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Abstract

Mandibular osteoradionecrosis (ORN) in patients with head and neck cancer undergoing
radiotherapy (RT) is a rare radiation-induced toxicity but can highly compromise patients’
quality of life and result in costly clinical interventions.

In addition to clinical and demographic risk factors, radiation dose plays an important
role in the development of mandibular ORN. Existing ORN prediction models use the
dosimetric information extracted from the dose-volume histogram (DVH) of the mandible.
In a DVH, the clinical radiation dose distribution map of the mandible volume is reduced
to a 2D representation that omits any spatial dose information. Because the anatomy and
the radiosensitivity varies across the mandible, this spatial dose information is clinically
relevant. In this thesis I hypothesise that the incidence of mandibular ORN can be predicted
based on the clinical radiation dose distribution maps as the dosimetric factor combined
with the clinical and demographic factors.

A class-balanced cohort of up to 92 ORN cases and 92 matched controls treated with
intensity-modulated radiotherapy (IMRT) between 2011 and 2022 were retrospectively
selected from the clinical database. The clinical and demographic data was retrieved from
the clinical notes and the DVH and RT DICOM files were exported from the clinical
treatment planning system. To facilitate subsequent ORN prediction model development, a
pipeline was developed that involves a number of image pre-processing steps. First, the
computed tomography (CT), RT dose and mandible structure volumes were registered to a
common space to compensate for inter-patient positioning variations. Then the RT dose
map was masked by the mandible structure, thus resulting in the mandible dose map.

The first part of this thesis focuses on exploring machine learning (ML) and deep
learning (DL) classification models for the prediction of ORN incidence. A first experiment
was performed to initiate the transition from traditional ORN risk factor analysis to
ML-based case-by-case ORN incidence prediction. The performance of different ML
methods was compared on the task of predicting ORN incidence based on DVH metrics
and clinical and demographic data. Although no statistically significant difference was
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observed between models, the artificial neural network (ANN) model showed the highest
prediction accuracy (71%). This study was followed up with a DL-based approach that
used the mandible radiation dose map as the input into a 3D deep convolutional neural
network (CNN) for binary classification (ORN vs. non-ORN). The predictive performances
(AUROC) of three different CNN architectures were compared, including a DenseNet121
(0.64), a DenseNet40 (0.69) and a ShuffleNet (0.65). The dose map-based deep CNN
model prediction performance results were then compared to a DVH-based Random Forest
(RF) model (0.61 AUROC). This DL-based ORN prediction approach was expanded to
include other non-dosimetric risk factors (clinical variables). This was done following early
and late multimodality fusion strategies, which resulted in similar prediction performances
(0.68 and 0.70 AUROC, respectively) to the single-modality DL model (0.69), but had a
statistically significantly higher performance than a RF model trained on clinical variables
only (0.60).

The second part of this thesis focuses on exploring the interpretability of the DL-based
ORN prediction model using the 3D Grad-CAM pixel-attribution method and quantitatively
analysing its results to draw clinically relevant conclusions. The results obtained were
in alignment to existing clinical knowledge derived from the more traditional statistical
approaches, which represents an important step towards gaining trust for the clinical
implementation of a DL-based ORN prediction model.

Finally, this thesis includes a description of the PREDMORN multi-institutional study,
which I designed and developed to obtain the largest and most diverse mandibular ORN
dataset worldwide that will allow for the development of robust and generalisable ORN
prediction models and further subsequent studies.

Overall, I expect that the work included in this thesis will represent a significant step
towards a more individualised treatment of head and neck cancer that will potentially result
in an incidence reduction or better prognosis of mandibular ORN.
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Chapter 1

Introduction

1.1 Motivation

A priori knowledge of which patients are more likely to develop mandibular osteora-
dionecrosis (ORN) may inform the clinical decision of closer follow-up schedules and
prophylactic measures. Existing ORN normal tissue complication probability (NTCP)
models [1] rely solely on dose-volume histogram (DVH) parameters (in addition to other
clinical and demographic risk factors). The current gold standard radiotherapy (RT) plan
optimisation processes also rely on the DVH-based constraints for the target volumes
and the organs at risk such as the mandible. The DVH of a structure is a 2D reduction
of the simulated 3D radiation dose distribution within that structure and it discards any
spatial dose information. Moreover, the anatomy of the mandible is not homogeneous, with
varying bone composition and vascularisation. The radiobiological response across the
mandible also varies, with some regions more prone to ORN development. NTCP models
for mandibular ORN incorporating spatial dose information would enhance treatment
personalisation by taking into account the anatomical and radiobiological heterogeneities
within the mandible.

In comparison to manual image feature extraction methods, deep learning (DL) offers
the opportunity for an automated NTCP prediction pipeline that extracts features from 3D
radiation dose distribution maps and combines them with relevant non-image data such as
clinical, demographic and patient variables.

The first part of this thesis explores the implementation of DL methods in ORN NTCP
models using 3D radiation dose distribution maps. In the second part of this thesis,
I explore DL interpretability methods and perform quantitative analyis on the results
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1.2 Contributions

to obtain clinically explainable conclusions from the DL-based ORN prediction model
predictions. The need for larger and more diverse datasets to train more generalisable
ORN prediction models has led to the design and development of the PREDMORN multi-
institutional study to investigate prediction models for mandibular ORN in head and neck
cancer (HNC), which is the focus of the final part of this thesis.

The next section summarises the original contributions of the work included in this
thesis to the field of mandibular ORN prediction.

1.2 Contributions

The use of ML and DL methods in radiotherapy toxicity prediction is still in its early
stages. The original contributions of this thesis are mostly in the use of ML and DL for
radiation toxicity prediction in head and neck cancer, with a focus on mandibular ORN.

• Use of ML methods for prediction of mandibular ORN incidence. Mandibular
ORN has a multifactorial aetiology with radiation dose, clinical and demographic in-
formation as potential risk factors. Existing work has explored correlations between
these factors using traditional statistical methods. In comparison to these methods,
ML methods enable the analysis on large datasets without a priori knowledge on
how these are related with the potential of achieving predictions on a case-by-case
basis. The use of ML methods in the context of ORN prediction is a novel approach
that represents a first step towards AI-based ORN NTCP models.

• Transition from the DVH to the 3D radiation dose distribution map as the
dosimetric input in ORN prediction models. Existing work on ORN prediction is
based on DVH metrics. The proposed DL-based pipeline uses clinical 3D radiation
dose distribution maps instead, which include spatial dose information. This novel
approach has the potential of including localisation knowledge that can be linked to
the existing anatomical and radiobiological organ heterogeneities for the prediction
of ORN, thus resulting in more realistic and clinically relevant NTCP models.

• Multimodality DL-based ORN NTCP modelling. Multimodal fusion DL strategies
have the potential of including different data modalities (e.g. dose maps and clinical
data), learning the interactions between the risk factors and even adaptively fusing the
different modalities based on their respective informativeness. This novel application
of multimodal fusion in the context of ORN prediction has the clear advantage of an
enhanced and more comprehensive clinical decision-making tool.
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1.3 Outline

• Quantitative analysis of pixel attribution interpretability results. This is the
first study that analyses spatial dose associations with mandibular ORN incidence
using the DL-based 3D Grad-CAM voxel attribution method. Moreover, existing RT
toxicity prediction studies with successfully implemented interpretability methods
provide a qualitative analysis of their results. We propose a comprehensive quanti-
tative analysis of the 3D Grad-CAM results that we hope will further contribute to
gaining users’ trust.

• The PREDMORN study. Due to the low prevalence rate of mandibular ORN,
low patient numbers represent a statistical limitation to the existing work. External
validation of models using data from multiple centres is an essential feature of
effective model evaluation with a view to clinical translation but is often lacking.
The PREDMORN (PREDiction models for Mandibular OsteoRadioNecrosis) study
is a multi-institutional effort involving six teaching hospitals. It will enable the
largest datasets worldwide to be used to develop, train and validate robust and
generalisable NTCP models for mandibular ORN.

1.3 Outline

This section provides an outline of the thesis structure, which is composed of the following
chapters:

Chapter 2 provides the theoretical context to the key clinical concepts used in this
thesis. It is structured in four main parts, focusing on the most relevant concepts for this
thesis in HNC, external beam RT, radiobiology and mandibular ORN, respectively.

Chapter 3 first focuses on the technical background to the ML and DL methods used
in this thesis. It then reviews the most relevant literature on the use of DL methods for the
prediction of radiation-induced toxicities.

Chapter 4 first describes the patient selection process and how the different cohorts
were constructed. Next, it specifies which data was used in each experiment of this thesis,
including the details of how the data was obtained. It then describes the processing steps
followed for the imaging data, including a section on the data protection and anonymisation
measures considered. Finally, it discusses some of the decisions made in the data collection
and processing steps with respect to other relevant published work.
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1.3 Outline

Chapter 5 presents the results from a comparison between five different supervised
classification ML methods for the task of predicting mandibular ORN incidence based on
DVH metrics and clinical and demographic variables.

Chapter 6 introduces a novel approach to ORN prediction based on 3D dose distribu-
tion maps of the mandible rather than the traditionally used DVH metrics. The performance
of DL models trained on the dose maps is compared to that of a DVH-based ML model.
Finally, an analysis is included on the effect of factors such as the choice of classification
probability threshold or minimum follow-up time requirements for the control group on
the model performance results.

Chapter 7 expands on the ORN prediction DL pipeline by including clinical and
demographic variables using early and late multimodality fusion methods and compares
its prediction performance to that of the single modality ML and DL models.

Chapter 8 aims to provide an insight into how the DL-based decisions are made by
including pixel-attribution interpretability methods into the ORN prediction DL pipeline.

Chapter 9 introduces the PREDMORN (PREDiction models for Mandibular OsteoRa-
dioNecrosis) multi-institutional study and describes its published protocol.

Chapter 10 summarises the clinical impact of the scientific contributions of this thesis,
discusses the limitations of this work and proposes future directions to address them.

26



Chapter 2

Clinical Background

This Chapter aims to provide the theoretical context to the most relevant clinical concepts
used in this thesis. Section 2.1 provides a clinical background on head and neck cancers,
Section 2.2 describes the key concepts of external beam radiotherapy, Section 2.3 contains
the most relevant radiobiology concepts and Section 2.4 focuses on mandibular osteora-
dionecrosis. The technical machine and deep learning concepts, some of them mentioned
here, are covered in Chapter 3.

2.1 Head and neck cancers

HNC accounts for 3% of all cancers in the UK, with an average of 12,422 new cases
each year [2] and is the seventh most common cancer worldwide [3]. Most primary
HNCs start in squamous cells, which are cells that line the mouth, nose and throat. Thus,
the most common primary tumour sites for HN squamous cell carcinoma (HNSCC) are
the oral cavity (lips, buccal mucosa, hard palate, anterior tongue, floor of mouth and
retromolar trigone), the pharynx - which includes the nasopharynx, oropharynx (palatine
and lingual tonsils, base of tongue, soft palate, uvula and posterior pharyngeal wall) and
the hypopharynx -, the larynx, the paranasal sinuses and nasal cavity and the salivary
glands (Figure 2.1). Sometimes, however, the primary tumour site is unknown, with the
cancerous cells found away from any of the main HN sites, most commonly in the regional
lymph nodes.
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2.1 Head and neck cancers

2.1.1 HNC risk factors

Tobacco and alcohol consumption, infection with the human papillomavirus (HPV), age,
gender and poor oral and dental hygiene are amongst the factors that may increase the
probability of developing HNC [4]. Most HPV-related HNSCCs arise in the oropharynx.
HPV-related oropharynx cancer (OPC) cases are mostly younger patients with a generally
good prognosis and improved overall survival.

Fig. 2.1 Anatomical sites of head and neck squamous cell carcinoma (HNSCC) develop-
ment. Figure source: Johnson et al. [5].

2.1.2 HNC staging

The extent or spread of the tumour is an important factor in cancer prognosis and treatment
decisions. Based on the histopathologic analysis, the tumour-node-metastasis (TNM)
staging system evaluates the characteristics of the tumour (T) at the primary site (based on
size, location or both), the degree of involvement of regional lymph nodes (N) and whether
the tumour has spread or metastasized (M) to other anatomical sites [6, 7]. Based on the
combination of patient-specific T, N and M status, a stage I, II, III or IV cancer can be
designated [8]. Early-stage disease is denoted as stage I or II whereas advanced disease
is usually stage III or IV. Each anatomical subsite has its own TNM staging and, within
this, sub-categories also exist; for instance, T4a (staged as IVa) and T4b (staged as IVb)
depending on the local extent of disease [6].
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2.1 Head and neck cancers

2.1.3 HNC treatment options

Treatment for HNC is defined based on tumour location and TNM staging as well as the
patient’s performance status and medical history. The curative modalities of treatment for
HNC are surgery and external beam radiotherapy (EBRT), used alone or in combination
depending on primary site and extent of disease. In more advanced cases, EBRT is
often delivered with concomitant chemotherapy (CRT). Postoperative RT (PORT) or CRT
(POCRT) is used after primary surgery in cases with locally advanced disease. Patients with
poor performance status, previous irradiation of the HN area or a poor prognosis might be
prescribed a lower, palliative dose of radiation or systemic therapy such as chemotherapy
or immunotherapy or, in some cases, be recommended for best supportive care.

2.1.4 Radiation-induced toxicities in HNC

With the introduction of modern imaging and RT techniques we are able to irradiate the
tumour with high precision and conformity. However, due to the nature of energy deposition
of photons in tissue, non-target organs inevitably absorb ionising radiation, resulting in
normal tissue toxicity, which can lead to complications affecting the patient’s quality of
life [9, 10]. At Guy’s and St Thomas’ NHS Foundation Trust (GSTT) HNC patients are
followed up closely during treatment and for at least five years post-RT. This provides an
opportunity to not only assess treatment response but to quickly identify and act on potential
side effects. Complications after radiotherapy fall into two main categories: early and late
effects. Early effects develop during treatment or within a few weeks post-RT whereas late
effects are observed months (>3) or years after treatment. Treatment adjustments (usually
treatment breaks) are possible if early effects occur, although treatments are designed to
minimise this as they are associated with poorer survival outcomes; however, by the time
late effects develop it is too late to modify a treatment. Acute and late radiation-induced
toxicities in HNC are dose limiting, have a significant effect on the patient’s quality of
life and can also jeopardise treatment compliance, potentially impacting outcome. The
main radiation-induced toxicities in HNC include oral mucositis (inflammation of the
oral mucosa), xerostomia (dry mouth), dysphagia (swallowing difficulty) and mandibular
ORN (necrosis of the jaw) [11]. These complications are often associated, with patients
experiencing more than one type as a result of the same course of RT [12, 13]. For instance,
xerostomia may result in poor oral health which is in turn a risk factor for ORN [12].
ORN has also been associated to a higher prevalence and perceived symptom burden of
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2.2 External beam radiotherapy

dysphagia [13]. The present work, however, has focused on mandibular ORN, which is a
late radiation side effect.

2.2 External beam radiotherapy

RT is the use of ionising radiation to produce radiation-induced damage to tumour cells
with minimal damage to normal tissue cells. EBRT uses high-energy photons and electrons
produced by a medical linear accelerator (linac). This section aims to describe the key
concepts of radiation therapy that provide the theoretical background to the experimental
work described in later chapters of this thesis. The interested reader is directed to [14] for
more in-depth technical details on how radiation is produced by a clinical linac.

2.2.1 Intensity-modulated radiotherapy

One of the most significant advances in RT is the transition from 3D conformal RT
(3DCRT) to intensity-modulated RT (IMRT), where geometrical beam shaping evolved
to dynamic highly conformal intensity-modulated photon beams achieved with the multi-
leaf collimators (MLC) in the treatment head. Thus, RT techniques such as IMRT and
volumetric arc therapy (VMAT) – with the treatment head rotating around the patient
during an IMRT beam – result in an improved target conformity and a reduction of high
doses to the normal tissue. This is particularly relevant to HNC [15, 16] as often the
tumour is in close proximity to critical organs of complex geometries. However, the larger
number of beams required in the IMRT or VMAT techniques have resulted in a larger
volume of the anatomy receiving a low-dose bath compared to 3DCRT [17, 18] (Figure
2.2). Maesschalck et al. [19] found no reduction in mandibular ORN incidence with IMRT
in a cohort of OPC patients.

2.2.2 Absorbed radiation dose

The bremsstrahlung photons emitted from the linac treatment head interact with the patient
[14]. In the interaction between electromagnetic radiation and matter, photons interact
with the electrons of the atoms within the tissue cells. At 6 MeV, the typical beam energy
for HNC EBRT, the main interaction process is the Compton effect. The incident photon
transfers a fraction of its energy to an electron that is ionized from one of the outer
energetic layers of the atom. The ejected electron will continue to interact with other atoms
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2.2 External beam radiotherapy

Fig. 2.2 Comparison of a 3DCRT HNC RT plan (a) and a VMAT HNC RT plan (b). Figure
source: Van der Veen et al. [18].

in tissue, thus creating a cascade of ionizations with decreasing energy. It is this cascade
of ionizations that causes most of the biological damage to the cells, especially to the DNA
molecules within it [20]. Absorbed radiation dose (D) is the quantity that measures how
much of this energy (E) is deposited in a finite volume of tissue with mass (m) as a result
of ionizing radiation (D = E/m) [14]. Absorbed dose is measured in Grays (Gy), where 1
Gy is equivalent to 1 Joule per Kg (1Gy = 1J/Kg).

2.2.3 EBRT treatment planning

The EBRT treatment planning process consists of a number of steps [21]; the most relevant
steps for this work are described in this section.

