics are prevented,

p < pc =
⟨k⟩

T⟨k(k− 1)⟩ . (3.13)

This is the herd immunity threshold, a rearranged form of the percolation

threshold in the configuration model (225).

In Figure 3.2 (left panel) the global risk predicted from the cavity equa-

tion (3.4) is plotted for an Erdös-Rényi (ER) graph with mean degree ⟨k⟩ =

5 and shown to be in excellent agreement with results from simulations
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(226, 227, 228) of the stochastic SIR model on networks with N = 3000 nodes.

In particular, the cavity method captures the correct qualitative change in the

global risk with the rate of infection. Moreover, the error in the prediction

of g between the cavity method and simulations is O(N−
1
2 ), suggesting that

the cavity equations are correct up to finite size corrections. Details of how

simulations were performed can be found in 3.B. We note that the wide er-

ror bars, showing the standard deviation of the risk across different initial

sites of infection, indicate that there is large variation in the risk of individual

nodes in a given ER network. The impact of degree correlations is shown

on the right panel of Figure 3.2, where results from the cavity equations are

shown for networks with the same average connectivity and Poissonian de-

gree distribution, but for two different types of degree correlations; where

nodes preferentially link with nodes of similar degree, known as assortative

degree mixing, or where nodes preferentially link with nodes of dissimilar

degree, known as disassortative degree mixing. To compute the degree cor-

relation function W(k, k′) for assortative and disassortative Poissonian graphs

we followed the methods described in (229). Our results are consistent with

earlier work which studied the size of the giant connected component (for-

mally, a set of connected nodes whose size is a finite fraction of N in the limit

N → ∞) in random graphs with degree correlations (65). In Figure 3.3 we plot

the global risk as a function of the fraction 1− p of vaccinated population in

ER graphs with average connectivity ⟨k⟩ = 5. In the left panel we see that

predictions from the cavity equations (3.5) are in agreement with results from

simulations on networks of size N = 1000. The right panel shows that the

herd immunity threshold in Poissonian graphs is lowest with disassortative
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Figure 3.3: Global risk plotted as a function of the fraction 1− p of vaccinated
nodes with infection rate β = 0.5 and exponential distribution of infectious times
γ(t) = ξe−ξt with recovery rate ξ = 0.4. Left: For an ER graph with ⟨k⟩ = 5
we show predictions (solid line) from the cavity equations (3.5) and results of
simulations (circles) on graphs with size N = 1000, where nodes were selected
with probability 1− p to be vaccinated, averaged over 10 configurations of vacci-
nated nodes, 25 initial sites of infection, and 25 runs. The dashed line indicates
the herd immunity as computed from equation (3.13). Right: Theoretical results
from the cavity equations (3.5) are shown for graphs with Poissonian degree dis-
tribution, mean degree ⟨k⟩ = 3, for neutral, assortative and disassortative degree
correlations.

correlations, and highest with assortative correlations.

3.3 Impact of vaccination with partial transmission

In the previous section we have considered an idealised vaccine that pre-

vented all infection passing through paths containing vaccinated nodes. In

general, vaccinations may not prevent all transmission, and individuals may

respond to vaccines differently, leading to heterogeneities in individual in-

fectious potential. It is not possible to know a priori how an individual will

respond to a vaccine, however it is feasible to gather data on the impact of

vaccination on transmissibility within a population and estimate differences

in transmission between different demographics. It is therefore of interest to
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understand how variations in coverage and infectious potential of individu-

als can affect vaccination strategies. In order to do so, we extend the cavity

approach to the SIR model to account for heterogeneity in the transmissibility

of individuals. We then go on to show how this affects the herd immunity

threshold.

3.3.1 Epidemic risk with heterogeneous transmissibility

In order to account for heterogeneity in the transmissibility of individuals, we

assume that individuals remain infectious for different times. Without loss of

generality we assume that the infectious time distribution of each individual

has the same functional form but its scale varies between individuals of differ-

ent sub-type. Therefore, we introduce M node sub-types, identified by labels

ξ ∈ {ξ1, ..., ξM}, and assign each node a label, {ξi}N
i=1, according to some prob-

ability distribution P(ξ). The labels {ξ1, ..., ξM} take values in (0, ∞), such that

ξ parameterises the infectious time distribution γ(t|ξ) of nodes with label ξ.

For the remainder of this chapter we choose γ(t|ξ) = ξe−ξt such that 1
ξ repre-

sents the mean infectious time of individuals with label ξ. This particular choice

for the recovery time distribution is known as Markovian recovery, however,

our approach also holds for non-Markovian recovery times, which could be

implemented by e.g. a Weibull distribution (230).

In this case, the risk of node i depends on the label of node i, and all labels

downstream of node i. We denote the set of labels downstream of node i,

including node i, by ξi. The equations for the local risk for a given instance

of a contact network A with prescribed labels ξ = (ξ1, . . . , ξN) are derived
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by exactly the same reasoning as equations (3.1) and (3.2). However, the risk

of a node, i, will now be a function of its individual mean infectious time

ξ−1
i , and the mean infectious times of its neighbours (the risk of which will

in turn depend on the mean infectious time of their neighbours etc.). As

a consequence of this, the risk of node i will depend explicitly on both the

network A and the labels ξ as follows,

ri(A, ξi) = 1−
∫ ∞

0
dt γ(t|ξi) ∏

j∈∂A
i

(
1− α(t)r(i)j (A, ξ j)

)
(3.14)

r(i)j (A, ξ j) = 1−
∫ ∞

0
dt γ(t|ξ j) ∏

ℓ∈∂A
j \i

(
1− α(t)r(j)

ℓ (A, ξℓ)
)

. (3.15)

Averaging over the nodes, we find the equation for the global risk, which

depends on the whole label sequence ξ and the network A

g(A, ξ) =
1
N

N

∑
i=1

ri(A, ξ). (3.16)

In 3.C we show, under the assumption that the random network that describes

the population is locally tree-like, that one can derive a closed expression for

the global risk in the N → ∞ limit, that once averaged over the graph and

label ensemble, reads as

g = 1−∑
k,ξ

P(k, ξ)
∫ ∞

0
dtγ(t|ξ)

(
1− α(t)ĝk,ξ

)k (3.17)

ĝk,ξ = ∑
k′,ξ ′

W(k′, ξ ′|k, ξ)

[
1−

∫ ∞

0
dtγ(t|ξ ′)

(
1− α(t)ĝk′,ξ ′

)k′−1
]

(3.18)

where P(k, ξ) and W(k′, ξ ′|k, ξ) are the ensemble-averaged values of P(k, ξ|A, ξ) =
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1
N ∑i δk,ki(A)δξ,ξi and W(k′, ξ ′|k, ξ, A, ξ) = W(k, ξ; k′, ξ ′|A, ξ)/W(k, ξ|A, ξ), re-

spectively, where W(k, ξ; k′, ξ ′|A, ξ) = 1
Nk̄(A) ∑ij Aijδk,ki(A)δk′,kj(A)δξ,ξi δξ ′,ξ j

. For

a given kernel W(k′, ξ ′|k, ξ) of a network with maximum degree kmax one may

solve the system of M× kmax equations (3.18) numerically and substitute the

result into (3.17) to find the global risk.

Alternatively, one may be able to simplify these equations for specific

choices of W(k, ξ; k′, ξ ′). For example, if we assume the transmissibility of an

individual is uncorrelated with its degree, the degree of its neighbours and the

transmissibility of its neighbour, in this case W(k, ξ; k′, ξ ′) = W(k; k′)P(ξ)P(ξ ′),

and upon substitution of this kernel into the RHS of (3.18) we see that ĝk,ξ =

ĝk∀ξ, and the system of equations (3.18) reduce to,

ĝk = ∑
k′

W(k′|k)
[

1−
∫ ∞

0
dt ⟨γ(t|ξ)⟩ξ (1− α(t)ĝk′)

k′−1
]

(3.19)

where ⟨...⟩ξ = ∑ξ ...P(ξ). We see that equation (3.19) takes the same form as

(3.5) but now depends upon the ‘average’ infectious time distribution ⟨γ(t|ξ)⟩ξ .

The stability criteria is therefore identical to that of (3.5) but now depends

upon the average transmissibility, such that an epidemic will occur if

|λ(J)
1 | > 1 (3.20)

where λ
(J)
1 is the largest eigenvalue of the Jacobian of (3.19) with entries

Jk,k′ = ⟨T(ξ)⟩ξ (k′ − 1)W(k′|k) and T(ξ) =
∫ ∞

0 dtγ(t|ξ)α(t). A further sim-

plification can be made if we assume the degrees are uncorrelated, in which
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case equations (3.19) reduces to a single equation,

ĝ = 1−∑
k

kP(k)
⟨k⟩

∫ ∞

0
dt ⟨γ(t|ξ)⟩ξ (1− α(t)ĝ)k−1 (3.21)

which can be solved by a graphical solution, similarly to equation (3.7). From

this we find that equation (3.21) has a non-zero solution when the epidemic

threshold exceeds a value dependent on the average transmissibility,

⟨k2⟩ − ⟨k⟩
⟨k⟩ ≥ 1

⟨T(ξ)⟩ξ
. (3.22)

Another case where the cavity equations simplify is where we choose

W(k, ξ; k′, ξ ′) of the form,

W(k, ξ; k′, ξ ′) = W(ξ, ξ ′)W(k|ξ)W(k′|ξ ′). (3.23)

This choice of degree correlations describes networks where degree correla-

tions are driven by differences in the degree of nodes with different trans-

missibility i.e the probability for a node to have degree k may differ between

nodes of transmissibility ξ and ξ ′, but nodes with the same transmissibility

show no preference for linking with nodes of a particular degree. Hence, de-

gree correlations are controlled by W(ξ, ξ ′) the probability to observe a link

between nodes with labels ξ and ξ ′. Indeed, by Bayes theorem we may show

that W(k; k′|ξ, ξ ′) = W(k|ξ)W(k′|ξ ′) such that the degree of two nodes, k and

k′ are conditionally uncorrelated given their labels ξ and ξ ′.
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For this choice of W(k, ξ; k′, ξ ′) we find that

W(k′, ξ ′|k, ξ) =
W(k, ξ; k′, ξ ′)

W(k, ξ)
(3.24)

=
W(ξ; ξ ′)W(k|ξ)W(k′|ξ ′)

W(k|ξ)W(ξ)
(3.25)

=
W(ξ; ξ ′)W(k′|ξ ′)

W(ξ)
(3.26)

and as a result of this, the cavity equations (3.18) simplify such that ĝk,ξ =

ĝξ ∀ k where,

ĝξ = 1−∑k′,ξ ′ W(ξ ′|ξ)W(k′|ξ ′)
∫ ∞

0 dtγ(t|ξ ′)
(
1− α(t)ĝξ ′

)k′−1 . (3.27)

By using this form of W(k, ξ; k′, ξ ′) we have reduced (3.18) from a system

of kmax × M equations to just M equations. This is a significant reduction,

particularly for networks with large maximum degree kmax. By analysis of the

Jacobian of the system of equations (3.27), we find that an epidemic will occur

if |λ
(Jξ,ξ′ )

1 | > 1 where λ
(Jξ,ξ′ )

1 is the largest eigenvalue of Jξ,ξ ′ = ∑k′ W(ξ ′|ξ)(k′−

1)W(k′|ξ ′)T(ξ ′).

3.3.2 Herd immunity for vaccines with partial transmission

Having extended the cavity approach to account for heterogeneity in indi-

vidual transmissibility, we can now consider vaccination with partial trans-

mission. In this case, vaccinated individuals can still catch and transmit the

disease, but we assume their transmissability is reduced, such that an individ-

ual i who is vaccinated will have a lower mean infectious time 1/ξi than an
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unvaccinated individual. To analyse this scenario, we split a population into

two clusters: an unvaccinated population with low infectious time decay rate

ξℓ and a vaccinated population with high decay rate ξh > ξℓ. The fraction of

the population that is vaccinated is given by P(ξh) = 1− P(ξℓ). To keep the

analysis simple, we focus on random vaccinations, where one can assume that

the labels ξ are not correlated with the network degrees, and we will assume

that degrees are uncorrelated. The critical fraction Pc(ξh) of the population

that needs to be vaccinated to prevent epidemics, assuming vaccination with

partial transmission, can be found from (3.22) by writing

⟨T(ξ)⟩ξ = P(ξh)T(ξh) + [1− P(ξh)]T(ξℓ)

= T(ξℓ)− P(ξh)∆ (3.28)

with ∆ = T(ξℓ)− T(ξh) > 0, which, substituted in (3.22), gives

P(ξh) >
T(ξℓ)

T(ξℓ)− T(ξh)

[
1− ⟨k⟩

T(ξℓ) ⟨k(k− 1)⟩

]
≡ Pc(ξ

h) (3.29)

Clearly, the fraction of the population that has to be vaccinated to achieve

herd immunity must be greater when the vaccination leads to partial trans-

mission, as opposed to no transmission. The herd immunity threshold under

vaccination without transmission is given by 1− pc from (3.13), where T is

the transmissibility of the unvaccinated population i.e T = T(ξℓ). One can

express the herd immunity threshold under vaccination with partial trans-
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mission, Pc(ξh), in terms of 1− pc,

Pc(ξ
h) =

T(ξℓ)
T(ξℓ)− T(ξh)

(1− pc). (3.30)

Since T(ξℓ) > T(ξℓ)− T(ξh), it is clear that vaccination with partial transmis-

sion requires a greater number of people to be vaccinated when compared

with vaccination with no transmission i.e Pc(ξh) > 1− pc.

3.3.3 Networks with correlated structure and transmissibility

In general, social contacts will be correlated with the transmissibility of in-

dividuals. For example, vaccinations are often prioritised for at risk groups,

and for people above a certain age. Furthermore, vaccine distribution is de-

pendent upon supply chains, and this can lead to higher levels of vaccination

in one geographic area to another. Aside from vaccinations, transmissibility

may correlate with social contacts, for example differences in transmissibility

between children and adults have been noted for some infectious diseases,

and hence if a social interaction network shows correlation with age, this may

affect the spread of epidemics.

To understand how this affects the epidemic risk and vaccination we need

to specify an ensemble of networks where links between individuals are based

upon their respective transmissibility. For simplicity we do not specify any

hard constraints on the degree sequence and instead define an ensemble of

networks with average degree ⟨k⟩ where links are drawn in a way that allows

for preferential attachment between nodes with specific transmissibilities, on

the basis of an arbitrary function W(ξ; ξ ′) of the labels of the two nodes con-
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cerned. More specifically, we assume that a random network with adjacency

matrix A is drawn with probability

P(A) = ∏
i<j

[
⟨k⟩
N

W(ξi; ξ j)

P(ξi)P(ξ j)
δAij,1 +

(
1− ⟨k⟩

N
W(ξi; ξ j)

P(ξi)P(ξ j)

)
δAij,0

]
. (3.31)

Here, W(ξ; ξ ′) can be interpreted as the probability to draw a link with node

labels ξ and ξ ′ at either end, hence it must be non-negative and normalised to

one ∑ξ,ξ ′ W(ξ; ξ ′) = 1. Due to the undirected nature of the links, we also have

W(ξ; ξ ′) = W(ξ ′; ξ). We will refer to nodes with the same label, ξ, as a cluster,

hence W controls the links between clusters. This choice of random graph

ensemble allows us to model populations that are split into groups of dif-

ferent transmissibility, making minimum assumptions about the population,

namely, the average degree of an individual, ⟨k⟩, and the likelihood of two

nodes of transmissibilities ξ and ξ ′ to be connected W(ξ, ξ ′). In 3.D we show

that the degree distribution of a graph drawn from this ensemble is given by

P(k) = ∑
ξ

P(ξ)P(k|ξ) = ∑
ξ

P(ξ)e−k̄(ξ) (k̄(ξ))
k

k!
(3.32)

where the average degree is ⟨k⟩ = ∑ξ P(ξ)k̄(ξ). This is such that each clus-

ter of nodes in this ensemble has a Poissonian degree distribution P(k|ξ)

with mean degree k̄(ξ), where ξ is the cluster label. Furthermore, we find

that the degree correlations are of the special form (3.23), where W(k|ξ) =

kP(k|ξ)/k̄(ξ), which allows us to use the reduced form of the cavity equa-

tions (3.27) to study the risk on graphs from this ensemble. Finally, we note

that the marginal of W(ξ; ξ ′) is W(ξ) = ∑ξ ′ W(ξ; ξ ′) = P(ξ)k̄(ξ)/⟨k⟩.
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Figure 3.4: Left: Global risk plotted against infection rate β for a population
where nodes have an infectious time distribution γ(t|ξ) = ξe−ξt and are sepa-
rated into two sub-types with ξ ∈ {ξℓ, ξh} = {1.0, 5.0}. The network is drawn
from the ensemble (3.31) with ⟨k⟩ = 3 and the kernel W defined in (3.34) with
q = 0.15 and k̄(ξℓ) = ⟨k⟩ (and k̄(ξh) = ⟨k⟩, via (3.33)). Results from cavity equa-
tions (lines) and simulations (symbols) are shown. Simulations were performed
on networks of size N = 2000, averaged over 500 different sites of initial infection
and 100 repetitions. Dashed lines indicate epidemic threshold predicted by the
Jacobian of (3.27). Right: For the same population, we plot the global risk against
the fraction of fast recovery nodes P(ξh). We set the infection rate to β = 1. Re-
sults from the cavity equations (3.27) are shown for different inter-connectivity
q = {0.1, 0.15, 0.2, 0.3} (curves from top to bottom).

We now consider networks with two clusters, labelled by ξh and ξℓ < ξh,

so that the transmissability kernel W(ξ; ξ ′) is a 2× 2 matrix, P(ξh) = 1−P(ξℓ)

and the average connectivity is related to the intra-cluster connectivities by

⟨k⟩ = k̄(ξℓ) + P(ξh)(k̄(ξh)− k̄(ξℓ))

= k̄(ξh) + P(ξℓ)(k̄(ξℓ)− k̄(ξh)). (3.33)

Given the properties of symmetry, marginalization and normalization of W,

we can parameterise W(ξ, ξ ′) in terms of two control parameters, the intra-

cluster connectivity k̄(ξℓ) and a parameter, q, that controls the inter-cluster
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connectivity, via the matrix,

W =

 k̄(ξℓ)P(ξℓ)
⟨k⟩ − q q

q 1− k̄(ξℓ)P(ξℓ)
⟨k⟩ − q

 . (3.34)

Since the elements of W are probabilities, they must take values in [0, 1], hence

the free parameters can take values in the range

q⟨k⟩
P(ξℓ)

< k̄(ξℓ) <
(1− q)⟨k⟩

P(ξℓ)
(3.35)

with q ∈ [0, 1/2].

In Figure 3.4 (left panel) the global risk, as predicted from the cavity equa-

tions, is plotted for a population with fast and slow recovery nodes, as a

function of the infection rate β, for different values of the fast recovery popu-

lation density, P(ξh). The difference in the global risk predicted by the cavity

equations and computed from simulations is found to be O(N−
1
2 ), suggesting

that the cavity equations are in agreement with simulations up to finite size

effects. Figure 3.4 (right panel) shows that as the proportion of nodes of fast

recovery increases, herd immunity is eventually reached. Interestingly, as the

inter-connectivity q is increased, the global risk decreases, as does the herd

immunity threshold. This can intuitively be explained by first considering

the scenario where q = 0 and the network is split into two disconnected sets

of nodes, one where an epidemic is unlikely to be caused by any node, the

other where nodes have a non-zero probability of causing an epidemic. As q

is increased, the number of links between these sets of nodes increases, with

the fast recovery nodes acting as a blockade to the path of infection, lowering
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the global risk and herd immunity threshold. We note that in Figure 3.4 we

choose k̄(ξℓ) = k̄(ξh) = ⟨k⟩ such that changes in P(ξh) do not affect the aver-

age degree of the nodes of fast and slow recovery. This ensures that changes

in risk in the figure are due to the proportion of the vaccinated nodes, P(ξh),

and the inter-connectivity, q, between the vaccinated and unvaccinated, as op-

pose to changes in the degree of these nodes that are a result of changes in

P(ξh) and q. This does, however, mean that, by equation (3.35), the value of

P(ξh) is restricted to q < P(ξh) < 1− q, such that for larger values of q we can

evaluate the risk over a smaller range of P(ξh). Hence, in Figure 3.4 we show

the global risk against P(ξh) for several values of q, where P(ξh) can still be

varied over a broad range of values.

The graph ensembles (3.31) we used to generate networks with degree cor-

relations (3.23), belongs to a general class of network ensembles with structure

controlled by hidden variables (95). In our case, the hidden variables are the

node labels ξ. We note that although we have chosen ξ to label nodes of dif-

ferent transmissibility, we could choose γ(t|ξ) = γ(t) and allow ξ to label

some other node property (e.g age). Equations (3.27) would therefore provide

a quick numerical implementation to find epidemic risk in networks where

degree correlations are generated by a node property, ξ, according to (3.23).

Through suitable choice of P(ξ) and W(ξ; ξ ′) this random graph ensemble can

be used to generate many types of networks including networks with modu-

lar structure, scale-free networks and random geometric graphs (95, 231). To

demonstrate this and provide additional verification of our results, we gen-

erate networks with degree distribution as shown in the left panel of Figure

3.5. This degree distribution is noteworthy since it is multi-modal, and there-
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Figure 3.5: Left: Degree distribution of the network simulated in right panel.
Symbols indicate degree distribution and dotted lines provide visual aid. Dashed
vertical line indicates mean degree, ⟨k⟩. Right: Global risk, g, plotted against
infection rate, β, for a network drawn from ensemble (3.31) with kernel given
by (3.34). Nodes belong to two clusters, which share the same recovery rate
ξ = {ξ1, ξ2} = {2.5, 2.5}, but differ in mean degree k̄(ξ1) = 2, k̄(ξ2) = 10. The
fraction of nodes in each cluster is given by P(ξ1) = (1 − P(ξ2)) = 0.3, and
inter-connectivity is equal to q = 0.015. Solid line show solution to the cavity
equations (3.17) and (3.18), while symbols indicate simulations on networks of
size N = 2000, with error bars indicating standard deviation over simulations
started on 1000 different nodes with 100 runs from each node.

fore not well described by the mean degree alone. Despite this, the right

panel of this figure shows that the solution to the cavity equations (3.17) and

(3.18) qualitatively captures the change in the global risk g with the infection

rate β as observed in MC simulations. Quantitatively, the difference in the

global risk predicted by the cavity equations and computed from simulations

is found, again, to be O(N−
1
2 ). Hence, the cavity equations are in agreement

up to finite size effects.
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3.4 Social distancing in populations with heteroge-

neous transmissibility

We now show how social distancing affects epidemic risk in a population

with heterogeneous transmissibility. We model social distancing as a bond

percolation (also known as link percolation) process in which we assess how

removing a random fraction of links from the network affects the risk of an

epidemic. We introduce the random binary variables τij ∈ {0, 1} which indi-

cates whether a link between two individuals is broken due to social distanc-

ing (τij = 0) or not (τij = 1). These are drawn from the distribution,

Q(τ|y) = ∏
i<j

[
(1− yij)δτij,0 + yijδτij,1

]
(3.36)

where 1− yij is the probability that a link between i and j is broken. To

derive equations for the local risk for networks subject to bond percolation,

one only needs to consider the effect of deleting a link between node i and j

on equation (3.14). If τij = 0 the link between node i and j has been removed

and so the node j should not contribute to the risk of node i. Hence, under

bond percolation equations (3.14) and (3.15) are modified as follows,

ri(A, ξ) = 1−
∫ ∞

0
dt γ(t|ξi) ∏

j∈∂A
i

(
1− τijα(t)r

(i)
j (A, ξ)

)
(3.37)

r(i)j (A, ξ) = 1−
∫ ∞

0
dt γ(t|ξ j) ∏

ℓ∈∂A
j \i

(
1− τjlα(t)r

(j)
ℓ (A, ξ)

)
. (3.38)

We consider three different types of bond percolation: random percolation
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yij = y ∀ i, j, degree-based percolation yij = y(ki, k j), and sub-type percolation

yij = y(ξi, ξ j). Following steps in 3.C, one can find the closed expressions for

the global risk

g = 1−∑
kξ

P(k, ξ)
∫

dtγ(t|ξ)
(
1− α(t)g̃k,ξ

)k (3.39)

g̃k,ξ = ∑
k′ξ ′

y(k, ξ,k′, ξ ′)W(k′, ξ ′|k, ξ)

[
1−

∫
dtγ(t|ξ ′)

(
1− α(t)g̃k′,ξ ′

)k′−1
]

(3.40)

where y(k, ξ, k′, ξ ′) = y for random bond percolation, y(k, ξ, k′, ξ ′) = y(k, k′)

for degree-dependent bond percolation and y(k, ξ, k′, ξ ′) = y(ξ, ξ ′) for sub-

type dependent bond percolation. In Figure 3.6 (left panel) we consider an ER

network, with individuals randomly assigned one of two sub-types, high and

low transmissibility, ξ ∈ {ξℓ, ξh} with ξℓ < ξh, such that degree and node sub-

type are uncorrelated. We then compare the global risk following random,

degree-based, and sub-type bond percolation for the same fraction of links

removed. For degree-based percolation we choose y(k, k′) = α
(

1− kk′
k2

max

)
to

preferentially remove links attached to nodes of high degree. For sub-type

percolation, we consider the scenario where nodes of low transmissibility (i.e.

fast recovery ξ = ξh) do not reduce their social contact, i.e. y(ξh, ξh) = 1,

and we set y(ξℓ, ξh) = y(ξℓ, ξℓ), such that y(ξℓ, ξℓ) is the only free parameter

which controls the overall fraction of links removed. We see that link perco-

lation based upon degree and node-type yields lower global risk relative to

random link percolation. Furthermore, for this parameterisation we see that

percolation based upon node-type is preferable to degree-based percolation.

This is because, for a fixed fraction of links that are removed from the net-
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work, 1− y, the degree-based strategy removes a higher proportion of links

between nodes of low transmissibility, which typically have less impact on

the risk of an epidemic, in comparison with the strategy that removes links

based on node-type. In Figure 3.6 (right panel) we show the global risk for

different levels of vaccination with partial transmission and random link per-

colation. As is to be expected, the risk is lowest for high vaccine coverage

(high P(ξh)), and high social distancing (low y). There is greater variation in

the global risk with y than P(ξh) suggesting that for given parameterisations,

social distancing may be more effective than vaccination with partial trans-

mission. If we compared the global risk when p% of nodes are deleted, with

the risk when p% of links are deleted, (we show this explicitly later, in Figure

3.13) the risk would be lower under node deletion, showing that vaccination

which blocks all transmission is more effective than social distancing. The

result shown in Figure 3.6 is thus noteworthy in showing that for vaccines

that allow partial transmission, the opposite is true for certain values of the

model parameters, i.e. link deletion can be more effective than vaccination

with partial transmission.

For the same population considered in the right panel of Figure 3.6 we

computed the the global risk for different levels of vaccination with partial

transmission and link percolation with either a degree-based strategy, or a

strategy based upon node-type. In left panel of Figure 3.7 we find that for a

degree-based strategy, the behaviour of the global risk with changes in P(ξh)

and y is markedly similar to when link percolation occurs randomly. How-

ever, we show that there is a difference in the right panel of Figure 3.7, where

we plot ∆g = grandom − gdegree (where grandom and gdegree are the global risk
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under random and degree-based link percolation, respectively). From this fig-

ure we find that in a population subject to a degree-based strategy, a smaller

fraction of links, 1 − y, are required to be removed for the herd immunity

threshold to be reached, hence, degree-based strategies are favorable in this

population over random link percolation.

When the population is subject to link percolation based on node type, the

behaviour of the global risk g with changes in P(ξh) and y is notably differ-

ent, as shown in Figure 3.8. In particular, g is a non-monotonic function of

both y and P(ξh). This behaviour can be explained by considering the effect

of link percolation, with our strategy based on node-type, for different values

of P(ξh). As we previously stated, we consider link percolation where nodes

of low transmissibility do not reduce their social contact, i.e. y(ξh, ξh) = 1,

and we set y(ξℓ, ξh) = y(ξℓ, ξℓ), such that y(ξℓ, ξℓ) is the only free parameter

which controls the overall fraction of links removed, 1− y. In the top left of

Figure 3.8, P(ξh) is high, such that we have many nodes of low transmissibil-

ity. Since we do not remove links between nodes of low transmissibility, there

is a high density of links in the network, despite y being low, and therefore

the global risk is relatively high. For high P(ξh), as we increase y, we increase

the number of links between nodes of low and high transmissibility, as well

as links between nodes which both have high transmissibility. However, since

for high P(ξh) there are few nodes of high transmissibility, and we do not re-

move links between nodes of low transmissibility, the global risk is relatively

high for all values of y. If we consider the bottom right, where y is high and

P(ξh) is low, the population has many nodes of high transmissibility with

many links, and the global risk is high. As we decrease y, we remove links
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connected to nodes of high transmissibility. Since P(ξh) is low, the majority

of links are connected to nodes of high transmissibility, and so the impact

of decreasing y is more pronounced; eventually a sufficient fraction of links

is removed to pass the herd immunity threshold. For intermediate values of

P(ξh), for example when P(ξh) = 0.65, the global risk is a non-monotonic

function of y. Due to the large fraction of nodes with low transmissibility, at

low values of y there is sufficient density of links to keep the population above

the herd immunity threshold. As y is increased, there is a greater proportion

of links between nodes of low and high transmissibility, such that nodes of

low transmissibility shield nodes of high transmissibility, and the population

attains herd immunity. However, as y is increased further, the density of links

is sufficiently high that shielding becomes ineffective, and the global risk in-

creases.

3.5 Beyond the mean: distribution of risk in the

SIR model

3.5.1 Distribution of risk in networks with degree correla-

tions

In the previous sections we have used the cavity method to obtain a closed set

of equations for the average risk of epidemics in a network where nodes have

heterogeneous infectious time. Previous work has shown that epidemic risk

varies considerably from node to node, even with homogeneous transmission

probabilities, due to variations in the local environment (214). The presence of
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Figure 3.6: We consider an ER graph with mean degree ⟨k⟩ = 5. Nodes have
infectious time distribution γ(t|ξ) = ξe−ξt and are assigned to one of two sub-
types of slow and fast recovery, ξ ∈ {ξℓ, ξh} = {1, 5}. The infection rate is set to
β = 2. Left: Global risk plotted as a function of the fraction of links not removed,
y. The fraction of nodes of each sub-type is P(ξh) = 1− P(ξℓ) = 0.65. Results
are shown for the cases where links are removed i) at random ii) with preference
for links connecting nodes of high degree y = ∑k,k′ W(k, k′)α

(
1− kk′

kmax

)
, such

that α set the value of y, and iii) with preference for nodes with slow recovery
y = ∑ξ,ξ ′ W(ξ; ξ ′)y(ξ, ξ ′) where we set y(ξh, ξh) = 1 and y(ξℓ, ξh) = y(ξℓ, ξℓ) such
that y(ξℓ, ξℓ) is the free parameter that controls y. Right: Global risk plotted as
a function of both P(ξh) and y with links removed at random. Results in both
figures are from solutions to the cavity equations (3.39) and (3.40).
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Figure 3.7: We consider an ER graph with mean degree ⟨k⟩ = 5. Nodes have
infectious time distribution γ(t|ξ) = ξe−ξt and are assigned to one of two sub-
types of slow and fast recovery, ξ ∈ {ξℓ, ξh} = {1, 5}. The infection rate is
set to β = 2. Left: Global risk plotted as a function of both P(ξh) and y with
links removed with preference for links connecting nodes of high degree y =

∑k,k′ W(k, k′)α
(

1− kk′
kmax

)
, such that α set the value of y. Right: Difference in the

global risk subject to random and degree-based link percolation ∆g plotted as a
function of P(ξh) and y. Results in both figures are from solutions to the cavity
equations (3.39) and (3.40. .

