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Abstract— The long-term robustness of pattern 

recognition-based myoelectric systems draws more attention 

from researchers. Though, there is a lack of analysis 

investigating how features change over time. This study used 

two metrics: Coefficient of variation of the first four moments 

(CoV) and Two-Sample Kolmogorov-Smirnov Test statistics 

(K-S); to quantify the stability of feature distributions and 

correlate their changes over time to classification 

performance. We acquired two surface electromyography 

(sEMG) channels from sixteen subjects (ten able-bodied and 

six trans-radial amputees) performing three hand motions. 

Results showed that the selected metrics correlate to some 

degree to classification accuracy. Feature distributions are 

affected less by the time when data are combined. These 

results imply that stable temporal change may be an 

acceptable way to choose robust features in long term 

investigations.  
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I. INTRODUCTION  

Over the past twenty years, pattern recognition based 
myoelectric prostheses have developed rapidly. Many 
researchers focus on improving the classification 
performance of myoelectric-controlled prostheses in acute 
settings[1]. The classification has achieved over 90% 
accuracy based on researchers' proposed methods with 
dramatic performance degradation in clinical applica-
tions[2]. For example, Kaufmann et al. (2010) [3] 
investigated the performance of the state-of-art pattern 
recognition algorithm on 21 days of sEMG data. Results 
showed that classification accuracy dropped gradually with 
the initially trained classifier. Several causes of long-term 
sEMG variation have been explored, such as electrodes shift 
[4], muscle fatigue [5], arm position [6], user adaptation [7] 
etc.  

In the pattern recognition-based scheme, feature 
extraction is crucial to extract discriminable information. 
The comparison of utilising different classifiers and feature 
selection illustrated that feature selection considerably 
influences classification performance [8]. Variations 
between training data and testing data will lead to 
inconsistencies in feature space, which will directly 
interfere with the classifier's estimation of different classes 
of signals. In a past study, Phinyomark et al. (2013) [9] 

evaluated 50 time-domain and frequency-domain features 
using sEMG recorded during 21 days to determine the best 
robust single feature and feature set. Results showed sample 
entropy and proposed feature set could achieve 93.37% and 
98.87% classification accuracy, respectively, with only 
initial first-day training. In addition, Tkach et al. (2010) [8] 
simulated the physical and physiological changes that could 
occur in daily use and investigated the stability of time-
domain features against these changes. In their thorough 
analysis, they demonstrated the impact of these changes on 
classification accuracy. Sequentially,  based on these 
results, the most stable feature and feature set are also 
selected. 

Despite these recent findings of the role of stability of 
long-term classification performance, the research outputs 
still cannot meet the clinical requirement. The neglected 
aspect of long-term sEMG study is how features changes 
can predict performance. Quantifying feature characteristics 
can effectively assist people to understand feature space 
variation in the context of long-term applications. In this 
paper, we aim to assess whether the stability of feature 
distributions correlate with performance. The analysis was 
based on the pseudo-true distribution functions constructed 
using kernel estimation. The stability of two distributions is 
quantified using the following metrics: Coefficient of 
variation of the first four moments (CoV) and Two-Sample 
Kolmogorov-Smirnov Test statistics (K-S).  

 

II. METHODS 

A. Subjects 

This analysis used previously reported data by Waris et 
al. (2018) [10]. Ten able-bodied subjects (all male) and six 
trans-radial amputees (all males, three left and three right-
hand amputations) participated. 

B. Data Collection 

Surface EMG signals were acquired by a commercial 
acquisition system (AnEMG12, OT Bioellectronica, Torino, 
Italy), filtered (10-500Hz) and sampled at 8000 Hz.  The 
entire experiment consisted of seven sessions throughout a 
week (seven days). Subjects performed 11 motions 
repeatedly up to four times in each session.  Each hand 
motion was sustained for up to five seconds with five 
seconds rest in-between movements. This study only uses 
two channels (one flexor and one extensor) and three classes 
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(Rest, Open Hand, Close Hand) as a feasibility 
investigation.  