Delineation of volumes of interest. The gross tumour volume (GTV) is defined on the
planning computed tomography (CT) images by a clinical oncologist. A clinical tumour
volume (CTV) is then created by adding a margin to account for subclinical extension of
the tumour. A further planning tumour volume (PTV) is defined with margins that account
for internal organ motion and patient set up uncertainties, respectively [22]. In addition to
the target volumes, a number of organs at risk (OAR) are also defined; Figure 2.3 shows
the main OARs in the HN region.

Absorbed dose calculation. The radiation dose distribution for a patient is created at
the treatment planning stage. A computerised treatment planning system (TPS) simulates
absorbed dose distribution for a given radiation beam arrangement and beam intensity
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2.2 External beam radiotherapy

Fig. 2.3 Organs at risk in the HN region, where contour 5 corresponds to the mandible.
Figure source: Brouwer et al. [23].

map, based on CT images of the treatment area. A CT scanner-specific calibration curve
describing the relationship between electron density and tissue attenuation in the CT image
is used by the TPS during dose calculations. The CT number (in Hounsfield units, HU)
represents the level of attenuation at each voxel of a CT image, where HUair =−1000 and
HUwater = 0 [24]. Dose calculation algorithms are the basis of the radiation treatment plan
optimisation process. The most commonly used dose calculation algorithms are the Monte
Carlo-based (MC) and kernel-based algorithms [25].

MC methods are highly accurate but very computationally expensive; they randomly
simulate the interaction histories of a large number of particles through the treatment head
and as they enter the different tissue types. At GSTT, HNC treatment plans used in this
thesis were produced using the Monaco TPS (Elekta AB, Stockholm, Sweden), which uses
a MC-based dose calculation algorithm, until 2016. Afterwards, the Eclipse TPS (Varian
Medical Systems, Inc. Palo Alto, CA, US) with the Analytical Anisotropic Algorithm
(AAA) was used instead. The AAA is a kernel-based 3D pencil beam convolution-
superposition algorithm. A dose spread kernel is a representation of the energy spread
from photons and electrons resulting from the interaction of the primary photons in tissue
at a given point. The AAA convolves the kernel with the fluence of energy transferred from
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2.3 Radiobiology and therapeutic window

the primary radiation beam to the secondary particles to calculate the absorbed dose [25].
Absorbed dose can be reported by the TPS as Dw,w, Dm,m or Dw,m, where the first subscript
refers to the medium in which radiation transport occurs and the second subscript refers to
the medium in which the energy is deposited. At GSTT, Dw,m was historically the choice
for clinical treatment plans with the Monaco TPS. Dm,m was later adopted and all clinical
treatment plans created with the Eclipse TPS have been calculated in Dm,m. Systematic
differences of up to 2.7% between Dm,m and Dw,m have been previously reported [26] for
critical structures in the head and neck region. For the work described in this thesis, I
re-calculated all the Monaco plans originally created in Dw,m into Dm,m.

Treatment plan optimisation. A DVH is a 2D representation of the absorbed dose
received by a given anatomical volume (Figure 2.4b). DVH-based dosimetric parameters
such as maximum (Dmax or D2%), minimum (Dmin or D98%), mean (Dmean) and median
(D50%) doses and other dose-volume levels are used as objectives or constraints to obtain
a radiation dose distribution that maximises the coverage of the target volumes while
minimising the irradiation of the OARs. At the treatment plan optimisation process the
optimal beam intensities are determined by the TPS based on the previously defined target
volumes and OARs with the corresponding DVH-based radiation dose objectives and
constraints. The use of the DVH for radiotherapy dose optimisation has, however, some
limitations [27], especially in non-uniform or partial irradiation of organs, because a DVH
does not offer any spatial information and ignores that there may be regions of different
functionality and dose response within a single organ. The reduction of a 3D dose map
(Figure 2.4a) to a 2D DVH (Figure 2.4b) results in the loss of clinically relevant spatial
localisation as well as dose gradient and direction information.

2.3 Radiobiology and therapeutic window

Radiation biology plays a key role in understanding the mechanisms of tumour and normal
tissue response to radiation, which is the foundation for defining the treatment strategy and
for the development of new approaches in RT. This section aims to describe the fundamental
radiobiology concepts that underly the work in this thesis. The interested reader is directed
to Joiner et al. [20] for more in-depth information on clinical radiobiology.
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2.3 Radiobiology and therapeutic window

(a)

(b)

Fig. 2.4 (a) Axial slice of a 3D dose distribution map with the mandible segmentation for
a GSTT HNC case and (b) corresponding mandible DVH, with percentage of mandible
volume receiving a given dose level plotted against the dose level in Gy.
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2.3 Radiobiology and therapeutic window

2.3.1 DNA damage and the linear-quadratic model

In the cell reproductive cycle, the mitosis or M phase is a process during which the genetic
material of a cell is duplicated in order to reproduce itself and create a new identical cell.
Radiation is most effective during the M phase: irradiated DNA that is not able to repair
itself will fail to replicate during mitosis thus leading to cellular death. Cells can also die
before or after attempting mitosis. Cancer cells go through the cell cycle faster than normal
cells and the probability of radiation being delivered during the M phase is higher [20].
Radiotherapy takes advantage of this to maximise cancer cells’ death while minimising
normal tissue damage.

The linear-quadratic (LQ) model (Figure 2.5) is a mathematical representation of
the radiation dose and cell survival relationship: S = e(−αD−βD2), where α and β are
parameters describing the cell’s radiosensitivity and D is the radiation dose absorbed by
the cell. The shape of the LQ survival curve is determined by the α/β ratio, which is
the dose level at which the linear (αD) and quadratic (βD2) contributions to damage are
equal. The linear contribution, dominant at low doses, is related to lethal cell damage
caused by a single incident particle (‘single hit’ cell death) and the quadratic contribution,
dominant at high doses, can be attributed to lethal cell damage from different radiation
interactions (‘multiple hit’ cell death) [28]. The LQ model is widely used in the clinic to
estimate equivalent RT fractionation schedules (e.g. EQD2) but also to predict tumour
control probability (TCP) and normal tissue complication probability (NTCP) [29]. EQD2
(Equation 2.1) is the equivalent dose in 2 Gy fractions, as derived from the LQ model. Any
fractionation schedule can be translated into EQD2 using this equation, where D is the
total dose prescribed, d is the dose per fraction and the α/β ratio is the dose at which the
linear and quadratic components of the LQ model are equal.

EQD2 = D(
d +(α/β )

2+(α/β )
) (2.1)

2.3.2 Normal tissue complication probability (NTCP) models

The escalation of the radiation dose to the tumour is limited by the complications that may
develop from the irradiation of surrounding normal tissue [30, 17]. There is, however, a
‘therapeutic window’ (Figure 2.6) in which the TCP is larger than the NTCP, thus providing
an opportunity for treatment optimisation. NTCP models aim at characterising the shape
of response of normal tissue for a given radiation dose distribution. NTCP models are used
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2.3 Radiobiology and therapeutic window

Fig. 2.5 Linear quadratic cell survival model. Figure source: Lyman [29]

as a clinical decision support system [31] to reduce the incidence of a given toxicity by
identifying the patients who are at a higher risk of developing it [32, 33]. The two main
types of NTCP modelling [34], analytical models and data-driven models, are described
below.

Fig. 2.6 The probabilities of tumour control (TCP) and of normal tissue complication
(NTCP) increase with the amount of radiation dose delivered to a tumour (and inevitably
to the surrounding normal tissue). The ‘therapeutic window’ gives a compromise between
the two, with the TCP being larger than NTCP in the region. Figure source: Chang et al.
[28].
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2.3 Radiobiology and therapeutic window

Analytical NTCP models. Analytical NTCP models are based on mathematical
equations that explain the theoretical assumptions made on the relationships between the
toxicity outcomes and the input variables. The most widely known analytical NTCP model
is the Lyman-Kutcher-Burman (LKB) model (Equation 2.2), which uses DVH-based dose
metrics [29]. Although the LKB model does not consider the tissue heterogeneity and
functional architecture aspects described above, it remains widely used in the clinic [35].
While the LKB model is based on a single-dose variable, the widely used multivariable
logistic regression analytical model (Equation 2.3) can incorporate several variables [36].

NTCPm,D50(x) = 1/
√

2π

∫ x

−∞

e(−u2)/2du (2.2)

where x = (D−D50)/(mD50)

NTCP = 1/1− e−s (2.3)

where s = β0 +β1variable1 + . . .+βnvariablen

Data-driven NTCP models. Data-driven methods, as opposed to the analytical models,
learn non-linear relationships directly from the data without the need for (potentially biased)
a priori assumptions of how the toxicity outcomes and input variables are related. Data-
driven NTCP models can be classed into the more traditional ML methods and DL methods
such as CNN, both described in more detail in Chapter 3.

2.3.3 Limitations of DVH-based NTCP models

The relationship between dose-volume and normal tissue toxicity is often complex [37, 38]
because a) dose distributions to normal tissue surrounding the tumour are heterogeneous,
b) organ function is not uniformly distributed within an organ [39], c) organs at risk often
have sub-regions that may respond differently to radiation, d) in addition to radiation
dose response, prediction of normal tissue response involves several other factors such as
patient characteristics and clinical variables. DVH-based NTCP models are not able to
capture these complexities [35]. Chapter 3 (Section 3.3) discusses methods to manually
extract spatial dose features from radiation dose distribution maps as well as the more
novel DL-based alternatives.
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2.4 Mandibular osteoradionecrosis

Mandibular ORN is a rare but severe late radiation-induced toxicity observed in 4-8% [40]
of HNC patients treated with RT. Incidence of ORN in the population of patients treated at
GSTT is 5.5% overall in HNC [41]; however, for certain groups such as oropharyngeal or
oral cavity cancer this can be around 10% [42, 43]. The most commonly used definition of
ORN in the UK is [44] ‘an area of exposed irradiated bone that fails to heal over a period
of three months without any evidence of persisting or recurrent tumour’ [45]. Necrosis
of the bone can develop either spontaneously after irradiation or triggered by trauma to
the irradiated mandible bone (e.g., dental extractions, surgery, implants). There is no clear
consensus on a theory that explains how ORN develops. A first theory claimed that bone
necrosis occurs as a result of reduced blood supply, hypoxia and hypo-cellularity caused by
exposure to radiation [46]. A more recent theory suggests that radiation-induced fibrosis
of the irradiated tissues extends to the blood vessel walls eventually resulting in a reduced
blood supply and subsequent necrosis of the bone tissue [47, 48]. The intrinsic anatomical
heterogeneity of the mandible may influence the localisation of the ORN regions. The
lower jaw is more prone to ORN as its bone is more cortical and therefore has reduced
vascularity with respect to the upper jaw. Moreover, ORN is also more likely in the
posterior jaw as radiation doses tend to be higher posteriorly.

2.4.1 ORN staging

Mandibular ORN can be diagnosed by physical examination (e.g., Figure 2.7) and/or
radiologically (based on 2D or 3D imaging). There are numerous systems to classify the
severity of ORN [45]. The National Cancer Institute Common Terminology Criteria for
Adverse Events (NCI CTCAE) [49] and the Notani [50] scales are commonly used at
GSTT. Tables 2.1 and 2.2 describe these two ORN staging systems in detail.

2.4.2 Risk factors for mandibular ORN

ORN has a multifactorial aetiology with radiation dose, clinical and demographic informa-
tion as risk factors [51–53, 40, 44]. A number of case-control studies have investigated the
correlation between dosimetric, clinical and demographic factors and ORN [54, 55, 41, 56–
61, 43, 62, 1, 63]. Radiation dose is a major risk factor for ORN and optimisation of the RT
dose distribution to the mandible should be based on robust and well supported and vali-
dated dosimetric constraints. Table 2.3, adapted from Brodin et al. [32] and De Felice et al.
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2.4 Mandibular osteoradionecrosis

Fig. 2.7 Example of a mandibular ORN case at GSTT. This image shows exposed bone in
line with ORN of the upper right second premolar tooth socket.

Table 2.1 The NCI CTCAE v5.0 ORN scale

Grade Description

Grade 1 Asymptomatic; clinical or diagnostic observations only; intervention
not indicated.

Grade 2 Symptomatic; medical intervention indicated (e.g. topical agents);
limiting instrumental activity of daily living.

Grade 3 Severe symptoms; limiting self-care activity of daily living; elective
operative intervention indicated.

Grade 4 Life-threatening consequences; urgent intervention indicated.
Grade 5 Death

Table 2.2 The Notani ORN scale

Grade Description

Grade I ORN confined to the alveolar bone.
Grade II ORN limited to the alveolar bone and/or the mandible above the

level of the mandibular alveolar canal.
Grade III ORN that extended to the mandible under the level of the mandibu-

lar alveolar canal and ORN with a skin fistula and/or a pathologic
fracture.
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2.4 Mandibular osteoradionecrosis

[53], summarises the findings on radiation dose correlations with ORN incidence by some
of these studies. There is no clear consensus on a dose threshold for ORN development
risk. Early ORN studies report significant differences in mean and high doses between the
ORN and control groups. More recent studies have highlighted the role of intermediate
and low radiation dose levels. Patel et al. [64] showed that microvasculature collapse in the
mandible occurs even at radiation dose levels of 30 Gy. In a previously presented analysis
[65] on a 70 ORN and 140 controls GSTT cohort, 10% of the ORN cases had a Dmean in
the ORN region below 50 Gy and in 6% of the ORN cases it was below 45 Gy. Gomez et
al. [54] similarly concluded that in some cases the ORN region did not correspond to the
mandible area receiving the maximum dose. Aarup-Kirstensen et al. [61] found significant
differences between the ORN and control groups at doses between 30 Gy and 60 Gy. A
study by the MD Anderson HNC Symptom Working Group [59] with 68 ORN patients
and 131 matched controls suggested that the volume of a lower dose level might have
contributed to ORN more significantly than a maximum point dose due to the resulting
larger volume of microvasculature damage. A study [1] with the largest ORN cohort to
date found all dose-volume parameters, including the low dose levels, significantly higher
in the ORN group.

Smoking, alcohol and poor dental hygiene are included in most published studies
as lifestyle related risk factors. Neglected dentition can result in dental diseases, which
has been associated with an increased risk of ORN [66, 44, 52]. For HNC patients, a
pre-RT dental assessment is recommended by the National Institute for Health and Care
Excellence (NICE) guidelines [49]. However, previous studies [55, 64] have discussed
an increased incidence of ORN in the HPV-associated OPC group of patients, that are
generally younger, with better dental status and without the lifestyle factors associated
with ORN (e.g., smoking, alcohol). Table 2.4 provides a summary of the potential risk
factors for ORN that have been considered clinically and in research.

40



2.4 Mandibular osteoradionecrosis

Ta
bl

e
2.

3
R

ev
ie

w
su

m
m

ar
y

of
pu

bl
is

he
d

st
ud

ie
s

on
do

si
m

et
ri

c
as

so
ci

at
io

ns
w

ith
O

R
N

(a
da

pt
ed

fr
om

Ta
bl

e
5

in
[3

2]
an

d
[5

3]
).

St
ud

ie
s

in
cl

ud
in

g
tre

at
m

en
tm

od
al

iti
es

ot
he

rt
ha

n
IM

RT
(p

re
do

m
in

an
tly

)w
er

e
ex

cl
ud

ed
fr

om
th

e
or

ig
in

al
ta

bl
e

an
d

m
or

e
re

ce
nt

st
ud

ie
s

w
er

e
ad

de
d.

St
ud

y
co

ho
rt

D
os

im
et

ri
c

fa
ct

or
s

R
ef

er
en

ce
16

8
O

C
C

,n
as

op
ha

ry
nx

,l
ar

yn
x/

hy
po

ph
ar

yn
x,

si
-

nu
s

an
d

O
PC

pa
tie

nt
s,

ou
to

fw
hi

ch
on

ly
2

O
R

N
ca

se
s

(O
C

C
pr

im
ar

y
si

te
)

M
ed

ia
n

D
m

ax
=

67
.9

8
G

y,
m

ed
ia

n
D

m
ea

n
=

38
.4

5
G

y
in

O
R

N
ca

se
s.

G
om

ez
et

al
.[

54
]

36
H

N
C

pa
tie

nt
s

w
ho

de
ve

lo
pe

d
O

R
N

af
te

rR
T

or
ch

em
o-

R
T

in
2

G
y/

fx

69
%

of
O

R
N

ca
se

s
ha

d
a

m
an

di
bl

e
D

2%
>

60
G

y
an

d
52

.8
%

of
ca

se
s

ha
d

a
D

m
ea

n
>

60
G

y.
D

e
Fe

lic
e

et
al

.[
41

]

68
O

PC
pa

tie
nt

s
w

ith
O

R
N

an
d

13
1

m
at

ch
ed

co
n-

tr
ol

s,
bo

th
gr

ou
ps

tr
ea

te
d

w
ith

IM
R

T
M

an
di

bu
la

r
V

44
G

y
<

42
%

an
d

V
58

G
y
<

25
%

w
er

e
id

en
tifi

ed
as

si
gn

ifi
ca

nt
cu

to
ff

s
w

ith
81

%
of

O
R

N
ca

se
s

id
en

tifi
ed

in
pa

tie
nt

s
w

ith
m

an
di

bu
la

r
V

44
G

y
≥

42
%

an
d

V
58

G
y
≥

25
%

.

M
oh

am
ed

et
al

.[
59

]

44
or

op
ha

ry
ng

ea
lo

ro
ra

lH
N

C
pa

tie
nt

s
w

ith
O

R
N

an
d

78
m

at
ch

ed
co

nt
ro

ls
w

ith
tr

ea
te

d
w

ith
IM

R
T

at
1.

