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GelFinger: A Novel Visual-Tactile Sensor with 
Multi-Angle Tactile Image Stitching 

Zhonglin Lin1, Member, IEEE, Jiaquan Zhuang1, Yufeng Li1, Xianyu Wu1, Shan Luo2, Daniel Fernandes Gomes2,3, 
Feng Huang1, and Zheng Yang1 

Abstract—Visual-tactile sensors that use a camera to capture 
the deformation of a soft gel layer have become popular in recent 
years. However, these sensors have a limited receptive field, 
which can hinder their ability to perceive tactile information 
effectively. In this paper, we propose a novel visual-tactile sensor 
named GelFinger that closely resembles the human finger and is 
well-suited for detecting various complex surfaces. The 
GelFinger sensor is equipped with an embedded miniature 
motor that allows for the adaptation of the camera pose and the 
scanning of a large contact area. During the detection process, 
the camera rotates to multiple angles to capture the tactile image 
of the contact area. To stitch together the tactile images obtained 
at different camera poses, we use an As-Projective-As-Possible 
image stitching algorithm to form a global view of the contact. 
We demonstrate the effectiveness of the GelFinger sensor in 
assessing large surfaces by using it to reconstruct curved crack 
outlines. Comparative experimental results show that the 
proposed sensor can effectively detect cracks and has the 
potential to assist humans in detecting defects on curved surfaces 
of infrastructure such as pipelines. 
 

Index Terms—Force and tactile sensing, perception for 
grasping and manipulation, object detection, segmentation 
and categorization 

I. INTRODUCTION 
s robots continue to be utilized more frequently in 
human life and industrial applications, there is an 
increasing demand for higher performance from 
them.   Tactile perception is a critical way for robots 
to perceive and interact with their environment, 

making it essential for task execution. Tactile information is 
also indispensable for research on robot dexterous 
manipulation, autonomous cognition, human-robot 
interaction, etc. At present, robots mainly use capacitive [1], 
photoelectric [2], or piezoresistive [3] tactile sensors to obtain 
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Fig. 1. Our proposed GelFinger sensor, covered with a soft 
silicone pad, is used to assess a textured pipeline, with its 
output shown on the bottom left. 
 
 
 
 
tactile information. Compared to these sensors, visual-tactile 
sensor visualizes the tactile information through a camera to 
obtain richer tactile information, such as texture, contact 
force, and other information. 

In recent years, visual-tactile sensors have attracted 
increasing attention due to their low cost, high resolution, and 
strong anti-interference capability. Typically, these sensors 
consist of three components: an elastomer contact medium, 
LED lighting, and a camera. By capturing the elastomer 
deformation through the camera, high-resolution tactile 
images can be obtained, enabling the 3D reconstruction of the 
contact surface [4] and measurement of the contact force [5]. 
With the addition of deep learning, tactile sensors can perform 
various applications such as detecting contact surface texture 
[6] and multi-sensor information fusion for fine operation 
tasks [7]. Despite the development of many visual-tactile 
sensors such as GelForce [8], GelSight [9], and DIGIT [10], 
most sensors have a small contact surface area and are mostly 
flat, limiting their detection capabilities to regular flat 
surfaces. When faced with a large detection surface, these 
sensors may struggle to provide effective detection. To 
address this issue, Cao et al. [11] proposed a sensor called 
TouchRoller, which features a rollable cylindrical design for 
fast, continuous detection of large areas. However, due to its 
structural design, TouchRoller is difficult to detect on 
irregular or undulating surfaces. 