C. Signal Processing and Feature Extraction 

Surface EMG signals were digitally high-pass filtered 
(fourth-order Butterworth filtered) between 20 and 500 Hz. 
We reduced power line interferences using a notch filter at 
50 Hz. From every five seconds of contraction time, the first 
second was designated as the onset phase and the last second 
as the offset phase to avoid non-stationarity. Subsequently, 
three seconds of the steady-state phase per repetition were 
used for the extraction of features. Forty features were 
extracted from incrementing (by 40 ms) windows of 200 ms 
duration. These features were: Integral Absolute Value, 
Mean absolute value (MAV), Modified Mean Absolute 
Value type 1 (MAV1), Modified Mean Absolute Value type 
2 (MAV2), Simple Square integral (SSI), Variance (VAR), 
Absolute Value of 4th Temporal Moment (TM4), Root 
Mean Square (RMS), v-Order(3rd) (V3), Log Detector 
(LOG), Waveform Length (WL), Average Amplitude 
Change (AAC), Difference Absolute Standard Deviation 
Value (DASDV), Amplitude of the first burst (AFB), Zero 
Crossing (ZC), Myo-pulse Percentage Rate (MYOP), 
Willison Amplitude (WAMP), Slope Sign Change (SSC), 
Cepstral coefficients (CC), Approximate entropy (ApEn), 
Detrended fluctuation analysis (DFA), Higuchi's fractal 
dimension (HFD), Katz's fractal dimension (KFD), Kurtosis 
(KT), Maximum fractal length (MFL), Sample entropy 
(SpEn), Skewness (Skew), Maximum amplitude (MA), 
Mean Frequency (MNF), Median Frequency (MDF), Peak 
Frequency (PKF), Mean power (MP), Total power (TP), 
The 2nd spectral moments (SM2), Frequency ratio (FR), 
Power spectrum ratio (PSR), Variance of central frequency 
(VCF), Maximum to minimum drop in power density ratio 
(MMDP), Power spectrum deformation (PD), Signal-to-
noise ratio (SNR). 

The extracted features are mainly in the time domain and 
the frequency domain. Since the time-frequency domain 
features are sensitive to fluctuations and result in low 
classification performance [11], it was not considered in this 
research. 

D. Distribution functions and data analysis 

Data analysis was performed on a single feature basis. 
Data were divided into training sets composed of 
incremental cumulation of days from Day1 to Day6, and the 
test set contained Day7 only, as depicted in Fig 1. This study 
investigated whether a shorter interval between training and 
testing set would result in better classification performance. 
Hence, we chose to add new days to the training set instead 
of taking random combinations between days. For each set 
(training or testing), the distribution function (or probability 
density function, PDF) was constructed using kernel 
estimation. The first four moments of each distribution were 
then computed for each distribution. To compare the 
distribution of training set with the distribution of the test 
set, the following metrics were computed:  

(1) Coefficient of Variation (CoV): the CoV of moments 
between the PDF of the training set and PDF of the 
testing set was computed. The CoV of all moments 
were pulled together and averaged.   

(2) Two-sample Kolmogorov-Smirnov test statistics (K-S) 
were used to access the similarity between the PDFs.  

Each metric is an average over channels, motions and days 
to account for the multi-dimension of the feature space. We 
chose the cumulative training set as it shows stable 
distributions, as shown in Fig 2. 

Linear discriminant analysis (LDA) was used as a classifier 
due to its simplicity and robustness compared to other 

  
Fig. 1. The pipeline of feature distribution analysis based on cumulative 

training set and a single test set (Day7). There were six sets of results for 

each analysis corresponding to different training feature sets. 
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Fig. 2. Probability density functions of mean absolute value, the above 

one is cumulative days distribution and below one is single days 

distribution 
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conventional classifiers [3][12]. Between-days classifica-
tion was carried out to investigate the effect of time on 
classification performance. In between-day classification, 
the classifier was trained by the cumulative days training set 
and tested with the seventh day's data, as Fig.1 shows.  

We fitted a line between the average values over all subjects 
of each metric as independent variables against the average 
cumulative between-days accuracy (CBDA). R-squared and 
p-values were estimated for each linear model.  
Subsequently, multiplying inverse CoV and K-S values 
with CBDA, respectively, the ten largest features were 
selected as the robust features for each metric. 

III. RESULTS 

A. Probability density function 

Probability density functions of all forty features were 
calculated and plotted for each movement, channel and 
subject. Fig. 2 shows an example of probability density plots 
of mean absolute value on a single day and cumulative days 
datasets. We note that the PDF changes over days, but can 
be kept stable when combining days.  

