9
This electronic thesis or dissertation has been ING S

downloaded from the King’s Research Portal at CO/ / eg €
https://kclpure.kcl.ac.uk/portal/ LONDON

Forward Policy Building For Planning With Numeric Uncertainty

Marinescu, Liana

Awarding institution:
King's College London

The copyright of this thesis rests with the author and no quotation from it or information derived from it
may be published without proper acknowledgement.

END USER LICENCE AGREEMENT ‘@ @ @ @ \

Unless another licence is stated on the immediately following page this work is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to copy, distribute and transmit the work

Under the following conditions:

o Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).
° Non Commercial: You may not use this work for commercial purposes.

o No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and
other rights are in no way affected by the above.

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing

details, and we will remove access to the work immediately and investigate your claim.

Download date: 10. Jan. 2025

Forward Policy Building
For Planning With Numeric Uncertainty

Liana-Eleonora Marinescu

Supervisor: Andrew Coles
Department: Informatics
Institution: King’s College London

December 16, 2022

Acknowledgements

[am grateful to:

e my supervisor Andrew Coles for seeing this entire adventure through
to the end, for helping me express my ideas both in code and on paper,
and for being endlessly patient while I found my footing in the world
of Al research

e my second supervisor Amanda Coles for helping me refine the focus of
my work early on by sharing her valuable insight on branched planning

e the Department of Informatics at King’s College London for funding
my studies and providing me with a workspace

e planning researchers who shared their ideas with me over the years, in
particular Christian Muise for passing on to me his excitement about
non-deterministic problems, Sara Bernardini for supervising my MSc
and introducing me to my greatest motivator, planning for robotics,
and Malte Helmert for reassuring me that my ideas on environmental
robotic exploration were interesting and worth pursuing

e all the former and current members of the Planning research group
at King’s College London — Maria Fox, Derek Long, Andrew Coles,
Amanda Coles, Daniele Magazzeni, Bram Ridder, Michael Cashmore,
Josef Bajada, Chiara Piacetini, Wiktor Piotrowski, Emre Savas, Atif
Talukdar, Elizabeth Black, Christopher Hampson, Tanja Daub, Stefan
Edelkamp, Elad Denenberg, Moises Martinez, Senka Krivic, Gerard
Canal, Ionut Moraru, Parisa Zehtabi, Rares Buksz, Fares Alaboud,
Adam Green, Anna Collins, Ben Krarup, Yassin Warsame — for listen-
ing to my talks and giving me useful feedback on my work

my mum and dad for always encouraging me to pursue what makes me
happy even if it means living a thousand miles away

my partner Emil for personally making sure I have a happy and healthy
life outside of my research, and for helping me see the big picture
instead of overthinking all the things

my dear friend Tanja for gently talking me out of impostor syndrome
and reassuring me that both my work and I matter and have the po-
tential to make a difference

my dear friend Konrad for listening to my rants and reminding me to
enjoy this weird and wonderful time being a PhD student

my dear friend Yani for keeping me accountable to my research goals
and exerting the most well-intentioned variety of peer pressure

my dear friends in Ziirich, London, and the world over — Cami, Anca,
Ana, Everest, Polina, Aldo, Mai, Carol, Michat, Alessio, Aleks, Maggie,
Emil, Eric, Fayyaz, Stefan, Exie, Richard, Mwachala, Manu, Silvia,
Julian, David, Joris — for being awesome and supportive

my hosts, mentors and managers at Google — Ant, Mike, Simon, Arvind,
Gabriel, Aurélien — for teaching me better ways of working that helped
my research in unexpected ways

Carl Friedrich Gauss for introducing my favourite probability distribu-
tion in 1809 in order to rationalise the least squares method

Abstract

Uncertainty hinders many applications of Al — algorithms are often faced with
noisy sensors, unpredictable environments, or known limitations in world
models.

Automated planning with numeric uncertainty is an active research field
that can tackle some of these challenges already. However, areas such as
computing heuristics and building policies still pose open questions.

In this thesis, we aim to improve planner performance on domains with
numeric uncertainty. To this end, we implement several techniques into a
novel planner based on the existing Optic+. Our contributions are con-
nected by an over-arching theme: tracking uncertainty and integrating it
with aspects of planning that previously ignored it.

We begin by improving heuristic guidance for forwards planning with
continuous random variables, by ensuring preconditions are met with a given
degree of confidence. With this new information, the planner can also con-
sider acting to reduce accumulated error. We then go on to define regression
semantics for the case where uncertainty is Gaussian, allowing forward-policy
building to be extended to handle not just propositional uncertainty but also
numeric uncertainty. We also propose an internal representation that allows
the planner to sample action effects from any probability distribution. As
a consequence, the world model can be refined without sacrificing computa-
tional time by adding more samples during execution.

While our original motivation — and our running example throughout this
thesis — is robotic exploration, our contributions are general and not limited
to one type of problem. Ultimately, we reduce the effort needed to describe
uncertain domains and show how planners can tackle a changing environment
while meeting given certainty requirements.

Contents

1 Introduction

1.1 Motivation
1.2 Statement of Thesis
1.3 Contributions
1.4 Reader’s Guide

Background
2.1 Artificial Intelligence
2.2 Automated Planning
23 PDDL
2.4 Numeric Planning 0.
2.5 Planning With Uncertainty
2.5.1 Early Approaches L.
2.5.2 Conformant Planning
2.5.3 Probabilistic Planning
2.6 Planning With Numeric Uncertainty
2.6.1 The Bayesian Network Approach
2.6.2 The Pessimistic Planning Approach
2.7 Building Policies With Propositional Uncertainty
2.7.1 The State Relevance Approach
2.8 Other Related Work

Guiding Search Under Gaussian Uncertainty

3.1 Imtroduction

3.2 Backgroundo

3.3 Ensuring the Heuristic Remains a Relaxation.
3.3.1 Uncertainty Increases Monotonically
3.3.2 Uncertainty Can Decrease

13
13
16
18
19
21
21
22
23
25
25
26
27
28
29

3.4 Evaluation
3.4.1 Overall Performance
3.4.2 The Threshold @

3.5 Conclusion

Building Policies Under Gaussian Uncertainty

4.1 Introductiono

4.2 Background o
4.2.1 Planning With Numeric Uncertainty
4.2.2 Building Policies With Propositional Uncertainty

4.3 Numeric Regression
4.3.1 Motivating Relevant Numeric Constraints
4.3.2 Defining Regression Through Relevant Numeric Con-

straintso Lo

4.4 Numeric Dead End Generalisation
4.4.1 Generalising Propositional Dead Ends
4.4.2 Motivating Variable Bound Expansion
4.4.3 Expanding Bounds on Dead End Variables

4.5 Tolerating a Risk of Failure
4.5.1 Finding Strong Cyclic Plans in Numeric Domains . . .
4.5.2 Accumulating a Risk of Failure

4.6 Evaluation Lo o
4.6.1 Overall Performance
4.6.2 Numeric Dead End Generalisation
4.6.3 Tolerating a Risk of Failure

4.7 Conclusion

Guiding Search Under Arbitrary Uncertainty

5.1 Introduction

5.2 Background oL

53 Approach
5.3.1 Motivating Comparison
5.3.2 The Bayesian Plan Network
5.3.3 Building a Bayesian Plan Network
5.3.4 Sampling a Bayesian Plan Network
5.3.5 Practical Considerations
5.3.6 Representing a Bayesian Plan Network Efficiently . . .

5.4 Evaluation

5.4.1 Variants
5.4.2 Solved and Unsolved Problems.
5.5 Conclusion

6 Building Policies Under Arbitrary Uncertainty

6.1 Introduction L
6.2 Background oo
6.3 Approach
6.3.1 Revisiting the BPN
6.3.2 Including Multiple Outcomes in the BPN
6.3.3 Building a Policy with the BPN
6.3.4 Partial State Matching with the BPN
6.4 Evaluation
6.5 Conclusion
7 Conclusion
7.1 Summary
7.2 Contributions
7.3 Future Worko
Bibliography

102
103
106
109

110
110
111
113

115

Chapter 1

Introduction

In this chapter we explain the reasons for choosing automated planning under
uncertainty as the topic of our research. We state the purpose of this thesis,
and the scientific contributions it contains. We also give a brief chapter-by-
chapter overview.

1.1 Motivation

Automated planning is a rich and active research field within artificial intel-
ligence. It is a fast moving landscape with many open problems and frequent
incremental progress.

Planning is arguably one of the strongest fields of AI when it comes to
choosing, ordering and scheduling high level tasks. Its success is due in
part to the powerful guarantees it can offer — solution existence, correctness,
optimality — within reasonable time bounds. This makes it appeal to areas
like robotic systems, where such guarantees are often what stands between
design and deployment. However, planning is more difficult to apply here,
due to the uncertainty inherent in some robotics domains. Physical systems
often face sensor noise, operate in unpredictable environments, or have known
limitations in their world models. Planning under uncertainty is the area that
aims to tackle these difficulties.

We believe the subfield of planning under numeric uncertainty poses a
set of research questions which are worth exploring. In particular, we are
interested in how uncertainty can be represented and tracked, and how it
impacts the construction of plans and policies.

As mentioned above, we also believe planning under numeric uncertainty
is relevant to tangible issues that robotic systems grapple with today.
Applications such as autonomous driving, drone delivery, and planetary
exploration could benefit from our research, as they are strongly affected
by uncertainty. For example, after a stretch of rough terrain, a truck may
have lost some of its payload. Or, after mapping an unknown crater, a rover
may have used a higher amount of battery than expected. Our work targets
issues like these in order to broaden the range of problems that automated
planners are able to tackle.

1.2 Statement of Thesis

For the reasons outlined above, we chose to work on planning with numeric
uncertainty. In broad terms, the aim of our research is to allow AI planning
software to account for accumulated error due to numeric measurements. We
offer the planner as much information about uncertainty as we have available,
and then implement and explore means to make the most of that information.

Our work targets fully observable, non-deterministic planning problems.
Uncertain numeric effects are drawn from known probability distributions,
either Gaussian or arbitrary. We search for a plan or a policy depending on
whether actions have a single outcome or multiple outcomes. The following
table indicates which cases we explore in which chapters:

Gaussian distribution | Arbitrary distribution
Single outcome Chapter 3 Chapter 5
Multiple outcomes Chapter 4 Chapter 6

The question this thesis answers is the following:

Can we improve planner performance by tracking numeric
uncertainty and taking it into account at different stages of the
planning process?

We show how to track uncertainty in a computationally feasible manner,
regardless of the probability distribution from which it is drawn. We integrate
uncertainty into elements of planning that did not previously take it into
account, and present experimental results that show planner performance is

indeed improved. The specific elements we contribute to are detailed in the
following subsection.

Initially we introduce tracking techniques which assume the distribution
has a Gaussian shape. Later we introduce a richer representation that allows
us to track uncertainty no matter what shape the distribution has. In both
cases we adapt existing elements of the planning process or introduce novel
ones in order to make use of the newly tracked information, as detailed below.

1.3 Contributions

For each of our contributions we enumerate the following information:

— a short summary

— the corresponding chapter

— the corresponding publication

— when an uncertain numeric effect occurs, what probability distribution it
is drawn from (Gaussian or arbitrary)

—when an uncertain action occurs, how many discrete outcomes it has (single
or multiple)

e Contribution 1: Guiding Search Under Fully Observable
Gaussian Uncertainty
— Improving heuristic accuracy
— Allowing the use of uncertainty-reducing actions
— We introduce the concept of offset to express how well preconditions
hold when faced with numeric uncertainty from a known probability
distribution. We use this offset to compute a novel heuristic based
on prior work; our heuristic is aware of how accumulated uncertainty
affects preconditions further down the line. Our approach also allows
the planner to strategically use actions that reduce accumulated uncer-
tainty, if such actions exist and uncertainty is Gaussian. Results show
that our more informed heuristic performs better than the unmodified
heuristic.
— Chapter: 3
— Publication: Marinescu, L., & Coles, A. 1. (2016). Heuristic guidance
for forward-chaining planning with numeric uncertainty. In Proceedings
of the Twenty-Sixth International Conference on Automated Planning
and Scheduling

— Distribution: Gaussian
— Outcomes: single

Contribution 2: Building Policies Under Fully Observable
Gaussian Uncertainty

— Defining numeric regression

— Defining numeric dead end generalisation

— We define the semantics of regression through numeric effects that
exhibit Gaussian uncertainty. This process of regression is the core of
policy building — we are therefore able to extend prior work on policy
building from the propositional case to the numeric case. Our approach
successfully leverages state relevance, the crucial element that makes
policy building tractable by keeping the branching factor low. Results
show that our implementation builds numeric policies faster than a
baseline that only uses propositional regression.

— Chapter: 4

— Publication: Marinescu, L., & Coles, A. I. (2016). Non-deterministic
planning with numeric uncertainty. In Proceedings of the Twenty-
Second European Conference on Artificial Intelligence

— Distribution: Gaussian

— Outcomes: multiple

Contribution 3: Guiding Search Under Fully Observable,
Arbitrarily Distributed Uncertainty

— Tracking arbitrarily distributed effects

— We propose a representation that allows us to sample uncertain
action effects from any probability distribution. We use a directed
graph to capture how the accumulated uncertainty at any point in a
plan depends on previous action effects. We apply our approach to find
a strong plan that meets given certainty requirements. Results show
that a strong plan that represents uncertainty accurately can be found
comparatively fast, and sometimes faster than a policy that approxi-
mates uncertainty.

— Chapter: 5

— Publication: Marinescu, L., & Coles, A. 1. (2018). Representing gen-
eral numeric uncertainty in non-deterministic forwards planning. In
Proceedings of the Workshop on Heuristics and Search for Domain-
Independent Planning at the Twenty-Eighth International Conference

10

on Automated Planning and Scheduling
— Distribution: arbitrary
— Outcomes: single

e Contribution 4: Building Policies Under Fully Observable,
Arbitrarily Distributed Uncertainty
— Allowing policy building to function in the absence of an analytic
form of uncertainty
— We implement an alternative to our prior policy building approach,
for cases when uncertainty is not Gaussian. The technique of numeric
regression defined previously cannot be applied, as it relies on having an
analytic representation of uncertainty. Instead we use a sampling-based
approach in order to check whether or not a given state matches any
existing policy entry. Results show that policy building performance is
generally better when uncertainty can be represented analytically.
— Chapter: 6
— Distribution: arbitrary
— Outcomes: multiple

1.4 Reader’s Guide

Chapter 1 explains why this thesis exists. It presents the motivation behind
our work in the broad terms of applied AI. It then states the goal of the
thesis, and enumerates the novel contributions we made in pursuit of the
goal.

Chapter 2 begins with a brief history of automated planning. It then
narrows the focus down to planning with uncertainty, introducing the core
concepts necessary for the rest of this thesis. It also surveys prior work
done in our areas of focus, and elaborates on the work we build upon in the
following chapters.

Chapters 3, 4, 5 and 6 each present one of the thesis contributions de-
scribed in the previous section. They begin by going further into detail on
the prior work that forms the basis of each approach. They then describe
our proposed ideas and their implementation, and afterwards present the
experimental results.

11

Chapter 7 circles back to our original motivation and sums up the results
and takeaways of our work. It wraps up by laying out what may be promising
future research directions based on our findings.

12

Chapter 2

Background

We begin this chapter with a look at the challenges intelligent agents face
due to their environments. We then give a high-level overview and a very
brief history of seminal work on classical planning. We gradually narrow
the focus down to planning with uncertainty, introducing the core concepts
necessary for the rest of the thesis. We also conduct a broad survey of prior
work done in our research area, and elaborate more deeply on the particular
work we build upon in the following chapters.

2.1 Artificial Intelligence

The field of artificial intelligence has a fruitful history of enabling machines to
solve problems more efficiently and safely than humans. At its core, Al relies
on computers being able to sift through more incoming data, more possible
choices, and more hypothetical outcomes than a human brain ever could.
Intelligent algorithms have been successfully used in applications ranging
from human-like game agents and clever marketing recommendations, to
mission-critical spacecraft control and disaster recovery. We believe that
some of Al’s most interesting challenges lie in risky and dynamic real-world
situations such as the latter.

Currently, application-specific Al is the most prevalent — for instance, a
robot might navigate a minefield, but not a flight of stairs, or a drone might
survey a vast woodland, but not an indoor maze. In order to progress toward
more general intelligent agents, it is paramount to understand and tackle the
issues arising from the non-ideal, ever-changing, risky environments in which

13

agents may operate. To this end, we detail below the formal way to describe
an environment in the context of Al.

According to the work of Russell and Norvig (Russell & Norvig, 2010),
whose focus is the intelligent agent in a sense-act loop, there are seven ways
to categorise an environment:

e Deterministic / Non-deterministic - A deterministic environment
responds predictably to the agent’s decisions: given the current state
and the agent’s chosen action, it is possible to infer the next state
with absolute certainty. For example, completing a jigsaw puzzle can
be considered deterministic. In contrast, when acting upon a non-
deterministic environment, there may be several possible outcomes. If
these outcomes have probabilities associated with them, the environ-
ment may be referred to as stochastic. For instance, the game of
backgammon and the stock exchange are both non-deterministic. In
particular, backgammon is stochastic, because rolling the dice has a
fixed set of outcomes with known probabilities (unless of course the
dice are loaded).

e Static / Dynamic - A static environment maintains a constant state
if the agent takes no action. In other words, the agent can count on the
environment not to change while it spends time considering what to do
next. Playing solo chess or solitaire are both examples of this. On the
other hand, a dynamic environment might change independently of the
agent, in the time between two of its consecutive actions. Tasks such as
checking items on an assembly line, or vacuuming a room with people
in it, are dynamic.

e Discrete / Continuous - A discrete environment has a finite number
of possible states, observations, and actions. For example, the finite
number of states might be positions a grid; the observations might
be limited to goal / not-goal, or to colour-red / colour-green /
colour-blue; and the actions might be move-north / move-south /
move-east / move-west. Time steps can also be viewed as discrete,
occurring once every period T. On the other hand, in a continuous
environment, these possibilities are not finite. States, observations,
actions, and time can all be expressed in terms of real numbers, on
a scale as finely-grained as necessary. For example, an agent might

14

observe a luminosity value anywhere between 0 and 1, and might be
able to turn at an angle between 0 and 7.

Fully Observable / Partially Observable - In a fully observable
environment, the agent is able to acquire all the information relevant to
its task. In other words, at any given time, the state of the environment
is completely known to the agent. This might be the case in an image
analyser, or a top-down maze game. The other possibility is that the
environment is partially observable. In this case, the agent’s sensors
might be unreliable, or they might only be suited to gathering part of
the relevant information. For example, a game agent might only see
opponents if they are within a certain range, and a vacuuming robot
might be unable to sense dirt if it is smaller than its sensors’ resolution.

Episodic / Sequential - In an episodic environment, the outcome of
an action only depends on factors within the current episode. Episodes
are typically sense-act pairs, which means that there is no need for
planning ahead in this type of environment. An example would be the
task of separating coloured balls into boxes, or deciding whether text is
spelled correctly. In contrast, in a sequential environment, the current
outcome might depend on all the agent’s past actions. Deciding which
roads to take to a waypoint, or in what order to place domino pieces,
are both examples of sequential environments.

Known / Unknown - For an environment to be known, the agent
needs to be aware of what the possible outcomes of its actions are. This
can be paraphrased as the agent knowing the rules of the game. For
example, if an agent knows how Tetris is played, it will be certain that
pressing “right” will move the current piece right, and that pressing
“turn” twice will turn the piece upside-down. On the other hand, if an
agent is placed in an environment with only a vague idea of its laws,
it will likely have to experiment with each action in order to observe
some possible outcomes.

Single-agent / Multi-agent - In a single-agent environment, there
is only one entity that strives to achieve a goal. Some straightforward
examples might be a robot picking up items from the floor, or a robot
building a stack of blocks. A multi-agent environment is the obvious
alternative: there are multiple intelligent agents, each with their own

15

goals. If the goals overlap, the environment is cooperative, and if they
clash, it is competitive. Coordinated drone flight is an example of the
former, and a multiplayer board game illustrates the latter.

The focus of this thesis is on non-deterministic environments (which we
also refer to as uncertain environments). As for the other characteristics, in
general, the domains we use for experiments are:

e Static

Continuous

Fully Observable

Sequential

¢ Known

Single-agent

2.2 Automated Planning

Automated planning is a field of Al that allows an intelligent agent to gen-
erate a sequence of actions leading to a goal. The use of planning renders
a system fully autonomous; the only instance of human intervention occurs
in the very beginning, when devising a model of the problem in a manner
understandable by the planner. As described by Geffner et al., such a model
includes information about the state space an agent is in; the initial state
and goal state; all possible actions the agent can take, together with their
costs; and a transition function which dictates how an action leads from one
state to another (Geffner & Bonet, 2013). Formally, a planning problem is a
tuple (F,I,G, A) where:

e ['is a set of propositional facts.
e [is a known initial state: a subset of facts from F'.
e A condition is a conjunction of a subset of facts from F.

e (G is a set of goal conditions.

16

e A is a set of actions, each a € A with:

— Pre(a): a set of conditions on the execution of action a.

— Eff "(a), Eff ~(a): sets of facts from F added and deleted by action
a, respectively.

One of the earliest instances of what is now known as automated planning
was introduced by Fikes and Nilsson (Fikes & Nilsson, 1971). Their software,
STRIPS (Stanford Research Institute Problem Solver), used theorem proving
and means-end analysis to solve problems, and described the world model
using first-order logic. Uncertainty was not yet taken into consideration,
however Schoppers et al. later described the novel idea of a universal plan
that can guide behaviour in an unpredictable environment (Schoppers, 1997).
Their work came at a time where the state of the art consisted largely of
manual robot programming. The crucial difference to the STRIPS approach
was that universal planning problems have no initial state.

Another early innovation, albeit not strictly to classical planning, was
made by Littman et al. in the context of game agents (Littman, 1994).
They proposed a framework for Markov games in which, instead of one agent
interacting with an environment (that might contain another agent), two
agents whose goals might be opposed share the same environment.

A large variety of planning software continued to be developed, the vast
majority predicated on search, as surveyed in an extensive state-of-the-art
study (Hendler, Tate, & Drummond, 1990). The prevailing strategy was to
search the state space for a goal state, then extract the sequence of nodes
from the initial state to the goal state. The state explosion problem was (and
still is) one of the major challenges of planning, and it is typically addressed
by pruning the state space with the appropriate heuristics. One innovative
breakthrough that avoided the need to explore the state space fully was
Graphplan (Blum & Furst, 1997). Their introduction of the planning graph
(a compact structure alternating fact layers and action layers) allowed them
to strongly outperform prior work.

After succeeding at the level of propositional planning, techniques for
planning under uncertainty were developed as well. Anderson et al. intro-
duced the concept of factored expansion to split actions with conditional
effects into several components. This allowed Graphplan to solve problems
with conditional effects faster than if it had used the default full expansion
(Anderson, Smith, & Weld, 1998). Smith et al. introduced Conformant

17

Graphplan to handle types of problems that could not previously be solved
due to lack of sensory information (Smith & Weld, 1998). Because of uncer-
tainty in the initial state, during solution extraction, Conformant Graphplan
considered the possible side effects of an action in other possible worlds.

Around the same time, sensing actions were investigated by Weld et al..
They introduced SGP, an extension of Graphplan that solved contingent
problems (Weld, Anderson, & Smith, 1998). The crucial contribution of
SGP was that it could distinguish between actions that sense a propositional
value without changing it, and actions that change the value.

Probabilistic planning was then introduced to Graphplan by Blum et
al. with two different approaches (Blum & Langford, 1999). PGraphplan
produced an optimal contingent plan and TGraphplan produced a policy
not guaranteed to be optimal. PGraphplan was slower than the original and
TGraphplan was on par.

Soon after, Hoffman and Nebel introduced the highly successful planner
FF (Hoffmann & Nebel, 2001). Similarly to prior work, they also used a
heuristic based on ignoring delete effects. However, FF did not assume facts
to be independent when computing the heuristic. Additionally, FF incorpo-
rated a combination of hill climbing and systematic search into its algorithm,
which contributed to its winning performance at the IPC (International Plan-
ning Competition) 2000 competition (Bacchus, 2001).

2.3 PDDL

The standard language for representing problems in the formal model
described above is the Planning Domain Definition Language (PDDL) (Mc-
Dermott, Ghallab, Howe, Knoblock, Ram, Veloso, Weld, & Wilkins, 1998).
The main PDDL constructs are variables, actions and predicates, which ini-
tially allowed classical planning environments to be described. The language
was used for the first time at the ATPS (Artificial Intelligence Planning and
Scheduling) competition in 1998. McDermott et al. wrote about the syn-
tax and capabilities of the language, its expressive advantages compared to
previous languages, and its potential to be useful beyond just the competi-
tion. Indeed, PDDL is currently used as input to most planning software,
including the one presented in this thesis.

PDDL2.1 evolved in tandem with the AIPS competition (subsequently
renamed IPC), and went on to support time and numeric resources. This

18

broadened the scope of planning significantly, and opened the door to our
current research for the first time.

Fox and Long wrote about the extended language PDDL2.1 in great
depth, and reflected on the path taken by the planning community towards
the development of the language (Fox & Long, 2002). They pointed out
how the competitions (the third and most recent one in particular) were a
strong driver for the additions introduced in PDDL 2.1. In further support
of extending the language, they later analysed the IPC 2002 results in light
of different levels of expressive power (and hence problem difficulty) offered
by PDDL 2.1 (Long & Fox, 2003).

In a similar vein, Gerevini et al. presented a version of the new PDDL3
used in ITPC 2006, which could additionally express hard and soft constraints
(Gerevini, Long, Haslum, Saetti, & Dimopoulos, 2009). They helped estab-
lish the extended language by comparing the competing planners side-by-side
in terms of how successfully they made use of the new PDDL3 features. The
IPC continues to drive PDDL extensions by posing increasingly realistic and
diverse problems.

2.4 Numeric Planning

A major development that allowed early automated planning paradigms to
be applied to a vast number of real-world problems was the extension from
propositional variables to numeric variables. Building on top of the formalism
described in Section 2.2, a numeric planning problem as can be expressed in
PDDL 2.1 is a tuple (F,v, I, G, A) where:

e [is a set of propositional facts.

e Vv is a vector of numeric variables.

e [is a known initial state: a subset of facts from F' and a value for each
variable in v.

A condition is a conjunction of a subset of facts from F' and constraints
on v. Each constraint is written as (w.v > ¢), where ¢ is a real value
and w is a vector of real values.

e (G is a set of goal conditions.

19

e A is a set of actions, each a € A with:

— Pre(a): a set of conditions on the execution of a.

— Eff "(a), Eff (a): sets of facts from F added and deleted by a,
respectively.

— Eff"™™(a): a set of numeric variable updates that occur when
applying a. Each is of the form (v op €) where op € {+=,=} and
e is a real value.

A notable planner that leveraged this upgrade was Metric-FF (Hoffmann,
2003). Its authors introduced an extension to the STRIPS heuristic approach
(which relaxed the problem by ignoring delete effects). This extension
allowed the existing heuristic to be applied to numeric planning problems
by computing a relaxed reachability analysis that ignored decrease effects
on an upper bound of each variable, and ignored increase effects on a lower
bound of each variable. Their technique applied as long as the numeric effects
were monotonic, which was most often the case. Further, they showed how
linear numeric effects can be processed so they can be treated as monotonic.
This approach made Metric-FF succeed at the IPC 2002 and become one of
the two most efficient numeric planners at the time. We will expand more
on the functionality of the Metric RPG heuristic in Chapter 3.

The other numeric planner that saw great results at IPC 2002 was LPG
(Gerevini, Saetti, & Serina, 2003). LPG was based on stochastic local search
and could handle temporal as well as numeric constraints. Gerevini et al.
first introduced Temporal Action Graphs to represent time constraints and
performed search in that graph representation, and later introduced Numeric
Action Graphs (Gerevini, Saetti, & Serina, 2004) to leverage a similar tech-
nique for numeric expressions.

