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ABSTRACT
We consider two simple asynchronous opinion dynamics on arbi-

trary graphs where every node 𝑢 of the graph has an initial value

𝜉𝑢 (0). In the first process, which we call the 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 , at each

time step 𝑡 ≥ 0, a random node 𝑢 and a random sample of 𝑘 of

its neighbours 𝑣1, 𝑣2, · · · , 𝑣𝑘 are selected. Then, 𝑢 updates its cur-

rent value 𝜉𝑢 (𝑡) to 𝜉𝑢 (𝑡 + 1) = 𝛼𝜉𝑢 (𝑡) + (1−𝛼)
𝑘

∑𝑘
𝑖=1 𝜉𝑣𝑖 (𝑡), where

𝛼 ∈ (0, 1) and 𝑘 ≥ 1 are parameters of the process. In the second

process, called the 𝐸𝑑𝑔𝑒𝑀𝑜𝑑𝑒𝑙 , at each step a random pair of ad-

jacent nodes (𝑢, 𝑣) is selected, and then node 𝑢 updates its value

equivalently to the 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 with 𝑘 = 1 and 𝑣 as the selected

neighbour.

For both processes, the values of all nodes converge to the same

value 𝐹 , which is a random variable depending on the random

choices made in each step. For the 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 and regular graphs,

and for the 𝐸𝑑𝑔𝑒𝑀𝑜𝑑𝑒𝑙 and arbitrary graphs, the expectation of 𝐹 is

the average of the initial values
1

𝑛

∑
𝑢∈𝑉 𝜉𝑢 (0). For the 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙

and non-regular graphs, the expectation of 𝐹 is the degree-weighted

average of the initial values.

Our results are two-fold. We consider the concentration of 𝐹

and show tight bounds on the variance of 𝐹 for regular graphs. We

show that when the initial values do not depend on the number

of nodes, then the variance is negligible, and hence the nodes are

able to estimate the initial average of the node values. Interestingly,

this variance does not depend on the graph structure. For the proof

we introduce a duality between our processes and a process of two

correlated random walks. We also analyse the convergence time

for both models and for arbitrary graphs, showing bounds on the

time𝑇𝜀 required to make all node values ‘𝜀-close’ to each other. Our

bounds are asymptotically tight under some assumptions on the

distribution of the initial values.
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1 INTRODUCTION
In this paper, we consider two natural asynchronous opinion dy-

namics, extending the notion of pull voting to averaging of numeric

opinions. We refer to these models as the 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 and the

𝐸𝑑𝑔𝑒𝑀𝑜𝑑𝑒𝑙 . We are given a connected undirected graph𝐺 = (𝑉 , 𝐸)
with 𝑛 nodes, which we refer to as agents, and𝑚 edges. Each agent

𝑢 has a real number as its initial value at time 0. In the 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 ,

at each time step 𝑡 ≥ 1, a node 𝑢 is chosen uniformly at random.

This node observes 𝑘 ≥ 1 of its neighbours 𝑣1, . . . 𝑣𝑘 , selected uni-

formly at random, and updates its value unilaterally (i.e., only 𝑢

updates its value at a this step) to an 𝛼-fraction of its current value

plus a (1 − 𝛼)-fraction of the average of the values of 𝑣1, . . . 𝑣𝑘 . In

the 𝐸𝑑𝑔𝑒𝑀𝑜𝑑𝑒𝑙 , a (directed) edge (𝑢, 𝑣) is observed uniformly at

random and 𝑢 updates its value unilaterally to an 𝛼-fraction of its

own value plus a (1 − 𝛼)-fraction of the value of 𝑣 . For regular

graphs and 𝑘 = 1 the 𝐸𝑑𝑔𝑒𝑀𝑜𝑑𝑒𝑙 is the same as the 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 .

Similarly to the voter model, where a randomly selected node takes

on the opinion of a random neighbour, the dynamics which we con-

sider are very natural, possibly the simplest randomised pull-based

protocols for reaching consensus on an opinion which is close to

the average of the initial opinions. Agents in this protocols do not

perform any complicated processing of the information obtained,

other than the computation of a simple average of the received

values.

In contrast to neighbourhood load balancing processes, in our

model, only one selected node 𝑢 changes its value at each time step.

https://doi.org/10.1145/3583668.3594593
https://doi.org/10.1145/3583668.3594593


PODC ’23, June 19–23, 2023, Orlando, FL, USA P. Berenbrink, C. Cooper, C. Gava, F. Mallmann-Trenn, T. Radzik, D. Kohan Marzagão, and N. Rivera

This is another aspect of the simplicity of our processes, as they do

not require coordination of simultaneous updates in two or more

nodes.

It is easy to see that, over time, the nodes’ values converge to a

single value, which we denote by 𝐹 and refer to as the convergence
value. This follows from observing that max𝑢,𝑣∈𝑉 |𝜉𝑢 (𝑡) − 𝜉𝑣 (𝑡) |,
where 𝜉𝑥 (𝑡) is the value at node 𝑥 at the end of step 𝑡 , is non-

increasing and tends to 0. 𝐹 is a random variable (depending on the

random choices of the protocols) and its expectation turns out to

be equal to the average of the initial values
1

𝑛

∑
𝑢∈𝑉 𝜉𝑢 (0) in the

𝐸𝑑𝑔𝑒𝑀𝑜𝑑𝑒𝑙 , and the degree-weighted average of the initial values

1

2𝑚

∑
𝑢∈𝑉 𝑑𝑢𝜉𝑢 (0) in the 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 . Hence we refer to either of

these models as an Averaging Process.

A natural question is to quantify the variance of 𝐹 , V𝑎𝑟 (𝐹 ),
to understand when 𝐹 is concentrated around its expected value.

Estimating the variance and analysing the convergence rate of

our protocols are the main aims of this paper. By quantifying the

variance of 𝐹 , we analyse the ability of our processes to estimate

the initial average of the node values. In comparison to load bal-

ancing processes, which keep the average node load as invariant,

divergence of 𝐹 from its expectation can be viewed as the price of

simplicity of our averaging processes.

To bound V𝑎𝑟 (𝐹 ) we introduce a time-reversed dual process.

This process simplifies the analysis and enables us to derive the

exact value of the variance for regular graphs, which, under some

mild assumptions on the initial distribution of the node values,

implies concentration of 𝐹 . Regarding the convergence time, we

derive tight bounds for both protocols by using an appropriate

potential function. These results are summarised in Theorem 2.2,

with a more detailed statement regardingV𝑎𝑟 (𝐹 ) given in Proposi-

tion 5.8. In the 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 our bounds on both the convergence

time and theV𝑎𝑟 (𝐹 ) show, somewhat surprisingly, only a negligi-

ble dependence on 𝑘 . It makes almost no difference if 𝑘 = 1 or if

it is close to the node degree. Another interesting property is that

V𝑎𝑟 (𝐹 ) is independent (up to some constants) of both the graph

structure and the node mapping of the initial values. For example,

for the same set of initial node values and 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 with 𝑘 = 1,

the varianceV𝑎𝑟 (𝐹 ) is the same for complete graphs as for cycle

graphs.

Processes with unilateral updates can provide a natural model

in various scenarios. The graph can represent a social network

where individuals (the nodes) change their opinions after observing

opinions of some of their friends. For example, they might want to

decide which phone to buy or how much they should budget for

a given type of vacation, and check their friends’ opinion on this.

Unilateral updates model situations where an individual is influ-

enced by the opinion of specialist friends. This does not necessarily

mean that a “specialist” is also influenced by the opinions of all

its friends (e.g. see [8]). There are numerous examples for models

with unilateral updates in different areas, including: population

dynamics [39], biology [16] and robotics [7].

Note that the simple pull-based communication with unilateral

updates considered in this paper cannot guarantee convergence

to the initial (simple or weighted) average. To guarantee such con-

vergence, one would need a stronger communication model. For

example, it is well-known that if two nodes average their values

in a given time step (e.g., two neighbours in the graph in a load-

balancing process), then convergence to the average is guaranteed

[2]. Such a protocol, however, requires coordinated updates at these

two nodes. Compare this with our models where we do not have

coordinated updates. In this context, analysing the variance of 𝐹

can be viewed as studying the cost of simplicity.