6
–

2.
12

G
y/

fx

M
an

di
bl

e
D

m
ax

13
.2

G
y

an
d

D
m

ea
n

14
.6

G
y

av
-

er
ag

e
di

ff
er

en
ce

s
be

tw
ee

n
th

e
O

R
N

si
de

an
d

th
e

co
nt

ra
la

te
ra

ln
on

-O
R

N
pa

rt

O
w

os
ho

et
al

.[
58

]

14
O

R
N

pa
tie

nt
s

an
d

a
m

at
ch

ed
gr

ou
p

of
14

co
n-

tr
ol

s
ou

to
f

a
po

pu
la

tio
n

of
25

2
O

C
C

an
d

O
PC

pa
tie

nt
s,

al
lp

re
do

m
in

an
tly

tr
ea

te
d

w
ith

IM
R

T

N
o

si
gn

ifi
ca

nt
do

si
m

et
ric

di
ff

er
en

ce
s

be
tw

ee
n

th
e

O
R

N
an

d
co

nt
ro

lg
ro

up
s.

M
oo

n
et

al
.[

60
]

C
on

tin
ue

d
on

ne
xt

pa
ge

41



2.4 Mandibular osteoradionecrosis

Ta
bl

e
2.

3
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

St
ud

y
co

ho
rt

D
os

im
et

ri
c

fa
ct

or
s

R
ef

er
en

ce

11
96

or
op

ha
ry

ng
ea

l
H

N
C

pa
tie

nt
s

(7
7

O
R

N
ca

se
s)

tr
ea

te
d

w
ith

IM
R

T
or

ch
em

o-
IM

R
T

at
1.

2-
2.

6
G

y/
fx

A
bs

ol
ut

e
m

an
di

bu
la

r
V

50
G

y
an

d
V

60
G

y
w

er
e

si
gn

ifi
ca

nt
in

di
ca

to
rs

of
O

R
N

w
ith

av
er

ag
e

V
50

G
y
=

35
.8

cm
3

vs
.

30
.8

cm
3

an
d

V
60

G
y
=

18
.9

cm
3

vs
.

15
.3

cm
3

in
ca

se
s

vs
.

co
nt

ro
ls

,
re

-
sp

ec
tiv

el
y.

C
ap

ar
ro

tti
et

al
.[

57
]

1:
2

m
at

ch
in

g
in

a
ne

st
ed

ca
se

-c
on

tr
ol

st
ud

y
w

ith
56

O
R

N
ca

se
s

ou
to

f1
22

4
H

N
C

tr
ea

te
d

pr
ed

om
i-

na
nt

ly
w

ith
IM

R
T

D
m

ea
n

si
gn

ifi
ca

nt
ly

hi
gh

er
in

O
R

N
gr

ou
p

(4
1.

7
G

y
vs

.3
7.

7
G

y)
.S

ig
ni

fic
an

td
iff

er
en

ce
s

be
tw

ee
n

O
R

N
an

d
co

nt
ro

lg
ro

up
s

fo
rd

os
es

be
tw

ee
n

30
G

y
an

d
60

G
y.

A
ar

up
-K

ir
st

en
se

n
et

al
.[

61
]

46
O

R
N

ca
se

s
ou

to
fa

61
6

H
N

SC
C

po
pu

la
tio

n
V

30
G

y-
V

70
G

y
si

gn
ifi

ca
nt

ly
hi

gh
er

in
O

R
N

gr
ou

p
w

ith
V

60
G

y
>

14
%

as
an

in
de

pe
nd

en
tr

is
k

fa
ct

or
.

K
ub

ot
a

et
al

.[
62

]

17
3

O
R

N
ca

se
s

ou
to

f1
25

9
H

N
C

pa
tie

nt
s

A
ll

D
V

H
pa

ra
m

et
er

s
si

gn
ifi

ca
nt

ly
as

so
ci

at
ed

w
ith

O
R

N
in

un
iv

ar
ia

te
m

od
el

s.
D

30
%

<
42

G
y

an
d

D
30

%
<

35
G

y
to

ac
hi

ev
e
<

5%
ris

k
of

O
R

N
I−

IV

fo
rp

at
ie

nt
s

w
ith

ou
ta

nd
w

ith
pr

e-
R

T
ex

tr
ac

tio
ns

,
re

sp
ec

tiv
el

y;
D

30
%

<
25

G
y

an
d

D
30

%
<

17
G

y
fo

r<
5%

ri
sk

of
O

R
N

IV
.

V
an

D
ijk

et
al

.[
1]

C
on

tin
ue

d
on

ne
xt

pa
ge

42



2.4 Mandibular osteoradionecrosis

Ta
bl

e
2.

3
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

St
ud

y
co

ho
rt

D
os

im
et

ri
c

fa
ct

or
s

R
ef

er
en

ce

46
O

R
N

ca
se

s
ou

to
f2

27
O

C
C

pa
tie

nt
s.

V
60

G
y

si
gn

ifi
ca

nt
ly

as
so

ci
at

ed
w

ith
O

R
N

at
un

i-
va

ri
at

e
an

d
m

ul
tiv

ar
ia

te
an

al
ys

is
.D

m
ea

n
si

gn
ifi

-
ca

nt
at

un
iv

ar
ia

te
an

al
ys

is
.

M
ör

in
g

et
al

.[
63

]

Ta
bl

e
2.

4
D

em
og

ra
ph

ic
,c

lin
ic

al
an

d
tr

ea
tm

en
tO

R
N

ri
sk

fa
ct

or
s

Ty
pe

of
ri

sk
fa

ct
or

R
is

k
fa

ct
or

D
es

cr
ip

tio
n

Pa
tie

nt
-r

el
at

ed
fa

ct
or

s
G

en
de

r
M

al
e

pr
ed

om
in

an
ce

(f
ac

to
ro

f3
:1

)[
51

,4
3]

A
ge

C
om

m
on

at
ag

e
of

55
±

10
ye

ar
s

[4
4]

.H
PV

-a
ss

oc
ia

te
d

O
PC

ca
se

s
te

nd
to

be
ev

en
yo

un
ge

r.
Sm

ok
in

g
Sm

ok
in

g
st

at
us

w
as

fo
un

d
a

si
gn

ifi
ca

nt
ri

sk
fa

ct
or

[5
7,

60
,6

3]
;

32
%

in
-

cr
ea

se
d

ri
sk

fo
rp

at
ie

nt
s

w
ho

co
nt

in
ue

to
sm

ok
e

du
ri

ng
R

T
[4

4]
.

A
lc

oh
ol

In
cr

ea
se

d
ri

sk
of

O
R

N
w

ith
ex

ce
ss

iv
e

al
co

ho
lc

on
su

m
pt

io
n

[5
8,

44
].

H
PV

In
cr

ea
se

d
O

R
N

in
ci

de
nc

e
in

H
PV

-a
ss

oc
ia

te
d

O
PC

ca
se

s
[4

3]
.

Tu
m

ou
r-

re
la

te
d

fa
ct

or
s

H
ys

to
pa

th
ol

og
y

In
cr

ea
se

d
O

R
N

in
ci

de
nc

e
in

sq
ua

m
ou

s
ce

ll
ca

rc
in

om
a

(S
C

C
)c

as
es

[5
2]

.
St

ag
e

H
ig

he
rS

C
C

st
ag

es
ha

ve
be

en
as

so
ci

at
ed

w
ith

hi
gh

er
ra

di
at

io
n

do
se

s
to

th
e

m
an

di
bl

e
[6

4]
.A

n
in

cr
ea

se
d

ris
k

of
O

R
N

ha
s

be
en

re
po

rte
d

in
hi

gh
er

SC
C

st
ag

es
[5

1,
52

].

C
on

tin
ue

d
on

ne
xt

pa
ge

43



2.4 Mandibular osteoradionecrosis

Ta
bl

e
2.

4
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

Ty
pe

of
ri

sk
fa

ct
or

R
is

k
fa

ct
or

D
es

cr
ip

tio
n

Si
ze

L
ar

ge
r

tu
m

ou
rs

ha
ve

be
en

as
so

ci
at

ed
w

ith
hi

gh
er

ra
di

at
io

n
do

se
s

to
th

e
m

an
di

bl
e

[4
4]

an
d

a
hi

gh
er

O
R

N
in

ci
de

nc
e

[5
2]

.
Pr

im
ar

y
tu

m
ou

rs
ite

T
he

m
aj

or
ity

of
O

R
N

ca
se

s
ar

e
tr

ea
te

d
fo

r
O

C
C

an
d

O
PC

ca
nc

er
[5

2]
.

Tu
m

ou
r-

to
-b

on
e

pr
ox

im
ity

re
su

lts
in

hi
gh

er
ri

sk
of

O
R

N
[5

6]
.

Pr
im

ar
y

tu
m

ou
rs

ite
w

as
fo

un
d

to
be

an
in

de
pe

nd
en

tr
is

k
fa

ct
or

fo
rO

R
N

in
a

st
ud

y
by

K
ub

ot
a

et
al

.[
62

].

Tr
ea

tm
en

t-
re

la
te

d
fa

ct
or

s
R

ad
io

th
er

ap
y

te
ch

ni
qu

e
W

ith
IM

R
T

it
is

po
ss

ib
le

to
co

nf
or

m
th

e
hi

gh
do

se
to

th
e

ta
rg

et
vo

lu
m

e
be

tte
rt

ha
n

w
ith

3D
C

R
T.

H
ow

ev
er

,I
M

R
T

re
su

lts
in

a
m

or
e

ex
te

ns
iv

e
lo

w
-

do
se

ba
th

th
at

in
co

rp
or

at
es

la
rg

er
ja

w
vo

lu
m

es
th

an
w

ith
3D

C
R

T
[4

4]
.I

n
M

oo
n

et
al

.[
60

],
3D

C
R

T
re

su
lte

d
in

si
gn

ifi
ca

nt
ly

hi
gh

er
O

R
N

in
ci

de
nc

e
th

an
IM

R
T,

w
ith

hi
gh

er
D

m
ax

,V
60

G
y

an
d

V
70

G
y

do
se

-v
ol

um
e

le
ve

ls
in

th
e

3D
C

R
T

O
R

N
ca

se
s.

R
ad

io
th

er
ap

y
do

se
Q

U
A

N
T

E
C

[3
5]

do
es

no
t

pr
ov

id
e

re
co

m
m

en
da

tio
ns

on
ra

di
at

io
n

do
se

-
vo

lu
m

e
co

ns
tr

ai
nt

s
fo

rt
he

m
an

di
bl

e
an

d
th

er
e

is
no

cl
ea

rc
on

se
ns

us
on

a
do

si
m

et
ri

c
th

re
sh

ol
d

as
an

O
R

N
de

ve
lo

pm
en

tr
is

k.
A

n
in

cr
ea

se
d

ri
sk

at
do

se
s

ab
ov

e
40

G
y

is
ge

ne
ra

lly
ac

ce
pt

ed
[4

4]
.

Ta
bl

e
2.

3
su

m
m

ar
is

es
th

e
di

ff
er

en
td

os
e

or
do

se
-v

ol
um

e
le

ve
ls

pr
op

os
ed

in
ex

is
tin

g
lit

er
at

ur
e.

C
on

tin
ue

d
on

ne
xt

pa
ge

44



2.4 Mandibular osteoradionecrosis

Ta
bl

e
2.

4
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

Ty
pe

of
ri

sk
fa

ct
or

R
is

k
fa

ct
or

D
es

cr
ip

tio
n

R
T-

in
du

ce
d

co
m

pl
ic

at
io

ns
RT

m
ay

ca
us

e
ot

he
rc

om
pl

ic
at

io
ns

w
hi

ch
,i

n
tu

rn
,m

ay
re

su
lt

in
an

in
cr

ea
se

d
ri

sk
of

O
R

N
.X

er
os

to
m

ia
m

ig
ht

af
fe

ct
th

e
or

al
en

vi
ro

nm
en

t;
tr

is
m

us
m

ig
ht

re
su

lt
in

lim
ite

d
or

al
ac

ce
ss

;
dy

sp
ha

gi
a

m
ig

ht
re

qu
ir

e
th

e
in

ta
ke

of
hi

gh
ca

lo
ri

c
liq

ui
d

fo
od

su
pp

le
m

en
ts

.
A

ll
of

th
es

e
m

ay
re

su
lt

in
de

nt
al

de
ca

y
an

d,
co

ns
eq

ue
nt

ly
,i

n
an

in
cr

ea
se

d
O

R
N

ri
sk

.
C

he
m

ot
he

ra
py

C
he

m
ot

he
ra

py
ha

s
be

en
as

so
ci

at
ed

w
ith

an
in

cr
ea

se
d

ri
sk

of
O

R
N

[4
4]

.
Su

rg
er

y
Su

rg
er

y
ha

s
be

en
as

so
ci

at
ed

w
ith

an
in

cr
ea

se
d

ri
sk

of
O

R
N

[5
6,

61
,4

3]
.

D
en

ta
lf

ac
to

rs
O

ra
lh

yg
ie

ne
an

d
de

nt
iti

on
Po

or
de

nt
al

hy
gi

en
e

an
d

ne
gl

ec
te

d
de

nt
iti

on
ca

n
re

su
lt

in
de

nt
al

di
se

as
es

,
w

hi
ch

ha
s

be
en

as
so

ci
at

ed
w

ith
an

in
cr

ea
se

d
ri

sk
of

O
R

N
[5

2,
56

,6
4,

44
].

D
en

ta
le

xt
ra

ct
io

ns
D

en
ta

le
xt

ra
ct

io
ns

ha
ve

be
en

as
so

ci
at

ed
w

ith
an

in
cr

ea
se

d
ri

sk
of

O
R

N
[5

2,
60

,
61

,
1,

43
].

N
ab

il
et

al
.

[1
2]

co
nc

lu
de

d
th

at
th

e
hi

gh
es

t
O

R
N

ri
sk

co
rr

es
po

nd
s

to
ex

tr
ac

tio
n

of
m

an
di

bu
la

rt
ee

th
w

ith
in

a
re

gi
on

th
at

ha
s

re
ce

iv
ed

>
60

G
y.

45



2.4 Mandibular osteoradionecrosis

2.4.3 Prediction of mandibular ORN

The current clinical practice for HNC RT at GSTT is largely based on the Quantitative
Analyses of Normal Tissue Effects in the Clinic (QUANTEC) recommendations [35] for
organ at risk radiation dose-volume constraints. However, in the QUANTEC report only a
limited set of toxicities is included and no specific recommendations are made to prevent
mandibular ORN [32]. In 2017, a thorough systematic review on HN NTCP models by
Brodin et al. [32] could not include any reference to an existing NTCP model for ORN.
As discussed in Section 2.4.2, published studies have largely focused on identifying the
associations between risk factors and the development of ORN. Efforts on patient-specific
prediction of ORN, however, are more limited. The need for personalised plan optimisation
to reduce mandibular ORN has been acknowledged in a recent review by De Felice et al.
[53]. Prediction of potential ORN in the treatment of HNC may lead to risk-reduction
measures (e.g., reduced mandibular radiation dose near extraction sites when possible)
and/or a more dedicated follow-up for early detection and intervention of ORN. We have
published the first study [67] to explore patient-specific ORN prediction using ML methods;
this work is further described in Chapter 5. Shortly after, an NTCP model for ORN was
published by van Dijk et al. [1]. Their NTCP model was based on mandible dose-volume
parameters and clinical variables using multivariable stepwise forward selection regression
analysis. The resulting final model was based on the D30% of the mandible bone and pre-
RT dental extraction and had a validation performance of AUROC=0.75 and AUROC=0.82
for the prediction of ORNI−IV and ORNIV stages, respectively.

2.4.4 ORN management

Mandibular ORN is not as common as other HNC toxicities and has consequently attracted
less research attention. However, the treatment of ORN is often complex and costly [48].
There remains no agreed management approach [53] with varying modalities depending
on its severity. Conservative treatment options such as observation, ultrasound therapy,
hyperbaric oxygen therapy or medical management (pentoxifylline, tocopherol, clodronate)
may be considered for less severe cases of bone exposure cases [53, 42]. More severe
cases might require surgical intervention such as the mandibulectomy and bony free-flap
reconstruction procedures [53], although there are concerns that surgery may worsen the
condition and in advanced stages may be unable to improve quality of life [68].
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2.5 Discussion

2.5 Discussion

RT is the mainstay of curative options for HNC. ORN of the mandible is a rare but severe
RT-induced side effect that not only has a detrimental impact on patients’ quality of life
but often also requires costly clinical interventions. NTCP models are a clinical decision
support system to reduce the incidence of a given toxicity by identifying the patients
who are at a higher risk of developing it. NTCP models have traditionally used DVH
metrics, which are limited and lack the spatial information included in radiation dose maps.
Chapter 6 explores the use of radiation dose maps as an alternative to DVH metrics in the
prediction of ORN using DL methods. This Chapter has provided a review on existing
ORN studies. However, this comparison is often difficult due to the large diversity of
cohorts, treatment techniques and inclusion criteria considered. Moreover, each of these
studies are based on very limited datasets due to the naturally low prevalence of ORN.
Consequently, the PREDMORN study was developed, which will result in ORN prediction
modelling with the largest and most diverse ORN cohort ever published before. More
details on the published study protocol are provided in Chapter 9.
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Chapter 3

Technical Background

This Chapter provides a technical background to the ML and DL methods used in the
experiments presented in the subsequent chapters. Section 3.1 presents the main concepts in
ML and DL, with Section 3.2 focusing on model evaluation with small datasets. Section 3.3
discusses existing work on the use of DL methods for the prediction of radiation-induced
toxicities.