Another high performing forward search planner is Fast Downward, which
won the IPC in 2004 (Helmert, 2006). Instead of the PDDL representation
of the planning task, their approach uses an alternative SAS+ representation
(Béckstrom & Nebel, 1995) which allows them to use the novel causal graph
heuristic (which, interestingly, is not based on ignoring delete effects).

20

2.5 Planning With Uncertainty

As we have discussed so far, there are certain classes of problems within
AT that planning excels at. One of these classes is that in which the order
of actions is critical, for example playing a strategy game, or assembling a
Lego structure. Another class is that of problems with many timing and
scheduling constraints — actions must be taken at exactly the right time in
order to be successful. An example would be underwater navigation: an
autonomous vehicle needs to plan which actions to use and when to use
them, while at the same time accounting for ocean currents, low visibility, or
fuel constraints. Another example might be a robot that navigates through
areas of sunlight and shade, and must time its recharging actions just right
to the moments of sun exposure in order to maximise its battery life.

There are, however, other areas of Al that planners are increasingly able
to tackle, though they are not as straightforward to model as the examples
above. They require the development of more complex techniques such as
abstracting parts of the world in a way that preserves information about
uncertainty; or coming up with new heuristics that more accurately estimate
future uncertain effects. Such problems might be, for example, failure-prone
navigation, or unguided exploration of large unknown areas. More generally,
they might be situations where, in the face of incomplete world dynamics,
something needs to be done towards acquiring and leveraging information
about uncertainty.

2.5.1 Early Approaches

There is a long history of work setting out to tackle uncertainty in planning
with a range of approaches. One seminal piece of work was that of Kaelbling
et al., whose approach was rooted in operations research techniques (Kael-
bling, Littman, & Cassandra, 1998). The authors introduced novel ideas to
the then-young field of planning in stochastic, partially observable environ-
ments. They opted for a probabilistic representation of the environment,
which is perfectly suited for scenarios where the current state or the action
outcomes lie in a probability distribution. The problem representation they
chose is an MDP (or a POMDP for the partially observable case). Their work
has served as the basis for many subsequent efforts using MDPs to keep track
of the world.

21

In the same year as Kaelbling et al., Cimatti et al. presented a novel
algorithm for non-deterministic domains (Cimatti, Roveri, & Traverso, 1998).
Their algorithm produced universal plans; it generated solutions guaranteed
to reach the goal, if they existed; and it generated iterative trial-and-error
strategies otherwise. The latter were guaranteed to reach the goal if the
iterative loops eventually terminated.

Similarly to universal plans, strong cyclic plans as defined by Daniele et
al. are iterative plans that have a possibility to terminate, and when they
do they are guaranteed to succeed (Daniele, Traverso, & Vardi, 1999). Such
plans are necessary in non-deterministic planning domains where an effect is
not guaranteed apriori (meaning that a plan might end up in an infinite loop).
Daniele et al. introduced an algorithm to generate such plans based on model
checking, and proved their algorithm always found a strong cyclic plan if one
existed. They also introduced the notions of strong plan (non-iterative plan
guaranteed to succeed), and weak plan (non-iterative plan with a possibility
to succeed), which we will refer back to later in this thesis. Cimatti et al. also
implemented means to generate weak, strong, and strong cyclic plans using
model checking techniques (Cimatti, Pistore, Roveri, & Traverso, 2001).

2.5.2 Conformant Planning

Another major research direction within planning under uncertainty is con-
formant planning — planning in the case when the initial state and action
effects are uncertain, and no sensing possibilities are available. Brafman and
Hoffmann introduced conformant planning capabilities in the existing FF
planner mentioned in Section 2.2 (Brafman & Hoffmann, 2004) (Hoffmann &
Brafman, 2006). They presented a new representation of belief space, which
allowed them to integrate new information into the FF heuristic. Instead of
storing sets of possible worlds in the search space, they reasoned about the
effects of action sequences. Conformant-FF outperformed all other existing
conformant planners at the time.

Further developments to conformant planning were made soon after. One
introduced an alternative way to prune the search space by checking the
validity of a partial plan (checking if it is consistent with the theory and
with each possible initial state) (Palacios, Bonet, Darwiche, & Geffner, 2005).
Another extended prior work on translations to account for the fact that all
classical plans are conformant but not vice-versa (Palacios & Geffner, 2007).
A translation approach also formed the basis of the planner TO which won

22

the IPC in 2006 (Palacios & Geffner, 2009). Instead of solving the problem
by searching in belief space, Palacios et al. introduced translations that map
literals and assumptions together in a “literal true if assumption initially
true” layout.

2.5.3 Probabilistic Planning

Another large subfield of planning under uncertainty is probabilistic plan-
ning — when the planner has information available about the probabilities
of uncertain action effects or events. Younes et al. introduced the language
PPDDL (Probabilistic PDDL), which is a variant of PDDL that allows the
modelling of probabilistic problems with rewards (Younes & Littman, 2004).
This language was used at the IPC in 2004.

A short example of a probabilistic action with two possible outcomes in
PPDDL might look like the following, based on the Bomb and Toilet problem:

(raction dunk-package
:parameters (7pkg)
reffect (and (when (bomb-in-package 7pkg) (bomb-defused))
(probabilistic 0.05 (toilet-clogged))))

Little et al. tackled the still-emerging field of probabilistic temporal plan-
ning, where problems contain durative actions, concurrency, and probabilistic
effects (Little, Aberdeen, & Thiébaux, 2005). In particular, they targeted the
gap in existing research around problems where time and uncertainty interact
— effects are probabilistic, their start time is probabilistic, and their duration
is probabilistic.

Other successful probabilistic planners were mGPT (Bonet & Geffner,
2005), which solved MDPs by extracting bounds from deterministic problem
relaxations; and ProbabilisticFF (Domshlak & Hoffmann, 2006) (Domshlak
& Hoffmann, 2007), which extended Conformant-FF to probabilistic domains
with uncertain initial state and action effects.

There was a surprising victory at the 2004 and 2006 IPC probabilistic
tracks by the planner FF-Replan (Yoon, Fern, & Givan, 2007), compared
against the major probabilistic planners mentioned previously. FF-Replan
first constructed a deterministic version of the probabilistic problem, then
called the planner FF on this version until an unexpected effect took place
— and then replanned. As a short example, the all-outcomes determinisation

23

of the probabilistic dunk-package action above would produce the following
two actions:

(raction dunk-package-unclogged
:parameters (7pkg)
reffect (and (when (bomb-in-package 7pkg) (bomb-defused))))

(:action dunk-package-clogged
:parameters (7pkg)
reffect (and (when (bomb-in-package 7pkg) (bomb-defused))
(toilet-clogged)))

The authors of FF themselves noted its simplicity and its unexpectedly
good performance on the competition benchmarks. This prompted Little
et al. to conduct a comprehensive theoretical comparison of probabilistic
planning and replanning in the context of the IPC. They introduced a way
to measure the probabilistic interestingness of a problem, and suggested im-
provements that could be made to the competition in the future (Little &
Thiébaux, 2007).

Other notable work on probabilistic planning was the planner HMDP
(Keyder & Gefner, 2008) which introduced two novel heuristics, and the
planner FF-Hindsight (Yoon, Ruml, Benton, & Do, 2010) which reused pre-
viously generated plans in order to scale well in an online setting. Here,
online refers to planning while acting, e.g. updating the plan in response to
information that was unavailable at the start. This is in contrast to offline
planning, where the plan is generated before acting and cannot be changed.

PROST (Keller & Eyerich, 2012) was also a successful probabilistic plan-
ner based on the prior UCT (Kocsis & Szepesvari, 2006), which used bandit-
based techniques to plan even in the absence of a world model.

The probabilistic track of the IPC from 2010 onwards has gone on to use
the language RDDL (Sanner, 2010), or subsets or compilations of RDDL.
This language describes fully or partially observable processes (discrete or
continuous, with possible concurrency) in a way which resembles dynamic
Bayes nets, and constitutes an effort to standardise probabilistic domain
languages. The transition of the planning competition from PPDDL to
RDDL allowed the introduction of domains with concurrency and stochastic
events, e.g. traffic control or wildfire management (Vallati, Chrpa, Grzes,
McCluskey, Roberts, & Sanner, 2015).

24

2.6 Planning With Numeric Uncertainty

The central focus of this thesis is non-deterministic numeric planning — when
there is uncertainty over the amount of resources used by actions. One
planner whose approach inspired us was by Meuleau et al., who introduced
the novel algorithm HAO™* as a generalisation of prior work on continu-
ous stochastic resources (Meuleau, Benazera, Brafman, Hansen, & Mausam,
2009). They followed the classic heuristic search approach and noticed that
taking continuous resources into account helps limit the search to only states
that are likely reachable given the stochasticity of the resources. To show the
success of their approach they applied HAO* to a planetary rovers problem,
which shares many similarities with the rovers domain we later use for our
own experiments.

Below we summarise two particular approaches that formed the basis
of our research on planning with numeric uncertainty. In Chapter 3 we go
further into detail on the specific concepts from these approaches that we use
in our work.

2.6.1 The Bayesian Network Approach

One piece of prior work we draw heavily on is by Beaudry et al. - their core
contribution was introducing time and resource uncertainty in the form of
a Bayesian network into the planner RTU (Beaudry, Kabanza, & Michaud,
2010b) (Beaudry, Kabanza, & Michaud, 2010a). Their work was motivated
by the fact that, thus far, planning could deal with problems with concur-
rent actions and resource uncertainty, but in the case of time uncertainty,
the norm was to discretise it. The issue with time discretisation was the un-
manageably large search space, once the uncertain durations and concurrent
actions were taken into account.

This Bayesian network approach that Beaudry et al. introduced is one we
later use ourselves in order to represent the influence of previous uncertain
effects on the current state (we thus inherit the “Bayesian” terminology from
Beaudry et al).

In general, a Bayesian network (or “belief network”) is a directed acyclic
graph where each node is a random variable, and each edge is a dependency
between two random variables. A Bayesian network can be used to answer
probabilistic questions about the random variables it contains. For instance,
later in this thesis, we use a Bayesian network to answer the question “is this

25

precondition satisfied with more than X% probability, given the uncertainty
in the plan so far?”. We will be explaining how to build a Bayesian network
of this form in Section 5.3.3.

In the work of Beaudry et al., random variables were used to represent
the current belief of resources and time, and a Bayesian network was used to
model the relationships between these variables. This Bayesian network was
built dynamically during search, by applying states to actions. The Bayesian
network was then queried to estimate the probability of plan success. The
authors applied their approach on a truck delivery domain where driving
time and fuel usage were stochastic. In our later experiments we use a non-
temporal version of this domain, as our contributions focus on numeric rather
than temporal uncertainty.

2.6.2 The Pessimistic Planning Approach

A further piece of work we base many of our ideas upon is that of Coles, who
introduced support for uncertain numeric action effects in an opportunistic
manner (Coles, 2012). They aimed to balance the competing requirements of
exploration (high resource usage, high rewards, risky) and exploitation (low
resource usage, low rewards, safe) in the context of probabilistic numeric
planning.

The approach of Coles was based on a novel combination of a pessimistic
core plan with optimistic branches. The key technique was generating the
pessimistic plan, and augmenting it with branches that account for better
outcomes.

The interesting thing about uncertain numeric effects in the core plan is
that a statistical guarantee can be given for a sequence of actions to execute
successfully (given a certain percentile threshold). This was achieved by
taking into account not only the value itself but also the potential Gaussian
uncertainty around it. As we later detail, we also adopted a similar percentile-
based approach to generating weak plans.

Coles proposed their approach in the context of over-subscription plan-
ning problems. This is a class of problems with several soft goals, where
each soft goal carries a violation cost if not reached. In this setting, the
task of planning is to find a plan that minimises the sum of violation costs
for non-achieved goals. The core pessimistic plan introduced in Coles’ work
assumed that the full distribution of possible outcomes could happen and, if
found, guaranteed success with a prescribed confidence level. Then, for each

26

soft goal, a branch was added to the core plan with a corresponding proba-
bility for the case when the outcome was better (i.e. had a lower cost) than
pessimistically expected. These branches were followed at execution time de-
pending on the current values of uncertain resources. This approach obeyed
strict safety constraints while dramatically increasing utility compared to
previous approaches, due to the added branches.

2.7 Building Policies With Propositional Un-
certainty

Also highly relevant to this thesis is prior work on contingent planning, or
policy building — this involves finding a plan that handles all possible eventu-
alities (also known as a policy). At execution time, the course of action varies
based on sensed information about the current state of the world. Often this
setting assumes that the world is fully observable - hence the acronym FOND,
or fully observable non-deterministic planning.

A contingent planner based on FF was developed by Hoffmann and
Brafman, who approached contingent problems as And-Or search problems
in belief space (Hoffmann & Brafman, 2005). They based their work on
the successful Conformant-FF planner mentioned earlier. The search space
representation was still based on propositional formulas; the relaxed planning
problem however was more difficult to adapt to contingent planning. The
authors introduced an additional relaxation allowing them to map a relaxed
contingent problem to a relaxed conformant problem, in order to leverage
Conformant-FF.

Soon after, Albore et al. introduced a novel way of translating contingent
planning problems into And-Or search problems, this time in search space
(Albore, Palacios, & Geffner, 2009). Their idea contrasted with the work
above, which treats contingent planning with sensing as a problem in belief
space.

Fu et al. looked at improving strong cyclic planning for FOND problems
(Fu, Ng, Bastani, & Yen, 2011). As mentioned earlier, a strong cyclic plan is
an iterative plan that might terminate, and if it terminates it is guaranteed
to succeed. Fu et al. pointed out the main reason why FOND problems with
strong cyclic solutions are difficult to tackle - the unmanageable size of the
search space. They first developed their own strong cyclic planning algorithm

27

based on the prior planner NDP, and then introduced a novel heuristic that
addresses the search space size issue.

Policy building was also introduced (together with failure analysis and
plan repair) to continuous-time stochastic domains with concurrency by the
planner Tempastic (Younes & Simmons, 2004). This planner developed poli-
cies incrementally by making use of a deterministic kernel, similarly to the
approaches described in the following section.

2.7.1 The State Relevance Approach

Of particular interest to us, Muise et al. introduced a collection of novel
approaches in the area of strong cyclic plans (or policies) for FOND problems.
They successfully built policies orders of magnitude more compact than those
of previous approaches (Muise, Mcllraith, & Beck, 2012). They introduced
the novel concept of partial states in the context of FOND problems, and used
it to collapse similar states together based on fact relevance (Muise, 2014).
They also introduced forbidden states as a way of extending the no-go area
of the search space surrounding dead ends. We will build upon the concepts
of both partial states and forbidden states in Chapter 4 of this thesis.

The core mechanic Muise et al. used for building policies with partial
states was goal regression. Regression is a technique they had already used
successfully in the context of partial order plan execution monitoring (Muise,
Mecllraith, & Beck, 2011). In that setting the policy allowed them to switch
between one plan linearisation and another as needed during execution in
an uncertain environment. We will extend regression from propositional
domains to numeric domains later in this thesis.

Using policy building they also targeted FOND problems with conditional
effects, which were not addressed in the work on non-deterministic planning
to date. They proposed an extension to the current state of the art planner
PRP (Planner for Relevant Policies), also developed by Muise et al.. This
extension enabled PRP to support conditional effects (Muise, Mcllraith, &
Belle, 2014).

The authors also investigated partially observable environments — they
noted how the predominant way to solve problems in partially observable
domains was online. They set out to show how to do so offline in a scalable
way (Muise, Belle, & Mcllraith, 2014). In the context of planning under
partial observability with sensing (PPOS), sensing actions are necessarily
separate from regular actions. The authors chose to solve PPOS with offline

28

planning, focusing on problems where the number of unobserved entities
(true/false facts) decreases monotonically. They effectively handled partial
observability by converting the problem to FOND planning. The main idea
behind this conversion was replacing every sensing action with its two possible
outcomes — thus, a previously unknown entity becomes either known to be
true or known to be false.

Later, Camacho et al. introduced the ProbPRP planner, which computed
solutions to probabilistic problems offline, also in the form of policies (Ca-
macho, Muise, & Mcllraith, 2016). The current state of the art did not scale
to very large problem instances due to the complexity of planning for max-
imising the probability of reaching a goal. The authors made ingenious use
of the similarities between probabilistic planning and FOND planning, and
built upon the existing FOND planner PRP mentioned above. This allowed
them to compute very compact policies that also guaranteed no avoidable
dead ends would be reached.

In Chapter 4 we go further into detail on the techniques belonging to
Muise et al. that we build upon.

2.8 Other Related Work

There are many other compelling approaches to planning with numeric un-
certainty. For example, constraint programming (CP) was used to solve the
job shop scheduling problem when durations are drawn from Gaussian dis-
tributions (Beck & Wilson, 2007). CP was also integrated with a probabilis-
tic engine to accommodate uncertain demand in decision-making problems
(Babaki, Guns, & Raedt, 2017).

Partitioning techniques based on POMDPs were used to solve problems
with continuous state variables (Feng, Dearden, Meuleau, & Washington,
2004). POMDPs were also used to model the problem of maximising per-
formance while bounding risk with a safety threshold (Santana, Thiébaux,
& Williams, 2016). More recently, importance sampling was applied to an
existing POMDP algorithm, improving performance critical but rare (and
therefore difficult to sample) actions (Luo, Bai, Hsu, & Lee, 2019).

The FOND planner Gamer, which won its IPC track in 2008, approached
planning in the form of a turn-taking game where one player is the solver
and the other player is the environment (Kissmann & Edelkamp, 2009).

Finally, a compelling practical application of nondeterministic planning

29

was described by Thiébaux et al.: power distribution in the presence of faults,
where uncertainty over the sensors and actuators made the fault locations
and network configuration only partially observable (Thiébaux & Cordier,
2001).

30

Chapter 3

Guiding Search Under
Gaussian Uncertainty

This chapter contains the first major contribution of the thesis: informing the
heuristic about numeric uncertainty. The contents of this chapter have been
published in the Proceedings of the Twenty-Sixth International Conference
on Automated Planning and Scheduling (Marinescu & Coles, 2016a).

In what follows we explore heuristic guidance for forward-chaining plan-
ning with continuous random variables, while ensuring a probability of plan
success. We extend the Metric Relaxed Planning Graph heuristic to cap-
ture a model of uncertainty, providing better guidance in terms of heuristic
estimates and dead-end detection. By tracking the accumulated error on
numeric values, our heuristic is able to check if preconditions in the planning
graph are achievable with a sufficient degree of confidence; it is also able
to consider acting to reduce the accumulated error. Results show that our
approach offers significant improvements in several areas, compared to prior
work where a less-informed relaxation was used. Overall, problems took less
time and memory to solve; previously unsolved problems were solved; and
unsolvable problems were proven so in less time.

3.1 Introduction

Our focus is on finding plans for domains with uncertainty over the numeric
effects of actions, where each uncertain numeric effect is governed by a contin-
uous distribution. Here, the task is to find a plan where all the preconditions

31

are met, and the goals are reached, with some level of confidence 6. This
paradigm has been explored by previous work (Beaudry et al., 2010b; Coles,
2012), but heuristic guidance is still an open challenge. A planning model
without uncertainty cannot always provide reliable plans — similarly, a heuris-
tic without a model of uncertainty cannot always provide useful guidance. A
good heuristic would be better able to indicate which actions are suitable,
and offer better state pruning by recognizing dead ends sooner.

We present an extension to the Metric Relaxed Planning Graph heuristic
(Hoffmann, 2003) that incorporates a model of uncertainty for two purposes:

e First, basic information about uncertainty on variables thus far is used
to determine which preconditions are true in the planning graph.

e Second, if remedial actions are available to reduce uncertainty, the
heuristic is able to include these actions in the relaxed plan.

To demonstrate the efficacy of this new heuristic, we present empirical
results that indicate it is effective in a number of interesting planning do-
mains, reducing the search effort that is needed to find acceptable solution
plans.

3.2 Background

Below we reiterate the core numeric planning formalism laid out in Chap-
ter 2, with two important additions based on the non-deterministic state
progression semantics of the RTU planner (Beaudry et al., 2010b). First,
numeric effects are not necessarily constant values — they can be drawn out
of specified probability distributions instead. Second, there is a given con-
fidence threshold 6 applied to action preconditions. Both of these additions
are accompanied by examples in the bullet points below. A planning problem
is therefore a tuple (F,v, I, G, A, 0) where:

e [is a set of propositional facts.

e Vv is a vector of numeric variables.

e [is a known initial state: a subset of facts from F' and a value for each
variable in v.

32

e A condition is a conjunction of a subset of facts from F' and constraints
on v. Each constraint is written as (w.v > ¢), where c is a real value
and w is a vector of real values.

e (5 is a set of goal conditions. For over-subscription planning problems,
each g € G has an associated cost ¢(g) € R if g is not true at the end
of the plan. For hard goals, ¢(g) = oo.

e A is a set of actions, each a € A with:

— Pre(a): a set of conditions on the execution of a.

— Eff*(a), Eff (a): sets of facts from F added and deleted by a,
respectively.

— Eff"™™(a): a set of numeric variable updates that occur when
applying a. Each is of the form (v op D(v)) where op € {+=,=
and D is a (possibly deterministic) probability distribution that
governs the range of outcomes of the effect. For instance:
(battery += N'(—10,2%)) means ‘decrease battery by an amount
with mean 10 and standard deviation 2’.

e 0 €10.5,1) is a confidence level given at the start and applied to action
preconditions. For instance: precondition v > 15 is considered true
with # = 0.9 if the inequality holds 90% of the time. This is necessary
due to the uncertainty in the effects on v.

According to Beaudry et al., a Bayesian network (BN) is used to define the
belief of each variable in v. As actions are applied, the network is updated
with additional variables. In a state S;, for each v/ € v, a variable v{ is
associated with the belief of v. If an action a is applied, leading to a state
Si+1, then for each numeric effect (v/ op D(v)), two random variables are
added to the network. The first of these, D! 11, represents D(v). The second,

v 11, is associated with the belief of v in S;4;, and it is determined by either:
. vfﬂ = —I—Dfﬂ, if op is +=

VAR oV R i —
e v, =Dy, ifopis=

33

The BN is key to determining whether a plan meets the required confi-
dence level 6. An action a is applicable in a state .S; if Pre(a) is satisfied.
A sequential (linear) solution is a sequence of steps |ay, .., a,], implying a
state trajectory [I, So, .., S,]. We use the BN to ensure that with probability
P >0, in a given execution of the plan, each action’s preconditions are met
and 9, satisfies any hard goals.

The above state progression formalism by Beaudry et al. was adopted
and extended by Coles as the basis of an over-subscription planning approach
(Coles, 2012). A forward-chaining planner following these semantics was used
to find a single plan, onto which branches were added afterwards by making
additional calls to the planner.

As mentioned in Chapter 2, a range of other approaches have been adopted
for planning under uncertainty, such as those based on the use of Markov De-
cision Processes (Meuleau et al., 2009; Mausam & Weld, 2008; Rachelson,
Quesnel, Garcia, & Fabiani, 2008); these approaches are particularly useful
when searching for a policy. As the contribution described in this chapter is
on the heuristic inside a forward chaining planner, our focus will be on plan-
ning under the semantics of RTU described above. We will discuss policy
building in further chapters.

3.3 Ensuring the Heuristic Remains a Relax-
ation

In deterministic forward-chaining numeric planning, one way to guide search
is the Metric Relaxed Planning Graph (Metric RPG) heuristic (Hoffmann,
2003). This performs a forward reachability analysis that estimates the num-
ber of actions needed to reach goals by relaxing the effects of actions. For
numeric state variables, this amounts to estimating reachable bounds on the
values of variables. This is done by optimistically assuming that increase
effects only increase the upper bound, and decrease effects only decrease the
lower bound.

When working with RT'U’s semantics, Coles adapted the above to assume
that, for heuristic purposes, each variable takes its median value. They point
out that this is guaranteed to be a relaxation for # > 0.5, based on Jensen’s
inequality. In other words, adding more uncertainty would not contribute to
achieving the goals.

34

As 0 becomes large however, this median-based heuristic becomes increas-
ingly unrealistic. A numeric condition might be true assuming variables take
their median values; but not when accounting for the uncertainty in their
values. To improve this, we incorporate the shape of the distribution in the
heuristic evaluation, rather than discarding it and using the median. Addi-
tionally, for Gaussian distributions, we explicitly track variance as a variable
in the relaxed planning graph.

From the point of view of the planner, uncertainty can be split into the
following two categories:

e [t only increases monotonically — error accumulates and no actions exist
that can rectify it.

e [t may be purposefully corrected — there may be actions that reduce
the error (e.g. recharging batteries to a fixed value, or visiting a precise
weighing station).

We discuss these, in turn, in the two subsections below.

3.3.1 Uncertainty Increases Monotonically

Each action’s precondition (outside the heuristic) is of the form w.v > c.
A Monte Carlo simulation is used to estimate the probability distribution of
the left-hand side, w.v. Using this distribution, we can check if the condition
is satisfied with probability 6. That is to say, we test whether the (1 — 6)’th
percentile of w.v is greater than or equal to c. We represent this percentile
as follows:

p1—o(W.V) = median(w.v) — offsety(w.v)

In effect, offset, is the margin of error that must be tolerated, for the
precondition to be true with probability §. We illustrate the intuition behind
this margin in Figure 3.1. The condition itself can then be rewritten:

median(w.v) > ¢ + offsety(w.v)

We define that, if uncertainty is monotonically increasing, it means that
offset, can never decrease. In this case, it is still a relaxation to use the offset
values when determining which preconditions are true in the heuristic. The

35

: o
. ' median

035 [M M I 035 [
VI

v offset

\n -

' i(1-6)th '
0.05 9%ile ¢ r 0.05 [
VL

0 0.2 0.4 1 -4 -3 -2 -1 0 1 2 3 4

Figure 3.1: Possible probability distributions: Arbitrary (left) and Gaussian
(right).

only way to make the condition above true is to apply actions that affect the
values of v, as no actions that decrease offset, exist.

An illustrative example would be an autonomous car with a certain
amount of fuel, which is used gradually until it runs out; refuelling is not pos-
sible. The activities performed by the car (e.g. start engine, accelerate, stand
still, park) each require fuel, but the amount varies non-deterministically. As
the plan is constructed, uncertainty (and hence offset,) accumulates mono-
tonically. We can thus heuristically evaluate a state by assuming offset, is
constant, and takes its current value; this is guaranteed to be a relaxation,
as offset, can never become smaller.

3.3.2 Uncertainty Can Decrease

So far, we explained how to incorporate distributions on the left-hand side
of preconditions into heuristic computation, by using the offset, value to
capture uncertainty information. The relaxation holds when error accumu-
lates and cannot be lowered. However, problems may contain actions such as
recharge-batteries or visit-weigh-station, which reduce uncertainty.

The challenge in these sorts of problems is to ensure the heuristic re-
mains a relaxation. This is possible in a useful subset of domains, where the
uncertainty is due to independent Gaussian-distributed effects on variables,
and therefore has an analytic form. We can utilize this form and extend the
Metric RPG to additionally track the variance on each variable, o(v). The
expansion phase, building the RPG, proceeds as follows:

36

e For each variable v € v, we track the upper and lower bound on its
median value. In the first RPG layer, these are equal to the value of v
in the current state S. We additionally track o?(v), the variance on v.
In the first RPG layer, this is the value according to the BN for S.

e Normally when expanding an RPG, if a numeric effect is applied that
increases (decreases) some v € v, the upper (lower) bound on v at the
next fact layer is updated accordingly. Now, additionally, if a numeric
effect decreases o%(v), the lower bound on ¢?(v) at the next fact layer
is decreased!.

e To decide which actions are applicable in each layer, we take variance
into account when checking precondition satisfaction, as follows. For
a precondition of the general form w.v > ¢, we can use the additive
properties of Gaussians to compute the variance of w.v:

ol (w.v) = Z w?.o?(v)

We obtain the offset using the Gaussian quantile function (the inverse
of the Gaussian cumulative distribution function @ for a given 0):

offsety(w.v) = o(w.v).® (0)

Hence, from Section 3.3.1, the precondition becomes:

median(w.v) > ¢+ o(w.v).® ()

This gives us everything we need to build an RPG. We can be confident
that the offset, values used are relaxations: smaller values of variance result
in smaller values of the Gaussian quantile function ®~!; and the semantics
of the RPG guarantee we will underestimate variance.