Our Results. In this paper we show tight bounds on the conver-

gence time of the 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 and the 𝐸𝑑𝑔𝑒𝑀𝑜𝑑𝑒𝑙 . Furthermore, we

calculate the variance of the final value 𝐹 at the nodes. The update

at step 𝑡 ≥ 1 in both models can be expressed as 𝜉 (𝑡) = 𝐵(𝑡)𝜉 (𝑡 −1),
where 𝐵(𝑡) ∈ R |𝑉 |× |𝑉 |

is the communication matrix for step 𝑡

and 𝜉 (𝑡) ∈ R |𝑉 |
is the vector of node values at the end of this

step. There are many convergence results for models which have

doubly-stochastic (average-preserving) update matrices (e.g., [22]).

In contrast, the update matrices in our unilateral-update models

do not have this property (matrices 𝐵(𝑡) are stochastic, but not

doubly-stochastic) posing challenges in analysis. There are far less

results for this setting [31]. Note, for example, that in our models

the convergence value is not known ahead of time, requiring a

novel potential function, especially for non-regular graphs.
1

The main technical novelty of our paper lies, however, in the

development of methods for obtaining asymptotically tight con-

centration bounds (as detailed in Proposition 5.8). A well-known

duality between the voter model and coalescing random walks,
2
ob-

tained by coupling these two processes (one being run backwards in

time), shows that the voting time and the coalescence time have the

same distribution. We derive a generalisation of this duality which

relates the 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 to a diffusion process. In this dual diffusion

process, we have 𝑛 different ‘commodities’, indexed by the nodes,

and start by placing the unit amount of commodity 𝑖 on node 𝑖 , for

each 𝑖 ∈ 𝑉 . These commodities are then being diffused throughout

the graph in the following steps. In one step, first a node 𝑢 and

its 𝑘 neighbours are randomly selected. Then for each commodity

which currently has positive ‘load’ at node 𝑢, a (1 − 𝛼) fraction of

this load is taken from 𝑢 and distributed in equal proportion among

the selected 𝑘 neighbours.

If we couple𝑇 steps of the𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 process with the above dif-

fusion process, running one of them backwards in time, then at the

end of these 𝑇 steps, the distribution of node values in 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙

is the same as the (weighted) distribution of commodities in the dif-

fusion process. Further, we show that the variance of the diffusion

process is the same as the variance of a process of two correlated

random walks associated with the diffusion process. The latter

random walk process can be analysed by studying the stationary

distribution of an associated Markov chain. Crucially, despite the

fact that this Markov chain is not bi-directional (and so, it does

not satisfy the detailed balanced equations), we are able to com-

pute its exact stationary distribution. Using this distribution and

arguing via the diffusion process, we obtain the variance of the

convergence value of the 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 . The formal definitions, the

formal statement of the duality and the details of the analysis are

given in Section 5.

1
The standard potential functions which do not take the degrees into account are not

decreasing in expectation.

2
In coalescing random walks, one random walk starts on each node and whenever

two or more random walks meet, they merge into one random walk. The coalescence

time is the expected time until only one random walk is left.
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Some of the proofs are omitted, but they are included in the full

version of this paper [9].

2 THE MODEL AND DETAILED
CONTRIBUTION

We have a connected undirected graph 𝐺 = (𝑉 , 𝐸) with 𝑛 nodes,𝑚

edges and the set of nodes 𝑉 = {1, 2, . . . , 𝑛}. If the graph is regular

we use 𝑑 for the node degree; otherwise 𝑑𝑖 is the degree of node 𝑖

and 𝑑max and 𝑑min are the maximum and minimum node degree.

We assume that every node has an initial value, which is a real

number. Furthermore, 𝜉𝑖 (𝑡) is defined as a random variable equal

to the value of node 𝑖 ∈ 𝑉 at the end of the 𝑡-th time step, and 𝜉 (𝑡)
as the vector of these values. The vector 𝜉 (0) = 𝜉 represents the
nodes’ initial values. In this paper we show results for two different

models called 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 and 𝐸𝑑𝑔𝑒𝑀𝑜𝑑𝑒𝑙 . In the following we will

first introduce the 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 and state the corresponding results.

Then, we will do the same for the 𝐸𝑑𝑔𝑒𝑀𝑜𝑑𝑒𝑙 .

Definition 2.1 (𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 ). The model has two parameters: a
real number 𝛼 ∈ [0, 1) and an integer 𝑘 ≥ 1. At each time step 𝑡 ≥ 1,
a node 𝑢 is chosen uniformly at random. That node, in turn, chooses
𝑘 of its neighbours 𝑣1, 𝑣2, . . . 𝑣𝑘 uniformly at random and without
replacement. Then,

𝜉𝑢 (𝑡) = 𝛼 · 𝜉𝑢 (𝑡 − 1) + (1 − 𝛼)
𝑘

·
𝑘∑
𝑖=1

𝜉𝑣𝑖 (𝑡 − 1),

and for all 𝑣 ≠ 𝑢, 𝜉𝑢 (𝑡 + 1) = 𝜉𝑢 (𝑡).
Note that for 𝑘 = 1 and 𝛼 = 0 this model is equivalent to the voter

model, where a node chosen uniformly at random takes the opinion

of its random neighbour. It is easy to see that in the 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙

the values of nodes converge to the same value 𝐹 . In Lemma 4.1,

we show that E(𝐹 ) = ∑𝑛
𝑖=1

𝑑𝑖
2𝑚 · 𝜉𝑖 (0). In the following we assume

w.l.o.g. that the initial values are centered at 0, so that

∑𝑛
𝑖=1

𝑑𝑖
2𝑚 ·

𝜉𝑖 (0) = 0. For regular graphs, this becomesE(𝐹 ) = 1

𝑛

∑
𝑖 𝜉𝑖 (0)) = 0.

Let 1 − 𝜆2 (𝑃) be the eigenvalue gap of the associated transition

matrix 𝑃 (defined in Section 4), and for 𝑥 ∈ 𝑅𝑛 , let ∥𝑥 ∥2 be the

Euclidean norm of 𝑥 .

Theorem 2.2 (𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙). Let 𝐺 be a connected graph, 𝛼 a
constant in (0, 1) and 𝑘 ≥ 1 integer (parameters of the model). Let
𝜀 ∈ (0, 1), and let𝑇 = 𝑇𝜀 be the first time such that 𝜉 (𝑇 ) is 𝜀-converged
(defined in Section 4).

(1) (Convergence time) Then, we have w.h.p.

𝑇 = 𝑂

(
𝑛 log

(
𝑛∥𝜉 (0)∥2

2
/𝜀)

1 − 𝜆2 (𝑃)

)
.

Furthermore, there exists an initial state 𝜉 (0) for which this
bound is, up to constants, tight for every 𝑘 ≥ 1.

(2) (Concentration) If 𝐺 is regular and regardless of 𝑘 , we have

V𝑎𝑟 (𝐹 ) = Θ

(
∥𝜉 (0)∥2

2

𝑛2

)
.

The proof of the first part of the theorem can be found in the

full version, where we also present some more detailed bounds

on the convergence time. Those detailed bounds indicate that the

convergence time only slightly improves with increasing 𝑘 since it

scales as (1 + 1/𝑘) ∈ [1, 2].
Our main result, the concentration bound, is stated in the second

part of the theorem, with more detailed bounds derived in Propo-

sition 5.8. These bounds do not depend on either the value of 𝑘

or any structural properties of the graphs. Thus, for example, the

variance of 𝐹 on the clique and the cycle are asymptotically the

same. The initial distribution of the values 𝜉 (0) also does not have

impact, asymptotically. Note that if all initial values are 𝑜 (√𝑛), then
V𝑎𝑟 (𝐹 ) = 𝑜 (1), and by Chebychev’s Inequality, with probability

1 − 𝑜 (1), 𝐹 = 𝑜 (1).
Our bounds on the convergence time are similar to the bounds

on the convergence time of neighbourhood load balancing [11],

which, in turn, can be related to the mixing time of random walks.

Load-balancing (diffusion) bounds are often stated in terms of the

discrepancy of 𝜉 (𝑡) defined as𝐾 = max𝑖 𝜉𝑖 (𝑡)−min𝑖 𝜉𝑖 (𝑡). Note that
log(∥𝜉 (0)∥2

2
) ≤ 2 log(𝐾𝑛), due to our assumption that

∑
𝑖 𝜉𝑖 (0) = 0.

The additional factor of 𝑛 in our convergence bound in comparison

to [11] is due to the fact that we consider an asynchronous model

where one node is activated at the time, while [11] considers a

synchronous model.