3.1 Machine and deep learning

As described by Tom Mitchell in 1997 [69], ML algorithms ‘learn from experience (E) with
respect to some class of tasks (T) and performance measure (P), if its performance at tasks
T, as measured by P, improves with experience E’. Traditional ML methods learn a mapping
from hand-crafted features of the input data to the desired output. In more complex ML
methods such as deep CNNs, the feature extraction is embedded in the network processes.
Collectively, ML and DL methods are commonly referred to as artificial intelligence
(AI), although the correct use of the term AI also encompasses other, non-learning-based
‘intelligent’ techniques. This section describes the most relevant concepts of AI to this
thesis.

3.1.1 Supervised, semi-supervised, unsupervised and reinforcement
learning

ML algorithms can be classed into four types based on the nature of the training data
and the way in which it is used. In supervised learning, the most common type in
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3.1 Machine and deep learning

radiation oncology [38], the algorithm is presented with a training set of input data and
the corresponding output labels or ‘ground truth’. The algorithm is expected to learn the
mapping between the training inputs and outputs to then be able to predict the outputs on
an unseen input dataset. The error between the predicted outputs and the ground truth is
used to find the optimal model parameters. Further details on this optimisation process
and on the training of supervised models is provided in this Chapter in Section 3.1.4. In
unsupervised learning the algorithm is presented with unlabelled data and is expected to
learn by itself about the structure (e.g., correlations, patterns, features) of the input dataset.
Semi-supervised learning lies between the two algorithm types previously described, with
only part of the training data being labelled. Finally, reinforcement learning [70] refers
to the fourth type of algorithm, where the algorithm learns to map inputs to actions by
maximising (minimising) a reward (punishment) action evaluation signal.

3.1.2 Regression, classification and segmentation algorithms

While ML algorithms can perform a variety of tasks [71], the most common ones in
radiotherapy applications are segmentation, regression and classification. Regression
algorithms are used to produce a function f (xi) that best describes the relationship between
the input variables (xi) and the continuous output variable y = f (xi) [71]. This type of
algorithm has been used in classical data-driven TCP and NTCP modelling to predict
the probability of the treatment and toxicity outcomes, respectively [72]. Classification
algorithms are another type of machine learning algorithm that can predict which of k
categories or discrete class labels an input belongs to. Both regression and classification
algorithms can be trained on an image level or a pixel level using CNNs.

Segmentation tasks are achieved with pixel-wise regression algorithms that predict
the probability of each pixel being in each class; these probabilities are then converted
to a one-hot-encoded representation for the final classification. Segmentation algorithms
are clinically used for automatic delineation of anatomical treatment target volumes and
organs at risk. The interested reader is directed to the recent review by Harrison et al. [73]
for a more in-depth discussion on the use of ML for auto-segmentation in RT.

3.1.3 Supervised classification machine learning methods

Supervised classification algorithms are the most relevant type of model to this thesis. This
type of algorithm learns to map the training input data to the output classification labels.
The trained algorithm is then able to predict the class labels on an independent test dataset.
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3.1 Machine and deep learning

Below I describe some of the most commonly used algorithms for radiation-induced
toxicity prediction [74], including logistic regression (LR), support vector machines (SVM)
and two algorithms that use the ensemble learning technique: random forests (RF) and
adaptive boosting (Adaboost). These algorithms have been used in the work described in
Chapters 5 and 6 of this thesis.

Logistic regression [75] tries to fit a straight line in the input feature space that
separates data according to its class. The probabilities of obtaining classes y = 1 and y = 0
given the input variables (i.e. features) x and model parameters θ is described by the
sigmoid or logistic function σ(z) as P(y = 1|x) = σ(z) and P(y = 0|x) = 1−σ(z), where
σ(z) = 1/(1+ e(

−z)) and z = θ0 +∑
m
i=1 θixi. During training, the model aims to obtain the

best prediction of the training set of labels by optimising its parameters θ .

Support vector machines [76] are a type of ML algorithm that uses a set of mathe-
matical functions (a.k.a. kernels) to find the optimal hyperplanes that separate the input
data into two (or more) classes. Like LR, SVM is a linear classifier. However, SVM can
be extended to perform nonlinear classification (Figure 3.1) through the use of kernels,
which can transform data which is not linearly separable into a higher-dimensional space
where they are. The degree of acceptable misclassification is defined with the C penalty
parameter, where smaller C values result in higher misclassification error rates. When
using the radial basis function (RBF) kernel, the gamma hyperparameter can be tuned to
find the optimal curvature of the decision boundary [77].

(a) (b)

Fig. 3.1 Diagram of a SVM optimal hyperplane in a linear (a) and non-linear
(b) data distribution. However, the latter can be linearly classified by tuning the
parameters of the SVM kernels. Image source: https://towardsdatascience.com/
https-medium-com-pupalerushikesh-svm-f4b42800e989.
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3.1 Machine and deep learning

Ensemble learning [78] is a technique used to improve the overall classification
accuracy of a ML model by training and combining the outputs of a set of T models
to obtain an ensemble probability Pensemble(y|x) = ∑

T
t=1 wtPt(y|x), where Pt(y|x) is the

predicted probability of class y given input x by model t. When the outputs are class labels
rather than probabilities, these can be combined using majority voting, where the ensemble
output class is defined as the class with the most votes. When the weights wt are uniform,
all the models are combined in simple uniform averaging or voting. Otherwise, the final
ensemble model is a weighted sum of all the trained models with the highest weight given
to the better performing one.

Ensemble learning algorithms can either use bagging or boosting as methods to in-
troduce diversity amongst the ensemble members. In bagging, independent models are
trained in parallel and combined at the end for the final decision. A Random Forest [79]
is a bagging ensemble ML algorithm that combines decision trees that have been trained
in parallel (Figure 3.2). Each tree is constructed based on a different randomly selected
subset of the training data. In boosting, different models are trained sequentially, with each
new model trained on an updated training dataset that gives more emphasis on the cases
that have been misclassified in the previous round. The Adaptive Boosting algorithm
[80] was the first boosting ensemble ML algorithm and it adaptively re-assigns the highest
weights to the incorrectly classified data (Figure 3.3).

3.1.4 Artificial neural networks

An artificial neuron or perceptron (Figure 3.4), a concept first introduced by Rosenblatt et
al. [81], is the simplest unit of an artificial neural network. An artificial neural network
[82] consists of an input layer, an output layer and a hidden layer with multiple interacting
artificial neurons. A deep artificial neural network (ANN) or multilayer perceptron (MLP)
contains several hidden layers.

There are two main phases involved in the learning process of an ANN. During the
forward propagation step or prediction phase, the ANN maps its inputs xn to an output
y = f ∑n(wnxn +b), where wn are the learned coefficients or weights, b is the bias term
and f is the activation function (Figure 3.4). Activation functions are used to nonlinearly
transform the output, e.g., the softmax activation function [71] is used in the last layer to
convert the raw output value into a probabilistic output per class with probability values
between 0 and 1. The more common activation function in other layers is the Rectified
Linear Unit (ReLU) (Figure 3.5). The interested reader is directed to Lederer et al. [84]
for a review of the most commonly used activation functions.
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3.1 Machine and deep learning

Fig. 3.2 Diagram of a random forest and how the predictions of all its decision trees are
combined to obtain the final prediction. Image source: https://tikz.net/random-forest/.

Fig. 3.3 Diagram of how the AdaBoost classifier re-weights the data at each model
training until the final decision is obtained. Figure source: https://towardsdatascience.com/
understanding-adaboost-for-decision-tree-ff8f07d2851.
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3.1 Machine and deep learning

Fig. 3.4 Schematic representation of the mathematical model of an artificial neuron or
perceptron. Figure source: Sarker et al [83].

Fig. 3.5 The ReLU activation function. Image source: Goodfellow et al. [71].
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3.1 Machine and deep learning

The training phase (Figure 3.6) aims to obtain the optimal network weight and bias
values. The predicted output is compared to the ground truth and the difference between
the two, calculated with a cost function, is used to guide the process of adjusting the
weights. The backpropagation process aims to minimise this cost function, i.e., to find
the global cost minimum, by calculating the gradient (i.e., partial derivatives) of the cost
function with respect to the weights and biases of the network [85]. The gradient descent
optimisation algorithm uses this gradient to update the weight and bias values at each
iteration as per w′ = w− a× gradient, where w′ and w are the new and old weights, a

is the learning rate constant at which the gradient is applied and gradient is calculated
during backpropagation. The Adam (adaptive moment estimation) optimisation algorithm
is widely used in training modern DL models. Instead of using a constant learning rate,
the Adam optimiser updates the learning rate for each network weight individually during
training. The interested reader is directed to Goodfellow et al. [71] for a description of
other DL optimisation algorithms.

In addition to the learning rate, other model settings or hyperparameters that can be
modified or tuned during the training phase include the number of epochs (i.e. number
of times that the network sees the entire dataset) and the batch size (i.e. number of
subsamples from the entire dataset that the model uses at each weight update or iteration.
Furthermore, regularisation methods such as dropout and weight decay may be included
in order to improve the model generalisation error [71], with the dropout rate and weight
decay parameters included as hyperparameters. Section 3.2.1 in this Chapter describes
hyperparameter tuning and model selection processes.

3.1.5 Binary classification with a deep CNN

DL is a subfield within ML that involves learning data features using ANNs with several
layers of mathematical operations [86]. Deep CNNs are the most widely used DL method
when the input data is high-dimensional (e.g. images). Transformer networks [87, 88]
are a recent and promising attention-based alternative to CNNs to achieve DL with high-
dimensional input data. This section, however, describes the operations involved in a CNN
and describes the 3D DenseNet and 3D ShuffleNet architectures as examples of CNN
models, both of which are used in the experiments detailed later in this thesis.

CNNs [89] include convolution and pooling layers to automatically extract the most
useful features from input images to perform a specific task [38]. Both the convolution and
pooling operations contribute to a reduction of the number of connections between layers,
thus reducing the computational cost of the network, which is essential when dealing
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3.1 Machine and deep learning

Fig. 3.6 Prediction and training processes in an ANN. Figure adapted from Sarker et al.
[83].

with high-dimensional data such as images. In a convolution layer of a CNN, a filter
(or convolution kernel) is scanned over the input tensor (image) with a tensor product
operation (Figure 3.7) to produce an output tensor (or feature map) that represents a map of
the presence of a pattern (described by the kernel) at different locations in the input image
[86]. In a pooling layer the size of the feature map is downsampled, which reduces the total
number of parameters that the network needs to train. Max pooling and average pooling
are downsampling approaches that use the maximum and average values, respectively,
in each patch of a feature map (Figure 3.8). A CNN can be trained for classification
tasks by adding a fully connected layer that connects the output feature maps from the
convolution and pooling layers to the classification outputs (classes) (Figure 3.9). Below is
a description of the two CNN architectures that I used in this thesis: 3D the DenseNet and
the 3D ShuffleNet.

3D DenseNet classification CNN. Deeper CNNs are more sensitive to small details
and less sensitive to larger irrelevant variations in an image [85]. However, going deeper
(more layers) has some drawbacks such as the partial derivative (gradient) of the loss
function becoming so small after a long path between the input and the output that the
network stops learning (a.k.a. vanishing gradient problem) or the issue of overfitting
due to an increased number of model parameters [92]. Densely connected convolutional

55



3.1 Machine and deep learning

Fig. 3.7 Schematics of a 2D convolution and the corresponding convolution operation
equation, where K corresponds to the kernel, I is the image and S is the output. Figure
adapted from Goodfellow et al. [71].

Fig. 3.8 Max and average pooling operations. Figure adapted from Vasilev et al. [90].
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3.2 Evaluation of ML models with limited data

Fig. 3.9 Schematics of a classification CNN architecture. Image source: Phung et al. [91].

networks (DenseNets) were introduced by Huang et al. [93] as a novel approach to deeper
CNNs while addressing these drawbacks. DenseNets consist of dense blocks connected
via transition layers (Figure 3.10a). In a dense block, every layer is directly connected to
each other (Figure 3.10b), thus ensuring maximum information and gradient flow across all
layers as well as requiring fewer parameters as feature maps from other layers are reused
in subsequent layers (e.g. the DenseNet-121 has around 7 million parameters whereas the
widely used ResNet-18 and VGG-16 models have 11 million and just over 130 million
parameters, respectively). In Chapter 6 I have used and compared the DenseNet121 and
DenseNet40 versions, the latter being a much lighter version with just around 1 million
parameters and a subsequently shorter training time (approximately 2 days vs. 5 days for a
nested-CV ensemble training).

3D ShuffleNet classification CNN. The ShuffleNet CNN [94] is a ‘lightweight model’
that uses grouped convolutions and the channel shuffle operation (Figure 3.11) to accelerate
the training process. In a study by Yang et al. [95] where different deep CNNs were
compared with regards to their performance on small datasets, the ShuffleNet model, with
only 343,842 parameters, showed similar performance to the DenseNet-121 model. In
Chapter 6, I compare the performance of both networks in the prediction of ORN using
radiation dose distribution maps.

3.2 Evaluation of ML models with limited data

Prediction models are often developed on limited datasets and an evaluation of their
performance on independent datasets is required prior to clinical use. According to
the TRIPOD (Transparent Reporting of a multivariable Prediction model for individual
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(a)

(b)

Fig. 3.10 a) Schematics of a DenseNet-121 architecture, where dense blocks and transition
layers are represented in red and green, respectively. b) Visual representation of a 5-layer
dense block with the connections between each layer and its preceding feature maps. Image
sources: https://www.pluralsight.com/guides/introduction-to-densenet-with-tensorflow
and Huang et al. [93].
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3.2 Evaluation of ML models with limited data

Fig. 3.11 Schematics of a ShuffleNet with two group convolutions (GConv) comparing the
following scenarios: a) there is not cross talk between the groups, b) interaction between
all input and output channels in GConv2 and c) equivalent interaction by applying the
channel shuffle operation. Figure source: Zhang et al. [94].

prognosis Or Diagnosis) statement [96], prediction models may fall into different levels
depending on the type of analysis performed. Our models fall into Type 1b, described as
‘development of a prediction model using the entire data set, but then using resampling (e.g.
bootstrapping or cross-validation) techniques to evaluate the performance and optimisms
of the developed model’. Therefore, in this section an overview is provided of statistical
techniques that can be used to perform this type of development/evaluation.

3.2.1 Hyperparameter tuning and model selection

In order to avoid overfitting, the process of learning the optimal hyperparameters (i.e.
hyperparameter tuning) is carried out on a validation data subset unseen by the training
algorithm [71]. To assess the overall model performance, the final model is trained with
the optimal hyperparameters and tested on a further unseen test data subset. The k-fold
cross validation procedure (Figure 3.12a) is an efficient resampling method for repeatedly
splitting the data into non-overlapping training and validation subsets. Thus, each of the
k-folds is efficiently used in both the hyperparameter optimisation and model validation
steps. The overall model performance can then be calculated as the average from all folds.
However, even if not simultaneously, in the k-fold cross validation method the same data
is used for both the hyperparameter optimisation and model selection steps, which may
introduce bias in the latter and result in an overoptimistic model performance [97, 98, 34].
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3.2 Evaluation of ML models with limited data

3.2.2 Nested k-fold cross-validation

Nested cross validation [97] is an approach to hyperparameter optimisation and model
selection that overcomes the problem of overoptimistic evaluation found in the regular
k-fold cross-validation (CV) method. The nested CV uses a CV procedure inside the main
CV (Figure 3.12b). In the outer CV, the data is randomly split into training and test sets
following a k-fold CV approach, i.e. this split is repeated k times using k non-overlapping
test sets. For each of the outer CV folds, hyperparameter optimisation is performed j
times in an inner j-fold CV approach where the outer CV train dataset is further split into
train and validation sets. Finally, for each of the outer CV folds, the entire training set is
used for training using the optimised hyperparameters obtained from the inner CV and the
prediction accuracy can be calculated on the held-out test set. In this way, the test set of
each outer CV fold remains completely unseen, avoiding the bias introduced in traditional
CV. A k-fold CV approach is stratified when the class balance is maintained in all CV
folds.

3.2.3 Model discrimination performance metrics

In the model selection process described in the previous section, the performance of the
model is assessed based on a performance metric computed on the test data set and the best
performing model is selected. Discrimination of a binary classification model is the ability
of the model to correctly separate the subjects into the two classes considered. In this
thesis, I have used a class-balanced cohort and assessed the discrimination ability of the
models for the purpose of comparing different prediction models. Below is a description
of the discrimination performance metrics used in this thesis.

A Confusion Matrix (Figure 3.13) is a tabular representation on the number of
correctly and incorrectly predicted subjects for each class. Based on these numbers, the
following metrics can be obtained:

• Sensitivity, recall or true positive rate (TPR) = TP/(TP+FN)

• Specificity or true negative rate (TNR) = TN/(TN+FP)

• Precision or positive predictive value (PPV) = TP/(TP+FP)

• Negative predictive value (NPV) = TN/(TN+FN)

• Accuracy = (TP+TN)/(TP+TN+FP+FN)
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(a)

(b)

Fig. 3.12 (a) Standard 5-fold cross-validation vs. (b) nested 5-fold cross-validation work-
flows.
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3.3 Deep learning-based toxicity modelling

• F1 score = 2 x (precision x recall) / (precision + recall) = 2TP/(2TP+FP+FN)

Fig. 3.13 Confusion matrix. Image source: https://medium.com/analytics-vidhya/
what-is-a-confusion-matrix-d1c0f8feda5.

