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Abstract
In this paper, we study unimodality conditions for distributions that describe markets with
stochastic demand. Such conditions naturally emerge in the analysis of game-theoreticmodels
of market competition (Cournot games) and supply chain coordination (Stackelberg games).
We express the price elasticity of expected demand in terms of the mean residual life (MRL)
function of the demand distribution and characterize optimal prices or equivalently, points of
unitary elasticity, as fixed points of the MRL function. This leads to economic interpretable
conditions on the demand distribution under which such fixed points exist and are unique.
We find that markets with increasing price elasticity of expected demand that eventually
become elastic correspond to distributions with decreasing generalized mean residual life
(DGMRL) and finite second moment. DGMRL distributions strictly generalize the widely
used increasing generalized failure rate (IGFR) distributions. We further elaborate on the
relationship of the two classes, link their limiting behavior at infinity and examine moment
and closure properties of DGMRL distributions that are important in economic applications.
The DGMRL unimodality condition is useful in the analysis of optimal decisions under
uncertainty in settings that are not covered by the widely-used IGFR condition; thus, it can
be of broader interest to the game-theory and operations research literature.
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1 Introduction

Game-theoretic models of market competition are predominantly based on the principle of
utility maximization by participating agents, competing sellers and buyers. To make mean-
ingful economic predictions through such models, it is often desirable, if not necessary,
to ensure analytical tractability of the involved utility and revenue functions (Ziya et al.,
2004; Bernstein & Federgruen, 2005; Kouvelis et al., 2018). Accordingly, a large strand of
the operations research literature is concerned with the study of economically interpretable
“unimodality” conditions, i.e., conditions that ensure “well-behaved” utility functions, and,
hence, unique equilibrium or optimal strategies for the agents (De Wolf & Smeers, 1997;
Lagerlof, 2006; Corchon & Torregrosa, 2020; Leonardos & Melolidakis, 2020a).

When agents’ decisions are made under uncertainty, unimodality conditions refer to prop-
erties of the probability distribution of the underlying source of uncertainty. The most widely
used unimodality condition in this line of research is the increasing generalized failure (IGFR)
property (Lariviere, 2006; Van den Berg, 2007). A probability distribution with cumulative
distribution function F and probability density function f is said to have the IGFR property
if its generalized failure rate (GFR), g(x) := x f (x)

1−F(x) , is non-decreasing in x for all x such
that F(x) < 1. IGFR distributions include most distributions that are commonly used in
economic applications (Paul, 2005; Banciu & Mirchandani, 2013).1

The IGFRunimodality condition naturally emerges in the context of revenuemaximization
under stochastic demand (Lariviere, 1999; Lariviere&Porteus, 2001). Specifically, in a single
item market, when the seller posts a price p and the buyer’s reservation price, α, is randomly
drawn from a distribution F , then the seller’s expected demand is E (D (p | α)) = 1− F (p)
and, hence, its expected revenue is p(1−F(p)). Here, D (p | α) is the demand at price p given
that the buyer’s realized type is α. In this context, the IGFR condition has a clear economic
interpretation. In particular, the GFR function, g (x), corresponds to the price elasticity of
demand and, hence, the assumptions that g (x) is increasing and eventually exceeds 1 capture
the economic intuition of increasing and eventually elastic demand. As a result, the seller’s
optimal price, p∗, coincides with the point of unitary price elasticity, g(p∗) = 1 (Lariviere,
2006).

However, when applied to game-theoretic settings, an important shortcoming of the IGFR
unimodality condition is that it concerns the instantaneous or local behavior of the under-
lying probability distribution. Thus, when sellers’ revenue (utility) maximization requires
information about the whole range of the demand distribution, then the IGFR condition may
fail to provide a meaningful unimodality condition.

Such problems can be captured by the following common abstraction. A seller is selling
to a market with stochastic demand level, α, that is realized after the seller sets their price.
In this case, α no longer describes the demand for a single item, but rather the demand for
multiple items (whole market). Accordingly, the seller’s expected revenue function is given
by

R (p) = pE (D (p | α)) (1)

where the expectation, E, is taken over the distribution of α or, equivalently, over the seller’s
belief about it. The seller’s objective is to determine the optimal price p∗ that maximizes

1 The GFR function was introduced in economic applications by Singh and Maddala (1976), who used it to
model income distributions. It was further studied in the same context by Belzunce et al. (1995) and Belzunce
et al. (1998) who provided an alternative definition of the IGFR property without requiring the existence of a
density.
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R (p). By differentiating R (p), the seller’s first order condition can be written as

p = − E (D (p | α))
d
dpE (D (p | α))

(2)

Given that ε (p) := − dE(D(p|α))/E(D(p|α))
dp/p is the price elasticity of expected demand (Xu et

al., 2010), the solutions of (2) correspond to the points of unitary price elasticity of expected
demand.

However, even ifwe assume that D (p | α) is continuous and naturally non-increasing in p,
Eq. (2) may have a single, multiple, or even no solutions. As argued above, in this setting, the
IGFR condition does not directly apply to yield a unimodality condition since the expression
in Eq.2 requires information about the whole range of the distribution, i.e., evaluation of the
conditional expectation and its derivative, and not only about its local behavior at the current
demand level.2

The above abstract formulation captures a wide range of game-theoretic models with
potentially multiple sellers and buyers that naturally emerge in operations research and
economic problems. Such problems involve equilibrium uniqueness in horizontal quantity
competition (Cournot games) (Lagerlof, 2006, 2007; Corchon & Torregrosa, 2020; Leonar-
dos & Melolidakis, 2020a), equilibrium prices in markets with bandwagon effects, i.e.,
markets in which demand leads to more demand (Leonardos & Melolidakis, 2021), and
supply chain coordination in vertical markets (Stackelberg games) with demand uncertainty
(De Wolf & Smeers, 1997; Li & Petruzzi, 2017; Melolidakis et al., 2018; Leonardos &
Melolidakis, 2020) among others.
Model and Results Motivated by the shortcomings of the IGFR property to simplify the
sellers’ pricing problem in these game-theoretic settings, we seek to formulate an alternative
unimodality condition on the distribution of the random demand that will yield a unimodal
revenue function in Eq. (1) and, as a result, a unique solution to Eq. (2).