Figure 3.8: We consider an ER graph with mean degree ⟨k⟩ = 5. Nodes have
infectious time distribution γ(t|ξ) = ξe−ξt and are assigned to one of two sub-
types of slow and fast recovery, ξ ∈ {ξℓ, ξh} = {1, 5}. The infection rate is set to
β = 2. Global risk is plotted as a function of both P(ξh) and y with links removed
with preference for nodes with slow recovery y = ∑ξ,ξ ′ W(ξ; ξ ′)y(ξ, ξ ′) where we
set y(ξh, ξh) = 1 and y(ξℓ, ξh) = y(ξℓ, ξℓ) such that y(ξℓ, ξℓ) is the free parameter
that controls y. Global risk is computed by the solution to the cavity equations
(3.39) and (3.40.
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Figure 3.9: Results from population dynamics, with population size S = 2× 105

and 2× 106 samples to form the histogram, for an ER network with mean degree
⟨k⟩ = 5, infection rate β = 0.5 and homogeneous transmission. Left: Cumulative
distribution function of the risk, P(X ≤ r), for inverse mean infectious time
ξ = 0.75. Results from population dynamics and simulations on a network of
size N = 2000 are shown. Inset shows same information for the risk distribution
π(r), with simulations plotted as a histogram and population dynamics plotted
as a solid line. Right: Distribution of the risk distribution π(r) (black line) and
degree conditional risk distributions πk(r), for k ∈ {0, 1, 2, 3, 4} (peaks from left
to right) for inverse mean infectious time ξ = 0.6.

heterogeneities in node infectious times is expected to add an extra source of

fluctuations, therefore studying the distribution of the node risks is expected

to provide important information that is not captured by the mean risk.

Recently, the cavity method has been used to assess the heterogeneous

behaviour of individual nodes in the context of percolation in sparse networks

(214, 223). Here we extend this approach to account for degree correlations

and heterogeneities in the node transmissability and calculate the functional

form of the distribution of node risks. The latter is defined as

π(r|A) =
1
N

N

∑
i=1

δ (r− ri(A)) (3.41)

and a closed set of equation can be derived for it by substituting the RHS of
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equation (3.1) into equation (3.41) and following a similar procedure as in 3.A

for the global risk, which leads, after averaging over the graph ensemble, to

an equation for the risk distribution π(r)

π(r) = ∑k≥0 P(k)
{

∏k
j=1
∫

dr̂jπ̂k(r̂j)
}

δ (r− ϕ(k, r̂)) (3.42)

where we have defined the degree-dependent ‘cavity’ risk distribution, π̂k(r̂),

which is the probability for a node with degree k to have a neighbour with

cavity risk r̂. We have also defined the function,

ϕ(k, r̂) = 1−
∫ ∞

0
dtγ(t)

k

∏
j=1

(
1− α(t)r̂j

)
(3.43)

and denoted r̂ = {r̂1, ..., r̂k} the cavity risk of each of the k neighbours of the

node with risk r. The degree-dependent cavity risk distribution is given by,

π̂k(r̂) = ∑k′≥1 W(k′|k)
{

∏k′−1
j=1

∫
dr̂′jπ̂k′(r̂′j)

}
δ
(
r̂− ϕ(k′ − 1, r̂′)

)
(3.44)

where we have denoted r̂′ = {r̂1, ..., r̂k′−1} the cavity risk of each of the k′ − 1

neighbours of the node with cavity risk r̂. The set of equations (3.44) for

the degree-dependent ‘cavity’ risk distributions π̂k(r̂) must be solved first to

then solve equation (3.42) for the distribution of risk π(r). This can be accom-

plished numerically by using a population dynamics algorithm (232). This

consists of approximating each π̂k(r̂) by the empirical cavity risk frequencies

computed from a large number (i.e. a population) of cavity risks, which are

updated at each iteration of the algorithm following a stochastic map. We

start by initializing kmax populations of cavity risks, each of size S, by draw-
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ing kmax × S random variables r̂(k)i , i = 1, . . . , S in the [0, 1] interval. Their

empirical distribution represents the zero-step approximation π̂0
k(r̂) of π̂k. A

single iteration of the algorithm consists of the following steps,

1. Set k = 1.

2. Draw degree k′ with probability W(k′|k) .

3. Randomly select k′ − 1 risks from the k′-th population of risks.

4. Compute the function ϕ(k′ − 1, r̂) using the k′ − 1 values of risk.

5. Select a random risk from the k-th population and set its value to ϕ(k′−

1, r̂).

6. Set k = k + 1 and go back to step (2).

Upon reaching step 6, the empirical distribution of the cavity risks is one-step

approximation π̂1
k(r̂) of π̂k. Steps steps 2 to 6 define a Markov chain that we

expect to reach a unique fixed point after many iterations (233). Hence, by

following steps 2 to 6 repeatedly, we expect the n-step approximation π̂n
k (r̂)

to converge to π̂k(r̂). Practically, we say that convergence has been reached

when the average cavity risk in each population ψn,(k) = 1
S ∑i r̂n,(k)

i , stabilises

such that fluctuations in ψn,(k) are of order O(S− 1
2 ) and can be thought of as

finite size effects (233). Once the populations have converged the distribution

of risk π(r) can be computed in a similar manner by taking samples from the

population and computing the histogram of ϕ(k, r̂).

In Figure 3.9 (left panel) we show results from the population dynamics

algorithm for an ER graph with average connectivity ⟨k⟩ = 5. Results are
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in very good agreement with simulations, carried out on networks of size

N = 2000. As previously shown in (223), the distribution of risk can be

conditioned upon the degree of a node, leading to the degree-conditional risk

distributions

πk(r) =
{

∏k
j=1
∫

dr̂jπ̂k(r̂j)
}

δ (r− ϕ(k, r̂)) . (3.45)

These are plotted in Figure 3.9 (right panel) and show that the peaks and

troughs apparent in π(r) are caused by nodes of different degree, with the

peak at r = 0 arising from disconnected nodes. From this figure we see

that the mean risk increases with degree, showing the benefit of degree-based

vaccination strategies. However, the skew in the degree-conditional risk dis-

tributions means that degrees which have a high mean risk, also contain nodes

of relatively low risk, and vaccinating these nodes would reduce the overall

risk and epidemic size by little, highlighting the limitations of a degree-based

strategy. It can be checked analytically and verified numerically that the risk

distribution for random regular graphs are delta-peaked, with the peak corre-

sponding to the solution to equation (3.5) for the global risk, which suggests

that the random nature of the degree of the neighbours of a node in graphs

with heterogeneous structure are the source of variability in the risk of nodes

with the same degree.

Figure 3.10 (left panel) shows the cumulative distribution of risk for net-

works with Poissonian degree distribution and assortative and disassortative

degree correlations, respectively. Results from the cavity method are found in

good agreement with simulations on networks with size N = 2000. Degree
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Figure 3.10: Results from population dynamics, with population size S = 1× 104

and 1× 105 samples to form the histogram, for a network with Poissonian degree
distribution, mean degree ⟨k⟩ = 5, infection rate β = 0.25 and homogeneous
recovery rate ξ = 0.75. Left: cumulative distribution function of the risk, P(X ≤
r), computed from the cavity method (dashed line) compared with simulations
(solid line) on a network of size N = 2000, for assortative and disassortative
degree correlations. Right: same information from the cavity method shown for
the survival function, P(X ≥ r), with the curve for a neutral graph added for
comparison.

correlations are seen to have a significant impact on the risk distribution. This

is further shown on the right panel, where the survival function P(X ≥ r)

of assortative graphs is seen to have larger tails than disassortative or neutral

graphs, due to a higher proportion of high risk nodes.
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3.5.2 Distribution of risk in networks with heterogeneous trans-

mission

The equations for the distribution of risk can be immediately generalised to

the case of heterogeneous transmission, giving

π(r) = ∑
k≥0,ξ

P(k, ξ)

{
k

∏
j=1

∫
dr̂jπ̂k,ξ(r̂j)

}
δ (r− ϕ(k, ξ, r̂)) (3.46)

π̂k,ξ(r̂) = ∑
k′≥1,ξ ′

W(k′, ξ ′|k, ξ)

{
k′−1

∏
j=1

∫
dr̂′jπ̂k′,ξ ′(r̂′j)

}
δ
(
r̂− ϕ(k′ − 1, ξ ′, r̂′)

)
(3.47)

ϕ(k, ξ, r̂) = 1−
∫ ∞

0
dtγ(t|ξ)

k

∏
j=1

(
1− α(t)r̂j

)
. (3.48)

These equations can be solved using a generalisation of the population dy-

namics algorithm above with M × kmax populations. The risk distribution

π(r) can be de-convoluted either in terms of degree, or node label ξ or

both. To illustrate this, we first consider a random regular graph with de-

gree ⟨k⟩ = 5, where each node is independently assigned a random label

ξ ∈ {ξℓ, ξh}. Figure 3.11 (left panel) shows that the risk distribution neatly

splits into the distribution of risk for each cluster. The risk distribution for

nodes of a given label ξ, is seen to have several peaks, corresponding to the

different neighbourhoods a node may have: in a regular graph of degree c,

with two clusters, there are c + 1 different labelling configurations for the

neighbourhood of a node. The height of the peaks in this distribution are

therefore related to the multiplicity of these possible labelling configurations.

It is important to note, that these peaks are not delta-peaked, but are broader,
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Figure 3.11: Left: Risk distribution π(r) of regular graph with connectivity
⟨k⟩ = 5, rate of infection β = 0.5, and two recovery rates ξ ∈ {0.5, 0.75} with
probability P(ξ) = 0.5 for all ξ. The curves with larger peaks correspond to the
risk distribution conditioned upon ξ. Right: risk distribution π(r) for a network
from the ensemble (3.31) with mean degree ⟨k⟩ = 5, rate of infection β = 0.5, and
two recovery rates ξ ∈ {0.6, 1.0} with probability P(ξ = 1.0) = 0.5. The trans-
missability kernel is defined in (3.34) with k̄(ξ = 0.6) = k̄(ξ = 1.0) = ⟨k⟩. Larger
peaks correspond to the risk distribution conditioned upon k. In both plots the
population size is S = 105 and 106 samples are taken from the converged cavity
distribution to form π(r).

and overlap, due to the risk being dependent not only upon the neighbour-

hood of a node, but on the neighbours of neighbours as explored in (234).

Figure 3.11 (right panel) shows the risk distribution and the degree condi-

tional risk distributions for the ensemble defined in (3.31), with average con-

nectivity ⟨k⟩ = 5. When compared to Figure 3.9 we see a greater amount of

heterogeneity for nodes of a given degree. This highlights the importance of

understanding differences in transmissability in individuals and its interplay

with the network structure: the efficacy of sub-type based or degree based

vaccination depends on the level of links between each cluster and their rela-

tive transmissability.
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3.5.3 Risk distribution in the limit of large connectivity

An exact expression for the risk distribution may be derived in the limit of

large connectivity, for graphs with homogeneous transmissibility, using meth-

ods demonstrated in (223). To extend these methods to graphs with hetero-

geneous transmissibility we use the ansatz that as ⟨k⟩ → ∞ the cavity field

distributions will become delta-peaked i.e. π̂k,ξ(r̂) = δ(r̂− r̂∗k,ξ). Inserting this

into equation (3.47), multiplying by r̂ and integrating both sides over r̂, we

find

r̂∗k,ξ = ∑
k′,ξ ′

W(k′, ξ ′|k, ξ)

[
1−

∫ ∞

0
dtγ(t|ξ ′)

(
1− α(t)r̂∗k′,ξ ′

)k′−1
]

. (3.49)

Similarly, we insert π̂k,ξ(r̂) = δ(r̂− r̂∗k,ξ) into equation (3.46) which yields,

π(r) = ∑
k,ξ

P(k, ξ)δ

(
r−

[
1−

∫ ∞

0
dtγ(t|ξ)

(
1− α(t)r̂∗k,ξ

)k
])

. (3.50)

Given that π(r) = ∑k,ξ π(r|k, ξ)P(k, ξ) we find the conditional risk distribu-

tion to be delta-peaked under this ansatz,

π(r|k, ξ) = δ
(
r− fξ(k)

)
(3.51)

where

fξ(k) = 1−
∫ ∞

0
dtγ(t|ξ)

(
1− α(t)r̂∗k,ξ

)k
. (3.52)
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We can simplify the above by choosing γ(t|ξ) = δ
(

t + 1
β ln (1− T(ξ))

)
such

that,

fξ(k) = 1−
(

1− T(ξ)r̂∗k,ξ

)k
. (3.53)

In order to retrieve a non-trivial distribution of risk in the limit k̄ → ∞, we

assume that T(ξ) ≪ 1 ∀ ξ (at finite transmissibility, every node will be near-

certain of causing an epidemic in the large connectivity limit). This allows us

to write fξ(k) = 1− e−kT(ξ)r̂∗k,ξ . To proceed we assume that degree correlations

are of the form W(k′, ξ ′|k, ξ) = W(ξ ′|ξ)W(k′|ξ ′), which by equation (3.49)

yields r∗k,ξ = r∗ξ ∀ k. To find the risk distribution of nodes of a given label

πξ(r) = ∑k π(r|k, ξ)P(k|ξ), we then use (3.51) and properties of the Dirac

delta-function to write,

πξ(r) = ∑
k

P(k|ξ)
δ
(

k− f−1
ξ (r)

)
| f ′ξ( f−1

ξ (r))|
=

1
T(ξ)r̂∗ξ (1− r) ∑

k
P(k|ξ)δ

(
k +

ln(1− r)
T(ξ)r̂∗ξ

)
.

(3.54)

To proceed further we must specify the degree distribution, and so we con-

sider the distribution of risk in graphs drawn from the graph ensemble de-

fined by (3.31) and assume that as ⟨k⟩ → ∞ the conditional mean degree

k̄(ξ) → ∞ ∀ ξ. Noting that the degrees in this ensemble are distributed ac-

cording to P(k|ξ) = e−k̄(ξ)k̄k(ξ)/k!, which in the limit of k̄(ξ) → ∞ is well
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Figure 3.12: Risk distribution π(r), for a network in the ensemble (3.31) with
⟨k⟩ = 50 and two clusters, with recovery time distribution γ(t|ξ) = δ(t +
1
β ln(1 − T(ξ))), parameterised by T(ξ) ∈ {0.0225, 0.03} with P(ξ) = 0.5 and
inter-connectivity q. Left: The dashed lines show the solutions to equations (3.46)
and (3.47) via population dynamics, with population size S = 105 and 106 sam-
ples forming the final distribution. The solid curve shows the large mean limit
approximation (3.55). The inter-connectivity is set to q = 0.01. Right: Large mean
limit approximation for different values of q, as shown in the legend.

approximated by P(k|ξ) ∼ N (k̄(ξ), k̄(ξ)), we find,

πξ(r) =
1

T(ξ)r∗ξ

√
1

2πk̄(ξ)
exp

− k̄(ξ)
2

(
1 +

ln(1− r)
T(ξ)r∗ξ k̄(ξ)

)2

− ln(1− r)

 . (3.55)

The unconditional risk distribution is then given by π(r) = ∑ξ P(ξ)πξ(r). We

can compare this expression with the results of population dynamics for a

system with two clusters with transmissability T(ξ) = {0.0225, 0.03} of equal

size P(ξ) = 0.5. We see in Figure 3.12 that for the case where ⟨k⟩ = 50

there is excellent agreement with the expression (3.55). In Figure 3.12 we also

see the impact of changing the inter-connectivity in this ensemble: for low

q we see two distinct peaks, corresponding to the risk of nodes of different

transmissability, but as q increases the two peaks begin to overlap, until the

distribution becomes unimodal for high q.
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3.5.4 Distributional equations of risk with node and link per-

colation

Finally, we use the cavity method to investigate the effect of node and link

percolation on the distribution of risk in the SIR model. Node deletion mod-

els perfect vaccination, as before, and link percolation models the loss of a

social contact between two individuals, due to, for example, social-distancing

measures. To do so we introduce a binary variable τij which indicates whether

a link in a contact network has been deleted (τij = 0) or not (τij = 1). The

local risk subject to node and link percolation is then written,

ri(A) = σi

1−
∫ ∞

0
dt γ(t) ∏

j∈∂A
i

(
1− τijα(t)r

(i)
j (A)

) (3.56)

r(i)j (A) = σj

1−
∫ ∞

0
dt γ(t) ∏

ℓ∈∂A
j \i

(
1− τjlα(t)r

(j)
ℓ (A)

) . (3.57)

We consider the case where node and links are randomly and independently

deleted with probability dependent on their degree, so that

P(σ|k) = ∏
i

[
(1− x(ki))δσi,0 + x(ki)δσi,1

]
(3.58)

Q(τ|k) = ∏
i<j

[
(1− y(ki, k j))δτij,0 + y(ki, k j)δτij,1

]
. (3.59)
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By proceeding as in 3.A, and averaging over the graph ensemble, we find that

the distribution of risk is given by,

π(r) = ∑
k

P(k)∑
σ

P(σ|k)

×

 k

∏
j=1

∑
k′j

W(k′j|k) ∑̂
τj

Q(τ̂j|k, k′j)
∫

dr̂jπ̂k′j
(r̂j)


×δ (r− ϕ(k, σ, τ̂, r̂))

π̂k(r̂) = ∑
σ

P(σ|k)

k−1

∏
ℓ=1

∑
kℓ

W(k′ℓ|k)∑
τ̂′ℓ

Q(τ̂′ℓ|k, k′ℓ)
∫

dr̂′ℓπ̂k′ℓ
(r̂′ℓ)


×δ
(
r̂− ϕ(k− 1, σ, τ̂′, r̂′)

)
(3.60)

with τ̂ = {τ̂1, ..., τ̂k}, τ̂′ = (τ̂′1, . . . , τ̂′k′−1) and

ϕ(k, σ, τ̂, r̂) = σ

[
1−

∫ ∞

0
dtγ(t)

k

∏
j=1

(
1− α(t)τ̂jr̂j

)]
. (3.61)

Equation (3.60) can be solved by a generalisation of the populations dynamics

algorithm above. To evaluate the cavity distribution π̂(r̂):

1. Set k = 1.

2. Draw σ with probability P(σ|k)

3. Draw k′ degree from the distribution W(k′|k) .

4. Select a risk from the k′-th population of risks.

5. Select τ̂′ with probability Q(τ̂′|k, k′).

6. Repeat steps (3-5) k− 1 times, and store each τ, and individual to form
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the vectors τ̂′ and r̂′.

7. Select a random risk from the k-th population and set its value to ϕ(k−

1, σ, τ̂′, r̂′).

8. Set k = k + 1 and go back to step (2).

9. Repeat all steps until all populations have converged.

As discussed in section 3.5.1 the convergence of π̂k(r̂) can be checked by mon-

itoring ψn,(k) = 1
S ∑i r̂n,(k)

i , where r̂n,(k)
i is the value of risk i in the nth iteration

of the above steps. One can then compute the risk distribution π(r) by tak-

ing samples from the population and computing the histogram of ϕ(k, σ, τ̂, r̂).

We note that, by equations (3.60), the risk distribution π(r) can be deconvo-

luted in terms of k and σ. By conditioning upon σ = 1 it is possible to retrieve

the risk distribution of unvaccinated nodes, therefore providing a method

to see how vaccination strategies affect risk in the network of unvaccinated

nodes.

In Figure 3.13 we show the effects of node and link deletion, represent-

ing perfect vaccination and social distancing respectively. We consider two

cases: random and degree-based strategies. For random vaccination we have

x(k) = x ∀ k and y(k, k′) = y ∀ k, k′. For degree based strategies we set

x(k) = 1− α k
kmax

and y(k, k′) = 1− α kk′
k2

max
such that nodes of high degree and

links connecting nodes of high degree are more likely to be deleted. We show

the case where 15% of nodes/links are deleted in an ER graph. We see that for

the same fraction of nodes/links deleted, the overall risk of the population is

lower under random node deletion than random link deletion. Furthermore,
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Figure 3.13: Survival function for the risk of nodes in an ER graph with mean
degree ⟨k⟩ = 3. Infection rate is β = 0.7 and nodes have exponential infectious
time distribution γ(t) = ξe−ξt with mean infectious time ξ = 0.75. The dotted
line indicates case where no node or link deletion has occurred. In all other cases
15% nodes/links are deleted, subject to either random (blue curves) or degree-
based (red curves) deletion where high degree nodes/links are preferentially
selected for deletion. For degree based node deletion we have nodes deleted
according to (3.58) with x(k) = 1− α k

kmax
, and for degree based link deletion we

delete nodes according to (3.59) with y(k, k′) = 1− α kk′
k2

max
.

risk under degree-based node deletion is lower than degree-based link dele-

tion. This is consistent with the idea that social distancing measures, which

assume an imperfect break in the chain of social contacts, are a less effective

method of epidemic prevention than vaccination. It is however, interesting to

compare the effect of degree-based link deletion, to random node deletion:

in this case link deletion has the greater reduction of risk in the population.

This highlights the importance of strategy in vaccination, although deleting

a node blocks all paths of infection through that node, a targeted strategy of

link deletion can lead to greater reductions in risk than random node deletion.
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3.6 Discussion and conclusion

Predicting the effect of vaccination in epidemic models on networks continues

to be a source of interesting inquiry. In our work we have relaxed the common

assumption that vaccination blocks all transmission and instead assumed that

vaccinated individuals have reduced transmissibility. From a modelling per-

spective this is useful when assessing the risk of epidemics and there is a lack

of data for the impact of a given vaccine on transmission. To explore this, we

have extended the cavity method to account for heterogeneity in the trans-

missibility of groups of individuals. These groups could represent differences

in age, pre-existing medical conditions, or any other known correlates with

transmissibility. Here however we have focused on a population of vacci-

nated and unvaccinated individuals, distinguished from each other by their

transmissibility. Our results reveal that herd immunity is still attained from

vaccination with partial transmission, if vaccination reduces transmissibility

to a sufficiently low level that depends on both the infection rate of the dis-

ease and contact network topology. We have shown that vaccination with

partial transmission requires a greater proportion of the population to be vac-

cinated to achieve herd immunity, as intuitively expected. This highlights the

importance of estimating the transmissibility of an infectious disease, and the

impact that vaccination has upon individual transmissibility. However, it also

highlights the robustness of vaccination as a strategy for the mitigation of

epidemics, as even a partial reduction of transmission can achieve the desired

herd immunity effect.

The benefit of the cavity approach to the SIR model on networks is that it
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allows one to evaluate the epidemic risk without simulation. Our equations

for the global risk provide a quick method to calculate epidemic risk in popu-

lations with groups of different transmissibility. By solving the distributional

equations of epidemic risk we have revealed the stark impact of heterogeneity

in transmissibility. For graphs with homogeneous degree structure, the distri-

bution of risk is delta-peaked when transmissibility of each individual is the

same, but non-trivial when nodes take one of two values of transmissibility.

This reveals that it is a strong assumption to make that the transmissibility of

individuals is homogeneous, and that to ignore such heterogeneity can poten-

tially dampen epidemic mitigation strategies that focus on network topology

alone. Indeed our equations show that by introducing groups of different

transmissibility, the epidemic risk will depend upon the size and transmis-

sibility of each group, as well as the assortativity of links between nodes in

different groups.

While vaccination is an important part of epidemic mitigation, we have

also shown that the cavity method can model social distancing via bond per-

colation. Our framework allows us to compare random bond percolation with

percolation that targets either links connecting nodes of high degree, or nodes

of a particular sub-type. This may be useful when studying variations in

the social distancing of different demographics and their impact on epidemic

risk. One example could be studying the effect of relaxed social distancing

amongst the vaccinated population who are perhaps less risk averse. Our

work also shows that in some cases social distancing may be more effective

than vaccination with partial transmission.

When studying populations with groups of different transmissibility we
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have provided a method to reduce the complexity of the cavity equations for

the global risk by suitable choice of random graph ensemble. Specifically, we

chose a graph ensemble where degrees are correlated by some hidden vari-

ables, in this case the transmissibility of an individual. While we have used

our choice of graph ensemble to study the effect of heterogeneity in transmis-

sibility, we have proved the validity of our approach in general for this graph

ensemble which can be used in many scenarios. For example, we may choose

that the transmissibility of each group is the same, such that the groups of

nodes now only vary in their mean degree and assortativity between differ-

ent groups. Therefore, this ensemble would provide a low complexity method

to study the effect of degree correlations on epidemic risk, where correlations

are driven by some hidden variable, perhaps reflecting differences in demo-

graphic. Furthermore, this graph ensemble can generate many different types

of networks, including networks with modular structure, power-law degree

distribution and geometric random graphs, and as such our methods can also

be applied to networks of this type.

The distributional equations of risk give insight into the impact of different

vaccination strategies and social distancing behaviours beyond their effect on

the global risk. This is particularly interesting with respect to the tails of

these distributions, corresponding to the probability of high risk nodes. We

have shown that assortative graphs have fat tailed distributions, and a further

avenue of work may be to elucidate more information about the tail of the

risk distribution in graphs with strong degree correlations from the cavity

method. Interestingly, the distributional equations allow one to study the

risk distribution in the sub-network of unvaccinated nodes with no further
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technicalities.

There are several limitations of our work. Firstly, the equations we provide

only describe the steady state of the SIR model, but dynamics are an impor-

tant consideration in the modelling of epidemics, for example the timing of

peak infections is of particular interest. An interesting avenue of further work

could be to extend our investigations to the dynamics of the SIR model using

the dynamical cavity method, exploring how differences in transmission and

assortativity affect the peak of infections. Additionally, our modelling ap-

proach is restricted to static networks, whereas realistically contact networks

vary with time, as discussed in (235, 236). For simplicity, we have restricted

our numerical results to populations with exponential infectious time dis-

tributions, where heterogeneity in the transmissibility of individuals is pa-

rameterised by differences in the average recovery time. It would however

be interesting to apply our methods to populations split into clusters with

different infectious time distributions, i.e a population where each individ-

ual either has exponentially distributed infectious times, or infectious times

drawn from a Weibull distribution. Lastly, it is important to note that the SIR

model does not allow for reinfection of individuals, making it unsuitable for

the modelling of some infectious diseases where reinfection is a common oc-

currence. Despite these limitations our work shows that the cavity approach

to the epidemic risk in the SIR model reveals rich behaviour governed by the

heterogeneity in the transmissibility of individuals.
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Appendices

3.A Risk with homogeneous transmission and node

and link deletion

Here we show how to derive a closed set of equations for the average, or

‘global’, risk that a node causes an epidemic across a network that is subject

to node and link deletion, when nodes are homogeneous in transmissibility.

We introduce a binary random variable σi ∈ {0, 1} ∀ i to indicate if a node

i is deleted (σi=0) or not (σi = 1) and τij ∈ {0, 1} ∀ i, j to indicate if the

link between i and j is deleted (τij = 0) or not (τij = 1). We consider the

case where node and links are randomly and independently deleted with

probability dependent on their degree, according to,

P(σi|ki) = (1− x(ki)) δσi,0 + x(ki)δσi,1 (3.62)

Q(τij|ki, k j) =
(
1− y(ki, k j)

)
δτij,0 + y(ki, k j)δτij,1. (3.63)
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For a graph with adjacency matrix A the risk that node i causes an epidemic

is given by,

ri(A) = σi

1−
∫ ∞

0
dt γ(t) ∏

j∈∂A
i

(1− α(t)τijr
(i)
j (A))

 (3.64)

r(i)j (A) = σj

1−
∫ ∞

0
dt γ(t) ∏

ℓ∈∂A
j \i

(
1− α(t)τjℓr

(j)
ℓ (A)

) . (3.65)

Summing (3.64) over i, dividing by N and inserting unity in the form

1 = ∑
σ

δσ,σi ∑
k≥0

δk,|∂A
i | ∏

j∈∂A
i

∫
dr̂j δ(r̂j − r(i)j (A)) ∑̂

τj

δτ̂j,τij (3.66)

we obtain

g(A) =
1
N ∑

σ

N

∑
i=1

δσ,σi σ

{
1− ∑

k≥0
δk,ki(A)

∏
j∈∂A

i

∫
dr̂j δ(r̂j − r(i)j (A)) ∑̂

τj

δτ̂j,τij


×
∫ ∞

0
dtγ(t) ∏

j∈∂A
i

(1− α(t)τ̂jr̂j)

}

= ∑
σ

σ

[
P(σ)− ∑

k≥0
∑̂
τ

∫
dr̂ Wc(k, σ; τ̂, r̂|A)

×
∫ ∞

0
dtγ(t) ∏

j∈∂A
i

(
1− α(t)τ̂jr̂j

) ]
(3.67)

where we have defined ki(A) = |∂A
i | the degree of node i in network A,

r̂ = (r̂1, . . . , r̂k) the cavity fields of the neighbours of a site with degree k,

τ̂ = (τ̂1, . . . , τ̂k) the labels that describe which links of a site with degree k

have been deleted, P(σ) = N−1 ∑i δσ,σi the probability that a node has label σ,
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and

Wc(k, σ; τ̂, r̂|A) =
1
N

N

∑
i=1

δk,ki(A)δσ,σi ∏
j∈∂A

i

δ(r̂j − r(i)j (A))δτ̂j,τij (3.68)

the likelihood that a site drawn at random in network A has degree k, label

σ, and neighbours with cavity fields, r̂, with the links to these neighbours

deleted according to τ̂. We denote probability distributions of variables that

are linked by an edge with W( ; ). We have also denoted distributions which

depend upon the cavity fields r̂ with a subscript c and refer to them as ‘cavity

distributions’. We note that integrating a cavity distribution Wc over its cavity

fields leads to a normal (i.e. not cavity) distribution W. Furthermore, we

note that integrating (3.68) over τ̂ and r̂ leads to a distribution of single site

variables, that we denote with P. For later reference, we will denote with Q

distributions of single link quantities, in accordance with (3.63).