It must be noted that while accuracy is a widely used discrimination metric in balanced
datasets, it is not suitable for imbalanced datasets as it would over-represent the majority
class. F1 score should be used instead in order to avoid misleading model performance
conclusions [99]. As explained above, class balance has been maintained throughout this
thesis. However, the effect of class imbalance on the robustness of model performance
metrics should be taken into account when considering a dataset that reflects the actual
prevalence of mandibular ORN, which is much lower than 50%.

The Area Under the Receiver Operating Characteristics (AUROC) curve is a plot
(Figure 3.14) of the sensitivity against the false positive rate (FPR) (1-specificity) at various
discrimination thresholds. This metric is not dependant on class balance.

3.3 Deep learning-based toxicity modelling

As discussed in Chapter 2, NTCP models have traditionally used DVH metrics as dosimetric
variables. These metrics do not include clinically relevant spatial information of the dose
distribution within the anatomical structures. Previous studies have shown that spatial
information within a dose map is associated with radiation-induced toxicities in HNC
[100] and that including such information into toxicity prediction models can result in
improved prediction accuracies [34, 101–103]. Dosiomic features from radiation dose
distribution maps can be handcrafted (e.g. extracted manually using conventional radiomics

62

https://medium.com/analytics-vidhya/what-is-a-confusion-matrix-d1c0f8feda5
https://medium.com/analytics-vidhya/what-is-a-confusion-matrix-d1c0f8feda5


3.3 Deep learning-based toxicity modelling

Fig. 3.14 Area Under the Receiver Operating Characteristics (AUROC) curve. Image
source: https://en.wikipedia.org/wiki/Receiver_operating_characteristic.
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3.3 Deep learning-based toxicity modelling

tools) or automatically learnt within a DL pipeline (Figure 3.15). These different possible
approaches are discussed below.

3.3.1 Handcrafted dosiomic features

Several studies have used manual image feature extraction techniques to obtain features
from dose distribution maps (i.e., dosiomics) in combination with ML classification
methods. Dose-surface maps can be produced from tubular structures [104, 105]. However,
manual extraction of spatial dose metrics becomes more complex with structures that
cannot be ‘unfolded’ or flattened. Beasley et al. [106] applied image-based data mining to
obtain a voxel-wise correlation map between radiation dose and radiation-induced trismus
(difficulty in mouth opening) based on the Spearman’s rank correlation coefficient between
the toxicity outcome and the voxel value of the dose distribution to the mastication muscles.
Dean et al. [107] included spatial dose information into their models for mucositis and
dysphagia by describing the dose distribution with novel metrics based on the longitudinal
and circumferential extents of the dose distributions to the oral mucosa and pharyngeal
mucosa, respectively. Gabryś et al. [34] developed their own MATLAB-based software to
handcraft features from the dose distribution volume such as spatial dose gradient, spread
and skewness and combined these with demographic, DVH and radiomic features in NTCP
models for xerostomia. Jiang et al. [108] applied ML methods directly to voxel dose
values and other non-dosimetric features to predict xerostomia. Welch et al. [109] used the
Python PyRadiomics package to extract statistical and shape features from the planned
radiation dose distribution volumes in head and neck cancer.

3.3.2 Automated dosiomic features extraction

An alternative to these manual dosiomic feature extraction methods is the use of deep
CNNs to automatically extract and use the most relevant features from the dose distribution
volumes (Figure 3.13). A recent review by Appelt et al. [110] provides a thorough
overview of the application of DL to RT outcome prediction and the resulting challenges
of using radiation dose data. Some of the studies included in this review are mentioned in
this section, however the interested reader is directed to the review article for additional
examples. Zhen et al. [111] applied a pre-trained 2D VGG-16 to unfolded 2D rectum
surface dose maps to predict rectum toxicity after cervical cancer radiotherapy. The 2D
CNN performance (0.89 AUROC) was compared to a logistic regression (LR) model
(0.70 AUROC) using DVH metrics and handcrafted features extracted from the rectum
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surface dose maps. Ibragimov et al. [102, 112, 113] designed and successfully trained
a 3D CNN to automatically identify patterns in the dose distributions to the portal veins
of patients undergoing liver RT to predict 3+ acute and late hepatobiliary (HB) toxicities.
They applied transfer learning from 3D CT images from a variety of human organs and
data augmentation on the dose distribution maps to compensate for the small dataset size
(125 subjects). Their predictions improved from 0.79 to 0.85 AUROC when the 3D CNNs
for the dose maps were combined with a fully connected neural network (FcNN) for
non-image data analysis. A study by Men et al. [103] with a total of 784 patients explored
the combination of 3D dose maps with CT images and structure contours into a 3D residual
CNN to predict radiation-induced xerostomia. Their CNN-based results (0.84 AUROC)
were superior to a LR model that used DVH metrics and clinical variables (0.68 AUROC).
Until my own work [114], which will be presented in Chapter 6, the use of DL for ORN
prediction had not been investigated. A subsequent study [115] has been published and
further discussion on the results of these two papers is included in Chapter 6.

Fig. 3.15 Conventional vs. deep learning feature extraction and learning processes (adapted
from El Naqa et al. [38]).

3.4 Discussion

The radiotherapy workflow consists of several complex and time-consuming steps, some
of which have been described in Chapter 2. With AI, these processes have become more
efficient and accurate [116]. While the clinical use of AI for automatic segmentation
and treatment planning processes has been widely implemented and even commercialised
[117], its use in the prediction of toxicity outcomes is still transitioning from the research
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domain to the clinical setting [118, 119]. Mandibular ORN is a rare radiation-induced
toxicity with naturally low case numbers and small datasets. Thus, the prediction of
mandibular ORN using DL methods is particularly challenging. With the PREDMORN
study (9), a larger dataset will be available as an expansion of the DL work presented in
this thesis.

Radiation dose is a key risk factor for ORN but there are other clinical and demographic
non-dosimetric risk factors. While Chapter 6 in this thesis describes the work carried out
to develop a CNN-based method to predict mandibular ORN based on 3D radiation dose
maps, Chapter 7 describes the work on developing a CNN-based prediction model that
also includes non-image data (i.e., clinical and demographic variables) in combination
with the radiation dose maps; the most relevant concepts of multimodality data fusion are
also described. Chapter 8 explores the use of DL interpretability methods in the prediction
of ORN, with detailed explanations of the most relevant concepts on DL interpretability.
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Chapter 4

Materials

This Chapter describes the data used in this thesis and the different software employed for
its processing. Section 4.1 describes the patient selection process that resulted in the three
different cohorts used. Section 4.2 describes which data was used and how it was obtained.
Section 4.3 describes how the image data was processed. Finally, Section 4.4 provides
details on the data protection measures observed.

4.1 Patient selection

The patient selection criteria have evolved over the duration of my thesis and, as a result,
three different cohorts have been used, which I have named Cohort 1, Cohort 2 and Cohort
3; the evolution into the three different cohorts is described below. Table 4.1 summarises
each of the three cohorts as well as the experiments that these were used in.

4.1.1 Cohort description

Cohort 1. Originally, a total of 96 patients, 48 ORN cases and 48 controls, treated with
radical IMRT between 2011 and 2015 were selected from the head and neck database
maintained by the GSTT oncology team. The minimum follow-up time for the control
group was 13.5 months. The median time from the end of RT to diagnosis of ORN was
11.8 months (IQR 20.8). Table 4.2 provides a summary of the demographic and clinical
characteristics of this first cohort. Cohort 1 was used in a study [67] where I compared
the performance of different ML methods in the prediction of ORN incidence using DVH
metrics, clinical and demographic variables (Chapter 5).
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Cohort 2. To increase the cohort size, additional ORN cases were included from the
updated ORN list maintained by Dr Vinod Patel with patients treated between 2011 and
2019. Thus, the updated Cohort 2 consisted of 70 ORN cases and 70 controls. By the time
the updated cohort was finalised, three control cases from the original cohort had developed
ORN. Consequently, I decided to set a stricter minimum follow-up time of 3 years for the
control group of the updated cohort. The median time from the end of RT to diagnosis of
ORN was 12.5 months (IQR 21.6). Table 4.3 provides a summary of the demographic and
clinical characteristics for Cohort 2. Primary tumour groups in Cohort 1 were updated to
more generic ones in Cohort 2. This cohort was used in a study [114], where DL methods
were used to predict ORN incidence based on 3D radiation map distributions and their
performance compared to predictions made with a RF model based on DVH metrics.

Cohort 3. In parallel to this thesis, I have developed the PREDMORN multi-centre
study (Chapter 9) in order to build robust ORN prediction models with the largest and
most diverse cohort ever used in published studies. The PREDMORN study design
and protocol was developed with contributions from all participating centres, with a
control-case matching based on primary tumour site and treatment year and well-defined
inclusion/exclusion criteria (Table 9.1 in Chapter 9). As a result, Cohort 2 was updated
to Cohort 3 (Table 4.4) to match the PREDMORN study requirements. For instance, it
was agreed that no minimum follow-up time threshold would be applied for the control
group. Thus, the average follow-up time for the controls in Cohort 3 was 49.9 months
(range 5.2-92.0) while the median time from the end of RT to diagnosis of ORN was
12.1 months (IQR 20.3). In the process, additional ORN cases were diagnosed during
this time with a total of 92 cases treated between 2011 and 2022. The entire ORN group
was reviewed and mislabelled ORN cases and cases that had ORN in the maxilla instead
of the mandible were identified and excluded. During the time span considered, from a
total of 1721 HNC patients radically treated, a total 142 patients (8.3%) were diagnosed
with ORN, 50 of which were excluded because of unavailable RT dose and/or RT plan
Digital Imaging and Communications in Medicine (DICOM) files (18), ORN region
outside of the mandible (15), palliative or low prescribed dose (8), previous irradiation in
the HN region (6) or two primary tumour sites (3). With regards to the updated control
cohort, a well-defined selection process was followed as per the PREDMORN study.
First, the primary site distribution was obtained from the ORN cohort. Primary tumour
site groups considered included oral cavity, oropharynx, paranasal sinus/nasopharynx,
larynx/hypopharynx, salivary glands and unknown primary (neck). All of the experiments
in this thesis were performed used a class-balanced cohort (i.e., a 1:1 control-case ratio)
to facilitate the prediction task in the DL methods. For the multi-institutional modelling
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study, however, a 2:1 control-case ratio was agreed with all the centres. In both cases, the
random control-case match based on treatment year was done for each primary tumour
site. The ML and DL experiments published on Cohort 2 were repeated on Cohort 3 and
the results for both Cohorts are discussed in Chapter 6.

4.1.2 Dosimetric comparison of Cohort 2 and Cohort 3

This subsection aims to analyse the dosimetric differences between Cohorts 2 and 3, which
will have an effect on the results of the corresponding ML and DL experiments. As shown
in Figure 4.1, there is a degree of separation in the curves for the median DVHs of the two
groups, ORN and control, in both cohorts; whilst the largest separation in Cohort 2 (dotted
line) occurs at high doses, for Cohort 3 (continuous line) they are clearly more separated
in the intermediate dose region.

Fig. 4.1 Median DVH comparison between ORN and control groups for Cohort 2 and
Cohort 3.

The Mann-Whitney U test [120] (MWU) is a ’distribution-free’ alternative to the two-
sample parametric t-test for comparing data from two independent groups as it doesn’t
assume normality. This test was used for all dosimetric variables even if some of them had
a normal distribution. Whilst the p-value from the MWU test can inform whether there is
an effect for a given variable, the Cohen’s d [121] is a measure of the effect size for that
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Table 4.1 Summary of the three cohorts used, the main changes between them and the
related experiments they have been used in.

ORN/Controls Time range Updates Related experi-
ments

Cohort 1 48/48 2011-2015 Original cohort Predicting mandibu-
lar ORN from non-
imaging data using
ML (Chapter 5)

Cohort 2 70/70 2011-2019 a) Minimum follow-
up time for con-
trol group extended
from 13 months to
3 years; b) ORN
cases reviewed

Comparison of
DVH-based pre-
dictions using ML
methods and dose
map-based pre-
dictions using DL
methods (Chapter
6)

Cohort 3 92/92 2011-2022 a) Control-case
matching based on
primary tumour-site
and treatment year;
b) PREDMORN
inclusion/exclusion
criteria; c) No mini-
mum follow-up for
control group; d)
‘Current’ alcohol
and smoking status
defined as that
within 2 months
prior to the start of
RT

a) Comparison of
DVH-based pre-
dictions using ML
methods and dose
map-based pre-
dictions using DL
methods (Chapter
6); b) Combining
image and tabular
data (Chapter 7); c)
Interpretable CNN
methods (Chapter
8)
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Table 4.2 Demographic and clinical variables characteristics of the ORN and control groups
in Cohort 1.

ORN Control

Gender
Male 34(71%) 38(79%)
Female 14(29%) 10(21%)
Age (median, (IQR)) 64 (14) 59 (15)
Smoking
Current 25(52%) 19(40%)
Previous 14(29%) 19(40%)
Alcohol
Current 33(69%) 33(69%)
Previous 5(10%) 4(8%)
Chemotherapy 33(69%) 33(69%)
Pre-RT dental extractions 30(63%) 31(65%)
Pre-RT surgery
Primary RT 38(79%) 30(63%)
PORT 10(21%) 18(38%)
Primary tumour site
Oropharynx 28(58%) 28(58%)
Oral cavity 13(27%) 9(19%)
Larynx 3(6%) 7(15%)
Hypopharynx 0(0%) 2(4%)
Paranasal sinus 1(2%) 1(2%)
Unknown primary 3(6%) 1(2%)
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Table 4.3 Demographic and clinical variables characteristics of the ORN and control groups
in Cohort 2.

ORN Control

Gender
Male 49(70%) 56(80%)
Female 21(30%) 20(20%)
Age (median, (IQR)) 61(13) 61(15)
Smoking
Never 20(29%) 17(24%)
Current 31(44%) 25(36%)
Previous 19(27%) 28(40%)
Alcohol
Never 19(27%) 23(33%)
Current 44(63%) 43(61%)
Previous 7(10%) 4(6%)
Chemotherapy 46(66%) 42(60%)
Pre-RT dental extractions 45(64%) 47(67%)
Pre-RT surgery
Primary RT 47(67%) 41(59%)
PORT 23(33%) 29(41%)
Primary tumour site
Oropharynx 42(60%) 31(44%)
Oral cavity 21(30%) 16(23%)
Larynx 2(3%) 11(16%)
Hypopharynx 0(0%) 3(4%)
Salivary glands 1(1%) 4(6%)
Nasopharynx 0(0%) 0(0%)
Paranasal sinus 1(1%) 0(0%)
Unknown primary 3(4%) 3(4%)
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Table 4.4 Demographic and clinical variables characteristics of the ORN and control groups
in Cohort 3.

ORN Control

Gender
Male 66(72%) 72(78%)
Female 26(28%) 20(22%)
Age (median, (IQR)) 62 (13) 61 (15)
Smoking
Never 19(21%) 25(27%)
Current 26(28%) 46(50%)
Previous 47(51%) 21(23%)
Alcohol
Never 13(14%) 15(16%)
Current 8(9%) 14(15%)
Previous 71(77%) 63(69%)
Chemotherapy
None 33(36%) 35(38%)
Cisplatin 50(54%) 52(57%)
Carboplatin 7(8%) 1(1%)
Cetuximab 2(2%) 4(4%)
Dental assessment pre-RT 89(97%) 80(87%)
Pre-RT dental extractions 55(60%) 50(54%)
Pre-RT surgery
Primary RT 57(62%) 57(62%)
PORT 35(38%) 35(38%)
RT technique
IMRT 53(58%) 53(58%)
VMAT 39(42%) 39(42%)
Primary tumour site
Oropharynx 52(57%) 52(57%)
Oral cavity 28(30%) 28(30%)
Larynx / Hypopharynx 3(3%) 3(3%)
Salivary glands 3(3%) 3(3%)
Paranasal sinus/Nasopharynx 2(2%) 2(2%)
Unknown primary 4(4%) 4(4%)
Prescribed dose (Gy, fractions)
71.5 in 30 2(2%) 0(0%)
70 in 35 0(0%) 1(1%)
67.2 in 28 1(1%) 0(0%)
66 in 33 10(11%) 4(4%)
65 in 30 54(59%) 59(64%)
60 in 30 20(22%) 26(28%)
55 in 20 1(1%) 0(0%)
50 in 20 4(4%) 2(2%)
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variable. It measures the difference between two group means in terms of the number of
standard deviations that the means differ (Equation 4.1). A minimum effect size of 0.80 is
generally accepted as large [122] while sizes around 0.50 and 0.20 are considered medium
and small, respectively.

Cohen′s d = (MeanORN −Meancontrol)/SDpooled (4.1)

where SDpooled =
√
((SD2

ORN +SD2
control)/2)

Table 4.5 provides the results from a univariate analysis and the effect size for a set
of DVH metrics for the two cohorts. From the DVH metrics considered, only the ones
relating to maximum doses (Dmax and D2%) showed a medium effect size in Cohort 2.
In Cohort 3, only the mean (p=0.031) and median (p=0.028) dose metrics showed some
difference between the two groups; however, their corresponding effect size was small.

Table 4.5 Univariate analysis results and effect size of the DVH metrics for Cohorts 2 and
3. Values under the 0.5 significance level are in bold.