Note that our convergence time bound does not give results for

the voter model since we assume that 𝛼 is a positive constant. For

comparison, an upper bound of 𝑂 (𝑛/(1 − 𝜆2 (𝑃))) on the expected

convergence time of the parallel voter model for regular graphs is

given in [18]. Thus, our process is faster by Ω(𝑛/log𝑛), provided
that 𝐾 and 1/𝜀 are polynomial in 𝑛.

Definition 2.3 (𝐸𝑑𝑔𝑒𝑀𝑜𝑑𝑒𝑙 ). At each time step 𝑡 ≥ 1, a directed
edge 𝑒 = (𝑢, 𝑣) is chosen uniformly among all edges. Then 𝜉𝑢 (𝑡) =
𝛼𝜉𝑢 (𝑡 − 1) + (1 − 𝛼)𝜉𝑣 (𝑡 − 1) . For all 𝑢 ′ ≠ 𝑢, 𝜉𝑢′ (𝑡 + 1) = 𝜉𝑢′ (𝑡).

We obtain the following results for the 𝐸𝑑𝑔𝑒𝑀𝑜𝑑𝑒𝑙 . The proof of

the results can be found in the full version. Let 𝜆2 (𝐿) be the second-
smallest eigenvalue of the Laplacian of 𝐺 (defined in Section 4).

Theorem 2.4 (𝐸𝑑𝑔𝑒𝑀𝑜𝑑𝑒𝑙). Let 𝐺 be a connected graph and 𝛼 a
constant in (0, 1). Let 𝜀 ∈ (0, 1), and let 𝑇 = 𝑇𝜀 be the first time such
that 𝜉 (𝑇 ) is 𝜀-converged.

(1) (Convergence time) Then, we have w.h.p.

𝑇 = 𝑂

(
𝑚 log

(
𝑛∥𝜉 (0)∥2

2
/𝜀)

𝜆2 (𝐿)

)
.

Furthermore, there exists an initial state 𝜉 (0) for which this
bound is tight up to constants.

(2) (Concentration) If 𝐺 is regular, we have

V𝑎𝑟 (𝐹 ) = Θ

(
∥𝜉 (0)∥2

2

𝑛2

)

It is interesting to note that the fixed point in the 𝐸𝑑𝑔𝑒𝑀𝑜𝑑𝑒𝑙 is,

in expectation, the initial average—even for irregular graphs. The

concentration follows from Theorem 2.2 since for regular graphs

the 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 and the 𝐸𝑑𝑔𝑒𝑀𝑜𝑑𝑒𝑙 are identical (for 𝑘 = 1). For

𝑑-regular graphs both theorems (Theorem 2.2 and Theorem 2.4)
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give the same bound on the convergence time. Note that in this

case there is a factor of 𝑑 between 1 − 𝜆2 (𝑃) and 𝜆2 (𝐿).

3 PREVIOUS RELATED RESULTS
Our protocols fit very well into the framework of opinion dynamics

on graphs. The study of these dynamics has a long history in many

academic disciplines, including physics, computer science, electri-

cal engineering, population genetics and epidemiology. Processes

falling into this category include the voter process [12, 18, 21],

gossip algorithms [42], opinion dynamics [13, 23, 29, 34], consen-

sus [5, 10, 20, 32], majority protocols [4, 19, 20, 25] diffusion load

balancing [3, 38, 44], or so-called averaging processes [1].

Many of these models assume unilateral updates. For example, in

the voter process, in each step a random agent adopts the opinion of

a randomly chosen neighbour. Many majority protocols [19, 20] as-

sume that an agent randomly chooses𝑘 of its neighbours and adopts

the majority opinion. Our model is continuous version of this where

we are allow to average between multiple opinions rather than limit

the opinions to be a non-numeric set. In many opinion dynamics,

e.g., [23, 29], the individuals communicate with all their neighbours

before they adjust their opinions. These models are usually deter-

ministic. The authors of [27] consider a randomised variant of the

Friedkin-Johnsen model which is similar to our 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 . The

agents are only allowed to interact with a small randomly chosen

subset of their neighbours. The authors refer to their model as using

only limited information. The motivation of the model is as follows.

In today’s social networks many users have a very large amount of

followers/friends resulting in large degree nodes. In such a setting,

it seems unnatural to assume that every agent/user communicates

first with all its friends before making up their own mind about a

subject (e.g., the esteem they hold for a brand). Instead, they might

only communicate with a small subset of their friends before taking

a decision.

Voting and Majority. Our model can be regarded as a generalisa-

tion of the voter model which was first analysed in [33]. In [33] the

authors assume a network, and any node of the network has a dis-

crete value. The authors show a bound of𝑂 (𝑡𝑚 ·log𝑛) = 𝑂 (𝑛3 log𝑛)
where 𝑡𝑚 is the expected meeting time of two random walks. In

[18] the authors provide an improved upper bound of 𝑂 ((1 −
𝜆2)−1 log4 𝑛 + 𝜌)) on the expected consensus time for any graph

𝐺 , where 𝜆2 is the second eigenvalue of the transition matrix of

a random walk on 𝐺 , with 𝜌 =
( ∑

𝑢∈𝑉 (𝐺) 𝑑 (𝑢)
)
2/∑𝑢∈𝑉 (𝐺) 𝑑2 (𝑢).

The value of 𝜌 ranges from Θ(1), for the star graph, to 𝑛, for regular
graphs. The authors of [12] consider voting in dynamic graphs and

analyse the consensus time in terms of the conductance 𝜙 of the

underlying graphs. The authors show a bound on the expected

consensus time of 𝑂 (𝑑𝑚𝑎𝑥 · 𝑛/(𝑑𝑚𝑖𝑛 · 𝜙)) for graphs with mini-

mum degree 𝑑𝑚𝑖𝑛 and maximum degree 𝑑𝑚𝑎𝑥 . A generalisation

of this model for discrete opinions was introduced in [19]. Simi-

lar to our model, the nodes consider the opinion of 𝑘 randomly

chosen neighbours. In [19] the nodes adopt the majority opinion

(the own opinion can be included or not), and not the average as

in our models. There are several different models with different

tie breaking-rules. See [5] for an overview article about related

consensus dynamics.

Opinion Dynamics. There has been an interesting line of research
trying to explain the spread of innovations and new technologies

based on local interactions, where nodes are only allowed to com-

municate with their direct neighbours [16, 17, 26, 41]. The study

of opinion-forming processes via local communication was intro-

duced by DeGroot [23] where it is assumed that the underlying

network is a directed graph with weighted edges. The nodes of the

network are agents having opinions modelled as real numbers. The

state of the network in step 𝑡 + 1 is the product of the opinions

in step 𝑡 times the weighted adjacency matrix. If and how fast the

process converges depends heavily on the matrix. For example,

if the edge weights of node with degree 𝑑 are chosen as 1/𝑑 , the
convergence time is roughly log𝑛 · (1− 𝜆max)−1, where 𝜆max is the

largest eigenvalue of the matrix (see [31]). In [48] the author uses

a similar averaging approach to model the movement of particles.

Friedkin and Johnsen (FJ) [29] extended the model by incorporat-

ing private opinions. n there, every agent has a private opinion,

which does not change, and a so-called expressed opinion. The

expressed opinion of an agent is defined as a deterministic func-

tion of the expressed opinions of all its neighbours and its private

opinion. Another very influential model is the one by Hegselmann

and Krause [34]. In this model the set of neighbours that influence

a given agent is no longer fixed and the agents’ opinions and their

respective sets of influencing neighbours co-evolve over time. At

any point in time the set of influencing neighbours of an agent

consists of all the neighbours in a given static social network with

an opinion close to their own opinion. In [28] the authors study

convergence properties of a general model where the agents update

their opinions in rounds to a weighted average of all opinions in

their neighbourhoods. In [27] the authors consider a variant of the

Friedkin Johnson model where the agents interact with a small

subset of their neighbours. They refer to their model as using only

limited information. The authors show convergence properties of

simple and natural variants of the FJ in this setting.