The next step is to extract a relaxed plan from the RPG:

IEffects increasing 0% (v) are ignored when expanding the RPG. If § > 0.5, adding more
uncertainty never contributes towards preconditions becoming true, so it suffices to track
only the smallest reachable values of variance.

37

e For each condition w.v > c+ offset,(w.v) at the current layer, we need
to compute offsety(w.v) to later work out how to make the condition
true. As stated above, we can assume that the probability distribution
over the left-hand side is a Gaussian with mean w.v and standard
deviation o(w.v). To deduce the offset, we use the Gaussian quantile
function, ®~!. This function takes in the confidence § imposed at the
start, and the standard deviation o(w.v). Our newly computed offset
can now be used along with the constant ¢ and the bounds on w.v to
represent the full condition numerically (in terms of bounds, just like
in the original Metric RPG).

e Once the condition is fully represented as above, we begin to choose
actions from action layer [that take the condition closer to being true.
This is done in two steps — first, standard RPG-style effects on numeric
fluents; and second, effects on variance:

— In step one, as in the standard RPG, we choose actions that in-
crease w.v, as well as actions that decrease c. We do this until
either the condition is true, or all such actions in [have been used.
If the condition is still not true, it must mean that a decrease in
variance caused the precondition to become true (i.e. an action
that reduced uncertainty, as we mentioned earlier); we proceed to
step two.

— In step two, we need to choose actions that decrease variance
enough to achieve the precondition. To do this, we first work out
by how much the offset needs to be reduced to make the precon-
dition true. Afterwards we compute what variance this amount
corresponds to for the given 6. We can now choose actions that
decrease variance by the amount required to achieve the precon-
dition.

We illustrate the solution extraction described above in Algorithm 1. The
first thing to note is on lines 5 and 6, where we compute the offset, necessary
for the condition to be met. Actions are then chosen in the standard way to
attempt to meet the precondition, given this value of offset,. Then, if line 13
is reached and the precondition is still not true, it must mean that a decrease
in variance caused it to become true at layer [(having been false at layer
[-1). We now need to choose actions that decrease variance enough to achieve

38

Algorithm 1: RPG Solution Extraction

® N o oA W N =

10
11
12

13
14

15
16
17
18

Data: RPG, a relaxed planning graph
Result: p, a relaxed plan

last < last layer index in RPG;

goals|last] < G (i.e. the problem goals);

for [€ [last..0] do for (w.v > ¢) € goals[l] do

prev <— max value of w.v in fact layer [-1;
prev_o? < min value of o%(w.v) in fact layer [-1;
prev_offset, < prev_o.®71(0);
if prev > c + prev_offset, then

| add (w.v > ¢) to goals[l-1]; continue;

for (w.v) € w.v where w # 0 do
Choose actions from action layer [-1 that increase (w.v);
Add them to the relaxed plan and subtract their effects from c;
if prev > c+ prev_offset, then break;

if prev > c + prev_offset, then

L add (w.v > ¢) to goals|l-1]; continue;
mazx_offset < prev — ¢;

maz_o? < (maz_offset/D~1(0))?;
add (—o?(w.v) > —max_o?) to goals|l];
add (w.v > prev) to goals|l-1];

39

(at A)
(at A) : o : (at B)
(at A) recharge A navigate A B navigate B C (at C)

(v=8) (v=8) New heuristic accounting

v=10 (v=8) for variance on (v > 8).
ov=4 g;%‘i'[lo"ﬂ} v=[2,100] —[26,200]
o oHV=[0,6] F(V=10,8]
(at A)
(at A)
@A) navigate A B (at B) navigate B C E:t 2;
(v=8) (v28) Old heuristic (Coles 2012)
10 recharge A - (v28) using the median.
*v)=4 U=, A0 v=[-6,100]
a*(v)=[0,6] (V)=10,8]

Figure 3.2: Example Relaxed Planning Graph, comparing the heuristic here
to that in Coles (2012).

this. On line 15, we work out what offset, needs to be reduced to in order
to make the precondition true; we then compute its corresponding variance
on line 16. This variance can then be used to construct a new condition to
be satisfied at this layer: this causes actions to be added to the relaxed plan
in order to reduce variance on a later iteration of the loop.

As a result of Algorithm 1, the relaxed plan now contains actions that
reduce uncertainty. This makes for a more informed heuristic, which is able
to provide improved guidance and dead-end detection to the search, as will
be demonstrated in the following section.

Figure 3.2 shows an example relaxed planning graph for a planetary rover
domain, where navigation uses power v and increases variance on power
0?(v). In the top half of the figure, in the first layer, the only applicable
action is recharge. Whilst there are 10 units of power, the condition v > 8
is not true until the next action layer, as o%(v) is too high to allow it to be
true with confidence 6. Conversely, in the bottom half of the figure (without
our modifications), v = 10 would satisfy v > 8 since the value of o%(v) is not
taken into account when determining which numeric conditions are true. The
consequence is that the new relaxed plan (top half) recognises the need to
recharge, whilst the old one (bottom half) does not. If the action recharge-A
were unavailable, then the new heuristic would detect a dead-end and the
old one would not, as there would be no way of making v > 8 true for o2(v).

40

3.4 Evaluation

The aim of our evaluation is to verify whether applying our novel heuris-
tic improves planner performance when compared to the Metric RPG based
heuristic used by Coles (2012) on three example domains with different man-
ifestations of numeric uncertainty.

We implement our heuristic inside the Optic+ planner, and use the un-
modified Optic+ planner as a baseline (as it uses the Metric RPG based
heuristic). Our implementation ? and the Optic+ implementation ® are both
available online.

We use two metrics to measure planner performance: 1) time elapsed and
2) number of nodes expanded in order to arrive at a solution plan. These
metrics are measured on a set of 20 problems per domain, which cover a range
of difficulty. With these metrics, our conditions for a successful evaluation
are therefore: less time elapsed / fewer nodes generated / more problems
solved when using our heuristic, compared to using the Metric RPG based
heuristic used by Coles (2012).

We chose evaluation domains in which numeric uncertainty is a realistic
concern for the modelled problem, and which exhibit interesting differences
from one another (in order to showcase the diverse set of problems that our
heuristic can be applied to). These domains are Rovers (Coles, 2012), TPP
(modified) (Gerevini et al., 2009), and AUV (Coles, 2012):

e In Rovers, the activities of a planetary rover are constrained by battery
usage. Actions that use battery introduce Gaussian uncertainty over it,
and the battery can be recharged to exactly 100% at certain locations.

e In TPP, the existing domain is modified to model the acquisition of
sufficient weights of bulk materials. The action of acquiring materials
introduces Gaussian uncertainty over the weight, and trucks can visit
certain weighing stations called Khajiit to adjust their load and reduce
uncertainty:.

e AUV is an over-subscription domain where the activities of an under-
water vehicle must be planned with a strict bound on total time taken.
Activity durations are Gaussian distributed, and uncertainty over them
cannot be reduced.

Zhttps://github.com/chipsetgirl /rewrite/tree/plankton
3https://nms.kcl.ac.uk/planning/software/optic.html

41

10*
® ¢ 2nd Solution |
3rd Solution } *
N ® & 4th So\‘ution } -
* e+
® ® ... 13— #77;77 *t, |
° | fo ¢
10 . e ‘ #
e © 0o ° " ¢
10% p 4 }
® 10% 1 |
10 & }
| |
0 10 ‘ ‘
s 10 10° 10 10° 10° 10" 0t 10 10° 10 10° 10t 10 10° 10*
(a) Rovers (b) TPP (c) AUV

Figure 3.3: Nodes generated to solve problems in the three evaluation
domains. Axes are logarithmic, comparing prior work (X axis) with the
new heuristic (Y axis). The two-tailed Wilcoxon signed-rank test confirms
results are significant at P > 0.95.

To represent the uncertainty over any given numeric fluent in the above
domains, we introduce an additional numeric fluent distinguished by a hard-
coded suffix. For example, v-variance is a the fluent used to track the uncer-
tainty over fluent v. A PDDL listing of the domains used in this evaluation
(including all our modifications) can be found in Appendix A.

Tests were performed on 3.5GHz Core i5 machines with a limit of 4GB
on memory and 1800s on CPU time.

Overall, the new heuristic leads to a substantial reduction in nodes gener-
ated to solve problems, as well as time taken to solve problems. Scatterplots
for nodes generated are shown in Figure 3.3, and time taken scatterplots are
virtually identical. The extra computational work (tracking variances etc.)
does not adversely affect the time taken to heuristically evaluate a state.
Thus, as significantly fewer states are generated, and per-state evaluation
times are comparable, the performance of the planner is significantly better.

3.4.1 Overall Performance

Domain (a): For the Rovers domain (Figure 3.3a), most striking are the
points on the far right-hand side of the graph — these indicate problems
that were previously unsolvable but can now be solved. In part, this is
because the new heuristic is able to recognize many more states as being
dead ends, because it does not disregard uncertainty on the battery level

42

when evaluating preconditions. In contrast, by ignoring uncertainty, the old
relaxed plans relied on moving somewhere to recharge, even though in reality
uncertainty made it impossible for that navigate action to be applied. The
new heuristic often avoids this pitfall by accounting for uncertainty.

Domain (b): In TPP (Figure 3.3b), all the problems could be solved
by both the old and the new heuristic. However, by not accounting for
uncertainty, the old heuristic would reach states in which the relaxed plan
does not need to buy more of any goods. In these states, the heuristic value is
0. As acquiring more goods requires combinations of travel and buy actions,
a substantial amount of search must be performed with no effective heuristic
guidance. Unlike Rovers, there are no dead ends due to these travel actions,
so this blind search will succeed, but it is very time consuming — in problems
furthest from the line y = x, the majority of nodes evaluated have an old
heuristic value of 0.

Domain (c): AUV is an over-subscription problem: search reports a
solution plan every time it finds one that solves more goals than the best so
far. We are hence interested in the search effort to find progressively better
solutions. Figure 3.3¢c compares the nodes generated by each configuration
to find the 2nd, 3rd and 4th solutions. These correspond to satisfying 1, 2,
and 3 goals respectively. The relaxed plans produced by the old heuristic, by
ignoring uncertainty, more often use actions that there is actually no time to
complete. Disregarding uncertainty is less of an impediment than in Rovers
and TPP, as there is no scope for planning actions that reduce uncertainty —
unlike battery charge or goods purchased, actions cannot create more time.
Nonetheless, the new heuristic is generally able to find better solutions more
quickly. If left to run for long enough, search with the old heuristic will
tend to find solutions as good as search with the new heuristic, but loses out
earlier in the search.

There are a small number of cases where our heuristic does worse than
the old heuristic: when the former explores more states. This happens be-
cause the Metric RPG heuristic (and, in turn, ours) is neither admissible nor
consistent. Changing the heuristic to account for uncertainty will generally
improve the performance of the planner — but is not guaranteed to improve it.
Pleasingly though, the planner with the new heuristic solves all the problems
that were solvable with the old heuristic.

43

3.4.2 The Threshold 6

As a concluding remark for our results, we note that so far we assumed
0 = 0.99. At 6 = 0.8, the improvements from using the new heuristic are
still noticeable, but not as substantial. By # = 0.6, which is close to the
median (# = 0.5), there is no statistically significant difference between the
two, as uncertainty has only a modest effect on the heuristic, or indeed search
itself. This confirms that our heuristic meets our headline aim of being able
to better guide the planner when the consequences of uncertainty have a
significant effect upon what is a reasonable solution plan. In essence, the
greater the impact of uncertainty on a problem, the greater the benefit of
using our new heuristic.

3.5 Conclusion

In this chapter, we presented a novel search heuristic that extends the Metric
Relaxed Planning Graph heuristic to include information about uncertainty,
in a useful subset of problems:

e For cases where uncertainty is monotonically increasing, we showed how
the offset, values (obtained from the Bayesian network) for a state can
be incorporated into the heuristic evaluation for that state, to better
reflect the margin of error that must be allowed for when checking if
preconditions are true.

e For cases where uncertainty can be decreased, and its distribution is
Gaussian, we showed how the variance on variables’ values can be
tracked explicitly in the RPG; and how RPG expansion and solution
extraction can be updated to build relaxed plans that use uncertainty-
reducing actions.

This chapter offered promising results which support our idea of including
information about uncertainty in the heuristic. In the three domains we
tested our approach on, we improved the performance of forward-chaining
planning when the aim was to find a single plan that is overwhelmingly likely
to succeed. While we did not aim for a theoretical proof that our approach
is universally faster given certain problem conditions, our claim could be
reasonably believed to hold on other domains similar to the ones presented
in this evaluation.

44

Further in the thesis we will continue to use this type of uncertainty-
aware planning kernel to support our contributions in the area of contingent
planning, where actions have multiple outcomes.

45

Chapter 4

Building Policies Under
Gaussian Uncertainty

In the previous chapter we discussed a setting where actions have a single
outcome, and numeric effects are drawn from a probability distribution. Our
work so far had the most impact on a useful subset of domains where this
probability distribution is a Gaussian. However, in many non-deterministic
domains, actions cannot reasonably be approximated to a single Gaussian
outcome. On the quest for generality, allowing multiple Gaussian outcomes
would be a considerable improvement. This is what we address now.

This chapter contains the second major thesis contribution: defining nu-
meric regression in order to build policies for domains with multiple Gaussian
outcomes. The contents of this chapter have been published in the Proceed-
ings of the Twenty-Second European Conference on Artificial Intelligence
(Marinescu & Coles, 2016b) (Marinescu & Coles, 2016¢).

Within the ecosystem of domains with multiple action outcomes, there
is a large body of work on policy building under propositional uncertainty.
However, handling numeric uncertainty in such a setting has been given less
consideration. In this chapter we present a novel offline policy building ap-
proach for problems with numeric uncertainty. In particular, inspired by the
planner PRP (Muise et al., 2012), we define a representation that captures
only relevant numeric information, supporting a more compact policy repre-
sentation. We also show how PRP’s dead end generalisation can be defined
for numeric dead ends, to avoid redundant search. Empirical results show
that we can substantially reduce the time taken to build a policy compared
to prior work that takes a naive approach to numeric uncertainty.

46

4.1 Introduction

Unlike the class of problems considered by Chapter 3, there are many plan-
ning applications where a dynamic environment makes it difficult to plan
under the assumption that actions have only a single outcome. For these
problems, the task of planning may be to find a strong cyclic plan that will
always reach the goal (Daniele et al., 1999), or a probabilistic plan that will
succeed with a given probability (Yoon et al., 2007). These types of plans
can be represented as a policy: a mapping from every reachable state to a
prescribed action that should be taken in that state.

In problems with propositional uncertainty, where actions have multiple
discrete outcomes, recent work on the planner PRP (Muise et al., 2012, 2014)
builds a policy by making repeated calls to a deterministic planning kernel.
This takes as input a determinised problem, where every non-deterministic
action is replaced with a set of deterministic ones (Yoon et al., 2010), and
produces as output a weak plan (i.e. a plan which assumes that we can
choose which outcome occurs when it is applied). For this approach to scale,
regression is used to keep only those parts of a state that are relevant, leading
to a compact policy representation. Further, to work around dead ends
(Little & Thiébaux, 2007), a dead end generalisation technique is used to
efficiently prune unsuitable choices from the search space.

Having proven effective in propositional problems, this approach has great
scope for being used in problems with numeric non-determinism. In this
chapter, we develop a planner that does just this. We support a problem
representation where each action has multiple outcomes that, in addition
to prior work, can now have numeric effects. In addition, we allow these
numeric effects themselves to be non-deterministic. Similarly to Chapter
3, effects can update state variables according to a continuous probability
distribution. As a planning kernel, we use an adaptation (Coles, 2012) of
RTU (Beaudry et al., 2010b) to find weak plans. This kernel uses Bayesian
networks to manage the impact of the continuous probability distributions,
finding a plan that will succeed with some confidence level. Around this,
we present techniques for numeric regression and dead end generalisation.
As in the propositional case, both of these techniques substantially reduce
the amount of time spent searching for weak plans, and therefore allow the
overall approach to scale.

We will first define the formalism we use, before describing our techniques
for efficiently handling numeric uncertainty. We will then briefly discuss some

47

issues that arise when trying to find strong cyclic plans in numeric domains,
where it might be necessary to tolerate a small risk of failure. We then
evaluate our techniques on benchmark domains and show consistent (and in
some cases dramatic) reductions in the time taken to solve problems.

4.2 Background

Below we describe the particular elements of prior work upon which this
chapter builds, namely:

e Planning where numeric effects introduce uncertainty according to some
probability distribution (e.g. an effect might decrease battery by an
amount with mean 10 and standard deviation 2).

e Building policies where actions can have several non-deterministic out-
comes (e.g. an outcome might be stepping forward, and another might
be failing to move).

4.2.1 Planning With Numeric Uncertainty

Similarly to the previous chapter, the planning formalism we use is based on
RTU (Beaudry et al., 2010b). However, we make an important adaptation
to it: actions can have multiple outcomes, to support the policy building me-
chanics we will detail in Section 4.2.2. A brief example of multiple outcomes
appears below. In this case, a planning problem is a tuple (F,v,I,G, A,0)
where:

e F'is a set of propositional facts.

e Vv is a vector of numeric variables.

I is a known initial state: a subset of facts from F' and a value for each
variable in v.

A condition is a conjunction of a subset of facts from F' and constraints
on v. Each constraint is written as (w.v > ¢), where c is a real value
and w is a vector of real values.

G is a set of goal conditions.

48

e A is a set of actions, each a € A with:

— Pre(a): a set of conditions on the execution of a.

— Eff(a): a set of outcomes. For instance: the action navigate
below has one outcome with duration 10, and another outcome
with duration 15 that adds an additional fact. Each outcome

o € Eff (a) is a tuple of the form (Eff ", Eff ~, Eff ™), with:
x Eff*(a), Eff (a): sets of facts from F added and deleted by

outcome o, respectively.

x FEff™™: a set of numeric variable updates that occur when
outcome o occurs. Each is of the form (v op D(v)) where
op € {+=,=} and D is a (possibly deterministic) probability
distribution that governs the range of the numeric effect.

e 0 €10.5,1) is a confidence level given at the start and applied to action
preconditions.

The following is extracted from a version of the AUV domain in which
the navigate action is non-deterministic:

(:action navigate-outcome-1
:parameters (7a - auv 7wl - waypoint ?w2 - waypoint)
:precondition (and (can_traverse 7wl 7w2)
(at 7a 7wl)
(>= (time-left) 10))
reffect (and (not (at 7a 7wl))
(at 7a 7w2)
(decrease (time-left) 10)))

(raction navigate-outcome-2
:parameters (7a - auv 7wl - waypoint ?w2 - waypoint)
:precondition (and (can_traverse 7wl 7w2)
(at ?7a 7wl)
(>= (time-left) 15))
reffect (and (not (at 7a 7wl))
(at 7a 7w2)
(decrease (time-left) 15)
(stuck-valve)))

49

Because there is uncertainty on numeric variables, as in the previous
chapter, it is not possible to be absolutely certain that numeric conditions
are satisfied. For this reason, RTU uses a Bayesian network (BN) to model
uncertainty and to check that numeric conditions are satisfied with the pre-
scribed confidence level 6. In the case where each action has only a single
outcome, the task of planning is to find a sequence of steps [ag, .., a,], giving
a state trajectory [/, Sp, .., S,]; with the BN ensuring that, with confidence
6, each action’s preconditions are true and S,, satisfies the goals G.

In this chapter we work with problems where the continuous numeric un-
certainty is caused by independent Gaussian effects on variables, and there-
fore has an analytic form. In any state, we store both the mean value of
each variable v and its variance o?(v). Effects can change either (or both)
of these; and they are taken into account when determining if preconditions
are true.

For a precondition of the general form w.v > ¢, we can use the additive
properties of Gaussians to compute the variance of w.v:

ol (w.v) = Z w?.o?(v)

WVEW.V

A precondition is then true with confidence 6 iff:
w.v > c+o(w.v).0e1(0)

Above, @1 is the Gaussian quantile function — the inverse of the Gaussian
cumulative distribution function ® for a given 6. Effectively, this computes
the offset we need to add onto the precondition so that, even accounting for
uncertainty, it remains true with confidence 6.

A number of other techniques have been proposed for planning with un-
certainty over resource usage, many of which are based on Markov Decision
Processes (MDPs) (Meuleau et al., 2009; Mausam & Weld, 2008; Rachelson
et al., 2008). Particularly relevant is the HAO* algorithm (Meuleau et al.,
2009), which formulates problems as hybrid MDPs; i.e. with both discrete
and continuous state variables. This approach is limited though to the case
where the values of numeric variables are monotonically decreasing.

4.2.2 Building Policies With Propositional Uncertainty

As noted in the formalism above, actions can have multiple outcomes, and
each outcome has a set of associated effects. A solution to problems con-

50

taining such actions can be represented by using a policy — a set of rules
that dictates what should be done in each state. For our policies, we assume
states are fully observable, i.e. we know which action outcome occurred at
any point.

In the presence of multiple outcomes, a weak plan corresponds to a single
trajectory of actions that leads from the initial state to a goal state, assum-
ing it is possible to choose which action outcome occurs at each point (i.e.
to be optimistic). In the propositional case, weak plans can be found using
a deterministic planner which is given as input the all outcomes determini-
sation (Yoon et al., 2007). This means that each action with preconditions
Pre(a) and effects Eff (a) is replaced by several actions, one for each outcome
o € Eff(a), whose preconditions are Pre(a) and whose effects are just those
corresponding to outcome o.

In the work of Muise et al. it is possible to build a policy incrementally by
repeatedly invoking a deterministic planner to find weak plans. The core of
this approach is set out in Algorithm 2. Key to the success of their approach
is exploiting the concept of state relevance. By regressing backwards from
the goal through a weak plan step-by-step, they determine which facts are
relevant to plan success at each point.

Regression takes as input a partial state ps — here, a set of facts. It then
applies an action ‘backwards’ to it, yielding a new partial state ps’ that has
to be satisfied prior to the action being applied. That is, applying that action
in ps’ returns us to ps.

The process begins from the goals, i.e. initially ps = G. Regressing ps
through a step a of a weak plan, with preconditions Pre(a) and a single
outcome with add effects Eff " (a) yields a partial state ps’ where:

ps' = (ps \ Eff *(a)) U Pre(a)

Each of these pairs (ps’,a) is added to the policy (line 17). If policy
building reaches a state S that matches some known (partial state, action)
pair (line 6), then all the outcomes of the corresponding action are applied.
Otherwise, if there is no such match, the planning kernel is invoked from S.
Ideally, this produces a weak plan, either to the goals G or to some other
partial state which is already in the policy (G’), in which case the (partial
state, action) pairs from this weak plan are added to the policy.

Alternatively, if no weak plan can be found, a dead end has been reached.
One caveat of the algorithm is that, in this case, the policy needs to be

51

Algorithm 2: Generating a Strong-Cyclic Plan in PRP (Muise et al.)

® N o oA W N =

10
11
12
13
14

15
16

17

18
19

20

Data: A planning task, with initial state I and goals G
Result: A policy P

P« {}; Open < [I]; Seen + {};
while Open is not empty do
S < Open.pop();
if (S € Seen) V (S F G) then continue;
Seen < Seen U S,
if I(ps,a) € P such that S F ps then
for S’ € apply_outcomes(S,a) do
L Open.push(S’);
else
(weak_plan,G") < run planning kernel from S;
if planning kernel could not solve problem then
ps_dead < generalise_dead_end(S);
generate forbidden state-action pairs from ps ;,.,4;
P < {}; Open < [I]; Seen < {};
else
PS « regress G’ through weak_plan to generate
partial-state—action pairs;
P+ PUPS;
for S’ € apply_outcomes(S, weak_plan,) do
L Open.push(S’);
return P

52

deleted and the policy building process must be restarted (line 14). We refer
to this as resetting the policy. When a dead end state S is reached, Muise
et al. record (forbidden state, action) pairs (FSAPs). First, at line 12, S is
generalised to yield a partial state (ps_dead): to avoid resetting the policy
too frequently, a greedy algorithm is used to remove facts from S that do not
affect whether it is a dead end!. At line 13, ps_dead is regressed through all
actions [ag..a,] that could lead to it, yielding partial states [pso..ps,|; then
each (ps;,a;) is recorded as forbidden, since applying a; in ps; would reach
ps_dead once again.

Policy building terminates when the open list is empty, hence J(ps,a)
such that S F ps for all states S reachable from the initial state via the
policy. Alternatively, if no strong cyclic plan exists, all actions that could
be applied in the initial state are forbidden, and planning terminates with
failure.

4.3 Numeric Regression

As detailed in Section 4.2.2, Muise et al. employ regression for states con-
taining propositional facts. Based on this, they are able to build policies for
propositional problems efficiently. Thus, ideally, we would like to apply their
framework to the problem class laid out in Section 4.2.1, which includes nu-
meric variables and allows numeric uncertainty. For this to work well though,
we need to define regression for this numeric formalism.

4.3.1 Motivating Relevant Numeric Constraints

In the approach described by Muise et al. depicted in Algorithm 2, they make
calls to a planning kernel to find weak plans from states to the goal. At line
16, they use regression to find partial states, each of which is paired with the
corresponding action and added to the policy. This allows their approach to
perform much better than if regression was not used, and naively the states
in the weak plan from S to the goal were used instead.

Their approach did not, however, consider numeric planning problems.
As an initial attempt at supporting these, we could suggest that partial
states store the full numeric information from the original states in the weak
plan from S. For instance, for the plan depicted in Figure 4.1, these would

"We will return to the topic of dead end generalisation in section 4.4

53

Step#: o 1 2 3 4 5 Goal

energy=50
| | energy>10 energy>10 energy>10 energy>10 energy>10

Action: move-C-B move-B-A recharge move-A-B move-B-C move-C-D

Effects: energy+=(-10,2)| [energy+=1-10,2) energy+=\(-10,2)| [energy+=2-10,2) [energy+=-10,2)

Values energy=58 energy=48 energy=38 energy=100 ay energy=70
instate: o*(energy)=5.5 o(energy)=7.5 o(energy)=9.5 o(energy)=0.1 o(energy)=2.1 o(energy)=4.1 o*(energy)=6.1
Figure 4.1: Example weak plan. For clarity, propositional preconditions and
effects are omitted.

correspond to the values of energy and o?(energy) shown at the bottom of
the figure. This is likely to perform badly, though; similarly to the naive
propositional case, partial states would be so precisely defined that, at line
6, the state we are considering likely matches no partial states in the policy.
We thus need to find a more effective way of capturing numeric information
in partial states, accounting for the preconditions and effects of the actions
in the weak plan.

In the propositional case, at any point, regression maintains a set of
literals that need to be true — initially, those in the goal state. Regressing
through the effects of actions removes literals from this set; and regressing
through their preconditions adds literals to it. Thus, the cumulative effects of
the actions that have been regressed through are implicit, and each partial
state is defined as a set of literals that need to be true: analogous to the
preconditions Pre(a) on some action a.

In the numeric case without uncertainty, the representation needed for
the numeric conditions in partial states is also equivalent to that used in the
preconditions of actions. If we had a numeric condition v > 7, and regressed
this through a numeric effect v += — 3, then the resulting partial state
would contain the numeric condition v > 10. Numeric effects accumulate as
regression proceeds, but the representation remains the same.

In the presence of uncertainty, though, this is no longer the case. For
instance, consider the situation depicted in Figure 4.1. This has a numeric
goal that (energy > 50). Preceding the goal is step 5 of the weak plan, with
the effect energy+=N(—10,2). It is not sufficient to stipulate that (energy >
60) in the partial state prior to step 5, as this disregards the uncertainty on
the value of energy introduced by the subsequent step. In fact, to ensure
the numeric goal is met with confidence 6, energy will need to be somewhat
larger than 60 before weak plan step 5. Continuing further back through

o4

the weak plan, prior to step 4, energy will need to be larger and account for
further variance still, as step 4 also has the effect energy += N(—10,2).
Thus, we will proceed to define a representation that captures:

e The condition that needs to hold — in general, w.v > c.

e The uncertainty on the condition’s variables (due to any uncertain ef-
fects between the partial state and the step in the plan where the
condition appeared).