Cohort 2

DVH metric (median (IQR)) ORN Control p-value (MWU) Effect size (Cohen’s d)

Dmax 68.5 (3.3) 67.6 (6.2) 0.002 0.441
D2% 65.2 (4.3) 64.3 (6.5) 0.000 0.540
Dmin 9.2 (6.8) 7.7 (6.8) 0.131 0.238
D98% 13.3 (12.2) 11.6 (9.1) 0.151 0.212
Dmean 46.6 (8.0) 46.5 (12.6) 0.159 0.270
D50% 49.9 (11.7) 48.6 (16.6) 0.078 0.294

Cohort 3

DVH metric (median (IQR)) ORN Control p-value (MWU) Effect size (Cohen’s d)

Dmax 68.2 (4.7) 68.2 (6.1) 0.078 0.191
D2% 65.1 (5.3) 64.7 (5.8) 0.035 0.227
Dmin 8.1 (7.2) 7.3 (6.9) 0.490 0.059
D98% 12.1 (10.9) 12.2 (8.5) 0.564 0.051
Dmean 46.8 (9.3) 44.0 (10.7) 0.031 0.277
D50% 50.0 (14.0) 47.2 (16.3) 0.028 0.256

4.2 Data

The Head and Neck cnacer research database is held within the Guy’s Cancer Cohort
(REC reference 18/NW/0297 and IRAS Project ID 231443), which was reviewed by the
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North-West Haydock REC Committee. For the work included in this thesis, data was
retrospectively collected from this database under the Project Number 6333. Ethical
clearance approval was granted by the Guy’s Cancer Cohort Access Committee and
Steering Committee on the 21st of April 2016. Figure 4.2 lists the data collected within
each data type; a more detailed description is provided in Chapter 9 as part of the protocol
for the PREDMORN multi-institutional study. Figure 4.3 summarises which data was used
in each experiment performed in this thesis.

Fig. 4.2 Types of data with a list of items collected for each data type.

4.2.1 Patient, clinical and treatment data

When a patient is diagnosed with HNC, a well-established clinical protocol is followed at
GSTT: 1) the patient status, medical history and disease stage are assessed, 2) a decision is
made on the treatment type and schedule, 3) the treatment is delivered and 4) the patient is
followed up over treatment and for up to five years post-treatment by oncology and surgical
teams in order to assess treatment outcomes. Toxicity scoring using the NCI CTCAE v.
4.0/5.0 grading systems [49] is recorded at baseline, weekly during RT and at 6 weeks and
3, 6 and 12 months post-treatment and yearly thereafter prospectively at the point of care.
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Fig. 4.3 Data used in each experiment and chapter.
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Any clinically relevant information obtained at any of these steps is recorded using the
Mosaiq (Elekta AB, Stockholm, Sweden) and the GSTT Electronic Patient Record (EPR)
systems. In addition to this, and mostly for research purposes, the head and neck unit at
GSTT maintains a database that contains patient, demographic and treatment data for all
HNC patients treated since 2011.

4.2.2 Radiotherapy treatment planning data

During the radiotherapy treatment planning process patient-specific information is used
and produced: planning CT images, OAR and target volume delineations, radiation dose
distribution maps and DVH. All this information can be exported from the TPS as DICOM
files which, in addition to images, may also contain sets of metadata such as patient
information, image acquisition details, etc. Inverse-planned IMRT was introduced at GSTT
in March 2011. Prior to this, the forward-planned IMRT and 3DCRT techniques were used
for radical and palliative cases, respectively. The resulting differences in radiation dose
distributions derived from both techniques (IMRT vs. 3DCRT) have been discussed in
Chapter 2 (Section 2.2.1). Only patients treated with inverse-planned IMRT were included
in the study in order to obtain a homogeneous cohort with respect to the treatment planning
technique. Radical primary RT cases are prescribed a total dose of 65-70 Gy in 30-35
fractions and 55 Gy in 20 fractions in selected cases. Radical PORT cases are prescribed
60-66 Gy in 30-33 fractions and 50 Gy in 20 fractions in selected cases.

Within the time frame considered in this thesis (2011 to 2022), two different radiother-
apy TPS were used to produce the clinical radiation dose treatment plans: the Monaco
(Elekta AB, Stockholm, Sweden) TPS was used between 2011 and 2016 and the Eclipse
(Varian Medical Systems, Milpitas, CA) TPS was used from 2016 onwards. In some
of the patients planned with Monaco the absorbed dose had been calculated as Dw,m. I
re-calculated the dose distribution for these patients as Dm,m in order to maintain the
same dose reporting method across the whole cohort. The two absorbed dose calculation
methods, Dw,m and Dm,m, are described in Chapter 2 (Section 2.2.3).

4.2.3 Dose-volume histogram (DVH)

Some of the experiments that were performed used DVH-based dosimetric data as input
variables (Chapters 5 and 6). To obtain these I extracted the raw cumulative DVH for the
mandible structure from the treatment TPS. I then used the ‘DVHmetrics’ package in the
R software (R Foundation for Statistical Computing, Vienna, Austria) to obtain the DVH
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metrics. Finally, I applied an EQD2 correction (Equation 2.1 in Chapter 2) for patients
with a fraction dose different from 2 Gy.

4.2.4 ORN data

Patients who develop ORN after their RT course at GSTT are treated and closely monitored
by a specialist oral surgical team in a dedicated clinic. The Notani [50] ORN grading
system is used at GSTT (Section 2.4.1 in Chapter 2); however, for the purpose of bi-
nary classification in the experiments performed in this thesis, toxicity outcomes were
dichotomised and any grade of ORN was considered as an event.

For ORN cases, the ORN region in the mandible was contoured on the RT planning CT
images by an ORN expert oral surgeon (Dr Vinod Patel). This was done based on planar
x-ray dental images, cone beam CT where available and dental follow-up clinical notes
using cognitive transfer, i.e. obtaining the shape and localisation information of the ORN
area from the dental images and manually contouring this region of the mandible on the
RT planning CT accordingly. All contouring was done in the TPS used for the clinical
treatment plan (Monaco or Eclipse). The RT Structure DICOM files for the ORN structure
were exported from the TPS and processed in the same way as the mandible structure files
as described in Section 4.3 below.

4.3 Image data processing

Several data processing steps were required for the image data to produce the mandible dose
maps. Figure 4.3 shows a schematic of the data processing workflow, and the subsections
below describe these steps in more detail.

4.3.1 Mandible segmentation

I manually segmented the mandible for all the patients in the cohort using the TPS
contouring tools on the planning CT images. A subset of the manual segmentations were
checked by Dr Teresa Guerrero Urbano and Dr Vinod Patel as a data curation quality
control measure. The mandible contours included the whole mandible with mandible
sockets and excluded the maxilla and the teeth [123, 41]. Patients (mostly oral cavity
cases) who had undergone a mandibulectomy with flap reconstruction prior to RT were
particularly challenging and I often required the support of clinical notes to visually identify
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the reconstructed part in order to exclude it from the mandible contour. Figure 4.4 shows
an example of the manual segmentation of the mandible in a case with a flap reconstruction
after a bilateral mandibulectomy.

I exported the mandible segmentation from the TPS as an RT DICOM Structure file and
converted it to a label map or binary mask (saved as a NIfTI file) using the Segmentations

module with Labelmap as the output in 3D Slicer 5.0.2 [124]. The CT DICOM files were
required to produce the mandible masks (Figure 4.5).

Fig. 4.4 CT slice from a patient who underwent flap reconstruction after a bilateral
mandibulectomy. The yellow contours correspond to the mandible bone.

4.3.2 Image resampling

The CT images acquired for treatment planning purposes are required in the structure
segmentation and dose calculation steps and can therefore be used as the geometrical
reference system for both the RT Structure and RT Dose DICOM files. I resampled all the
CT volumes (as NIfTI files) to a common slice thickness of 2 mm and slice size of 512
pixels x 512 pixels using the Resample Scalar Volume module in 3D Slicer using linear
interpolation. I then resampled all the previously created mandible masks and the exported
RT Dose DICOM files to the resliced CT using the Resample Image (Brains) module in
3D Slicer (again with linear interpolation).
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Fig. 4.5 Schematic of the image data processing workflow. Treatment data was anonymised
and exported from the TPS. After the image registration and resampling steps, the mandible
dose map was obtained by multiplying the masked mandible structure and the clinical
dose distribution. Final processing steps were required before using it as input into the DL
network.
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4.3.3 Registration to a common reference space

Head and neck cancer patients are immobilised with a thermoplastic shell. At GSTT we
originally used a 3-point head and neck shell with bear claws and then transitioned to a
5-point immobilisation shell. Patients are scanned with a comfortable neutral neck position;
but as this may be different from patient to patient and there are anatomical differences
there is unavoidable variation between patients that may result in large anterior-posterior
rotations of the neck. Inspired by the methods described by Ibragimov et al. [102], I rigidly
registered all mandible segmentations to a common reference space using ITK-SNAP
[125] in order to minimise DL network to focus on dosimetric variations instead. I used
the ITK-SNAP 6-degree (translation and rotation) rigid registration model with the Mutual
Information image similarity metric. I selected the patient with the largest number of
mandible slices (a total of 56) as the reference patient and added empty slices to smaller
mandible volumes at a later processing step. I transformed the dose maps using the same
rigid transformations to maintain alignment.

4.3.4 Mandible dose maps

To obtain the 3D mandible dose distribution maps I multiplied the whole dose distribution
maps by the binary mandible segmentation masks. I then normalised the 3D mandible dose
distribution maps to the voxel value range of the entire dataset and cropped the resulting
volumes to reduce the empty voxels. I normalized the 3D mandible dose distribution maps
as follows: Inormalised = (I −Dmin)/(Dmax −Dmin), where Dmin and Dmax are the global
minimum and maximum intensities across the entire dataset.

Finally, I resized the final volumes to a size of 64 pixels x 64 pixels x 56 slices, where
the number of slices was determined by the largest mandible in the cohort and any smaller
mandible volumes were padded with empty slices.

4.4 Data protection and anonymisation

Strict data protection and anonymisation measures have been maintained. I only accessed
patient, demographic, clinical and treatment data from a fully protected and approved Trust
laptop and owned software. This data was then copied across into a password-protected
Excel spreadsheet. In an anonymised copy of this spreadsheet the patient names, hospital
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IDs and date of birth (DOB) were substituted by a study ID and the ‘age at the start of RT’
variable.

A study copy of all RT data was created. The anonymisation process of the RT
data was different for the Eclipse and Monaco systems; while Eclipse allows for built-in
anonymisation of all the RT data during the export step, an external software (DICOM
Adjuster) was needed to anonymise the Monaco RT DICOM files.

4.5 Discussion

The experiments included in this thesis have used data that was obtained retrospectively.
As a result of the learning curve during my PhD, the patient selection process has evolved,
and the cohort has consequently changed. Thus, the different experiments described in
Chapters 5, 6, 7, 8 and 9, have used slightly different cohorts. Chapter 6 in particular
includes a comparison between cohorts 2 and 3 with regards to the resulting performance
of the DL-based models.

One of the main differences between Cohorts 2 and 3 is the lack of minimum follow up
time requirement in the control group for the latter. Excluding cases with a short follow-up
time is common in previously published ORN studies [126, 66, 60] on the basis that ORN
is a late toxicity and false negatives could be included in the cohort otherwise. Again,
Chapter 6 explores the consequences of this difference with regards to the effect size of
the cohort.
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Chapter 5

Predicting MORN from non-imaging
data using ML

Prediction of ORN incidence in the treatment of HNC may lead to risk-reduction measures
(e.g., reduced mandibular radiation dose near extraction sites when possible) and/or a more
dedicated follow-up for early detection and intervention of ORN. Chapter 2 describes the
concept of NTCP modelling (Section 2.3.2) and provides a review of existing studies that
have investigated the correlation between dosimetric, clinical and demographic factors and
ORN incidence (Sections 2.4.2 and 2.4.3).

More complex supervised machine learning (ML) methods have been used to develop
NTCP models for clinical decision support [31] in HNC RT [127, 128, 107, 102, 129].
This Chapter describes a comparison between different supervised classification machine
learning methods (described in Chapter 3) for the prediction of ORN incidence. This study
was published in the British Journal of Radiology in 2021 [67].

5.1 Data

This study was performed using Cohort 1 described in Chapter 4 (Table 4.1). Prescribed ra-
diation doses ranged between 50 Gy in 20 fractions and 71.5 Gy in 30 fractions. Maximum
(Dmax) and mean (Dmean) mandible doses and relative dose–volume levels in the range
V40 Gy to V70 Gy in 5 Gy increments were considered as the DVH-based dosimetric
variables. All doses were converted to EQD2 as per Equation 2.1 in Chapter 2, using an
α/β ratio of 3 to account for late toxicity of the mandible. The distribution of the age and
DVH-based dosimetric variables is illustrated by the boxplots in Figure 5.1.
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Fig. 5.1 Boxplots showing the distribution of the DVH-based variables used in this Chapter,
where 0 and 1 in the x-axis correspond to the controls and cases, respectively.

5.2 Variable selection

As described in Chapter 2 (Table 2.4), there are several variables that are potentially
associated with mandibular ORN and multifactorial models are a way of describing this
association and/or predicting the toxicity outcome. Variable selection is commonly used as
a statistical method to reduce the complexity of multifactorial models and to prevent over-
fitting. Univariate analysis was applied as a variable selection method. The non-parametric
Pearson’s chi-squared test was used to compare the observed frequency distributions of the
ORN and control groups for the categorical variables (e.g. smoking status, gender, dental
extractions). Using a significance level of 0.3, dental extractions post-RT (p = 0.26) and
surgery pre-RT (p = 0.13) were included as clinical variables. The discriminatory power of
the continuous variables (i.e. age and DVH-based dosimetric variables) was assessed with
the one-sided MWU test using the scipy.stats.mannwhitneyu module with a ‘greater’
alternative hypothesis (i.e. the median in the ORN group is greater than the median in
the control group for all the tested variables). Using a significance level of 0.05, Dmax (p
= 0.045) was found to be the only dosimetric variables with class discriminating power
(Table 5.1).
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Table 5.1 Mann-Whitney U test results on the age and dosimetric variables for Cohort 1.

Metric p-value

Dmax 0.045
Dmean 0.092
Age 0.115
V40 0.342
V45 0.225
V50 0.309
V55 0.223
V60 0.262
V65 0.395
V70 0.399

5.3 Model design and training

The predictive accuracy of five supervised ML methods (described in Chapter 3 sec-
tion 3.1.3) - logistic regression (LR), support vector machine (SVM), random forest
(RF), adaptive boosting (AdaBoost) and artificial neural network (ANN) - was tested
using the SciKit-Learn (sklearn) package in Python 2.7.15.19. Stratified 5-fold nested
cross-validation (described in Section 3.3.1 in Chapter 3) was used, with embedded
model hyperparameter optimisation (Section 3.2.1 in Chapter 3) performed using the
model_Selection.GridSearchCV module. For all models, at each of the 5 outer cross-
validation folds, 20 out of the total 96 cases were kept unseen by the model for testing its
performance. The remaining 76 cases were used for model training in the LR, SVM, RF
and AdaBoost models. For the ANN model, the training data set was further split during
training into 60 cases for model training and 16 for model validation (80:20). The average
accuracy across all inner CV folds was calculated for each hyperparameter combination
and the results reported are for the outer CV folds using the hyperparameter combination
that obtained the highest average accuracy.

For the multivariate LR model, the module linear_model.LogisticRegression

was implemented with a C parameter of 0.001 and the l2 regularisation penalty. The SVM
classifier was implemented using the Scikit-learn SVC class with an RBF kernel, a penalty
parameter (C) of 100 and a γ parameter of 0.001. The RF classifier was implemented
using the sklearn.ensemble.RandomForestClassifier module with a maximum number of
estimators (i.e. number of built trees) of 10, a maximum tree depth of 50, a minimum
number of samples at a leaf node of 1 and a minimum number of samples required
to split an internal node of 0.5. The AdaBoost classifier was implemented using the
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ensemble.AdaBoostClassifier module with a learning rate of 0.0001 and a maximum
number of estimators of 10.

The ANN was implemented in Keras with Tensorflow as the backend and trained on a
Nvidia Titan Xp GPU. It consisted of an input layer with the number of input nodes equal to
the number of variables used, followed by a 200-node hidden dense (fully connected) layer
with the ReLU activation function and a 1-node output layer with the sigmoid activation
function for binary classification (ORN or not ORN). A dropout layer was added at the
end of the network pipeline to reduce overfitting. The Binary Cross-Entropy loss function
was used to train the ANN and the Adam optimiser was used to minimise the loss function.
Hyperparameter optimisation was performed using a grid search strategy. Based on the
grid search results, the model was trained for 2000 epochs with a batch size of 30, a
dropout rate of 0.0 and a learning rate of 0.001. The best model was chosen based on the
highest accuracy achieved with the validation data set during training.

5.4 Model performance

Model performance was assessed using the measures described in Section 3.2.2 in Chapter
3, and the results of these metrics are summarised in Table 5.2. Although no single model
outperformed the rest in all measures considered, the ANN model (71%) had the highest
overall prediction accuracy on the unseen test dataset, closely followed by the LR (70%),
SVM (69%), AdaBoost (68%) and RF (66%) models. The performance of the models was
generally enhanced when using only the most statistically significant variables as per the
variable selection process.

The McNemar’s statistical hypothesis test [120] was used to determine whether there
were statistically significant differences in classifier model performance. A total of 10
pair-wise comparisons were thus performed in this study. Bonferroni correction [120] for
multiple comparisons was applied, resulting in a corrected significance level of 0.05/10
= 0.005 for each comparison. Table 5.3 provides the results from the McNemar’s test on
all combinations of the models explored. Based on the corrected significance level, no
statistically significant difference was observed between models.
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Table 5.2 Model performance summary

Model (variables) Accuracy Sensitivity (TPR) Specificity (TNR) Precision (PPV) NPV

LR (all/selected) 0.66/0.70 0.75/0.77 0.52/0.55 0.62/0.65 0.77/0.76
SVM (all/selected) 0.64/0.69 0.75/0.78 0.59/0.56 0.65/0.66 0.72/0.77
RF (all/selected) 0.63/0.66 0.64/0.65 0.59/0.65 0.63/0.65 0.65/0.65
AdaBoost (all/selected) 0.65/0.68 0.63/0.66 0.57/0.66 0.72/0.67 0.65/0.66
ANN (all/selected) 0.65/0.71 0.75/0.78 0.62/0.67 0.65/0.68 0.72/0.78

Table 5.3 Results from the McNemar’s statistical test on all model pair combinations.