Diffusion and Consensus. Another research area related to our

work is that of diffusion protocols. Here a network of 𝑛 identical

nodes is given and every node stores a value. The value can, for

example, model the load of the nodes or it can simply be a num-

ber. The protocol runs in parallel steps and in each step all nodes

average their own value with the value of all neighbours. In the

load balancing setting on a regular network with degree 𝑑 , this is

the same as sending a load of max{0, ℓ𝑢 − ℓ𝑣} over the edge from
𝑢 to 𝑣 where ℓ𝑢 (ℓ𝑣 ) is the load of node 𝑢 (𝑣). The objective is to

distribute the load as evenly as possible among the nodes whilst

minimizing the number of load balancing steps. If the values model

numbers, diffusion can also be used to reach average consensus

[38]. A variant of a diffusion process is the so-called dimension

exchange process where the edges used for the balancing form a

matching. The diffusion model was first studied by [22] and, inde-

pendently, by [38]. The authors of [43] show a tight connection

between the convergence rate of the diffusion algorithm and the

absolute value of the second largest eigenvalue 𝜆max of the diffusion

matrix 𝑃 . P is defined as follows: 𝑝𝑖 𝑗 = 1/(𝑑 + 1) if {𝑖, 𝑗} ∈ 𝐸 where

𝑑 is the degree of the nodes. The convergence time is bounded

by 2 log(𝑛2 + 𝐾)/(1 − 𝜆max), where 𝐾 is the initial maximum load
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difference. There is a similar connection between 𝜆max and the

convergence time for the dimension exchange model [11].

There is a vast amount of literature about diffusion processes in

different research communities. In [47] the authors observe rela-

tions between convergence time and properties of the underlying

network, like electrical and fluid conductance. In [38] there is a

nice overview about the results. The author distinguishes between

consensus (all nodes have to agree on a value) or average consensus

where nodes have to calculate the average, similar to neighbour-

hood load balancing. The main goal of the author is to develop

diffusion-type algorithms where the nodes are only aware of their

own edges, but neither of the edges of their neighbours nor of their

degrees. The author presents algorithms for both types of consen-

sus with convergence time 𝑂 (𝑛4) and dynamic networks, together

with randomised algorithms for undirected graphs.

Many publications focus on average consensus via diffusion

type processes. In [35] the authors present a gossip-based algo-

rithm (which is similar to an averaging algorithm) for complete

graphs. The authors show that the protocol can be used for the com-

putation of sums, averages, random samples, quantiles, and other

aggregate functions. They also show that our protocols converge

exponentially fast. In [6, 14] the authors generalise the result to

arbitrary graphs. In [14] the authors show that the averaging time

of their algorithm depends on the second largest eigenvalue of a

doubly stochastic matrix. [24, 46] consider averaging algorithms

for directed graphs where agents transmit their values to one or

several agents, but they do not receive data. Nodes update their

values using a weighted linear combination of their own value

and the values of neighbouring nodes. In [3] the authors study

a dynamic load balancing process on cycles. In [15] assume that

the load inputs are drawn from a fixed probability distribution. In

[36, 37, 40] the authors use a diffusion algorithm for counting the

nodes in an anonymous network and in [25] diffusion is used for a

majority process in the population model. In [30, 45] the authors

compare continuous with discrete diffusion processes.

4 NOTATION AND PRELIMINARIES
In order to prove detailed concentration bounds (stated in Propo-

sition 5.8), we introduce additional notation and new concepts.

We denote our Averaging Process with (𝜉 (𝑡))𝑡 ≥0, where 𝜉 (𝑡) =
(𝜉𝑢 (𝑡))𝑢∈𝑉 . For any vector 𝜉 (𝑡) ∈ R𝑛 , we define the quantities

Avg(𝑡) = 1

𝑛

∑
𝑢∈𝑉

𝜉𝑢 (𝑡) and 𝑀 (𝑡) =
∑
𝑢∈𝑉

𝑑𝑢

2𝑚
· 𝜉𝑢 (𝑡). (1)

For any vector 𝑣 ∈ R𝑛 , let ∥𝑣 ∥2 =
√∑

𝑖 𝑣
2

𝑖
. Let𝐿 = 𝐷−𝐴 be the graph

Laplacian of 𝐺 , where 𝐷 = diag(𝑑1, ..., 𝑑𝑛) is the diagonal matrix

with entries 𝑑𝑖 (degrees of nodes), and 𝐴 is the adjacency matrix of

𝐺 . 𝐿 is a symmetric positive semi-definite matrix with eigenvalues

0 = 𝜆1 (𝐿) < 𝜆2 (𝐿) ≤ · · · ≤ 𝜆𝑛 (𝐿). Note that 𝜆2 (𝐿) > 0 follows

from the connectivity of 𝐺 (𝐿 is irreducible). Further, 𝑒 (𝑖) ∈ {0, 1}𝑛
is the indicator (column) vector, where the 𝑖-th entry is 1 and all

other entries are 0, 1 is a vector of all 1’s (of appropriate length to

fit the context), and symbol ⊤ indicates the transpose of a vector

or matrix (introduced to avoid confusion with the time step 𝑇 ).

We consider the following lazy variant of the 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 , where
in each step with probability 1/2 the selected node performs no

update, i.e., 𝜉 (𝑡) = 𝜉 (𝑡 − 1) and otherwise behaves as before. This

can be related to the transition matrix 𝑃 of a lazy random walk

on 𝐺 , with 𝑝 (𝑖,𝑖) = 1/2 and 𝑝 (𝑖, 𝑗) = 1/(2𝑑𝑖 ), for each 𝑖 ∈ 𝑉 and

(𝑖, 𝑗) ∈ 𝐸. Let 𝜆2 (𝑃) be the second-largest eigenvalue of 𝑃 and let

𝑓2 (𝑃) be the corresponding eigenvector. Let 𝜋 denote the vector

with 𝜋𝑖 equal to the probability that a fully mixed random walk

is at the node 𝑖 . We will use the 𝜋 weighted inner product of two

vectors 𝜈 and 𝜈 ′ in R𝑛 given by〈
𝜈, 𝜈 ′

〉
𝜋
=

∑
𝑥 ∈𝑉

𝜋𝑥𝜈𝑥𝜈
′
𝑥 . (2)

Let 𝜋𝑚𝑎𝑥 = 𝑑max/2𝑚 and 𝜋𝑚𝑖𝑛 = 𝑑min/2𝑚. Our goal is to analyse

the time it takes until the nodes have almost identical values. To

do so, we will make use of the following potential function.

𝜙 (𝜉 (𝑡)) = ⟨𝜉 (𝑡), 𝜉 (𝑡)⟩𝜋 − ⟨1, 𝜉 (𝑡)⟩2𝜋
=

1

2

∑
𝑢,𝑣∈𝑉

𝜋𝑢𝜋𝑣 (𝜉𝑢 (𝑡) − 𝜉𝑣 (𝑡))2 . (3)

We say that the process has 𝜀-converged whenever 𝜙 (𝜉 (𝑡)) ≤ 𝜀.
For comparison with related notions: a (𝜀/𝑛)6-convergence implies

a discrepancy𝐾 (maximum value minus minimum value) of at most

𝜀. Finally, a fundamental property of the processes defined in Eq. (1)

is that they are martingales, as shown in the following result (its

proof is in the full version).

Lemma 4.1. We have E(𝑀 (𝑡 + 1) |𝜉 (𝑡)) = 𝑀 (𝑡). In particular,
E(𝑀 (𝑡 +1) |𝜉 (0)) = 𝑀 (0) and for regular graphsE(𝑀 (𝑡 +1) |𝜉 (0)) =
Avg(0).

5 PROOF OF THE CONCENTRATION BOUNDS
In this section we will show the second part of our main theorem

which states results for the 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 . Note that this part of the

theorem holds for regular graphs only, and recall that the results

extend to the 𝐸𝑑𝑔𝑒𝑀𝑜𝑑𝑒𝑙 , since for regular graphs both models

are identical. To show our result we will study the dual (𝑊 (𝑡))𝑡 ≥0
of the Averaging Process (𝜉 (𝑡))≥𝑡 , which we call the Diffusion

Process (for a detailed definition of the process see Section 5.1).

The latter process can be thought of as an 𝑛-dimensional diffusion

process in which the dimensions are balanced separately but not

independently of each other. Due to the duality (which we show in

Proposition 5.1) we get that the variance of the final node values

of both processes is the same. Therefore, it is sufficient to study

the variance of the dual process. In turn, to analyse the variance of

the dual process we study the joint distribution 𝜇 of two Random

Walk Processes (𝑊 (𝑡))𝑡 ≥0 (see Section 5.2 for a detailed definition),

where two random walks start in two (not necessarily different)

nodes. We will present and prove the following relationships.