4.3.2 Defining Regression Through Relevant Numeric
Constraints

As noted in Section 4.2.1, we are assuming in this work that the numeric
uncertainty is due to independent Gaussian effects on variables. The chain
of effects v += N (g, 03), .., v += N (ptn, 02) can be rewritten as:

v+=N(Z His Z)

1€{0..n} 1€{0..n}

Or, alternatively, using a Gaussian with mean 0, as:

V4= Z i + N (0, Z o?)

1€{0..n} 1€{0..n}

This can be exploited when regressing through numeric effects that in-
crease or decrease (rather than assign) a variable. Effects of this form ac-
cumulate, and can be expressed concisely as a single mean and standard
deviation (or variance) value.

Effects that assign a variable though, do not accumulate so neatly. With
reference to Figure 4.1, weak plan step 2 assigns a fixed value to energy and
to o?(energy). If we regress through this effect, and then through the effects
of weak plan step 1 (which include a decrease), the effects do not accumulate.
Any effects earlier in the weak plan (i.e. preceding the assignment in step 2)
do not affect the variable’s value after that point in the weak plan.

Our representation is thus based on the following intuition. Suppose we
have a numeric condition w.v > ¢, and are assuming there is no variance on
w.v to account for. Regressing this condition through an effect of an action
does one of three things:

95

e The effect was an increase/decrease on some variable v, or on some
variable’s variance %(v). In this case we update the bound c on the
condition according to the mean value of the effect, or record any ad-
ditional variance that now needs to be accounted for, respectively.

e The effect was an assignment to a variable v. In this case the bound
¢ is updated to account for the value that v was assigned, and v is
removed from w.v. As noted previously, earlier effects would no longer
affect the value of v after this point.

e The effect was an assignment to o(v) for some variable v. In this case
we freeze o2(v) to this value. Again, as noted previously, earlier effects
on o?(v) would no longer affect the value of o2(v) after this point.

Formally, we define a Numeric Constraint Tuple (NCT) that includes
an explicit record of any variance due to a chain of numeric effects. For a
constraint w.v > ¢ we record an NCT (nt, ¢, vt, av) where:

e nt is a set of numeric terms, initially: {(w,v) | w,v € w.v}. Note we
allow two sets of numeric terms to be added together by adding the
respective weights on each variable.

e c is the right-hand-side constant, initially c.

e 0t is a set of variance terms, initially:
{(w?,d%(v), ™) | w,v € w.v} where rv denotes the regressed variance
on the respective variable; initially, rv = 0.

e qv is an accumulated variance value, initially 0.

Each NCT can be seen as a compact encoding of a numeric constraint and
a chain of effects that precedes it in the weak plan. To determine whether
a state S satisfies a given NCT, we refer to the values S[v] and S[o?(v)] for
the mean and variance on v; and to the Gaussian quantile function (Section
4.2.1). We calculate the mean and variance of the NCT in S as:

= Z w.S[v] (4.1)

(w,v)ent

o = av + Z w?.(S[o?(v)] + rv) (4.2)

(w2,02(v),rv)Evt

56

Then, we say S satisfies the NCT iff:
p>c+o®)

In effect, for each variance term in vt we account for the variance rv
associated with it, and the variance in the state itself (each value S[o?(v)]),
to determine whether some condition later in the plan will hold with an
adequate degree of confidence.

If an NCT C is regressed through a numeric increase or decrease effect
(v+=Ww.v' + k), where (w,v) € nt, and k € R, the resulting NCT C’ is:

nt' = nt 4+ {{(ww' V)| w ew.v'}
= c—wk

vt = ot

av’' = av

This, intuitively, is what we would expect. Take, for instance, the simple
condition v > ¢, regressed through the effect v += — 10. The resulting value
of ¢ is ¢+ 10: prior to the effect, v needs to be 10 larger to ensure the
condition remains true after it.

Regressing through an assignment effect (v = w'.v' + k) gives:

nt' = {((w',v) € nt)AN(V #v)}+{{ww' V) | W'V € w.v'}

= c—wk
vt = ot
av’ = au

Here, note that nt’ is updated to remove the term (w,v). For instance,
if we regress the condition v > ¢ through the effect v = 100, we remove the
term associated with v from nt’ and subtract 100 from the bound to give
¢ = c—100.

Effects on variance update the variance terms vt. For a variance term
(w? o*(v), rv) € ot, regressing through the effect 0%(v) += k increases rv
by k. Simply, we now have to account for more variance on v than we did
previously. Regressing through the effect 02 (v)=Fk is somewhat more involved
— it does two things:

e The term (w?, 02(v), rv) is removed from vt. As noted earlier, when
regressing, we stop accumulating effects on a variable once assignment
has taken place: the same holds for the variance of a variable.

o7

e The value k.w? is added to the accumulated variance av.

In effect, in Equation 4.2, we transfer the resulting value of the term
referring to v from the set vt into the value av.

To demonstrate how numeric regression works in practice, we will now
refer to Figure 4.1. This is an example weak plan for a Mars rover domain
where the goal is to be at location D with 50 or more units of energy. The
weak plan contains only two kinds of actions: move-X-Y and recharge. The
former has a numeric effect energy+=AM(—10,2). The latter has two numeric
effects: energy = 100; o%(energy) = 0.1. Regression proceeds as follows.

G: We begin with the constraints at the goal:
({1, energy)}, 50, {{1, 0*(energy), 0)},0), at-D

5: We regress through the effects of move-C-D:

({(T, energy)}, 60, {(1, 0*(energy), 2)},0), at-C
Note the constraint above subsumes the precondition of move-C-D.

4: We regress through the effects of move-B-C:
(L, energy)}, 70, {(1, 0*(energy), 41}, 0), at-B

3: We regress through the effects of move-A-B:
(T, energy)}, 80, {(1, 0% (energy), 6)},0), at-A

2: We regress through the effects of recharge:

<{}7 _207 {}7 0'1>

The constraint above is tautologous so we discard it.
We do however keep the precondition of recharge:

({{1, energy)}, 0,{(1, 0*(energy),0)},0)

1: We regress through the effects of move-B-A:
(T, energy) }, 10, {(1, 0> (energy), 2)},0), at-B

0: We regress through the effects of move-C-B:
({(1, energy)}, 20, {(1, o*(energy),4)},0), at-C

4.4 Numeric Dead End Generalisation

In this section we consider dead end generalisation, another important ele-
ment of Algorithm 2. We first recap how this is performed in propositional

58

domains, then discuss how we develop an analogue of this for numeric vari-
ables.

4.4.1 Generalising Propositional Dead Ends

As discussed in Section 4.2.2, when building a policy, (forbidden state, action)
pairs are generated each time a dead end is found. The dead end is regressed
through all the actions that could lead to it, and in subsequent calls to the
planning kernel these actions cannot be applied in states that would lead to
that dead end.

In the propositional case, the dead end state S = {robot-at-A,
truck-at-B, —package-in-truck, quicksand-at-A} might be found. Prior
to generating (forbidden state, action) pairs, S is generalised. For each lit-
eral in S in turn, the Relaxed Planning Graph (RPG) heuristic (Hoffmann
& Nebel, 2001) is evaluated with the relaxation that both the literal and
its negation are true. For instance, if the state S U {package-in-truck} is
still a dead end, we remove the literal —package-in-truck from S. After
generalisation is complete, only a set of relevant literals remain — in this case
{robot-at-A, quicksand-at-A}. This is quite intuitive: no matter where
the truck and package are, the robot is still sinking in quicksand.

From then on, it is impossible to reach a dead end that contains a superset
of these literals, as any action that would lead to such a dead end would be
forbidden in the preceding state. For instance, a dead end S’ = {robot-at-A,
truck-at-E, quicksand-at-A} would not be reached: the (forbidden state,
action) pairs (Algorithm 2 line 13) generated from S would have prevented
search from ever reaching S’. This reduces the number of dead ends reached
by search, and hence the number of times the policy needs to be reset.

4.4.2 Motivating Variable Bound Expansion

Removing extraneous literals works well in the propositional case. However,
in numeric problems, most of the gains are lost: the state S assigns specific
values to each numeric variable, and these persist after propositional dead
end generalisation.

Extending our previous example, S might be {robot-at-A, truck-at-B,
—package-in-truck, quicksand-at-A, rescue-team-fuel=1.5}.

After propositional dead end generalisation, S would become
{robot-at-A, quicksand-at-A, rescue-team-fuel=1.5}.

59

This does not prevent the planning kernel from later reaching another
dead end state S’ containing {robot-at-A, truck-at-D, package-in-truck,
quicksand-at-A, rescue-team-fuel=1.1}, as the amount of fuel is differ-
ent. It is intuitively clear, however, that having less fuel for the rescue team
is worse, so S’ a dead end.

To address this, we will show how the RPG heuristic can also be used to
relax the values assigned to numeric variables, broadening their range whilst
ensuring the state is still a dead end. This then allows each dead end to
match a greater number of states.

4.4.3 Expanding Bounds on Dead End Variables

Algorithm 3: Lower-bounding v while allowing S to still be a dead

end
Data: A state S, a variable v

Result: A modified state S, with relaxed lower bound on v

1 Sv «+ S

2 Relax S[v] to be in range [—oo, Sv];

3 if RPG(S) is a dead end then return S;

4 a < glb(v); // global lower bound on v, typically —oo or 0;
5 b« Sv;

6 while (b —a) > e do

7 mid < (a+b)/2;

8 Relax S[v] to be in range [mid, Sv];

9 if RPG(S) is a dead end then b < mid;
10 else a < mud;

11 Relax S[v] to be in range [b, Sv];

12 return S;

In the Metric RPG heuristic (Hoffmann, 2003), the values of numeric
variables are relaxed, lying in a range rather than taking on fixed values.
The upper and lower bounds on each variable are then used to optimistically
determine whether each precondition is true. Ordinarily, in the first fact
layer, the upper and lower bounds on each variable are both set to the value
the variable takes in the state being evaluated. But, conceptually, there is

60

N

Dead end

(a) Before Generalisation

N

Dead end
(b) After Generalisation

Figure 4.2: Generalising the value v = 15 in a dead end state S.

nothing preventing the RPG from being used to evaluate states in which
variables’ values can lie in a given range.

We exploit this observation in Algorithm 3, which illustrates how, for a
given dead end state S and variable v, we can reduce the lower bound on v
in a way that ensures S is still a dead end. An analogous algorithm can be
used to find an upper bound on v.

To reduce the lower bound, we perform interval bisection, finding the
smallest suitable value of v such that RPG(S) is still a dead end?. This
process is repeated in turn for each variable in the dead end state S. If
the bounds on v become [—o0, +00], then we do not need to constrain the
value of v at all. Otherwise, v lies in the range [a,b] in the dead end, and
transforming this into the NCT representation yields a pair of constraints:

<{<17 U>}v a, {}’ O>> <{<_17 U>}’ _b’ {}’ O>

An example of setting bounds on a numeric variable is shown in Figure
4.2. Initially (at the top), S[v] = 15, so the range of values is taken to be
[15,15]. Algorithm 3 is then used to reduce the lower bound on S[v] whilst
ensuring S is still a dead end, converging on the bounds S[v] € [7,15]. The
upper bound is then analogously increased, from 15 to 20. The conclusion (at

2As an implementation detail, we assume —oo is a very large, but finite negative num-
ber.

61

the bottom) is that if Sv] € [7,20], then S is still a dead end; the resulting
numeric constraint tuples would then be:

<{<1’ U>}> 77 {}7 0>’ <{<_1> U>}7 _207 {}’ O>

One additional note regarding the heuristic — as we are dealing with a
domain where numeric variables might be drawn from Gaussian distributions,
we use the improved Metric RPG heuristic from Chapter 3. It is a pleasing
development that our work so far can serve the purpose of providing better
dead end bounds in a different setting than it was originally designed for.

4.5 Tolerating a Risk of Failure

In this section we discuss issues that arise when attempting to find strong
cyclic plans in domains with adverse numeric effects that are potentially fatal
if they occur repeatedly. We discuss a modification of the policy building
approach that finds plans with a tolerably small risk of failure.

4.5.1 Finding Strong Cyclic Plans in Numeric Domains

One notable property of the policies produced by Muise et al. is that they
are guaranteed to produce strong cyclic plans. This means that, no matter
what sequence of action outcomes occurs at execution time, using the policy
will still lead to a goal, while allowing for states to be re-visited.

However, this property comes with a certain limitation, illustrated by the
following example. A domain where a vacuuming robot needs to operate on
slippery floors might have a move action which requires 10 battery and has
three non-deterministic outcomes:

01: use 10 battery; do not slip; move forward;
09: use 10 battery; slip slightly; move forward-left;

03: use 3 battery; slip critically; fail to move altogether.

The existence of the third outcome makes it impossible to find a strong
cyclic plan in such a domain. This outcome can occur over and over, using
all the robot’s battery without moving, hence rendering the goal location
unreachable.

62

Because no strong cyclic plan exists, the technique by Muise et al. cannot
produce a policy for domains such as the one above. There is a common
denominator for this type of domains: actions have failure outcomes that
cannot be undone or remediated for free. For example, if a bipedal robot
falls down it is possible to apply an action to get up, but that action has a
cost, hence cannot be applied indefinitely. Algorithm 2 would benefit from
an adaptation allowing it to solve such problems, as they are not uncommon
amongst various potential applications of planning.

We will refer to the example above to motivate our approach. The three
different action outcomes might have the following likelihoods of occurring:
plo1) = 0.7, p(oa) = 0.25, p(oz) = 0.05. If the goal is one step away, the
robot starts out with 18 battery and o3 occurs three times, there is no
longer enough battery to meet the precondition of move and apply it again.
The likelihood of this happening though, is very small: 0.05 x 0.05 x 0.05 =
0.000125, or 0.0125%. This risk, however, is unavoidable; the only way to
reach the goals is to try to move. Thus, we adapt the planner to allow it to
track the cumulative risk of such failures.

4.5.2 Accumulating a Risk of Failure

We describe an approach where we tolerate reaching dead ends as long as
the accumulated likelihood of reaching a dead end is less than an acceptable
threshold 7. First, we add a variable p_fail to record the probability of failure;
initially p_fail = 0. We then modify the open list used in Algorithm 2 so that
each state S is paired with the probability of reaching that state p(S). When
resetting the policy, the open list contains just one entry: (/,1.0). Line 3 is
rewritten:

(S,p(8)) < Open.pop();

We then check if S € Seen, and if so, whether S was previously found to
be a dead end. If it was, p_fail is incremented by p(S); and if p_fail > 7, we
reset the policy — the acceptable risk threshold has been exceeded.

The function apply_outcomes({S,p(S)),a) is updated so that it returns a
set of (state, probability) pairs (S’,p(S’)) — one for each outcome o of the
action a, where:

p(S") = p(S) x p(o)

These probabilities are then pushed, along with their corresponding states,
onto the open list (lines 8 and 19).

63

If a dead end S is reached (line 11), p_fail is increased by p(S). Then,
at line 14, we only reset the policy (and set p_fail = 0) if p_fail > 7. Thus,
policy building will continue as long as the cumulative likelihood of failure
is sufficiently small. Ultimately, the result of the algorithm is still a policy,
but it no longer corresponds to a strong cyclic plan, as it might fail with
probability 7.

4.6 Evaluation

We begin with an overall evaluation of the two principal contributions we
made for finding strong cyclic plans in domains with numeric uncertainty:
the use of regression to define relevant numeric constraints; and numeric dead
end generalisation.

As a baseline, we take a configuration of our planner with neither of these,
using only techniques from prior work:

e As alluded to in Section 4.3.1, regression is used for propositional pre-
conditions and effects; but partial states contain the values of numeric
variables from the original states in the weak plan. That is, if v = k
in some state S, the constraints (v > k) A (—v > —k) are added to the
corresponding partial state ps.

e As described in Section 4.4.1, dead end generalisation is used for literals
but not for numbers. Thus, again, if v = k in a dead end state, the
dead end partial state prescribes (v > k) A (—v > —k).

Our planner can be found online via the link provided in Chapter 3. Once
again we used Optic+ as a starting point, first implementing Algorithm 2
from PRP inside Optic+, then adding in our numeric regression and dead
end generalisation contributions.

We use three evaluation domains, derived from existing benchmarks -
Rovers (Coles, 2012), a ‘flat tyre’ variant of TPP (Gerevini et al., 2009), and
AUV (Coles, 2012):

e In Rovers, the activities of a planetary rover are constrained by battery
usage, and the battery can only be recharged at certain locations. All
energy usage is Gaussian. Additionally, navigation has three outcomes
(each of which uses a Gaussian amount of energy).

64

e In Flat Tyre TPP, the domain is modified to model the acquisition of
sufficient amounts of bulk materials (e.g. coal), allowing for Gaussian
uncertainty in the amounts purchased. Additionally, drive actions risk
a flat tyre that can be repaired indefinitely.

e In AUV, the activities of an underwater vehicle must be planned with a
strict bound on total time taken, and with Gaussian activity durations.
Some actions have outcomes that require an additional step to complete
the activity.

A full listing of the three domains used in this evaluation can be found
in Appendix B.

All tests were performed on 3.5GHz Core i5 machines with a limit of
4GB of memory and 1000s of CPU time. The confidence level for numeric
conditions was set as # = 0.9. A range of other values were also considered;
but the conclusions of this evaluation were the same for all cases.

4.6.1 Overall Performance

Summary scatterplots of the results of these experiments are shown in Figure
4.3, comparing the time taken by our approach versus the baseline when
solving the evaluation problems in these domains.

Domain (a): The results in Rovers are the most striking. Our approach
is over an order of magnitude faster in most problems, and many previously
unsolved problems (shown at y = 1000) are now solved. Looking at the
runtime behaviour, the baseline planner makes many more calls to the plan-
ning kernel to find weak plans. This can be explained with reference to the
battery charge (energy) levels stored in states:

e In the baseline version, the bounds on energy in partial states are taken
from the states in the weak plan. If energy = 40 in some state S, this
applies to the corresponding partial state ps too. Thus, in any other
state S’; if energy # 40, then S’ ¥ ps (even if S” has more energy, which
is intuitively preferable).

e With our approach to numeric regression, the partial state ps would
instead contain a Numeric Constraint Tuple ({(1,energy)}, c,
{(1,0%(energy), rv)}, av) that records what minimum amount of en-
ergy c is needed, and what variance needs to be accounted for due to

65

1000 %2206 IO MEMN—— IO XX

X X
X
100 X &
o %
[}
XXX X
£ *
s 10F X 3
£ X
I3 -
@ x X
1 X E
X
X
0.1 k= L L L
0.1 1 10 100 1000
Our Approach: Time (s)
(a) Rovers
1000 T
-~
100 F e * g
_ +
D .
_g ¥
IS
s 10F . _} E
5 +
[}
3 T
o
i R
4k 4
+
01 - Lo 1 1
0.1 1 10 100 1000
Our Approach: Time (s)
(b) Flat Tyre TPP
1000
100 £ S E
O
2 0 " " ee
(o} Q 5
£ '
= (o}
.. 10 ,
g ° °
2 00
& . o .7
1 ks E
o] .
o
0100 L]]
0.1 1 10 100 1000
Our Approach: Time (s)
(c) AUV

Figure 4.3: Time taken to solve problems in the three evaluation domains,
comparing our approach (X axis) to a baseline in which only propositional
regression and propositional dead end generalisation are used (Y axis).
Axes are log scaled. Tests that timed out are plotted at t = 1000.

66

later plan steps. Another otherwise identical state S’ could then match
ps if it had more energy than S; or less energy, but sufficient according
to this NCT.

Domain (b): In Flat Tyre TPP, the improvements observed are solely
due to numeric regression. Because tyres can always be repaired as many
times as needed, and because more goods can always be purchased, the goals
can always be reached. Nonetheless, this all needs to be planned for, and
numeric regression again pays off in reducing the time spent searching for
weak plans.

Domain (c): In AUV, the results are more intriguing than the scat-
terplot suggests. Clearly our techniques are beneficial overall, which is a
pleasing result, but the improvement is less striking than in the other two
domains. It turns out that many of the dead ends found contain no literals
— they are typically the form:

(time-remaining < k) A (unsatisfied-goals > 1)

This is true both in the baseline and in our approach: propositional dead
end generalisation is able to eliminate all the literals from most of the dead
ends found. This matters as, when building (forbidden state, action) pairs
from dead ends, the dead ends are regressed through every action that could
possibly lead to them. Thus, as every action reduces the amount of time
remaining, every dead end is regressed through every action in the problem,
which has a non-trivial computational cost. As such, whilst our techniques
are indeed reducing the amount of time spent searching for weak plans, this
has a proportionally smaller impact on overall runtime, as plotted on the
graph.

4.6.2 Numeric Dead End Generalisation

To ascertain the impact of numeric dead end generalisation, we ran a sensi-
tivity analysis in Rovers and AUV?3, in which this feature was disabled and
only propositional dead end generalisation was used. The results of this is
shown in Figure 4.4, looking at time taken to solve problems (top) and how
many (forbidden state, action) pairs were built (bottom). For dead ends
that are more general, one can expect to see fewer (forbidden state, action)

3Flat Tyre TPP has no dead ends — flat tyres can be repaired indefinitely.

67

pairs: making a dead end more general allows it to substitute a number of
less general dead ends. In turn, this leads to improved performance as dead
ends arise from expanding states during search, and hence take time to find.

In terms of time taken, there is a clear benefit to using numeric dead end
generalisation in Rovers. As in the earlier tests, there are a number of prob-
lems at y = 1000 that would otherwise be unsolvable. This is attributable to
the reduction in the number of FSAPs needed — over an order of magnitude
fewer in most cases. Though less dramatic, the same situation arises in AUV
as well. A consistent reduction in the number of FSAPs needed leads to a
consistent reduction in the time taken to solve problems.

4.6.3 Tolerating a Risk of Failure

As discussed in Section 4.5, in domains with numeric uncertainty, it is easy to
encounter a problem model where no strong cyclic plan can be found. There
might always be a small risk of failure, due to a bad outcome repeatedly
occurring, and its consequences accumulating numerically within the state.
To evaluate our proposed adaptation of the planner to such domains, we
modified the three benchmarks used:

e In Rovers, navigate has a low-probability outcome that uses energy
but does not move the rover. This prevents strong cyclic plans from
being found if the rover ever needs to leave a location at which it cannot
recharge — there is a small but unlikely risk that repeated attempts to
move will fail, using all available power.

e In Flat Tyre TPP, there are a finite number of spare tyres available.
Once these have been exhausted, the truck can no longer move.

e In AUV, when turning a valve, there is a small chance the valve will
get stuck and must be repaired. It is impossible then to find a strong
cyclic plan that relies on turning a valve, as there is a small but non-
zero risk that it will repeatedly get stuck, and the available time will
be exhausted.

As a baseline, again, we disable our core contributions — numeric regres-
sion and numeric dead end generalisation — and use only the propositional
variants. However, since it is not possible to find a strong cyclic plan in these
domains, the baseline still accounts for probabilities. When solving problems

68

1000 . R ORI Ry
)e(% .]
@
g 100 ¢ X . 3
PR X% oo ;
uj X o
a
o 10F XX oo .
g oxX R
E I Txx¥x0 @
= X X
2ok xS X .
= L % xo ©
L :g Rovers X
0.1 1 10 100 1000
With Numeric D.E.G: Time (s)
(a) Time taken
100000 | . r—————— —
[* x)g(: 0.
o - X X Qo
< 10000 | % X % *. %% e 3
% I % - >
o ! X -1
3 3
;1000 [X 00 E
[0}
g 100 | E
z
=]
o) Lo
S 10 7
= []
Rovers X
[AUV O
1 M M " | " " | " " 2l L L L
1 10 100 1000 10000 100000

With Numeric D.E.G: #FSAPs

(b) Number of (Forbidden State, Action) Pairs

Figure 4.4: Performance with/without numeric dead end generalisation.

69

from these three domains, the threshold 7 (Section 4.5) is set to 0.01, and 6
remains at 0.9 (as before, different values of 7 or 6 lead to the same overall
empirical conclusions). Scatterplots of the time taken to find a policy that
will reach the goal with this threshold are shown in Figure 4.5.

Domain (a): In Rovers, the use of numeric regression and dead end gen-
eralisation leads to a staggering improvement in performance. The baseline
is able to solve just 5 problems, whereas 50 can be solved with our approach
(there are 45 points on the scatterplot along the line y = 1000). This echoes
the situation in the Rovers domain without probabilities (Figure 4.3), but
the difference is even more noticeable now. The domain model here is more
challenging, and leads to many more calls to the planning kernel being made:

e In the model without probabilities, navigate would always move the
rover to its intended destination — the worst outcome has a high energy
cost, but if it occurs, navigate will still have made progress towards
solving the problem. When building the policy and planning for this
outcome, it is only necessary to run the planning kernel if there is not
enough energy to carry on with what otherwise would have been the
rest of the plan (according to the NCTs in the partial states in the

policy).

e In the model with probabilities, though, one outcome of navigate is
that the rover does not move at all — it just uses power, which makes
no progress towards solving the problem. This is a far worse situa-
tion to have to plan for. Consider a state S, where S F ps for some
(ps,navigate) in the policy. If the ‘failure’ outcome of navigate oc-
curs, one of three things happens. First, in the best case, a state S’ is
reached where S’ F ps, as there is still enough energy remaining, hence
navigate is tried again. Second, the planning kernel is invoked and
finds an alternative weak plan to the goals. Third, in the worst case,
the planning kernel is invoked and, after extensive search, concludes
that S’ is a dead end. This third case results in a substantial increase
in the amount of time spent planning, compared to the previous model.

Domain (b): In Flat Tyre TPP, our techniques reduce the time taken to
solve problems by over an order of magnitude in all but the smallest evalua-
tion problem. Mirroring what we saw in Rovers, this is a larger improvement
than in the domain model without probabilities, since limiting the number

70

1000 v e e oy
X
100 £ g
z
(0]
£
s
~ ok |
£ X
x.
o 'x,
e |
X .
0.1 ! ! !
0.1 1 10 100 1000
Our Approach: Time (s)
(a) Rovers with Probabilities
1000 — +
+
++
100 F g
_ o4
@
P +
£ +
S 10k N E
<
§ + .
& +
1k |
+
01 - Lo 1 1
0.1 1 10 100 1000

Our Approach: Time (s)

(b) Flat Tyre TPP with Probabilities

1000

o]
[o]

o
S
T

%0

Baseline: Time (s)
>
T
o]

e
o]

- ©
01 Lo © L ‘ .
0.1 1 10 100 1000
Our Approach: Time (s)

(¢) AUV with Probabilities

Figure 4.5: Time taken to solve problems in the three evaluation domains
with probabilistic outcomes, comparing our approach (X axis) to a baseline
in which only propositional regression and propositional dead end
generalisation are used (Y axis). Axes are log scaled. Tests that timed out
are plotted at ¢ = 1000.

71

of tyre repairs makes the problem fundamentally harder. The extent of the
improvement is that, when using our techniques, there are 4 problems that
were not otherwise solvable by the baseline (plotted at y = 1000).

Domain (c): In AUV, as with the domain model without probabilities,
the planner spends a lot of time generating (forbidden state, action) pairs in
either configuration, masking the reduction in time spent searching for weak
plans. Nonetheless, there is still a consistent reduction in overall time taken
to find a policy by around a factor of 3 (excluding noise due to problems
solved in less than a second). This is a pleasing result — even in domains
such as this that are especially troublesome with respect to the underlying
policy building approach, we offer a useful reduction in time taken, allowing
the approach to be considered for application to a broader range of domains.

4.7 Conclusion

In this chapter we presented an effective planner for problems with both
propositional and numeric uncertainty, where actions have multiple outcomes
and numeric effects are drawn from Gaussian distributions. We introduced a
partial state representation that captures only relevant numeric information,
allowing us to build upon prior work and define the following key concepts
of effective policy building:

e Numeric regression, which limits the total number of partial states
contained by the policy.

e Numeric dead end generalisation, which allows a newly discovered dead
end to expand into a range of similar dead ends.