Using Bayes relation, we then have Wc(k, σ; τ̂, r̂|A) = P(k, σ|A)Wc(τ̂, r̂|k, A)

where we have used that, in the absence of correlations between node labels,

and between node labels and link labels, the distribution Wc(τ̂, r̂|k, A) in the

cavity graph where node i has been removed is independent of the label σ of

node i. We proceed by writing Wc(τ̂, r̂|k, A) = ∑q Wc(q, τ̂, r̂|k, A) where q =

(q1, ..., qk) are the degrees of the neighbours of a node with degree k. Using

Bayes relations, we can write Wc(q, τ̂, r̂|k, A) = W(q|k, A)Q(τ̂|k, q)Wc(r̂|A, k, q)

where we have used the conditional independence of r̂ (when conditioned on

the degrees k and q), on τ̂, in the cavity graph where node i and all its

links have been removed. Here Q(τ̂|k, q) is the joint distribution of delet-

ing k links according to τ̂. Here Wc(r̂|A, k, q) is the joint distribution of
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the cavity fields r̂ given that the node removed from the cavity graph has

degree k with neighbours with degrees q. By equation (3.63) we have that

Q(τ̂|k, q) = ∏k
j=1 Q(τ̂j|k, qj). Furthermore, in the limit N → ∞, by virtue

of a locally tree-like assumption, Wc(r̂|A, k, q) also factorises Wc(r̂|A, k, q) =

∏k
j=1 Wc(r̂j|A, k, qj), for any k > 0. For k = 0, we can set Wc(r̂|A, 0, q) = δ(r̂)

as the product in (3.64) is empty and evaluates to one, regardless of r̂. When

we insert this into (3.67) we find,

g(A) = ∑
σ,k≥0,q

σP(k, σ|A)W(q|k, A)

×
[

1−
∫ ∞

0
dt γ(t)

k

∏
j=1

(
1− α(t)y(k, qj)ĝk,qj(A)

)] (3.69)

where ĝk,q(A) =
∫

dr̂Wc(r̂|A, k, q) r̂ is the average contribution to the cav-

ity field of a random node with degree k from a random neighbour with

degree q. We now assume that the degrees of the neighbours of a ran-

dom site with degree k are independent when conditioned upon k such that

W(q|k, A) = ∏k
j=1 W(qj|k, A). While this assumption is only true for par-

ticular graph ensembles, it will act as a useful approximation for ensembles

where it is not true, as it leads to a closed set of equations. Inserting this into

(3.69) yields,

g(A) = ∑
k≥0

P(k|A)x(k)

[
1−

∫ ∞

0
dt γ(t)

k

∏
j=1

(1− α(t)g̃k(A))

]
(3.70)
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where

g̃k(A) = ∑
q

W(q|k, A)y(k, q)ĝk,q. (3.71)

To make progress, we need an equation for g̃k(A),

g̃k(A) = ∑
q

W(q|k, A)y(k, q)
∫

dr̂ Wc(r̂|k, q, A)r̂ (3.72)

= ∑
q

W(q|k, A)y(k, q)
∫

dr̂
Wc(k; r̂, q|A)

P(k|A)W(q|k, A)

1
k

k

∑
j=1

r̂j (3.73)

= ∑
q

W(q|k, A)y(k, q)∑
q

∫
dr̂

Wc(k; r̂, q|A)

P(k|A)W(q|k, A)

1
k

k

∑
j=1

r̂jδq,qj (3.74)

= ∑
q

y(k, q)
kP(k|A)

k

∑
j=1

∑
q

∫
dr̂

1
N

N

∑
i

δk,ki(A)[ ∏
l∈∂A

i

δql ,kl(A)δ(r̂l − r(i)l (A))]r̂jδq,qj

= ∑
q

y(k, q)
kP(k|A)

k

∑
j=1

∫
dr̂

1
N

N

∑
i

δk,ki(A)[ ∏
l∈∂A

i

δ(r̂l − r(i)l (A))]r̂jδq,kj

= ∑
q

y(k, q)
kP(k|A)

1
N

k

∑
j=1

N

∑
i

Aijδk,ki(A)δq,kj(A)r̂
(i)
j (A) (3.75)

where we have used Bayes relations and the definition

Wc(k; q, r̂|A) =
1
N

N

∑
i

δk,ki(A)[ ∏
j∈∂A

i

δqj,kj(A)δ(r̂j − r(i)j (A))]
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Hence, using the cavity equation (3.65) we find an expression for g̃k as follows,

g̃k(A) = ∑
q

y(k, q)
NkP(k|A)

N

∑
i,j=1

Aijδk,ki(A)δq,kj(A)σj

×
[

1−
∫ ∞

0
dtγ(t) ∏

ℓ∈∂A
j \i

(
1−α(t)τjℓr

(j)
ℓ

) ]

= ∑
q

y(k, q)
NkP(k|A)

[
∏

ℓ∈∂A
j \i

∫
dr̂′ℓδ(r̂

′
ℓ − r(j)

ℓ )∑
τ̂′ℓ

δτ̂′ℓ,τjℓ

]

×∑
σ

N

∑
i,j=1

Aijδk,ki(A)δq,kj(A)δσ,σj σ

[
1−

∫ ∞

0
dt γ(t)

q−1

∏
ℓ=1

(
1− α(t)τ̂′ℓr̂

′
ℓ

)]

= ∑
q

y(k, q)k̄(A)

kP(k|A)

∫
dr̂′∑

τ̂′
∑
σ

Wc(k; q, σ; τ̂′, r̂′|A)σ

×
[

1−
∫ ∞

0
dt γ(t)

q−1

∏
ℓ=1

(
1− α(t)τ̂′ℓr̂

′
ℓ

)]
(3.76)

where

Wc(k; q, σ; τ̂′, r̂′|A) =
∑ij Aijδk,ki(A)δσ,σj δq,kj(A)[∏ℓ∈∂A

j \i
δ(r̂′ℓ − r(j)

ℓ (A))δτ̂′ℓ,τjℓ
]

Nk̄(A)

(3.77)

is the likelihood that a randomly drawn link connects a node i with degree

k to a node j with degree q, label σ and neighbours (i excluded) with cavity

fields r̂′ = (r̂′1, . . . , r̂′q−1) and links deleted according to τ̂′ = (τ̂′1, . . . , τ̂′q−1). We

next use Bayes and the independence of τ̂′ and r̂′ on σ when conditioned

on q to write Wc(k; q, σ; τ̂′, r̂′|A) = W(k; q, σ|A)Wc(τ̂
′, r̂′|k, q, A) and write

Wc(τ̂
′, r̂′|k, q, A) = ∑q′ Wc(τ̂

′, r̂′, q′|k, q, A) where q′ = (q′1, . . . , q′q−1) are the

degrees of the neighbours of a node with degree q, excluding the neighbour
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with degree k. Using again the independence of r̂′ and τ̂′ when conditioned

on the degrees q and q′, we have Wc(τ̂
′, r̂′, q′|k, q, A) = W(q′|q, A)Q(τ̂′|q, q′)

Wc(r̂′|q′, q′, A) where we also note that q′, r̂′ and τ̂′ are independent of k

when conditioned on q. By equation (3.63) the τ̂′ factorise, in addition to the

r̂′ which factorise under the tree-like assumption, and we again assume that

q′ factorise when conditioned on q, hence we have

Wc(q′|q, A)Q(τ̂′|q, q′)Wc(r̂′|q, q′, A) =
q−1

∏
ℓ=1

W(q′ℓ|q, A)Q(τ̂′ℓ|q, q′ℓ)Wc(r̂′ℓ|q, q′ℓ, A).

(3.78)

Inserting this into (3.76) leads to the system of equations,

g̃k(A)= ∑
q≥1

∑
σ

y(k, q)
W(k; q, σ|A)

W(k|A)
σ

×

1−
∫ ∞

0
dt γ(t)

(
1− α(t)∑

q′
W(q′|q, A)y(q, q′)ĝq,q′(A)

)q−1
 (3.79)

where W(k|A) = ∑q W(k; q|A) = kP(k|A)/k̄(A) and the sum over q has been

restricted to q ≥ 1, as W(k; q|A) vanishes for q = 0. Finally, by using (3.71) we

have the following set of equations

g(A) = ∑
k≥0

P(k|A)x(k)
[

1−
∫ ∞

0
dt γ(t)(1− α(t)g̃k(A))k

]
(3.80)

g̃k(A) = ∑
q≥1

y(k, q)W(q|k, A)x(q)
[

1−
∫ ∞

0
dt γ(t)

(
1− α(t)g̃q(A)

)q−1
]

(3.81)

where we have used (3.62) and denoted W(q|k, A) = W(k; q|A)/W(k|A).

These show that the global risk g(A) has the same self-averaging properties

155



3. HERD IMMUNITY IN SOCIAL CONTACT NETWORKS WITH
HETEROGENEOUS TRANSMISSION PROBABILITIES

of P(k|A) and W(k; q|A). If the set of equations (3.81) is solved numerically,

the solution can be substituted into equation (3.80) to find the global risk.

3.B Stochastic simulations of the SIR model on net-

works

All simulations used for comparison with the results of the cavity equations

were performed using the Python package “Epidemics on Networks” (228).

This package contains an extensive number of functions for the analysis of dif-

ferent compartmental models of epidemics on networks. For the simulation of

the SIR model, one can use one of two functions Gillespie_SIR, which uses

the Gillespie algorithm (226), and fast_SIR which provides a faster method to

simulate the SIR model when nodes have exponential recovery and infection

rate (227). Figures 3.2 and 3.3 were created using Gillespie_SIR whereas all

other figures that compare simulations to the cavity equations made use of

fast_SIR. The choice of which of the two functions we used did not affect our

results, but fast_SIR was found to be significantly quicker and hence was

used for the majority of figures. Below, we provide an example of Python

code to compute the risk of each node in an ER network.

import numpy as np

import numpy.random as rn

import networkx as nx

import EoN as eon
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N = 2500 #Number of nodes in network

mean_degree = 5 #Mean degree of network

p = mean_degree/N #Probability that a pair of nodes are linked

G = nx.erdos_renyi_graph(N, p) #draw ER graph

Ninits = 100 #Number of initialisations

Nseeds = 100 #Number of repetitions starting

#from the same intial infected node

beta = 0.5 #rate of infection

xi = 2 #rate of recovery

number_infected = np.zeros((Ninits,Nseeds))

for i in range(Ninits):

#Choose a node at random to be infected

initial_node = rn.choice(np.arange(0,N,1))

for j in range(Nseeds):

#Run SIR simulation

t,S,I,R = eon.fast_SIR(G, beta, xi,

initial_infecteds = initial_node)

#Store total number of individuals who became infected

number_infected[i,j] = R[-1]

risk = np.zeros(Ninits)

threshold = 0.01*N #small threshold to determine if an epidemic occured

for i in range(Ninits):

#The risk of a node is computed as the fraction of simulations starting

#with that node infected that lead to a significant
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#number of nodes infected

risk[i] = np.sum(number_infected[i,:] > threshold)/Nseeds

3.C Risk with heterogeneous transmission and link

deletion

In this section we find closed equations for the global risk when nodes have

heterogeneous transmissibility. For brevity we do not consider node deletion

in this section. We consider link deletion but now based upon the label and

degree of nodes, such that,

Q(τij) =
(
1− y(ki, ξi, k j, ξ j)

)
δτij,0 + y(ki, ξi, k j, ξ j)δτij,1 (3.82)

where 1− y(k, ξ, k′, ξ ′) is the probability of deleting a link with a node with

degree k and label ξ at one end and a node with degree k′ and label ξ ′ at the

other. Summing (3.37) over i, dividing by N and inserting unity in the form

1 = ∑
ξ

δξ,ξi ∑
k≥0

δk,|∂A
i | ∏

j∈∂A
i

∫
dr̂j δ(r̂j − r(i)j (A)) ∑̂

τj

δτ̂j,τij (3.83)
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we obtain

g(A, ξ) = 1− 1
N

N

∑
i=1

∑
k≥0

δk,ki(A) ∑
ξ

δξ,ξi

∏
j∈∂A

i

∫
dr̂j δ(r̂j − r(i)j (A, ξ)) ∑̂

τj

δτ̂j,τij


×
∫ ∞

0
dtγ(t|ξ) ∏

j∈∂A
i

(1− α(t)τ̂jr̂j)

= 1− ∑
k≥0,ξ,τ̂

∫
dr̂ Wc(k, ξ; r̂, τ̂|A, ξ)

∫ ∞

0
dt γ(t|ξ) ∏

j∈∂A
i

(
1− α(t)τ̂jr̂j

)
(3.84)

where we have defined r̂ = (r̂1, . . . , r̂k) and

Wc(k, ξ; r̂, τ̂|A, ξ) =
1
N

N

∑
i=1

δk,ki(A)δξ,ξi ∏
j∈∂A

i

δ(r̂j − r(i)j (A, ξ))δτ̂j,τij (3.85)

the likelihood that a site drawn at random in network A has degree k, la-

bel ξ and neighbours with cavity fields r̂ = (r̂1, . . . , r̂k), and links deleted

according to τ̂ = (τ̂1, . . . , τ̂k). Similarly to before, we use Bayes relation

to write Wc(k, ξ; r̂, τ̂|A, ξ) = P(k, ξ|A, ξ)Wc(r̂, τ̂|k, ξ, A, ξ) and we then write

Wc(r̂, τ̂|k, ξ, A, ξ) = ∑ζ,q Wc(r̂, τ̂, ζ, q|k, ξ, A, ξ), where ζ = (ζ1, . . . , ζk) and

q = (q1, . . . , qk) are the labels and degrees of the neighbours of a random site

with degree k and label ξ. Using Bayes theorem this becomes

Wc(r̂, τ̂, ζ, q|k, ξ, A, ξ) = W(ζ, q|k, ξ, A, ξ)Q(τ̂|k, ξ, ζ, q)Wc(r̂|k, ξ, ζ, q, A, ξ)

where we have also used the independence of τ̂ and r̂ when conditioned

on ζ and q. For k = 0 we can set Wc(r̂|0, ξ, ζ, q, A, ξ) = δ(r̂) as the prod-

ucts in (3.84) evaluate to one. In the limit N → ∞, by virtue of a locally

tree-like assumption, the joint distribution of the cavity fields r̂ factorises

Wc(r̂|k, ξ, ζ, q, A, ξ) = ∏k
j=1 Wc(r̂j|k, ξ, qj, ζ j, A, ξ), as does Q(τ̂|k, ξ, ζ, q) =
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∏k
j=1 Q(τ̂j|k, ξ, qj, ζ j) by equation (3.82). Again, we assume the degrees and la-

bels of the neighbours of a random site with degree k and label ξ, are indepen-

dent, when conditioned on the degree k and label ξ, such that W(ζ, q|k, ξ, A, ξ) =

∏k
j=1 W(ζ j, qj|k, ξ, A, ξ). As noted above, although this is only true for partic-

ular graph ensembles, it acts as a useful approximation for ensembles where

it is not true, as it leads to a closed set of equations. When this is inserted into

(3.84) we find,

g(A, ξ) = 1−∑
k,ξ

P(k, ξ|A, ξ)
∫ ∞

0
dt γ(t|ξ)

(
1− α(t)g̃k,ξ(A, ξ)

)k (3.86)

where g̃k,ξ(A, ξ) = ∑q,ξ ′ W(q, ζ|k, ξ, A, ξ)y(k, ξ, q, ζ)
∫

dr̂Wc(r̂′|k, ξ, q, ζ, A, ξ) r̂

is the average cavity field of a random neighbour of a random node with

degree k and label ξ. To make progress, we need an equation for g̃k,ξ(A, ξ).

To this end we can write g̃k,ξ(A, ξ) as

ĝk,ξ(A, ξ) = ∑
q,ζ

W(q, ζ|k, ξ, A, ξ)y(k, ξ, q, ζ)
∫

dr̂Wc(r̂|k, ξ, q, ζ, A, ξ) r̂

= ∑
q,ζ

y(k, ξ, q, ζ)
∫

dr̂
Wc(k, ξ; q, ζ, r̂|A, ξ)

P(k, ξ|A, ξ)

1
k

k

∑
j=1

r̂j

= ∑
q,ζ

y(k, ξ, q, ζ)∑
q,ζ

∫
dr̂

Wc(k, ξ; q, ζ, r̂|A, ξ)

P(k, ξ|A, ξ)

1
k

k

∑
j=1

r̂jδq,qj δζ,ζ j

= ∑
q,ζ

y(k, ξ, q, ζ)

kP(k, ξ|A, ξ)

k

∑
j=1

∑
q,ζ

∫
dr̂

1
N ∑

i
δk,ki(A)δξ,ξi

×

∏
l∈∂A

i

δ(r̂l − r(i)l (A, ξ))δql ,kl(A)δζl ,ξl

 r̂jδq,qj δζ,ζ j

= ∑
q,ζ

y(k, ξ, q, ζ)

NkP(k, ξ|A, ξ)

N

∑
i,j=1

Aijδk,ki(A)δξ,ξi δq,kj(A)δζ,ξ jr
(i)
j (A, ξ) (3.87)
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Hence, using the cavity equation (3.38) we find an expression for g̃k,ξ as fol-

lows,

g̃k,ξ(A, ξ) = ∑
q,ζ

y(k, ξ, q, ζ)

NkP(k, ξ|A, ξ)

N

∑
i,j=1

Aijδk,ki(A)δξ,ξi δq,kj(A)δζ,ξ jr
(i)
j (A, ξ)

= ∑
q,ζ

y(k, ξ, q, ζ)

NkP(k, ξ|A, ξ)

N

∑
i,j=1

Aijδk,ki(A)δξ,ξi δq,kj(A)δζ,ξ j

×

 ∏
ℓ∈∂A

j \i

∫
dr̂′ℓ δ(r̂′ℓ − r(j)

ℓ (A, ξ))∑
τ̂′ℓ

δτ̂′ℓ,τjℓ


×

1−
∫ ∞

0
dt γ(t|ζ) ∏

ℓ∈∂A
j \i

(
1− α(t)τ̂′ℓr̂

′
ℓ

)
= ∑

q,ζ

y(k, ξ, q, ζ)

kP(k, ξ|A, ξ) ∑
τ̂′

∫
dr̂′Wc(k, ξ; q, ζ; τ̂′, r̂′|A, ξ)

×
[

1−
∫ ∞

0
dt γ(t|ζ)

q−1

∏
ℓ=1

(
1− α(t)τ̂′ℓr̂

′
ℓ

)]
(3.88)

where

Wc(k, ξ; q, ζ; τ̂′, r̂′|A, ξ) =
1

Nk̄(A)
∑
ij

Aijδk,ki(A) δq,kj(A)δξ,ξi δζ,ξ j

× ∏
ℓ∈∂A

j \i
δ(r̂′ℓ − r(j)

ℓ (A, ξ))δτ̂′ℓ,τjℓ

(3.89)

is the likelihood that a randomly drawn link connects a node i with degree

k and label ξ to a node j with degree q, label ζ and neighbours (excluded

i) with cavity fields r̂′ = (r̂′1, . . . , r̂′q−1) with links deleted according to τ̂′ =

(τ̂′1, . . . , τ̂′q−1). By Bayes theorem Wc(k, ξ; q, ζ; τ̂′, r̂′|A, ξ) = W(k, ξ; q, ζ|A, ξ)
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Wc(τ̂
′, r̂′|k, ξ, q, ζ, A, ξ) and we my then write Wc(τ̂

′, r̂′|k, ξ, q, ζ, A, ξ) = ∑q′,ζ′

Wc(q′, ζ′, τ̂′, r̂′|k, ξ, q, ζ, A, ξ) where q′ = (q′1, . . . , q′q−1) and ζ′ = (ζ ′1, . . . , ζ ′q−1)

are the degrees and labels of the neighbours of a site with degree q and la-

bel ζ which is itself connected to a site with degree k and label ξ. By Bayes

theorem we may write, Wc(q′, ζ′, τ̂′, r̂′|k, ξ, q, ζ, A, ξ) = W(q′, ζ′|q, ξ, A, ξ) ×

Q(τ̂′, r̂′|q, ξ, q′, ζ′)Wc(r̂′|q, ξ, q′, ζ′, A, ξ), and noted that τ̂′ and r̂′ are inde-

pendent when conditioned on the labels and degrees. We have also noted

that q′, ζ′, τ̂′ and r̂′ are independent of k and ξ. By equation (3.82) we

have Q(τ̂′|q, ξ, q′, ζ′) = ∏
q−1
l=1 Q(τ̂′ℓ|q, ξ, q′ℓ, ζ ′ℓ) and by the tree-like assump-

tion Wc(r̂′|q, ξ, q′, ζ′, A, ξ) = ∏
q−1
ℓ=1 Wc(r̂′ℓ|q, ξ, q′ℓ, ζ ′ℓ, A, ξ). Furthermore, we

again assume that degrees and labels of neighbours factorise when condi-

tioned upon the degree and labels of their neighbours i.e. W(q′, ζ′|q, ξ, A, ξ) =

∏
q−1
ℓ=1 W(q′ℓ, ζ ′ℓ|q, ξ, A, ξ). Inserting this into (3.88) leads to a closed set of equa-

tions for g̃k,ξ(A, ξ),

g̃k,ξ(A, ξ) = ∑
q,ζ

y(k, ξ, q, ζ)W(q, ζ|k, ξ, A, ξ)

×
[

1−
∫ ∞

0
dt γ(t|ζ)

(
1− α(t) g̃q,ζ(A, ξ)

)q−1
]

. (3.90)

Assuming that P(k, ξ|A, ξ) and W(q, ζ|k, ξ, A, ξ) are self-averaging over the

graph ensemble and the node label distribution, we finally average equations

(3.86) and (3.90) over the distribution P(A, ξ) of graphs and node labels, ob-
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taining

g = 1−∑
k,ξ

P(k, ξ)
∫ ∞

0
dt γ(t|ξ)

(
1− α(t) g̃k,ξ

)k (3.91)

g̃k,ξ = ∑
q,ζ

y(k, ξ, q, ζ)W(q, ζ|k, ξ)

[
1−

∫ ∞

0
dt γ(t|ζ)

(
1− α(t) g̃q,ζ

)q−1
]

(3.92)

where P(k, ξ) = ⟨P(k, ξ|A, ξ)⟩A,ξ and W(q, ζ|k, ξ) = ⟨W(q, ζ|k, ξ, A, ξ)⟩A,ξ with

⟨ · ⟩A,ξ = ∑A,ξ ·P(A, ξ).

3.D An ensemble of networks linking nodes of sim-

ilar or dissimilar transmissability

In this section we derive relations for the average degree distribution P(k|ξ)

and average degree correlations W(k, ξ; k′, ξ ′|ξ) for networks drawn from the

ensemble

P(A|ξ) = ∏
i<j

[
⟨k⟩
N

W(ξi; ξ j)

P(ξi)P(ξ j)
δAij,1 +

(
1− ⟨k⟩

N
W(ξi; ξ j)

P(ξi)P(ξ j)

)
δAij,0

]
(3.93)

considered in (3.31), in the limit of large network size N → ∞. We start by

computing P(k|ξ), the probability of a node to have degree k in a network

with node labels ξ = (ξ1, . . . , ξN), which is written as the ensemble average,

P(k|ξ) = ∑
A

P(A|ξ)P(k|A) (3.94)
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of the degree distribution for the single network instance

P(k|A, ξ) =
1
N

N

∑
i=1

δk,∑j( ̸=i) Aij . (3.95)

Inserting (3.95) and (3.93) into (3.94), writing P(A|ξ) = ∏i<j P(Aij|ξ) and us-

ing Fourier representations of Kronecker delta-functions, as well as the sym-

metric property of the adjacency matrix Aij = Aji, we get

P(k|ξ) = 1
N ∑

i
∑
A

∫ dω

2π
eiωk−iω ∑j( ̸=i) Aij ∏

k<j
P(Akj|ξ)

=
1
N ∑

i
∑
A

∫ dω

2π
eiωk−iω ∑k ̸=j Akjδki ∏

k<j
P(Akj|ξ)

=
1
N ∑

i
∑
A

∫ dω

2π
eiωk−iω ∑k<j Akj(δki+δji) ∏

k<j
P(Akj|ξ)

=
1
N ∑

i

∫ dω

2π
eiωk ∏

k<j
∑
Akj

P(Akj|ξ) e−iωAkj(δki+δji). (3.96)

Taking the sum over Akj and employing the (asymptotic) identity 1 + x/N =

ex/N+O(1/N2), we have

P(k|ξ) = 1
N ∑

i

∫ dω

2π
eiωk ∏

k<j
e
⟨k⟩
N

W(ξk ;ξ j)

P(ξk)P(ξ j)

(
e−iω(δki+δji)−1

)

=
1
N ∑

i

∫ dω

2π
eiωk ∏

k<j
e
⟨k⟩
N

W(ξk ;ξ j)

P(ξk)P(ξ j)
((e−iω−1)(δki+δji))

=
1
N ∑

i

∫ dω

2π
eiωke

⟨k⟩
2N ∑k ̸=j

W(ξk ;ξ j)

P(ξk)P(ξ j)
((e−iω−1)(δki+δji))

=
1
N ∑

i

∫ dω

2π
eiωke

(e−iω−1) ⟨k⟩N ∑k( ̸=i)
W(ξk ;ξi)

P(ξk)P(ξi) . (3.97)
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At this point we make use of properties of the kernel W(ξ; ξ ′) as follows,

⟨k⟩
N ∑

k( ̸=i)

W(ξk; ξi)

P(ξk)P(ξi)
=
⟨k⟩
N ∑

k( ̸=i)
∑
ξ

δξ,ξk

W(ξ; ξi)

P(ξ)P(ξi)

= ⟨k⟩∑
ξ

P(ξ)
W(ξ; ξi)

P(ξ)P(ξi)
= ⟨k⟩W(ξi)

P(ξi)
(3.98)

where we have used the law of large numbers P(ξ) = limN→∞
1
N ∑N

i=1 δξ,ξi and

neglected O(N−1) terms. This allows us to derive the following result

P(k|ξ) = 1
N ∑

i

∫ dω

2π
eiωke

(e−iω−1)⟨k⟩W(ξi)
P(ξi)

=
1
N ∑

i
∑
ξ

δξ,ξi

∫ dω

2π
eiωke(e

−iω−1)⟨k⟩W(ξ)
P(ξ)

= ∑
ξ

P(ξ) e−⟨k⟩
W(ξ)
P(ξ)

∫ dω

2π
eiωk ee−iω⟨k⟩W(ξ)

P(ξ)

= ∑
ξ

P(ξ) e−⟨k⟩
W(ξ)
P(ξ)

∫ dω

2π
eiωk ∑

ℓ≥0

(⟨k⟩W(ξ)
P(ξ) )

ℓ

ℓ!
e−iωℓ

= ∑
ξ

P(ξ) e−⟨k⟩
W(ξ)
P(ξ)

(⟨k⟩W(ξ)
P(ξ) )

k

k!
. (3.99)

The above can be simplified further. Starting from the definition of the kernel

W(ξ; ξ ′) =
∑i ̸=j Aijδξ,ξi

δξ′ ,ξ j
∑i ̸=j Aij

we can write an expression for the marginal distri-
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bution W(ξ),

W(ξ) = ∑
ξ ′

∑i ̸=j Aijδξ,ξi δξ ′,ξ j

∑i ̸=j Aij
=

∑i ̸=j Aijδξ,ξi

∑i ̸=j Aij
=

∑i kiδξ,ξi

N⟨k⟩

=
1

N⟨k⟩∑k
∑

i
kδξ,ξi δk,ki =

1
⟨k⟩∑k

kP(ξ, k)

=
1
⟨k⟩P(ξ)∑

k
kP(k|ξ) = k̄(ξ)

⟨k⟩ P(ξ) (3.100)

where we have defined k̄(ξ) = ∑k P(k|ξ)k, where P(k|ξ) is the probability for

a node to have degree k given that it has label ξ, (not to be confused with

P(k|ξ) which is conditioned on the labels of all nodes in the network ξ =

(ξ1, . . . , ξN)). We can now substitute this back into our previous expression to

find,

P(k|ξ) = ∑
ξ

P(ξ)e−k̄(ξ) (k̄(ξ))
k

k!
. (3.101)

We note that the dependence on the specific realisation of ξ is lost and only

the distribution P(ξ) enters the expression, hence we will write P(k|ξ) = P(k).

We note that by writing the degree distribution as,

P(k) = ∑
ξ

P(ξ)P(k|ξ) (3.102)

comparison with (3.101) reveals the degree distribution of nodes with the

same label is the Poissonian distribution

P(k|ξ) = e−k̄(ξ) (k̄(ξ))
k

k!
, (3.103)
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with mean degree k̄(ξ). We also note that the joint distribution P(k, ξ), which

is required to solve (3.17), is obtained multiplying the above times P(ξ)

P(k, ξ) = P(ξ)e−k̄(ξ) (k̄(ξ))
k

k!
. (3.104)

We can follow a similar procedure to find the average value of degree corre-

lations in the ensemble (3.93)

W(k, ξ; k′, ξ ′|ξ) = ∑
A

P(A|ξ) 1
N⟨k⟩∑ij

Aijδk,ki(A)δk′,kj(A)δξ,ξi δξ ′,ξ j
. (3.105)

By using Fourier representations of the Kronecker delta-function and taking

the sum over A we find, in the large N limit,

W(k, ξ; k′, ξ ′|ξ) = W(ξ; ξ ′)W(k|ξ)W(k′|ξ ′) (3.106)

with W(k|ξ) = kP(k|ξ)/k̄(ξ). This again reveals that the degree correlations,

when averaged over the graph ensemble, no longer depend on the specific

configuration ξ, so we will write W(k, ξ; k′, ξ ′|ξ) = W(k, ξ; k′, ξ ′).
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4
Dynamics of gene regulatory networks with

self-regulation

4.1 Introduction

As we have discussed in previous chapters, the immune system is comprised

of many different cell types (T-cells, B-cells, etc) which perform a wide array

of functions that contribute to immunity. Within a single organism, different

cell types have the same genetic make-up but differ in the set of genes which

are expressed, such that one can determine cell type from gene expression

profiles. The expression of one gene can influence the expression of another

such that the interaction between genes creates a large, sparse, directed net-

work known as a gene regulatory network (GRN). In this chapter, we study a

model of GRNs, with the aim of understanding the conditions under which

sparse, directed, randomly connected networks can support a diverse set of

stable gene expression profiles, corresponding to different cell types, neces-

sary for multi-cellular life. Since the early work of Kauffman (82, 83), systemic

features of GRNs have been studied using Boolean networks. In these models
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each node of the network represents a gene that is assumed to be in one of

two states (expressed/not expressed). The state of a node, described by a

Boolean variable (1 or 0), evolves in discrete time steps and at a given point

in time is updated according to some function of the state of its neighbour-

ing nodes at the previous time point. In these models it is typically chosen

that all nodes are updated together in a single time step, a modelling choice

referred to as synchronous (or parallel) dynamics. While it is unrealistic that

genes update in this fashion, the simplicity of synchronous Boolean networks

has made them popular choice for modelling the behaviour of GRNs and

have been shown to complement limited experimental data (237). Since their

introduction, Boolean networks have also been popular choices to model the

operation of a broad range of complex systems, ranging from credit contagion

(238, 239, 240) to epidemic spreading (241) and opinion dynamics (242, 243).

It is well known that gene expression is biologically regulated by tran-

scription factors (TFs). These are single (or small complexes of) proteins,

synthesised by genes, which can bind to certain portions of DNA, and selec-

tively promote or inhibit the expression of genes. Recently, bipartite Boolean

networks have been introduced to incorporate the role of TFs in the dynamics

of gene expression (98, 244, 245). In these models, genes and TFs are modelled

by two sets of Boolean variables which interact with each other via directed

links. A directed link from a gene to a TF indicates that the gene codes for a

protein that constitutes the TF. Conversely, a directed link from a TF to a gene

indicates that the TF regulates the expression of that gene. In these models,

links were assumed to be sparse, directed and drawn randomly and indepen-

dently from given distributions, so that links were typically unidirectional, i.e.
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the probability to have a bidirectional link vanished in the thermodynamic

limit, where the number of nodes in the network is infinitely large, due to

sparsity and directionality. Unidirectional interactions meant that genes did

not contribute to the synthesis of TFs that would regulate them, a process we

refer to as self-regulation. It is known that self-regulation is a common feature

of GRNs, and feedback loops, where a gene is directly or indirectly involved

in the regulation of its own expression, are important. It is the objective of this

work to relax the assumptions made in earlier works, and allow interactions

to be correlated, such that we can study the effect of self-regulation on the dy-

namics of GRNs. In particular, we focus on attractors of Boolean networks; a

sequence of states, where if the network evolves to any state in that sequence,

it shall then cycle through that sequence of states in perpetuity.