V𝑎𝑟 (𝑀 (𝑡)) ≈
Lemma 5.2

V𝑎𝑟 (𝑊 (𝑡)) ≈
Proposition 5.4

V𝑎𝑟 (𝑊 (𝑡))

≈
Lemma 5.5

∑
𝑢,𝑣

𝜇 (𝑢, 𝑣)𝜉𝑢 (0)𝜉𝑣 (0)

Through Lemma 5.2 and Proposition 5.4 we show that the three

processes have the same variance. Then, through Lemma 5.5 we

will show that this variance can be expressed in terms of 𝜇 and 𝜉 (0).
Recall that we use

⊤
to indicate the transpose of a vector.
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5.1 The Diffusion Process
We introduce the Diffusion Process, which is closely related to our

Averaging Process. We call this relationship duality. The Diffusion
Process takes as parameters a cost (row) vector 𝑐 ∈ R𝑛 and an

initial load (column) vector 𝑞(0) ∈ R𝑛 . At a time step 𝑡 ≥ 0, the

load vector is denoted by𝑞(𝑡) ∈ R𝑛 and its cost is the value 𝑐 𝑞(𝑡). At
every time step 𝑡 ≥ 1, a node 𝑢 (𝑡) is sampled uniformly at random.

Node 𝑢 (𝑡) then chooses a subset 𝑆 (𝑡) of 𝑘 neighbours uniformly at

random and spreads a 1 − 𝛼 fraction of its load uniformly to these

𝑘 neighbours. The choice of neighbours and load redistribution can

be represented using matrix 𝐵(𝑡) defined as follows.

𝐵𝑖, 𝑗 (𝑡) =




1, if 𝑖 = 𝑗 ≠ 𝑢 (𝑡),
𝛼, if 𝑖 = 𝑗 = 𝑢 (𝑡),
(1 − 𝛼)/𝑘, if 𝑖 ∈ 𝑆 (𝑡) and 𝑗 = 𝑢 (𝑡),
0, otherwise.

(4)

Then at step 𝑡 ≥ 1, the load vector and the state of the process (the

cost of the load distribution) are given, respectively, by

𝑞(𝑡) = 𝐵(𝑡) 𝑞(𝑡 − 1) = 𝑅(𝑡) 𝑞(0) and 𝑤 (𝑡) = 𝑐 𝑞(𝑡) = 𝑐 𝑅(𝑡) 𝑞(0),
where

𝑅(𝑡) = 𝐵(𝑡) · 𝐵(𝑡 − 1) · · ·𝐵(1). (5)

The Diffusion Process can be applied simultaneously to a number

of load vectors 𝑞 (1) , 𝑞 (2) , . . . , 𝑞 (𝑟 ) , 𝑟 ≥ 1, of different commodities:

(𝑞 (1) (𝑡), 𝑞 (2) (𝑡), . . . , 𝑞 (𝑟 ) (𝑡))
= 𝑅(𝑡) (𝑞 (1) (0), 𝑞 (2) (0), . . . , 𝑞 (𝑟 ) (0)),

𝑊 (𝑡) = 𝑐 𝑅(𝑡) (𝑞 (1) (0), 𝑞 (2) (0), . . . , 𝑞 (𝑟 ) (0)),
where 𝑞 ( 𝑗) (𝑡) and𝑊 ( 𝑗) (𝑡) ( 𝑗-th entry in𝑊 (𝑡)) are, respectively,
the load vector 𝑗 and its cost at step 𝑡 . Note that𝑊 (𝑡) ∈ R𝑟 . Next,
we formally state the duality between the Averaging Process and

the Diffusion Process. For 𝑢 ∈ 𝑉 , the column vector 𝑒 (𝑢) is the unit
vector with 1 at position 𝑢 and 0’s everywhere else.

Proposition 5.1. If the Diffusion Process is applied to cost vector
𝑐 = 𝜉⊤ (0) and to 𝑛 initial load vectors 𝑒 (𝑢) , 𝑢 ∈ 𝑉 (that is, the total
load – one unit – of ‘commodity’𝑢 is initially at node𝑢), then for each
𝑇 ≥ 0, the probability distribution of 𝜉 (𝑇 ) in the Averaging Process
is the same as the probability distribution of𝑊 (𝑇 ) in the Diffusion
Process. That is, for any (column) vector 𝑎 ∈ R𝑛 , P(𝜉 (𝑇 ) = 𝑎) =
P(𝑊 (𝑇 ) = 𝑎⊤).

Proof. This duality relation follows by coupling the Averaging

Process with the Diffusion Process, running one of them (say the

Averaging Process) forward in time and the other backwards in time.

More formally, we fix an arbitrary time step 𝑇 ≥ 1 and consider

any feasible node selection sequence 𝜒 = (𝜒 (1), 𝜒 (2), . . . , 𝜒 (𝑇 ))
for 𝑇 steps. That is, for 1 ≤ 𝑡 ≤ 𝑇 , 𝜒 (𝑡) = (𝑆 (𝑡)), 𝑢 (𝑡)), where
𝑢 (𝑡) and 𝑆 (𝑡) are a node and a size 𝑘 sample of its neighbours. The

lemma below shows that if we run the Averaging Process using

sequence 𝜒 and the Diffusion Process using the reverse sequence

𝜒𝑅 , then𝑊 (𝑇 ) = 𝜉⊤ (𝑇 ). The proposition then follows because

the probability of having sequences 𝜒 in the first 𝑇 steps in the

Averaging Process is the same as the probability of having sequence

𝜒𝑅 in the first 𝑇 steps in the Diffusion Process.

Note that running one of the two processes backward is crucial

for establishing this duality. If both processes are run forward on

the same sequence 𝜒 , then most likely𝑊 (𝑇 ) ≠ 𝜉⊤ (𝑇 ). □

Lemma 5.2. For the Averaging Process and the Diffusion Process
as in Proposition 5.1, an arbitrary time step 𝑇 ≥ 1, and an arbitrary
node selection sequence 𝜒 = (𝜒 (1), 𝜒 (2), . . . , 𝜒 (𝑇 )), if we run the
Averaging Process using sequence 𝜒 and the Diffusion Process using
the reverse sequence 𝜒𝑅 , then we have𝑊 (𝑇 ) = 𝜉⊤ (𝑇 ).

Proof. Since for each 1 ≤ 𝑡 ≤ 𝑇 , in step 𝑡 the Averaging Process

uses the same node selection as in the Diffusion Process in step

𝑇 + 1 − 𝑡 . Then 𝜉 (𝑡) = 𝐹 (𝑡)𝜉 (𝑡 − 1), where 𝐹 (𝑡) = 𝐵⊤ (𝑇 − 𝑡) and
thus we have

𝑊 (𝑇 ) = 𝑐 · (𝐵(𝑇 )𝐵(𝑇 − 1) . . . 𝐵(1)) ·
(
𝑒 (1) , 𝑒 (2) , . . . , 𝑒 (𝑛)

)
= 𝑐 · (𝐵(𝑇 )𝐵(𝑇 − 1) . . . 𝐵(1)) · 𝐼
= 𝜉⊤ (0) · 𝐹⊤ (1)𝐹⊤ (2) . . . 𝐹⊤ (𝑇 )
= (𝐹 (𝑇 ) . . . 𝐹 (2)𝐹 (1) · 𝜉 (0))⊤ = 𝜉⊤ (𝑇 ).

□

From now on, Diffusion Process means the diffusion process as

specified in Proposition 5.1. For an illustrative example of how the

Averaging Process and the Diffusion Process work and relate to

each other, see Fig. 1. In there, we fix 𝛼 = 1/2 and 𝑘 = 1. For another

example with 𝛼 = 1/2 and 𝑘 > 1 see the full version.

5.2 The RandomWalk Process
With the Diffusion Process we associate 𝑛 random walks(
𝑞 (𝑢) (𝑡)

)
𝑡 ≥0

, for 𝑢 ∈ 𝑉 . At step 𝑡 , the position of walk 𝑢 is

𝑞 (𝑢) (𝑡) ∈ {𝑒 (1) , 𝑒 (2) , . . . , 𝑒 (𝑛) }, where the ‘1’ in vector 𝑞 (𝑢) (𝑡) in-
dicates the node where the walk is at this step. The cost of this

walk at step 𝑡 is defined as𝑊 (𝑢) (𝑡) = 𝜉 (0) · 𝑞 (𝑢) (𝑡), from the Av-

eraging Process. Thus, if the walk is at a node 𝑣 ∈ 𝑉 , its cost is
𝑊 (𝑢) (𝑡) = 𝜉𝑣 (0). The starting node of this walk is node 𝑢, that

is, 𝑞 (𝑢) (0) = 𝑒 (𝑢) . At step 𝑡 , the transition matrix for all 𝑛 ran-

dom walks is matrix 𝐵(𝑡) of the Diffusion Process given in Eq. (4).