We evaluated our contributions by comparing a version of our planner
with the new features enabled against a baseline version with them disabled.
Empirical results showed a significant reduction in the time needed to build
a policy, both when we require a strong cyclic plan, and when we accept a
risk of failure.

Our work so far has focused on numeric uncertainty drawn from Gaussian
probability distributions. In terms of the breadth and generality of domains
our planner can tackle, one could argue it suffices to stop here and approx-
imate all uncertainty as a combination of Gaussians. However, we believe

72

it worth investigating whether or not it is feasible to represent and use ar-
bitrary probability distributions in the planning process. We explore this in
the following chapters.

73

Chapter 5

Guiding Search Under
Arbitrary Uncertainty

In this chapter we focus once again on numeric uncertainty in forwards plan-
ning, as we did in Chapter 3. In particular, we focus on the representation
of non-deterministic numeric effects as probability distributions. In Chapter
3, we approximated all uncertain values as Gaussian distributions, but this
is not always accurate. In this chapter we explore a novel way to represent
numeric uncertainty more generally. Our approach allows us to sample non-
deterministic action effects from any probability distribution. We integrate
our approach into an existing forwards planning setting, and use it to improve
how well the states expanded by search reflect reality.

The contents of this chapter have been published in the Proceedings
of the Workshop on Heuristic Search for Domain-Independent Planning at
the Twenty-Eighth International Conference on Automated Planning and
Scheduling (Marinescu & Coles, 2018).

5.1 Introduction

As we have already discussed earlier in this thesis, there is no question that
solution accuracy benefits from taking uncertainty into account. While it
is possible to ignore uncertainty and assume all non-deterministic numeric
effects take the median value every time, this simplification can have seri-
ous consequences for plan success. The situation improves with a Gaussian
approximation, as we have investigated in the previous two chapters.

74

However, there are domains for which a purely Gaussian approximation
would not be adequate — domains where probability distributions are skewed
to either side of the median line, or exhibit modes (distinct areas on the
graph) that are not easily distinguishable when modelling the problem. For
instance, if a wheel gets unexpectedly stuck in an obstacle, the battery usage
sees large upward spikes and the navigate effect no longer falls in a normal
distribution. For this reason, we believe it is important for the planner to be
aware of the probability distribution this uncertainty is drawn from, whatever
shape it has. We now propose a representation to address this problem.

The goal of the work presented in this chapter is not to improve the speed
of the planner, or the amount of nodes expanded by search. Instead the goal
is to allow the planner to accurately represent (and still manage to solve) a
much broader range of problems than it was previously able to.

5.2 Background

We revisit some of the concepts introduced in Chapter 3, but we now assume
arbitrary rather than Gaussian probability distributions for uncertain effects.

Prior work on the planner RTU (Beaudry et al., 2010b) uses a Bayesian
network (BN) to model resources and time based on continuous random
variables. This planner queries the BN to check the likelihood of a variable
remaining in a valid state. We base our planning kernel on this approach, as
detailed further below.

The core non-deterministic planning formalism we use in this chapter
is the same as the one we defined in Chapter 3, based on Beaudry et al..
Because there is uncertainty on numeric variables (due to the distributions D
in Eff™™), it is not possible to be absolutely certain that numeric conditions
are satisfied. To tackle this, Beaudry et al. use the BN to model uncertainty,
and to check that numeric conditions are satisfied with confidence level 6.
When each action has only a single outcome, the task of planning is to
find a sequence of steps [ao, .., a,] that give a state trajectory to the goal
11, S, .., Sn], with the BN ensuring that each action’s preconditions are true
with confidence 6.

The confidence level 6 is given as input to the planner from the beginning,
as it constitutes a part of the world model. It essentially represents a “cutoft”
certainty level necessary to consider a precondition met. For instance, if the
uncertain variables from the precondition are sampled from their probability

75

distributions 1000 times, and 6 is set to 0.85, then the precondition is consid-
ered to hold if the inequality is true 850 times. In our planner, it is possible
to prescribe different values of 6 for different actions — this is useful in the
case of specific actions which may have negative consequences if attempted
without fully met preconditions.

The prior work by Beaudry et al. is adapted by Coles to assume, for
heuristic purposes, that variables take their median value (Coles, 2012).
Coles proposes a method to first generate plans that are conservative about
resource usage, and then to create branches that can exploit cases when re-
source usage is less than pessimistically expected. This method of branching
inspired part of our work as well.

Building on top of Coles’ approach, in addition to employing the median
when computing the heuristic, we introduce the concept of “offset” in Chap-
ter 3. This is a safety margin with which preconditions must be met 0% of
the time. It is calculated as the difference between the median and the 6’th
percentile of a distribution.

Using the offset, we evaluate whether numeric preconditions are true for
a threshold of certainty 6 as above, and we define a heuristic which is admis-
sible for monotonically worsening uncertainty. In the case where an effect
influences the uncertainty non-monotonically (e.g. assigns it a value rather
than increases it by a value), then in the heuristic the offset is reset back to
Zero.

The techniques we introduce in Chapter 3 were predicated on the uncer-
tainty having a Gaussian shape, thus allowing us to use its analytic form in
our calculations. They can however be applied in the case of arbitrary un-
certainty as well. As an analytic form is no longer available, in this chapter
we propose a sampling-based approach to uncertainty, which still allows us
to check if preconditions are true with @ certainty and preserves the improve-
ments brought about by our novel heuristic.

By “sampling-based” approach we are referring to an approach which is
given information about the world model in the form of probability distribu-
tions which can be repeatedly sampled during planning. These probability
distributions are created together with the domain file, as they constitute
part of the world model. They are provided to the planner as input. Plan-
ning happens entirely offline - there are no calls to the planner made during
plan execution. Further in this chapter we explain how sampling is done
from any relevant probability distributions during the search for a potential
plan, via a belief network.

76

move acti move action

l/l\i {
®©@ ©@ O

)

Figure 5.1: Multiple outcomes (left, Chapter 4) vs single outcome (right,
Chapter 5).

5.3 Approach

Our goal is to introduce a general representation of uncertain numeric effects
in non-deterministic planning. We aim to allow effects to be sampled from
any probability distributions (not just ones with analytic representations like
Gaussians), without incurring a high computational cost. Our representa-
tion should allow the planner to find strong plans which meet a required
precondition certainty threshold.

5.3.1 Motivating Comparison

Before we present our approach, we would like to draw attention to a com-
peting piece of prior work — that in Chapter 4. There, we use a domain model
where actions have multiple uncertain numeric effects, each of them drawn
from a Gaussian distribution. For example, the navigate action has three
different outcomes hard-coded in the PDDL domain file. One lucky mode
(using less energy than nominally), one nominal mode, and one unlucky mode
(using more energy than nominally).

Since it is not unreasonable to approximate an arbitrary probability dis-
tribution to a combination of Gaussians, this prior work can arguably be
used instead of the more general and possibly more computationally expen-
sive approach we propose in this chapter. However, there is a problem with
these hard-coded multiple outcomes — they need to be specified in the world
model. This may be impractical, as it forces the model designer to make

77

guesses about an uncertain environment, beyond just using the data they
have available.

Hence, we strongly believe it is worth investigating an alternative imple-
mentation that only uses one outcome and offers only the known information
about that outcome in a single, complex probability distribution. This im-
plementation should not require giving the planner any clues about whether
discrete outcome modes exist, or how they are shaped.

Figure 5.1 shows these two competing approaches side by side:

e (a) An action with three outcomes, each drawn from a Gaussian distri-
bution. These outcomes, together with their Gaussian parameters, are
hard-coded in the PDDL domain file. Depending on how the physical
environment behaves, these Gaussians may not be a highly accurate
representation of reality.

e (b) An action with one outcome, drawn from an arbitrarily-shaped
distribution provided in a separate data file. This distribution could
be improved with additional data at a later time. Due to the lack of
constraints on its shape, this distribution has the potential to more
accurately represent reality.

5.3.2 The Bayesian Plan Network

Our goal in this chapter - similarly to our goal in Chapter 3 - is to search for
a strong plan with preconditions that hold 8% of the time, in the presence
of numeric uncertainty. In order to check precondition satisfaction, we need
a way to track uncertain variables in any state (this time without assuming
uncertainty is Gaussian).

To help us represent an arbitrary probability distribution from which a
numeric variable is drawn in any given state, we introduce the concept of a
Bayesian Plan Network (BPN). This is a sampling-based representation of
uncertainty at any point in the reachable search space, based on the accu-
mulated uncertainty in past states. Its purpose is to check whether an action
precondition holds, given the uncertainty at the time of action application.

The BPN is essentially a belief network - a directed acyclic graph where
each node is a random variable, and each edge is a dependency between two
random variables. Such a belief network can be used to answer probabilistic
questions about the random variables it contains. We build this network

78

sequentially from a given plan, by applying numeric action effects one by
one. The following sections show a step-by-step example of how a BPN for a
given plan is built (culminating in Figure 5.7) and how it is then queried in
order to answer the question “is this precondition satisfied with more than
X% probability, given the uncertainty in the plan so far?”.

The result of querying the BPN is used to better inform state expansion
about the uncertain environmental conditions. When querying the BPN, we
input the cutoff value 6 mentioned in earlier sections. Throughout the follow-
ing, we use the value 6 = 0.9 to illustrate our approach (i.e. a precondition
needs to hold in 90% of sampled instances to be considered true). This fixed
value is for demonstration purposes only; the concepts we introduce work the
same way regardless of the value of 6.

To briefly summarise our approach before working through an example
below - we’re achieving the same goal we did in Chapter 3, but we aren’t
using the concept of “offset” anymore. Instead we are checking preconditions
in their original form (v > ¢) via multiple sample runs of the BPN, to see
whether they are true 6% of the time. We do this both when expanding
states during search, and when building the RPG for heuristic computation.

5.3.3 Building a Bayesian Plan Network

The BPN is a directed graph constructed from a plan, where each node
represents either a probability distribution D or a variable v.

Distribution nodes can be described as “source” nodes — they have no
parent nodes, as their value does not depend on other variables in the plan.
They are akin to buckets of samples (which can be described analytically,
like the shape of a Gamma distribution, or empirically, like a collection of
sensor measurements). Distribution nodes are represented as blue rectangles
in Figures 5.2-5.7.

Variable nodes are essentially “addition” nodes. They have at least one
parent node (which can be a distribution, or another variable). If a variable
node is queried to obtain a sample of its value, it will in turn query its parents
— this operation recursively samples all nodes in the BPN once. Distribution
nodes are represented as grey ovals in Figures 5.2-5.7.

A BPN corresponding to a given plan contains nodes for all variables
affected by the numeric effects of the actions in that plan. The BPN also
contains nodes for all probability distributions corresponding to these actions.
If an numeric action effect is not uncertain, its distribution is “degenerate”,

79

i.e. consists of only one constant value. This is the case for the effect of
the drill action on the data variable in the example PDDL shown further
below.

The edges in the BPN graph can be weighted — coefficients from action
effects can be used to reflect how a variable is a weighted sum of previous
variables. However, because the example actions below all have coefficients
of 1 (e.g. energy = 1 x previous_energy — 50), they have been omitted from
all example figures for simplicity.

The steps for building a BPN are the following:

1. Input a problem description and a potential plan found by the planning
kernel (using only median values for all uncertain effects).

2. For each variable that is set in the initial state, create one variable node
and one distribution node. Each distribution node is the parent of its
corresponding variable node, and represents a degenerate distribution
(a distribution that only contains one sample: the value set by the
initial state). Figure 5.2 shows an example of this.

3. For each action in the plan, loop through its effects.

(a) For each effect, create one new variable node for the affected vari-
able. Then create parent links between the new node and all
variable nodes whose values are used by that effect (with their
respective weights assigned to the parent link, if any).

(b) If the effect above is non-deterministic, then create one new distri-
bution node containing the samples corresponding to that effect.

(c) If the effect above uses a constant, then create one new distribution
node containing a degenerate distribution (a distribution that only
contains one sample: the constant itself).

Consider the following plan in an illustrative Rovers-like domain: [navigate,
navigate, transmit, navigate, drill|. The action definitions are:

(:action navigate
:parameters (?r - rover 7wl - waypoint ?w2 - waypoint)
:precondition (and (at 7r 7wl)
(>= (energy 7r) 10))

80

reffect (and (not (at 7r 7wl))
(at 7r 7w2)
(decrease (energy ?7r) 10))) ; with uncertainty

(raction drill
:parameters (7r - rover ?w - waypoint)
:precondition (and (at ?7r 7w)
(not (drilled ?w))
(>= (energy ?r) 50))
reffect (and (drilled 7w)
(increase (data 7r) 1)
(decrease (energy ?r) 50))) ; with uncertainty

(raction transmit
:parameters (?r - rover)
:precondition (>= (data 7r) 1)
reffect (decrease (data 7r) 1))

The navigate action and the drill action each have a non-deterministic
decrease effect on the energy variable. We denote the probability distribu-
tions governing the range of these effects as Dyavigateenergy @A Dariti_energy-
During the BPN building process, when adding such an uncertain action ef-
fect, we first create a node for the new value of energy (the value it will have
after the effect is applied). We then add two parent links: one to the prior
node for energy (which already exists in the BPN), and one to the distribu-
tion node for e.g. Dgpiig_energy (Which we create immediately before adding
the parent link). These links denote that the distribution of the new value
of energy is the sum of its parents.

Figures 5.2-5.6 show snapshots from the BPN building process for the
example plan & action definitions above, with the final BPN appearing in
Figure 5.7.

81

Vv energy 0 V data 0

Figure 5.2: BPN in state SO.

@ Vv energy 0 V data 0

navigate ’ - M navigate_energy ‘

@ V energy 1

Figure 5.3: BPN in state S1, after applying the navigate action.
(Corresponding plan shown on the left-hand side.)

100

I :

S0 Vv energy 0 V data 0

navigate ’ - M navigate_energy ‘

@e rgy 1

navigate ’ - MDnavigate_energy ‘

%

Hre]
2

V energy 2

()

Figure 5.4: BPN in state S2, after applying the navigate action.
(Corresponding plan shown on the left-hand side.)

82

S0 Vv energy 0 V data 0
@@ - M navigate_energy
B G
navigazl - D navigate_energy

'

GD Vv energy 2

,_,
=
o
S
]
3
ES

@ V data 1

Figure 5.5: BPN in state S3, after applying the transmit action.
(Corresponding plan shown on the left-hand side.)

83

S0 V energy 0 V datao

gate ’ - M navigate_energy ‘

Vv energy 1

%

N

gate ’ - M navigate_energy ‘

9 V energy 2

smit

%

V data 1

N

gate ’ - MDnavigate_energy ‘

()

Vv energy 3

Figure 5.6: BPN in state S4, after applying the navigate action.
(Corresponding plan shown on the left-hand side.)

\Z/

smit

\/

N e N I]

_(

@

100

Vv energy 0

’ - (Dnavigate_energy ‘

%

V energy 1

’ - (Dnavigate_energy ‘

Vv energy 2

k&

-D navigate_energy

V energy 3

k&

’ - M drill_energy ‘

Vv energy 4

y

V data0

V data 1

"

A

I

V data 2

Figure 5.7: Final BPN in state S5, after applying the drill action.
(Corresponding plan shown on the left-hand side.)

5.3.4 Sampling a Bayesian Plan Network

As mentioned earlier in this chapter, the BPN is used to check if precondi-
tions hold as we expand our Chapter 3 strong plan technique from Gaussian
distributions to arbitrary distributions. These precondition checks are done
both during search and during RPG building for heuristic computation. Each
time we do a precondition check, we input into the BPN a plan so far (from
the initial state up until the state in which we are checking the precondi-
tion validity), and we receive a boolean output. Internally, this output is
computed via a number of sampling operations.

The process of sampling a BPN involves going through all preconditions
in the inputted plan, identifying the relevant variable nodes for each pre-
condition, querying those variable nodes N times, and reporting how many
times the queried values resulted in the preconditions holding. If the amount
exceeds the required fraction € (e.g. the preconditions in the inputted plan
held more than 85% of the time for § = 0.85), then the BPN reports success.

Each time a variable node is queried, it recursively queries its parent
nodes. Each time a distribution node is queried, it returns a randomly sam-
pled value from its probability distribution.

The probability distributions in our BPN can be arbitrarily shaped. For
convenient implementation purposes, we split them into three categories:

e Distributions with an analytical form (e.g. Gamma, Gaussian, any
polynomials, etc.);

e Data-based distributions (i.e. collections of samples);

e Multi-modal distributions (i.e. any weighted combination of the distri-
butions above).

Below we include a listing of two example distribution specifications -
one parametrised Gamma distribution, and one data-based distribution. The
parameters of the Gamma distribution represent:

e zero: The “origin” point of the Gamma distribution on the X axis.

e from, to: The “window” surrounding the Gamma distribution on the
X axis.

e alpha, beta: Theshape parameter and rate parameter of the Gamma
distribution.

86

"action-name:effect-name":
{
l|type n : |lgammall s
"from": 5,
"to": 11,
"zero": 10,
"parameters":
{
"alpha": 2,
"beta": 2
}
}

"action-name:effect-name":

{

Iltype n : Ildatall
"parameters":
"file": 'navigate-energy-historical-samples.txt",

}
}

These distribution specifications are stored in a separate file that accom-
panies the domain file and has a custom JSON syntax. Further listings can
be found in Appendix C.

5.3.5 Practical Considerations

To recap, the required elements for using the BPN technique are the follow-
ing:

1. A domain file (provided by the user);

2. A separate JSON file describing the probability distributions for each
uncertain action effect (provided by the user);

3. A required certainty value 6 (provided by the user);

87

4. A sequence of actions (plan so far) whose preconditions need to be
checked for validity with certainty 6. This sequence is not provided by
the user but rather generated during forward-search planning. There
is no need to handcraft plans in order to use a BPN.

In addition to the standard domain modelling done for any planning prob-
lem, inputs 2 and 3 will need to be handcrafted as part of the world model,
in advance of planning. As mentioned in Section 5.2, our planner allows the
possibility of requiring different certainty values for different actions - we
might, for instance, want the navigate action preconditions to hold 90% of
the time, and the drill action preconditions to hold 99% of the time, as the
consequences of attempting to drill without fully met preconditions might be
detrimental to rover integrity.

As far as the inputted probability distributions go, the BPN technique is
best suited for situations when we already have some data at our disposal
about the uncertain action effects in our domain. From the point of view
of domain design, being forced to extrapolate or make assumptions about
the world model is almost certainly detrimental to plan quality. If we have
accurate uncertainty data, perhaps collected from past experiments in the
target environment, or perhaps resulting from some orthogonal investigation
(e.g. materials analysis), it would be beneficial to make use of that data fully,
rather than abstract it away into a Gaussian.

5.3.6 Representing a Bayesian Plan Network Efficiently

An obvious question to pre-empt would be — won’t we sacrifice computational
time in order to accommodate sampling a sufficient number of times during
the planning process?

The graphical representation of the BPN described in the previous section
is useful to aid understanding of how the network functions. However, the
sequential computations that stem from this representation can slow down
our approach and make it less competitive with prior work.

We thus propose a matrix representation in order to efficiently compute
the answer to the central question in the sections above (“is each precondi-
tion in a given plan satisfied with certainty 67”). Our method allows each
sample run (populating all nodes in the BPN with 1 sample each) to happen
concurrently rather than sequentially, significantly reducing the time taken
to compute the final answer.

88

The structure of the matrix stems from the topological order traversal of
the BPN. Each row represents a node, and each column represents a sample
run. For each distribution node we have a value of 1 in the column that
corresponds to a sample from that distribution, and a value of 0 everywhere
else. For each variable node we have non-zero values in the columns that
define that node’s value in relation to the edges coming into it.

Then, to check if that BPN’s corresponding plan is satisfied with cer-
tainty ¢, we multiply the above matrix representation with a second matrix
containing all the sampled initial values for all uncertain variables. Finally,
we use the result to count the number of sample runs in which all the pre-
conditions were satisfied, and to check if that number is above the threshold
0 x total_number_of_sample_runs.

5.4 Evaluation

The aim of our evaluation is to find out whether it is computationally feasible
to represent uncertainty generally, rather than represent it as an approxima-
tion. We compare the multiple-outcome Gaussian approach from Chapter 4
with the single-outcome arbitrary approach from this chapter.

The techniques introduced in this chapter are implemented on top of
the Optic+ expansion described in Chapter 3 (finding strong plans under
numeric uncertainty).

Our conditions for a successful evaluation are not tied to an improvement
in certain metrics, but rather to whether or not the same problems solved by
the Chapter 4 approach are still solvable with our current approach, within
reasonable bounds (i.e. the metrics have the same order of magnitude). As
before, we measure 1) time elapsed and 2) number of nodes expanded in
order to arrive at a solution, on a set of 20 problems.

To support the goal of showing that our approach is computationally
feasible, we choose a domain where numeric uncertainty can reasonably be
represented as several Gaussians, but would also benefit from a more fine-
grained representation in case our approach does prove feasible. The Rovers
domain (Coles, 2012) fits these requirements: the navigate action exhibits
uncertainty due to different factors that are difficult to model: wheel slippage,
soil characteristics, incomplete obstacle data. While a collection of Gaussians
would be adequate to model these factors, we believe that, if more accurate
data on uncertainty is available (e.g. sampled battery data from past runs

89

T T ‘;
*
10° 1
*
.

*

z =

Y o

E E

F F

£ z

g g

3]

e e

5 5

=4 ® =

i ¢ <

3 3
L]

L2 L]
L]
*
10°
10° 10" 10° 10° 10" 10°
Baseline: Time (s) Baseline: Time ()

(a) navigate action has 2 modes (b) navigate action has 3 modes

(4 -
[] 1'
*
10° 1 10° | 1
L] L]
2 L] 2 L]
g . g .
= =
z z
5 5
3 2
4 4
5 5
2,0t £t
Tw'f 1 <t 1
5 H
<] 4 S 1}
b H . 1
* .
b * hd L3
L] L]
s
10° . . 100 . .
10° 10" 10% 10° 10 10°
Baseline: Time (s) Baseline: Time (s)

(c) navigate action has 4 modes (d) navigate action has 5 modes

Figure 5.8: Time taken to find strong cyclic policies (X axis) versus strong
plans (Y axis). Axes are logarithmic.

90

of the rover), the planner should make use of it.

We run our experiments on a system with a 1.8GHz Intel Core i7 and
16GB of RAM, with execution limited at 300 seconds (5 minutes) and 1 GB
of RAM.

Information about uncertainty is conveyed differently to each planner.
For the baseline (Chapter 4) planner, the PDDL domain file contains the pa-
rameters of the Gaussian distributions associated with each non-deterministic
effect. For the current (Chapter 5) planner, an additional data file contains a
set of samples taken in a preprocessing phase. While our approach supports
sampling this set out of any probability distribution, in this case it is taken
out of several Gaussian distributions, in order to match the baseline setup.
A listing of the files used for each approach is shown in Appendix C.

Figure 5.8 shows the time taken by:

e X axis: The baseline approach — finding a strong cyclic policy while
having multiple outcomes for the navigate action, each represented as
a Gaussian distribution.

e Y axis: The current approach — finding a strong plan while having a
single outcome for the navigate action, represented as an arbitrary
probability distribution with multiple modes.

The most striking result is the amount of problems on the far right-hand
side of each graph — these were not solved by the policy approach within the
given time limit, however were solved by the strong plan approach. We will
come back to this result after describing what is different in each of the 4
graphs.

5.4.1 Variants

We chose to evaluate both approaches on several variants of the Rovers
domain, each variant with a different number of outcome modes for the
navigate action. The reason for introducing these variants was to check
whether or not an increased policy branching factor would have a negative
impact on the time taken by the baseline approach. We made an early guess
that, since policies might get larger with a higher number of outcomes, while
strong plans would still only draw samples from one outcome, the latter
would be faster.

91

The 4 evaluation graphs show the results obtained on each of these vari-
ants, as follows:

e 2 outcomes/modes - unlucky (16 energy, 16 variance), nominal (10
energy, 10 variance).

e 3 outcomes/modes - Same as above, plus lucky (8 energy, 8 variance).

e 4 outcomes/modes - Same as above, plus luckier (7 energy, 7 vari-
ance).

e 5 outcomes/modes - Same as above, plus luckiest (6 energy, 6 vari-
ance).

With the baseline approach, each variant is represented in a different do-
main file containing a different number of outcomes for the navigate action.
Each outcome indicates its parameters (median and variance) directly in the
PDDL file.

With our current approach, the domain file is the same for all 4 variants,
but each one is linked to a different data file (associated with the navigate
action by name). A data file can contain either sample data, or a set of
parameters to one or more probability distributions. In the latter case, the
parameters will be used to generate sample data in a preprocessing phase
(before planning begins). In this evaluation, in order to keep the compari-
son fair, we populated the data files with a combination of Gaussians with
identical parameters to those in the baseline approach.

Our early guess about an increased policy branching factor having a neg-
ative impact on the baseline approach turned out to be incorrect. There is
only a marginal suggestion in the data that this might be the case. Out of
20 problems, this is how many were solved faster by our current approach
compared to the Chapter 4 approach:

e For 2 outcomes: 11 problems.
e For 3 outcomes: 10 problems.
e For 4 outcomes: 11 problems.
e For 5 outcomes: 12 problems.

The slight increase in the number of problems where the policy approach
is slower as the number of outcomes grows is not sufficient to indicate a trend.

92

5.4.2 Solved and Unsolved Problems

Both approaches suffer from possible challenges with regard to solving prob-
lems. The strong cyclic policy might take too long to build for particularly
large problems. The strong plan might take too long or be impossible to find
for problems where a single outcome does not model the behaviour of the
environment well enough.

The experimental results we obtained indicate than the former occurs
more frequently than the latter in the Rovers domain. A total of 38 out of 80
problems (with no clear trend with respect to the number of outcomes) were
solved by the strong plan approach, but not by the policy approach. Nearly
all of these were large problems with 4 or more rovers, which is consistent with
the potential bottleneck of strong cyclic policies mentioned in the previous
paragraph.

The data points above each bisector line (solved faster via policy than
via strong plan) tended to be small in size. This suggests that, on small
problems, Gaussians offer a good enough approximation of uncertainty and
allow policies to leverage the speed of the analytical Gaussian mathematics
used in Chapter 4. They still, however, have the drawback of being reliant
on explicit information on outcome modes from the user via PDDL.

5.5 Conclusion

In this chapter, we introduced a novel way to represent numeric uncertainty
at any point in the reachable search space. Our representation allows non-
deterministic numeric effects to be drawn from any probability distribution,
specified either in analytic form or as a collection of data samples. We
described an efficient way to implement this representation by using matrix
multiplication.

What we have essentially shown is the feasibility of going beyond Gaus-
sians in the pursuit of an accurate representation of the real world, without
incurring any significant computational costs.

On the one hand, if a Gaussian approximation of uncertainty is deemed
adequate for the problem at hand, and no additional information is available
to the planner, the approach in Chapter 4 is indeed effective.

On the other hand, representing arbitrary probability distributions re-
quires less effort in terms of domain modelling, does not rely on making

93

guesses or giving the planner clues about how the environment might react,
and is computationally feasible.

According to our research so far, if information about uncertain probabil-
ity distributions is available when designing the domain model, it is beneficial
for the planner to use this information in its entirety, rather than abstract
it into a Gaussian distribution, or into a single median. In this chapter we
presented an implementation that makes it tractable to do so, thus allowing
the planner to take advantage of all the available information.

94

Chapter 6

Building Policies Under
Arbitrary Uncertainty

In this chapter we address two limiting factors of our work so far. First,
policy building for non-deterministic domains (Chapter 4) is constrained to
outcomes drawn from Gaussian probability distributions. Second, strong
planning with effects drawn from arbitrary probability distributions (Chapter
5) cannot deal with problems that require splitting these effects into branches.

We propose what we consider to be the next logical step in pushing our
planner towards increasingly more general representations of uncertainty: an
extension of our prior policy building approach that allows each individual
action outcome to be arbitrarily distributed.