The goal of our work is to develop a visual-tactile sensor 
capable of efficient large-area detection on both planar and 

A 
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curved surfaces. To achieve this, in this paper, we present a 
new sensor design named GelFinger, as shown in Fig. 1, 
which can acquire more tactile information with a single 
touch. Our visual-tactile sensor is versatile and can be applied 
to various application scenarios such as robot dexterous 
manipulation and pipeline inspection. Our work offers three 
main contributions to this field: 

• We introduce the GelFinger sensor, a novel visual-
tactile sensor with a curved contact surface that 
resembles the shape of the human finger. The silicone 
of the sensor covers an area of approximately 74.6 cm2. 
After the sensor makes contact with an object, the 
internal camera sequentially captures five photos. 
Then, five photos are stitched together, and the 
stitched picture can cover an area of 15 cm2. The 
design enables the sensor to meet the detection 
requirements of curved surfaces. 

• We have designed a miniature transmission module 
within the GelFinger sensor, which enables the camera 
to rotate and acquire tactile images of the contact area 
from various angles. This approach overcomes the 
challenge of poor imaging quality when detecting 
curved surfaces using tactile sensors. 

• Using the As-Projective-As-Possible (APAP) image 
stitching method, we can obtain a large area of 
detection image information with just one contact. The 
stitched image is then used to detect cracks in 
pipelines using the DeepLabv3+ algorithm with 
ResNet as the backbone network. Our experimental 
results show that the proposed sensor has achieved an 
impressive MIoU of 90.9% in detecting pipeline 
cracks. 

The structure of the paper is outlined as follows: Section II 
provides a comprehensive review of related works on visual-
tactile sensor designs. Section III details the design and 
manufacturing process of the GelFinger sensor. In Section IV, 
we present the image stitching method used to combine the 
data collected from the sensor and showcase the stitching 
results from the GelFinger sensor. Section V focuses on 
demonstrating the detection performance of the sensor, 
including its ability to efficiently detect large areas. In Section 
Ⅵ, we introduce our pipeline crack detection algorithm and 
provide details on the tactile dataset and model training. With 
the results of our crack detection experiments. Finally, 
Section VII offers concluding remarks, highlights the key 
contributions of our work and outlines optional directions for 
future research. 

II. RELATED WORK 

A. Visual-tactile Sensors 
GelSight is a notable research branch in the field of visual-

tactile sensors. The retrographic sensor, first introduced by 
Johnson and Adelson [12] in 2009, served as the basis for the 
development of GelSight. This novel sensor is capable of 
converting information about surface shape and pressure into 
images. Johnson et al. later created an improved version of the 
retrographic sensor in 2011 [13], which was designed to be 
portable and handheld. In 2014, Li et al. [14] proposed a cube 
design for the GelSight sensor. Further improvements to 
GelSight were introduced in 2017 and a hexagonal prism-
shaped sensor was proposed [9]. 

There is a diverse range of visual-tactile sensors that have 

been developed building on the foundation of GelSight but 
with cosmetic and structural modifications to cater to specific 
functional requirements. For instance, Gomes et al. [15] [16] 
developed a finger-type visual-tactile sensor known as 
GelTip. The sensor is constructed by covering the surface of a 
transparent tube with a metal coating of silicone, allowing it 
to sense contact anywhere on its surface. Similarly, Do and 
Kennedy [17] proposed a hemispherical tactile sensor called 
DenseTact, which is capable of estimating the sensor surface 
deformation in real time using convolutional neural networks. 
Remero et al. [18] developed a visual-tactile sensor with a 
curved contact surface that uses directional illumination in the 
form of a light tube and can capture high-resolution contact 
signals from contact surfaces. Sun et al. [19] propose a 
thumb-sized tactile sensor named Insight, which is capable of 
sensing the full range of force through vision and machine 
learning. However, all these sensors suffer from a limited 
receptive field, making them ineffective in assessing large 
surfaces. 