That is, given the location of random walk 𝑢 at step 𝑡 − 1, repre-

sented by vector 𝑞 (𝑢) (𝑡 − 1), and fixing the transition matrix 𝐵(𝑡),
the distribution of the location of this walk at step 𝑡 is given by

𝐵(𝑡)𝑞 (𝑢) (𝑡 −1) = 𝑅(𝑡)𝑒 (𝑢) . Hence, if 𝐵(𝑡) represents choosing node
𝑣 and its 𝑘 neighbours𝑤1,𝑤2, . . . ,𝑤𝑘 , and if the walk happens to be

at node 𝑣 at step 𝑡 −1, then in step 𝑡 the walk moves to node𝑤𝑖 with

probability (1 − 𝛼)/𝑘 , for 𝑖 = 1, 2, . . . , 𝑘 . Otherwise, the walk does

not move in step 𝑡 . In what follows, ‘the random walk starting at

node 𝑢’ means the random walk defined here. The relation between

the random walks defined above and the Diffusion Process is akin

to the relation between the standard random walk and the standard

diffusion process.
3
The former describes the location of the random

walk at a given time (the walk can only be at one position at any

time), while the latter gives the distribution of the random walk at

any given time step.

3
In the standard random walk process the walk moves to all neighbors with equal

probability and in the standard diffusion process, each node sends the same fraction

of load to all its neighbors synchronously starting with load one at one node and load

zero elsewhere.
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Figure 1: Illustration of the duality between the Averaging Process (a) and the Diffusion Process (b), with 𝑘 = 1 and 𝛼 = 1/2.
In (a), at 𝑡 = 1 node 𝑢1 and its neighbour 𝑢2 are selected, the value at 𝑢1 is updated and the values at 𝑢2 and 𝑢3 stay the same
– see matrix 𝐹 (1). At 𝑡 = 2, 𝑢2 and its neighbour 𝑢1 are selected, leading to 𝜉 (2) – see matrix 𝐹 (2). In (b), the Diffusion Process
runs backwards. The initial state, at 𝑡 = 2, of the diffusion starting in 𝑢2 is the vector [0, 1, 0]. At the first step (𝑡 = 2), 𝑢2 sends
1 − 𝛼 = 1/2 of its load to 𝑢1. The loads in the other nodes do not spread. The resulting load vector is 𝑅2 (1) = [1/2, 1/2, 0], the
second column of 𝑅(1). After the second step, the load is 𝑅2 (2) = [1/4, 3/4, 0]. The diffusion of the loads originating at nodes 𝑢1
and 𝑢3 is indicated in purple and cyan respectively. We get𝑊 (2) = 𝜉⊤ (2).
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Lemma 5.3. For any fixed sequence of transition metrices 𝜒 =
(𝐵(1), 𝐵(2), . . . , 𝐵(𝑡)), for the random walk starting at node 𝑢, we
have (recall the definition if 𝑅(𝑡) in (5)),

E[𝑞 (𝑢) (𝑡) | 𝜒] = 𝑅(𝑡)𝑒 (𝑢) , (6)

E[𝑊 (𝑢) (𝑡) | 𝜒] =𝑊 (𝑢) (𝑡), (7)

Proof. Given 𝜒 , the vector 𝑅(𝑡)𝑒 (𝑢) is the distribution at step 𝑡

of the random walk starting at node 𝑢. This means that for 𝑥 ∈ 𝑉 ,
the expectation of 𝑞

(𝑢)
𝑥 (𝑡) ∈ {0, 1} is equal to entry 𝑥 in 𝑅(𝑡)𝑒 (𝑢) ,

which gives the probability that at step 𝑡 the walk is at node 𝑥 (the

probability that 𝑞
(𝑢)
𝑥 (𝑡) = 1). Hence Eq. (6).

4
For Eq. (7), by linearity

of expectation,

E[𝑊 (𝑢) (𝑡) | 𝜒] = E[𝜉⊤𝑞 (𝑢) (𝑡) | 𝜒]
= 𝜉⊤ ·E[𝑞 (𝑢) (𝑡) | 𝜒] = 𝜉⊤ 𝑅(𝑡) 𝑒 (𝑢)

=𝑊 (𝑡)𝑒 (𝑢) =𝑊 (𝑢) (𝑡) .

where 𝜉 = 𝜉 (0). □

We refer collectively to the 𝑛 random walks defined in this sec-

tion as Random Walk Process𝑊 (𝑡). These 𝑛 random walks are

correlated since they use the same random choices of nodes and

neighbours sampled, that is, the same transition matrices 𝐵(𝑡).

Proposition 5.4. For the Diffusion Process𝑊 (𝑡) and the Random
Walk Process𝑊 (𝑡), we have

E[𝑊 (𝑢) (𝑡)𝑊 (𝑣) (𝑡)] = E[𝑊 (𝑢) (𝑡)𝑊 (𝑣) (𝑡)] (8)

Proof. It is sufficient to prove that for any fixed sequence 𝜒 of

transition matrices,

E[𝑊 (𝑢) (𝑡)𝑊 (𝑣) (𝑡) | 𝜒] =𝑊 (𝑢) (𝑡)𝑊 (𝑣) (𝑡) . (9)

Note that if 𝜒 is fixed, then there is no randomness on the right-hand

side of the above. By writing 𝜉 instead of 𝜉 (0), we have

E[𝑊 (𝑢) (𝑡)𝑊 (𝑣) (𝑡) | 𝜒] = E[𝜉⊤𝑞 (𝑢) (𝑡) · 𝑞 (𝑣)⊤ (𝑡)𝜉 | 𝜒]
= 𝜉⊤ ·E[𝑞 (𝑢) (𝑡) · 𝑞 (𝑣)⊤ (𝑡) | 𝜒] · 𝜉 (10)

= 𝜉⊤ ·E[𝑞 (𝑢) (𝑡) | 𝜒] ·E[𝑞 (𝑣)⊤ (𝑡) | 𝜒] · 𝜉
(11)

=
(
𝜉⊤𝑅(𝑡)𝑒 (𝑢)

)
·
(
𝑒 (𝑣)⊤𝑅⊤ (𝑡)𝜉

)
(12)

=𝑊 (𝑢) (𝑡) ·𝑊 (𝑣) (𝑡),

where (10) is by linearity of expectation, (11) is by independence

of the random walks 𝑞 (𝑢) (𝑡) and 𝑞 (𝑣) (𝑡) (once the sequence 𝜒 is

fixed), and (12) follows from Eq. (6). □

4E[ (𝑋1, 𝑋2, . . . , 𝑋𝑛) ] is defined as (E[𝑋1 ],E[𝑋2 ], . . . ,E[𝑋𝑛 ]) .

5.3 Joint Distribution of Two RandomWalks
In this section we consider two correlated random walks 𝑞 (𝑎) (𝑡)
and 𝑞 (𝑏) (𝑡), 𝑎, 𝑏 ∈ 𝑉 , 𝑎 ≠ 𝑏. Respectively, we denote by 𝑋 (𝑡)
and 𝑌 (𝑡) the nodes where these walks are at step 𝑡 . The random
walks proceed through the Random Walk Process described in the

previous section, resulting in a joint transition matrix 𝑄 :

𝑄 ((𝑥,𝑦), (𝑢, 𝑣))
= P((𝑋 (𝑡 + 1), 𝑌 (𝑡 + 1)) = (𝑢, 𝑣) | (𝑋 (𝑡), 𝑌 (𝑡)) = (𝑥,𝑦)),

where (𝑥,𝑦), (𝑢, 𝑣) ∈ 𝑉 ×𝑉 . The 𝑄 chain defined by this transition

matrix is irreducible (each state (𝑢, 𝑣) is reachable form each state

(𝑥,𝑦)) and aperiodic (𝑄 (𝑠, 𝑠) > 0, for each 𝑠 ∈ 𝑉 × 𝑉 ), so it has

a unique stationary distribution. We use ±𝑓 (𝑛) to denote a term

𝑐 𝑓 (𝑛) where |𝑐 | ≤ 1.