6.1 Introduction

Our prior work on policy building with non-deterministic numeric effects is
limited in scope when it comes to the types of probability distributions it can
accommodate. We acknowledge that data driven models of uncertainty are
more practical than the assumption that all processes are simply Gaussians.
However, the policy building approach we presented in Chapter 4 is only
applicable if all uncertain action outcomes are Gaussian.

In addition, the contribution to strong planning we described in Chapter
5 is unable to tackle branching on multiple action outcomes. It is not uncom-
mon for non-deterministic planning problems to require branching in order
to plan for different eventualities, and simply trying to find an unbranched

95

plan with certainty # may not be possible. Consider the following example,
where D is a probability distribution containing two similarly large clusters
of data, one around 25 battery consumption, and another around 75 battery
consumption:

(raction a
:precondition (and (>= battery 100)
(not (a-done)))
reffect (and (decrease battery D)
(a-done)))

(raction low-battery-procedure
:precondition (and (a-done)
(<= battery 50))
reffect (and (goal)))

(taction high-battery-procedure
:precondition (and (a-done)
(>= battery 51))
;effect (and (goal)))

Assuming that in the initial state the battery level is 100, action a will
consume an amount of battery dictated by the distribution D. Afterwards, the
planner must choose which one of the goal-achieving actions to apply. Due to
the nature of distribution D, it is unlikely that either action’s preconditions
will be satisfied with confidence 6, therefore the problem will not be solved
by our Chapter 5 approach. We have conducted a small-scale experiment on
the domain above and have observed that this is indeed the case.

Allowing the planner to branch on the outcome of action a would solve
this issue. Since the outcome is represented as an arbitrary distribution, it
stands to reason that any potential branches should also be represented as
arbitrary distributions. This preserves all of the known data instead of ap-
proximating it and discarding potentially useful information. As has been
the case throughout this thesis, we believe that, as long as it is computation-
ally feasible to do so, it is always beneficial to have more information about
uncertainty.

96

6.2 Background

Since our proposed approach is centred around policy building, we reiterate
below some of the policy-related formalisms already defined in Chapter 4.
We also revisit the Bayesian Plan Network structure from Chapter 5.

We are once again in a setting where actions can have multiple outcomes,
and each outcome has a set of associated effects. A solution to problems
containing such actions can be represented as a policy — a set of rules that
dictates what should be done in each state. For our policies, we assume states
are fully observable, i.e. we know which of the action outcomes occurred at
any point.

In the presence of multiple outcomes, a weak plan corresponds to a single
trajectory of actions that leads from the initial state to a goal state, assuming
it is possible to choose which action outcome occurs at each point (i.e. to be
optimistic). In the propositional case, weak plans can be found using a de-
terministic planner which is given as input the all outcomes determinisation.
This means that each action with preconditions Pre(a) and effects Eff (a) is
replaced by several actions, one for each o € Eff (a), whose preconditions are
Pre(a) and whose effects are just those corresponding to o.

In the case of propositional uncertainty, prior work (Muise et al., 2012)
(Muise et al., 2014) on the planner PRP builds a policy by making repeated
calls to a deterministic planning kernel that finds weak plans. They incre-
mentally build a policy to cover the outcomes that were not chosen, and
recurse. Their approach scales remarkably well due to the use of regres-
sion to keep only the relevant parts of a state, leading to a compact policy
representation.

Building on the work above, we extend the policy building process from
propositional to numeric uncertainty in Chapter 4. We achieve this by defin-
ing the process of regression through non-deterministic Gaussian distributed
numeric effects. This offers us the additional benefit of generalising numeric
dead ends in order to prune them more efficiently.

The process of regression takes as input a partial state ps. It then applies
an action ‘backwards’ to it, yielding a new partial state ps’ that has to be
satisfied prior to the action being applied — i.e. applying the action in ps’
returns us to ps.

To regress through the weak plan, we begin from the goals and go back-
wards, producing one (partial state, action) pair corresponding to each plan
step. These pairs (ps,a) are added to the policy one by one. If, while re-

97

gressing, a state S is reached that matches a pair already in the policy, then
all the outcomes of the corresponding action are applied. Otherwise, the
planning kernel is invoked again from S. This produces another weak plan,
either to the goals (G) or to some other partial state already in the policy
(G"), in which case the (ps, a) pairs from this new weak plan are also added
to the policy.

Policy building terminates when the open list is empty, hence J(ps,a)
such that S F ps for all states S reachable from the initial state via the
policy. Alternatively, if no strong cyclic plan exists, all actions that could
be applied in the initial state are forbidden, and planning terminates with
failure.

6.3 Approach

In this section we show how the policy building process described above
can be extended to incorporate a wider range of uncertain action effects.
Specifically, our novel representation of uncertainty allows regression to be
done through a sequence of actions with non-Gaussian effects.

We regard regression as having two distinct components:

1. The propositional elements of regression; these remain the same as in
prior work (Muise et al., 2012).

We leverage the prior work approach to propositional uncertainty for its
considerable speed when triaging possible matches to a given partial
state. This is important to ensure computational feasibility, as the
added computational effort of our contribution is largely concentrated
inside the procedure of checking the policy for existing partial state
matches.

2. The numeric elements of regression; these are the focus of the approach
in this chapter.

We show that it is computationally feasible to perform regression through
non-Gaussian effects, and we provide an efficient implementation to do
SO.

98

100 5

navigate -D navigate_energy

@ \" energy 1

Figure 6.1: Single-outcome BPN in state S1, after applying the navigate
action.

6.3.1 Revisiting the BPN

In Chapter 5 we introduced a representation of uncertainty that allows effects
to be drawn from an arbitrary probability distribution. We defined a directed
graph-like structure called a Bayesian Plan Network (BPN) to capture how
the accumulated uncertainty at any point in a plan depends on past action
effects.

Previously, we used this BPN during search and RPG expansion, in order
to check whether a potentially reachable state was indeed reachable with
certainty 6. To perform this check, we built a BPN from the actions which
led up to that state, then queried the BPN about the preconditions of those
actions. Internally, the BPN used repeated sampling to verify whether all
preconditions in the chain were true 6% of the time.

In this chapter, we use a BPN for a slightly different purpose, as we detail
in Section 6.3.3 and Section 6.3.4. The task of planning is to build a policy,
and the crucial step during which we need the BPN is when checking if a
state S matches a partial state ps that already exists in the policy.

6.3.2 Including Multiple Outcomes in the BPN

We briefly summarise the BPN construction steps laid out in Chapter 5 Sec-
tion 5.3.3. A BPN is made based on a sequence of actions (a plan), and it
contains nodes for all variables affected by those actions, and for all proba-
bility distributions corresponding to those actions. To build a BPN, we first

99

navigazl

@ Venergy1

Figure 6.2: Multi-outcome BPN in state S1, after applying the navigate
action.

create two nodes per value set in the initial state (one variable node and
one parent distribution node containing a constant). We then go through
the plan step by step, and for each action effect we create additional variable
nodes and distribution nodes, corresponding to each affected variable. Newly
created variable nodes are linked to existing variable nodes via directed edges
reflecting a sequential dependency (e.g. the value of energy in state 3 de-
pends on the value of energy in state 2). Once built, the purpose of the
BPN is to be recursively sampled starting from the leaf nodes, in order to
check whether all action preconditions in the plan are true for at least 8% of
the sampled values.

In addition to the BPN construction steps above, we introduce a new
step specific to domains with multiple action outcomes. Each time an action
with multiple outcomes is encountered during BPN construction, we first
create one variable node for each outcome (and its corresponding distribution
node). Afterwards we create an additional “mixed” node whose parents are
the nodes of each outcome. The parent links are either weighted equally with
1/N each (for N outcomes), or weighted based on probabilistic information
found in the domain. The newly created mixed node will now be treated as
the most up-to-date version of the variable it represents.

To visualise this additional step, contrast Figure 6.1 with Figure 6.2.
The single-outcome setting of Chapter 5 corresponds to the BPN snippet in
Figure 6.1. The multi-outcome representation of the same “plan” [navigate]
is shown in Figure 6.2.

100

@ Vv energy 0 V data0o

>
<.
o
[}
=4
o

o
© o
64
[aril - D drill_energy

@ V data 2

Figure 6.3: Final multi-outcome BPN in state S5, after applying the drill
action.

(2)

101

As a worked example corresponding to Figure 6.2: if the navigate action
has three outcomes (lucky, nominal, unlucky) that change energy differ-
ently, then we create three intermediary variable nodes for energy. Each
intermediary variable node is created together with its corresponding dis-
tribution node, as though only one of the action outcomes had occurred.
Afterwards we create an additional node for energy, and make parent links
from all three prior nodes to the current one. If the domain file contains
probabilistic outcome information (e.g. 0.25, 0.5, 0.25 respectively), then
these values appear as weights on the parent links. Otherwise, each of the
three parent links has a weight of 1/3.

The example plan in Chapter 5 ([navigate, navigate, transmit, navigate,
drill]) has its full multi-outcome BPN represented in Figure 6.3, with minor
index and weight simplifications in the interest of visibility.

6.3.3 Building a Policy with the BPN

So far we are able to build a BPN and recursively sample it to check whether
a potential plan (which can now include multi-outcome actions) is a valid
plan, given the uncertainty in the domain. We can take advantage of this
feature in the policy building process.

We briefly reiterate what the policy building process looks like, and draw
attention to the fact that we can no longer use a Gaussian-based offset when
checking the validity of preconditions in a potential plan, as we are now in
a setting where probability distributions can be arbitrarily shaped. We are
instead proposing to tackle this issue by using the BPN.

The steps for building a policy are as follows (we expand further on the
BPN usage in Section 6.3.4):

e Use the planning kernel to find an initial weak plan.

e Use the weak plan to build an initial BPN as described in Chapter 5.
If the BPN indicates the weak plan is valid, use the weak plan to seed
a policy.

e Start the recursive policy building algorithm described in Section 6.2.
Use the BPN when checking if a newly encountered state already has
a matching entry in the policy, or if it needs to invoke the planning
kernel again (this BPN check will be detailed in the next subsection).
This check happens on line 5 of Algorithm 4.

102

e Stop when all reachable states have a matching entry in the policy.

When we check if a new state S matches an existing policy entry ps on line
5, we concatenate the plan up to S with the plan from ps onwards indicated
by the policy entry. If this concatenation results in a valid plan according to
the BPN, then we have found a match.

To be able to do the check on line 5, we need to implement an extension
to the elements stored by the policy. Instead of the (partial state, action)
pairs described in Chapter 4, the policy is now augmented to contain (partial
state, list of actions) pairs. These lists of actions are obtained by storing the
weak plan steps from each partial state to the goal.

Algorithm 4: Building a Policy with the BPN
Data: Planning task, initial state I and goals G
Result: Policy P

1 add I to open list O;
2 while O not empty do
3 take state S from O;
4 // The BPN contribution: check if a (partial state, list of actions)
pair exists in P such that S matches it;
5 if I(ps, [ag, ..., a,]) € P such that S E ps then
6 L apply ag to S; add the resulting states in O;
7 else
find a weak plan from S to G;
9 if weak plan not found then
10 L reset P and mark S forbidden;
11 else
12 generate (ps, [ao, ..., a,]); add them to P;
13 apply weak_plan_ay to S; add the resulting states in O;

14 return P

6.3.4 Partial State Matching with the BPN

So far we presented the high-level steps of policy building when actions have
arbitrarily-distributed outcomes; one of these high-level steps makes use of a

103

BPN to check for state matches. In this section we give a detailed explanation
of what happens during this check.

To find out whether or not the policy already knows what to do in a new
state S, we first do the propositional triage. We look for all the partial states
in the policy which match the facts in our new state, and thus obtain a list
of possible candidate matches.

To then choose a candidate match from the list, we need to change how
we check if preconditions hold in the original policy building algorithm from
Chapter 4. We are no longer using a Gaussian-based offset - instead we are
checking the original form of the preconditions (v > ¢) multiple times, each
time plugging in the variable values obtained from one sample run of the
BPN. We then check if the fraction of sample runs resulting in preconditions
holding is at least 6.

Below is the sequence of steps taken to check whether a new state S
matches a given (partial state, list of actions) pair that already exists in the

policy:
e Obtain the following two plans:

1. The plan so far from the initial state up to the new state S which
we are currently looking up in the policy.

2. The list of actions from the potentially matching partial state to
the goal. As mentioned earlier, this list of actions can be found
stored in the policy, together with the partial state we are cur-
rently checking.

Concatenate the two plans (line 1 in Algorithm 5).

e Build a BPN from the potential plan resulted from the concatenation
(lines 2-10 in Algorithm 5).

e Sample the BPN a suitable amount of times (line 11 in Algorithm 5).

e Loop through the potential plan and count how many times the pre-
conditions at each step were true given the sampled values (lines 12-17
in Algorithm 5).

e Check the counters to verify if all preconditions were satisfied with the
required degree of certainty 6 (e.g. for # = 0.9, if they were satisfied at
least (0.9 x N) times out of N samples) (lines 18-22 in Algorithm 5).

104

Algorithm 5: Partial State Matching with the BPN

Data: Planning task, initial state I, goals G, policy so far P,
queried state S, queried (partial state, list of actions) pair
Result: Bool (match / no match)

1 concatenate [plan from I to S] and [plan from S to G] into p;

w N

© 0 N o s

10

11
12
13
14
15
16
17

18
19

20

21

22

for v in I do
L create node V,, o with parent node D, ;

for a in p do
i « index of state after applying a;
for eff in Eff"""(a) do
create node V,, ;;
create node D, .z , and make it a parent of node V, ;
if eff is an increase effect then
L make the previous node of v a parent of node V, ;;

for a in p do
counter < 0;
for sample run v of N do

if Pre(a)sampici holds then
L counter + +;

if counter < 0 x N then

then p is not a valid plan;
return False

// If we reached this point, no Pre(a) failed to hold with certainty 6,

therefore p is a valid plan;
return True

105

sample the BPN recursively N times starting from the leaf nodes;

assign values from sample run i to the variables in Pre(a);

// If we found one Pre(a) which fails to hold with certainty 6,

Our Approach: Time (s
Our Approach: Time (s

10° 10° 10% 10° 10 10
Baseline: Time (s) Baseline: Time (s)

(a) navigate action has 2 modes (b) navigate action has 3 modes

. 3
. . H ¢ o .
. e, .

Our Approach: Time (s)
L]
Our Approach: Time (s)

10° 10°
10° 10° 10°

10°

0 o
Baseline: Time (s) Baseline: Time (s)

(c) navigate action has 4 modes (d) navigate action has 5 modes

Figure 6.4: Time taken to build a policy with Gaussians only (X axis)
versus with the BPN supporting any distribution (Y axis). Axes are
logarithmic.

6.4 Evaluation

The aim of this evaluation is to investigate the computational feasibility of
our “hyper-generalised” approach to numeric uncertainty. What if, in the
multi-outcome setting of Chapter 4, we also had the ability to represent
each outcome as a general distribution rather than a Gaussian distribution?
Intuitively, the former would be more computationally intensive than the
latter - below we measure this difference, and we check whether any patterns
emerge for different problem variants/sizes. Similarly to previous chapters,
we measure 1) time elapsed and 2) number of nodes expanded in order to
arrive at a solution policy.

106

The BPN-based policy building technique described in this chapter is
implemented on top of the Optic+ expansion described in Chapter 4 (finding
strong cyclic policies under numeric uncertainty).

In the baseline planner (the one from Chapter 4), information about
uncertainty is hard-coded in the PDDL domain file. Each action enumerates
all its non-deterministic outcomes and sets the parameters of their Gaussian
distributions.

In the new version of the planner (the one from this chapter), the domain
file only specifies which non-deterministic outcomes exist. The probability
distribution for each outcome is found in a separate data file containing a
collection of samples (or a parametrised function that is later turned into a
collection of samples).

Our evaluation uses the Rovers domain (Coles, 2012) where the navigate
action is non-deterministic - it has multiple outcomes. This is similar to
how we measured the feasibility of the (albeit single-outcome) Chapter 5
approach against the Chapter 4 baseline. Like before, this domain was chosen
to illustrate our work due to its potential to benefit from increasingly fine-
grained representations of uncertainty (see Chapter 5 Section 5.4 for details).
A full listing of the domain together with the additional JSON file containing
the probability distribution information can be found in Appendix D.

The system we use for experiments has a 1.8GHz Intel Core i7 and 16GB
of RAM. Execution time is limited at 300 seconds (5 minutes) and the mem-
ory limit is set to 1 GB.

In Figure 6.4 we compare the time taken to find a strong cyclic policy
with each of the following approaches:

e Using the numeric constraint representation we defined in Chapter 4
for Gaussian distributed effects.

e Using the BPN representation as shown in the current chapter in order
to support arbitrarily distributed effects.

The 4 graphs in Figure 6.4 represent different variants of the domain, as
presented in Chapter 5. In each variant, the navigate action has a differ-
ent number of outcomes. Both our baseline and our new approach involve
building policies by filling in what to do for each action outcome — therefore
we expect there to be no significant difference between the 4 graphs, which
is indeed the case according to the experiment data. Exactly half of the

107

data points are located under the bisector line (i.e. solved faster by the new
approach) in all 4 graphs. The number of outcomes therefore has no impact
on whether or not our approach performs better. The two-tailed Wilcoxon
signed-rank test confirms that results are not significant at P < 0.05.

An interesting though unsurprising observation arises when comparing
Figure 6.4 with Figure 5.8 from the previous chapter. For a majority of
problems, the Y axis value has increased by a comparable amount — they
appear higher on the graph. This result is consistent with the fact that
both chapters adopt a sampling-based approach (i.e. use the BPN), and
the current chapter (building policies) performs sampling operations more
frequently than the previous one (building strong plans).

Another noticeable element in Figure 6.4 is the clustering of problems
solved by our current approach and not solved by the baseline: all large
problems involving 4 or 5 rovers. These clusters are located in the upper
right hand corner of each graph (not counting any points located on the
bisector line — there is one such point in each graph). Each cluster contains:

e § problems for the 2-outcome case.
e 9 problems for the 3-outcome case.
e & problems for the 4-outcome case.

e 9 problems for the 5-outcome case.

In general, problems on the right hand edge of each graph would be a
strongly positive indicator of good performance. However in this particular
case, they are clustered together near the bisector line — this suggests that
the performance gap might be quite narrow, which is consistent with the
Wilcoxon test mentioned above.

The section of Figure 6.4 above the bisector line shows that, for small
and medium sized problems (involving 2 or 3 rovers), policy building perfor-
mance is generally better when uncertainty can be represented analytically.
It may be the case that the computational advantages provided by Gaussian
mathematics have more opportunity to shine in problems of this size. As the
amount of reachable states increases, policies may become large enough in
both the baseline and in the new approach such that any speed gains offered
by Gaussians are negligible.

108

6.5 Conclusion

In this chapter, our goal was to show that we are able to use a very detailed
representation of uncertainty if the problem calls for it. We described an
alternative to our prior policy building approach, for cases when uncertainty
is not Gaussian. We used a BPN-based representation of uncertainty to allow
each action outcome to be drawn from an arbitrary probability distribution.
When building the policy, we repeatedly sampled the BPN in order to check
whether or not a given state matched any existing policy entry.

Our experimental results showed that, on the illustrative Rovers domain,
renouncing our prior Gaussian approximation of uncertainty came at a com-
putational cost. For problems of small and medium size, the approach in
Chapter 4 performed better; for large problems, the current approach per-
formed somewhat better, but not by a large margin.

109

Chapter 7

Conclusion

This chapter sums up the contributions we detailed in the previous chapters,
and outlines several possible directions for future research.

7.1 Summary

The purpose of this thesis was, in very broad terms, to allow AI planning
software to account for accumulated error due to numeric measurements. We
explored the following research question:

Can we improve planner performance by tracking numeric
uncertainty and taking it into account at different stages of the
planning process?

We found that the answer is yes.

The results we obtained from each of our contributions, reiterated below,
support our hypothesis that we can indeed improve planner performance by
incorporating numeric uncertainty in novel ways.

We introduced means to track uncertainty in a manner that is both com-
putationally feasible and straightforward for the planner to use. In terms
of problem modelling, our aim was to be agnostic to the shape of the prob-
ability distributions the uncertain effects were drawn from. First we dealt
with the particular case of Gaussian distributions, as their analytic form and
their additive properties made them especially appealing, and they could

110

also be used to approximate a great deal of real-world effects. Later we
introduced a way of representing and tracking arbitrary distributions, to in-
vestigate whether such a high level of generality when modelling a problem
— as opposed to approximating and simplifying — was worth the additional
computational time.

In both of the above cases we either adapted existing elements of the
planning process, or introduced novel ones, in order to make use of the newly
tracked information. We integrated uncertainty into building strong plans
and strong cyclic policies, in cases that did not previously take it into account.
The experimental results reiterated here showed how planner performance
was indeed improved in three out of four contributions.

Each chapter investigated a different combination of the uncertain factors
above, as follows:

Gaussian distribution | Arbitrary distribution
Single outcome Chapter 3 Chapter 5
Multiple outcomes Chapter 4 Chapter 6

7.2 Contributions

Below is a closing summary for each of our main contributions:

e Contribution 1: Guiding Search Under Fully Observable
Gaussian Uncertainty
We proposed a novel heuristic based on Metric RPG that takes into
account information about uncertain numeric effects. This information
made the heuristic more accurate and better able to prune dead ends
from the search space when compared to the unmodified Metric RPG
heuristic, as shown by our experimental results. In addition, for prob-
lems where uncertainty is Gaussian distributed and can be reduced,
we introduced a variance tracking technique that allowed the solution
extraction phase to strategically use uncertainty-reducing actions.

e Contribution 2: Building Policies Under Fully Observable
Gaussian Uncertainty
We defined regression through numeric action effects in order to extend
prior work on policy building from the propositional case to the numeric
case. Results have shown that by using our method it is possible to

111

build a policy faster than by naively storing all the numeric information
in each state. Further, our definition of regression can accommodate
uncertain action outcomes drawn from Gaussian probability distribu-
tions. Along similar lines with numeric regression, we also defined
numeric dead end generalisation, which was shown experimentally to
be successful at pruning away ranges of dead ends.

e Contribution 3: Guiding Search Under Fully Observable,
Arbitrarily Distributed Uncertainty
We introduced a representation that allowed us to track and sample un-
certain action effects from any probability distribution. Our approach
was based on a directed graph capturing how the accumulated uncer-
tainty at any point in a plan depends on previous action effects. We
compared the time taken to find strong plans with effects drawn from a
single distribution, to the time taken to build strong cyclic policies with
effects having several outcomes, each drawn from a Gaussian distribu-
tion. In our experiments, the strong plans were found comparatively
fast, and occasionally faster than the policies — while having the advan-
tage of not requiring the domain model to approximate all uncertainty
as Gaussian.

e Contribution 4: Building Policies Under Fully Observable,
Arbitrarily Distributed Uncertainty
We implemented a policy building approach which allowed uncertain
numeric outcomes to be sampled from any distributions, as opposed
to just Gaussian distributions. We used a sampling-based technique to
check whether or not a given state is a match for any existing policy
entry. Our experiments compared this general approach to the earlier
one which performed numeric regression through Gaussian effects only.
Results have shown that policy building performance tends to be better
for the prior, Gaussian case, in spite of the increased generality provided
by our new representation.

Our work has resulted in the following publications:

e Marinescu, L., & Coles, A. 1. (2016). Heuristic guidance for forward-
chaining planning with numeric uncertainty. In Proceedings of the
Twenty-Sixth International Conference on Automated Planning and

Scheduling

112

e Marinescu, L., & Coles, A. 1. (2016). Non-deterministic planning with
numeric uncertainty. In Proceedings of the Twenty-Second Furopean
Conference on Artificial Intelligence

e Marinescu, L., & Coles, A. I. (2018). Representing general numeric un-
certainty in non-deterministic forwards planning. In Proceedings of the
Workshop on Heuristics and Search for Domain-Independent Planning
at the Twenty-FEighth International Conference on Automated Planning
and Scheduling

7.3 Future Work

Our work opens up automated planning to more possibilities of learning from
the environment as execution is happening. We can start out with a rough
idea of a probability distribution — perhaps a Gaussian or a degenerate one if
we lack any insight about uncertainty in the problem. We can then refine it
to a more accurate distribution in a live feedback loop during plan execution.
Our architecture allows changing distribution samples and parameters easily.
In terms of data gathering and function fitting, there are many opportunities
to apply techniques from the field of machine learning. An interesting set of
question arise from this setting:

e How frequently should we replan — after a certain amount of additional
data, or after a tipping point where the additional data changes the
median or the modes of the distribution?

e Should newer data be given more weight than original domain infor-
mation?

e How to distinguish between noise or spikes and a genuine sudden change
in the environment?

e Should we use function fitting to determine if new data is consistent,
or to proactively extrapolate more data points?

Following on from the idea of gathering information from the environment
during execution, we are especially excited about the potential for practical
experimentation on physical platforms with our planner. The initial spark

113

that drove us to work on numeric uncertainty in the first place was the de-
velopment of a quadcopter that could manoeuvre itself through thick foliage
with a potentially changing pattern of density. In terms of other possible
application domains, of particular interest are situations where probability
distributions are skewed to either side of the median line, or exhibit modes
(distinct areas on the graph) that are not easily distinguishable when mod-
elling the problem.

Another interesting feature of our architecture that we have not yet fully
explored is enabling the planner to be proactive about improving on its initial
solution. Our planner can not only generate a plan with 6 certainty, but also
bump up 6 to the highest value it can take under the given uncertain numeric
effects. This is fairly straightforward to achieve — the query to the BPN that
indicates success or failure can be modified to instead report the number of
successful sample runs out of the total ones attempted. The opposite of is
also achievable in a similar fashion — if a solution with certainty 6 is not
found, our planner can be modified to return an alternative, lower value of
for which a solution is found.

In the context of policy building, our work can also be easily extended
to dynamically generate branches as needed, instead of relying on branches
specified in the domain. One possible way to achieve this is by successively
bisecting the probability distribution of a single-outcome non-deterministic
effect. Whether to generate a branch or not will depend on the success or
failure of the weak plan from that branch outcome to the goal, according
to the BPN. Another possible alternative to introduce branches would be to
compute the bounds within which the original weak plan is valid, and treat
the regions outside those bounds as separate branches.

114

Bibliography

Albore, A., Palacios, H., & Geffner, H. (2009). A translation-based approach
to contingent planning. In Proceedings of the Twenty-First Interna-
tional Joint Conference on Artificial Intelligence.

Anderson, C. R., Smith, D. E., & Weld, D. S. (1998). Conditional effects in
Graphplan. In Proceedings of the Fourth International Conference on
Artificial Intelligence Planning Systems.

Babaki, B., Guns, T., & Raedt, L. D. (2017). Stochastic constraint program-
ming with and-or branch-and-bound. In Proceedings of the Twenty-
Sizth International Joint Conference on Artificial Intelligence.

Bacchus, F. (2001). AIPS 2000 planning competition: The fifth international
conference on artificial intelligence planning and scheduling systems. Al
Magazine.

Béckstrom, C., & Nebel, B. (1995). Complexity results for SAS+ planning.
Computational Intelligence.

Beaudry, E., Kabanza, F., & Michaud, F. (2010a). Planning for concurrent
action executions under action duration uncertainty using dynamically
generated Bayesian networks. In Proceedings of the Twentieth Interna-
tional Conference on Automated Planning and Scheduling.

Beaudry, E., Kabanza, F., & Michaud, F. (2010b). Planning with concur-
rency under resources and time uncertainty. In Proceedings of the Nine-
teenth European Conference on Artificial Intelligence.

Beck, J. C., & Wilson, N. (2007). Proactive algorithms for job shop schedul-
ing with probabilistic durations. Journal of Artificial Intelligence Re-
search.

115

Blum, A. L., & Furst, M. L. (1997). Fast planning through planning graph
analysis. Artificial Intelligence.

Blum, A. L., & Langford, J. C. (1999). Probabilistic planning in the Graph-
plan framework. In Proceedings of the Fifth Furopean Conference on
Planning.

Bonet, B., & Geffner, H. (2005). mGPT: A probabilistic planner based on
heuristic search. Journal of Artificial Intelligence Research.