B. Crack Detection 
Cracks are a pervasive issue in infrastructures such as 

pipelines and roads, posing serious safety risks. Early 
detection of cracks is crucial for their maintenance and safety. 
Traditional manual methods of crack detection are associated 
with high time consumption, cost, and subjectivity. Visual 
detection technology has emerged as the most common 
method of crack detection and recent advancements in deep 
neural networks have enabled pixel-level detection. In [20], 
end-to-end multi-scale full-convolutional and deconvolutional 
neural are developed for pixel-level detection. By learning 
crack features in the complex fine-grained background of 
asphalt pavements, semantic segmentation of richer multi-
scale crack feature information is realized. In [21], an 
improved DeepLabv3+ network is proposed for denser pixel 
sampling, achieving higher accuracy in crack segmentation. 
However, vision-based crack detection methods are 
susceptible to external influences and can be challenging to 
use in special environments. 

In this study, we propose a new approach to pipeline crack 
detection that is based on the GelFinger sensor. By using 
tactile images of pipelines captured by the GelFinger sensor, 
this approach has shown promising results and proves that the 
GelFinger sensor can be a valuable tool for detecting cracks in 
pipelines. 

III. DESIGN AND MANUFACTURE 

A. Working Principle of GelFinger Sensor 
Visual-tactile sensors commonly consist of several key 

components including a camera, LED lights, a transparent 
acrylic support plate, a transparent silicone elastomer, and a 
metal reflective coating. The LED lights inside the sensor 
provide illumination, while transparent silicone elastomer and 
reflective metal coating act as the contact medium for tactile 
sensing. Additionally, a transparent acrylic plate serves as a 
support for the sensor. When the elastomer comes into contact 
with an object, it deforms according to the object’s surface 
geometry, capturing tactile information that can be visualized 
through the camera. 

The workflow of the GelFinger sensor is shown in Fig. 2. 
When the sensor comes in contact with an object, the imaging 
module is positioned to capture the initial tactile information,  
 

CONFIDENTIAL. Limited circulation. For review only
IEEE RA-L submission 23-0719.2

Preprint submitted to IEEE Robotics and Automation Letters as Submission for RA-L only
Received June 13, 2023 21:26:18 Pacific Time



 
LIN et al.: GELFINGER: A NOVEL VISUAL-TACTILE SENSOR WITH MULTI-ANGLE TACTILE IMAGE STITCHING                                                                                        3 
 
 

 
Fig. 2. Workflow of the GelFinger sensor. 
 
resulting in the first tactile image. The imaging module then 
rotates at a certain angle to capture the second tactile image 
and continues to rotate to obtain additional tactile images 
from multiple angles and positions. Once a set of tactile 
images has been captured, they are stitched together using an 
image stitching algorithm to create a complete tactile image to 
enable the detection of larger areas of the object being sensed. 

B. Sensor Structure Design 
The structural design of the GelFinger sensor proposed is 

shown in Fig. 3. The sensor’s contact surface is 
predominantly the fingertip curved contact surface, which 
comprises a metal reflective coating, a transparent silicone 
layer, and a transparent support layer from the outermost to 
innermost layer. The sensor integrates various components, 
including an imaging module, LED illumination module, 
micro motor transmission module, and an external control 
circuit module. The LED illumination module consists of two 
U-shaped PCBs, located in the inner plane of the sensor and 
the side plane of the camera, respectively, and contains red, 
green, and blue LEDs to ensure adequate illumination. The 
camera is positioned at the center of the LED light module 
and is driven by a micro motor, enabling the imaging module 
to capture images from any angle. Finally, the tail of the 
sensor is designed with a manipulator connector to enable 
installation on a manipulator for detection. 

GelFinger’s fingertip features a uniquely designed curved 
contact surface that allows it to adapt to a wide variety of 
detection environments, including uneven surfaces and the 
interiors of pipelines and other complex shapes. Unlike many 
existing sensors with planar contact surfaces that are limited 
to detecting only planar contact surfaces or objects with 
regular geometric shapes, GelFinger can detect irregular 
shapes and surfaces with greater accuracy and flexibility. 