Past models of GRNs have been shown to support only a single attrac-

tor and this was hypothesised to be due to the lack of bidirectional links

in the networks that were studied (98, 244, 245). This is consistent with re-

cent numerical work which suggests that sparse, fully asymmetric networks,

in which there are no pair of nodes that both have a direct interaction with

each other, tend toward supporting a single attractor as dilution is increased

(246). A study of sparsely connected, partially symmetric networks, to the best

of our knowledge, is absent from the literature. In this work we show that

partially symmetric networks can support multiple attractors, as observed

in multi-cellular life, at low, but finite, temperature. In order to do so we

apply the dynamical cavity method to the study of bipartite systems, with

two distinct sets of variables that evolve according to different sets of linear

threshold functions. By suitable parameterisation of such systems one can
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study models of gene expression, with pairwise and multi-node interactions,

previously studied in (98, 244, 245). By mapping these models to suitably de-

fined bipartite systems, we find that we can solve for the dynamics of systems

with two-body, arbitrarily asymmetric interactions, even in the presence of

self-interactions. This represents a major technical advance, as self-interactions

are well known to introduce long-time correlations which would normally

make direct application of the dynamical cavity method (or equivalent meth-

ods based on generating functionals) cumbersome. By a similar mapping to

bipartite networks, we are also able to investigate the dynamics of systems

with multi-node (arbitrarily asymmetric) interactions. Such systems are sim-

ilar to mixed p-spin models, where nodes may not only interact in a pairwise

manner, but may have higher order interactions with an arbitrary number

of nodes (247). However, previous investigations into mixed p-spin models

have considered nodes to be described by Ising spins which take value either

-1 or 1, whereas in our case we consider nodes to be described by Boolean

variables, which take value 0 or 1. We find that networks with arbitrarily

symmetric pairwise or multi-node interactions support, at low temperature,

a multiplicity of (cyclic) attractors, as soon as a degree of bidirectionality is

introduced in the links. Interestingly, multi-node interactions increase the

diversity of attractors.

The remainder of this chapter is split into several sections. In the following

section we define our model of GRNs, and include two different models of

the dynamics of gene expression with pairwise and multi-node interactions,

leading to linear and nonlinear dynamics, respectively. We show that both

models are described by a bipartite Boolean system, and provide a general
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model from which the linear or nonlinear model can be recovered by suit-

able choice of parameters. In Sec. 4.3 we describe how the dynamical cavity

method may be extended to bipartite spin systems, and present a closed set of

equations which may be solved numerically within a one time approximation

(OTA) scheme, originally developed for monopartite systems (87, 96, 97, 248).

In Sec. 4.4 we solve for the dynamics of the linear model of gene expression

with self-interactions. Additionally, we analyse this model in equilibrium and

show that is in agreement with the dynamical cavity in the steady-state. In

Sec. 4.5 we study the nonlinear model of gene expression. We provide an

assessment of the OTA scheme in the presence of nonlinear dynamics and

then go on to demonstrate the existence of multiple attractors caused by bidi-

rectional links and the impact of multi-node interactions on their diversity.

In Sec. 4.6 we demonstrate how the dynamical cavity method may derive an

efficient set of equations to solve for the dynamics of systems in the thermo-

dynamic limit. We end with a discussion of our results, and posit further

ideas for the study of multiple attractors in GRNs from a statistical mechanics

perspective. Technical details are contained in the appendices at the end of

the chapter.

4.2 Model definitions

We consider a bipartite model of GRNs, recently introduced in (244), which

comprises N genes and M = αN TFs, with directed interactions described

by two matrices, η and ξ, giving unweighted links from genes to TFs and

weighted links from TFs to genes, respectively. Entry η
µ
i ∈ {0, 1} denotes
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Figure 4.1: A sketch of the bipartite gene-TF network. Circles indicate genes, and
squares indicate TFs.

whether (1) or not (0) gene i contributes to the synthesis of TF µ, whereas

entry ξ
µ
i ∈ R describes the regulatory effect of TF µ on gene i, which can be

excitatory (ξµ
i > 0), inhibitory (ξµ

i < 0) or null (ξµ
i = 0). We will denote with

∂i = {µ : ξ
µ
i ̸= 0} and ∂µ = {i : η

µ
i = 1} the in-neighbourhoods of gene

i and TF µ, respectively, and with di = |∂i| and cµ = |∂µ| their in-degrees,

respectively, as sketched in Figure 4.1. Interactions are assumed sparse, as in

real GRNs, i.e. the average values of the local degrees ⟨d⟩ = N−1 ∑i di, ⟨c⟩ =

(αN)−1 ∑µ cµ are O(N0). The parameters ⟨c⟩ and ⟨d⟩ are free parameters of

our model, that control the fraction of genes that regulate TFs and vice versa.

Earlier analysis of this model (98, 244, 245) regarded ξ and η as quenched

random variables, drawn independently from given probability distributions

P(ξ) and P(η), respectively. For this choice, the probability to observe a bidi-

rectional link ξ
µ
i η

µ
i ̸= 0 is O(N−1), due to the sparsity of the links, and thus

vanishes in the thermodynamic limit N → ∞. This assumption is however

not justified by biological observations, suggesting that TFs which regulate

genes contributing to their own synthesis are commonplace. In this work, we

will regard ξ and η as drawn from a joint probability distribution P(ξ, η) =
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P(ξ|η)P(η), such that there is a finite probability P(ξµ
i ̸= 0|ηµ

i = 1) = p to

observe a bidirectional link between a TF µ and a gene i. Note, that we could

easily have chosen P(ξ, η) = P(η|ξ)P(ξ) and defined P(ηµ
i = 1|ξµ

i ̸= 0) = p.

Which choice we make is arbitrary, as we can define the distributions to draw

networks with the same degree statistics of genes and TFs, regardless of the

choice made. By either specifying P(η|ξ) or P(ξ|η), we introduce a correlation

in the links that allows us to explicitly control the number of bidirectional

links and assess their impact on the attractors of Boolean networks.

Following earlier studies (98, 244, 245), we model the state of each gene, la-

belled by i = 1, . . . , N, with a Boolean variable si ∈ {0, 1}, indicating whether

gene i is expressed (1) or not (0). Each TF, labelled by µ = N + 1, . . . , N + M,

is associated with a variable τµ ∈ [0, 1], which describes its concentration.

Genes update their state at regular time intervals of duration ∆ according to

a linear threshold model,

si(t + ∆) = θ

(
∑
µ

ξ
µ
i τµ(t) + ϑi − zi(t)

)
, (4.1)

where θ(x) is the Heaviside step function, defined such that θ(x) = 1 for

x > 0 and θ(x) = 0 for x < 0, ϑi can be thought of as a local external

field or threshold and the zi(t)’s are independent identically distributed zero-

averaged random variables mimicking biological noise. We denote their cu-

mulative distribution function (c.d.f.) with Prob[zi(t) < x] = ϕβ(x), for all i, t,

where β−1 = T is a parameter that characterises the noise strength. We shall

assume, throughout the paper, a “thermal” (or Glauber) noise distribution
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with

ϕβ(x) =
1
2
[1 + tanh

βx
2
]. (4.2)

Two types of dynamics for the synthesis of TFs were considered in (98,

244, 245), following different logic operations, respectively

• ‘OR’ logic

τµ(t) =
1
cµ

∑
j

η
µ
j sj(t) (4.3)

where at least one gene in the in-neighbourhood of µ must be expressed

for the synthesis of that TF to occur,

• ‘AND’ logic

τµ(t) = ∏
j∈∂µ

sj(t) (4.4)

where all genes in the in-neighbourhood of µ must be expressed for TF

µ to be synthesised (in this case τµ takes values in {0, 1} rather than

[0, 1]).

If we choose that TFs evolve according to an ‘OR’ logic, upon eliminating the

TFs from the description, we obtain a system of genes with their evolution

given by a linear threshold model

si(t + ∆) = θ

(
∑

j
Jijsj(t) + ϑi − zi(t)

)
(4.5)

with effective two-body interactions Jij = ∑µ

ξ
µ
i η

µ
j

cµ
. Conversely, if TFs per-

form an ‘AND’ logic, the evolution of genes is given by nonlinear threshold
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dynamics

si(t + ∆) = θ

∑
µ

ξ
µ
i ∏

j∈∂µ

sj(t) + ϑi − zi(t)

 , (4.6)

with multi-body interactions between genes. For later convenience, it is use-

ful to note that the ‘AND’ logic (4.4) can be expressed in terms of a linear

threshold function with suitably chosen threshold

τµ(t) = θ

(
∑

j
η

µ
j sj(t)− cµ + ϵ

)
(4.7)

where 0 < ϵ ≪ 1 ensures that the argument of the step function is greater

than zero when all of the cµ genes contributing to TF µ are expressed and

negative otherwise. Thus, an equivalent description of (4.6) is given by the

system of equations (4.1) and (4.7). Out of mathematical convenience we will

define a closely related model, where TFs are not updated instantaneously,

but on the same timescale as the genes

si(t + ∆̃) = θ

(
∑
µ

ξ
µ
i τµ(t) + ϑi − zi(t)

)

τµ(t + ∆̃) = θ

(
∑

j
η

µ
j sj(t)− cµ + ϵ

)
. (4.8)

Upon choosing ∆̃ = ∆/2 and initial condition τµ(0) = θ
(

∑j η
µ
j sj(0)− cµ + ϵ

)
∀µ,

the trajectory si(t) resulting from (4.8) at times t = n∆/2, with n ∈ N, is

identical to the trajectory of (4.6) at times t = n∆. On the other hand, the

trajectories of (4.8) and (4.6) at t = n∆ represent two independent thermal
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histories of the same system, as noise is drawn at each time step from the

same distribution. Hence, the two systems defined in (4.8) and (4.6) are fully

equivalent at integer multiples of ∆. The advantage of using (4.8) is that it

makes the application of the dynamical cavity method straightforward (see

Sec. 4.3 ).

The dynamics of GRNs evolving according to (4.5) has previously been

studied for random interactions Jij with an arbitrary degree of symmetry, in

the absence of self-interactions, i.e. Jii = 0 (249). This corresponds, in the

context of our bipartite network, to a lack of bidirectional links i.e. ξ
µ
i η

µ
i = 0.

Similarly, the dynamics of GRNs evolving according to (4.6) has been studied

under the assumption that P(ξ, η) = P(ξ)P(η), such that the probability of

observing a bidirectional link is zero in the limit of large system size (98, 244,

245). It was shown in (244) that in the absence of bidirectional links this model

has no multiplicity of attractors, i.e. of stable gene expression profiles, even in

the absence of noise, T = 0. Thus, the fully asymmetric version of this model

does not fulfill an important requirement for a GRN to sustain multiple cell

types, as observed in multi-cellular life.

In this work we solve the dynamics (4.5) in the presence of self-interactions,

i.e. Jii ̸= 0, and the dynamics (4.8) in the presence of bidirectional links, i.e.

P(ξµ
i ̸= 0|ηµ

i = 1) = O(N0). Previous work has shown that dynamical anal-

ysis of (4.5) via generating functionals is cumbersome in the presence of self-

interactions due to the strong memory effects that they produce (250), which

make the complexity of the analysis exponential in the time horizon consid-

ered. We show that, while the dynamical cavity method faces a similar time-

complexity barrier, when applied to the system (4.5) with self-interactions,
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it is possible, by a suitable mapping of (4.5) to a bipartite system η̂, ξ̂ with

bidirectional links, to apply the dynamical cavity method and solve the equa-

tions explicitly under the so-called one-time approximation (OTA) scheme,

that is effective in reducing the time-complexity of systems with bidirectional

links (87, 96, 97, 248). This allows us to solve the dynamics of systems with

self-interactions both at short and long times, accessing in particular the non-

equilibrium steady-state. To best of our knowledge, this is the first work to

do so. We will define in Sec. 4.4 the bipartite model η̂, ξ̂ that achieves the

suitable mapping, here we limit to stress that this is different from the links

ξ, η, appearing in (4.1) and (4.3), respectively, from which the interactions {Jij}

were derived. Similarly, by mapping the nonlinear threshold model (4.6) to

the bipartite model with two-body interactions (4.8), we are able to solve the

dynamical cavity equations in the presence of bidirectional links, under the

OTA scheme, thus relaxing the assumption of fully asymmetric links used in

previous work (98, 244, 245). We will show that, upon introducing bidirec-

tionality in the links, the nonlinear threshold model (4.6) is able to support a

multiplicity of attractors at low noise level.

4.3 Dynamical cavity method for bipartite systems

with parallel dynamics

As explained above, both the linear threshold model with self-interactions

(4.5) and the nonlinear model with multi-node interactions (4.6) can be mapped

to an equivalent bipartite system. In this section we solve the dynamics of a
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general bipartite system, from which either the linear or nonlinear model can

be recovered by suitable choice of parameters. In this generalised model, two

sets of Boolean variables, that we shall refer to as genes and TFs, update their

state at regular time intervals of duration ∆̃ according to the following linear

threshold functions

si(t + ∆̃) = θ

(
∑
µ

ξ
µ
i τµ(t) + ϑi − zi(t)

)
i = 1, . . . , N (4.9)

τµ(t + ∆̃) = θ

(
∑

j
η

µ
j sj(t) + ϑµ − ẑµ(t)

)
µ = N + 1, . . . , N + M. (4.10)

Here, ϑi and ϑµ are the thresholds of gene i and TF µ, respectively, and zi(t)

and ẑµ(t) are random i.i.d random variables with c.d.f. ϕβ(x) and ϕβ̂(x),

respectively. It is clear that (4.10) reduces to (4.8) for ϑµ = −cµ + ϵ and

T̂ = β̂−1 = 0, hence for this choice of parameters, the generalised model

defined by (4.9) and (4.10) recovers model (4.6) with ∆ = 2∆̃ (thanks to its

equivalence with (4.8), pointed out earlier). In Sec. 4.4 we will show that the

system defined in (4.9) and (4.10) can also recover (4.5) for suitable choices of

the links {ξµ
i } and {ηµ

j }. For the remainder of this chapter, we shall set ∆̃ = 1.

In order to solve the dynamics of the generalised model (4.9) and (4.10)

we use the dynamical cavity method previously used to study systems with

sparse interactions. Earlier studies have successfully applied dynamical cav-

ity to the study of monopartite systems of Ising (87, 96, 97, 248) and Boolean

(98) variables with bidirectional links, and bipartite systems of binary vari-

ables with unidirectional interactions (98). Here we apply the method to the

study of bipartite systems with (partially) bidirectional links, where each set
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of variables is subject to different noise (the method would equally work for

two sets of variables evolving via different dynamical rules).

We define the vectors s(t) = (s1(t), . . . , sN(t)) and τ(t) = (τN+1(t), . . . , τN+M(t)),

which denote the state of the genes and TFs at time t, respectively. The

state of the network at some time t is therefore described by the vectors

(s(t), τ(t)) and a trajectory of the system from time t = 0, . . . , tm is writ-

ten (s(0), τ(0)) → (s(1), τ(1)) → · · · → (s(tm), τ(tm)), which for brevity we

denote (s0...tm , τ0...tm). We wish to write an expression for the probability to

observe a trajectory, (s0...tm , τ0...tm), for the system defined in (4.9) and (4.10).

To do so, we first consider the probability to observe a gene i in state si at time

t + 1. From equation (4.9) we see that it will depend on the state of the TFs at

time t. According to this equation, the gene will activate if the random noise

zi(t) < ∑µ ξ
µ
i τµ(t) + ϑi and will be inactive if zi(t) < −(∑µ ξ

µ
i τµ(t) + ϑi). The

probability that z ≤ ±x is given by the c.d.f of z, and hence, the probability

to observe a gene i in state si at time t + 1, given the state of the TFs at time t,

is given by,

P(si(t + 1)|τ(t)) = ϕβ

(
(2si − 1)∑

µ

ξ
µ
i τµ(t) + ϑi

)
. (4.11)

Since we are assuming the random noise follows a thermal noise distribution

ϕβ (x) = 1
2

[
1 + tanh β

2 x
]

we may use the relation 1
2

[
1 + tanh β

2 x
]
= e

β
2 x

2 cosh β
2 x

to define the probability to observe a gene i in state si at time t + 1 given the
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local field hi(τ
t) = ∑µ ξ

µ
i τt

µ + ϑi that acts upon it,

W(st+1
i |hi(τ

t)) =
e

β
2 (2st+1

i −1)hi(τ
t)

2 cosh β
2 hi(τt)

, (4.12)

where we have adopted the shorthand notation si(t) = st
i and τµ(t) = τt

µ. We

notice that the local field hi(τ
t) depends only on the TFs in the neighbourhood

of i, τ∂i = {τµ : ξ
µ
i ̸= 0}, and hence we shall write hi(τ

t) = hi(τ
t
∂i
). By the

same reasoning, we can deduce from equation (4.10) the probability to observe

a TF µ in state τµ at time t + 1 given the local field hµ(st
∂µ
) = ∑j η

µ
j st

j + ϑµ that

acts upon it, is given by,

W̃
(

τt+1
µ |hµ(st

∂µ
)
)
=

e
β
2 (2τt+1

µ −1)hµ(st
∂µ
)

2 cosh β
2 hµ(st)

, (4.13)

where s∂µ
= {sj : η

µ
j = 1} are the genes that neighbour TF µ.

According to equations (4.9) and (4.10) in a single discrete time step, all

genes and TFs are updated simultaneously. Indeed, given the state of the

network at the previous time point, genes and TFs are updated independently

of one another, such that we may write the probability for the network to

evolve from (st, τt) to (st+1, τt+1) as,

W
(

st+1, τt+1|st, τt
)
=

N

∏
i=1

N+M

∏
µ=N+1

W(st+1
i |hi(τ

t
∂i
))W̃(τt+1

µ |hµ(st
∂µ
)) (4.14)

where it then follows that the probability to observe a trajectory of the system

182



4.3 Dynamical cavity method for bipartite systems with parallel dynamics

is given by,

P(s0...tm , τ0...tm) = P(s0, τ0)
tm

∏
t=1

W(st, τt|st−1, τt−1). (4.15)

As we detail in 4.A,by marginalising equation (4.15) over s0...tm \ s0...tm
i and

τ0...tm , the dynamical cavity method allows us to derive an expression for the

probability to observe the trajectory s0...tm
i for the single gene i, in the cavity

graph where TF ν has been removed, subject to a time dependent external

field with trajectory ζ
(ν),1...tm
i = ξν

i τ0...tm−1
ν ,

P(ν)
i (s0...tm

i |ζ(ν),1...tm
i ) = P(s0

i ) ∑
τ0...tm−1

∂i\ν

[
tm

∏
t=1

W(st
i |hi(τ

t−1
∂i

))

]

× ∏
µ∈∂i\ν

P(i)
µ (τ0...tm−1

µ |ζ(i),1...tm−1
µ )

(4.16)

and similarly for the trajectory of a single TF µ in the cavity graph where gene

ℓ has been removed, subject to a time dependent external field ζ
(ℓ),1...tm
µ =

η
µ
ℓ s0...tm−1

ℓ ,

P(ℓ)
µ (τ0...tm

µ |ζ(ℓ),1...tm
µ ) = P(τ0

µ) ∑
s0...tm−1

∂µ\ℓ

[
tm

∏
t=1

W̃(τt
µ|hµ(st−1

∂µ
))

]

× ∏
j∈∂µ\ℓ

P(µ)
j (s0...tm−1

j |ζ(µ),1...tm−1
j ).

(4.17)

These expressions are exact when the bipartite network is a tree, and are ex-

pected to be a good approximation for sparse (bipartite) networks, where in

the limit N → ∞ the length of loops grows as log N. In principle, they may
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be solved recursively for the probability of a trajectory up to a given time tm.

However, in expression (4.16) this requires a sum over |τ0,...,tm−1
∂i\ν

| = (2di−1)tm

variables, which grows exponentially with time, and similarly, expression

(4.17) requires a sum over |s0,...,tm−1
∂µ\ℓ | = (2cµ−1)tm variables. In practice, this

means that these equations can only be solved for very short times, making

them unsuitable for the study of long time dynamics and stationary states.

The exception is for systems with unidirectional interactions, where these

equations drastically simplify (see 4.A for details), as reported in the litera-

ture for monopartite systems (96).

When bidirectional interactions are present, an approximation scheme,

known as the One Time Approximation (OTA), has been proposed to reduce

the computational complexity of the dynamical cavity method (87, 96, 97, 98,

248). This approximation neglects correlations in time, such that the state of

a node in the network will depend upon the state of its neighbours at the

previous time step only. This is of course not generally true, one can imagine

a short cycle of nodes of length l in which case the state of each node in the

cycle will depend upon its own state l time steps ago. This approximation is,

however, necessary in order to deal with the computational complexity of the

dynamical cavity equations, which increases exponentially in time. To neglect

correlations in time, we assume

P(ℓ)
µ (τ0...tm

µ |ζ(ℓ),1...,tm
µ ) = Pµ(τ

0
µ)

tm

∏
t=1

P(ℓ)
µ (τt

µ|ζ
(ℓ),t
µ ) (4.18)
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and

P(ν)
i (s0...tm

i |ζ(ν),1...tm
i ) = Pi(s0

i )
tm

∏
t=1

P(ν)
i (st

i |ζ
(ν),t
i ). (4.19)

As we detail in 4.A, equations (4.19) and (4.18) can be used in conjunction

with (4.16) and (4.17) to derive an equation for the probability to observe a

gene i in a given state stm
i , at time tm, in the cavity graph where TF ν has been

removed, given the external field induced by its state at the earlier time step

ζ
(ν),tm
i = ξν

i τtm−1
ν ,

P(ν)
i (stm

i |ζ
(ν),tm
i ) = ∑

stm−2
i

∑
τtm−1

∂i\ν

W(stm
i |h

(ν)
i (τtm−1

∂i
) + ζ

(ν),tm
i )

×

 ∏
µ∈∂i\ν

P(i)
µ (τtm−1

µ |ζ(i),tm−1
µ )

Pi(s
tm−2
i ).

(4.20)

This depends on the probability to observe the TF µ in a given state τtm−1
µ ,

at time tm − 1, in the cavity graph where gene i has been removed, given the

state of i at the earlier time step ζ
(i),tm−1
µ = η

µ
i stm−2

i ,

P(ℓ)
µ (τtm

µ |ζ
(ℓ),tm
µ ) = ∑

τtm−2
µ

∑
stm−1

∂µ\ℓ

W̃(τtm
µ |h

(ℓ)
µ (stm−1

∂µ
) + ζ

(ℓ),tm
µ )

×

 ∏
j∈∂µ\ℓ

P(µ)
j (stm−1

j |ζ(µ),tm−1
j )

Pµ(τ
tm−2
µ ).

(4.21)

As we detail in 4.A, and as observed earlier in the literature (see (96, 98, 248)),
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the assumption of time factorisation is not enough to find a closed set of

equations and one must make additional assumptions. In writing equations

(4.20) and (4.21) we assume that the cavity distributions, with external field

from the removed site, may be approximated by their non-cavity counterparts

i.e

P(ν)
i (stm−2

i |ζ(ν),tm−2
i ) ≈ Pi(s

tm−2
i ) (4.22)

and

P(ℓ)
µ (τtm−2

µ |ζ(ℓ),tm−2
µ ) ≈ Pµ(τ

tm−2
µ ), (4.23)

following the approach of (248). This has recently been shown to accurately

predict single-site marginals in non-equilibrium steady-states (98). Equations

(4.20) and (4.21) then depend upon the marginal probability to observe gene

i at time tm, Pi(s
tm
i ), and TF µ at time tm, Pµ(τ

tm
µ ), which evolve according to,

Pi(s
tm
i ) = ∑

stm−2
i

Pi(s
tm−2
i ) ∑

τtm−1
∂i

W(stm
i |hi(τ

tm−1
∂i

))

×
[

∏
µ∈∂i

P(i)
µ (τtm−1

µ |ζ(i),tm−1
µ )

]
(4.24)
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and

Pµ(τ
tm
µ ) = ∑

τtm−2
µ

Pµ(τ
tm−2
µ ) ∑

stm−1
∂µ

W̃(τtm
µ |hµ(stm−1

∂µ
))

×

∏
j∈∂µ

P(µ)
j (stm−1

j |ζ(µ),tm−1
j )

 . (4.25)

For a given bipartite network (η, ξ) and initial condition Pi(s0
i ) ∀i and Pµ(τ0

µ) ∀ µ,

one can solve these equations by simple iteration. By neglecting long-time

correlations, the dynamical cavity equations under the OTA scheme, (4.20),

(4.21), (4.24), and (4.25), no longer contain a sum over a set of variables the

size of which is exponential in the number of time steps tm. Hence, these

equations provide an efficient numerical scheme to solve for the transient and

long-time dynamics of bipartite systems for networks with arbitrary bidirec-

tionality. Furthermore, to compute the same quantities using Monte Carlo

(MC) simulations requires simulating many trajectories and to then compute

the statistics of the state of each node at each point in time. Equations (4.20),

(4.21), (4.24), and (4.25) are an alternative to computing the probability of the

state of each node without the need for simulating many trajectories.
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4.4 Linear threshold model with self-interactions

4.4.1 Equilibrium analysis of monopartite systems with self-

interactions

In this section we analyse the equilibrium behaviour of the linear threshold

model with symmetric interactions Jij = Jji, evolving via parallel dynamics

(4.5) in the presence of self-interactions Jii. It is well-known that for sym-

metric interactions Jij = Jji, linear threshold models evolving via parallel dy-

namics converge, both in the presence and the absence of self-interactions,

to an equilibrium state described by a probability distribution known as the

Peretto distribution, peq(s) = Z−1e−βHβ(s) where Z = ∑s e−βHβ(s) is the par-

tition function of the system. This distribution has the functional form of

the Gibbs-Boltzmann distribution, but with an exponent characterised by a

function, Hβ(s), which is dependent on the noise level T = β−1 (251). If we

ignored the dependence on β, Hβ(s) would be the Hamiltonian of our sys-

tem. However, for systems with symmetric interactions the noise level T is

notionally the temperature of the system, and therefore Hβ(s) is temperature

dependent and can not be interpreted as the Hamiltonian of our system. It is for

this reason referred to as a pseudo-Hamiltonian. Writing the Peretto distribu-

tion in the same functional form as the Gibbs-Boltzmann distribution allows

us to apply techniques used to study systems obeying the Gibbs-Boltzmann

distribution to systems obeying the Peretto distribution. Equilibrium analysis

of such systems has been carried out for Ising variables via transfer matrices

(252, 253) and the replica method (254, 255). An equilibrium analysis of sparse
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Boolean networks, however, is absent from the literature. Here we fill this gap

by using the cavity method, originally formulated for the Gibbs-Boltzmann

distribution, reached by systems evolving via sequential dynamics in the ab-

sence of self-interactions. We use this method to study the equilibrium of the

linear threshold model (4.5) with symmetric interactions, evolving by paral-

lel dynamics, in the presence of self-interactions. As we show in 4.B this is

described by the Peretto distribution with the pseudo-Hamiltonian,

Hβ(s) = −
1
β ∑

i
ln 2 cosh

β

2
hi(s∂i , si)−

1
2 ∑

i
hi(s∂i , si)−∑

i
ϑisi (4.26)

where hi(s∂i , si) = ∑j∈∂i
Jijsj + Jiisi + ϑi. In 4.B we show that one can use the

relation 2 cosh(x) = ∑τ∈{0,1} e(2τ−1)x to simplify the first term in Hβ(s), as it

was similarly used in (254, 255) for models of Ising spins. We introduce a set

of variables τi ∈ {0, 1}∀i = 1 . . . N, one for each contribution to the sum in the

first term in Hβ(s). By doing so, we can write the equilibrium distribution in

the following form,

peq(s) = ∑
τ

p(s, τ) (4.27)

p(s, τ) =
1
Z

e−βH(s,τ) (4.28)

with H(s, τ) = −∑ℓ,j sℓ Jℓjτj − ∑ℓ sℓ Jℓℓτℓ − ∑ℓ ϑℓ(sℓ + τℓ) and where we have

redefined Z = ∑s,τ e−βH(s,τ). The equilibrium distribution has been shown to

be equivalent to the marginal of the joint distribution p(s, τ) which takes the

form of an equilibrium distribution for a network with 2N nodes si, τi ∀ i =

1, . . . , N, and hence the τ = (τ1, . . . , τN) can be thought of as fictitious vari-
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ables; they have no physical meaning, but they allow us to write an equilib-

rium distribution, p(s, τ), from which we can use the cavity method to find

equations for the single site marginals,

pi(si, τi) =
1
Zi

eβ(si Jiiτi+ϑi(si+τi)) ∏
j∈∂i

∑
sj

∑
τj

eβ(si Jijτj+τi Jijsj)p(i)j (sj, τj) (4.29)

p(ℓ)i (si, τi) =
1

Z(ℓ)
i

eβ(si Jiiτi+ϑi(si+τi)) ∏
j∈∂i\ℓ

∑
sj

∑
τj

eβ(si Jijτj+τi Jijsj)p(i)j (sj, τj) (4.30)

which can be solved by simple iteration (see 4.B for details). These equations

are exact when the interaction matrix is a tree, and give a good approximation

for sparse graphs where the length of loops grows logarithmically with the

system size. From the solution of these equations we can compute the average

activation probability of a site ⟨si⟩ = ∑si,τi
si pi(si, τi).

To assess the accuracy of the cavity equations, we compare their solution

with MC simulations (the computational details of which are described in

4.C). To do so, we consider a system with interactions drawn according to the

following probability distributions

P(Jij) =
(

1− c
N

)
δJij,0 +

c
N

[1 + κ

2
δJij,1 +

1− κ

2
δJij,−1

]
∀i ̸= j (4.31)

P(Jii) = (1− p) δJii,0 + p
[1 + b

2
δJii,1 +

1− b
2

δJii,−1

]
∀i (4.32)

such that c and p control the density of links, and κ, b ∈ [−1, 1] control the sign

of the interactions. By choosing interactions Jij to be drawn from (4.31) and

(4.32) we can ensure that the network we consider is sparse, where the average

degree of a node is finite O(N0). It is in this regime that the network is locally
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tree-like and hence the cavity equations are expected to be accurate. We can

show that the network is sparse if we consider that the average in-degree of

node i, di, is given by di =
〈

∑N
j=1 |Jij|

〉
Ji1,...JiN

+ ⟨|Jii|⟩Jii
, where angled brackets

denote an average ⟨. . . ⟩X = ∑X . . . P(X). We can then show that,

di =

〈
N

∑
j=1
|Jij|
〉

Ji1,...JiN

+ ⟨|Jii|⟩Jii
(4.33)

= ∑
Ji1∈{0,±1}

· · · ∑
JiN∈{0,±1}

P(Ji1, . . . , JiN)
N

∑
j=1
|Jij|+ ∑

Jii∈{0,±1}
|Jii|P(Jii) (4.34)

= ∑
Ji1∈{0,±1}

|Ji1|P(Ji1) + · · ·+ ∑
JiN∈{0,±1}

|JiN|P(JiN) + p (4.35)

=
N

∑
j=1

c
N

+ p (4.36)

= c + p (4.37)

where we reveal that the average in-degree of a node i is di = c + p, such that

if we choose c = O(N0) the average in-degree of a node will be finite, since

p ∈ [0, 1] is also finite. Hence, by choosing interactions drawn from (4.31)

and (4.32) we can ensure that our network is sparse, in which case the cavity

method is applicable.

Predictions from the cavity method are compared with results from MC

simulations via

⟨si⟩MC =
1
tl

tl+teq

∑
t=teq

st
i (4.38)

where teq is a large time where the system has reached equilibrium and tl is a

long time that we average the state of the site i over.
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In the left panel of Figure 4.2, we show results for the average activation

probability a = N−1 ∑i⟨si⟩, as a function of the noise level, whereas in the

right panel of Figure 4.2, we show a scatter plot of the equilibrium activation

probabilities of individual sites, at a given noise level, as predicted by the cav-

ity method and computed from MC simulations, finding excellent agreement.