Brafman, R. 1., & Hoffmann, J. (2004). Conformant planning via heuris-
tic forward search: A new approach. In Proceedings of the Fifteenth
International Conference on Automated Planning and Scheduling.

Camacho, A., Muise, C., & Mcllraith, S. (2016). From FOND to robust prob-
abilistic planning: Computing compact policies that bypass avoidable
deadends. In Proceedings of the Twenty-Sixth International Conference
on Automated Planning and Scheduling.

Cimatti, A., Pistore, M., Roveri, M., & Traverso, P. (2001). Weak, strong,
and strong cyclic planning via symbolic model checking. Artificial In-
telligence.

Cimatti, A., Roveri, M., & Traverso, P. (1998). Automatic OBDD-based gen-
eration of universal plans in non-deterministic domains. In Proceedings
of the Fifteenth AAAI Conference on Artificial Intelligence.

Coles, A. J. (2012). Opportunistic branched plans to maximise utility in
the presence of resource uncertainty. In Proceedings of the Twentieth
FEuropean Conference on Artificial Intelligence.

Daniele, M., Traverso, P., & Vardi, M. Y. (1999). Strong cyclic planning
revisited. Recent Advances in Artificial Intelligence Planning.

Domshlak, C., & Hoffmann, J. (2006). Fast probabilistic planning through
weighted model counting. In Proceedings of the Sixteenth International
Conference on Automated Planning and Scheduling.

Domshlak, C., & Hoffmann, J. (2007). Probabilistic planning via heuris-
tic forward search and weighted model counting. Journal of Artificial
Intelligence Research.

116

Feng, Z., Dearden, R., Meuleau, N., & Washington, R. (2004). Dynamic
programming for structured continuous Markov decision problems. In
Proceedings of the Twentieth Conference on Uncertainty in Artificial
Intelligence.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the
application of theorem proving to problem solving. In Proceedings of
the Second International Joint Conference on Artificial Intelligence.

Fox, M., & Long, D. (2002). PDDL2.1: An extension of PDDL for expressing

temporal planning domains. Journal of Artificial Intelligence Research.

Fu, J., Ng, V., Bastani, F. B., & Yen, I. L. (2011). Simple and fast strong
cyclic planning for fully-observable nondeterministic planning prob-
lems. In Proceedings of the Twenty-Second International Joint Con-
ference on Artificial Intelligence.

Geffner, H., & Bonet, B. (2013). A concise introduction to models and meth-
ods for automated planning. Morgan & Claypool.

Gerevini, A., Long, D., Haslum, P., Saetti, A., & Dimopoulos, Y. (2009).
Deterministic planning in the fifth International Planning Competi-
tion: PDDL3 and experimental evaluation of the planners. Artificial
Intelligence.

Gerevini, A., Saetti, A., & Serina, I. (2003). Planning through stochastic local
search and temporal action graphs. Journal of Artificial Intelligence
Research.

Gerevini, A., Saetti, A., & Serina, I. (2004). Planning with numerical ex-
pressions in LPG. In Proceedings of the Sixzteenth European Conference
on Artificial Intelligence.

Helmert, M. (2006). The Fast Downward planning system. Journal of Arti-
ficial Intelligence Research.

Hendler, J. A., Tate, A., & Drummond, M. (1990). Al planning: Systems
and techniques. AI Magazine.

Hoffmann, J. (2003). The Metric-FF planning system: Translating ignoring
delete lists to numeric state variables. Journal of Artificial Intelligence
Research.

117

Hoffmann, J., & Brafman, R. I. (2005). Contingent planning via heuristic
forward search with implicit belief states. In Proceedings of the Fifteenth
International Conference on Automated Planning and Scheduling.

Hoffmann, J., & Brafman, R. I. (2006). Conformant planning via heuristic
forward search: A new approach. Artificial Intelligence.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan
generation through heuristic search. Journal of Artificial Intelligence
Research.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and
acting in partially observable stochastic domains. Artificial Intelligence.

Keller, T., & Eyerich, P. (2012). PROST: Probabilistic planning based on
UCT. In Proceedings of the Twenty-Second International Conference
on Automated Planning and Scheduling.

Keyder, E., & Geffner, H. (2008). The HMDP planner for planning with
probabilities. In Proceedings of the Sixth International Planning Com-
petition.

Kissmann, P., & Edelkamp, S. (2009). Solving fully-observable non-
deterministic planning problems via translation into a general game.
In Proceedings of the Thirty-Second Annual German Conference on
Artificial Intelligence.

Kocsis, L., & Szepesvéri, C. (2006). Bandit based Monte-Carlo planning.
In Proceedings of the Seventeenth European Conference on Machine
Learning.

Little, I., Aberdeen, D., & Thiébaux, S. (2005). Prottle: A probabilistic
temporal planner. In Proceedings of the Twentieth AAAI Conference
on Artificial Intelligence.

Little, I., & Thiébaux, S. (2007). Probabilistic planning vs replanning. In Pro-
ceedings of the Workshop on the International Planning Competition:
Past, Present and Future at the Fourteenth International Conference
on Automated Planning and Scheduling.

118

Littman, M. L. (1994). Markov games as a framework for multi-agent rein-
forcement learning. In Proceedings of the Eleventh International Con-
ference on Machine Learning.

Long, D., & Fox, M. (2003). The 3rd international planning competition:
Results and analysis. Journal of Artificial Intelligence Research.

Luo, Y., Bai, H., Hsu, D., & Lee, W. S. (2019). Importance sampling for
online planning under uncertainty. International Journal of Robotics
Research.

Marinescu, L., & Coles, A. 1. (2016a). Heuristic guidance for forward-chaining
planning with numeric uncertainty. In Proceedings of the Twenty-Sixth
International Conference on Automated Planning and Scheduling.

Marinescu, L., & Coles, A. I. (2016b). Non-deterministic planning with nu-
meric uncertainty. In Proceedings of the Twenty-Second Furopean Con-
ference on Artificial Intelligence.

Marinescu, L., & Coles, A. 1. (2016¢). Non-deterministic planning with nu-
meric uncertainty. Tech. rep., King’s College London.

Marinescu, L., & Coles, A. 1. (2018). Representing general numeric uncer-
tainty in non-deterministic forwards planning. In Proceedings of the
Workshop on Heuristics and Search for Domain-Independent Planning
at the Twenty-FEighth International Conference on Automated Planning
and Scheduling.

Mausam, M., & Weld, D. S. (2008). Planning with durative actions in
stochastic domains. Journal of Artificial Intelligence Research.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso,
M., Weld, D., & Wilkins, D. (1998). PDDL - The planning domain
definition language. Tech. rep., Yale Center for Computational Vision
and Control.

Meuleau, N., Benazera, E., Brafman, R. 1., Hansen, E. A., & Mausam, M.
(2009). A heuristic search approach to planning with continuous re-
sources in stochastic domains. Journal of Artificial Intelligence Re-
search.

119

Muise, C. (2014). Ezploiting relevance to improve robustness and flexibility
in plan generation and execution. Ph.D. thesis, University of Toronto.

Muise, C., Mcllraith, S. A., & Beck, J. C. (2011). Monitoring the execution of
partial-order plans via regression. In Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence.

Muise, C. J., Belle, V., & Mcllraith, S. A. (2014). Computing contingent
plans via fully observable non-deterministic planning. In Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence.

Muise, C. J., Mcllraith, S. A.,; & Beck, C. J. (2012). Improved non-
deterministic planning by exploiting state relevance. In Proceedings of
the Twenty-Second International Conference on Automated Planning
and Scheduling.

Muise, C. J., Mcllraith, S. A., & Belle, V. (2014). Non-deterministic planning
with conditional effects. In Proceedings of the Twenty-Fourth Interna-
tional Conference on Automated Planning and Scheduling.

Palacios, H., Bonet, B., Darwiche, A., & Geffner, H. (2005). Pruning confor-
mant plans by counting models on compiled d-DNNF representations.
In Proceedings of the Fifteenth International Conference on Automated
Planning and Scheduling.

Palacios, H., & Geffner, H. (2007). From conformant into classical plan-
ning: Efficient translations that may be complete too. In Proceedings
of the Seventeenth International Conference on Automated Planning
and Scheduling.

Palacios, H., & Geffner, H. (2009). Compiling uncertainty away in confor-
mant planning problems with bounded width. Journal of Artificial
Intelligence Research.

Rachelson, E., Quesnel, G., Garcia, F., & Fabiani, P. (2008). A simulation-
based approach for solving temporal Markov problems. In Proceedings
of the Eighteenth European Conference on Artificial Intelligence.

Russell, S. J., & Norvig, P. (2010). Artificial intelligence: A modern approach.
Prentice Hall.

120

Sanner, S. P. (2010). Relational dynamic influence diagram language
(RDDL): Language description. Australian National University.

Santana, P., Thiébaux, S., & Williams, B. (2016). RAO*: An algorithm for
chance constrained POMDPs. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence.

Schoppers, M. J. (1997). Universal plans for reactive robots in unpredictable
environments. In Proceedings of the Tenth International Joint confer-
ence on Artificial Intelligence.

Smith, D. E.; & Weld, D. S. (1998). Conformant Graphplan. In Proceedings
of the Fifteenth AAAI Conference on Artificial Intelligence.

Thiébaux, S., & Cordier, M. O. (2001). Supply restoration in power dis-
tribution systems — a benchmark for planning under uncertainty. In
Proceedings of the Sixth Furopean Conference on Planning.

Vallati, M., Chrpa, L., Grzes, M., McCluskey, T. L., Roberts, M., & Sanner,
S. (2015). The 2014 international planning competition: Progress and
trends. AI Magazine.

Weld, D. S., Anderson, C. R., & Smith, D. E. (1998). Extending Graphplan
to handle uncertainty & sensing actions. In Proceedings of the Fifteenth
AAAI Conference on Artificial Intelligence.

Yoon, S., Fern, A., & Givan, R. (2007). FF-Replan: A baseline for proba-
bilistic planning. In Proceedings of the Seventeenth International Con-
ference on Automated Planning and Scheduling.

Yoon, S., Ruml, W., Benton, J., & Do, M. B. (2010). Improving determiniza-
tion in hindsight for online probabilistic planning. In Proceedings of
the Twentieth International Conference on Automated Planning and

Scheduling.

Younes, H. L. S., & Simmons, R. G. (2004). Policy generation for continuous-
time stochastic domains with concurrency. In Proceedings of the Four-
teenth International Conference on Automated Planning and Schedul-
mg.

121

Younes, H. S. L., & Littman, M. L. (2004). PPDDLI1.0: An extension to
PDDL for expressing planning domains with probabilistic effects. Tech.
rep., Carnegie Mellon University.

122

Appendix A: Domains Used in
Chapter 3

Rovers - single outcome, Gaussian uncertainty

(define (domain Rover)

(:requirements :typing :fluents)

(:types rover waypoint store camera mode lander
objective)

(:predicates (at 7x — rover 7y — waypoint)
(at_lander 7?x — lander 7y — waypoint)
(can_traverse ?r — rover ?7x — waypoint ?y
— waypoint)

(equipped_for_soil_analysis ?r — rover)
(equipped_for_rock_analysis ?r — rover)
(equipped_for_imaging 7r — rover)
(empty 7s — store)

(

have_rock_analysis ?r — rover 7w —
waypoint)

(have_soil_analysis ?r — rover 7w —
waypoint)

(full ?s — store)

(calibrated ?c¢ — camera ?r — rover)

(supports 7c¢c — camera ?m — mode)

(available ?r — rover)

(visible 7w — waypoint ?p — waypoint)

(have_image ?r — rover 7o — objective 7m —

123

)

(:functions

)

mode)
(communicated_soil_data ?w — waypoint)
(communicated_rock_data 7w — waypoint)
(communicated_image_data 7o — objective 7m
— mode)
(at_soil_sample ?w — waypoint)
(at_rock_sample ?w — waypoint)

(visible_from 7o — objective 7w — waypoint
)

(store_of 7s — store 7r — rover)

(calibration_target ?7i — camera 70 —
objective)

(on_board 7i — camera ?r — rover)

(channel_free 71 — lander)

(in_sun ?w — waypoint)

(energy 7r — rover)

(energy—variance ?r — rover) ; This was
introduced first to test the
canSatisfy function with confidence.

(position—error ?r — rover) ; This was
introduced second to allow for error
accumulation that can be fized with
look—at—stars.

(:action navigate

:parameters (7x — rover 7y — waypoint 7z — waypoint)

:precondition (and (can_traverse ?x 7y 7z) (available ?
x) (at ?x ?y)

(visible 7y 7z) (>= (energy 7x) 8)

)

:effect (and (increase (position—error 7x) 1) (decrease
(energy 7x) 8) (increase (energy—variance 7x) 8) (
not (at 7x ?7y)) (at 7x 7z)

)

124

)

(:action recharge

:parameters (7x — rover 7w — waypoint)

:precondition (and (at 7?x ?w) (in_sun ?w))

teffect (and (increase (energy 7x) 20) (assign (
energy—variance ?x) 0)) ; Recharging is
deterministic .

)

(:action look—at—stars
:parameters (7x — rover)
:precondition (>= (position—error 7x) 1)
teffect (and
(when (>= (position—error 7x) 5) (
decrease (position—error 7x) 5))
(when (<= (position—error ?x) 4) (
assign (position—error 7x) 0))

)

(:action sample_soil

:parameters (?7x — rover 7s — store ?p — waypoint)

:precondition (and (at ?x ?p)(>= (energy 7x) 2) (
at_soil_sample 7p) (equipped_for_soil_analysis 7x) (
store_of 7s 7x) (empty 7s) (<= (position—error 7x)

2)
)

teffect (and (not (empty 7s)) (full 7s) (decrease (
energy 7x) 2) (increase (energy—variance 7x) 2) (
have_soil_analysis ?x ?p) (mot (at_soil_sample 7p))

)
)

(:action sample_rock

:parameters (7x — rover 7s — store 7p — waypoint)

:precondition (and (at 7”x 7p)(>= (energy 7x) 4) (
at_rock_sample ?p) (equipped_for_rock_analysis 7x) (

125

store_of 7s 7x) (empty ?s) (<= (position—error 7x)
1)
)

:effect (and (not (empty ?7s)) (full 7s) (decrease (
energy 7x) 4) (increase (energy—variance 7x) 4) (
have_rock_analysis ?x 7?p) (mot (at_rock_sample 7p))

)
)

(:action drop

:parameters (?7x — rover 7y — store)

:precondition (and (store_of 7y 7x) (full ?7y)
)

teffect (and (not (full ?7y)) (empty ?y)

)
)

(:action calibrate

:parameters (7r — rover ?7i — camera 7t — objective 7w
— waypoint)

:precondition (and (equipped_for_imaging 7r) (>= (
energy 7r) 2)(calibration_target 7i 7t) (at 7r ?w)
(visible_from 7t ?w)(on_board 7i 7r)

:effect (and (decrease (energy 7r) 2) (increase (
energy—variance 7r) 2)(calibrated 7i 7r))

(:action take_image
:parameters (7r — rover ?7p — waypoint 7o — objective 7
i — camera ?7m — mode)
:precondition (and (calibrated 7i 7r)
(on_board ?7i 7r)
(equipped_for_imaging 7r)
(supports 7i 7m)
(visible_from 7o 7p)
(at ?r 7p)
(>= (energy 7r) 1)

126

)

teffect (and (have_image 7r 7o ?m)(not (calibrated 7i
?r))(decrease (energy 7r) 1) (increase (
energy—variance 7r) 1)

)
)

(raction communicate_soil_data
:parameters (7r — rover 7?1 — lander 7p — waypoint 7x —
waypoint 7y — waypoint)
:precondition (and (at ?r 7x)(at_lander 71 ?y)(
have_soil_analysis ?7r 7p)
(visible 7x 7y)(available 7r)(
channel _free 71)(>= (energy 7r)
4)
)
teffect (and (not (available 7r))(mot (channel_free 71
))
(channel_free 71) (communicated_soil_data ?p)(available
?r)(decrease (energy 7r) 4) (increase (
energy—variance 7r) 4)

)
)

(:raction communicate_rock_data
:parameters (7r — rover 7?1 — lander 7p — waypoint 7x —
waypoint 7y — waypoint)
:precondition (and (at ?r ?x)(at_lander 71 7y)(
have_rock_analysis ?r ?p)(>= (energy ?7r) 4)
(visible 7x 7y)(available 7r)(
channel _free 71)

)

teffect (and (not (available 7r))(not (channel_free

21))

(channel_free 71)
(communicated_rock_data ?p)(available 7r)(decrease (
energy ‘r) 4) (increase (energy—variance 7r) 4)

)

127

)

(raction communicate_image_data

:parameters (7r — rover 71 — lander 70 — objective 7m
— mode ?x — waypoint 7y — waypoint)

:precondition (and (at ?r 7x)(at_lander 71 ?y)(
have_image 7r 7o 7m)(visible ?x 7y)(available 7r)(
channel_free ?1)(>= (energy 7r) 6)

)

:effect (and (not (available ?r))(not (channel_free 7?1
))

(channel_free 71)

(communicated_image_data 7o 7m)(available ?r)(decrease
(energy 7r) 6) (increase (energy—variance 7r) 6)

)

TPP - single outcome, Gaussian uncertainty

(define (domain TPP—Metric)
(:requirements :typing :fluents)
(:types depot market — place

truck goods khajiit — locatable)

(:predicates (at 7t — locatable 7p — place) (likes 7k —
khajiit ?g — goods))

(:functions
(on—sale 7g — goods ?m — market)
(on—sale—variance ?7g — goods "m — market) ; How
unsure the wvendor is of his quantity.
(drive—cost ?pl ?p2 — place)

128

(price ?7g — goods "m — market)
(bought 7g — goods)

(bought—variance 7g — goods) ; How unsure the
buyer is of how much he’s bought so far.
(request 7g — goods)
(total—cost))

(:action drive
:parameters (7t — truck 7from ?7to — place)
:precondition (and (at 7t 7from))
teffect (and (not (at 7t 7from)) (at 7t 7to)
(increase (total—cost) (drive—cost 7from
7to)))
)

(:action buy—allneeded
:parameters (7t — truck 7g — goods ?m — market)
:precondition (and (at 7t ?m) (> (on—sale 7g 7m) 0) (>
(request 7g) 0)
(> (on—sale 7g "m) (— (request 7g)
(bought 7g))))
teffect (and
(assign (on—sale 7g 7m) 0)
(decrease (on—sale 7g "m) (— (request 7g) (
bought 7g)))
(increase (total—cost) (x (— (request ?7g)
(bought ?7g))
(price 7g m)))
(assign (bought 7g) (+ (request 7g) 9000)
))
)

(:action buy—all
:parameters (7t — truck 7g — goods 7"m — market)
:precondition (and (at 7t "m) (> (on—sale 7g "m) 0) (>
(request 7g) 0)
)

:effect (and (assign (on—sale 7g "m) 0)

129

(increase (total—cost) (*x (on—sale 7g 7m)
(price 7g Tm)))

(increase (bought 7g) (on—sale 7g 7m))

(increase (bought—variance 7g) (
on—sale—variance 7g 7m))

)

)

(:action khajiit—has—wares ; Magical action that weighs
your goods and adjusts their quantity to perfection
Elder Scrolls FIW!

:parameters (7t — truck 7g — goods ?p — place 7k —
khajiit)

:precondition (and (at 7t 7p) (at ?k 7p) (likes 7k
?7g) (>= (bought ?g) 1)) ; Do not bother Khajiit
if you haven’'t bought your goods yet!

:effect (and (assign (bought—variance 7g) 0) (not (
at 7t 7p)) (at 7t 7p))

AUYV - single outcome, GGaussian uncertainty

(define (domain auv)
(:requirements :strips :typing :fluents :preferences)
(:types auv waypoint target ship)

(:predicates

(at ?v — auv 7w — waypoint)

(at_ship 7s — ship ?w — waypoint)
(can_traverse 7wl — waypoint ?w2 — waypoint)
(have_image 7t — target)

(communicated _photo_data 7t — target)

130

communicated _survey_data 7t — target)
target—at 7t — target 7w — waypoint)
target—starts 7t — target 7w — waypoint)
target—ends 7t — target 7w — waypoint)
visible_from 7t — target 7w — waypoint)
at_surface 7w — waypoint)

turned ?v — target)

available)

need_cleaned 7t — target)
need_photo_data 7t — target)
need_survey_data 7t — target)

need _turned 7t — target)

A N N N N e N T T N NN N e N N

(:functions
traverse_time 7wl ?w2 — waypoint)
time—remaining)
time—remaining—variance)
available—memory)

amount_cleaned 7t — target)
amount_cleaned—variance 7t — target)
have_some_survey_data_chain 7t — target)

have_some_survey_data_chain—variance 7t — target)

(
(
(
(
(cleaning_cost 7t — target)
(
(
(
(
)

(:action navigate

:parameters (7v — auv 7y — waypoint 7z — waypoint)

:precondition (and (can_traverse 7y 7z)
(at ?v ?y)
(available)
(>= (time—remaining) (

traverse_time 7y 7z))

)

:effect (and (not (at ?v 7y))
(at ?v 7z)
(not (available))

131

(available)

(increase (time—remaining—variance) (%
(* 0.3 (traverse_time ?y 7z)) (x
0.3 (traverse_time ?y ?7z))))

(decrease (time—remaining) (
traverse_time 7y 7z)))

)

(:action clean—long—target
:parameters (7v — auv 7t — target 7wl 7w2 —
waypoint)
:precondition (and (at 7v 7wl)
(or ; Made the AUV able to start
cleaning from either side of a target

(and
(target—starts 7t 7wl)
(target—ends 7t 7w2)

)

(and
(target—starts 7t 7w2)
(target—ends 7t 7wl)

(available)

(need_cleaned 7t)

(>= (time—remaining) (x5 (
traverse_time 7wl 7w2)))

)

:effect (and (not (at ?7v ?wl))
(increase (amount_cleaned ?t) 1) ; Made the
AUV clean incrementally — it needs at least
0.9 cleanliness (set in the goal).
(increase (amount_cleaned—variance 7t) 0.1)
(at ?v 7w2)
(not (available))
(available)

132

(increase (time—remaining—variance) (x
(+ 4 (traverse_time 7wl ?w2)) (% 4
(traverse_time 7wl ?w2))))

(decrease (time—remaining) (x5 (
traverse_time ?wl 7w2)))

)

(:action video—survey—long—target
:parameters (7v — auv 7t — target 7wl 7w2 —
waypoint)
:precondition (and (at 7v 7wl)
(or ; Made the AUV able to start a
survey from either side of a target.
(and
(target—starts 7t 7wl)
(target—ends 7t 7w2)
)
(and
(target—starts 7t 7w2)
(target—ends 7t 7wl)

)

(available)

(need_survey_data 7t)

(>= (time—remaining) (*2 (
traverse_time 7wl ?w2)))

)

teffect (and (not (at ?7v ?wl))

(at ?v 7w2)

(increase (have_some_survey_data_chain
?7t) 1) ; Made the AUV get survey
data incrementally — it needs at
least 0.9 to send the data.

(increase (
have_some_survey_data_chain—variance

7¢) 0.1)

133

(not (available))

(available)

(increase (time—remaining—variance) (%
(* 0.7 (traverse_time 7wl ?w2)) (x
0.7 (traverse_time 7wl ?w2))))

(decrease (time—remaining) (%2 (
traverse_time 7wl 7w2)))

(:raction turn—valve

:parameters (?v — auv ?valve — target 7wl —
waypoint)

:precondition (and (at 7v 7wl)

(target—at ?valve 7wl)

(available)

(need_turned 7valve)

(>=

(time—remaining) 10)

)

teffect (and (turned 7valve)
(not (need_turned ?valve))
(increase (time—remaining—variance) (%
(+ 0.2 10) (* 0.2 10)))
(decrease (time—remaining) 10)
(not (available))
(available)

)

(:action photograph _valve
:parameters (?v — auv ?w — waypoint 7t — target)
:precondition (and (target—at 7t ?w)
(available)
(need_photo_data 7t)
(>= (time—remaining) 1)

134

(at ?v ?w))
teffect (and (have_image 7t)
(not (available))
(not (need_photo_data 7t))
(available)
(
)

decrease (time—remaining) 1)

)

(:action communicate_photo_data
:parameters (?v — auv 7t — target 7w — waypoint)
:precondition (and (at 7v 7w)
(available)
(have_image 7t))
(communicated_photo_data 7t)
(not (have_image 7t))
(not (available))
(available)

:effect (and

)

(:raction communicate_survey_data
:parameters (7v — auv 7t — target 7w — waypoint)
:precondition (and (at 7v 7w)
(available)
(>= (have_some_survey_data_chain
7t) 0.9))
teffect (and (communicated_survey_data 7t)
(assign (have_some_survey_data_chain 7
t) 0)
(not (available))
(available)

135

Appendix B: Domains Used in
Chapter 4

Rovers - multiple outcomes, Gaussian uncer-
tainty

(define (domain Rover)

(:requirements :typing :fluents)

(:types rover waypoint store camera mode lander
objective)

(:predicates (at 7x — rover 7y — waypoint)
(at_lander 7?x — lander 7y — waypoint)
(can_traverse ?r — rover ?7x — waypoint ?y
— waypoint)

(equipped_for_soil_analysis ?r — rover)
(equipped_for_rock_analysis ?r — rover)
(equipped_for_imaging 7r — rover)
(empty 7s — store)

(

have_rock_analysis ?r — rover 7w —
waypoint)

(have_soil_analysis ?r — rover 7w —
waypoint)

(full ?s — store)

(calibrated ?c¢ — camera ?r — rover)

(supports 7c¢c — camera 7m — mode)

(available ?r — rover)

136

)

(:functions

)

(visible 7w — waypoint ?p — waypoint)

(have_image ?r — rover 70 — objective 7m —
mode)

(communicated_soil_data ?w — waypoint)

(communicated_rock_data ?w — waypoint)

(communicated _image_data 7o — objective 7m
— mode)

(at_soil_sample ?w — waypoint)

(at_rock_sample ?w — waypoint)

(visible_from 70 — objective 7w — waypoint
)

(store_of 7s — store ?r — rover)

(calibration_target ?7i — camera 7o —
objective)

(on_board 7i — camera ?r — rover)

(channel_free 7?1 — lander)

(in_sun ?w — waypoint)

(energy ?r — rover)

(energy—variance ?r — rover) ; This was
introduced first to test the
canSatisfy function with confidence.

(position—error ?r — rover) ; This was
introduced second to allow for error
accumulation that can be fixed with
look—at—stars.

(:raction navigate—outcomel

:parameters (?x — rover 7y — waypoint 7z — waypoint)

:precondition (and (can_traverse ?x 7y 7z) (available ?
x) (at ?x ?y)

(visible 7y ?7z) (>= (energy 7x) 10)

)

:effect (and (increase (position—error ?x) 1) (decrease
(energy 7x) 8) (increase (energy—variance ?x) 8) (

137

not (at 7x 7y)) (at ?x 7z)
)
)

(:raction navigate—outcome?2

:parameters (?x — rover 7y — waypoint 7z — waypoint)

:precondition (and (can_traverse 7x 7y 7z) (available 7
x) (at ?x ?y)

)

:effect (and (increase (position—error ?x) 1) (decrease
(energy 7x) 10) (increase (energy—variance ?x) 10)
(not (at 7x ?y)) (at ?x 7z)

)

(visible 7y ?7z) (>= (energy 7x) 10)

)

(:raction navigate—outcome3
:parameters (7x — rover 7y — waypoint 7z — waypoint)
:precondition (and (can_traverse 7x 7y 7z) (available 7
x) (at 7x ?y)
(visible 7y ?7z) (>= (energy 7x) 10)
)

:effect (and (increase (position—error 7x) 1) (decrease
(energy 7x) 12) (increase (energy—variance 7x) 12)
(not (at 7x 7y)) (at ?x 7z)

)

)

(:action recharge

:parameters (7x — rover 7w — waypoint)

:precondition (and (at 7x ?w) (in_sun ?7w))

:effect (and (increase (energy 7x) 20) (assign (
energy—variance ?x) 0)) ; Recharging is
deterministic .