C. Optical System Design 
The GelFinger sensor operates on the principle of 

receiving tactile information through an optical system that is 
crucial to the sensor’s performance. The optical system 
consists of a camera module, an RGB LED illumination 
module, and a micro motor transmission module. The sensor’s 
metal reflective coating and housing isolate external light 
sources, ensuring that the sensor is illuminated solely by the 
LEDs, which provide a constant level of brightness. The 
internal imaging system of the GelFinger sensor is driven by a 
micro motor transmission module that rotates the imaging 
module to multiple angles. The LED light source within the 
sensor refracts and reflects when it hits the metal reflective 
coating, producing tactile information that is captured by the 
internal imaging module. 

During the development of the GelFinger sensor, two 
design options were considered for the LED lighting module. 
The first option involves a micro-motor-driven LED lighting  
 

 
Fig. 3. The GelFinger is comprised of several key 
components: A) A specialized fingertip with a coating layer 
made from reflective metals and a transparent silicone layer; 
B) A transparent support layer that provides structural support 
to the fingertip and helps to distribute pressure evenly across 
its surface; C) An RGB LED lighting system that illuminates 
the fingertip; D) A sensor housing; E) A connector for a 
robotic arm that allows GelFinger to be seamlessly integrated 
into larger robotic systems for enhanced functionality; F) A 
drive shaft and bearing that allow for precise and smooth 
movements of the imaging module; G) A micro motor; H) A 
camera and mounting system. I) A 3D model of GelFinger. 
 
module that rotates together with the camera to direct the 
LED light to the contact point for illumination. The second 
option, detailed in Section III-B, was tested against both 
options in an experiment using a 3D-printed sphere as the 
detection object and the same camera for both options. The 
LED lighting module design and the experimental results, 
shown in Fig. 4, indicated that the second solution was 
superior to the first one. The second option results in better 
light distribution. Upon analysis, we determine that the LED 
light of the first option shines directly onto the contact point, 
causing a lower contrast image with less surface gradient 
information. In addition, this solution results in a change in 
the angle of incidence of the RGB LED lights due to the 
rotation of the LED lighting modules. In contrast, the LED of 
the second option shines from the side, providing higher 
image contrast and more gradient information. Based on these 
findings, we adopted the LED light fixation scheme of the 
second option for the final design of the GelFinger sensor.  

D. GelFinger Sensor Fabrication 
In the development of GelFinger, fabricating an elastomer 

layer of fingertip-type surfaces with good transparency, 
resilience, hardness, and viscosity presents a significant 
challenge. We focus on finding a hybrid solution that could 
meet these requirements. Through experimentation, we found 
that using a blend of Smooth-On's Solaris parts A and B, and 
Slacker in 1:1.5:1 produced an elastomer with optimal 
hardness, transparency, viscosity, and resilience. To create the 
specially shaped silicone elastomer with a fingertip curved  
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Fig. 4. Experimental results of two LED lighting module 
design solutions. As shown in the figure, the tactile image on 
the right provides a higher image contrast and greater 
gradients compared to the left one. 
 
surface, we developed a molding process. The mold is 
composed of two layers, and once the silicone is poured and 
solidified, the upper and lower parts of the mold are separated 
to obtain the desired fingertip-type curved silicone shape. 

Achieving a good fit between the metal reflective coating 
and the transparent silicone elastomer, while also ensuring the 
coating is opaque, is crucial in the fabrication. To prepare the 
coating, we mixed Smooth-On's Psycho Paint A and B, 
aluminum powder, and Smooth-On's Cast Magic Silver Bullet 
in a ratio of 1:1:0.3:0.2, and dissolved the mixture using 
Smooth-On's NOVOCS Matte. The aluminum powder with a 
diameter of 4 × 10-6 m from a company named Zuxing. 
Finally, we sprayed the coating with a spray gun. The 
transparent support layer of the sensor was 3D printed, using 
VeroClear materials from Stratasys. After finishing printing, 
it needs to be sanded and polished, and varnish is sprayed on 
its surface. The housing part of the sensor was also 3D 
printed, and the completed preparation and assembly of each 
part can be seen in Fig. 3. 