Lemma 5.5. For the stationary distribution 𝜇 of the𝑄 chain defined
above and sufficiently large 𝑇 , we have,

E[𝑊 (𝑎) (𝑇 )𝑊 (𝑏) (𝑇 )] =
∑
𝑢,𝑣

𝜇 (𝑢, 𝑣)𝜉𝑢 (0)𝜉𝑣 (0) ± 1

𝑛5
. (13)

Proof. Let 𝑇 be the mixing time of 𝑄 such that��𝜇 (𝑢, 𝑣) −𝑄𝑇 ((𝑎, 𝑏), (𝑢, 𝑣))�� ≤ 1

𝐾2𝑛7
, for each (𝑢, 𝑣) ∈ 𝑉 × 𝑉 ,

where 𝐾 is the initial discrepancy. Now, let’s write 𝜉 instead of 𝜉 (0),
then

E
[
𝑊 (𝑎) (𝑇 ) 𝑊 (𝑏) (𝑇 )

]
(*)

= E

[
𝜉⊤ 𝑞 (𝑎) (𝑇 )

(
𝑞 (𝑏)

)⊤
(𝑇 ) 𝜉

]

=
∑
𝑢,𝑣

Pr

(
𝑞 (𝑎) (𝑇 ) = 𝑒 (𝑢) , 𝑞 (𝑏) (𝑇 ) = 𝑒 (𝑣)

)
𝜉𝑢𝜉𝑣

=
∑
𝑢,𝑣

𝑄𝑇 ((𝑎, 𝑏), (𝑢, 𝑣))𝜉𝑢𝜉𝑣

=
∑
𝑢,𝑣

(
𝜇 (𝑢, 𝑣) ± 1

𝐾2𝑛7

)
𝜉𝑢𝜉𝑣

=
∑
𝑢,𝑣

𝜇 (𝑢, 𝑣)𝜉𝑢𝜉𝑣 ± 1

𝑛5
,

where (∗) follows from the definition of Random Walk Process.

□

We calculate the entries of matrix𝑄 and find its exact stationary

distribution. From our setting, there are 3 different types of transi-

tions: neither walk leaves its current node (a self-loop), only one

walk moves, or both walks move. If the walks are in the same node,

then they can both travel to the same node or to two different nodes

(or one or both could stay in their current node). The transition

where both walks are moving requires that they be in the same

node.

Case1: Both walks are at the same node 𝑥 . Then, for some nodes

𝑢 and 𝑣 s.t. 𝑥 ≠ 𝑢 ≠ 𝑣 ≠ 𝑥 ,

𝑄 ((𝑥, 𝑥), (𝑢, 𝑣)) = (1 − 𝛼)2𝜋𝑥 𝑘
𝑑

𝑘 − 1

𝑑 − 1

1

𝑘2
= (1 − 𝛼)2𝜋𝑥 𝑘 − 1

𝑘𝑑 (𝑑 − 1) ,
(14)

𝑄 ((𝑥, 𝑥), (𝑢,𝑢)) = (1 − 𝛼)2𝜋𝑥 𝑘
𝑑

1

𝑘2
= (1 − 𝛼)2𝜋𝑥 1

𝑘𝑑
, (15)



Distributed Averaging in Opinion Dynamics PODC ’23, June 19–23, 2023, Orlando, FL, USA

𝑄 ((𝑥, 𝑥), (𝑥,𝑢)) = 𝛼 (1 − 𝛼)𝜋𝑥 1
𝑑
, (16)

𝑄 ((𝑥, 𝑥), (𝑢, 𝑥)) = 𝛼 (1 − 𝛼)𝜋𝑥 1
𝑑
, (17)

𝑄 ((𝑥, 𝑥), (𝑥, 𝑥)) = 𝛼2𝜋𝑥 + (1 − 𝜋𝑥 ). (18)

We explain the meaning of Eq. (14), the other equations follow in

a similar manner. If both walks are in 𝑥 , then for them to have a

chance of moving, we need to sample node 𝑥 first. This happens

with probability 𝜋𝑥 . The probability of both walks moving away

from 𝑥 is equal to (1 − 𝛼)2. The first walk goes to 𝑢 and the second

to 𝑣 , if both 𝑢 and 𝑣 are in the selected 𝑘-sample of neighbours of

𝑥 – probability
𝑘 (𝑘−1)
𝑑 (𝑑−1) – and then the first walk chooses 𝑢 and the

second one chooses 𝑣 – probability
1

𝑘2
.

Case2: The walks are on two different nodes 𝑥 ≠ 𝑦. Then, for a
node 𝑣 ≠ 𝑦 and a node 𝑢 ≠ 𝑥 ,

𝑄 ((𝑥,𝑦), (𝑥, 𝑣)) = (1 − 𝛼)𝜋𝑦 1
𝑑

(19)

𝑄 ((𝑥,𝑦), (𝑢,𝑦)) = (1 − 𝛼)𝜋𝑥 1
𝑑

(20)

𝑄 ((𝑥,𝑦), (𝑥,𝑦)) = (1 − 𝜋𝑥 − 𝜋𝑦) + (𝜋𝑥 + 𝜋𝑦)𝛼 (21)

All other transition probabilities are 0. The cases above hold for

any graph. In the case of a d-regular graph, then we have that

𝑃 (𝑥,𝑢) = 1

𝑑
∀𝑢 ∈ 𝑁 (𝑥). Note that 𝑄 is not reversible, however a

stationary distribution is still possible to find, since the chain is

irreducible and positive recurrent. For an example explaining why

𝑄 is not reversible, see the proof of Lemma 5.7.

Next, we define three sets of different types of states of the 𝑄-

chain and give the formula for the stationary distribution of this

chain.

Definition 5.6. Consider a 𝑑-regular graph 𝐺 = (𝑉 , 𝐸) on 𝑛
nodes, and for 𝑢, 𝑣 ∈ 𝑉 , let 𝑑𝑖𝑠 (𝑢, 𝑣) denote the length of a shortest
path between 𝑢 and 𝑣 in 𝐺 . For 𝑖 ≥ 0, we define sets 𝑆𝑖 = {(𝑢, 𝑣) |
𝑢, 𝑣 ∈ 𝑉 ,𝑑𝑖𝑠 (𝑢, 𝑣) = 𝑖} as subsets of the state space 𝑉 × 𝑉 of the
𝑄-chain. We also define 𝑆+ =

⋃
𝑖≥2 𝑆𝑖 .

Lemma 5.7. Consider the 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 with parameters 𝛼 ∈ (0, 1)
and 𝑘 ≥ 1. The stationary distribution 𝜇 of the 𝑄-chain is comprised
of exactly three different values: for a state (𝑢, 𝑣) ∈ 𝑉 ×𝑉 ,

𝜇 (𝑢, 𝑣) =


𝜇0 (𝑛,𝑑, 𝑘, 𝛼) = 2𝑘 (𝑑 − 1)ℓ if (𝑢, 𝑣) ∈ 𝑆0
𝜇1 (𝑛,𝑑, 𝑘, 𝛼) = (𝑑 − 1)𝛾ℓ if (𝑢, 𝑣) ∈ 𝑆1
𝜇+ (𝑛,𝑑, 𝑘, 𝛼) = (𝑑𝛾 − 2𝛼𝑘)ℓ if (𝑢, 𝑣) ∈ 𝑆+

(22)

with 𝛾 = 𝑘 (1 + 𝛼) − (1 − 𝛼), and ℓ = 1

𝑛 (𝑛 (𝑑𝛾−2𝛼𝑘)+2(1−𝛼) (𝑑−𝑘)) .

All missing proofs can be found in the full version.

5.4 Proof of Theorem 2.2(2): Concentration of
the Convergence Value

We present here the following proposition, which we use to show

the second part of Theorem 2.2.

Proposition 5.8. Consider 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 with parameters 𝛼 ∈
(0, 1) and 𝑘 ≥ 1. W.l.o.g. we assume that Avg(0) = 0. Let 𝐸+ =
{(𝑢, 𝑣) |{𝑢, 𝑣} ∈ 𝐸} be the set of directed edges in the underlying
graph. Then, for any 𝑡 ≥ 0,

V𝑎𝑟 (Avg(𝑡)) ≤

≤ (𝜇0 − 𝜇+)
∑
𝑢∈𝑉

𝜉2𝑢 (0) + (𝜇1 − 𝜇+)
∑

(𝑢,𝑣) ∈𝐸+
𝜉𝑢 (0)𝜉𝑣 (0) + 1/𝑛5,

(23)

Furthermore, there exist a 𝑇 large enough such that for all 𝑡 ≥ 𝑇
V𝑎𝑟 (Avg(𝑡)) ≥
≥ (𝜇0 − 𝜇+)

∑
𝑢∈𝑉

𝜉2𝑢 (0) + (𝜇1 − 𝜇+)
∑

(𝑢,𝑣) ∈𝐸+
𝜉𝑢 (0)𝜉𝑣 (0) − 1/𝑛5,

(24)

Proof. The random variable Avg(𝑡) = 1

𝑛

∑
𝑥 ∈𝑉 𝜉𝑥 (𝑡) is a Mar-

tingale (Lemma 4.1). Due to our convergence results, we know

that as 𝑡 → ∞, all node values 𝜉𝑥 (𝑡) converge to the same value.