Additionally, the left panel of Figure 4.2 shows that the average activation is

higher if there is a bias towards positive self-interactions b > 0, and lower if

there is a bias towards negative self-interactions b < 0.

It is well known that finitely connected systems of Ising spins undergo a

phase transition at low noise and enter a spin glass phase. The properties of

such phases are exotic, in particular due to the breaking of ergodicity: whereas

one would typically expect a system to move through all the configurations

of the system with the same free energy randomly and with equal probability,

this is not the case in the spin glass phase. Crucially, for our purposes, it is

important to note that the cavity equations are not exact for systems in the

spin glass phase and we would expect their solution to become inaccurate

(256). However, results in the left panel of Fig. 4.2 show that in the sys-

tem of sparsely connected Boolean variables under study, the cavity equations

converge to the correct solution down to low levels of noise. Since a system

of Boolean variables can be mapped to an equivalent Ising spin system by

adding a quenched random external field ϑi → ϑi + ∑j Jij and the presence of

an external field is known to change the noise level at which a finitely con-

nected system will enter a spin glass phase (257, 258, 259, 260, 261), this may

explain the relatively low noise level at which the cavity equations success-

fully converge . We may expect, however, that by further lowering the temper-
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a) b)
Figure 4.2: (a) Average activation probability of genes a = 1

N ∑i⟨si⟩ against in-
verse noise level β. Symbols indicate the site activation probability from MC
simulations computed via (4.38) averaged over all sites whereas the dotted line
indicates the solution from cavity equations (4.29)-(4.30). (b) Scatter plot of site
activation probabilities ⟨si⟩ computed from static cavity method and MC sim-
ulations at noise level β = 2. Activation probability from MC simulations is
computed by (4.38) with tl = 1000 in (a) and tl = 5000 in (b). In (a) and (b),
genes evolve according to the linear threshold model defined in (4.5) with in-
teractions drawn according to equations (4.31)-(4.32). Interaction networks were
drawn with size N = 5000, average connectivity c = 2, density of self-interactions
p = 0.5 and biases κ = 0. The external field is ϑi = 0 ∀ i. In (a) we show re-
sults for different biases in the self-interactions b = 0, 0.5,−0.5 and in (b) b = 0.
Annotation in (b) indicates the root mean square error.a)b)

ature our system may undergo ergodicity breaking, as our (non-equilibrium)

analysis at zero temperature will reveal for the case of partially symmetric

interactions (see Sec. 4.5).

In Figure 4.3 we compute the site activation probabilities for each node in

a network, by solving the cavity equations (4.29)-(4.30), and then plot the dis-

tribution P(⟨si⟩), a histogram of the site activation probabilities, at different

temperatures, for unbiased interactions i.e. κ = 0. In the absence of self-

interactions (left panels), a bias in the fraction of sites that are activated in

the steady state, emerges at low temperature. This is consistent with results

obtained in (98) via dynamical cavity approaches (iterated until convergence),

193



4. DYNAMICS OF GENE REGULATORY NETWORKS WITH
SELF-REGULATION

in the absence of self-interactions. Right panels of Figure 4.3 show the dis-

tribution P(⟨si⟩), in the presence of self-interactions, where direct application

of the dynamical cavity method would be cumbersome (see 4.D). By choos-

ing that all self-interactions, where present, are negative, we see that the bias

in the fraction of sites which are active at low temperature is modified. For

example, at relatively high temperature, we see that, in addition to the ex-

pected peak at ai = 1/2 (corresponding to fluctuating variables with zero

field), there is an extra peak in the presence of self-interactions, due to sites

associated with the single peak having their activation probability reduced by

their self-interaction.

4.4.2 Dynamics of monopartite spin systems with self-interactions

Previously, the dynamics of the linear threshold model (4.5) have been studied

using the dynamical cavity method in the absence of self-interactions (98). As

we mentioned earlier, for networks with bidirectional links, the computational

complexity of the cavity equations is exponential in time, due to memory

effects, and the one time approximation (OTA) scheme has been proposed

to reduce the computational complexity, so that the cavity equations can be

solved at long and short times (87, 96, 97, 248). However, in 4.D we show that

for systems with self-interactions the OTA scheme fails to provide a closed

set of equations, and one is left with the computational complexity being

exponential in time, which would prevent solving the equations at long times.

To overcome this difficulty, we map our system to an equivalent bipartite

system, which can be solved using the bipartite cavity equations under the
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a) b)

c) d)
Figure 4.3: Probability density function for the activation probability of genes
P(⟨si⟩) computed from the equilibrium cavity equations (4.29)-(4.30). Genes
evolve according to the linear threshold model (4.5) with interactions drawn ac-
cording to (4.31) and (4.32). Results in each panel are for the same network of size
N = 5000, with connectivity c = 3, unbiased interactions κ = 0 and external field
ϑi = 0 ∀ i. In (b) and (d), self-interactions are chosen with parameters p = 0.5
and b = −1 such that all self-interactions Jii = −1. In (a) and (c), Jii = 0 ∀i. In (a)
and (b) inverse noise is set to β = 5, in (c) and (d) β = 1.

OTA scheme detailed in section 4.3.

To map our system of N variables with interactions Jij to the model de-

fined in (4.5), we create an additional set of N nodes, such that the system is

now of size 2N. This means that each site in the original system is given a

partner site in the new set of variables, as shown in Figure 4.4. On the left

side of this image we show a small network with three nodes, and on the

right the equivalent network that is the result of our mapping. The original

nodes are shown as circles, and new partner sites are shown as squares. All
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Figure 4.4: Sketch of how we map a monopartite system with self-interactions
(left) to an equivalent bipartite spin system (right). Nodes in the original
monopartite system are represented by circles, and new nodes in the bipartite
system are represented by squares. In this mapping we have that the interaction
site i has on site j is given by Jji = ξ i+N

j , and we have η
µ
i = δµ,i+N .

original nodes have a directed link from themselves to their partner nodes.

Self-interactions, Jii in Figure 4.4, appear as bidirectional links between the

node and its partner site. The interaction from one node to another in the

original network is now represented by a path of length 2 in the new network

i.e Jij is represented in the new network by a link from node i to its partner

site, and then a directed link from the partner site to node j. Formally, to

achieve this we set η
µ
i = δµ,i+N in the bipartite model and Jij = ξ

j+N
i . If we

now set T̂ = 0 and ϑµ = −ϵ we have that (4.10) becomes,

τµ(t + ∆̃) = θ
(
sµ−N(t)− ϵ

)
= sµ−N(t) (4.39)

which when inserted into (4.9) we find,

si(t + ∆̃) = θ

(
2N

∑
µ=N

ξ
µ
i sµ−N(t− ∆̃) + ϑi − zi(t)

)
. (4.40)
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Hence,

si(t + ∆) = θ

(
N

∑
j=1

Jijsj(t) + ϑi − zi(t + ∆/2)

)
(4.41)

with ∆ = 2∆̃. We now see that equation (4.41) is of the same form as the

linear threshold model with self-interactions (4.5). If we impose the initial

conditions τi+N(0) = si(0) ∀ i, and assume that zi(t) are drawn from the same

distribution (4.2) at each time, these two models are equivalent, up to some

random noise, at every 2∆ time points. With this mapping the procedure is

now as follows

1. Draw interaction matrix Jij

2. Construct bipartite system with ξ
j+N
i = Jij and η

µ
i = δµ,i+N

3. Solve the bipartite dynamical cavity equations up to some time tm, with

∆̃ = 1

4. Compare with MC simulations of the monopartite system (4.5) at t =

0, 2, 4, . . . , tm.

Assuming interactions are drawn according to equations (4.31) and (4.32), we

follow this procedure and compute the activation probability of each site ob-

tained via dynamical cavity applied to the bipartite system and via MC sim-

ulations of the equivalent monopartite system. Figure 4.5 (left panel) shows

results for the transient behaviour where the dynamical cavity method accu-

rately predicts the activation probability of each site. The right panel of Figure

4.5 shows the full time dependence of the average activation probability and
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a) b)
Figure 4.5: (a) Scatter plot of gene activation probabilities ⟨si(t)⟩ computed via
dynamical cavity and from MC simulations (average over 200 runs with differ-
ent initial conditions drawn from the same distribution). (b) Average activation
probabilities of genes, a, against time. Circles indicate MC simulations, triangles
indicate the solution of the bipartite dynamical cavity equations (4.24) and (4.25)
and are connected by red dashed lines for visual aid. Dashed horizontal line
indicates the solution for average activation found from the cavity equations at
equilibrium (4.29)-(4.30). Inset of (b) shows scatter plot of activation probability
of each spin computed from equilibrium cavity and dynamical cavity method
in the steady state. Annotation indicates the root mean square error. In (a)
and (b), genes evolve according to the linear threshold model (4.5) with inter-
actions drawn according to (4.31) and (4.32). Interaction networks are of size
N = 2500 with connectivity c = 2, density of self-interactions p = 0.25, bias
κ = b = 0, external field ϑi = 0 ∀ i, noise level β = 1.5, and initial conditions
P(s0

i ) = P(τ0
µ) = 0.75.

agreement is excellent both during transient and in the steady state. Addi-

tionally, the inset of the right panel shows that the stationary state reached by

the bipartite dynamical cavity method is in excellent agreement with the equi-

librium state predicted by the static cavity equations. Therefore, by mapping

a monopartite system with self-interactions to an equivalent bipartite system,

we can now study their transient and long-time dynamics.
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4.5 Nonlinear model with correlated, multi-node

interactions

4.5.1 Dynamical analysis of systems with multi-node interac-

tions

Previously, the dynamics of the nonlinear model (4.6) has been studied under

the assumption that interactions are uncorrelated, P(ξ, η) = P(ξ)P(η), and in

the absence of noise in TF synthesis, T̂ = 0 (98, 244). Here we solve the dy-

namics of the system defined in (4.8), from which the dynamics of (4.6) can be

recovered, with arbitrary noise T̂ in TF synthesis and correlated interactions

P(ξ, η) = P(ξ|η)P(η). We will assume P(η) = ∏i,µ P(ηµ
i ) with

P(ηµ
i ) =

(
1− c

N

)
δη

µ
i ,0 +

c
N

δη
µ
i ,1 (4.42)

and P(ξ|η) = ∏i,µ P(ξµ
i |η

µ
i ), with the choice

P(ξµ
i |η

µ
i =0) =

(
1− d

N

)
δξ

µ
i ,0 +

d
N

[1 + κ

2
δξ

µ
i , 1

d
+

1− κ

2
δξ

µ
i ,− 1

d

]
(4.43)

P(ξµ
i |η

µ
i = 1) = (1− p) δξ

µ
i ,0 + p

[
1 + b

2
δξ

µ
i ,1 +

1− b
2

δξ
µ
i ,−1

]
(4.44)

such that c is the average in-degree of a TF and d + pc is the average out-

degree of a TF, d being the average number of unidirectional links stemming

from a TF and pc the average number of bidirectional links stemming from

(and pointing to) a TF. In particular, p ∈ [0, 1] controls the density of bidirec-

tional links, such that the network is unidirectional when p = 0, and when
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a) b)
Figure 4.6: Average activation of (a) genes as(t) = N−1 ∑i⟨si(t)⟩ and (b) TFs,
aτ(t) = (αN)−1 ∑µ⟨τµ(t)⟩ against time. Genes and TFs evolve according to a bi-
partite linear threshold model (4.8) with interactions defined by equations (4.42)-
(4.44). Markers indicate MC simulations on networks with size N = 2500 aver-
aged over 100 runs with initial conditions drawn from P(s0

i ) = P(τ0
µ) = 0.75 ∀ i, µ.

Dashed lines represent predictions from the dynamical cavity equations (4.24)
and (4.25). Noise level is β = β̂ = 10, network parameters are c = 1, d = 2, κ = 0,
b = 1. Results shown for different densities of self-interactions, p, as indicated in
the legend.

p = 1 any gene that contributes to the synthesis of a TF will be regulated

by that TF, in which case the number of bidirectional links in the network

is maximal and equal to αcN. We note that when p = 1 the network is not

fully bidirectional as η
µ
i = 0 does not imply ξ

µ
i = 0 and there are still αdN

unidirectional links from TFs to genes. The bias in positive and negative reg-

ulatory couplings is controlled through the parameters κ, b ∈ [−1, 1] such that

all regulatory effects are excitatory (ξ > 0) if κ, b = 1 and all are inhibitory

(ξ < 0) if κ, b = −1.

To assess the accuracy of the dynamical cavity method, we compute the

time-dependent average activation probability of genes and TFs, given by

⟨si(t)⟩ = ∑st
i
st

iPi(st
i) and ⟨τµ(t)⟩ = ∑τt

µ
τt

µPµ(τt
µ), respectively. To compute

this from MC simulations, we run many thermal realisations of a trajectory
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and take the average over these thermal realisations,

⟨si(t)⟩MC =
1
n

n

∑
ρ=1

st,ρ
i (4.45)

⟨τµ(t)⟩MC =
1
n

n

∑
ρ=1

τ
t,ρ
µ (4.46)

where n is the number of thermal realisations of the trajectory we average

over, and st,ρ
i , τ

tρ
µ denote the states of gene i and TF µ at time t in the ρth

realisation of the trajectory, respectively. In Figure 4.6 we show the average

activation probability of genes and TFs against time, and show that there is

good agreement between the dynamical cavity method and MC simulations

at all times, for different densities of bidirectional links and relatively low

temperature. Additionally, the stationary values of the activation probabilities

of individual sites are plotted in figure 4.7 for the same temperature and and

are found in good agreement with MC simulations.

It is well known that the error in the predictions from the dynamical cav-

ity method under the OTA scheme increases as the noise level is decreased.

Previous work has demonstrated this looking at the error of macroscopic

quantities in Ising spin models (87, 97) whereas for Boolean systems with

pairwise interactions, such as the linear threshold model (4.5), predictions

within a OTA scheme were found to remain accurate for microscopic quanti-

ties, even at relatively low temperatures. Here, we assess the accuracy of the

OTA scheme in predicting microscopic quantities in Boolean systems with

multi-node interactions, like the nonlinear threshold model defined in (4.6),

and we find that the accuracy of OTA decreases when the temperature is
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lowered, similarly to what was observed in Ising spin models. In the left

panel of Figure 4.8 we show the mean square error in activation probabilities,

δs(t) = N−1 ∑i (⟨si(t)⟩ − ⟨si(t)⟩MC)
2, at zero noise. For networks with an ab-

sence of bidirectional links, the OTA scheme is in perfect agreement with the

MC simulations at long times, when the system has reached steady-state. The

accuracy of the OTA scheme at zero noise, however, decreases as the density of

bidirectional links increases. There are two potential sources of error. Firstly,

the OTA scheme is based on two explicit assumptions, i.e. the Markovian

factorization of cavity trajectories, (4.18) and (4.19), and the closure assump-

tion, (4.22) and (4.23), which may break down at lower temperature due to

stronger memory effects. Secondly, the dynamical cavity method implicitly

assumes that there is no ergodicity breaking. Practically, the assumption that

the system is ergodic in the cavity approach means that when we provide

the dynamical cavity method with the initial conditions P0(s0) = ∏i P0(s0
i )

and P0(τ
0) = ∏µ P0(τ

0
µ), it is implied that each configuration drawn from

this distribution belongs to the same ergodic sector, and will hence reach the

same attractor, which is untrue when ergodicity is broken. To deduce whether

the loss of accuracy at zero temperature is due to the assumptions made in

the OTA scheme, or by ergodicity breaking, we provide the dynamical cavity

equations with a specific configuration (s0, τ0) as the initial condition, and then

run zero temperature dynamics. In the right panel of Figure 4.8 we show

that by initiaizing dynamical cavity in the same configuration (and thus in

the same ergodic sector) as MC simulations, the OTA scheme predicts the tra-

jectory without error. This suggests that the loss of accuracy observed in the

left panel of Figure 4.8 is due to ergodicity breaking.
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a) b) c)

d) e) f)

Figure 4.7: Scatter plot of the activation probability of genes ⟨si(t)⟩ (a)-(c) and TFs
⟨τµ(t)⟩ (d)-(f) computed from MC simulations and the dynamical cavity equa-
tions (4.24) and (4.25). MC simulations are averaged over 1000 thermal histories.
Here we show the system at time t = 15 where the system has reached its steady-
state. Genes and TFs evolve according to a bipartite linear threshold model (4.8)
with interactions defined by equations (4.42)-(4.44). Parameters are: N = 2500,
c = 1, d = 2, κ = 0, b = 1, β = β̂ = 10. The root mean square error, δ, and
density of bidirectional links p is annotated in each plot.

4.5.2 Multiple attractors induced by self-regulation

The evidence of ergodicity breaking suggests that our system supports mul-

tiple attractors. To confirm this we show in Figure 4.9 the dynamics of genes

and TFs starting from two different initial conditions for the same network.

In the network we consider, a TF has an excitatory effect on every gene that

is required for its own synthesis, p = 1 and b = 1, such that this network has

a high density of bidirectional links. We again initialise the dynamical cav-

ity method with the same initial configuration as the MC simulations, such

that there is zero error in the dynamical cavity predictions. We see that the

dynamics of the same network, starting from two different initial configura-

tions, converges to two different 2-cycles, which shows that, at least at zero
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a) b)
Figure 4.8: (a) Mean square error δs(t) between MC simulations (averages over
100 runs) and dynamical cavity equations (4.24) and (4.25), for the activation
probabilities of genes, against time. Genes and TFs evolve according to a bipar-
tite linear threshold model (4.8) with interactions defined by equations (4.42)-
(4.44). Network size is N = 2500, connectivities are c = 1, d = 2, bias are
κ = 0, b = 1, and initial conditions are set to P(s0

i ) = P(τ0
µ) = 0.75. Leg-

end indicates density of self-interactions, p. (b) Average activation probability of
genes as(t) = N−1 ∑i⟨si(t)⟩ against time, computed by dynamical cavity (crosses)
and MC simulations (circles). The dynamical cavity method is initialised with
Pi(s0

i ) = δs0
i ,sMC

i (0) and Pµ(τ0
µ) = δτ0

µ ,τMC
µ (0). Network parameters are: N = 1500,

c = 1, d = 3, κ = −1.5, b = 1. Inset shows scatter plot of site activation prob-
abilities of genes ⟨si(t)⟩, at time t = 3, computed by dynamical cavity and MC
simulations. Annotation indicates root mean square error. In (a) and (b) external
fields are set to ϑi = ϵ and ϑµ = −cµ + ϵ, with ϵ = 10−4, and the noise level is
β = β̂ = ∞.

temperature, our model supports multiple attractors.

To better assess the type of attractors these systems exhibit, we look at the

self-overlap, which we define as,

Γs(t, t′) =
1
N ∑

i
(st

i − st′
i )

2 (4.47)

Γτ(t, t′) =
1
N ∑

µ

(τt
µ − τt′

µ )
2. (4.48)

By running MC simulations at zero temperature for some long time tw, and

computing the self-overlap Γs(t, tw), with all other times t ≤ tw, we find, as
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a) b)

c) d)
Figure 4.9: (a) and (c): Average activation of genes (a) and TFs (c) in the bipartite
linear threshold model (4.8) with interactions defined by equations (4.42)-(4.44)
and parameters: N = 1500, c = 1, d = 3, κ = −1.5, b = 1 (i.e. all self-interactions
are positive) and β = β̂ = ∞. Results for two different initial conditions are
shown. Circles indicate MC simulations, crosses indicate predictions from dy-
namical cavity equations (4.24) and (4.25). The dynamical cavity method is ini-
tialised with Pi(s0

i ) = δs0
i ,sMC

i (0) and Pµ(τ0
µ) = δτ0

µ ,τMC
µ (0). (b) and (d): Self-overlap

Γs(t, tw), defined in equation (4.47), against time t, with tw = 50, for genes in the
bipartite linear threshold model (4.8). Results are computed from MC simula-
tions with N = 2500, c = 1, d = 15, κ = 0, for cases where (b) all self-interactions
are inhibitory (i.e. b = −1) or (d) excitatory (i.e. b = 1). Similar plot can be
obtained for the self-overlaps of the TFs, Γτ(t, tw), but are not shown here.

shown in the right panels of Figure 4.9, that for systems with all positive self-

regulatory effects the system will exhibits a 2-cycle, but the same network

where the self-regulatory effects are negative will exhibit a 4-cycle. We find

these results consistent for different realisations of the network, and for net-

works with different values of TF in-degree, d + pc. This suggests that the

type of attractor that the dynamics converges to is determined by the type of

self-regulatory effects present, alone.

To elucidate the effect that the density of bidirectional links has on the
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attractors of our model, we study a dynamical variant of the overlap dis-

tribution. We exploit the fact that we are at zero temperature to run MC

simulations until the system reaches its attractor, store them, and compare

the attractors that are reached from different initial conditions. At zero tem-

perature, the system is expected to reach a limit cycle, and so we compute the

overlap between each point of the limit-cycles reached from two random ini-

tial conditions. The overlap for two replicas, sρ and sν, of the system starting

from different random initial conditions is defined as

qs
ρν =

1
N ∑

i

L

∑
n=1

(
2sn,ρ

i − 1
) (

2sn,ν
i − 1

)
(4.49)

where sn,ρ
i is the state of site i at the nth point in the limit cycle of length L in

replica ρ. We can similarly define the overlap for the TFs,

qτ
ρν =

1
N ∑

µ

L

∑
n=1

(
2τ

n,ρ
µ − 1

) (
2τn,ν

µ − 1
)

. (4.50)

The overlap takes values in q ∈ [−1, 1] such that q = 1 if the configurations

are identical, and q = −1 if they are oppositely aligned i.e sρ
i = 1− sν

i ∀ i. The

above definition of the overlap is, however, dependent on the ordering of the

points in the cycle. For example, it may be that two initial conditions lead to

the same attractor, but enter the attractor at different points in the cycle, and

so lead to an overlap q ̸= 1. For this reason we compute the overlap between

the attractors for different permutations of the points in the cycle and take the

maximum value to be the true value of the overlap. By drawing many pairs of

initial conditions and computing the overlap between the attractors according
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the above, we compute the overlap distribution. Figure 4.10 shows that as the

density of bidirectional links decreases, the width of the overlap distribution

decreases and moves towards an overlap of qs
12, qτ

12 = 1, suggesting that the

attractors become more similar as bidirectional links are removed, and that

systems without bidirectional links will have just one attractor. Additionally,

the external field acting on the TFs is shown to have a significant effect. When

ϑµ = −cµ + ϵ, such that TFs operate with AND logic, we see the existence of

multiple attractors, with relatively low overlap (left panels). Conversely, for

systems with external field ϑµ = −ϵ, such that TFs operate with OR logic,

we see that while these networks do support multiple attractors, the overlap

is high, hence the attractors are very similar (right panels). Interpolating

between these extreme cases, we set ϑµ = −1− ϵ, to add a little cooperativity

to the OR logic, such that a TF requires at least two neighbouring genes to be

active in order to be synthesised. In this case, we also see high overlap, even

for systems with high densities of bidirectional links (middle panels).

Our work demonstrates the existence of multiple attractors in sparse, par-

tially bidirectional networks. Previous analytical work has focused on the

fully connected and fully asymmetric cases (201, 262, 263). More recently, nu-

merical studies in small sparse networks showed that the number of attractors

decreases to one as the dilution of the network is increased (246). Our results

show that the presence of bidirectional links is crucial to have a multiplicity of

attractors in sparse networks and that increasing the fraction of bidirectional

interactions decreases the overlap between the attractors of the system. To the

best of our knowledge, our work is the first to demonstrate that the existence

of multiple attractors in sparse networks is conditional on the interactions
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being at least partially bidirectional.

Additionally, we have seen that the overlap is lower in the nonlinear model,

where TFs evolve according to AND logic, than in the linear model, where TFs

evolve according to OR logic, suggesting that cooperativity in gene regulation

promotes diversification of attractors. Our nonlinear model can be regarded

as the Boolean equivalent of a mixed p-spin model, where the state of each

site depends on a varying number of sites. The regular p-spin model has

been shown in equilibrium to exhibit an ergodicity breaking phase at low

noise levels, where multiple attractors are to be expected (264, 265, 266). Our

numerical results show that ergodicity is also broken in our mixed p-Boolean

model with asymmetric interactions, at low levels of noise, where the system

exhibits a multiplicity of cyclic attractors. Interestingly, the overlap distribu-

tion is reminiscent of the one observed in equilibrium spin models exhibiting

so-called “one step of replica symmetry breaking”, a particular type of ergod-

icity breaking which is characterised by a delta-peaked distribution of over-

laps (267). It can be shown that the width of the distributions in Figure 4.10

decreases with system size as N−
1
2 , suggesting that this is a finite size effect

and that for networks of infinite size these distributions are also delta-peaked

at a single value.

While we have shown the existence of multiple attractors in the absence

of noise, we expect that as noise is increased, the system will become ergodic,

and the dynamics will converge to a single attractor. We can, however, show

in Figure 4.11 that if TFs evolve without noise, but genes evolve with low

but finite noise, the system still exhibits multiple attractors. Here, we have

used a network with higher degree than in Figure 4.9 and see that there is a
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a) b) c)

d) e) f)
Figure 4.10: Cumulative distribution function of the overlap between attractors
reached from different initial conditions in the bipartite linear threshold model
(4.8). Panels (a)-(c) show results for genes, panels (d)-(e) show results for TFs.
Network is drawn according to (4.42)-(4.44) with parameters: N = 1000, c = 1,
d= 3, κ = 0, b= 1. Distributions are formed by comparing the attractors reached
by 1000 random pairs of initial conditions. Results shown for different levels of
bidirectional links, p, indicated by legend. Noise level is β = β̂ = ∞. Columns,
from left to right, indicate cases where ϑµ =−cµ+ϵ, ϑµ =−1−ϵ and ϑµ =−ϵ with
ϵ=10−4. We also have ϑi =ϵ.

bigger difference in the average activation, suggesting that as the connectivity

of the network is increased, the attractors become more dissimilar. Finally, we

observe that any low but finite noise in the TFs dynamics leads to a single

attractor, even when gene dynamics is noiseless.

4.6 OTA in the thermodynamic limit

In earlier sections we have derived expressions for activation probabilities of

individual nodes in single graph instances. We can use these results to ob-

tain expressions for typical (or average) activation probabilities by averaging

over sites. For large networks, these expressions will depend on the distri-
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a) b)
Figure 4.11: Average activation of (a) genes as(t) = N−1 ∑i⟨si(t)⟩ and (b) TFs
aτ(t) = (αN)−1 ∑µ⟨τµ(t)⟩ in the bipartite linear threshold model (4.8) against
time. Symbols indicate result of MC simulations averaged over 100 thermal his-
tories with dashed line for visual aid. Network is drawn according to equations
(4.42)-(4.44) with parameters: N = 1500, c = 1, d = 10, p = 1, κ = 0 and b = 1.
Noise level for TFs β̂ = ∞ and for genes β = 100.

bution P(J) (or P(η, ξ)) of the disorder and not on its realization J (or η, ξ),

hence they give information on typical trajectories in the graph ensemble.

Similar expressions can also be derived via generating functional analysis

(GFA) (93, 94), however, no equivalent of the OTA scheme has been formu-

lated within GFA, hence the resulting equations exhibit the aforementioned

exponential time complexity. Taking averages of the dynamical cavity equa-

tions after application of the OTA scheme allows us to obtain equations for

typical activation probabilities which do not exhibit such complexity and can

therefore be solved explicitly at short and long times.

To demonstrate this we consider the linear threshold model (4.5) in the

absence of self-interactions, such that Jii = 0. In this case the probability of a

site to have activation st
i at some time t, under the OTA scheme, is given by,

Pi(st
i) = ∑

st−2
i

Pi(st−2
i ) ∑

st−1
∂i

W(st
i |hi(st−1

∂i
))

[
∏
j∈∂i

P(i)
j (st−1

j |ζ
(i),t−1
j )

]
, (4.51)
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and the probability of a site to have activation st
i at time t, in the cavity graph

where site ℓ is removed, subject to some external field ζ
(ℓ),t
i = Jiℓst−1

ℓ , is given

by

P(ℓ)
i (st

i |ζ
(ℓ),t
i ) = ∑

st−2
i

Pi(st−2
i ) ∑

st−1
∂i\ℓ

W(st
i |hi(st−1

∂i
))

 ∏
j∈∂i\ℓ

P(i)
j (st−1

j |ζ
(i),t−1
j )


(4.52)

as shown in (248). From this we can define the distribution of site marginals

as,

π({Pt}) =
1
N ∑

i
∏
st

δ
(
Pt(st)− Pi(st)

)
. (4.53)

In 4.E we show that in the limit N → ∞ the distribution of site marginals is

found from the following closed set of equations,

π({Pt}) = ∑
k

P(k)
∫ [ k

∏
j=1

dJjd Ĵj{dP̂j}P(Jj)P( Ĵj|Jj)

] ∫
{dPt−2}

× πt−2
[
{Pt−2}|k, J, Ĵ

]
∏
st

δ
(
Pt(st)− ϕ(k, {Pt−2}, J, Ĵ, {P̂})

)
×

k

∏
j=1

π̂t−1

[
{P̂j}| Ĵjst−2

]
(4.54)

with

ϕ(k, {Pt−2}, J, Ĵ, {P̂}) = ∑
st−2

Pt−2(st−2) ∑
st−1

1 ,...,st−1
k

W(st|
k

∑
j=1

Jjst−1
j )

k

∏
j=1

P̂j(st−1
j )

(4.55)
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and

π̂t({Pt}|x) = ∑
k

kP(k)
⟨k⟩

∫ [k−1

∏
j=1

dJjd Ĵj{dP̂j}P(Jj)P( Ĵj|Jj)

] ∫
{dPt−2}

× πt−2
[
{Pt−2}|k, J, Ĵ

]
∏
st

δ
(
Pt(st)− ϕ̃(k, {Pt−2}, J, Ĵ, {P̂}, x)

)
×

k−1

∏
j=1

π̂t−1

[
{P̂j}| Ĵjst−2

]
(4.56)

where we define,

ϕ̃(k, {Pt−2}, J, Ĵ, {P̂}, x) = ∑
st−2

Pt−2(st−2)

× ∑
st−1

1 ,...,st−1
k

W(st|
k

∑
j=1

Jjst−1
j + x)

k

∏
j=1

P̂j(st−1
j ).

(4.57)

Equations (4.54) and (4.56) can be solved by a population dynamics procedure

(256, 268). In Figure 4.12 we show the cumulative distribution function of site

activation probabilities P(⟨s(t)⟩) = π(P(st = 1)) at different times, computed

solving the above equations via population dynamics, for a random regular

graph with fully symmetric interactions. We find reasonable agreement with

MC simulations on a single instance of a network with size N = 104. We

however, see small deviations due to the cavity equations in this instance

being averaged over the disorder P(J). As expected from earlier analysis in

Sec. 4.4 the time-dependent distribution of activation probabilities reaches a

multi-modal steady-state.
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a) b) c)
Figure 4.12: CDF of activation probabilities of genes in the linear threshold model
defined in (4.5) at time t = 1, 2, 3 (from (a) to (c)). The network is a random regu-
lar graph with degree c = 3. Interactions are fully symmetric, i.e. Jij = Jji and are
drawn from the set {−1, 1} with equal probability. The inverse temperature is
β = 1 and initial conditions are set to P(st

i) = 0.5 ∀i. Dashed line indicates solu-
tion to equation (4.54) from population dynamics with sample size S = 2.5× 105.
Solid line indicates results from MC simulations for a network of size N = 104.
Annotations indicate the Kolmogorov–Smirnov (KS) statistic comparing the em-
pirical distributions from the cavity method and MC simulations.