To achieve this, we first express the first order condition, Eq. (2), in terms of the mean
residual life (MRL) function of the underlying demand distribution. The MRL function is
defined as m (p) := E (α − p | α > p) whenever F(p) < 1 (cf. Eq. (3)), see Lai and Xie
(2006), Shaked and Shanthikumar (2007). This allows us to show that solutions of the first
order condition of the seller’s revenue function are precisely solutions of the fixed point
equation p = m (p) for p > 0, cf. Lemma 2. This implies that a sufficient condition for
the unimodality of the seller’s expected revenue function is that the MRL function of the
associated stochastic demand has a unique fixed point.

As a result, our aim is to study fixed points of the MRL function and derive conditions
under which such fixed points exist and are unique. To study this problem, we introduce the
generalizedmean residual life (GMRL) function, � (p) := m (p) /p, cf. Eq. (6). In the current
context, the GMRL function has an important economic interpretation: it is the inverse of the
price elasticity of expected demand, cf. Eq. (7). It follows that fixed points, p∗ = m (p∗), of
the MRL function which maximize the seller’s expected revenue correspond to prices with
unitary price elasticity, i.e., � (p∗) = 1. If the expected demand has increasing price elasticity
and eventually becomes elastic, then such a fixed point exists and is unique. In terms of the
demand distribution this is equivalent to saying that � (p) is decreasing, i.e., that it has the

2 A technical restriction of the IGFR condition is that it is confined to distributions that are defined over
connected intervals (Lariviere, 2006) This limits the real-life economic applications that can be studied under
the IGFR condition, for example by excluding settings in which sellers maintain beliefs (demand distributions)
over disjoint intervals that correspond to low, modal, and high (extreme) demand realizations.
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decreasing generalizedmean residual life (DGMRL) property, and that it eventually becomes
less than 1.This is the main result of Sect. 2 which is formulated in Theorem 1.

An immediate implication of Theorem 1 is that markets with increasing price elasticity
of expected demand can be modelled via DGMRL distributions. Recall that when demand
uncertainty corresponds to the buyer’s valuation for a single product unit, increasingly elastic
markets are described by distributions with increasing generalized failure rate (IGFR), see
(Lariviere & Porteus, 2001; Van den Berg, 2007). This provides a natural motivation to study
the relationship between IGFR and DGMRL distributions and compare their properties. In
Theorem 2, we provide an alternative proof to the well-known fact (see (Belzunce et al.,
1998; Kayid et al., 2014)) that DGMRL distributions generalize the IGFR distributions and
establish that the converse is also true if the MRL function is log-convex. A commonly used
distribution that is DGMRL but not IGFR is the Birnbaum-Saunders distribution for specific
values of its parameters, cf. Example 1. In contrast to IGFR and IFR distributions, we also
find that if a distribution is DGMRL, then its logarithmic transformation does not necessarily
satisfy the more restrictive decreasing MRL (DMRL) property, cf. Example 4.

We next turn to the study of moments of DGMRL distributions. In a result that is similar in
flavor to Theorem 2 of Lariviere (2006), we show that the moments of DGMRL distributions
with unbounded support are linked to their limiting behavior at infinity (cf. Theorems 4
and 3). Specifically, if the GMRL function tends to c ≥ 0 as p → +∞, then for any
n > 0, its (n + 1)-th moment is finite if and only if c < 1/n. This implies, that markets with
increasing and eventually elastic demand, i.e., for which � (p) < 1 for every p sufficiently
large, correspond to DGMRL distributions with finite second moment.

Finally, we examine closure properties of DGMRL and DMRL distributions that are use-
ful in economic modelling, and compare our findings with Paul (2005) and Banciu and
Mirchandani (2013). Such properties capture settings in which sellers update their informa-
tion about the demand distribution or aggregate different demands. In mathematical terms,
these updates are expressed via increasing or decreasing transformations and convolutions
(Theorem5, Corollary 1) and scale transformations or truncations, (Theorem 6).We conclude
the paper with a discussion of the current results along with open questions in Sect. 5.
Other relatedworksRelated unimodality and elasticity conditions are studied inBernstein and
Federgruen (2005), Kocabıyıkoğlu and Popescu (2011), Lu and Simchi-Levi (2013) and, in a
spirit more similar to ours, in Lariviere (2006), Van denBerg (2007), Banciu andMirchandani
(2013) andKouvelis et al. (2018). TheDGMRLcondition that is analyzed in the current paper,
has been first identified as a useful unimodality property in the context of Nash equilibrium
uniqueness in horizontal Cournot competition (Leonardos & Melolidakis, 2020a) and of
Stackelberg equilibrium uniqueness in vertical markets with multiple competing retailers
(Leonardos & Melolidakis, 2020; Leonardos et al., 2021).

The MRL and GMRL functions have been studied by Hall and Wellner (1981) and Guess
and Proschan (1988) and more recently by Bagnoli and Bergstrom (2005) in the context
of reliability and statistics with scarce references to game-theoretic applications. However,
in economics and operations research, the MRL and GMRL functions naturally arise in
pricing or inventory problems under demand uncertainty. A non-exhaustive list of the former
includes (Harris & Raviv, 1981; Raman & Chatterjee, 1995; Petruzzi & Dada, 1999; Dana,
2001; Colombo&Labrecciosa, 2012) andmore recently (Cohen et al., 2015; Luo et al., 2016;
Chen et al., 2017). Concerning optimal inventory decisions, (Mandal et al., 2018; Song et
al., 2009, 2008), and references cited therein, study the tail of the distribution of the source
of uncertainty, see e.g., Song et al. (2009), Lemma 1 and Song et al. (2008), equation (2).
The DGMRL condition leads to a succinct formulation and, in some cases, a refinement of
these results.

123



Annals of Operations Research

Finally, under various perspectives, demand uncertainty in supply chains (Stackelberg
games) has been studied inCohen et al. (2015),Chen et al. (2017) for linear demand functions3

and by De Wolf and Smeers (1997), Li and Atkins (2005), Xu et al. (2010) and Li and
Petruzzi (2017) for general distributions (i.e., beyond the linear model), but typically, under
the more restrictive IFR and absolute continuity assumptions on the demand distribution. By
contrast, the current analysis only requires that F is continuous. This is satisfied as long as
the distribution of the random demand is atomless, i.e., as long as there do not exist single
points with positive probability, even if the distribution is supported over disjoint intervals.
In technical terms, this means that our results do not require F to be absolutely continuous,
i.e., to have a density f = F ′. In fact, our analysis extends even to singular distributions, see
(Leonardos & Melolidakis, 2021).