E. Control System 
The imaging module of the sensor uses the OmniVision 

OV5640 image sensor, which captures images through the 
USB camera controller AU3841 and transmits the images to a 
PC via USB. The communication between the PC and the 
STM32F407ZET6 ARM processor is facilitated by the serial 
communication module (CH340), which sends control signals 
and receives feedback signals from the ARM processor. The 
ARM processor processes the output of Pulse Width 
Modulation (PWM) signals and controls the motor drive 
module (L298N) and the LED driver module (ULN2003) 
according to the received instructions. The micro stepper 
motors and the LED lighting circuits are driven 
independently. A software package has been developed to 
control the sensor, and the components of the control system 
are shown in Fig. 5. 

 

 
Fig. 5. Control system of the GelFinger. 
 

The motor control is a crucial aspect of the sensor's 
operation. During the acquisition process, the robotic arm 
controls the sensor to make contact with the object being 
measured. Since there is no external camera assistance, the 
contact point is predetermined or manually determined. As 
shown in Fig. 2, the micro stepper motor drives the camera to 
rotate downward for 5° and acquires the first picture, which 
takes 1 s from the start of the motor rotation to the acquisition 
of the first picture. The above steps are repeated to capture 5 
images for a total of 5 s. The GelFinger is mounted on the 
robot arm to make contact with the object, and the sensor 
performs a small angle rotation with the rotation speed 
matching the internal camera. The five images are then 
stitched together using an image stitching algorithm detailed 
in Section IV. 

IV. IMAGE STITCHING 

A. Image Stitching Algorithms 
The sensor employs advanced image stitching technology 

to stitch tactile images captured from multiple angles, 
allowing it to detect a single, large area with high-quality 
image quality. Two different stitching methods were 
employed in the experiment: the image stitching method 
based on the camera calibration, and the APAP image 
stitching algorithm. 

The stitching method based on camera calibration uses the 
camera calibration information to calculate the image 
alignment parameters and determine the projection 
transformation relationship between images. In the 
subsequent formal stitching, only the projection map and 
fusion based on the obtained transformation relationships are 
required to obtain images with large fields of view. 

The APAP image stitching algorithm [22], on the other 
hand, is a local transformation method that is particularly 
effective when dealing with significant parallax between input 
images. It works by dividing the image into C1×C2 grids and 
calculating the corresponding local homography matrix using 
the Moving Direct Linear Transformation (MDLT) method. 
For the local homography matrix ˆkh to be estimated, the 
calculation formula is as (1), and the final required local 
transformation matrix ˆkh  can be obtained by solving the 
eigenvector corresponding to the minimum singular value: 

 

2
2

1

ˆ arg min arg min

([ ])

n
k k k

i
i

k k k k k k k
1 1 2 1 n n

w

diag w w w w L w w
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=

∑ i
h h

h a h W Ah
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where ia  is the linear parameter matrix ||h|| corresponding to 
the converted matching feature point variable relationship, 
and it is specified as 1. n  is the number of matching point  
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Fig. 6. Significant parallax in the tactile images obtained from 
different angles. 
 
pairs, and k

iw  is the corresponding weight of feature 
points i ix y( , ) . The solution for k

iw  is as follows: 
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where σ is the Gaussian scale factor, γ is the threshold value 
set by ignoring feature points that are too far from the center 
of the grid, and xk and yk are coordinate values corresponding 
to the center of the k-th grid. 

The image is then transformed and fused using the local 
homography matrix to complete the stitching process. 
Compared with the traditional stitching methods, the APAP 
algorithm is better suitable for dealing with local deformation 
and the presence of parallax and offers superior registration 
accuracy and adaptability. 