4.7 Discussion

In this chapter we have studied systems of sparsely connected Boolean vari-

ables with multi-node and self-interactions. Previous work has shown that

self-interactions complicate the analysis of dynamics. However, by mapping

to an equivalent bipartite system, we find that the dynamical cavity method,

within a OTA scheme, provides an efficient numerical framework to study

the dynamics of systems with arbitrary bidirectionality, multi-node and self-

interactions. We have shown for such systems that the OTA scheme predicts

the activation probability of each site in the transient and non-equilibrium

steady-state, down to relatively low temperature, where the system is er-

godic. As temperature is lowered further, ergodicity is eventually broken,

and we have found that the error increases with the bidirectionality of the

interactions. At zero temperature, however, if the dynamical cavity is given

the same initial configuration as MC simulations, the OTA scheme is in excel-
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lent agreement with simulations, showing that OTA accurately describes the

dynamics within any given ergodic sector. We have also derived equations for

the distribution (and mean) of site activations at a given time, in the thermo-

dynamic limit, within a OTA scheme, which is numerically more efficient than

previous approaches involving sums over the history of a trajectory (96). We

comment that these equations, when compared to their analogue derived by

generating functionals (93, 94) provide physical insight into the effect of trun-

cating memory terms in the GFA. In principle, the dynamical cavity equations

are also solveable for networks with strong degree correlations, as shown in

previous work (268). By providing closed expressions for the distribution

of site marginals, the dynamical cavity method can provide insight into the

heterogeneity of site trajectories for a typical network drawn from some en-

semble. This is unlike GFA which only provides information on the trajectory

of a typical site.

From our work, it is clear that sparse networks with partially bidirectional

interactions support multiple (cyclic) attractors, at low noise. Additionally,

multi-node interactions are found to decrease the overlap between attractors,

suggesting that cooperativity increases diversification of attractors. The ex-

istence of a multiplicity of attractors in partially bidirectional sparse systems

is an important feature for models of GRNs to sustain multi-cellular life. It

means that if a GRN is in an attractor, it can be pushed out of this attractor by

some event, for example the sudden change in external field, and can move

from one attractor to another. This could describe how cells move from one

cell type to another. Both cooperative effects and gene self-regulation (i.e. a

gene coding for a TF that regulates the gene itself) are commonly observed in
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GRNs and our work suggests that it is these features in combination which

allow GRNs to support a diverse set of stable gene expression profiles, cor-

responding to different cell types, with self-regulation playing an important

role in determining the nature of attractors.

Our work poses interesting questions for future work. Our study suggests

that there is an ergodicity breaking phase at low temperatures characterised

by an overlap distribution which resembles one observed in equilibrium spin

systems (with symmetric interactions and fixed-point attractors) . It would be

an interesting pathway for future work to formally derive the critical line, in

parameter space, where the transition to the ergodicity breaking phase takes

place. In equilibrium, such transition takes place on the AT line, which has

been derived for fully connected systems (269). For sparse systems, a formal

derivation of the AT line is lacking in the literature. Instead, an alternative

approach has been devised for sparse systems, where the transition to er-

godicity breaking can be located as the critical line where the effective fields

of two replicas of the system become sensitive to their boundary conditions,

within a cavity approach (259). The formulation of dynamical versions of this

approach would be welcome to locate such transitions in GRNs with asym-

metric interactions. Similarly, devising methods to survey the ultrametric

structure of stationary states in non-equilibrium settings would be useful to

understand the observed shape of the overlap distribution. Of course, while

we can deduce that a multiplicity of (cyclic) attractors exist, it remains an

open question how the attractors relate to the specific realisation of the bipar-

tite network and an analytical framework to deduce the number of attractors

that are supported by a network remains likewise an open point of investi-
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gation. Finally, an important focus for applications would be to study how

a GRN may move from one attractor to another, either by the application of

time-dependent external fields, or dynamic variations in the interaction net-

work itself, which may shed light on the mechanisms through which cells

differentiate. As discussed in the introduction, the immune system is an ideal

system to study cell differentiation, since in some cases the molecular reac-

tion that triggers differentiation is known. Our model has salient features of

GRNs - sparsity, directed interactions, and multiple diverse attractors - and,

hence, could provide a minimal model to elucidate the complex relationship

between genotype and phenotype.
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Appendices

4.A Dynamical cavity approach to bipartite systems

In the appendix to the thesis A.1, we provide an introduction to the cavity

method and how it may be applied to dynamical processes on networks. In

this section we show how the dynamical cavity method may be used to anal-

yse the dynamics of the general bipartite system defined in (4.9) and (4.10),

from which the linear model with self-interactions (4.5) and the nonlinear

model with multi-node interactions (4.6) may be recovered by suitable choice

of parameters. Starting with equation (4.15), we wish to derive a closed set of

equations for single site quantities at a given time, like st
i and τt

µ. To do so, we

first consider the trajectory of a single gene i,

Pi(s
0...tm
i ) = ∑

s0...tm\s0...tm
i ,τ0...tm

P(s0...tm , τ0...tm). (4.58)
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Inserting equation (4.15) into the above, we have,

Pi(s
0...tm
i ) = ∑

s0...tm\s0...tm
i ,τ0...tm

P(s0, τ0)
tm

∏
t=1

N

∏
i=1

N+M

∏
µ=N+1

W(st+1
i |hi(τ

t
∂i
))W̃(τt+1

µ |hµ(st))

(4.59)

As is typical of the cavity formalism, we assume that the bipartite network

has the topological structure of a tree and that initial conditions factorise over

the sites of the tree P(s0, τ0) = ∏iµ P(s0
i , τ0

µ). To proceed, we make use of the

unique structural properties of a tree. To illustrate this, we sketch a fraction

of the bipartite network we are considering in Figure 4.A.1, sketching gene i

which is connected to TFs µ and ν which are themselves connected to further

genes. We highlight that the bipartite network can be divided into different

sub-trees. In Figure 4.A.1 we show Ti a tree rooted at the gene i. We also

indicate the sub-tree Tµ \ i which is all the genes and TFs in the tree rooted

at TF µ when i has been removed from the network. We may then consider

reorganising the terms in the above equation, into products over nodes in
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different sub-trees of the network,

Pi(s
0...tm
i )= ∑

s0...tm\s0...tm
i ,τ0...tm

P(s0, τ0)

 tm

∏
t=1

W(st
i |hi(τ

t−1
∂i

)) ∏
j∈Ti\i

W(st
j|hj(τ

t−1
∂j

))


× ∏

µ∈∂i

 tm

∏
t=1

W̃(τt
µ|hµ(st−1

∂µ
)) ∏

ν∈Tµ\µ
W̃(τt

ν|hν(st−1
∂ν

))


= ∑

s0...tm\s0...tm
i ,τ0...tm

P(s0, τ0)

[
tm

∏
t=1

W(st
i |hi(τ

t−1
∂i

))

]

× ∏
µ∈∂i

 tm

∏
t=1

W̃(τt
µ|hµ(st−1

∂µ
)) ∏

ν,j∈Tµ\µ,i
W̃(τt

ν|hν(st−1
∂ν

))W(st
j|hj(τ

t−1
∂j

))


= P(s0

i ) ∑
τ0...tm

∂i

[ tm

∏
t=1

W(st
i |hi(τ

t−1
∂i

))
]

∏
µ∈∂i

{
∑

s0...tm
Tµ\i ,τ0...tm

Tµ\µ

P(s0
Tµ
\s0

i )P(τ
0
Tµ
)

×
[ tm

∏
t=1

W̃(τt
µ|hµ(st−1

∂µ
)) ∏

ν,j∈Tµ\µ,i
W̃(τt

ν|hν(st−1
∂ν

))W(st
j|hj(τ

t−1
∂j

))
]}

(4.60)

where we have defined sTµ =
{

si, i ∈ Tµ

}
and τTµ =

{
τν, ν ∈ Tµ

}
where Tµ

and Ti are trees rooted at nodes µ and i.

We may then take the external sum over τtm
∂i

and the internal sums over

τtm
Tµ

and stm
Tµ

,

Pi(s
0...tm
i ) = P(s0

i ) ∑
τ0...tm−1

∂i

[
tm

∏
t=1

W(st
i |hi(τ

t−1
∂i

))

]
∏
µ∈∂i

{
∑

s0...tm−1
Tµ\i ,τ0...tm−1

Tµ\µ

P(s0
Tµ
\s0

i )P(τ
0
Tµ
)

×
[ tm−1

∏
t=1

W̃(τt
µ|hµ(st−1

∂µ
)) ∏

ν,j∈Tµ\µ,i
W̃(τt

ν|hν(st−1
∂ν

))W(st
j|hj(τ

t−1
∂j

))
]}

.

(4.61)
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Figure 4.A.1: A sketch of a network which is a tree. Here the tree is rooted at
gene i, which has neighbouring TFs µ and ν. The large black box contains the set
of nodes Ti, which are all nodes in the tree rooted at node i. The dashed black
box contains all the nodes belonging to the set Tµ \ i, which are the nodes in the
sub-tree rooted at TF µ.

We note that the local field that acts on TF µ can be written as,

hµ(st−1
∂µ

) = ∑
j∈∂µ\i

η
µ
j st−1

j + ϑµ + η
µ
i st−1

i = h(i)µ (st−1
∂µ

) + ζ
(i),t
µ (4.62)

where we have defined the local field in a new copy of the network where site

i is removed, referred to as the cavity graph, h(i)µ (st−1
∂µ

) = ∑j∈∂µ\i η
µ
j st−1

j + ϑµ,

and the time dependent external field ζ
(i),t
µ = η

µ
i st−1

i , which is the effect of the

removed gene i on TF µ in the cavity graph. Similarly, we can write the local

field that acts on gene i as,

hi(τ
t−1
∂i

) = ∑
µ∈∂i\ν

ξ
µ
i τt−1

µ + ϑi + ξν
i τt−1

ν = h(ν)i (τt−1
∂i

) + ζ
(ν),t
i (4.63)

denoting the local field in the cavity graph where TF ν is removed, h(ν)i (τt−1
∂i

) =

∑µ∈∂i\ν ξ
µ
i τt−1

µ + ϑi, and external field ζ
(ν),t
i = η

µ
i st−1

i .
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At this stage we can inspect the the contents of the curly brackets in

equation (4.61). We notice a sum over the variables ∑s0...tm−1
Tµ\i ,τ0...tm−1

Tµ\µ
that is

taken over some joint distribution of the state of genes and nodes at different

times. Once this sum has been taken, it would leave the joint distribution

P(i)
µ (τ0...tm−1

µ |ζ(i),1...tm−1
µ ) which is interpreted as the probability to observe the

trajectory τ0...tm−1
µ in the cavity graph where gene i is removed, given that the

time dependent external field, ζ
(i),1,...,tm−1
µ , acts on TF µ. With this definition

in place, equation (4.61) is now equivalent to

Pi(s
0...tm
i ) = P(s0

i ) ∑
τ0...tm−1

∂i

[
tm

∏
t=1

W(st
i |hi(τ

t−1
∂i

))

]
∏
µ∈∂i

P(i)
µ (τ0...tm−1

µ |ζ(i),1...tm−1
µ ).

(4.64)

Following the same reasoning, we can derive an analogous expression for the

trajectory of a single TF µ,

Pµ(τ
0...tm
µ ) = P(τ0

µ) ∑
s0...tm−1

∂µ

[
tm

∏
t=1

W̃(τt
µ|hµ(st−1

∂µ
))

]
∏
j∈∂µ

P(µ)
j (s0...tm−1

j |ζ(µ),1...tm−1
j )

(4.65)

where P(µ)
j (s0...tm−1

j |ζ(µ),1...tm−1
j ) is the probability to observe the trajectory

s0...tm−1
j in the cavity graph where site µ is removed, given that the time-

dependent external field ζ
(µ),1...tm−1
j = ξ

µ
j τ1...tm−1

µ , acts on site j. Equations for

the probability to observe the trajectory of a single gene i in the cavity graph

221



4. DYNAMICS OF GENE REGULATORY NETWORKS WITH
SELF-REGULATION

are found by considering the effect of removing TF ν from equation (4.64),

P(ν)
i (s0...tm

i ) = P(s0
i ) ∑

τ0...tm−1
∂i\ν

[
tm

∏
t=1

W(st
i |h

(ν)
i (τt−1

∂i
))

]
∏

µ∈∂i\ν
P(i)

µ (τ0...tm−1
µ |ζ(i),1...tm−1

µ ),

(4.66)

which depends upon the cavity field h(ν)i (τt−1
∂i

). Similarly, by removing gene

ℓ from equation (4.65) we find,

P(ℓ)
µ (τ0...tm

µ ) = P(τ0
µ) ∑

s0...tm−1
∂µ\ℓ

[
tm

∏
t=1

W̃(τt
µ|h

(ℓ)
µ (st−1

∂µ
))

]
∏

j∈∂µ\ℓ
P(µ)

j (s0...tm−1
j |ζ(µ),1...tm−1

j ),

(4.67)

which depends upon the cavity field h(ℓ)µ (st−1
∂µ

). If we now consider an exter-

nal field ζ
(ν),1...tm
i acting on gene i in the cavity graph with TF ν removed, the

cavity field in equation (4.66) will become h(ν)i (τt−1
∂i

) + ζ
(ν),t
i = hi(τ

t−1
∂i

), from

which we deduce equation (4.16). Similarly, if an external field ζ
(ℓ),1...tm
µ acts

on TF µ in the cavity graph where gene ℓ is removed, from equation (4.66),

we can deduce equation (4.17). We have derived a closed system of equations

(4.64), (4.65), (4.16) and (4.17) which in principle can be solved recursively for

the trajectory of the system. As noted in the main text, their computational

complexity grows exponentially with the length of the trajectory.

If we assume that the system has unidirectional interactions, however, the

cavity equations simplify. In this case, ξ
µ
i ̸= 0 implies η

µ
i = 0, such that the

external fields in equation (4.64) vanish, ζ
(i),t
µ = 0, and the RHS of equations

(4.65) and (4.17) become identical, as ℓ ̸∈ ∂µ when µ ∈ ∂ℓ and given (4.62) we
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have P(i)
µ (τ0...tm

µ |0) = Pµ(τ
0...tm
µ ). This simplifies equation (4.64) to

Pi(s
0...tm
i ) = P(s0

i ) ∑
τ0...tm−1

∂i

[
tm

∏
t=1

W(st
i |hi(τ

t−1
∂i

))

]
∏
µ∈∂i

Pµ(τ
0...tm−1
µ ) (4.68)

and by the same argument one can also derive the trajectory for the TFs,

Pµ(τ
0...tm
µ ) = P(τ0

µ) ∑
s0...tm−1

∂µ

[
tm

∏
t=1

W̃(τt
µ|hµ(st−1

∂µ
))

]
∏
j∈∂µ

Pj(s
0...tm−1
j ). (4.69)

We may now marginalise equation (4.68) over s0,...,tm−1
i and equation (4.69)

over τ0,...,tm−1
µ and find,

Pi(s
tm
i ) = ∑

τtm−1
∂i

[
W(stm

i |hi(τ
tm−1
∂i

))
]

∏
µ∈∂i

Pµ(τ
tm−1
µ ) (4.70)

Pµ(τ
tm
µ ) = ∑

stm−1
∂µ

[
W̃(τtm

µ |hµ(stm−1
∂µ

))
]

∏
j∈∂µ

Pj(s
tm−1
j ). (4.71)

Equations (4.70) and (4.71) are a closed set of equations which may be solved

by simple iteration. They reveal that in systems with unidirectional interac-

tions, P(st
∂µ
) = ∏j∈∂µ

Pj(st
j).

As we note in Sec. 4.3, for systems with arbitrarily bidirectional interac-

tions, we may use the OTA scheme to reduce the time complexity of the cavity

equations, which in the case of our bipartite system means to assume (4.18)

and (4.19). If we insert (4.19) into (4.16) and isolate the terms which contain

stm
i and τtm−1

∂i
, we can rewrite the RHS in terms of the cavity distribution of
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the si trajectory up until time tm − 1,

P(ν)
i (s0...tm

i |ζ(ν),1...tm
i ) = P(s0

i ) ∑
τ0...tm−1

∂i\ν

[
tm

∏
t=1

W(st
i |hi(τ

t−1
∂i

))

]

× ∏
µ∈∂i\ν

Pµ(τ
0
µ)

tm−1

∏
t=1

P(i)
µ (τt

µ|ζ
(i),t
µ )

= ∑
τtm−1

∂i\ν

W(stm
i |hi(τ

tm−1
∂i

))

 ∏
µ∈∂i\ν

P(i)
µ (τtm−1

µ |ζ(i),tm−1
µ )


× P(s0

i ) ∑
τ0...tm−2

∂i

[
tm−1

∏
t=1

W(st
i |hi(τ

t−1
∂i

))

]

× ∏
µ∈∂i\ν

Pµ(τ
0
µ)

tm−2

∏
t=1

P(i)
µ (τt

µ|ζ
(i),t
µ )

= ∑
τtm−1

∂i\ν

W(stm
i |hi(τ

tm−1
∂i

))

 ∏
µ∈∂i\ν

P(i)
µ (τtm−1

µ |ζ(i),tm−1
µ )


× P(ν)

i (s0...tm−1
i |ζ(ν),1...tm−1

i ). (4.72)
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At this stage it is possible to marginalise the above over s0,...,tm−1
i ,

Pi(s
tm
i |ζ

(ν),1...tm
i ) = ∑

s0...tm−1
i

∑
τtm−1

∂i\ν

W(stm
i |hi(τ

tm−1
∂i

))

×

 ∏
µ∈∂i\ν

P(i)
µ (τtm−1

µ |ζ(i),tm−1
µ )

P(ν)
i (s0...tm−1

i |ζ(ν),1...tm−1
i )

= ∑
s0...tm−1

i

∑
τtm−1

∂i\ν

W(stm
i |hi(τ

tm−1
∂i

))

 ∏
µ∈∂i\ν

P(i)
µ (τtm−1

µ |ζ(i),tm−1
µ )


× Pi(s0

i )
tm−1

∏
t=1

P(ν)
i (st

i |ζ
(ν),t
i )

= ∑
stm−2

i

∑
τtm−1

∂i\ν

W(stm
i |h

(ν)
i (τtm−1

∂i
) + ζ

(ν),tm
i )

×

 ∏
µ∈∂i\ν

P(i)
µ (τtm−1

µ |ζ(i),tm−1
µ )

P(ν)
i (stm−2

i |ζ(ν),tm−2
i ). (4.73)

It is now apparent that the LHS only depends on ζ
(ν),tm−2
i and ζ

(ν),tm
i i.e

Pi(s
tm
i |ζ

(ν),1...tm
i ) = Pi(s

tm
i |ζ

(ν),tm−2,tm
i ), such that we can write

P(ν)
i (stm

i |ζ
(ν),tm−2,tm
i ) = ∑

stm−2
i

∑
τtm−1

∂i\ν

W(stm
i |h

(ν)
i (τtm−1

∂i
) + ζ

(ν),tm
i )

×

 ∏
µ∈∂i\ν

P(i)
µ (τtm−1

µ |ζ(i),tm−1
µ )

P(ν)
i (stm−2

i |ζ(ν),tm−2
i ).

(4.74)

In principle, this is in contradiction with the Markovian assumption made for

the cavity distribution, which would require P(ν)
i (stm

i |ζ
(ν),tm−2,tm
i ) = P(ν)

i (stm
i |ζ

(ν),tm
i ).

Such inconsistency arises from treating a non-Markovian process as Marko-
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vian. In order to get a closed set of equations for the one-time cavity marginal,

further closure assumptions are thus required. As stated in Sec. 4.3, we as-

sume that the cavity distribution, with external field from the removed site,

may be approximated by its non-cavity counterpart i.e P(ν)
i (stm−2

i |ζ(ν),tm−2
i ) ≈

Pi(s
tm−2
i ), following (248). Under this approximation, from (4.74) we retrieve

equation (4.20), and by considering adding the removed TF ν back in and

setting external fields to zero, we find, for the non-cavity distribution, the

expression given in (4.24). By the same reasoning, we can derive analogous

equations for the trajectory of a TF µ. In summary, the dynamics of the bipar-

tite system are fully described, under the OTA scheme, by the closed, coupled

set of equations (4.20),(4.21),(4.24), and (4.25), which can be solved by iteration

given some initial conditions Pi(s0
i ) and Pµ(τ0

µ).

4.B Equilibrium analysis of (0,1) spins with paral-

lel update and self-interactions

In this appendix we use the cavity method to calculate the equilibrium value

of site marginals for the linear threshold model (4.5) with self-interactions.

Assuming that zi(t) is a random variable with c.d.f. (4.2), we can write the

evolution of the state probability as a Markov chain

Pt+1(s) = ∑
s′

W(s|s′)Pt(s′) (4.75)
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with transition probability

W(s|s′) =
N

∏
i=1

W(si|hi(s′∂i
, s′i)) =

N

∏
i=1

e
β
2 (2si−1)hi(s′∂i

,s′i)

2 cosh β
2 hi(s′∂i

, s′i)
, (4.76)

where hi(s∂i , si) = ∑j∈∂i
Jijsj + Jiisi + ϑi. If the interactions are fully symmetric,

Jij = Jji, the transition probabilities (4.76) satisfy detailed balance

peq(s)W(s′|s) = peq(s′)W(s|s′) (4.77)

with the equilibrium distribution

peq(s) =
1
Z

e−βHβ(s) (4.78)

where Hβ(s) = − 1
β ∑i ln 2 cosh β

2 hi(s∂i , si) − 1
2 ∑i hi(s∂i , si) − ∑i siϑi. We can

rewrite this distribution in a form more amenable to analysis if we consider a

fictitious set of variables τ = {0, 1}N,

peq(s) =
1
Z

N

∏
i=1

2 cosh
β

2
hi(s∂i , si)e

β
2 hi(s∂i

,si)eβϑisi

=
1
Z

N

∏
i=1

∑
τi

e
β
2 (2τi−1)hi(s∂i

,si)e
β
2 hi(s∂i

,si)eβϑisi (4.79)

where we have used 2 cosh(x) = ∑τ∈{0,1} e(2τ−1)x as in (254, 255). The equi-

librium distribution can then be written as

peq(s) =
1
Z ∑

τ

eβ ∑i ̸=j τi Jijsj+β ∑i τi Jiisi+β ∑i ϑi(si+τi) (4.80)
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the marginalisation of the joint distribution of real and fictitious variables

(4.28).

Now we use the cavity method to find a closed set of equations for single

site quantities. To do so we marginalise (4.28) over all sites except i,

pi(si, τi) =
1
Z ∑

s\si

∑
τ\τi

e−βH(s,τ) (4.81)

and note that the Hamiltonian can be written in the formH(s, τ) = −sihi(τ∂i)−

τihi(s∂i)− si Jiiτi − ϑi(τi + si) +H(i)(s, τ) where we have defined the Hamilto-

nian of the system where site i has been removedH(i)(s, τ) = −∑ℓ ̸=(i,j) sℓ Jℓjτj−

∑ℓ ̸=i sℓ Jℓτℓ − ∑ℓ ̸=i ϑℓ(sℓ + τℓ). With this definition the site marginal may be

written in the following form,

pi(si, τi) =
1
Zi

∑
τ∂i

eβ(sihi(τ∂i
)+τihi(s∂i

)+si Jiiτi+ϑi(si+τi))p(i)(s∂i , τ∂i) (4.82)

where p(i)(s∂i , τ∂i) is the equilibrium distribution of the neighbours of site i,

in the cavity graph where i is removed, Z(i) = ∑s\si ∑τ\τi
e−βH(i)(s,τ) is its cor-

responding partition function and Zi = Z/Z(i). The cavity approach assumes

that cavity fields are independent of each other, such that p(i)(s∂i , τ∂i) =

∏j∈∂i
p(i)j (sj, τj), which is exact on trees and sparse graphs which are locally

tree-like in the limit N → ∞. Under this assumption the site marginals and

cavity site marginals can be found from the closed set of equations (4.29) and

(4.30). In order to solve these equations, it is convenient to parameterise the
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cavity marginals in terms of effective fields

p(ℓ)i (si, τi) =
1

Z(ℓ)
i

e
β
2 ((2si−1)hs

iℓ+(2τi−1)hτ
iℓ+(2si−1)(2τi−1)hsτ

iℓ ) (4.83)

and use (4.30) to obtain a closed set of equations for the cavity fields,

hs
iℓ =

1
2β ∑

j∈∂i\ℓ
ln

(
fij(1, 1) fij(1, 0)
fij(0, 1) fij(0, 0)

)
+

1
2

Jii + ϑi (4.84)

hτ
iℓ =

1
2β ∑

j∈∂i\ℓ
ln

(
fij(1, 1) fij(0, 1)
fij(1, 0) fij(0, 0)

)
+

1
2

Jii + ϑi (4.85)

hsτ
iℓ =

1
2β ∑

j∈∂i\ℓ
ln

(
fij(1, 1) fij(0, 0)
fij(0, 1) fij(1, 0)

)
+

1
2

Jii (4.86)

where we define,

fij(si, τi) = ∑
sj

∑
τj

eβ(si Jijτj+τi Jijsj)p(i)j (sj, τj). (4.87)

These equations may be solved by simple iteration from some random initial

condition. We can similarly parameterise the single site marginal as

pi(si, τi) =
1
Zi

e
β
2 ((2si−1)hs

i+(2τi−1)hτ
i +(2si−1)(2τi−1)hsτ

i ) (4.88)

229



4. DYNAMICS OF GENE REGULATORY NETWORKS WITH
SELF-REGULATION

from which one finds,

hs
i =

1
2β ∑

j∈∂i

ln

(
fij(1, 1) fij(1, 0)
fij(0, 1) fij(0, 0)

)
+

1
2

Jii + ϑi (4.89)

hτ
i =

1
2β ∑

j∈∂i

ln

(
fij(1, 1) fij(0, 1)
fij(1, 0) fij(0, 0)

)
+

1
2

Jii + ϑi (4.90)

hsτ
i =

1
2β ∑

j∈∂i

ln

(
fij(1, 1) fij(0, 0)
fij(0, 1) fij(1, 0)

)
+

1
2

Jii. (4.91)

One must solve equations (4.84), (4.85) and (4.86) by iteration, and then sub-

stitute this solution into equations (4.89), (4.90) and (4.91) to find the fields

hs
i , hτ

i and hsτ
i from which one can find the average activation probability,

⟨si⟩ = ∑si,τi
si pi(si, τi), from the following expression

⟨si⟩ =
1
Zi

e
β
2 hs

i cosh
β

2
(hτ

i + hsτ
i ) , (4.92)

where we have defined the normalisation constant

Zi = ∑
si,τi

e
β
2 ((2si−1)hs

i+(2τi−1)hτ
i +(2si−1)(2τi−1)hsτ

i ). (4.93)

4.C Monte Carlo Simulations

To assess the accuracy of the cavity equations, we compare their solution

to MC simulations. To simulate a system which evolves with synchronous

dynamics according to (4.75) we use the following procedure:

1. Specify the system size N, length of trajectory tm, initialise the inter-

action matrix Jij according to P(Jij), and specify the initial conditions
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Pi(s0
i ) ∀ i = 1, . . . , N. Set time variable t = 0.

2. Draw the initial configuration of the system s0 = (s0
1, . . . , s0

N) according

to the initial conditions Pi(s0
i ) ∀ i = 1, . . . , N.

3. Set i = 1.

4. Compute the probability

W(st+1
i = 1|hi(st

∂i
, st

i)) =
e

β
2 hi(st

∂i
,st

i ))

2 cosh β
2 hi(st

∂i
, st

i)
(4.94)

5. Draw a random number from the uniform distribution X ∼ U(0, 1). If

X ≤W(st+1
i = 1|hi(st

∂i
, st

i)) set st+1
i = 1. Otherwise, set st+1

i = 0.

6. Set i = i + 1 and go back to step step 4 until i = N.

7. Set t = t + 1 and go back to step 3 until t = tm.

The same procedure need only be modified slightly to simulate the bipartite

spin system. In that case specify ξ
µ
i , η

µ
i instead of Jij, according to

P(ξµ
i , η

µ
i ) and include additional initial conditions for the TFs P(τ0

µ) as well

as the number of TFs, M. After step 6, we then do the following

7. Set µ = 1 + N.

8. Compute the probability

W(τt+1
µ = 1|hµ(τ

t
∂µ

, τt
µ)) =

e
β
2 hµ(τt

∂µ
,τt

µ)

2 cosh β
2 hµ(τt

∂µ
, τt

µ)
(4.95)
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9. Draw a random number from the uniform distribution X ∼ U(0, 1). If

X ≤W(τt+1
µ = 1|hµ(τt

∂µ
, τt

µ)) set τt+1
µ = 1. Otherwise, set τt+1

µ = 0.

10. Set µ = µ + 1 and go back to step step 8 until µ = N + M.

11. Set t = t + 1 and go back to step 7 until t = tm.

By following steps 1-11, one can simulate a single trajectory of a bipartite

network with interactions described by ξ
µ
i and η

µ
i , from time t = 0, . . . , tm.

4.D Dynamical cavity approach to systems with self-

interactions

Here we detail the dynamical cavity approach for a system of N Boolean

variables with pairwise as well as self-interactions, which evolves in time ac-

cording to equation (4.75). As we shall show, it is possible to derive a closed

set of equations for such systems but, even for systems with unidirectional

interactions, these equations are exponential in complexity, and can not be

simplified using OTA schemes. To begin, we consider the trajectory of the

system from time t = 0 to t = tm, s0 → s1 → · · · → stm , which we denote

s0...tm . From equation (4.75) the trajectory of the system follows,

P(s0...tm) = P0(s0)
tm

∏
t=1

W(st|st−1). (4.96)

We now assume that the interactions, due to their sparsity, are represented by

a network with the topology of a tree. By following steps in 4.A, now applied
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to a monopartite system, we may write the probability to observe a single site

trajectory as,

Pi(s
0...tm
i ) = Pi(s0

i ) ∑
s0...tm−1

∂i

[
tm

∏
t=1

W(st
i |hi(st−1

∂i
, st−1

i ))

]

×∏
j∈∂i

P(i)
j (s0...tm−1

j |ζ(i),1...tm−1
j ) (4.97)

where P(i)
j (s0...tm−1

j |ζ(i),1,...tm−1
j ) is the probability to observe the trajectory s0,...tm−1

j

in the cavity graph where site i has been removed, given that site j feels a time

dependent external field ζ
(i),t
j = Jjist−1

i . Similarly, the probability of a trajec-

tory in the cavity graph is found to be given by,

P(ℓ)
i (s0...tm

i |ζ(ℓ),1,...,tm
i ) = Pi(s0

i ) ∑
s0...tm−1

∂i\ℓ

[
tm

∏
t=1

W(st
i |hi(st−1

∂i
, st−1

i )

]

× ∏
j∈∂i\ℓ

P(i)
j (s0...tm−1

j |ζ(i),1...tm−1
j ).

(4.98)

We are interested in the site marginals at a given time, however, in the pres-

ence of self-interactions, we cannot perform the sum over s0...tm−1
i explicitly,

even in the simplest scenario where interactions are unidirectional, as we will

show explicitly below. As noted earlier, for unidirectional interactions, cavity

and non-cavity distributions are equal, so we can write

Pi(s
0...tm
i ) = Pi(s0

i ) ∑
s0...tm−1

∂i

[
tm

∏
t=1

W(st
i |hi(st−1

∂i
, st−1

i ))

]

×∏
j∈∂i

Pj(s
0...tm−1
j ) (4.99)
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These equations cannot, however, be simplified by assuming suitably fac-

torised forms of the trajectory distribution. Even if we were to assume a

fully factorised distribution

Pj(s
0...tm−1
j ) =

tm−1

∏
t=0

Pj(st
j)

we would be left with

Pi(s
tm
i ) = ∑

s0...tm−1
i

Pi(s0
i )

tm

∏
t=1

∑
st−1

∂i

W(st
i |hi(st−1

∂i
, st−1

i )) ∏
j∈∂i

Pj(st−1
j ) (4.100)

which requires summing over a number 2tm(1+|∂i|) of variables which grows

exponentially in time. We would thus need to face the full complexity of

equations (4.97) and (4.98).