2 The DGMRL unimodality condition

2.1 Preliminaries

Recall from Sect. 1 that we are concernedwith solutions of Eq. (2), p = − E(D(p|α))
d
dpE(D(p|α))

, which

describe the first order conditions for the maximization of the revenue function in Eq. (1),
R (p) = pE (D (p | α)). In the following exposition, we focus on the particular instantiation
of the additive demand model introduced by Mills (1959), with the common assumption of
linear deterministic component, studied (among others) in Petruzzi and Dada (1999), Huang
et al. (2013), Cohen et al. (2015) and Leonardos et al. (2021). In Sect. 2.3, we will show how
this analysis readily generalizes to more general demand functions (as e.g., the ones used in
López and Vives (2019), Corchon and Torregrosa (2020) and in references cited therein).

Specifically, let D (p | α) = (α − p)+, where α denotes the random demand level. We
assume that α is a non-negative random variable with continuous cumulative distribution
function (cdf) F , tail F̄ := 1 − F and finite expectation,4 Eα < +∞. For the support of α,
let L := sup {p ≥ 0, F (p) = 0} ≥ 0 and H := inf {p ≥ 0 : F (p) = 1} ≤ +∞. Using this
notation, (2) can be expressed in terms of the mean residual life (MRL) function, defined as

m (p) :=

⎧
⎪⎨

⎪⎩

E (α − p | α > p) = 1

F̄ (p)

∫ + ∞

p
F̄ (u) du, if p < H

0, otherwise
(3)

The term MRL stems from the widespread use of this function in reliability theory, see, e.g.,
Shaked and Shanthikumar (2007) or Lai and Xie (2006). In the current context, Eq. (2) can be
conveniently expressed in terms of theMRL functionm (p). To see this, wewill use that under

mild analytical assumptions on D (p | α), we have that d
dpE (D (p | α)) = E

(
∂
∂ p D (p | α)

)

(Flanders, 1973).However, in the specific case that D (p | α) = (α − p)+, this can be derived
in a straightforward way as shown in Lemma 1.

3 Both papers study the trade-off between generality of technical assumptions on the demand distribution and
limitations on the demand curve. Their results offer novel perspectives on the micro foundations of the linear
demand model, e.g., as a good approximation of various demand curves, and justify its use in a wider than
previously thought spectrum of economic modelling.
4 For one of our results, Theorem 1, we will also require that Eα2 is also finite. However, unless stated
otherwise, we do not make this assumption.
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Lemma 1 If α is a non-negative random variable with finite expectation Eα < +∞ and

continuous distribution function F, then d
dpE (α − p)+ = E

(
∂(α−p)+

∂ p

)
= −F̄ (p) for any

p > 0.

Proof Let Kh (α) := − 1
h

[
(α − p − h)+ − (α − p)+

]
and take h > 0. Then, Kh (α) =

1{α>p+h}+α − p

h
1{p<α≤p+h} and therefore limh→0+ Kh (α) = 1{α>p}. Since 0 ≤ Kh (α) ≤

1 for all α, the dominated convergence theorem implies that limh→0+ E (Kh (α)) =
P (α > p). In a similar fashion, one may show that limh→0− E (Kh (α)) = P (α ≥ p).
Since the distribution of α is non-atomic, P (α > p) = P (α ≥ p) and hence,
limh→0 E (Kh (α)) = F̄ (p). By thedefinitionof Kh (α), it follows that limh→0 E (Kh (α)) =
− d

dpE (α − p)+, as claimed. �	
Note that, if additionally, α is an absolutely continuous random variable with F ′ = f almost
everywhere, for some density function f , one can easily verify that the derivative m′ (p)
exists and is given by

m′ (p) = h (p)m (p) − 1 (4)

where h (p) = f (p) /F̄ (p)denotes thehazard rate functionofα, see e.g.,Bradley andGupta
(2003). In any case, using Lemma 1, the following formulation of (2) is now immediate.

Lemma 2 In the linear demand case, D (p | α) = (α − p)+, the seller’s first order condition,
(2), can be written as

p = m (p) (5)

where m (p) denotes the MRL function of the demand distribution.

Proof Since (α − p)+ is non-negative, we may write

E (α − p)+ =
∫ ∞

0
P

(
(α − p)+ > u

)
du =

∫ ∞

p
F̄ (u) du,

for 0 ≤ p < H , see (Billingsley, 1986). Using (3), we thus, haveE (α − p)+ = m (p) F̄ (p)
and (2) takes the form p = m (p). �	

To study this equation, we introduce the generalized mean residual life (GMRL) function,
� (p) := m (p) /p, for 0 < p < H , cf. (6), which corresponds to the inverse of the price
elasticity of expected demand. It follows that prices p∗ with unitary price elasticity which
maximize the seller’s expected revenue, satisfy � (p∗) = 1 or equivalently p∗ = m (p∗).
Under the assumption that F is absolutely continuous, with F ′ = f , (2) takes the form
ph (p) = 1, for p < H , where h (p) := f (p) /F̄ (p) is the hazard rate function of α.

2.2 Unimodality of the seller’s revenue function

Our goal in this section is to establish necessary and sufficient conditions for the unimodality
of the seller’s revenue function. This is the statement of Theorem 1, which crucially relies on
the expression of the price elasticity of expected demand via the generalized mean residual
life (GMRL) function which is derived next.

From the seller’s revenue maximization perspective, we are interested in conditions for
the existence and uniqueness of solutions of (5). Based on the previous analysis in Sect. 2.1,
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solutions of (2) are precisely solutions of the fixed point equation p = m (p) for p > 0.
Thus, our aim will be to study fixed points of the MRL function. To study this problem, we
define the generalized mean residual life (GMRL) function

� (p) := m (p)

p
= 1

pF̄ (p)

∫ + ∞

p
F̄ (u) du (6)

for all 0 < p < H . We say that a random variable D has the DGMRL property, if � (p)
is non-increasing in p for 0 < p < H . While the MRL function at a point p expresses
the expected additional demand given that current demand has reached (or exceeded) the
threshold p, the GMRL function expresses the corresponding expected additional demand as
a percentage of the current demand. From an economic perspective, � (p) has an appealing
interpretation, since it is the inverse of the price elasticity of the expected demand, ε (p) :=
−p · d

dpE (D (p | α)) /E (D (p | α)),

� (p) = m (p)

p
=

(
F̄ (p)

m (p) F̄ (p)
· p

)−1

= ε (p)−1 (7)

Thus, demand distributions with the DGMRL property precisely capture markets of goods
with increasing price elasticity of expected demand. Moreover, together with (5), (7) implies
that the seller’s revenue is maximized at prices p∗ with unitary price elasticity of expected
demand. In non-trivial, realistic problems, demand eventually becomes elastic, see also (Lar-
iviere, 2006). Accordingly, let p1 := sup {p ≥ 0 : � (p) ≥ 1} and assume that p1 < +∞ or
equivalently that the price elasticity of expected demand, eventually becomes greater than 1.
For a continuous distribution F with finite expectation Eα, such that F (0) = 0, we have that
m (0) = Eα > 0 and hence, p1 > 0. Combining the above, we obtain necessary and suffi-
cient conditions for the unimodality of the seller’s revenue function R (p), or equivalently
for the existence and uniqueness of a solution of (5).