B. Algorithms Comparison and Results 
To compare the effectiveness, speed, and practicality of 

the two image stitching methods, we first used the camera 
calibration based image stitching method which uses pre-
calculated projection parameters for stitching, and thus 
stitching is fast and also achieves relatively good results. 
During the stitching process, we found that the camera 
rotating around the motor drive axis, which resulted in a 
distortion of the contact surface captured by the camera. The 
resulting contact points on the curved surface were different 
and closer to the camera, leading to significant parallax in the 
acquired tactile images. As shown in Fig. 6, the tactile images 
captured from different angles demonstrate this large parallax 
issue. To address this problem, we tried the APAP stitching 
method. The use of the APAP algorithm enables a better 
stitching effect, which is demonstrated in the subsequent Fig. 
9(a). Although this method is able to achieve better stitching 
results and solve the parallax problem, it is relatively slow 
due to the partitioning of the input image into grids and the 
calculation of the local homography matrix for each grid 
separately. 

Compared with the camera calibration based image 
stitching algorithm, APAP can be more flexible in stitching, 
while the camera calibration based image stitching algorithm 
needs to be recalibrated for different stitching scenarios, and 
considering the need to perform more complex detection tasks 
with sensors in the future, we believe that the APAP image 
stitching algorithm has superior practical application 
performance, and therefore choose it as our stitching 
algorithm. 

 
Fig. 7. Top: Objects used to evaluate the performance of 
GelFinger: from left to right, 3D printed spherical, crescent, 
and triangle shapes, coin, and a human fingertip; Bottom: 
Tactile image collected from each object by the GelFinger 
sensor. 

TABLE Ⅰ 
SENSOR SHAPE AND SILICONE AREA 

Sensor Shape of sensor Silicone area 

GelFinger Fingertip shape 74.62 cm2 

GelSight Hexagonal shape 6.88 cm2 

DIGIT Prismatic shape 3.87 cm2 

GelTip Finger shape 42.41 cm2 
 

 
Fig. 8. The objects used for calculating the detection area. 

V. SENSOR PERFORMANCE 

A. Experiment Setup 
To evaluate the performance of the GelFinger sensor, we 

compared it to three other sensors in this study. Firstly, we 
produced a sensor with the same size and shape as the 
GelFinger sensor, but with a 160° field of view in the imaging 
module, and the imaging module was fixed and could not be 
rotated. This sensor may result in stretching and distortion of 
the detection images. Secondly, we built a sensor with the 
same size and shape as the GelFinger sensor, but with a 60° 
field of view in the imaging module, and the imaging module 
was fixed and could not be rotated. This sensor is the typical 
configuration used in most optical tactile sensors with curved 
or flat detection surfaces. Thirdly, we produced the GelSight 
2017 sensor for comparison. 

To test the detection performance of the four sensors, we 
prepared various 3D printed objects as well as a pipeline 
model, to evaluate the performance of different sensors for a 
single detection area. In addition, we used coins and 
fingerprints to assess the detection performance of the sensors 
on fine textures. 

B. Shape and Silicone Area 
We analyze and compare the shape and silicone area of 

the sensors, with the main analysis presented in Table Ⅰ. In 
addition to GelFinger and GelSight sensors, we included 
DIGIT and GelTip sensors as a comparison based on the 
information from existing literature. 
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Fig. 9. Test results of the four sensors to detect the letter silicone model, in which the detection results of the sensors are shown 
on the left and the corresponding single detection areas are shown on the right. 
 

TABLE ⅠI 
DETECTION AREA 

Sensor Camera Detection area 

GelFinger FOV: 60°, Rotated 15.0 cm2 

GelFinger FOV: 60°, Fixed 7.5 cm2 

GelFinger FOV: 160°, Fixed 10.0 cm2 

GelSight FOV: 60°, Fixed 1.5 cm2 
 

The comparison focused on four sensor types, including 
two with flat silicone detection surfaces and two with curved 
surfaces. The sensors with flat surfaces have smaller silicone 
detection areas and overall sensor sizes, while those with 
curved surfaces have larger overall sizes and a wider range of 
surface types compared to the flat sensors. Our GelFinger 
sensor includes a motor drive module, resulting in a larger 
overall size and the largest silicone contact area among the 
four sensor types. While this size may limit its use in small 
space environments, under appropriate operating conditions it 
can achieve fast and efficient detection of flat and curved 
surfaces. 