4.E One time approximation in the thermodynamic

limit

We now show how the distribution of site marginals for monopartite systems

without self-interactions, π({Pt}), defined in equation (4.53), may be com-

puted from the cavity method in the limit N → ∞. Starting from equation

234



4.E One time approximation in the thermodynamic limit

(4.53) we insert unity of the form,

1 = ∑
k

δk,|∂i|

∫
{dPt−2}∏

st−2

δ
(

Pt−2(st−2)− Pi(st−2)
)

×∏
j∈∂i

{ ∫
dJjd Ĵjδ

(
Jj − Jij

)
δ
(

Ĵj − Jji
)

×
∫
{dP̂j}∏

st−1
j

δ
(

P̂j(st−1
j )− P(i)

j (st−1
j | Ĵjst−2)

)}
(4.101)

which yields,

π({Pt}) = ∑
k

∫
{dPt−2}

∫ [ k

∏
j=1

dJjd Ĵj{dP̂j}
]
P
[
k, {Pt−2}, J, Ĵ, {P̂}

]
×∏

st

δ
(
Pt(st)− ϕ(k, {Pt−2}, J, Ĵ, {P̂})

)
(4.102)

where we have defined,

P
[
k, {Pt−2}, J, Ĵ, {P̂}

]
=

1
N ∑

i
δk,|∂i|∏

st−2

δ
(

Pt−2(st−2)− Pi(st−2)
)

×∏
j∈∂i

δ
(

Jj − Jij
)

δ
(

Ĵj − Jji
)
∏
st−1

j

δ
(

P̂j(st−1
j )− P(i)

j (st−1
j | Ĵjst−2)

)
(4.103)

which is the probability that a site drawn at random has degree k, site marginal

at two earlier time steps P(st−2), where each of the k neighbours acts on the

site with interactions J = (J1, . . . , Jk), and where the site acts on each neigh-

bour with interactions Ĵ = ( Ĵ1, . . . , Ĵk), and where each neighbour in the cavity
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graph with site i removed is described by the cavity site marginals at one ear-

lier time step {P̂} = (P̂(st−1
1 ), . . . , P̂(st−1

k )). The function ϕ(k, {Pt−2}, J, Ĵ, {P̂})

is defined in equation (4.55). To proceed we assume that all interactions Jij

are drawn independently from some distribution P(Jij), and also assume that

cavity fields are independent. Under these assumptions, we may use Bayes

theorem to write,

P
[
k, {Pt−2}, J, Ĵ, {P̂}

]
= P(k)πt−2

[
{Pt−2}|k, J, Ĵ

] k

∏
j=1

P(Jj)P( Ĵj|Jj)π̂t−1

[
{P̂j}| Ĵjst−2

] (4.104)

where we have defined π̂t−1
[
{P̂j}|x

]
, the distribution of cavity site marginals,

P̂j(st−1
j ), given that the site removed acts on the cavity graph with external

field x. We note that by definition in absence of external field the cavity dis-

tribution is equal to its non-cavity counterpart, π̂t−1
[
{P̂j}|0

]
= πt−1

[
{P̂j}

]
,

since if there is no external field, this implies that the cavity distribution is

uninfluenced by the removed site, such that Ĵ = 0 i.e P(i)
j (st−1

j |0) = Pj(st−1
j ).

We then insert (4.104) into (4.102) from which we find equation (4.54).

What remains is to find an expression for the distribution of cavity marginals

π̂t−1
[
{P̂j}|x

]
. By definition this object is, in the limit N → ∞, equivalent to,

π̂t
[
{P̂i}|x

]
=

1
N ∑

iℓ

Aiℓ
ki

∏
st

i

δ
(

P̂i(st
i)− P(ℓ)

i (st
i |x)

)
. (4.105)
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We insert into (4.105) unity of the form,

1 = ∑
k

δk,|∂i|∑
k′

δk′,|∂ℓ|

∫
{dPt−2}∏

st−2

δ
(

Pt−2(st−2)− Pi(st−2)
)

× ∏
j∈∂i\ℓ

{ ∫
dJjd Ĵjδ

(
Jj − Jij

)
δ
(

Ĵj − Jji
)

×
∫
{dP̂j}∏

st−1
j

δ
(

P̂j(st−1
j )− P(i)

j (st−1
j | Ĵjst−2)

)}
(4.106)

and define,

W
[
k, k′, {Pt−2}, J, Ĵ, {P̂}

]
=

1
N ⟨k⟩∑iℓ

Aiℓδk,|∂i|δk′,|∂ℓ|∏
st−2

δ
(

Pt−2(st−2)− Pi(st−2)
)

× ∏
j∈∂i\ℓ

δ
(

Jj − Jij
)

δ
(

Jj − Jji
)
∏
st−1

j

δ
(

P̂j(st−1
j )− P(i)

j (st−1
j | Ĵjst−2)

)
(4.107)

which, assuming that interactions are drawn independently, and that cavity

fields are independent, can be written using Bayes theorem,

W
[
k, k′, {Pt−2}, J, Ĵ, {P̂}

]
= W(k, k′)πt−2

[
{Pt−2}|k, J, Ĵ

] k−1

∏
j=1

P(Jj)P( Ĵj|Jj)π̂t−1

[
{P̂j}| Ĵjst−2

] (4.108)

where W
[
k, k′, {Pt−2}, J, Ĵ, {P̂}

]
is the probability to draw a link at random

connecting site i with degree k′ and site j with degree k, where j has neigh-

bours (excluding i) which act on site j with interactions J = (J1, . . . , Jk−1), and
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where j acts on its neighbours with interactions Ĵ = ( Ĵ1, . . . , Ĵk−1), and where

the activation of each neighbour is described by the cavity site marginals

{P̂} = (P̂(st−1
1 ), . . . , P̂(st−1

k−1)). We have also defined the degree correlation

function W(k, k′) = (N⟨k⟩)−1 ∑ij Aijδk′,|∂i|δk,|∂j| which is the probability to

draw a link at random with a node of degree k at one end and k′ at the other.

By writing the cavity fields as independent, we have implicitly assumed that

the network lacks strong degree correlations, and so we now explicitly as-

sume that degrees are uncorrelated such that W(k, k′) = W(k)W(k′) where

W(k) = kP(k)
⟨k⟩ is the probability to draw a link at random that is attached to

a node of degree k. Substituting this form of unity into the definition for the

cavity marginal (4.105) we find equation (4.56). Equations (4.54) and (4.56)

are a closed set of equations which may be solved via a population dynamics

procedure. Note, this a dynamical variant of the population dynamics proce-

dure, and can be used to compute the distribution of site marginals at each

point in time.

From the distributional equations (4.54) and (4.56), one can also derive a

closed set of equations for the average site marginal, which by definition is

given by,

Pt(st) =
∫
{dPt}π({Pt}){Pt}. (4.109)
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If we substitute equation (4.54) into (4.109) we find,

Pt(st) = ∑
k

P(k)
∫ [ k

∏
j=1

dJjd Ĵj{dP̂j}P(Jj)P( Ĵj|Jj)

]

× ∑
st−2

Pt−2(st−2|k, J, Ĵ) ∑
st−1

1 ,...,st−1
k

W(st|
k

∑
j=1

Jjst−1
j ) (4.110)

×
k

∏
j=1

[
(1− δĴj,0

)Qt−1(s
t−1
j | Ĵjst−2) + δĴj,0

Pt−1(st−1
j )

]

where we have defined,

Qt(s
t|x) =

∫
{dP̂}π̂({P̂t}|x){P̂t}. (4.111)

If we then insert equation (4.56) into (4.111), we find,

Qt(s
t|x) = ∑

k

kP(k)
⟨k⟩

∫ [k−1

∏
j=1

dJjd Ĵj{dP̂j}P(Jj)P( Ĵj|Jj)

]

× ∑
st−2

Pt−2(st−2|k, J, Ĵ) ∑
st−1

1 ,...,st−1
k−1

W(st|
k−1

∑
j=1

Jjst−1
j + x) (4.112)

×
k−1

∏
j=1

[
(1− δĴj,0

)Qt−1(s
t−1
j | Ĵjst−2) + δĴj,0

Pt−1(st−1
j )

]
.

Equations (4.110) and (4.112) are a closed set of equations that may be solved

via iteration. Previously, generating functional analysis (94) has been used

to derive the trajectory of an effective spin in a monopartite system without
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self-interactions,

P(s0 . . . stm) = ∑
k

P(k)
∫ [ k

∏
j=1

dJjP(Jj)

]

× ∑
s0,...,tm−1

1 ,...,s0,...,tm−1
k

P(s0)
tm

∏
t=0

[
W(st|

k

∑
j=1

Jjst−1
j )

]

×
k

∏
j=1

[
ϵQ(s0,...,tm−1

j |Jjs0,...,tm−2) + (1− ϵ)P(s0,...,tm−1
j )

]
(4.113)

with,

Q(s0,...,tm |ϑ0,...,tm) = ∑
k

kP(k)
⟨k⟩

∫ [k−1

∏
j=1

dJjP(Jj)

]

× ∑
s0,...,tm−1

1 ,...,s0,...,tm−1
k−1

P(s0)
tm

∏
t=0

[
W(st|

k−1

∑
j=1

Jjst−1
j + ϑt)

]

×
k−1

∏
j=1

[
ϵQ(s0,...,tm−1

j |Jjs0,...,tm−2) + (1− ϵ)P(s0,...,tm−1
j )

]
.

(4.114)

Here ϵ ∈ [0, 1] controls the symmetricity of the interactions and ϑ0,...,tm is a

time dependent external field. For fully symmetric networks, ϵ = 1, if one

assumes that Q(s0,...,tm−1
j |Jjs0,...,tm−2) = ∏tm−1

t=0 Q(st
j|Jjst−1), one can take the
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sum over s0,...,tm−1, and find,

P(stm) = ∑
k

P(k)
∫ [ k

∏
j=1

dJjP(Jj)

]

× ∑
stm−2

P(stm−2|k, J) ∑
stm−1

1 ,...,stm−1
k

W(st|
k

∑
j=1

Jjst−1
j )

×
k

∏
j=1

Q(stm−1
j |Jjst−1

j ) (4.115)

and similarly,

Q(stm |ϑtm−1) = ∑
k

kP(k)
⟨k⟩

∫ [k−1

∏
j=1

dJjP(Jj)

]

× ∑
stm−2

P(stm−2|k, J) ∑
stm−1

1 ,...,stm−1
k−1

W(st|
k−1

∑
j=1

Jjs
tm−1
j + ϑtm−1)

×
k−1

∏
j=1

Q(stm−1
j |Jjstm−2). (4.116)

These equations are equivalent to (4.110) and (4.112) when we assume that

interactions are fully symmetric. Hence, the GFA under the assumption of

Markovian time factorisation is equivalent to the dynamical cavity method

under OTA in the thermodynamic limit. If we assume time factorisation of

P(s0 . . . stm) one can also prove the equivalence of the GFA with dynamical

cavity under OTA when ϵ = 0. Curiously, for partially symmetric systems,

where 0 < ϵ < 1, it would seem that GFA under time factorisation is not

equivalent to dynamical cavity under OTA.
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5
Summary & Outlooks

5.1 Summary

In this thesis we have applied and extended methods from statistical mechan-

ics to study phenomena broadly related to immunity.

In Chapter 2, we proposed a model of the T-cell mediated anti-tumour

immune response. Describing the adaptive immune response as a set of cel-

lular interactions, this model retains a systemic view of anti-tumour immunity

while being comprised of only 5 ODEs. The main result of this work is a rel-

atively simple model which predicts a critical value of MHC-I above which

the immune system will eliminate a tumour, and below which the tumour

will escape the immune response. This critical value is dependent on the

helper/cytotoxic T-cell ratio and shows that a high proportion of cytotoxic

T-cells and high MHC-I expression are preferred conditions for tumour elim-

ination and would suggest good prognosis. Additionally, this suggests that

MHC-I and the CD4+/CD8+ T-cell ratio should be used as a marker of prog-

nosis in combination, as their interplay will affect their efficacy as markers of
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prognosis separately. This model also provides predictions of how the decay-

profile of MHC-I expression will affect the dynamics of tumour growth. Data

with temporal resolution sufficient to predict a functional form of MHC-I de-

cay, to the best of our knowledge, has not been ascertained in the literature.

However, we compared the predicted concentration of tumour cells under the

assumption of either an exponential or sigmoidal decay of MHC-I expression.

Strikingly, a sigmoidal decay lead to an elimination-equilibrium-escape pro-

file of the tumour cell concentration, as has been theorised to be the case in

reality. This begs the question is the loss of MHC-I the dominant factor in

generating such profiles?

After modelling the individual anti-tumour immune response, in Chapter

3 we studied how individual immunity affects the collective immunity of pop-

ulations. In particular, we studied the SIR model on networks, relaxing the

commonly prescribed assumption that vaccinated individuals can not trans-

mit an infection, and instead allowing vaccinated individuals to pass on an

infection with lower probability. The key result of this work was the deriva-

tion of the cavity equations which compute the risk of nodes (the probability

a node causes an outbreak if it is the initial infected node) in networks with

node heterogeneity and strong degree correlations. In doing so, we assumed

that the population could be split into subgroups, each with a different dis-

tribution from which the recovery time of an individual in that subgroup was

drawn, and defined a graph ensemble which would link nodes between these

subgroups with specified probabilities. We then derived the cavity equations

for the average risk in a network drawn from this ensemble, which can be

solved by gradient descent, and the distributional cavity equations, which

244



5.1 Summary

can be solved by population dynamics.

Using these equations we demonstrated how herd immunity can be at-

tained via inoculation with vaccines that reduce but do not prevent transmis-

sion, provided that the vaccine reduces transmission sufficiently. Intuitively,

we can show that the herd immunity threshold is higher when compared

with the herd immunity threshold for a vaccine which prevents all transmis-

sion of an individual. In a population divided into vaccinated and unvac-

cinated subgroups, the threshold is shown to depend upon the density of

links between these subgroups. Vaccines are often prioritised for those most

at risk of serious ill health. These results provide a theoretical framework to

reason whether vaccines should also be prioritised for groups in connection

with those who are most at risk. These results also highlight the robustness of

vaccination as a mitigation strategy for epidemics; a partial reduction of trans-

missibility of an individual is compounded at a population level, since each

path of transmission from that individual is weakened and, with sufficient

vaccine uptake, will lead to herd immunity.

The distributional equations of risk also demonstrate how the distribution

of risk qualitatively changes as the density of links between unvaccinated

and vaccinated subgroups increases, changing from a bimodal to a unimodal

distribution. This demonstrates that in this simple model, as the density of

links increases the risk of the unvaccinated tends to decrease, and the risk

of the vaccinated tends to increase, since they can still catch and transmit

the disease. The impact of strong degree correlations on the tail of the risk

distribution was also demonstrated, and assortative networks were shown to

be fat-tailed. Additionally, we have shown how to adapt the cavity equations
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to compute the risk of nodes in networks subject to bond percolation. The

deletion of a link was used as a simple model of measures which reduce

social contact. It is clear that in some cases the selection of which links are

deleted or which nodes are vaccinated will determine whether social contact

reduction or vaccination is the preferred strategy given finite resource. The

graph ensemble we defined can generate networks with modular structure,

power-law degree distribution and geometric random graphs, and as such

our methods can also be applied to networks of this type.

After using the cavity method to analyse the risk of nodes in the SIR model

on networks, in Chapter 4 we used the dynamical cavity method to study the

dynamics of sparse Boolean networks with self and multi-node interactions.

In gene regulatory networks, one observes interactions between genes and

TFs that in a Boolean network model of GRNs manifest as self and multi-

node interactions. Solving the dynamics of such systems required extending

the dynamical cavity formalism since direct application of the one-time ap-

proximation fails to provide a closed set of equations for systems with self-

interactions. Instead we demonstrated that it is possible to map such systems

to an equivalent bipartite system to which the OTA scheme can be directly ap-

plied, at the expense of doubling the size of the system of interest. Similarly,

a bipartite Boolean network of genes and TFs was defined, which allowed TFs

to operate with AND logic, where all genes that synthesise a TF must be ex-

pressed before it is synthesised. The dynamics of this model was also solved

under the OTA scheme. We demonstrated that for both systems with self and

multi-node interactions, the OTA can predict the activation probability of each

site in the transient and non-equilibrium steady state, down to relatively low
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temperature, where the system is ergodic. Evidence of ergodicity breaking at

lower temperatures was also found in systems with bidirectional links. Inter-

estingly, the dynamical cavity method under the OTA scheme was shown to

be equivalent to MC simulations at zero temperature if they were both ini-

tialised in the same configuration. As well as providing the dynamical cavity

equations for a given realisation of a network, we also derived equations for

the distribution of activation probabilities in the thermodynamic limit, under

the OTA scheme. These equations may be thought of as a dynamical variant

of the distributional equations derived in Chapter 3. From these equations,

expressions for the average site marginals were obtained and were found to

be equivalent to expressions found via generating functional analysis with

additional assumptions on the memory. Curiously, this equivalence can be

shown for fully asymmetric and symmetric networks, but not partially sym-

metric. Finally, sparse Boolean networks were shown to support multiple

(cyclic) attractors, at low temperatures. The diversity of attractors was shown

to be significantly higher for networks with multi-node interactions. From

this we posit that co-operation between genes in the formation of TFs may

be a mechanism for the support of diverse stable gene expression profiles in

GRNs. Since our bipartite model of GRNs supports multiple attractors, it may

provide a theoretical framework to study cellular differentiation, the change

from one stable gene expression profile to another.
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5.2 Outlooks

One omission in our model of the anti-tumour immune response is the explicit

heterogeneity of tumour cells. It would be of interest to generalise our model

to have different tumour cell types, with tumour cells mutating from one

type to another. Different tumour cells could have different expressions of

MHC-I and different antigens, such that different T-cells mediate the immune

response to different groups of tumour cells. To give an example we could

modify the equation for tumour growth, as

dcµ

dt
=

[
r−

γµ

V ∑
i

σi
(
1− η

µ
i
)

ξ
µ
i

]
cµ +

P

∑
ν=1

(
Aµνcν − Aνµcµ

)
(5.1)

where we indicate the tumour clone with index µ = 1, . . . , P, such that the

specificity of each T-cell is now indicated by ξ
µ
i , and its sub-type by η

µ
i such

that the statistics of each clone’s cognate T-cells may differ. We have also in-

cluded a term Aµν which describes the rate of mutation from tumour clone

µ to ν. Another consideration would be to extend our model to include the

innate immune response, which also plays an important role in tumour pro-

gression, in order to understand the interplay between the adaptive and in-

nate immune responses in anti-tumour immunity.

Our work on the SIR model on networks is perhaps most readily extend-

able to the study of competitive and cooperative diseases. In the case of

competitive diseases, two or more diseases spread through a population, but

a host is only infected with one, such that the diseases compete for hosts.

This is particularly relevant when understanding diseases that mutate from
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host-to-host, such that new strains appear in the population. On the other

hand, cooperative diseases may infect the same host together, and potentially

prolong the immune response against them, such that hosts remain infected

for longer. The question is whether our framework for analysing the distribu-

tion of node risk is amenable to the study of these processes. Our work has

utilised the static cavity approach, focussing only on the steady state. Pre-

vious works have considered the static cavity approach to competitive and

cooperative diseases (75, 76, 77). To take one example, in the work (76) they

find the probability that a node is infected with a strain α of a disease is,

vα
i = 1−∏

j∈∂i

hα
i←j (5.2)

hα
i←j = 1−∑

β

Tβα

1− ∏
ℓ∈∂j\i

hα
j←ℓ

 (5.3)

where Tβα is the probability for a node infected with strain β to infect a node

with strain α over the duration of its infectious period. Since it is well known

that the node risk and vulnerabilities are heterogeneous, it would be interest-

ing to see whether an analysis of the distribution of risk and vulnerabilities in

the context of competitive and cooperative diseases reveals any new insights

about these processes.

Studying GRNs as sparse Boolean networks has shown us that we can

study the non-equilibrium dynamics and equilibrium behaviour of systems

with self-interactions. For systems that reach an equilibrium state, the dynam-

ical cavity method in the steady-state will agree with the equilibrium state, at

both microscopic and macroscopic level. It remains an open point of inquiry
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whether the equilibrium cavity equations can be derived from the dynamical

cavity equations. A first point of investigation would be to consider a sim-

ple system, without self-interactions, for example, Ising spins along a chain.

Additionally, we have also shown that for sparse systems with partially bidi-

rectional interactions there is evidence of an ergodicity breaking transition

at low temperatures. New tools are required to ascertain this formally. In

equilibrium, the cavity method has been studied under the assumption of

ergodicity breaking (see e.g (256, 270, 271)) but it remains an open question

how one can reformulate the dynamical cavity under a similar assumption.

It would also be of interest if our model could be used to infer the interac-

tions which comprise the GRN from experimental data, by minimising the

differences between predicted and observed gene expression profiles.

In this thesis we have used statistical mechanics to build mathematical

models of processes related to immunity. These are phenomenological mod-

els, they are designed to capture specific behaviours at a macroscopic level (i.e

tumour elimination, herd immunity, and multiple stable gene expression pro-

files) and highlight key microscopic interactions which govern them (i.e the

helper/cytotoxic T-cell ratio, recovery rate of individuals, multi-node interac-

tions). While outside the scope of this thesis, validating these models with

observational data is a general point of outlook. The most readily amenable

model to comparison with experimental data is contained within Chapter 2,

due to it being comprised of ODEs describing cell concentration and acti-

vation, which can both be measured by experiment. Temporal data is often

difficult to ascertain clinically due to the ethical considerations required when

taking multiple samples from patients. However, this model can provide pre-

250



5.2 Outlooks

dictions without the need for direct comparison with the trajectory of cell

concentrations. Dynamical data is more common in other areas of clinical

science, such as pharmokinetic (PK) (i.e the change in concentration of drugs

in the body with time) and pharmodynamic (PD) (i.e the change in effect of

a drug on the body with its concentration) modelling which is often used in

the regulatory approval process of commercial drugs (272, 273, 274). PK/PD

modelling is particularly useful in the assessment of the recommended dose

and schedule of a drug. To overcome the limited temporal resolution that is

usually ascertained in clinical trials, so-called population models are created,

where the limited observations from many patients are collated, and parame-

ters of the model are estimated for the population as a whole. An analogous

framework has recently been proposed for vaccine development, referred to as

immunostimulation/immunodynamic modelling (275). The techniques used

in Chapter 2 may be an interesting candidate for IS/ID modelling, due to it

describing the change in the activation of T-cells over time, as oppose to their

direct concentration. This reduces the model complexity (there are not sepa-

rate compartments for activated and non-activated T-cells), and may be more

amenable to population modelling of the kind used in PK/PD modelling.
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A
The cavity method for processes on networks

In this section we provide an introduction to the cavity method, which we use

to derive several results throughout the thesis. In the first section, we show

how the cavity method may be used to deduce static properties of networks.

In doing so, we will highlight the key assumptions and arguments that the

cavity method rely on. In the second section, we show how these arguments

may be extended to the analysis of dynamical processes on networks.

A.1 Static properties of networks

Consider a network that is comprised of N nodes. A pair of nodes may

be connected by a link, and these links are described by an adjacency matrix

A = {0, 1}N2
where,

Aij =


1, if there is a link between node i and j

0, otherwise.
(A.1)
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Figure A.1.1: Left: A sketch of a portion of a network which is a tree. Nodes
are circles, and links are straight solid lines. Node i is shown to have three
neighbours j, k and ℓ. Nodes j, k and ℓ also have links to other nodes in the
network which are not sketched here. Right: The same network as in the left
panel, with node i (indicated by the dashed circle) and its links removed. This
is referred to as the i-cavity graph. The i-cavity graph is comprised of three sub-
trees, separated by the curved solid lines, rooted at nodes j, k and ℓ.

For simplicity we set Aii = 0 ∀ i such that there are no self-loops, a link from

node i to node i, in our network, (although, this will not affect the static cav-

ity analysis that follows). We assume that A is drawn from some distribution

P(A) such that it describes a random graph, a network where nodes are con-

nected by some random process. We wish to know whether or not a network

drawn from this distribution contains a giant connected component (GCC). This

is a set of connected nodes whose number is a finite fraction of the network

in the limit of infinite network size, N → ∞.

We first define ci(A) ∈ {0, 1} as an indicator variable that states whether

node i is a member of the GCC (ci(A) = 1) or whether it is not (ci(A) = 0).
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Note that we have written this explicitly as a function of the realisation of the

network A. The first step in the cavity method is to assume that the network

is a tree, where there is a single path only between any two nodes. This is

sketched in left hand side of Figure A.1.1. In this figure, we have sketched

a portion of the network with just four nodes, the node in the centre of the

sketch, i, and it’s three neighbours j, k and ℓ, which are also shown to have

links to other nodes in the network, which are left out of this sketch. From

Figure A.1.1 it is clear that if any neighbour of node i is in a GCC, it follows

that node i must also be in that GCC, since it shares a link with these nodes

and must also be a member of the set of connected nodes. On the right of

Figure A.1.1 we have sketched a copy of the network where node i and its

links have been removed - we refer to this new network as the i-cavity graph.

If one of the nodes j, k, ℓ are in a GCC in the i-cavity graph, adding node i

and its links back into the network will not alter this. We denote whether or

not node j belongs to a GCC in the network where i has been removed as

c(i)j (A) ∈ {0, 1}. These quantities are usually referred to as cavity fields. We

also see, on the right of Figure A.1.1, that when node i has been removed the

network has been divided into several smaller trees, which we refer to as sub-

trees, rooted at each neighbour of node i. Since the original network is a tree,

nodes belonging to different sub-trees in the i-cavity graph are disconnected

from each other. Thus, c(i)j (A), c(i)k (A) and c(i)ℓ (A), the membership of each

of these nodes to a GCC in the i-cavity graph, are independent of one another.

The independence of the cavity fields is the second crucial assumption of the

cavity method, and it is exact on networks which are trees.

By this reasoning, if at least one of the neighbours of i is in a GCC in the
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i-cavity graph, it follows that i will be in the GCC in the original network.

Mathematically, this statement is expressed as follows,

ci(A) = 1− ∏
j∈∂A

i

(1− c(i)j (A)) (A.2)

where we have defined ∂A
i = {j : Aij = 1} as the set of nodes in the network

A which are in the neighbourhood of node i. What remains is to write an ex-

pression for the cavity fields. Consider the sub-tree rooted at node j, sketched

on the right of Figure A.1.1. This sub-tree is a tree like any other, and can

be sketched as on the left of Figure A.1.1, with node j at its center, and its

neighbours (excluding node i) connected it to it via a link. Hence, by exactly

the same reasoning as we used before, we may say that node j is in a GCC in

the i-cavity graph if at least one of the neighbours of node j (excluding node

i) is in a GCC in the j-cavity graph. This is expressed mathematically by,

c(i)j (A) = 1− ∏
ℓ∈∂A

j \i
(1− c(j)

ℓ (A)) (A.3)

where the product is now over all nodes in the network A which are in the

neighbourhood of node j with the exception of node i (which is absent from

the cavity graph on which c(i)j (A) is defined). Equations (A.2)-(A.3) may be

solved by numerical iteration; one starts by initialising all c(i)j (A) ∀ i, j =

1, . . . , N with some arbitrary initial condition (usually setting all c(i)j (A) = 1

is practically effective), and these equations are iteratively solved until they

converge. Once they have converged their solution may be inserted into (A.2)

to compute ci(A) ∀ i = 1, . . . , N and reveal which nodes are in a GCC.
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These expressions describe which nodes are in a GCC for a given instance

of a network A drawn from the ensemble of random networks that P(A) de-

fines. To find out whether or not a typical network drawn from this ensemble

has a GCC we now consider the fraction of nodes which belong to the GCC,

which is given by m(A) = 1
N ∑N

i=1 ci(A). By taking the sum over all nodes

and dividing by N in (A.2) we may write,

m(A) = 1− 1
N

N

∑
i=1

∏
j∈∂A

i

(
1− c(i)j (A)

)
. (A.4)

We can then denote the degree of a node, i.e the number of links attached to

node i, as ki = ∑j Aij and insert 1 = ∑k δk,ki into the above to find,

m(A) = 1− 1
N

N

∑
i=1

∑
k

δk,ki ∏
j∈∂A

i

(
1− c(i)j (A)

)
. (A.5)

We then insert 1 = ∑ĉj
δ

ĉj,c
(i)
j (A)

into the above, which yields,

m(A) = 1− 1
N

N

∑
i=1

∑
k

δk,ki ∏
j∈∂A

i

(1− c(i)j

)
∑̂
cj

δ
ĉj,c

(i)
j (A)

 (A.6)

= 1− 1
N

N

∑
i=1

∑
ĉ1,...ĉk

δĉ,c(i) ∑
k

δk,ki

k

∏
j=1

[(
1− ĉj

)]
(A.7)

where ĉ = (ĉ1, . . . , ĉk) and c(i) = (c(i)1 , . . . , c(i)k ). We now define the distribu-

tion,

P(k, ĉ|A) = lim
N→∞

1
N

N

∑
i=1

δk,ki

k

∏
j=1

δ
ĉj,c

(i)
j (A)

(A.8)
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which is the probability to select a node at random which has degree k and

neighbours with cavity fields ĉ = (ĉ1, ĉ2, . . . , ĉk). With this distribution de-

fined we may write,

m(A) = 1−∑
k

∑
ĉ1,...,ĉk

P(k, ĉ|A)
k

∏
j=1

[(
1− ĉj(A)

)]
. (A.9)

We now make the assumption that the degrees of nodes are uncorrelated. If

we consider again Figure A.1.1 we can argue that the cavity fields c(i)j are

independent of the degree of node i. The cavity field c(i)j will depend upon

the degree of node j, since nodes with more links are more likely to be a

member of a GCC. Likewise c(i)j will depend on the degree of its neighbours,

and their neighbours, and so on. Since node i is absent from the network,

the degree of node i should have no influence on c(i)j . However, this is only

the case if the degree of nodes are uncorrelated. If the degree of nodes are

correlated, then the degree of node i would be correlated with the degree of

node j, which does influence c(i)j , and hence c(i)j would not be independent

of the degree of node i. Hence, by assuming that degrees are uncorrelated

we may write that the degree of a randomly selected node is independent of

the cavity fields of its neighbours P(k, ĉ|A) = P(k|A)P(ĉ|A). Furthermore, as

shown on the right of Figure A.1.1, when a node is removed from the network,

the network splits into several trees, such that the cavity fields of these nodes

will be independent of each other and we may write P(ĉ|A) = ∏k
j=1 P(ĉj|A).

Therefore, under the assumption that degrees are uncorrelated, equation (A.9)

258



A.1 Static properties of networks

becomes,

m(A) = 1−∑
k

P(k|A)
k

∏
j=1

∑̂
cj

P(ĉj|A)
[(

1− ĉj(A)
)]

(A.10)

= 1−∑
k

P(k|A)
[
(1− m̂(A))k

]
(A.11)

where we have defined m̂(A) = ∑ĉ P(ĉ|A)ĉ which is the average cavity field

in the network A. We must then find an expression for m̂(A).