χ2 p-value LR SVM RF AdaBoost

SVM vs. 0.628
RF vs. 0.396 0.256
AdaBoost vs. 0.984 0.995 0.382
ANN vs. 0.658 1.000 0.211 0.825

5.5 Discussion

Most ORN-related published work has focused on finding correlations between ORN
incidence and clinical and dosimetric variables based on population studies. While it is
important to understand these associations, the ability to predict incidence on a case-by-
case basis would be a more valuable clinical application. This study has compared different
ML models for the task of predicting mandible ORN incidence, which is in essence a binary
classification task, based on clinical, demographic and DVH-based dosimetric variables.
The results presented show that ML-based methods can be used to assist clinical decision-
making for HNC patients undergoing RT. We cannot recommend a specific model based on
our prediction performance results, as these were not found to be statistically significantly
different. It could be argued that the use of the Bonferroni correction when performing
more than five model comparisons could lead to ‘highly conservative’ conclusions [120].
However, the McNemar test results showed no significant difference between models
even with an uncorrected significance level of p=0.05. The ANN model showed the
highest overall prediction accuracy. It could be argued that this is also the model with
poorest interpretability and that a simpler and more transparent model (e.g. LR) might be
preferred for clinical use if the prediction performance is not significantly compromised.
The advantage of using ANNs over traditional ML methods is perhaps more obvious when
using more complex input data, e.g. high-dimensional data such as images. Chapter 6
describes how the use of deep CNNs was explored in the task of predicting ORN incidence
based on 3D images of the radiation dose distribution to the mandible.
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As described in Chapter 3 (Section 3.3.1), other studies have previously exploited
spatial dose information as input into a ML algorithm, usually together with clinical and
demographic variables. The use of deep CNNs, although widely employed in medical
imaging applications, has yet to be fully explored for toxicity prediction. A CNN is able to
learn the image-based features that are most useful for the task being trained for. Reber
et al. [115] have recently published a study with an unmatched cohort of 173 ORN cases
and 1086 controls. They also explored the use of ML models (logistic regression, random
forest, support vector machine and a random classifier reference) based on DVH parameters
(Dmean, Dmin, Dmax and V65Gy) to predict ORN. They found that the logistic regression
model was the overall best performing one with an accuracy of 0.64, which is similar to
that obtained with our cohort, although no clinical variables were included. Chapter 6
discusses the results obtained from our CNN-based ORN prediction model. Chapter 7
explores multimodality fusion DL methods to combine radiation dose distribution maps
and non-image data (i.e. clinical and demographic variables) for the prediction of ORN.
Mandible ORN is a rare radiation-induced toxicity and the data sets available are naturally
small. Low patient numbers make it difficult to attempt a multiclass prediction task where
not only incidence but also ORN severity is predicted. The morbidity caused by ORN (at
any grade) is such that the prediction of its incidence alone would already be an important
clinical decision-support contribution.

Overfitting and poor generalisability are common problems when testing complex ML
and DL models on independent data sets. We used a five-fold nested cross-validation
scheme in our evaluation and none of the test data were used when training or tuning
hyperparameters for the models that were applied to them. This represents a fair internal
validation of the ML models. According to the TRIPOD (Transparent Reporting of a
multivariable prediction model for Individual Prognosis or Diagnosis) statement [96],
prediction studies can be classified into three categories: model development, model
validation or a combination of both. The work presented falls into the first category,
where we describe the first steps towards the development of a mandible ORN incidence
prediction model by comparing different ML models. Future work will include external
validation of the model on an independent cohort from the Odense University Hospital
group in Denmark.

The published study described in this Chapter aimed to open a new path towards
personalised RT for HNC using ML to predict mandible ORN incidence. We proposed
a new approach in the field of mandible ORN toxicity by using a prediction model for
its incidence rather than just determining its potential contributing factors. We showed
that this can be successfully done using ML methods and encouraged the transition to
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ML-based prediction models for ORN as has already taken place for other HNC toxicity
end points.
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Chapter 6

Predicting ORN from radiation dose
distribution maps

Chapter 3 (Section 3.3.2) described how deep CNNs can be used to automatically extract
dosiomic features from radiation dose distribution maps. This Chapter describes a DL-
based model trained on 3D radiation dose distribution maps of the mandible structure
and compares it to a RF model trained on DVH parameters in the task of predicting the
incidence of mandibular ORN. Further analysis is included on the effect of factors such as
the choice of classification probability threshold or minimum follow-up time requirements
for the control group on the model performance results.

The experiments described in this Chapter were first performed on Cohort 2 and
then repeated on Cohort 3. Chapter 4 describes both cohorts (Section 4.1.1) and the
methodology followed (Section 4.5) to obtain the data used here, i.e., the 3D mandible
radiation dose distribution maps and the DVH data from the clinical RT treatment plan.

The results from some of the experiments on Cohort 2 described in this Chapter
were presented as a poster at the Applications of Medical Artificial Intelligence (AMAI)
workshop within the Medical Image Computing and Computer Assisted Intervention
(MICCAI) 2022 conference and published in a subsequent proceedings book chapter
[114].
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6.1 DVH-based predictions

6.1.1 DVH metrics

For the work included in this Chapter, only the maximum dose (Dmax and D2%), minimum
dose (Dmin and D98%), mean dose (Dmean) and median dose (D50%) DVH metrics for the
mandible structure were used in the RF model.

6.1.2 Random Forest implementation

The sklearn.ensemble.RandomForestClassifier module was used to implement a
RF classifier (Section 3.1.3 in Chapter 3) with a maximum number of estimators (i.e.
number of built trees) of 10, a maximum tree depth of 50, a minimum number of samples
at a leaf node of 1 and a minimum number of samples required to split an internal node of
0.5. Stratified 5-fold nested cross-validation (Section 3.3.1 in Chapter 3) was used, with
embedded model hyperparameter optimisation (Section 3.2.1 in Chapter 3) performed
using the sklearn.model_Selection.GridSearchCV module.

6.2 Dose map-based predictions

Different deep CNN models were trained on radiation dose distribution maps of the
mandible for the binary classification of ORN vs. control cases. A 3D DenseNet121
[93] was trained on Cohorts 2 and 3; additionally, 3D DenseNet40 and 3D ShuffleNet
[94] CNNs were also trained on Cohort 3 to assess performance with lower capacity
networks. Chapter 3 (Section 3.1.5) describes the architecture of these networks. This
section provides details on the data used and the implementation and training of the DL
networks.

6.2.1 Mandible dose distribution maps

3D radiation dose distribution maps of the mandible were used as the input for the DL-
based ORN prediction models. These were created by multiplying the clinical radiation
dose distribution and the binary mask of the mandible structure, as described in Chapter 4
(Section 4.3).
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6.2.2 CNN implementation

Implementation was performed using the Medical Open Network for Artificial Intelligence
(MONAI) (https://monai.io/) Pytorch-based framework. The data were split into training,
validation and test sets following a stratified 5-fold nested CV approach (Section 3.2.2
in Chapter 3). For the final training, an ensemble of models was trained to improve
generalisation performance and to reduce the sensitivity of the model performance to
stochastic noise of the training. In this work, the ensemble model was created by randomly
initialising each model five times and each time, training the model on the training set
of the outer fold. Due to the stochastic randomness of the weight initialisation and the
selection of mini batches during training, this created five slightly different models for
each outer fold. To calculate the prediction of this ensemble model, the predicted softmax
probabilities of each of the five individual models were averaged for each class (i.e. soft
voting). The Adam optimisation algorithm and the categorical cross entropy loss function
(torch.nn.CrossEntropyLoss) were used in all models. A hyperparameter grid search
was performed for each outer fold which included the following hyperparameters and
values: dropout 0.6, 0.8; learning rate 0.01, 0.001, 0.0001; batch size 10, 16; weight decay
0.01, 0.001, 0001; epochs 50, 100, 300. Small 3D random rotation (−0.1 to 0.1 rad) and
zoom (0.8 to 1.2) augmentations were applied to the training set. Based on the results of
this approach, the DenseNet121 was trained for 300 epochs with dropout 0.8, batch size
10, learning rate 0.001 and weight decay 0.001. The DenseNet40 was trained for 50 (for
CV folds 1, 2, 4 and 5) and 300 (for CV fold 3) epochs, dropout 0.8, batch size 10, learning
rate 0.001 and weight decay 0.001. The ShuffleNet was trained for 50 epochs, dropout 0.8,
batch size 16, learning rate 0.001 and weight decay 0.001.

6.3 Model performance

The predictive performance of the models was assessed in terms of their discriminative
ability using the AUROC, sensitivity, specificity, and precision measures (Section 3.2.3).
Tables 6.1 and 6.2 provide the ensemble and CV fold-specific model performance results,
respectively. The ROC curves of the models (Figure 6.1) were compared with the DeLong
nonparametric statistical test [130] using the pROC package [131] with the statistical
software R (https://www.R-project.org/). The difference in AUROC between the RF and
DenseNet121 models was not found to be statistically significant for either Cohort 2 or
Cohort 3, with p-values of 0.24 and 0.60, respectively (significance level of 0.05). Table
6.3 provides the results from the DeLong’s test on all combinations of the models explored
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6.4 Optimal classification probability threshold

Table 6.1 Model discrimination performance for Cohort 2 and Cohort 3.

Cohort 2 Cohort 3

RF DN121 RF DN121 DN40 ShN

AUROC (95% CI) 0.65 (0.57-0.73) 0.73 (0.65-0.80) 0.61 (0.53-0.69) 0.64 (0.56-0.72) 0.69 (0.63-0.76) 0.65 (0.59-0.72)
Accuracy 0.65 0.67 0.57 0.60 0.67 0.61
Sensitivity 0.66 0.53 0.64 0.62 0.71 0.70
Specificity 0.64 0.81 0.50 0.58 0.63 0.52
Precision 0.65 0.77 0.56 0.59 0.66 0.59

on Cohort 3. The AUROC differences between the DenseNet40 and the DenseNet121 and
between the DenseNet40 and the ShuffleNet were the only ones found to be significant
with a significance level of 0.05. However, after Bonferroni correction [120] for multiple
comparisons was applied, resulting in a corrected significance level of 0.05/6 = 0.008 for
each comparison, no statistically significant difference was observed between models’
AUROC. It should be noted that although the predictive performance between models
was not significantly different, the DenseNet40 and the ShuffleNet models have simpler
architectures that result in significantly shorter network training times.

Fig. 6.1 ROC curves for the Random Forest, DenseNet121, DenseNet40 and ShuffleNet
models.

6.4 Optimal classification probability threshold

The output of the binary classification CNN, for both the DenseNet121 and ShuffleNet
models, is a predicted probability for each class (ORN and not-ORN) on the test dataset
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Table 6.2 Model performance results for each of the 5 outer loops of the nested CV
procedure obtained with the DenseNet40 CNN on Cohort 3.

CV1 CV2 CV3 CV4 CV5

Accuracy Ensemble 0.62 0.78 0.65 0.70 0.60
Run1 0.65 0.78 0.59 0.68 0.53
Run2 0.62 0.78 0.62 0.70 0.64
Run3 0.62 0.73 0.70 0.70 0.64
Run4 0.57 0.65 0.51 0.73 0.53
Run5 0.57 0.73 0.59 0.62 0.53

Sensitivity Ensemble 0.44 0.72 0.79 0.74 0.83
Run1 0.44 0.78 0.79 0.63 0.78
Run2 0.39 0.72 0.63 0.68 0.83
Run3 0.56 0.67 0.74 0.84 0.89
Run4 0.44 0.44 0.53 0.79 0.89
Run5 0.44 0.61 0.74 0.58 0.89

Specificity Ensemble 0.79 0.84 0.50 0.67 0.37
Run1 0.84 0.79 0.39 0.72 0.28
Run2 0.84 0.84 0.61 0.72 0.44
Run3 0.68 0.79 0.67 0.56 0.39
Run4 0.68 0.84 0.50 0.67 0.17
Run5 0.68 0.84 0.44 0.67 0.17

Precision Ensemble 0.67 0.81 0.62 0.70 0.56
Run1 0.73 0.78 0.58 0.71 0.52
Run2 0.70 0.81 0.63 0.62 0.60
Run3 0.62 0.75 0.70 0.67 0.59
Run4 0.57 0.73 0.53 0.71 0.52
Run5 0.57 0.79 0.58 0.65 0.52

Table 6.3 Results from the DeLong statistical test on all model pair combinations for
Cohort 3.

DeLong p-value RF DN121 DN40

DN121 vs. 0.60
DN40 vs. 0.12 0.02
ShN vs. 0.44 0.74 0.04
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cases. A classification threshold of 0.5 (i.e. probability of 50%) is typically set for the
final decision on the predicted class, where positive probabilities equal to or above 0.5 are
predicted as positive cases and negative cases are predicted otherwise. The test accuracy
results presented in Table 6.2 correspond to a 0.5 probability classification threshold.
From a clinical perspective, however, a 0.5 probability classification threshold is not
necessarily the most adequate one in the clinical decision-making process. For the task
of making binary predictions on the incidence of ORN, correctly identifying ORN cases
is as important as correctly identifying non-ORN cases for an efficient use of the clinical
resources dedicated to the patients at a higher risk of developing ORN. Thus, in this case,
the optimal probability threshold corresponds to that which results in equal sensitivity and
specificity values, i.e. TPR = 1-FPR, which is the closest point to the upper-left corner of a
ROC curve.

The ROC curves in Figure 6.2 plot the different TPR and FPR values for a range of
probability threshold values for the ORN class for Cohort 3 predicted with the Random
Forest, the 3D DenseNet121, the 3D DenseNet40 and the 3D ShuffleNet models, respec-
tively. The optimal threshold was obtained by minimising the absolute difference between
TPR and (1-FPR) as shown in Figure 6.2; the threshold values obtained were 0.51, 0.52,
0.53 and 0.62 for each of the four models considered. Table 6.4 includes the updated
model performance metrics when these are re-calculated using the optimal classification
probability thresholds.

Table 6.4 Model discrimination performance for Cohort 3 with the optimal classification
probability threshold.

RF DN121 DN40 ShN

AUROC (95% CI) 0.61(0.53-0.69) 0.64 (0.56-0.72) 0.69(0.63-0.76) 0.65(0.59-0.72)
Classification threshold 0.51 0.52 0.53 0.62
Accuracy 0.56 0.60 0.66 0.63
Sensitivity 0.54 0.60 0.65 0.63
Specificity 0.58 0.61 0.66 0.63
Precision 0.56 0.60 0.66 0.63

6.5 Minimum follow-up time for controls

One of the main differences between Cohorts 2 and 3 is that only controls with at least
3 years of follow-up time were included in Cohort 2 whereas Cohort 3 does not have a
minimum follow-up time for the control group. The median follow-up time for Cohort
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Fig. 6.2 ROC curves for the ORN class predicted probabilities with the (from top to bottom)
Random Forest, DenseNet121, DenseNet40 and ShuffleNet models (left) and plots to find
the optimal classification probability threshold for balanced sensitivity and specificity on
Cohort 3 (right).
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2 is 4.1 (IQR 3.0) and 4.3 (IQR 1.6) years for the ORN and control groups. The median
follow-up time for Cohort 3 is 4.0 (IQR 3.2) and 4.3 (IQR 1.9) years for the ORN and
control groups, respectively. For this same cohort, the median time from end of RT to ORN
diagnosis for the ORN group was 1.0 (IQR 1.7) years. To investigate the effect of setting a
minimum follow-up time, I repeated the univariate analysis and re-trained the 3D CNN
for subsets of Cohort 3 with minimum follow-up times of 1, 2 and 3 years for the control
group. The results are presented in Table 6.5. In each subset the corresponding number of
ORN cases per primary tumour site was excluded to maintain the class balance and the
primary site-based control-case matching. While the CNN prediction performance does
not significantly vary with different minimum follow-up time thresholds on the control
group for Cohort 3, the significance of the DVH metrics becomes more similar to that
of Cohort 2 – which had a minimum follow-up time of 3 years – with maximum doses
becoming the strongest discriminators between the two groups. However, the effect size of
Cohort 2’s maximum dose variables remains higher than that of Cohort 3.

Table 6.5 Univariate analysis, effect size and dose map-based prediction results for subsets
of Cohort 3 with minimum follow-up times of 1, 2 and 3 years.

Cohort 3, FU > 1 year Cohort 3, FU > 2 years Cohort 3, FU > 3 years

p-value (MWU) Effect size (Cohen’s d) p-value (MWU) Effect size (Cohen’s d) p-value (MWU) Effect size (Cohen’s d)

DVH metrics

Dmax 0.043 0.250 0.040 0.255 0.025 0.285
D2% 0.014 0.303 0.017 0.296 0.009 0.339
Dmin 0.418 0.079 0.516 0.030 0.439 0.052
D98% 0.484 0.070 0.626 0.013 0.551 0.007
Dmean 0.021 0.316 0.077 0.228 0.060 0.240
D50% 0.023 0.292 0.064 0.230 0.060 0.230

ShuffleNet CNN (dosemaps)

AUROC 0.67 0.63 0.66
(95% CI) 0.61-0.74 0.56-0.71 0.58-0.73
Accuracy 0.62 0.60 0.58
Sensitivity 0.63 0.67 0.66
Specificity 0.61 0.52 0.51
Precision 0.62 0.59 0.57

6.6 Discussion

In this Chapter, I have explored the use of CNN models to predict mandibular ORN
incidence using clinical 3D radiation dose distribution maps. This is a novel approach to
toxicity modelling for mandibular ORN as it uses the actual RT dose distribution rather
than the more traditionally used DVH parameters.