C. General Detection Performance 
The GelFinger sensor was mounted on the Universal 

Robots UR3 robotic arm to conduct experiments and evaluate 
its ability to detect objects with conventional geometry. We 
prepared various models including spherical, crescent, 
triangle, coin, and fingertip shapes as shown in Fig. 7. The 
sensor was able to accurately represent the surface geometry 
of each object, and was also able to capture texture 
information from fine surfaces such as fingerprints and coins. 
 

 

D. Detection Area 
To verify the GelFinger sensor’s ability to detect large 

areas in a single detection, we conducted experiments with the 
four sensors described in Section V-A. The objects for 
calculating the detection area are shown in Fig. 8, including a 
letter silicone model, a pipeline model, and a combination of 
the two models. During the experiment, the sensor was used 
to obtain tactile images containing letters shown in Fig. 8(c), 
The tactile image acquisition method is shown in Fig. 1. The 
detection area of the sensor for a single detection was 
calculated by comparing the tactile image size with the real 
model size. 

First, we use the GelFinger sensor to obtain tactile images 
taken by the camera at five different angles. These images are 
stitched together and the obtained results are shown in Fig. 
9(a). For the silicone letter model, the area of a single 
detection was calculated to be 15 cm2. The detection areas of 
the remaining three sensors were calculated using the same 
method. Since GelSight sensors are less effective for 
detecting curved surfaces, GelSight was used for detecting 
flat surfaces. The experimental results are shown in Fig. 9(b-d) 
with quantitative results shown in Table Ⅱ. 

Our experimental results prove that the GelFinger sensor 
compared to visual-tactile sensors using ordinary cameras and 
wide-angle cameras, can achieve better detection results and 
effectively improve the single detection area. From Fig. 9, it 
can be observed that the detection results of the large field of 
view camera have obvious stretching deformation, and our 
GelFinger sensor can effectively solve this problem by 
rotating the camera. On the other hand, using the tactile image  
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Fig. 10. Using the DeepLabv3+ to identify and segment 
cracks in tactile images. 
 

TABLE ⅠII 
DIFFERENT BACKBONE NETWORK PERFORMANCE 

Backbone MIoU 

ResNet 90.9% 

MobileNet 89.6% 
 
acquisition method as shown in Fig. 1, the contact area 
between the sensor and the object is mainly focused on the 
middle part of the curved surface, so the area captured using 
the large field of view camera is not too advantageous 
compared to the normal field of view camera. The camera 
inside the proposed sensor rotates while the robot arm makes 
a small movement, similar to the movement of a human 
touching an object, so a larger area can be detected. 
Additionally, compared to the flat silicone detection surface 
type of sensor, the GelFinger sensor has more advantages in 
surface detection applications and can effectively expand the 
scope of practical applications. 

 

Ⅵ. PIPELINE CRACK DETECTION 
To demonstrate the practical utility of our proposed 

GelFinger sensor, we conducted a pipeline crack detection 
task as an illustrative example. Pipeline cracks can be 
challenging to detect using conventional visual inspection 
methods, as they are often located in hard-to-reach areas and 
may not be visible to cameras. By leveraging the high-
resolution tactile imaging capabilities of the GelFinger sensor, 
we were able to detect the cracks with a high degree of 
accuracy. 

A. DeepLabv3+ Algorithm 
The DeepLabv3+ model is widely regarded as the most 

advanced deep learning model for semantic segmentation, 
owing to its superior accuracy and computational efficiency. 
Its encoder-decoder structure, as shown in Fig. 10, has been 
instrumental in achieving these outcomes. In this paper, we 
leverage the crack tactile images acquired by GelFinger as the 
input and use the DeepLabv3+ to identify and segment cracks 
in the tactile images. 