Theorem 1 Suppose that α is a random variable with continuous distribution F, F (0) =
0, and finite expectation, such that p1 < +∞. The seller’s revenue function R (p) =
pE (α − p)+ is maximized at all points p∗ with unitary elasticity of expected demand, i.e.,
at all points p∗ that satisfy � (p) = 1 or equivalently, p∗ = m (p∗). If � (p) is strictly
decreasing, then a fixed point p∗ exists and is unique.

Proof To establish the first part, it remains to check that any point satisfying (5) corresponds to
amaximum under the assumption that � (p) is strictly decreasing. Clearly, � (p) is continuous
and since m (0) = Eα < +∞, we have that lim p→0+ � (p) = +∞. Hence, for values of p
close to 0, demand is inelastic and the seller’s revenue increases as prices increase. However,
the limiting behavior of � (p) as p approaches H from the leftmayvary, depending onwhether
H is finite or not. If H is finite, i.e., if the support of α is bounded, then lim p→H− � (p) = 0.
Hence, in this case, demand eventually becomes elastic and a critical point p∗ ∈ (0, H) that
maximizes R (p) always exists. The assumption that � (p) is strictly decreasing, establishes
the uniqueness of p∗. If H = +∞, then an optimal solution p∗ may not exist because
the limiting behavior of m (p), as p → +∞, may vary, see e.g., the Pareto distribution in
Example 3. However, under the assumption that � (p) is strictly decreasing and that p1 <

+∞, such a critical p∗ exists and is unique. �	
Remark 1 The assumption p1 < +∞ is equivalent to the condition that the distribution of α

has finite secondmoment. Indeed, as we show in Theorem 3, if the support of α is unbounded,
and � (p) is decreasing, then, lim p→+ ∞ � (p) < 1 if and only ifEα2 is finite. The assumption
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of strict monotonicity eliminates intervals with m (p) = p, in which multiple consecutive
solutions occur. However, it may be relaxed to weak monotonicity without significant loss
of generality. This relies on the explicit characterization of distributions with MRL functions
that contain linear segments which is given in Proposition 10 of Hall and Wellner (1981).
Namely,m (p) = p on some interval J = [a, b] ⊆ [L, H ] if and only if F̄ (p) p2 = F̄ (a) a2

for all p ∈ J . If J is unbounded, this implies that α has the Pareto distribution on J with
shape parameter 2. In this case, Eα2 = +∞, see Example 3, which is precluded by the
requirement that p1 < +∞. Hence, to replace strict by weak monotonicity, it suffices to
exclude distributions that contain intervals J = [a, b] ⊆ [L, H ] with b < +∞ in their
support, for which F̄ (p) p2 = F̄ (a) a2 for all p ∈ J .

2.3 General demand functions

While in the above presentation we used the linear demand model, the results readily extend
to more general demand forms. In particular, consider the functional form (which includes
the linear or constantly elastic cases)

p(Q) =
{

α − βQn+1, if n �= −1,

α − β log Q, if n = −1,

that is used in López and Vives (2019), Corchon and Torregrosa (2020) and references cited
therein. In this formulation, the quantity, Q, is the free variable (and thus, the interpretation
of the problem changes accordingly). These functions constitute instantiations of the more
general form

p(Q) = α − g(Q),

where g(Q) is an arbitrary function (a similar formulation holds if we choose price as the free
variable, but in this part we stick without loss of generality with Q as the variable of choice
to be in line with the referenced papers). In this case, using again (3), it is straightforward to
verify that the seller’s revenue function becomes R(Q) = Q · f (Q) = Qm(g(Q))F̄(g(Q)).
Thus, assuming that α is absolutely continuous (to simplify the calculations), the derivative
of the seller’s revenue is

d

dQ
Qm(g(Q))F̄(g(Q)) = −Qm(g(Q)) f (g(Q))g′(Q) + m(g(Q))F̄(g(Q))+

+ Qm′(g(Q))g′(Q)F̄(Q)

= −Qm(g(Q)) f (g(Q))g′(Q) + m(g(Q))F̄(g(Q))+
+ Q [m(g(Q))h(g(Q)) − 1] g′(Q)F̄(Q)

= F̄(g(Q))
[
m(g(Q)) − Qg′(Q)

]

where we used Eq. (4) for the second equality. This leads to the first order condition

Qg′(Q) = m(g(Q)),

that can be viewed as generalized fixed point equation. For instance, if g(Q) = Q, we
recover the previous analysis (with quantity instead of price as the decision variable) of the
linear model. Similarly, if g(Q) = bQn for n > 0 as in López and Vives (2019), Corchon
and Torregrosa (2020), then we derive the equation nbQn = m(bQn) which after a variable
transformation bQn → x leads to the (scaled) fixed point equation x = 1

nm(x).
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Extension of the current results to more general demand function remains an interesting
open questions. In this direction, the framework of Righter et al. (2009) provides a promising
starting point to study, for instance, transformations related to the inverse function, g−1(Q).

3 Properties of DGMRL distributions

Section 2 motivates the study of DGMRL distributions as class of distributions that arise nat-
urally in a seller’s pricing optimization problem when the seller is facing a linear stochastic
demand. It turns out, that the class of DGMRL distributions is general enough to include as
a subclass the IFR, DMRL and IGFR distributions that are widely used in revenue manage-
ment applications. This statement along with several analytical and closure properties of the
DGMRL distributions are established next.

For the remaining part, let X ∼ F be a non-negative random variable, with support in
L, H as in Sect. 1, continuous distributions function F , tail F̄ := 1−F and finite expectation
EX < +∞. Let m (x) denote the MRL function of X , as defined in (3), and � (x) denote the
GMRL function of X , as defined in (6). We say that distribution X has the decreasing MRL
(DMRL) property, or simply that X is DMRL, if m (p) is non-increasing in p for p < H .

3.1 The DGMRL and IGFR classes of distributions

To compare the IGFR and DGMRL classes, we restrict attention to non-negative, absolutely
continuous random variables. We, then have

Theorem 2 If X is a non-negative, absolutely continuous random variable, withEX < +∞,
then

(i) If X is IGFR, then X is DGMRL.
(ii) If X is DGMRL and m (x) is log-convex, then X is IGFR.