)

(:action look—at—stars—a—bit
:parameters (7x — rover)

138

:precondition (>= (position—error 7?x) 5)
teffect (and

)

(decrease (position—error 7x) 5)

)

(:action look—at—stars—a—bit—more
:parameters (7x — rover)

:precondition (<= (position—error 7x) 4)
:effect (and

)

(assign (position—error 7x) 0)

; Removed action wvariants, added a condition for
position—error <= 2.

(:raction sample_soil

:parameters (7x — rover 7s — store 7p — waypoint)

:precondition (and (at ?x ?p)(>= (energy 7?x) 2) (
at_soil_sample 7p) (equipped_for_soil_analysis 7x) (
store_of 7s 7x) (empty ?s) (<= (position—error 7x)

2)
)

teffect (and (not (empty ?7s)) (full 7s) (decrease (
energy 7x) 2) (increase (energy—variance 7x) 2) (
have_soil_analysis ?x ?p) (mot (at_soil_sample 7p))

)

; Removed action variants, added a condition for
position—error <= 1.

(:raction sample_rock

:parameters (?7x — rover 7s — store ?p — waypoint)

:precondition (and (at ?x ?p)(>= (energy 7?x) 4) (
at_rock_sample ?p) (equipped_for_rock_analysis ?7x) (
store_of 7s ?x) (empty 7s) (<= (position—error 7x)

1)
)

139

teffect (and (not (empty ?7s)) (full 7s) (decrease (
energy 7x) 4) (increase (energy—variance 7x) 4) (
have_rock_analysis ?x ?p) (not (at_rock_sample 7p))

)
)

(raction drop

:parameters (7x — rover 7y — store)

:precondition (and (store_of 7y 7x) (full ?7y)
)

teffect (and (not (full 7y)) (empty ?7y)

)

(:action calibrate

:parameters (?r — rover 7i — camera 7t — objective 7w
— waypoint)

:precondition (and (equipped_for_imaging 7r) (>= (
energy ?r) 2)(calibration_target 71 7t) (at 7r ?7w)
(visible_from 7t ?w)(on_board 7i 7r)

)

:effect (and (decrease (energy 7r) 2) (increase (

energy—variance 7r) 2)(calibrated 71 7r))

(:action take_image
:parameters (?r — rover 7p — waypoint 7o — objective 7
i — camera 7m — mode)
:precondition (and (calibrated ?7i 7r)
(on_board 7i 7r)
(equipped_for_imaging 7r)
(supports 7i 7m)
(visible_from 7o ?p)
(at ?r 7p)
(>= (energy 7?r) 1)
)
teffect (and (have_image 7r 70 "m)(not (calibrated 7i
?r))(decrease (energy 7r) 1) (increase (

140

energy—variance 7r) 1)

)
)

(:raction communicate_soil_data
:parameters (?r — rover 71 — lander 7p — waypoint 7x —
waypoint 7y — waypoint)
:precondition (and (at 7r 7x)(at_lander 71 7y)(
have_soil_analysis ?7r 7p)
(visible 7x 7y)(available 71)(
channel _free ?71)(>= (energy 7r)
4)
)
:effect (and (not (available ?r))(not (channel_free 7?1
))
(channel _free ?1) (communicated_soil_data 7p)(available
?r)(decrease (energy ?r) 4) (increase (
energy—variance 7r) 4)

)
)

(:raction communicate_rock_data
:parameters (7r — rover 7?1 — lander 7p — waypoint 7x —
waypoint 7y — waypoint)
:precondition (and (at 7r 7x)(at_lander 71 7y)(
have_rock_analysis ?r ?p)(>= (energy 7r) 4)
(visible 7x ?y)(available 7r)(
channel _free 71)

)

:effect (and (not (available ?r))(not (channel_free

7))

(channel _free 71)
(communicated_rock_data ?p)(available 7r)(decrease (
energy 7r) 4) (increase (energy—variance 7r) 4)

)
)

(:raction communicate_image_data

141

:parameters (?r — rover 71 — lander 70 — objective ’m
— mode 7?x — waypoint 7y — waypoint)

:precondition (and (at ?r ?x)(at_lander 71 ?7y)(
have_image 7r 7o 7m)(visible ?x 7y)(available 7r)(
channel_free 71)(>= (energy 7r) 6)

)

teffect (and (not (available 7r))(mot (channel_free 71
))

(channel_free 71)

(communicated_image_data 7o 7m)(available ?7r)(decrease
(energy ?r) 6) (increase (energy—variance 7r) 6)

TPP - multiple outcomes, (Gaussian uncertainty

(define (domain TPP—Metric)
(:requirements :typing :fluents)
(:types depot market — place

truck goods khajiit — locatable)

(:predicates (at 7t — locatable 7p — place) (likes 7k —
khajiit 7g — goods)
(tyres—fine 7t — truck)
(flat—tyre 7t — truck)

)

(:functions
(on—sale 7g — goods ?m — market)
(on—sale—variance ?7g — goods "m — market) ; How
unsure the wvendor is of his quantity.
(drive—cost ?pl ?p2 — place)

142

(price ?7g — goods "m — market)
(bought 7g — goods)

(bought—variance 7g — goods) ; How unsure the
buyer is of how much he’s bought so far.
(request 7g — goods)
(total—cost))

(raction drive—outcomel

:parameters (7t — truck 7from ?7to — place)

:precondition (and (at 7t 7from) (tyres—fine 7t))

teffect (and (not (at 7t 7from)) (at 7t 7to)
(increase (total—cost) (drive—cost 7from

?t0)))
)

(:raction drive—outcome2

:parameters (7t — truck 7from ?7to — place)
:precondition (and (at ?t ?from) (tyres—fine 7t))
:effect (and (not (tyres—fine 7t))

(flat—tyre 7t)

(not (at 7t 7from)) (at 7t 7to)
(increase (total—cost) (drive—cost 7from

7t0)))

(:action fix—tyre

:parameters (7t — truck)

:precondition (flat—tyre 7t)

:effect (and (not (flat—tyre 7t))
(tyres—fine 7t)
(increase (total—cost) 10)

)

(:action buy—allneeded
:parameters (7t — truck 7g — goods ?m — market)
:precondition (and (at 7t “m) (> (on—sale 7g "m) 0) (>

143

(request 7g) 0)
(> (on—sale ?7g 7m) (— (request 7g)
(bought 7g))))
:effect (and
(assign (on—sale ?g "m) 0)
(decrease (on—sale 7g "m) (— (request 7g) (
bought 7g)))
(increase (total—cost) (x (— (request ?7g)
(bought ?7g))
(price 7g 7m)))
(assign (bought ?g) (+ (request ?g) 9000)
))
)

(raction buy-—all
:parameters (7t — truck 7g — goods 7m — market)
:precondition (and (at 7t “m) (> (on—sale 7g "m) 0) (>
(request 7g) 0)
)
:effect (and (assign (on—sale ?7g 7m) 0)
(increase (total—cost) (% (on—sale 7g 7m)
(price ?7g Tm)))
(increase (bought 7g) (on—sale 7g 7m))
(increase (bought—variance 7g) (
on—sale—variance 7g 7m))
)

)

(:action khajiit—has—wares ; Magical action that weighs

your goods and adjusts their quantity to perfection

Elder Scrolls FTW!

:parameters (7t — truck 7g — goods ?p — place 7k —
khajiit)

:precondition (and (at 7t 7p) (at ?k ?p) (likes 7k
?7g) (>= (bought 7g) 1)) ; Do not bother Khajiit
if you haven 't bought your goods yet!

teffect (and (assign (bought—variance 7g) 0) (not (
at 7t 7p)) (at 7t 7p))

144

AUYV - multiple outcomes, Gaussian uncertainty

(define (domain auv)
(:requirements :strips :typing :fluents :preferences)
(:types auv waypoint target ship)

(:predicates

(at ?7v — auv 7w — waypoint)
(at_ship ?s — ship ?w — waypoint)
(can_traverse 7wl — waypoint ?w2 — waypoint)
(have_image 7t — target)
(communicated_photo_data 7t — target)
(communicated_survey_data 7t — target)
(target—at 7t — target 7w — waypoint)
(target—starts 7t — target 7w — waypoint)
(target—ends 7t — target 7w — waypoint)
(visible_from 7t — target 7w — waypoint)
(at_surface ?w — waypoint)

(turned ?v — target)

(available)

(need_cleaned 7t — target)
(need_photo_data 7?7t — target)
(need_survey_data 7t — target)
(need_turned 7?7t — target)

(stuck 7t — target)

(stuck—at 7v — auv ?w — waypoint)

)

(:functions
(traverse_time 7wl ?w2 — waypoint)

145

time—remaining)
time—remaining—variance)
available—memory)

cleaning_cost 7t — target)

amount_cleaned 7t — target)
amount_cleaned—variance 7t — target)
have_some_survey_data_chain 7t — target)
have_some_survey_data_chain—variance 7t — target)

unsatisfied—goals)

D N N N N e N e N T TN N

(revent cleaned—enough
:parameters (7t — target)
:precondition (and (need_cleaned 7t)
(>= (time—remaining) 0)
(>= (amount_cleaned 7t) 0.9)

)

:effect (and (not (need_cleaned 7t))
(decrease (unsatisfied—goals) 1)

)

(:action navigate
:parameters (7v — auv 7y — waypoint 7z — waypoint)
:precondition (and (can_traverse 7y 7z)
(at ?v 7y)
(available)
(>= (time—remaining) (
traverse_time ?y 7z))

:effect (and
t v 7z)
ot (available))
available)

)
not (at 7v 7y))

(no
(
(
(

146

(increase (time—remaining—variance) (x
(¥ 0.3 (traverse_time ?y 7z)) (x
0.3 (traverse_time ?y 7z))))

(decrease (time—remaining) (
traverse_time 7y 7z)))

)

(:action clean—long—target
:parameters (7v — auv 7t — target 7wl 7w2 —
waypoint)
:precondition (and (at ?v 7wl)
(or ; Made the AUV able to start
cleaning from either side of a target

(and
(target—starts 7t 7wl)
(target—ends 7t 7w2)

)

(and
(target—starts 7t 7w2)
(target—ends 7t 7wl)

(available)

(need_cleaned 7t)

(>= (time—remaining) (%5 (
traverse_time 7wl ?w2)))

teffect (and (not (at ?7v ?wl))
(increase (amount_cleaned ?7t) 1) ; Made the
AUV clean incrementally — it needs at least
0.9 cleanliness (set in the goal).
(increase (amount_cleaned—variance 7t) 0.1)
(at ?v 7w2)
(not (available))
(available)
(

increase (time—remaining—variance) (x

147

(+ 4 (traverse_time 7wl ?w2)) (% 4

(traverse_time 7wl ?w2))))
(decrease (time—remaining) (x5 (

traverse_time 7wl 7w2)))

)

(:action video—survey—long—target
:parameters (7v — auv 7t — target 7wl 7w2 —
waypoint)
:precondition (and (at ?7v 7wl)
(or ; Made the AUV able to start a
survey from either side of a target.
(and
(target—starts 7t 7wl)
(target—ends 7t 7w2)
)
(and
(target—starts 7t 7w2)
(target—ends 7t 7wl)

)

(available)

(need_survey_data ?7t)

(>= (time—remaining) (*2 (
traverse_time ?wl 7w2)))

)

teffect (and (not (at ?7v ?wl))

(at ?v 7w2)

(increase (have_some_survey_data_chain
?t) 1) ; Made the AUV get survey
data incrementally — it needs at
least 0.9 to send the data.

(increase (
have_some_survey_data_chain—variance
7t) 0.1)

(not (available))

148

(available)

(increase (time—remaining—variance) (%
(+ 0.7 (traverse_time ?wl 7w2)) (x
0.7 (traverse_time ?wl ?w2))))

(decrease (time—remaining) (%2 (
traverse_time 7wl 7w2)))

(raction turn—valve—outcomel

:parameters (?v — auv ?valve — target 7wl —
waypoint)

:precondition (and (at 7v 7wl)

(target—at 7valve 7wl)

(available)

(need_turned ?valve)

(>= (time—remaining) 10)

)

teffect (and (turned ?valve)
(not (need_turned ?valve))
(increase (time—remaining—variance) (*
(+ 0.2 10) (* 0.2 10)))
(decrease (time—remaining) 10)
(not (available))
(available)
(decrease (unsatisfied—goals) 1)

(:raction turn—valve—outcome2

:parameters (?v — auv ?valve — target 7wl —
waypoint)

:precondition (and (at 7v 7wl)

(target—at ?valve 7wl)

(available)

(

need_turned 7valve)

149

(>= (time—remaining) 10)

)

teffect (and (stuck 7valve)

(not (at 7v 7wl))
(stuck—at 7v 7wl)

(not (need_turned ?valve))

(increase (time—remaining—variance) (*
(+ 0.2 10) (* 0.2 10)))

(decrease (time—remaining) 10)

(not (available))

(available)

)

(raction mend—valve
:parameters (?v — auv ?valve — target 7wl — waypoint

)

:precondition (and (stuck—at 7v ?7wl)
(target—at 7valve 7wl)
(available)

(stuck ?valve)

(>=

(time—remaining) 10)

)

teffect (and (turned 7valve)
(not (stuck ?valve))

(not (stuck—at ?v ?wl))
(at ?v ?wl)
(increase (time—remaining—variance) (*

(x 0.2 10) (% 0.2 10)))

150

)

(decrease (time—remaining) 10)

(not (available))
(available)
(decrease (unsatisfied—goals) 1)

:action photograph_valve
g
:parameters (7v — auv 7w — waypoint 7t — target)
:precondition (and (target—at 7t 7w)

reffect (and

)

(available)
(need_photo_data ?7t)
(>= (time—remaining) 1)

(at ?v ?w))
(have_image 7t)
(not (available))
(not (need_photo_data 7t))
(available)
(decrease (time—remaining) 1)
)

(:action communicate_photo_data
:parameters (?7v — auv 7t — target 7w — waypoint)
:precondition (and (at ?v 7w)

teffect (and

(available)
(have_image 7t)
(>= (time—remaining) 0)
)
(communicated _photo_data 7t)
(not (have_image 7t))
(not (available))
(available)
(decrease (unsatisfied—goals) 1)

151

(:raction communicate_survey_data
:parameters (7v — auv 7t — target 7w — waypoint)
:precondition (and (at 7v 7w)
(available)
(need_survey_data 7t)
(>= (time—remaining) 0)
(>= (have_some_survey_data_chain
7t) 0.9))
teffect (and (communicated_survey_data 7t)
(assign (have_some_survey_data_chain 7

t) 0)
(not (available))
(available)
(decrease (unsatisfied—goals) 1)
(not (need_survey_data 7t))

152

Appendix C: Domain &
Configuration Used in Chapter
5

Rovers - single outcome, arbitrary uncertainty

(define (domain Rover)
(:requirements :typing :fluents)

(:types rover waypoint store camera mode lander
objective)

(:predicates
(at ?r — rover 7w — waypoint)
(at_-lander 7?1 — lander 7w — waypoint)
(can_traverse ?r — rover 7wl — waypoint w2 —

waypoint)

(equipped_for_soil_analysis ?r — rover)
(equipped_for_rock_analysis ?r — rover)
(equipped_for_imaging 7r — rover)
(empty 7s — store)
(have_rock_analysis ?r — rover 7w — waypoint)
(have_soil_analysis ?r — rover 7w — waypoint)
(full 7s — store)
(calibrated ?7c¢ — camera ?r — rover)

153

(supports 7c — camera ?m — mode)

(available ?r — rover)

(visible 7wl — waypoint ?w2 — waypoint)
(have_image 7r — rover 7o — objective ?m — mode)
(communicated_soil_data ?w — waypoint)
(communicated _rock_data 7w — waypoint)
(communicated_image_data 70 — objective "m — mode)
(at_soil_sample ?w — waypoint)

(at_rock_sample ?w — waypoint)

(visible_from 70 — objective 7w — waypoint)
(store_of 7s — store 7r — rover)
(calibration_target ?c¢ — camera 7o — objective)
(on_board 7c¢c — camera ?r — rover)

(channel_free 71 — lander)

(in_sun ?w — waypoint)

)

(:functions
(energy 7r — rover)
)

(:action navigate

:parameters (7r — rover ?wl — waypoint ?w2 — waypoint
)

:precondition
(and (can_traverse ?7r 7wl ?7w2)
(available 7r)
(at ?r ?wl)
(visible 7wl 7w2)
(>= (energy 7r) 10)

)
ceffect
(and (not (at 7r 7wl))
(at ?7r ?7w2)
(decrease (energy 7r) 10)
)

154

(:action recharge
:parameters (7r — rover 7w — waypoint)
:precondition
(and (at 7r 7w)
(in_sun ?7w)
)
teffect
(and (assign (energy ?r) 100)
)
)

(:action sample_soil
:parameters (7r — rover 7s — store 7w — waypoint)
:precondition
(and (at 7r 7w)
(at_soil_sample 7w)
(equipped_for_soil _analysis 7r)
(store_of 7s 7r)
(empty 7s)
(>= (energy 7r) 2)

)

ceffect
(and (not (empty 7s))
(full 7s)
(have_soil_analysis ?7r ?7w)
(not (at_soil_sample ?w))
(decrease (energy 7r) 2)

)

)

(:raction sample_rock
:parameters (?r — rover 7s — store 7w — waypoint)
:precondition
(and (at 7r 7w)
(at_rock_sample ?w)
(equipped_for_rock_analysis 7r)
(store_of 7s 7r)
(empty 7s)

155

(>= (energy 7r) 4)
)

ceffect
(and (not (empty 7s))
(full 7s)
(have_rock_analysis 7r 7w)
(not (at_rock_sample ?w))
(decrease (energy 7r) 4)

)

)

(:action drop
:parameters (7r — rover 7s — store)
:precondition

(and (store_of 7s 7r)
(full 7s)

)

ceffect

(and (not (full 7s))
(empty ?s)

)

)

(raction calibrate

:parameters (7r — rover ?7c¢ — camera 7o — objective 7w

— waypoint)
:precondition
(and (equipped_for_imaging 7r)

calibration_target 7c 7o)
t 7r 7w)
visible_from 7o ?w)
on_board 7c¢ 7r)

(energy 7r) 2)

e
and (calibrated 7c¢ 7r)
decrease (energy 7r) 2)

(
(&
(
(
(>=
)
f
(
(
)

156

)

(:action take_image

:parameters (7r — rover 7w — waypoint 7o — objective
?7¢ — camera "m — mode)
:precondition

(and (calibrated 7c 7r)
on_board 7c¢ 7r)
equipped_for_imaging 7r)
supports 7c 7m)
visible_from 70 7w)

and (have_image 7r 7o 7m)
not (calibrated ?7c¢c 7r))
decrease (energy ?r) 1)

(:raction communicate_soil_data

:parameters (7r — rover 7?1 — lander 7wl — waypoint 7
w2 — waypoint ?w3 — waypoint)
:precondition

(and (at 7r 7w2)
at_lander 71 7w3)
have_soil_analysis ?7r ?7wl)
visible 7w2 7w3)
available 7r)
channel _free ?71)

(energy 7r) 4)

ceffect

and (not (available 7r))
not (channel_free 71))
channel _free 71)
communicated_soil_data 7wl)

(
(
(
(
(
(>=
)
f
(
(
(
(

157

)

(available 7r)
(decrease (energy 7r) 4)

)

(:raction communicate_rock_data

)

(
(
(
(
(
(>=
)
:effect
(
(
(
(
(
(
)

:parameters (?r — rover 71 — lander 7wl — waypoint 7

w2 — waypoint ?w3 — waypoint)

:precondition

(and (at 7r 7w2)

at_lander 71 7w3)
have_rock_analysis 7r ?7wl)
visible 7w2 7w3)

available 7r)

channel _free ?71)

(energy 7r) 4)

and (not (available 7r))
not (channel_free 71))
channel_free 71)
communicated_rock_data ?7wl)
available 7r)

decrease (energy ?7r) 4)

(:raction communicate_image_data

:parameters (7r — rover 71 — lander 70 — objective 7m

— mode 7wl — waypoint ?w2 — waypoint)

:precondition

(and (at 7r ?7wl)
(at_lander 71 ?7w2)
(have_image 7r 7o 7m)
(visible 7wl 7w2)
(available 7r)
(channel _free 71)
(>= (energy ?r) 6)

158

)

teffect
(and (not (available ?7r))
(not (channel_free 71))
(channel_free 71)
(communicated_image_data 7o 7m)
(available 7r)
(decrease (energy 7r) 6)
)

{

"navigate:energy”: {
"type”: "zoo”,
"scales”: [0.33, 0.33, 0.33],
”components” : [{

"type”: "gaussian”,

"from”: 7,

"to”: 9,

"zero”: §,

”parameters”: {
"sigma”: 1

}

b A

"type”: "gaussian”,

"from”: 9,

"to”: 11,

"zero”: 10,

”parameters”: {
"sigma”: 1

}
b A

"type”: " gaussian”,

159

"from” : 11,
"to”: 21,
"zero”: 16,

"parameters” :

"sigma”: 1

160

Appendix D: Domain &
Configuration Used in Chapter
6

Rovers - multiple outcomes, arbitrary uncer-
tainty

(define (domain Rover)
(:requirements :typing :fluents)

(:types rover waypoint store camera mode lander
objective)

(:predicates

(at ?r — rover 7w — waypoint)

(at_lander 7?1 — lander ?w — waypoint)

(can_traverse ?7r — rover 7wl — waypoint ?w2 —
waypoint)

(equipped_for_soil_analysis ?r — rover)

(equipped_for_rock_analysis ?r — rover)

(equipped_for_imaging ?r — rover)

(empty 7s — store)

(have_rock_analysis ?r — rover 7w — waypoint)

(have_soil_analysis ?r — rover 7w — waypoint)

(full ?s — store)

161

)

(calibrated 7c¢c — camera ?r — rover)

(supports 7c — camera "m — mode)

(available 7r — rover)

(visible 7wl — waypoint ?w2 — waypoint)
(have_image ?r — rover 7o — objective ?m — mode)
(communicated_soil data 7w — waypoint)
(communicated_rock_data ?w — waypoint)
(communicated_image_data 70 — objective ?m — mode)
(at_soil_sample ?w — waypoint)

(at_rock_sample ?w — waypoint)

(visible_from 70 — objective 7w — waypoint)
(store_of 7s — store ?r — rover)
(calibration_target ?7c¢ — camera 7o — objective)
(on_board 7c¢c — camera ?r — rover)

(channel_free 71 — lander)

(in_sun ?w — waypoint)

(:functions

)

(energy 7r — rover)

(:action navigate—outcome—lucky

:parameters (7r — rover ?wl — waypoint ?w2 — waypoint

)

:precondition
(and (can_traverse ?7r 7wl ?7w2)
(available 7r)
(at ?7r ?wl)
(visible 7wl 7w2)
(>= (energy 7r) 10)

)

ceffect
(and (not (at 7r 7wl))
(at 7r ?7w2)
(decrease (energy 7r) 8)
)

162

(:action navigate—outcome—nominal

:parameters (7r — rover ?wl — waypoint ?w2 — waypoint
)

:precondition
(and (can_traverse ?7r 7wl ?7w2)
(available 7r)
(at 7r 7wl)
(visible 7wl 7w2)
(>= (energy 7r) 10)

at 7r 7w2)

)

f

(and (not (at 7r 7wl))

(

;decrease (energy ?7r) 9)

(:action navigate—outcome—unlucky
:parameters (7r — rover ?wl — waypoint ?w2 — waypoint
)
:precondition
(and (can_traverse ?r 7wl 7w2)
(available 7r)
(at ?r ?wl)
(
(

at 7r 7Tw2)

)

f

(and (not (at 7r 7wl))

(

gdecrease (energy 7r) 16)

(:action recharge
:parameters (?r — rover 7w — waypoint)
:precondition

163

and (at 7r 7w)
in_sun ?w)

(
(
)
effect
gand (assign (energy 7r) 100)

)

(:action sample_soil
:parameters (7r — rover 7s — store 7w — waypoint)
:precondition
(and (at 7r 7w)
at_soil_sample ?w)
equipped_for_soil_analysis 7r)
store_of 7s 7r)
empty 7s)
(energy 7r) 2)

and (not (empty 7s))

full ?s)
have_soil_analysis ?7r 7w)
not (at_soil_sample 7w))
decrease (energy ?7r) 2)

(
(
(
(
(>=
)
:effect
(
(
(
(
(
)

)

(:action sample_rock
:parameters (7r — rover ?s — store 7w — waypoint)

:precondition
(and (at 7r 7w)

164

(and (not (empty 7s))
(full 7s)
(have_rock_analysis 7r 7w)
(not (at_rock_sample ?w))
(decrease (energy 7r) 4)

)

)

(:action drop
:parameters (7r — rover ?7s — store)
:precondition

(and (store_of 7s 7r)
(full 7s)

)

ceffect

(and (not (full 7s))
(empty 7s)

)

)

(:action calibrate
:parameters (?r — rover 7c — camera Yo — objective 7w
— waypoint)
:precondition
(and (equipped_for_imaging 7r)
calibration_target ?7c 70)

on_board 7c¢ 7r)

(
(
(VlSlble from 7o ?w)
(
(>= (energy 7r) 2)

)

cef

(and (calibrated 7c¢ 7r)
(decrease (energy 7r) 2)
)

)

(:action take_image

165

:parameters (?r — rover 7w — waypoint 7o — objective
?7¢c — camera m — mode)

:precondition
(and (calibrated 7c 7r)

on_board ?7c¢ 7r)

equipped _for_imaging 7r)

supports 7c 7m)

visible_from 7o ?w)

at 7r 7w)
(energy 7r) 1)

ceffect

and (have_image 7r 7o 7m)
not (calibrated 7c¢ 7r))
decrease (energy 7r) 1)

(
(
(
(
(
(>=
)
f
(
(
(
)

)

(raction communicate_soil_data

:parameters (7r — rover ?1 — lander 7wl — waypoint 7
w2 — waypoint ?w3 — waypoint)
:precondition

(and (at 7r 7w2)

at_lander 71 7w3)
have_soil_analysis ?7r ?7wl)
visible w2 ?7w3)

available 7r)

channel _free 71)

(energy 7r) 4)

and (not (available 7r))
not (channel_free 71))
channel _free 71)
communicated_soil_data 7wl)
available 7r)

decrease (energy 7r) 4)

(
(
(
(
(
(>=
)
:effect
(
(
(
(
(
(
)

166

)

(raction communicate_rock_data

:parameters (7r — rover ?1 — lander 7wl — waypoint 7
w2 — waypoint ?w3 — waypoint)
:precondition

(and (at 7r 7w2)

at_lander 71 7w3)
have_rock_analysis 7r 7wl)
visible w2 ?w3)

available 7r)

channel _free 71)

(energy 7r) 4)

and (not (available 7r))
not (channel_free 71))
channel _free 71)
communicated_-rock_data 7wl)
available 7r)

decrease (energy 7r) 4)

(
(
(
(
(
(>=
)
:effect
(
(
(
(
(
(
)

)

(:raction communicate_image_data

:parameters (?r — rover 71 — lander 70 — objective ’m
— mode ?wl — waypoint 7w2 — waypoint)
:precondition

(and (at 7r 7wl)
(at_lander 71 ?7w2)
(have_image 7r 7o 7m)
(visible 7wl ?w2)
(available 7r)
(channel_free 71)
(>= (energy 7r) 6)

)
ef
(

and (not (available 7r))

167

(not (channel_free 71))
(channel_free 71)
(communicated_image_data 7o 7m)
(available 7r)

(decrease (energy 7r) 6)

)

"navigate—outcome—lucky:energy”: {
"type”: "gaussian”,
"from” : 7.5,
"to”: 8.5,
"zero” . 8§,
"parameters”: {
"sigma”: 1

}
}

"navigate—outcome—nominal:energy”: {
"type”: "gaussian”,
"from” : 8.5,
"to”: 9.5,
"zero”: 9,
"parameters”: {
"sigma”: 1

}
2

"navigate—outcome—unlucky:energy”: {
"type”: "gaussian”,
"from” : 11,
"to”: 21,
"zero”: 16,

"parameters”: {

168

"sigma”: 1

169