Consequently, Avg(𝑡) converges to the same value, which we

denote by Avg(∞). This is a random variable with expectation

E[Avg(∞)] = Avg(0), since by the Martingale property, for each

𝑡 ≥ 0, E[Avg(𝑡)] = Avg(0). We want to show that the actual value

of Avg(∞) is likely to be close to Avg(0). We do this by showing

that V𝑎𝑟 (Avg(∞)) = lim𝑡→∞V𝑎𝑟 (Avg(𝑡)) is small. We start by

recalling the assumption that Avg(0) = 0 and using linearity of

expectation to obtain

V𝑎𝑟 (Avg(𝑡)) = E[Avg(𝑡)2] − (E[Avg(𝑡])2

= E[Avg(𝑡)2]

=
1

𝑛2

∑
𝑥,𝑦∈𝑉

E[𝜉𝑥 (𝑡)𝜉𝑦 (𝑡)] .

Fixing 𝑡 = 𝑇 arbitrarily, Propositions 5.1 and 5.4 imply that

for any pair of nodes 𝑥 and 𝑦, the three products 𝜉𝑥 (𝑇 )𝜉𝑦 (𝑇 ),
𝑊 (𝑥) (𝑇 )𝑊 (𝑦) (𝑇 ) and𝑊 (𝑥) (𝑇 )𝑊 (𝑦) (𝑇 ) have the same expecta-

tion, so

V𝑎𝑟 (Avg(𝑇 )) = 1

𝑛2

∑
𝑥,𝑦

E[𝜉𝑥 (𝑇 )𝜉𝑦 (𝑇 )]

=
1

𝑛2

∑
𝑥,𝑦

E[𝑊 (𝑥) (𝑇 )𝑊 (𝑦) (𝑇 )]

=
1

𝑛2

∑
𝑥,𝑦

E[𝑊 (𝑥) (𝑇 )𝑊 (𝑦) (𝑇 )] .

Let 𝜉 = 𝜉 (0), then by Lemma 5.5 and Lemma 5.7 we get

V𝑎𝑟 (Avg(𝑇 )) = 1

𝑛2

∑
𝑥,𝑦

(∑
𝑢,𝑣

𝜇 (𝑢, 𝑣)𝜉𝑢𝜉𝑣 ± 1/𝑛5
)
=

∑
𝑢,𝑣

𝜇 (𝑢, 𝑣)𝜉𝑢𝜉𝑣 ± 1/𝑛5

= 𝜇0
∑

(𝑢,𝑢) ∈𝑆0
𝜉2𝑢 + 𝜇1

∑
(𝑢,𝑣) ∈𝑆1

𝜉𝑢𝜉𝑣 + 𝜇+
∑

(𝑢,𝑣) ∈𝑆+
𝜉𝑢𝜉𝑣 ± 1/𝑛5

= (𝜇0 − 𝜇+)
∑

(𝑢,𝑢) ∈𝑆0
𝜉2𝑢 + (𝜇1 − 𝜇+)

∑
(𝑢,𝑣) ∈𝑆1

𝜉𝑢𝜉𝑣+

+ 𝜇+
∑
𝑢,𝑣∈𝑉

𝜉𝑢𝜉𝑣 ± 1/𝑛5

= (𝜇0 − 𝜇+)
∑
𝑢∈𝑉

𝜉2𝑢 + (𝜇1 − 𝜇+)
∑

(𝑢,𝑣) ∈𝐸
𝜉2𝑢 ± 1/𝑛5,

using for the last equation that

∑
𝑢,𝑣 𝜉𝑢𝜉𝑣 = (∑𝑢 𝜉𝑢 ) (∑𝑢 𝜉𝑢 ) = 0

(the assumption that Avg(0) = 0). Thus Eq. (24) holds. For Eq. (24),

observe thatV𝑎𝑟 (Avg(𝑡)) is non-decreasing. □
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Note that our techniques only allow us to derive bounds on the

variance that come from the mixing time of the Q-chain. Hence, we

do not have tight bounds on the variance at the beginning of the

process. However, at the end of the process (after the mixing time)

our results are asymptotically tight. We are now ready to prove

Theorem 2.2(2).

Proof. Let 𝜉 = 𝜉 (0), and, referring to the right-hand sides in

(23) and (24), we derive

(𝜇0 − 𝜇+)
∑
𝑢∈𝑉

𝜉2𝑢 + (𝜇1 − 𝜇+)
∑

(𝑢,𝑣) ∈𝐸+
𝜉𝑢𝜉𝑣 =

= ((𝜇0 − 𝜇+) − 𝑑 (𝜇1 − 𝜇+))∥𝜉 ∥22

+ (𝜇1 − 𝜇+) ©«
∑

(𝑢,𝑣) ∈𝐸+
𝜉𝑢𝜉𝑣 + 𝑑

∑
𝑢∈𝑉

𝜉2𝑢
ª®¬

(25)

Observe that 0 ≤ ∑
(𝑢,𝑣) ∈𝐸+ 𝜉𝑢𝜉𝑣 + 𝑑

∑
𝑢∈𝑉 𝜉2𝑢 ≤ 2𝑑 ∥𝜉 ∥2

2
, which

follows from

∑
(𝑢,𝑣) ∈𝐸+ 𝜉𝑢𝜉𝑣 + 𝑑

∑
𝑢∈𝑉 𝜉2𝑢 =

∑
{𝑢,𝑣 }∈𝐸 (𝜉𝑢 +

𝜉𝑣)2 ≤ ∑
{𝑢,𝑣 }∈𝐸 2(𝜉2𝑢 + 𝜉2𝑣 ) = 2𝑑

∑
𝑢∈𝑉 𝜉2𝑢 = 2𝑑 ∥𝜉 ∥2

2
.

Then, by noting that 𝜇1 − 𝜇+ ≤ 0, we have from Eq. (23) and

Eq. (25) that V𝑎𝑟 (𝐹 ) − 1/𝑛5 ≤ ((𝜇0 − 𝜇+) − 𝑑 (𝜇1 − 𝜇+))∥𝜉 ∥2
2
=

2𝑘 (𝑑−1) (1−𝛼)
𝑛2 (3𝑑𝑘+𝑑−3𝑘) ∥𝜉 ∥22 = 𝑂

(
∥𝜉 ∥2

2

𝑛2

)
. From Eq. (24) and Eq. (25) we obtain

V𝑎𝑟 (𝐹 ) + 1/𝑛5 ≥ 2𝑘 (𝑑−1) (1−𝛼)
𝑛2 (3𝑑𝑘+𝑑−3𝑘) ∥𝜉 ∥22 +

−𝑘 (1+𝛼)+(1−𝛼)+2𝛼𝑘
𝑛2 (3𝑑𝑘+𝑑−3𝑘) 2𝑑 ∥𝜉 ∥2

2
=

2(1−𝛼) (2𝑑𝑘−𝑑−𝑘)
𝑛2 (3𝑑𝑘+𝑑−3𝑘) ∥𝜉 ∥2

2
= Ω

(
∥𝜉 ∥2

2

𝑛2

)
. □

6 FUTUREWORK
There are two enticing lines of future work. First, we have shown

how to obtain tight bounds onV𝑎𝑟 (𝐹 ) by analysing the distribution
of two dependent random walks. Can one obtain bounds on higher

moments𝑀 > 2 by considering𝑀-dependent random walks? This

would allow to derive stronger Chernoff-type results for the con-

centration of 𝐹 . Second, is it possible to bound the concentration in

the 𝑁𝑜𝑑𝑒𝑀𝑜𝑑𝑒𝑙 and 𝐸𝑑𝑔𝑒𝑀𝑜𝑑𝑒𝑙 for irregular graphs?
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