Part (i) of Theorem 3, has already been stated by Belzunce et al. (1998) and Kayid et al.
(2014). To derive an alternative proof of part (i) and to establish part (i i) of Theorem 2, we
will use the notions of stochastic orderings, see (Shaked & Shanthikumar, 2007) or Belzunce
et al. (2016). Let Xi be random variables with distribution, failure rate and MRL functions
denoted by Fi , hi and mi respectively, for i = 1, 2. X1 is said to be smaller than X2 in the
usual stochastic order, denoted by X1 � st X2, if F2 (x) ≤ F1 (x) for all x ∈ R. Similarly,
X1 is said to be smaller than X2 in the failure or hazard rate order, denoted by X1 �hr X2, if
h2 (x) ≤ h1 (x) for all x ∈ R. Finally, X1 is said to be smaller than X2 in the mean residual
life order, denoted by X1 �mrl X2, if m1 (x) ≤ m2 (x) for all x ∈ R.

Proof of Theorem 2 By Theorem 1 of Lariviere (2006), X is IGFR if and only if X �hr λX
for all λ ≥ 1. By Theorem 2.A.1 of Shaked and Shanthikumar (2007), if X �hr λX , then
X �mrl λX . Now, mλX (x) = λ · m (x/λ). Hence, for λ ≥ 1, X �mrl λX is by definition
equivalent to m (x) ≤ mλX (x) for all x > 0, which in turn is equivalent to � (x) ≤ � (x/λ)

for all x > 0. As this holds for any λ ≥ 1, the last inequality is equivalent to � (x) being
decreasing, i.e., to X being DGMRL.

To prove the second part of the Theorem, it suffices to show that m (x) /mλX (x) is
increasing in x , for 0 < x < H and all λ ≥ 1. Indeed, if this is the case, Theorem 2.A.2
of Shaked and Shanthikumar (2007) implies that X �mrl λX for all λ ≥ 1 is equivalent
to X �hr λX for all λ ≥ 1, which as we have seen, is equivalent to X being IGFR. Since
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Fig. 1 Relationship between the IFR, IGFR, DMRL and DGMRL classes of distributions. The IFR property
implies the IGFR and DMRL properties, which in turn imply the DGMRL property. All inclusions are proper.
The DMRL property neither implies nor is implied by the IGFR property. Finally, Theorem 2-(ii) provides a
condition under which a DGMRL distribution is also IGFR

mλX (x) = λm (x/λ) and m (x) is differentiable, m (x) /mλX (x) is increasing in x ∈ (0, H)

for all λ ≥ 1 if and only if d
dx

(
m(x)

λm(x/λ)

)
≥ 0, for all λ ≥ 1, i.e., if and only if m′(x)

m(x) ≥ m′(x/λ)
λm(x/λ)

,

for all λ ≥ 1. This is equivalent to d
dx log (m (x)) being increasing in x , i.e., to m (x) being

log-convex. �	
Based on the proof of Theorem 2, a DGMRL random variable X is not IGFR if there exists

λ ≥ 1 such that X is smaller than λX in the mean residual life order but not in the hazard rate
order. Although more involved, the present derivation of part (i) utilizes the characterization
of both IGFR and DGMRL in terms of stochastic orderings—�hr for IGFR and �mrl for
DGMRL—and thus, points to the sufficiency condition of part (i i). Specifically, in view
of the proof of part (i), the proof of part (i i) reduces to finding conditions, under which,
the mean residual life order implies the hazard rate order. Such conditions are provided in
Theorem 2.A.2 of Shaked and Shanthikumar (2007). However, as Shaked and Shanthikumar
(2007) already point out, the condition of log-convexity is restrictive and indeed there are
many distributions with log-concave MRL function that are nevertheless IGFR. Hence, it
would be of interest to obtain part (i i) of Theorem 2 under a more general condition.

Conceptually, the GFR and GMRL functions differ in the same sense that the FR and
MRL functions do. Namely, while the GFR function at a point x provides information about
the instantaneous behavior of the distribution just after point x , the GMRL function provides
information about the entire expected behavior of the distribution after point x . As the IGFR is
trivially implied by the IFR property, the same holds for the DGMRL and DMRL properties.
The relationships between all four classes are shown in Fig. 1. The IGFR property does not
imply, nor is implied by the DMRL property. However, the former seems more inclusive than
the latter, cf. Bagnoli and Bergstrom (2005), Table 3 and Banciu and Mirchandani (2013),
Table 1. Conversely, DMRL distributions that are not IGFR can be constructed by consid-
ering random variables without a connected support. This relies on the observation that if a
distribution X is IGFR, then its support must be an interval, see (Lariviere & Porteus, 2001).
However, it remains unclear whether or not the DMRL property implies the IGFR property
when attention is restricted to absolutely continuous random variables with connected sup-
port. A commonly used distribution that is DGMRL but not IGFR is the Birnbaum-Saunders
distribution.

Example 1 (Birnbaum-Saunders distribution) The Birnbaum-Saunders (BS) distribution,
which is extensively used in reliability applications, see (Johnson et al., 1995), provides
an example of a random variable which is DGMRL but not IGFR for certain values of its
parameters. The pdf of X is

f (x) = 1

2ax
√
2π

(√
x

β
+

√
β

x

)

exp

⎛

⎝− 1

2a2

(√
x

β
−

√
β

x

)2
⎞

⎠, for x > 0,
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Fig. 2 Birnbaum–Saunders distribution for a = 6, β = 5. The GFR function (left panel) is not monotone
increasing in contrast to the price elasticity of expected demand (right panel) which is the inverse of the GMRL
function

where a > 0 is the shape parameter and β > 0 is the scale parameter. In particular, let
X ∼ BSwith parameters a = 6 andβ = 5.Using the formula for f (x), Fig. 2can be obtained
numerically. Implementing the BS distribution for different β and γ , shows that, unlike other
distribution families, as e.g., the Gamma or Beta, the shapes of the GFR andGMRL functions
of theBS distribution depend largely on the exact values of its parameters. For different values
of its parameters, the BS distribution has either increasing or bathtub-shaped (first decreasing
and then increasing) MRL function (Tang et al., 1999).