From its definition we may write,

m̂(A) = ∑̂
c

P(ĉ|A)ĉ (A.12)

= ∑
k

∑̂
c

P(k, ĉ|A)ĉ (A.13)

= ∑
k

∑
ĉ1,...,ĉk

P(k, ĉ|A)
1
k

k

∑
j=1

ĉj (A.14)

=
1
N ∑

i
∑
k

∑
ĉ1,...,ĉk

δk,ki

[
k

∏
j=1

δ
ĉj,c

(i)
j (A)

]
1
k

k

∑
j=1

ĉj (A.15)

=
1
N

N

∑
i,j=1

Aij

ki
c(i)j (A). (A.16)

By inserting equation (A.3) into (A.16) we may write,

m̂(A) = 1− 1
N

N

∑
i,j=1

Aij

ki
∏

ℓ∈∂A
j \i

(1− c(j)
ℓ (A)) (A.17)

259



A. THE CAVITY METHOD FOR PROCESSES ON NETWORKS

where we then insert 1 = ∑k,k′ δk,ki δk′,kj
and 1 = ∑ĉ′ℓ

δ
ĉ′ℓ,c

(j)
ℓ (A)

in the above,

m̂(A) = 1− 1
kN

N

∑
i,j=1

Aijδk,ki δk′,kj ∑
ĉ′1,...,ĉ′

k′−1

∏
ℓ∈∂A

j \i
δ

ĉ′ℓ,c
(j)
ℓ (A)

(1− ĉ′ℓ). (A.18)

We then define the distribution,

W(k, k′, ĉ′|A) =
∑N

i,j=1 Aijδk,ki δk′,kj

[
∏ℓ∈∂A

j \i
δ

ĉ′ℓ,c
(j)
ℓ (A)

]
∑ij Aij

(A.19)

where we note that ∑ij Aij = k̄N where k̄ = ∑k kP(k|A) is the average degree

of nodes in the network. This distribution is the probability to select a link

at random in the network A with a node of degree k at one end and k′ at

the other, where the node with degree k′ has k′ − 1 neighbours, excluding the

node with degree k, which have cavity fields ĉ′ = (ĉ′1, . . . , ĉ′k′−1). We may now

rewrite (A.18) as,

m̂(A) = 1−∑
k

∑
ĉ′1,...,ĉ′

k′−1

k̄
k

W(k, k′, ĉ′|A)
k′−1

∏
ℓ=1

(1− ĉ′ℓ(A)). (A.20)

As we have previously argued, by assuming that degrees are uncorrelated, it

follows that the cavity fields ĉ′ are independent of k and k′. Hence we may

write, W(k, k′, ĉ′|A) = W(k, k′|A)P(ĉ′|A). Here we have defined W(k, k′|A),

the degree correlation function, which is the probability to select a link from

A at random with a node of degree k and k′ at either end. Additionally,

we again state that by assuming the network is a tree, the cavity fields are

independent of each other and, hence, we may write P(ĉ′|A) = ∏k
j=1 P(ĉ′j|A).
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Under these assumptions equation (A.20) may then be written,

m̂(A) = 1−∑
k

k̄
k

W(k, k′|A)
k′−1

∏
ℓ=1

∑
ĉ′ℓ

P(ĉ′ℓ|A)(1− ĉ′ℓ(A)) (A.21)

= 1−∑
k

k̄
k

W(k, k′|A)(1− m̂(A))k′−1. (A.22)

Since degrees are assumed to be uncorrelated W(k, k′|A) = W(k|A)W(k′|A).

From its definition W(k|A) = ∑k W(k, k′|A) =
∑k′ ∑ij Aijδki ,k

δkj ,k
′

k̄N = kP(k|A)
k̄ .

Therefore, we find our final expression for the average cavity field,

m̂(A) = 1−∑
k

k′P(k′|A)

k̄
(1− m̂(A))k′−1. (A.23)

Equation (A.23) is a self-consistent equation that may be solved by numerical

iteration, starting with a random initial condition and iterating until conver-

gence. Its solution may then be inserted into (A.11) to find the fraction of

nodes in a GCC in A.

Lastly, it should be noted that the dependence on the specific realisation of

A is only through the degree distribution P(k|A). It is expected of extensive

properties of networks, in the limit N → ∞, that their fluctuations between

specific realisations of the network A will vanish, and their value for a spe-

cific realisation of the network will be equal to the ensemble averaged value.

Hence, in the limit N → ∞, we may assume that the degree distribution is

independent of the specific realisation of the network P(k|A) = P(k). In this
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case, (A.11) and (A.23) no longer depend on A and we may write,

m = 1−∑
k

P(k)(1− m̂)k (A.24)

m̂ = 1−∑
k′

k′P(k′)
k̄

(1− m̂)k′−1 = f (m̂). (A.25)

So far, we have derived the cavity equations (A.2) and (A.3) for node-

specific, microscopic, quantities ci(A), and the cavity equations (A.24) and

(A.25) for the node-averaged, macroscopic, quantity m. In both cases, the cav-

ity equations are derived under the assumption that the network is a tree, and

are exact when this is the case. The cavity equations have also been shown to

be a good approximation for large random networks. It is a general property

of random networks that the length of a typical cycle, a closed path between

any two nodes, grows as O(log N) (224). For large N one then expects there

to be an absence of short cycles, in which case we say the network is locally

tree-like, and hence the cavity equations, which assume that the network un-

der consideration is a tree, are a good approximation. Furthermore, in the

limit N → ∞, the length of a typical cycle will diverge to infinity, and the

cavity method becomes exact.

We can now find a condition for the existence of a GCC if we consider a

graphical solution to the self-consistent equation (A.25). The idea behind the

graphical solution is as follows. We first take the derivative of f (m̂) with
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respect to m̂,

f ′(m̂) = ∑
k′

k′(k′ − 1)P(k′)
k̄

(1− m̂)k′−2 (A.26)

which is strictly positive, f ′(m̂) ≥ 0, since m̂ ∈ [0, 1]. Similarly, the second

derivative,

f ′′(m̂) = −∑
k′

k′(k′ − 1)(k′ − 2)P(k′)
k̄

(1− m̂)k′−3 (A.27)

is strictly negative f ′′(m̂) ≤ 0. In combination, this tells us that f (m̂) is a

monotonically increasing, f ′(m̂) ≥ 0, and concave, f ′′(m̂) ≤ 0, function. We

next note that there is a trivial solution when m̂ = 0 which, when substituted

into (A.11), corresponds to m = 0 where there is no GCC. In Figure A.1.2 we

illustrate that the solution to (A.25) is given by the intersection of the curve

y = f (m̂) with the diagonal y = m̂. Due to the monotonically increasing and

concave nature of f (m̂) there are two scenarios to consider. Either the curve

y = f (m̂) passes below the diagonal at m̂ = 0, thus it only intersects the

diagonal at m̂ = 0, or y = f (m̂) passes above the diagonal at m̂ = 0, in which

case the curve will eventually cross the diagonal again and hence there is a

non-zero solution to (A.25). Therefore, the condition for there to be a non-zero

solution is given by, f ′(0) > 0 which from (A.26) we find to be equivalent to,

∑
k′

k′(k′ − 1)P(k′)
k̄

> 1. (A.28)

If we denote the second moment of the degree distribution k2 = ∑k k2P(k),
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Figure A.1.2: A sketch of the graphical solution to equation (A.25). The dashed
line indicates y = m̂ and the solid lines indicate y = f (m̂) for two different
parameterisations where i) f ′(0) < 1 such that y = f (m̂) intersects with y = m̂
only at m̂ = 0 and ii) where f ′(0) > 1 such that there is an additional intersection
at m̂ > 0.

the condition above is equivalent to,

k2 − k̄
k̄

> 1. (A.29)

Hence, the cavity method states that networks which meet the condition

(A.29) contain a GCC.

A.2 Dynamical processes on networks

The arguments that the cavity method rely on to analyse static properties

of networks may also be applied to the analysis of dynamical processes on

networks. As an example, we shall consider a network with N nodes, where

each node is described by a binary state variable σi ∈ {0, 1} ∀ i = 1, . . . , N.

We consider a system that evolves in discrete time steps according to the
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following equation,

P(σt+1) = ∑
σt

W(σt+1|σt)P(σt) (A.30)

where P(σt) is the probability to observe, at time t, a configuration of the

network σt = (σt
1, . . . , σt

N), where σt
i is the state of node i at time t, and

W(σt+1|σt) is the probability to transition from configuration σt to σt+1. We

choose the transition probabilities to be of the following form,

W(σt+1|σt) =
N

∏
i=1

W(σt+1
i |hi(σ

t
∂A

i
)) (A.31)

where we define,

W(σt+1
i |hi(σ

t
∂i
)) =

eβ(2σt+1
i −1)hi(σ

t
∂i
)

2 cosh βhi(σ
t
∂i
)

(A.32)

and hi(σ
t
∂i
) = ∑j∈∂i

Jijσ
t
j is the local field that acts on node i. This local field

is a sum over the state of the neighbours of node i, which we denote by

σt
∂i
= {σt

j ∀ j ∈ ∂i}, multiplied by the interaction matrix Jij. This interaction

matrix is a weighted adjacency matrix, if Jij = 0 there is no link from node j to

i, if Jij > 0 then there is a link from j to i and node j promotes the activation

of node i, i.e σt
i = 1, and if Jij < 0 then there is also a link from j to i but

node j inhibits the activation of node i. This choice of dynamics is known

as synchronous Glauber dynamics. The dynamics are said to be synchronous

because the transition probabilities W(σt+1|σt) factorise over the nodes in the

network, such that in a given time step all nodes update their state based
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on the state of the network at the previous point in time. The term Glauber

dynamics refers to the specific choice of W(σt+1
i |hi(σ

t
∂i
)) we have made, and

is a well studied model of statistical mechanics.

The equation of evolution (A.30) is intractable, involving a sum over |σt| =

2N variables. However, knowing that the state of a node at any given point

in time will be updated only according to the state of its neighbours at the

previous time point, one may ask if the cavity arguments we used to study

static properties of networks can be used to derive a simpler expression that

describes the dynamics of the system. Specifically, we seek to derive an ex-

pression for single node quantities, as oppose to the joint distribution of all

nodes in the network that is described by equation (A.30). To begin, as in the

static cavity method, we assume our network is a tree. As sketched in Figure

A.1.1, node i shares a link with nodes j, k and ℓ, and therefore the state of

node i at some time t + 1, σt+1
i , will depend on the state of its neighbours at

time t, σt
j , σt

k and σt
ℓ, or using our shorthand σt

∂i
= (σt

j , σt
k, σt

ℓ).

When we considered the static properties of networks, we stated that the

membership of node i to a GCC, ci, was dependent on the membership of

its neighbours to a GCC cj, ck, cℓ, i.e if one of its neighbours is in a GCC, by

definition so is node i. We then noted that because the network is assumed

to be a tree, it is also true that if one of the neighbours of node i is in a GCC

in the i-cavity graph, then node i is in a GCC in the original network. The

cavity fields c(i)j , c(i)k and c(i)ℓ are independent of ci since i is absent from the

i-cavity graph. Hence, we write an expression, equation (A.2) for ci that was

dependent on the cavity fields c(i)j , c(i)k and c(i)ℓ . In the context of the dynamics

of networks such an argument cannot be made for the state of a node σt
i ; the
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Figure A.2.1: A sketch of a network which is a tree. Here the tree is rooted at
node i, which has neighbours j and k. Nodes j and k are shown to have several
neighbours, which themselves are connected to further nodes in the network, not
sketched. The large black box contains the set of nodes Ti, which are all nodes in
the tree rooted at node i. The dashed black box contains all the nodes belonging
to the set Tj \ i, which are the nodes in the sub-tree rooted at node j when node i
is removed from the network.

state of the neighbours of node i in the i-cavity graph at some time t, σ
(i),t
j ,

σ
(i),t
k and σ

(i),t
ℓ are not independent of node i. This is because each of them will

be influenced by the state of node i at the previous time point σt−1
i . Although

we have assumed that the network is a tree, correlations between the state of

nodes at different time points prevent us from applying the cavity argument

directly to the state of each node at a given point in time σt
i , and we can not

formulate an expression relating σt
i to σ

(i),t
∂i

.

However, as we shall now show, the cavity argument can still be used to

derive a set of expressions describing single node quantities, if one considers

not the state of a node at an arbitrary point in time, but its entire trajectory.

The probability to observe a trajectory of the network from time t = 0, . . . , tm
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σ0 → σ1 → · · · → σtm is given by,

P(σ0, . . . , σtm) = P(σ0)
tm−1

∏
t=0

W(σt+1|σt) (A.33)

= P(σ0)
tm−1

∏
t=0

N

∏
i=1

W(σt+1
i |hi(σ

t
∂i
)). (A.34)

From the above we can find the probability of a trajectory of a single node i

by taking the sum over σt \ σt
i ∀ t = 0, . . . , tm,

P(σ0
i , . . . , σtm

i ) = ∑
σ0,...,σtm\σ0

i ,...,σtm
i

P(σ0)
tm−1

∏
t=0

N

∏
i=1

W(σt+1
i |hi(σ

t
∂i
)). (A.35)

We then separate the terms containing node i,

P(σ0
i , . . . , σtm

i ) = ∑
σ0,...,σtm\σ0

i ,...,σtm
i

P(σ0) (A.36)

×
tm−1

∏
t=0

W(σt+1
i |hi(σ

t
∂i
)) ∏

j∈Ti\i
W(σt+1

j |hj(σ
t
∂j
)) (A.37)

where we have defined Ti as the set of nodes that describe the tree rooted

at node i, which we sketch in Figure A.2.1. We may now separate the terms

in Ti, into a product over the neighbours of node i, and a product over the

sub-trees, rooted at each of the neighbours of node i, which are formed when
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node i is removed from the network,

∏
j∈Ti\i

W(σt+1
j |hj(σ

t
∂j
)) (A.38)

= ∏
j∈∂i

W(σt+1
j |hj(σ

t
∂j
) ∏

k∈Tj\i,j
W(σt+1

k |hk(σ
t
∂k
))

 . (A.39)

The expression above contains a product over Tj \ i, j, which is the sub-tree

rooted at node j when node i is removed from the network, Tj \ i, as sketched

in Figure A.2.1, with node j also removed from this set. We may also write

the local field acting on node j as,

hj(σ
t
∂j
) = ∑

k
Jjkσt

k = ∑
k∈∂j\i

Jjkσt
k + Jjiσ

t
i = h(i)j (σt

∂j
) + Jjiσ

t
i ) (A.40)

where we have defined the local cavity field h(i)j (σt
∂j
) = ∑k∈∂j\i Jjkσt

k. This allows

us to write,

Pi(σ
0...tm
i ) = Pi(σ

0
i ) ∑

σ0...tm
∂i
\σ0...tm

i

[
tm−1

∏
t=0

W(σt+1
i |hi(σ

t
∂i
))

]
(A.41)

× ∑
σ0...tm\σ0...tm

i ,σ0...tm
∂i

P(σ0 \ σ0
i ) (A.42)

×
tm−1

∏
t=0

∏
j∈∂i

W(σt+1
j |h(i)j (σt

∂j
) + Jjiσ

t
i ) ∏

k∈Tj\i,j
W(σt+1

k |hk(σ
t
∂k
))

 .

(A.43)

We then move the sum over the nodes which are not in the neighbourhood of
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i inside the product over j ∈ ∂i

Pi(σ
0...tm
i ) = Pi(σ

0
i ) ∑

σ0...tm
∂i
\σ0...tm

i

[
tm−1

∏
t=0

W(σt+1
i |hi(σ

t
∂i
))

]
(A.44)

×∏
j∈∂i

{
∑

σ0...tm
Tj
\σ0...tm

i ,σ0...tm
j

P(σ0
Tj
\ σ0

i ) (A.45)

×
tm−1

∏
t=0

W(σt+1
j |h(i)j (σt

∂j
) + Jjiσ

t
i ) ∏

k∈Tj\i,j
W(σt+1

k |hk(σ
t
∂k
))

}. (A.46)

At this stage we can see that we can take the external sum over σtm
∂i

and the

internal sums over σtm
Tj

Pi(σ
0...tm
i ) = Pi(σ

0
i ) ∑

σ0...tm−1
∂i

\σ0...tm−1
i

[
tm−1

∏
t=0

W(σt+1
i |hi(σ

t
∂i
))

]
(A.47)

×∏
j∈∂i

{
∑

σ0...tm−1
Tj

\σ0...tm−1
i ,σ0...tm−1

j

P(σ0
Tj
\ σ0

i ) (A.48)

×
tm−1

∏
t=0

W(σt+1
j |h(i)j (σt

∂j
) + Jjiσ

t
i ) ∏

k∈Tj\i,j
W(σt+1

k |hk(σ
t
∂k
))

}. (A.49)

The next step is to notice that the terms inside the curly brackets above are a

marginalisation of some joint probability distribution, and when the internal

sum ∑σ0...tm−1
Tj

\σ0...tm−1
i ,σ0...tm−1

j
is taken, what remains will be the joint distribu-

tion P(i)
j (σ0...tm−1

i |ζ(i),0...tm−1
j ) which is interpreted as the probability to observe

the trajectory σ0...tm
j in the i-cavity graph, given that node i exerts an external

field ζ
(i),t
j = Jjiσ

t−1
i on node j in the i-cavity graph. By defining the contents

of the curly brackets above as P(i)
j (σ0...tm−1

i |ζ(i),0...tm−1
j ), the probability of the
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trajectory of a single node is given by,

Pi(σ
0...tm
i ) = Pi(σ

0
i ) ∑

σ0...tm−1
∂i

[
tm−1

∏
t=0

W(σt+1
i |hi(σ

t
∂i
))

]

×∏
j∈∂i

P(i)
j (σ0...tm−1

i |ζ(i),0...tm−1
j ). (A.50)

A similar expression can be derived for the cavity distribution P(j)
i (σ0...tm

i ) if

we consider removing a node ℓ from the above expression,

P(ℓ)
i (σ0...tm

i ) = Pi(σ
0
i ) ∑

σ0...tm−1
∂i

\σ0...tm−1
ℓ

[
tm−1

∏
t=0

W(σt+1
i |h(ℓ)i (σt

∂i
))

]

× ∏
j∈∂i\ℓ

P(i)
j (σ0...tm−1

i |ζ(i),0...tm−1
j ). (A.51)

We are yet to find an expression for the cavity distribution where the node

that is removed exerts a time dependent external field ζ
(ℓ),t
i , denoted by

P(ℓ)
i (σ0...tm

i |ζ(ℓ),0...tm
i ). However, it is by definition that this external field will

alter the local field h(ℓ)i (σt
∂i
) → h(ℓ)i (σt

∂i
) + ζ

(ℓ),t
i = hi(σ

t
∂i
). Hence, we condi-

tion the distribution in equation (A.51) on ζ
(ℓ),0...tm
i and replace h(ℓ)i (σt

∂i
) with

hi(σ
t
∂i
) to find,

P(ℓ)
i (σ0...tm

i |ζ(ℓ),0...tm
i ) = Pi(σ

0
i ) ∑

σ0...tm−1
∂i

\σ0...tm−1
ℓ

[
tm−1

∏
t=0

W(σt+1
i |hi(σ

t
∂i
))

]

× ∏
j∈∂i\ℓ

P(i)
j (σ0...tm−1

i |ζ(i),0...tm−1
j ).

(A.52)
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By considering the trajectory of single nodes, we have shown that by as-

suming the network is a tree, the cavity method may be used to derive equa-

tions (A.50) and (A.52), a closed set of equations that can be solved recursively.

As they rely on the same assumptions as the static cavity method, they are

exact on trees, and locally tree-like networks in the limit N → ∞.

To demonstrate the utility of the dynamical cavity method, we can con-

sider a particular choice for the interaction matrix Jij where these equations

can be simplified. Namely, we will assume that the network is unidirectional

such that if there is a link from j to i, Jij ̸= 0, there will not be a link from i

to j, Jji = 0. In this case the external field on the right hand side of equation

(A.50) becomes is zero ζ
(i)
j = Jjiσ

t
i =0, such that,

Pi(σ
0...tm
i ) = Pi(σ

0
i ) ∑

σ0...tm−1
∂i

[
tm−1

∏
t=0

W(σt+1
i |hi(σ

t
∂i
))

]

×∏
j∈∂i

P(i)
j (σ0...tm−1

i |0) (A.53)

which from (A.52) is equal to,

P(i)
j (σ0...tm

j |0) = Pi(σ
0
i ) ∑

σ0...tm−1
∂i

\σ0...tm−1
i

[
tm−1

∏
t=0

W(σt+1
i |h(i)j (σt

∂j
))

]

× ∏
ℓ∈∂j\i

P(j)
ℓ (σ0...tm−1

ℓ |ζ(j),0...tm−1
ℓ ) (A.54)

= P(i)
j (σ0...tm

j ). (A.55)

Hence, for networks with unidirectional interactions, the single node trajec-
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tory is described by

Pi(σ
0...tm
i ) = Pi(σ

0
i ) ∑

σ0...tm−1
∂i

[
tm−1

∏
t=0

W(σt+1
i |hi(σ

t
∂i
))

]

×∏
j∈∂i

P(i)
j (σ0...tm−1

i ) (A.56)

which we can take the sum over σ0...tm−1
i to find an expression for σtm

i ,

Pi(σ
tm
i ) = ∑

σ0...tm−1
i

Pi(σ
0
i ) ∑

σ0...tm−1
∂i

[
tm−1

∏
t=0

W(σt+1
i |hi(σ

t
∂i
))

]

×∏
j∈∂i

P(i)
j (σ0...tm−1

j ) (A.57)

= ∑
σ0...tm−1

∂i

W(σtm
i |hi(σ

tm−1
∂i

)) ∏
j∈∂i

P(i)
j (σ0...tm−1

j ) (A.58)

= ∑
σtm−1

∂i

W(σtm
i |hi(σ

tm−1
∂i

)) ∏
j∈∂i

P(i)
j (σtm−1

j ) (A.59)

where in the last line we have related the distribution for the state of a single

node, Pi(σ
tm
i ), to the cavity fields of its neighbouring nodes P(i)

j (σtm−1
i ). Lastly,

we note that since the interactions are unidirectional, in the above expression

P(i)
j (σtm−1

j ) = Pj(σ
tm−1
j ) since the existence of P(i)

j (σtm−1
j ) implies that there is

a node from j to i, and hence, there is not a link from i to j, and node i has

no influence on node j. Hence, for unidirectional networks we have that the

probability to observe a node in state σi at time tm is given by,

Pi(σ
tm
i ) = ∑

σtm−1
∂i

W(σtm
i |hi(σ

tm−1
∂i

)) ∏
j∈∂i

Pj(σ
tm−1
j ) (A.60)
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which reveals that the evolution of the state of each node in unidirectional net-

works is Markovian. For unidirectional networks the dynamical cavity equa-

tions (A.60) are simpler to solve at long times than equation (A.50). This is be-

cause equation (A.60) does not contain the sum over a set of |σ0...tm−1
∂i

| = 2|∂i|tm

variables, that appears in equation (A.50), the size of which is exponentially

increasing with time. It should, however, be noted that although the dynam-

ical cavity equations reduce in computational complexity for unidirectional

networks, equation (A.60) still contains a sum over a set of |σtm−1
∂i
| = 2|∂i|

variables, the size of which increases exponentially with the size of neigh-

bourhood of node i, |∂i|. Therefore, for networks with nodes of large degree,

these equations will also suffer from high computational complexity, although

methods to overcome this have been addressed recently (249).
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Control of T-cell-mediated immune response by HLA class I in
human pancreatic carcinoma. Clinical cancer research : an official
journal of the American Association for Cancer Research, 11[2 Pt 1]:498–
504, 2005. 34, 35

[134] Wouter Scheper, Sander Kelderman, Lorenzo F. Fanchi,
Carsten Linnemann, Gavin Bendle, Marije A.J. de Rooij,
Christian Hirt, Riccardo Mezzadra, Maarten Slagter, Krijn

Dijkstra, Roelof J.C. Kluin, Petur Snaebjornsson, Katy Milne,
Brad H. Nelson, Henry Zijlmans, Gemma Kenter, Emile E.
Voest, John B.A.G. Haanen, and Ton N. Schumacher. Low and
variable tumor reactivity of the intratumoral TCR repertoire in
human cancers. Nature Medicine, 25[1]:89–94, Dec 2019. 34, 81

[135] Zahra Madjd, Ian Spendlove, Sarah E. Pinder, Ian O. Ellis,
and Lindy G. Durrant. Total loss of MHC class I is an indepen-
dent indicator of good prognosis in breast cancer. International
Journal of Cancer, 117[2]:248–255, Nov 2005. 34

[136] Simon Turcotte, Steven C Katz, Jinru Shia, William R Jarna-
gin, T Peter Kingham, Peter J Allen, Yuman Fong, Michael I
D’Angelica, and Ronald P DeMatteo. Tumor MHC class I
expression improves the prognostic value of T-cell density in
resected colorectal liver metastases. Cancer immunology research,
2[6]:530–7, Jun 2014. 35, 65, 67, 80

[137] Grace E Mahlbacher, Kara C Reihmer, and Hermann B
Frieboes. Mathematical modeling of tumor-immune cell inter-
actions. Journal of Theoretical Biology, 469:47–60, 2019. 36

[138] Mohammad El Wajeh, Falco Jung, Dominik Bongartz,
Chrysoula Dimitra Kappatou, Narmin Ghaffari Laleh,
Alexander Mitsos, and Jakob Nikolas Kather. Can the
Kuznetsov Model Replicate and Predict Cancer Growth in Hu-
mans? Bulletin of Mathematical Biology, 84[11]:130, 2022. 36

[139] Katherine Owens and Ivana Bozic. Modeling CAR T-cell ther-
apy with patient preconditioning. Bulletin of Mathematical Biology,
83:1–36, 2021. 36

[140] Motahareh Moghtadaei, Mohammad Reza Hashemi Gol-
payegani, and Reza Malekzadeh. Periodic and chaotic dynamics
in a map-based model of tumor–immune interaction. Journal of
theoretical biology, 334:130–140, 2013. 36

[141] Kathleen P Wilkie and Philip Hahnfeldt. Mathematical mod-
els of immune-induced cancer dormancy and the emergence of
immune evasion. Interface Focus, 3[4]:20130010, 2013. 36

[142] Yueping Dong, Rinko Miyazaki, and Yasuhiro Takeuchi.
MATHEMATICAL MODELING ON HELPER T CELLS IN A
TUMOR IMMUNE SYSTEM. Discrete & Continuous Dynamical
Systems-Series B, 19[1], 2014. 36

[143] Mark Robertson-Tessi, Ardith El-Kareh, and Alain Goriely.
A mathematical model of tumor–immune interactions. Journal of
theoretical biology, 294:56–73, 2012. 37

[144] Zhongtao Yang, Cuihong Yang, Yueping Dong, and Yasuhiro

Takeuchi. Mathematical modelling of the inhibitory role of reg-
ulatory T cells in tumor immune response. Complexity, 2020:1–21,
2020. 37

[145] Luis De la Higuera Romero. Stochastic models for CD4+ T cells.
PhD thesis, University of Leeds, 2017. 37

279



REFERENCES

[146] A Annibale, L A Dziobek-Garrett, and H Tari. The role of the
T-helper/T-suppressor ratio in the adaptive immune response: a
dynamical model. Journal of Physics A: Mathematical and Theoretical,
2018. 37, 47

[147] Alan S. Perelson and Gérard Weisbuch. Immunology for
physicists. Reviews of Modern Physics, 69[4]:1219–1267, Oct 1997.
38

[148] U. Lucia and G. Maino. Thermodynamical analysis of the dy-
namics of tumor interaction with the host immune system. Phys-
ica A: Statistical Mechanics and its Applications, 313[3-4]:569–577, Oct
2002. 38

[149] Arup K. Chakraborty and Andrej Košmrlj. Statistical Mechan-
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Stéphanie Pouzieux, Florence Faure, Thomas Tursz, et al.
Tumor-derived exosomes are a source of shared tumor rejection
antigens for CTL cross-priming. Nature medicine, 7[3]:297–303,
2001. 40

[158] Fabrice Andre, Noel EC Schartz, Mojgan Movassagh, Caro-
line Flament, Patricia Pautier, Philippe Morice, Christophe

Pomel, Catherine Lhomme, Bernard Escudier, Thierry

Le Chevalier, et al. Malignant effusions and immunogenic
tumour-derived exosomes. The Lancet, 360[9329]:295–305, 2002. 40

[159] M Iero, R Valenti, V Huber, P Filipazzi, G Parmiani, S Fais,
and L Rivoltini. Tumour-released exosomes and their implica-
tions in cancer immunity. Cell Death & Differentiation, 15[1]:80–88,
2008. 40

[160] Shu Wen Wen, Jaclyn Sceneay, Luize Goncalves Lima,
Christina SF Wong, Melanie Becker, Sophie Krumeich,
Richard J Lobb, Vanessa Castillo, Ke Ni Wong, Sarah El-
lis, et al. The Biodistribution and Immune Suppressive Effects
of Breast Cancer–Derived ExosomesExosomes Regulate Immune
Composition in Metastatic Organs. Cancer research, 76[23]:6816–
6827, 2016. 40

[161] Sonam Mittal, Prachi Gupta, Pradeep Chaluvally-Raghavan,
and Sunila Pradeep. Emerging role of extracellular vesicles in
immune regulation and cancer progression. Cancers, 12[12]:3563,
2020. 40

[162] Abul K Abbas, Andrew H Lichtman, and Shiv Pillai. Cellular
and molecular immunology, chapter 6. Elsevier Health Sciences, 2021.
40, 42, 51

[163] Abul K Abbas, Andrew H Lichtman, and Shiv Pillai. Cellu-
lar and molecular immunology, chapter 18. Elsevier Health Sciences,
2021. 40, 41, 42, 43

[164] Troels R Petersen, Nina Dickgreber, and Ian F Hermans. Tu-
mor antigen presentation by dendritic cells. Critical Reviews™ in
Immunology, 30[4], 2010. 40, 41, 42, 43

[165] Alycia Gardner and Brian Ruffell. Dendritic cells and cancer
immunity. Trends in immunology, 37[12]:855–865, 2016. 40, 42

[166] Tullia C Bruno, Peggy J Ebner, Brandon L Moore, Olivia G
Squalls, Katherine A Waugh, Evgeniy B Eruslanov, Sunil

Singhal, John D Mitchell, Wilbur A Franklin, Daniel T
Merrick, et al. Antigen-Presenting Intratumoral B Cells Af-
fect CD4+ TIL Phenotypes in Non–Small Cell Lung Cancer
PatientsTIL-Bs Present Antigen to CD4 TILs in NSCLC. Cancer
immunology research, 5[10]:898–907, 2017. 40, 42

[167] Soizic Garaud, Laurence Buisseret, Cinzia Solinas, Chun-
yan Gu-Trantien, Alexandre de Wind, Gert Van den Eyn-
den, Celine Naveaux, Jean-Nicolas Lodewyckx, Anaïs Boisson,
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[171] Flávia Castro, Ana Patrícia Cardoso, Raquel Madeira
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[255] I Pérez Castillo and NS Skantzos. The Little–Hopfield model
on a sparse random graph. Journal of Physics A: Mathematical and
General, 37[39]:9087, 2004. 188, 189, 227
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[270] Marc Mézard and Riccardo Zecchina. Random k-satisfiability
problem: From an analytic solution to an efficient algorithm.
Physical Review E, 66[5]:056126, 2002. 250

[271] Stephan Mertens, Marc Mézard, and Riccardo Zecchina.
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