B. The first four central moments & Kolmogorov-

Smirnov test statistics 

For CoV and K-S (Fig. 3, Fig. 4), a proportional effect 
has been observed where features with stable distributions 

(lower values of CoV and higher values of K-S) tends to 
perform better than features with higher values of CoV and 
lower values of K-S. The reported R2 is 0.171 for CoV and 
0.184 for K-S, respectively. Their values indicate a very low 
degree of linearity, but the slopes are significant (P < 0.05).  

      In addition, The ten features with the best correlations 
are presented in Table I. Features that appear twice in the 
two metrics are Katz's fractal dimension (KFD), 
Approximate entropy (ApEn) and Detrended fluctuation 
analysis (DFA). 

IV. DISCUSSION 

Extensive studies investigated the longevity of EMG 
signals and tried to mitigate the effect induced by time on 
classification performance. Researchers tested and used 
various state-of-the-art classifiers in multi-day classification 
[3][9], evaluated the long-term performance of different 
types of EMG signals[12], developed novel deep learning 
techniques to improve classification performance over time 
[13][14]. All of them used classification accuracy as criteria 
to demonstrate the time-induced effect in EMG signals. 
However, An essential element missing from these studies 
is the change in feature space over time. Classification 
accuracy depends on the discriminant ability of classifiers 
and the quality of features. Hence, it will be more intuitive 
to inspect changes in long-term EMG signals from the 
perspective of feature space. He et al. (2015) [15] used 

  
Fig. 3. Scatter plot of a linear regression model where the Combined Days 

Accuracy (CBDA) is related to the log of Coefficient of Variance (CoV) 

of the first four moments 
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Fig. 4. Scatter plot of a linear regression model where the Combined 

Days Accuracy (CBDA) is related to the Kolmogorov-Smirnov test 

statistics (K-S) 
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TABLE I. THE TEN BEST ROBUST FEATURES FOR COV AND K-S AND CORRESPONDING CBDA, COV AND K-S VALUES 

Rank 

Metrics 
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

CoV HFD KFD DFA MYOP PD ApEn SpEn SSC MNF ZC 

CoV 

value 
0.0003 0.0004 0.0007 0.0008 0.0012 0.0016 0.0021 0.0020 0.0027 0.0030 

CBDA 0.6495 0.5772 0.6685 0.4894 0.5335 0.5890 0.5899 0.5464 0.6332 0.6186 

K-S KFD MDF MFL AAC WL MNF DASDV ApEn MMDP DFA 

K-S 

value 
0.3644 0.3091 0.3153 0.3153 0.3153 0.2884 0.3094 0.3017 0.3174 0.2598 

CBDA 0.5772 0.6139 0.5981 0.5981 0.5981 0.6332 0.5898 0.5890 0.5478 0.6685 

 



separability index and repeatability index to quantify the 
feature space changes and correlated them with multi-day 
classification performances. They demonstrated that 
decreased variations in EMG feature space resulted in 
gradually increased between-day classification perfor-
mance. As their primary focus was on user adaptation, the 
degree of linearity between the two indices and multi-day 
performance was not illustrated. This study achieved 
quantification of feature change for long-term EMG 
investigation. The probability density functions visualised 
the change in EMG over multiple days. For easy interaction, 
the first four central moments are quantitative measures to 
describe each feature distribution. Kolmogorov-Smirnov 
test statistics quantified variations between two 
distributions. Both metrics exhibited some degree of 
correlation with performance.  

However, these results were low compared to 
Phinyomark's study[9]. The low accuracy might be due to 
only two channels of sEMG signals and the average over 
multiple scenarios. Hence, it is necessary to discard low-
quality data from the training set to prevent performance 
degradation. This investigation is limited to using one-
dimensional metrics that are averaged to account for 
multidimensionality. More research is needed to determine 
intuitive metrics to quantify multidimensional probability 
distributions. 

V. CONCLUSION 

In this study, we presented an investigation of long-term 
classification performance. The paper demonstrated the 
potential of the first four moments and Kolmogorov-
Smirnov test statistics to correlate with performance. In 
conclusion, stability of feature distribution can be a way to 
predict performance behaviour, not just with time but to 
other factors such as limb position or fault detection in 
general.  
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