Mixtures of DGMRL distributions over disjoint intervals
As mentioned above, IGFR random variables must have a connected support. Under

certain circumstances, this property poses restrictive limitations in economic modelling. For
instance, when a seller is uncertain about the exact support of the demand, their belief can
be naturally expressed as a mixture of two or more distributions over disjoint intervals. In
this case, even if each individual distribution is IGFR, their mixture is certainly not. In this
respect, the DGMRL property is more promising since mixtures of IGFR distributions may
still be DGMRL. However, in general, different mixtures of IGFR distributions may or may
not be DGMRL even if the only difference is in the mixing weights. Such a case is illustrated
in Example 2.

Example 2 (Mixture of Uniform distributions on disjoint intervals) LetU (L, H) denotes the
uniform distribution on (L, H) and let X1 ∼ U (1, 2)with cdf F1 and X2 ∼ U (3, 4)with cdf
F2. Further, let Xλ with cdf Fλ = λF1 + (1 − λ) F2 for λ ∈ (0, 1) describe the seller’s belief
about the demand. Both X1, X2 are IFR, hence IGFR, DMRL and DGMRL. The support of
Xλ is not connected, hence Xλ is not IGFR for 0 < λ < 1. Contrarily, the GMRL �λ of Xλ

is given by

�λ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

λ�1 (x) + (1 − λ) �2 (x) , 0 < x ≤ 1
λ (2 − x) �1 (x) + (1 − λ) �2 (x)

λ (2 − x) + (1 − λ)
, 1 ≤ x ≤ 2

�2 (x) , 2 ≤ x < 4

Hence, �λ (x) is decreasing for x /∈ [1, 2]. For x ∈ [1, 2], a direct substitution shows that
�1/4 (x) is decreasing over [1, 2], hence X1/4 is DGMRL, while �3/4 (x) is first decreasing
and then increasing, as shown in Fig. 3and hence X3/4 is not DGMRL.
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Fig. 3 The GMRL function of
Xλ for λ = 1/4 (solid) and
λ = 3/4 (dotted)

The derivation of necessary and/or sufficient conditions under which such mixtures retain
the DGMRL property, i.e., the derivation of closure properties undermixtures of the DGMRL
class of distributions, remains an interesting open question. In a related study that may prove
useful in this direction, Navarro and Hernandez (2008) confirm that mixtures of standard
IFR (and hence DGMRL) distributions, e.g., exponential, may not be DGMRL (it may be
bathtub-shaped), and derive sufficient conditions under which asymptotical monotonicity is
retained.

3.2 Limiting behavior andmoments of DGMRL distributions

The moments of DGMRL distributions with unbounded support are closely linked with the
limiting behavior of the GMRL function � (x), as x → +∞.

Theorem 3 Let X be a non-negative DGMRL random variable with EX < +∞ and
lim

x→+ ∞ � (x) = c. If β > 0, then c < 1
β
, if and only if EXβ+1 < +∞. In particular,

c = 0 if and only if EXβ+1 < +∞ for every β > 0.

For the proof of Theorem 3, we utilize the theory of regularly varying distributions, see
Feller (1971), Hall and Wellner (1981) and Gut (2013). First, observe that if X is a non-
negative random variable, then by a simple change of variable, one may rewrite5 � (x) in (6)

as � (x) = ∫ + ∞
1

F̄(ux)
F̄(x)

du. Since we have assumed that EX < +∞, � (x) is well defined.

We say that F̄ is regularly varying at infinity with exponent ρ ∈ R, if F̄ (ux) /F̄ (x) → uρ

for all u ≥ 0 as x → +∞. In this case, we write F̄ ∈ RV (ρ). If F̄ (ux) /F̄ (x) → ∞
for 0 < u < 1 and F̄ (ux) /F̄ (x) → 0 for u > 1 as x → +∞, then we say that F̄ is
rapidly varying at infinity with exponent −∞ or simply that F̄ is rapidly varying, in symbols
F̄ ∈ RV (−∞). If F̄ ∈ RV (ρ) with ρ ∈ R, then we can write F̄ as F̄ (u) = uρ Z (u),
where Z is regularly varying at infinity with exponent ρ = 0. In this case, we say that Z is
slowly varying at infinity and write Z ∈ SV . Feller (1971), see Section VIII.8, shows that if
Z (u) > 0 and Z ∈ SV , then the integral

∫ +∞
0 uρ Z (u) du is convergent for ρ < −1 and

divergent for ρ > −1. We are now ready to prove Theorem 3.

Proof of Theorem 3 Let c > 0. Then, the convergence of � (x) to some c ∈ (0,+∞)

is equivalent to F̄ being regularly varying at infinity with exponent −1 − 1
c , in sym-

bols F̄ ∈ RV (−1 − 1
c

)
, see Proposition 11(b) of Hall and Wellner (1981). Hence, there

exists a function Z ∈ SV , such that F̄ (x) = x−1− 1
c Z (x). Since X is non-negative,

5 By differentiating this expression, provided that F ′ = f almost everywhere, one obtains an alternative
straightforward proof that IGFR implies DGMRL.
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this implies that for any β > 0, we may write EXβ+1 = ∫ + ∞
0 (β + 1) uβ F̄ (u) du =

(β + 1)
∫ +∞
0 uβ−1− 1

c Z (u) du. Using (Feller, 1971), the latter integral converges for β < 1
c

and diverges for β > 1
c . For c = 1

β
, we employ the approach of Lariviere (2006) and com-

pare X with a random variable Y ∼ Pareto (1, β + 1), where 1 is the location parameter
and β + 1 the shape parameter. In this case mY (x) = x/β and EY β+1 = +∞, which
may be used to conclude that EXβ+1 = +∞ as well. To see this, observe that since � (x)
is decreasing to 1/β by assumption, we have that mX (x) ≥ x/β = mY (x) and hence
Y �mrl X . Moreover, mY (x)

mX (x) = 1
β

· 1
�(x) , which by assumption increases in x for all x > 0.

This implies that Y is smaller than X in the hazard rate order, see Theorem 2.A.2 of Shaked
and Shanthikumar (2007), and hence also in the usual stochastic order, i.e., Y � st X . Hence,
EXβ+1 ≥ EY β+1 = +∞.

If c = 0, then F̄ (x) is rapidly varying with exponent −∞, i.e., F̄ ∈ RV (−∞), see
Proposition 11(c) of Hall and Wellner (1981). It is known, see (De Haan, 1970), that all
moments of rapidly varying distributions are finite. Conversely, if EXβ+1 < +∞ for every
β > 0, then it is a straightforward implication that c = 0. �	

Theorem 3 is comparable to Theorem 2 of Lariviere (2006), which states an analogous
result for IGFR distributions. Theorem 4 establishes the link between the two.