B. Tactile Dataset and Model Training 
Our experiment involves using the GelFinger sensor to 

capture tactile images, which serve as the dataset for training  
 

 
Fig. 11. Visualization of the segmentation results using 
ResNet and MobileNet as backbone networks, respectively, 
compared to the input. 
 
and testing our crack detection models. The dataset consists of 
two parts: a single image captured by the sensor and a 
complete image stitched from multiple angular images. In 
total, the dataset contains 1,000 tactile images. 

To evaluate the efficacy of our approach, we designed and 
printed a variety of object models, which can be classified 
into two types: curved surfaces and flat surfaces. Each model 
features cracks of varying widths, ranging from 0.5 to 2 mm, 
with both regular straight lines and irregular intersecting 
patterns. Additionally, we designed regular shapes such as 
squares, circles, and triangles to detect other types of curved 
surfaces or plane defects besides cracks. 

We mounted the GelFinger on the UR3 robotic arm, and 
developed acquisition software to control the arm’s 
movements and capture tactile images along a predetermined 
trajectory. To train and test our models, we randomly divided 
the dataset in a ratio of 8:2, with 800 images used for training 
and 200 images used for testing. We used ResNet and 
MobileNet as the backbone networks and loaded the pre-
trained network structure weights during the training process 
to accelerate network convergence. The initial learning rate 
was set to 0.007, and the SGD optimizer was used. The 
weight decay rate was set to 0.0004, the batch size was set to 
8, and the models were trained for 300 epochs. 

C. Crack Detection Experiments and Results 
The crack detection results are presented in Table III, 

which shows the Mean Intersection over Union (MIoU) 
scores for the DeepLabv3+ model using the two different 
backbone networks. The results indicate that when ResNet is 
used as the backbone network, the MIoU is higher than that of 
MobileNet. 

We further analyzed the performance of our approach by 
testing it on three different scenarios: cracks and round 
defects, cracks and bulges, and cracks formed by splicing 
multiple images. Fig. 11 illustrates the tactile images captured 
by GelFinger and the corresponding crack prediction effect 
for each scenario. Our results show that the ResNet-based 
model outperforms MobileNet in terms of accuracy and 
boundary smoothness. Specifically, ResNet shows smaller 
errors of the judgment area, and smoother boundaries, 
especially in the prediction of bulge defects. 
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Ⅶ. DISCUSSION AND CONCLUSION 
In this paper, we propose a novel visual-tactile sensor 

GelFinger, which is designed to resemble the shape of a 
human finger with a large contact area. The sensor 
incorporates a micro motor that drives the camera, enabling 
multi-angle capture of tactile images. The new design results 
in higher image quality, and overcomes the problem of severe 
stretching and deformation of tactile images due to the curved 
contact surface of the visual-tactile sensor. The APAP image 
stitching algorithm is employed to combine the multi-angle 
tactile images, thereby increasing the primary detection area 
of the sensor. The sensor is used for the pipeline crack 
detection experiment, in which we trained the DeepLabv3+ 
model on our tactile image dataset. The experimental results 
show that our GelFinger sensor achieved accurate and 
effective detection of pipeline cracks. Additionally, GelFinger 
can also detect touches on irregular surfaces. 

While the GelFinger sensor has shown promising results 
in detecting pipeline cracks and other surface defects, there is 
still room for improvement in terms of the flexibility of its use. 
There is a lack of an algorithm for detecting contact points or 
areas. The controls for both the robot arm and the motor are 
pre-determined, also limiting the range of applications for 
which the sensor can be used. To address this, we plan to 
develop a set of control algorithms that will enhance the 
flexibility of the sensor's use, enabling it to adapt to different 
types of surfaces and detect defects in various settings. By 
improving the control system, we believe that the GelFinger 
sensor can be a valuable tool for a wide range of industrial 
and research applications. 
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