Theorem 4 Let X be an absolutely continuous, non-negative random variable with
unbounded support and EX < +∞. If limx→+∞ g (x) exists and is equal to κ with κ > 1
(possibly infinite), then

lim
x→+ ∞ � (x) = 1/ (κ − 1) (8)

Proof Since EX < +∞, both limx→+∞
∫ + ∞
x F̄ (u) du and limx→+ ∞ x F̄ (x) are equal to

0. To compute limx→+∞ � (x) we use L’Hôpital’s rule. We have that d
dx

∫ + ∞
x F̄ (u) du =

−F̄ (x) and d
dx

(
x F̄ (x)

) = F̄ (x) (1 − g (x)). Hence, under the assumption that
limx→+ ∞ g (x) = κ , we conclude that

lim
x→+ ∞ � (x) = lim

x→+ ∞
1

g (x) − 1
= 1

κ − 1
.

�	
The inverse relationship in the limiting behavior of � (x) and g (x) in (8) is similar in

flavor to equation (2.1) of Bradley and Gupta (2003). In the case that κ < +∞, Theorem
2 of Lariviere (2006) restricted to n > 1, follows from Theorems 2 and 3, and Eq. (8). This
approach also covers the case n = κ , which is not considered in the proof by Lariviere (2006).
As for IGFR distributions, the Pareto distribution provides a limiting case between decreasing
and increasing GMRL distributions, since it is the unique distribution with constant GMRL
function.

Example 3 (Pareto distribution) Let X be Pareto distributed with pdf f (x) =
kLkx−(k+1)1{L≤x}, and parameters L > 0 and k > 1 (for 0 < k ≤ 1 we get EX = +∞,
which contradicts the basic assumptions of our model). To simplify, let L = 1, so that
f (x) = kx−k−11{1≤x}, F̄ (x) = x−k1{1≤x}, and EX = k

k−1 . The mean residual life of X is

given by m (x) = x
k−1 + k

k−1 (1 − x)+ and, hence, is decreasing for x < 1 and increasing for

x ≥ 1. However, the GMRL function � (x) = 1
k−1 is decreasing for 0 < x < 1 and constant

for x ≥ 1, hence, X is DGMRL. Similarly, for 1 ≤ x the failure (hazard) rate h (x) = kx−1
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is decreasing, but the generalized failure rate g (x) = k is constant and, hence, X is IGFR.
In this case, the seller’s payoff function, (1), becomes

R (x) = xm (x) F̄ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

x

(
k

k − 1
− x

)

, if 0 ≤ x < 1

x2−k

(k − 1)
, if x ≥ 1,

which diverges as x → +∞, for k < 2 and remains constant for k = 2. In particular, for
k ≤ 2, the second moment of X is infinite, i.e., EX2 = +∞, and also limx→+∞ � (x) =
1

k−1 ≥ 1 and limx→+∞ g (x) = k ≤ 2, which agrees with Theorem 3. On the other hand,

for k > 2, there exists a unique fixed point x∗ = k
2(k−1) , as expected.

Example 3 provides amotivation to further explore the relationship between the properties
of a DGMRL distribution X and its logarithmic transformation, log (X). Specifically, similar
to X being IGFR if and only if log (X) is IFR, cf. Theorem1 of Lariviere (2006), it is natural to
ask whether X is DGMRL if and only log (X) is DMRL. The intuition behind this conjecture
is straightforward: the Pareto distribution is the boundary case for the DGMRL class (has
constant GMRL function), and log (X), which, in this case, is the exponential distribution is
the boundary case for the DMRL class, i.e., log (X) has constant MRL function. Moreover,
a property similar to the one stated in Theorem 2 holds for IFR and DMRL distributions:
IFR implies DMRL, and DMRL together with concavity of the MRL function imply the IFR
property, cf. Shaked and Shanthikumar (2007). However, contrary to the above intuition, the
following example shows that this is not true.

Example 4 (X DGMRL does not imply that log (X) is DMRL) Consider a non-negative
random variable X . Let FL(x) := P(log (X) ≤ x) = F(ex ) and fL(x) := ex f (ex ) denote
the cumulative distribution and probability density function, respectively, of the transformed
random variable log (X). Then, the MRL function, mL (x), of log (X) is given by

mL (x) = 1

F̄L(x)

∫ + ∞

x
F̄L (u) du = 1

F̄(ex )

∫ + ∞

x
F̄

(
eu

)
du

= 1

F̄(ex )

∫ + ∞

ex

1

u
F̄ (u) du . (9)

Since 1/u is strictly decreasing, Eq. (9) trivially suggests that mL(x) ≤ �(x) for any x > 0.
However, this does not provide a way to express mL(x) in terms of �(x).

By contrast, to find a counterexample for the statement that X is DGMRL if and only if X
is DMRL, it suffices to find a distribution function, F , such that � (x) = 1

x F̄(x)

∫ +∞
x F̄(u) du

is decreasing in x > 0, but mL (x) = 1
F̄(x)

∫ +∞
x

1
u F̄(u) du is not. To see that such a function

exists, let

s(x) :=
(

1 − 1

3
x + 1

33
x2

)

e−x , for x ≥ 6,

and let F̄(x) := s(x)/s(6) for x ≥ 6, and F(x) = 1 for x ∈ [0, 6). It holds that F̄(0) =
1, limx→+ ∞ F(x) = 0 and

∫ ∞
0 F̄(u) du = 8 which imply that F̄ is a valid survival function

of a continuous, non-negative random variable with finite expectation. The functions �(x)
and mL(x) are shown in Fig. 4.
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Fig. 4 The GMRL function, �(x), of the distribution X of Example 4 (first panel) and the MRL function,
mL (x), of the transformed distribution log (X) (third panel). The second and fourth panels show the sign of
the derivatives of �(x) and mL (x) respectively. It can be seen that X is DGMRL, but log X is not DMRL

It can be seen that X is DGMRL, however, log (X) is not DMRL. The monotonicity of
both functions, �(x) and mL(x) outside the illustrated intervals has been verified numerically
and analytically (using Matlab and Mathematica).6

4 Closure properties of the DGMRL class of distributions

Paul (2005) andBanciu andMirchandani (2013) study closure properties of the IFR and IGFR
classes under operations that involve continuous transformations, truncations, and convolu-
tions. Such operations are important in economic applications, as they can be used to model
changes or updates in the seller’s beliefs (transformations and truncations) or aggregation of
demands from different markets (convolutions). Resembling the IFR when compared to the
IGFR class, the DMRL class exhibits better closure properties than the DGMRL class.

Theorem 5 Let X be a non-negative, absolutely continuous, DMRL random variable and let
φ : R+ → R+ be a strictly increasing, concave and differentiable function. Then, Y := φ (X)

is DMRL.

Proof Let F denote the cdf of X , f its pdf and h its hazard rate. Then, for y > 0,
FY (y) = F

(
φ−1 (y)

)
and fY (y) = f

(
φ−1 (y)

) 1
φ′(φ−1(y))

, where φ−1 denotes the inverse

of φ. Hence mY (y) = (
F̄

(
φ−1 (y)

))−1 · ∫ + ∞
y F̄

(
φ−1 (u)

)
du = (

F̄
(
φ−1 (y)

))−1 ·
∫ +∞
φ−1(y) F̄ (u) φ′ (u) du. By (4), and since hY (y) = h

(
φ−1 (y)

) · 1
φ′(φ−1(y))

, we conclude

that m′
Y (y) = h

(
φ−1 (y)

) ·(F̄ (
φ−1 (y)

))−1 ·∫ +∞
φ−1(y) F̄ (u)

φ′(u)

φ′(φ−1(y))
du −1. Concavity of φ

implies that for u > φ−1 (y), φ′(u)

φ′(φ−1(y))
≤ 1. Thus, m′

Y (y) ≤ h
(
φ−1 (y)

)
m

(
φ−1 (y)

)−1 =
m′ (φ−1 (y)

) ≤ 0, since m (y) is decreasing by assumption. �	
Hence, the class of absolutely continuous, DMRL random variables is closed under strictly
increasing, differentiable and concave transformations. By Theorem 5, it is immediate that

Corollary 1 Let X be a non-negative, absolutely continuous, DMRL random variable. Then,

(i) for any α > 0 and β ∈ R, αX + β is DMRL, (i.e., the DMRL class is closed under
positive scale transformations and shifting).

6 Our experiments (not presented here) suggest that the current counterexample is sensitive to even minor
changes in the coefficients of the polynomial in s(x). Thus, the relationship between properties of X and
log (X) is worth further exploring.
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Fig. 5 The price elasticity
(inverse of the GMRL function)
for the convolution of 2 standard
Log-logistic(k = 2) random
variables

(ii) for any 0 < α ≤ 1, Xα is DMRL.

More results about the DMRL class can be found in Bagnoli and Bergstrom (2005),
Lai and Xie (2006) and Shaked and Shanthikumar (2007). Turning to the DGMRL class,
it is straightforward (thus omitted) to show that the DGMRL property is preserved under
positive scale transformations and left truncations. For a random variable X with support
in-between L and H , and any α ∈ (L, H), the left truncated random variable Xα is defined
as Xα = X1{X≥α}.

Theorem 6 Let X be a DGMRL random variable with support in-between L and H with
0 ≤ L < H ≤ +∞. Then,

(i) for any λ > 0, the random variable λX is DGMRL (i.e., the DGMRL class is closed
under positive scale transformations).

(ii) for any α ∈ (L, H), the left truncated random variable Xα has the same GMRL function
as X on (α, H). In particular, the DGMRL class is closed under left truncations.

In Proposition 1, Banciu and Mirchandani (2013) establish that IGFR distributions are
closed under right truncations as well. It remains unclear whether DGMRL distributions are
also closed under right truncations or not. On the other hand, as expected, the DGMRL class
inherits some closure counterexamples from the IGFR class. Banciu andMirchandani (2013)
illustrate that the IGFR property is not preserved under shifting and convolutions. Both of
their examples establish the same conclusions for the DGMRL property, as shown below.

Using their notation, the GMRL function of the Pareto distribution of the second kind
(Lomax distribution) is � (x) = 1

k−1

( B−A
x + 1

)
, for x ≥ A, where A denotes the location

parameter. Hence, when A = 0 (i.e., no shift) or A < B, the GMRL is decreasing, whereas,
for A > B, the GMRL function is increasing. Similar to the behavior exhibited by the GFR
function, the GMRL function is constant for A = B, and, in particular for A = B = 1,
which corresponds to the standard Pareto distribution. To show that the IGFR class is not
closed under convolution, Banciu and Mirchandani (2013) consider the sum of two log-
logistic distributions. The log-logistic distribution is IGFR, and, hence, DGMRL. Using
their formula for F , one may establish numerically that the price elasticity ε (p) = � (p)−1

is first increasing and then decreasing, as can be seen in Fig. 5.

5 Discussion and conclusions

In this paper, we studied a novel unimodality condition for equilibrium uniqueness inmarkets
with stochastic demand. We expressed the price elasticity of expected demand in terms of
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the mean residual life (MRL) function of the demand distribution and characterized the
seller’s optimal prices as fixed points of the MRL function. This led to a novel description of
markets with increasingly elastic demand in terms of the properties of the underlying demand
distribution and in turn, to a novel unimodality condition. Namely, the seller’s optimal price
in a stochastic market exists and is unique if the demand distribution has the decreasing
generalized mean residual life (DGMRL) property and finite second moment.

The GMRL function, and hence, the DGMRL unimodality condition, naturally arise in
the analysis of game-theoretic models of horizontal market competition (Cournot games)
(Lagerlof, 2006; Leonardos & Melolidakis, 2020a), supply chain coordination (Stackelberg
games) (Koki et al., 2018; Leonardos &Melolidakis, 2020; Leonardos et al., 2021) or inven-
tory optimization under uncertainty, see, e.g., Song et al. (2008), Song et al. (2009), Mandal
et al. (2018). Importantly, these problems are not covered by the widely used increasing
generalized failure rate (IGFR) distributions, (Lariviere, 2006), because, in these cases, rev-
enue (utility) maximization requires information for the global (tail) rather than the local
(pointwise) behavior of the distribution of the underlying source of uncertainty. Motivated
by the fact that DGMRL distributions strictly generalize IGFR distributions, we then studied
properties of DGMRL distributions.

Our results also open several directions for future research. These include the extension
of the current analysis to more general demand functions, i.e., the strengthening of the
analysis in Sect. 2.3, e.g. via the framework of Righter et al. (2009), the derivation of less
restrictive conditions for which DGMRL distributions are IGFR, i.e., for which Theorem
2-(ii) holds, the derivation of conditions under which the DMRL property implies the IGFR
property, the study of closure properties of the DGMRL class under mixtures of distributions,
and, importantly, from a game-theoretic perspective, the study of the MRL function and the
location or properties of its fixed points, i.e., seller’s optimal prices.
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