The results presented here show that the CNN approach was able to discriminate
between ORN and control cases based on the 3D mandible dose distribution maps (Table
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6.1). However, as shown in Table 6.2, the performance of the model was highly dependent
on the test-train data split (i.e. classification performance varied between the outer loop
CV folds). This may be due to the high variability in the anatomical localisation of the
radiation dose distribution of our cohort, suggesting that training using a larger cohort will
lead to improved classification accuracy and robustness. Moreover, in some of the outer
loop CV folds of the nested CV process, there was some variation between the ensemble
models (Table 6.2), i.e. there was stochastic noise in the model training process for a given
test-train data split.

The differences in AUROC between the RF and the CNN models were not found to be
statistically significant based on the Bonferroni-corrected DeLong statistical test. However,
the AUROC of the CNN models was 4.9%, 6.6% and 13.1% higher for the DenseNet121,
ShuffleNet and DenseNet40 models, respectively, compared to the RF model. This could be
due to the fact that the entire DVH was not available to the RF model, i.e. only maximum,
minimum, mean and median doses were included as variables. However, the superior
performance of the CNN models (even if not statistically significant) suggests that there
may be more useful information for predicting ORN in the dose maps than just these
DVH metrics. Precisely what this extra information is requires further analysis, and in
Chapter 8 I will explore interpretability methods that aim to identify which areas of the
dose distribution maps are getting more attention from the CNN model and are potentially
contributing most to the final prediction. The inclusion of the spatial information in the
dose maps may contribute to an improved performance as there are features such as the
mandible volume that can be extracted from the mandible dose distribution maps but are
not DVH dosimetric parameters that have previously been associated with ORN incidence
[64, 65].

A recent study [115] concluded that DL methods based on 3D radiation dose distribu-
tion maps of the mandible and surrounding anatomy were outperformed by ML methods
based on DVH data in predicting ORN development. Our earlier work [114], described
in this Chapter, found no statistically significant difference in performance between ML
and DL methods, although the DL models had slightly higher AUROC. There are several
factors that could contribute to these seemingly contradictory results, and direct compar-
ison between the two studies is not straightforward. A discussion on this is included in
a letter to the editor accepted for publication in Advances in Radiation Oncology [132].
For instance, while only IMRT cases were included in Humbert-Vidan et al. [114], this
was only true of a subset of the data used in Reber et al. [115]. Furthermore, even though
data-level class imbalance handling was applied for the DL models in Reber et al. [115],
further investigation would be required to assess how their results would compare if a
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class-balanced matched cohort was used instead. In addition, different DVH parameters
were used for the ML models in the two studies. There were also differences in terms
of data preparation for the DL models. In Reber et al. [115] the 3D dose maps were
cropped based on the mandible segmentation whereas in our work they were masked by
the mandible segmentation. Further differences can be observed in model training (e.g.
augmentation strategy) and possibly architecture (our work used a DenseNet with 121
layers but the number of layers for the models used in Reber et al. [115] was not specified).
These differences can significantly impact model performance and further research is
required to evaluate their specific impacts before clear conclusions can be drawn about
the relative merits of traditional ML and DL models for this application. Additionally,
when comparing dose map-based DL approaches to simpler DVH-based ML methods, it is
important to also factor in the overall training time of the models, which depends on the
number of trainable parameters. While the ML methods required between 10 and 20 min-
utes overall (including the hyperparameter optimisation, training and inference processes),
the 3D CNN models required between 2 days (DenseNet40) and 5 days (DenseNet121).

Men et al. [103] included the CT images and the segmentation of the organ at risk
along with the dose distribution maps as CNN inputs. By masking the dose map with the
mandible segmentation, we are including information of its structure in the CNN while
also simplifying the task by excluding potentially less relevant dosimetric information
outside of the mandible. This study aimed at a direct comparison between DVH-based and
dose map-based prediction models; future work will explore the effect of CT images as an
additional CNN input.

Ibragimov et al. [102] and Zhen et al. [111] used transfer learning to pre-train their
CNN on CT images. The training weights of the pre-trained CNN were then fine-tuned
using the dose maps. Transfer learning may be used to enhance the model performance,
especially when the study data set size is small. Dose distribution maps have very different
image features to CT images, with smoother edges and contrast gradients. Future work
will explore the effect of transfer learning on our results by pre-training on CT images,
dose maps and a combination of both (i.e., pre-training with two inputs).

As discussed in Chapter 2 (Section 2.4.2), ORN has a multifactorial aetiology with
radiation dose, clinical and demographic variables as potential risk factors. In this Chapter
I have focused on radiation dose as the only risk factor but the inclusion of non-dosimetric
clinical parameters into the model would be of great clinical value. Moreover, there are
cases where ORN develops away from the high radiation dose region within the mandible
and the correlation between ORN incidence and intermediate or low radiation doses is less
obvious. Particularly in those cases, non-dosimetric parameters may play an important role
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in the development of ORN. In Chapter 7 I will explore the inclusion of clinical variables
into the DL-based prediction model to further improve its predictive performance.

Due to mandibular ORN being a rare toxicity, the case numbers are naturally low. In
Chapter 9 I will describe the PREDMORN study, which is an initiative for obtaining a
larger multi-institutional ORN population that will enable a more thorough evaluation of
the potential of CNNs in ORN prediction as well as to perform an external validation of
the models.

Although Cohort 2 has shown a larger effect size than Cohort 3 for its most highly
discriminative DVH-based variables, a better control-case matching methodology was
followed in the latter. Thus, the work described in subsequent Chapters is carried out using
Cohort 3 only. Moreover, Cohort 3 will be included in the PREDMORN multi-centre
study, the results of which I would like to compare to the work in this thesis.

Finally, to take full advantage of a DL model using dose distribution maps, future work
will include knowledge of the actual ORN region or at least the ORN localisation within
the mandible in the training data of the model.
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Chapter 7

Combining image and tabular data

In Chapter 2 I reviewed the existing work on using traditional multivariate analysis to
combine the clinical and demographic risk factors that may potentially contribute to
an increased probability of developing mandibular ORN, in addition to the risk caused
by radiation dose. In Chapter 3 I discussed how deep CNNs can automatically extract
dosiomic features that can then be used, instead of the DVH metrics, in the prediction of
radiation-induced toxicities. This Chapter explores DL multimodality fusion strategies
for the prediction of mandibular ORN using the 3D radiation dose maps (image data) and
clinical and demographic variables (tabular data) from Cohort 3.

7.1 Single-modality predictions

Using the data from Cohort 3 (Table 4.4), two separate single-modality models were
trained on the image and tabular data, respectively. For the first, the 3D DenseNet40 CNN
trained on radiation dose distribution maps in the experiments described in Chapter 6 is
utilised for the work described in this Chapter. For the second, a random forest was trained
on the corresponding clinical and demographic variables using the same model training
methodology described for the RF model included in Chapter 5 (Section 5.3). For the grid
search CV procedure, the following hyperparameters were considered: bootstrap (True,
False), maximum depth (1, 2, 10, 20, None), maximum features (auto, sqrt), minimum
samples per leaf (1, 2, 4), minimum samples per split (2, 5, 10) and number of estimators
(200, 500, 1000, 1300, 1700, 2000).

Table 7.1 provides a summary of the clinical and demographic variables considered for
Cohort 3 and the corresponding results from a univariate analysis (Chi squared or Mann-
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Whitney U tests for categorical and continuous variables, respectively). Control-case
matching for Cohort 3 was based on primary tumour site and treatment year; thus, primary
tumour site and RT technique (which is largely dependent on treatment year and was equal
for both groups anyway) are not considered as variables here. Even though only smoking
status showed a significant difference between the two groups in the univariate analysis, all
variables shown in Table 7.1 were included in the RF model. The two groups are similarly
differentiated by the ‘previous’ and ‘current’ variables for smoking and alcohol status.
Smoking status and alcohol consumption were considered as positive if reported as such
within two months of the start of the radiotherapy treatment course. Categorical variables
were dichotomised (0 or 1) and the variable ‘age’ was normalised to values between 0 and
1.

Table 7.1 Univariate analysis results for clinical and demographic variables for Cohort 3.

ORN Control p-value

Age (median (IQR)) 62 (13) 61 (15) 0.455
Gender: male/female 66(72%)/26(28%) 72(78%)/20(22%) 0.395
Smoking 47(51%) 21(23%) 0.000
Alcohol 71(77%) 63(69%) 0.246
Pre-RT extraction 55(60%) 50(54%) 0.551
Pre-RT surgery (PORT) 35(38%) 35(38%) 1.000
Chemotherapy 59(64%) 57(62%) 0.879

7.2 Multimodality fusion

The fusion of pixel data (images) with tabular data has already shown improved perfor-
mance over single modality models in several studies [133] within the clinical prediction
and diagnosis fields using radiological images. The different strategies followed by most
of these studies have been classed as early or feature level fusion, joint or intermediate

fusion and late or decision level fusion, based on when the fusion of data takes place
[134, 133]. Figure 7.1 by Huang et al. [133] describes these three fusion strategy groups
and further splits early and joint fusion into types I and II depending on whether the fusion
is with original or extracted features. In early fusion, the inputs from different modalities,
some of which may be features extracted by a ML algorithm, are combined into a single
vector that is then fed into one single ML model. In joint fusion, in at least one of the
modalities combined, the features are learned using a feature extraction neural network
model. The combined features are input into a final neural network, the loss of which is
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backpropagated to the first feature extraction neural network model(s). Finally, in late
fusion, the final predictions from multiple models are combined to make a final decision.
Both early and joint fusion strategies are able to model the interactions between features
from different modalities. Joint fusion is thought to result in better feature representations
due to the backpropagation of the combined model loss to the feature extraction neural
networks during training. However, joint fusion can result in a more complex network
design than early or late fusion. The following sections describe the different fusion
strategies considered in this work and the prediction performance results with each method
are summarised in Table 7.2. Given the small dataset size available for this work, I have
only considered early and late fusion strategies [133].

Fig. 7.1 Early (feature level), joint (intermediate) and late (decision level) multimodality
fusion strategies using deep learning. In both early and joint fusion strategies, the features
may be original or extracted with a machine learning algorithm (e.g. image features
extracted with a CNN). When the inputs from at least one modality are extracted or learned
features (e.g. predicted probabilities), the fusion strategy is considered type II; if the inputs
are original features (i.e. not extracted), it is considered type I. Figure source: Huang et al.
[133].
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7.2.1 Type II early fusion

A 3D CNN was designed based on the 3D DenseNet40 to train on the dose maps and
then concatenate the extracted image features with the tabular data into one single feature
vector before feeding it into a final linear layer (Figure 7.2) following the type II early
fusion strategy described in Figure 7.1. The early fusion 3D CNN was trained following a
stratified 5-fold nested CV approach for 50 (CV1, CV2, CV4 and CV5) and 300 epochs
(CV3), with a dropout rate of 0.8, a weight decay of 0.001, a batch size of 10 and a learning
rate of 0.001.

Fig. 7.2 The image features extracted from the radiation dose maps using a 3D DenseNet40
were concatenated with the clinical variables into one single vector using a type II early
fusion strategy. The combined feature vector was input into a fully connected layer for
classification of ORN vs. controls. A final softmax activation layer was added to obtain
the class predicted probabilities.

7.2.2 Late fusion

A soft-voting ensemble approach was taken following the late fusion strategy illustrated
in Figure 7.1: I combined the outputs from the 3D DenseNet40 and the RF models by
averaging the predicted classification probabilities for each of the two classes (ORN and no
ORN) to obtain the final class decision on a case-by-case basis for the test dataset (Figure
7.3). The 3D DenseNet40 CNN was trained on dose distribution maps of the mandible and
implemented as described in Chapter 6, Section 6.2.2. The RF was trained on clinical and
demographic variables and implemented as described in Section 7.1 of this Chapter.
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Fig. 7.3 Schematics of the late fusion strategy followed for ORN prediction from dose
maps and clinical/demographic variables.

7.3 Model comparison

Table 7.2 below provides the results from the RF and DenseNet40 single-modality models
and from the early and late multimodality fusion methods in the binary prediction of
ORN. Figure 7.4 shows a comparison of the models’ AUROC for the ORN classification.
The ROC curves for all the model pair combinations were compared with the DeLong
nonparametric statistical test [130]; the results are shown in Table 7.3. The other model
performance metrics considered (accuracy, sensitivity, specificity, precision and F1 score)
were calculated based on a classification probability threshold of 0.5.

Table 7.2 Summary of model performance results for ORN classification for the single
modality models and the early and late multimodality fusion strategies considered.

Random Forest (clinical variables) DenseNet40 (dose maps) Early fusion Late fusion

AUROC (95% CI) 0.60 (0.53-0.67) 0.69 (0.63-0.76) 0.68 (0.61-0.75) 0.70 (0.64-0.77)
Accuracy 0.59 0.67 0.69 0.67
Sensitivity 0.73 0.71 0.65 0.73
Specificity 0.45 0.63 0.72 0.61
Precision 0.57 0.66 0.70 0.65
F1 score 0.64 0.68 0.67 0.69

Table 7.3 Results from the DeLong statistical test.

DeLong p-value RF DN40 Early fusion

DN40 vs. 0.09
Early fusion vs. 0.09 0.72
Late fusion vs. 0.03 0.36 0.44
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Fig. 7.4 ROC curves for the random forest and DenseNet40 single-modality models and
the early and late multimodality fusion strategies considered for ORN classification.

7.4 Discussion

The development of radiation-induced toxicities is a multifactorial process. Existing DVH-
based prediction models use traditional multivariate analysis to combine all the potential
risk factors. However, with an image based NTCP modelling approach, the combination
of dosimetric information with the other potential risk factors is perhaps not as trivial as
in a multivariate analysis. Multimodality fusion is the next natural step in the process of
implementing DL methods in the field of radiation-induced toxicity prediction based on
radiation dose distribution maps. As recommended by Huang et al. [133], multiple fusion
strategies should be compared and reported. In this thesis I have explored early and late
fusion strategies, both recommended for small datasets [133], for combining radiation
dose maps and clinical and demographic variables in the prediction of mandibular ORN
incidence.

Ibragimov et al. [102] reported improved predictive performance with a late fusion
multimodality DL strategy for the prediction of hepatobiliary toxicity after liver stereotactic
body RT. They trained a CNN on 3D portal vein dose plans analysis and a fully connected
neural network (FcNN), a RF and a SVM on clinical variables. They compared the
prediction accuracy of the single-modality models (AUROC 0.79 for the CNN, 0.84 for
the FcNN, 0.79 for the RF and 0.76 for the SVM) to that of a weighted sum model. They
obtained the best performance with the combination of the CNN and the FcNN (AUROC

106



7.4 Discussion

0.85), with a weight of 0.5 each. Although they did not report on the statistical significance
of the AUROC differences, they concluded a superior performance with the CNN+FcNN
fusion model.

In our study, the highest AUROC was observed with the late fusion approach, which
was statistically significantly different to that of the RF single-modality model with a
significance level of 0.05. However, after Bonferroni correction [120] for multiple com-
parisons was applied, resulting in a corrected significance level of 0.05/6 = 0.008 for
each comparison, no statistically significant difference was observed between models’
AUROC. No statistically significant differences in AUROC were observed between fusion
strategies and between both fusion models and the DenseNet40 model trained on dose
maps only. This is most likely due to the lack of discriminative contribution observed
from clinical variables, which in turn resulted in a poorly predictive RF model. Although
not intentionally, the clinical and patient characteristics of the ORN and control groups
are very similar in Cohort 3. Further work will repeat this analysis on a larger and more
diverse cohort (see Chapter 9 for a description of the PREDMORN multi-centre study).
Additionally, with a larger dataset, joint fusion strategies will also be explored.

The fusion approaches explored in this Chapter are static, i.e. the same trained fusion
network is used for inference regardless of the potential inherent variations in input
datasets. However, the inherent noise in multimodal medical data may result in differences
in informativeness from each modality and feature. The concept of dynamic multimodal
fusion has been recently introduced [135, 136] to adaptively fuse multimodal input data
during inference. The informativeness is modelled for each modality and feature and used
to adjust the importance of the features/modalities in the final fusion step. Future work
will explore joint fusion strategies for the prediction of ORN as well as the implementation
of dynamic multimodal fusion methods.

To my knowledge, no previous work has been published on the use of multimodal fusion
DL methods to combine dose distribution maps and clinical variables in the prediction of
mandibular ORN. The work presented in this Chapter demonstrates the potential of DL in
the prediction of the multifactorial side effects resulting from radiotherapy treatments.
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Chapter 8

Interpretability of a deep CNN-based
ORN prediction model

In Chapter 6 I explored the use of CNNs to classify 3D radiation dose distribution maps
into ORN or control cases, thus predicting the probability of ORN incidence. CNNs are
generally considered to be non-interpretable ML methods [137] and often referred to as
‘black boxes’ because interpreting the representations and intermediate outputs of the inner
(hidden) layers of their architecture is not as straightforward as with other ML methods
such as decision trees. Being able to interpret the different steps of the decision process
of a model allows the user to identify its limitations and gain the users’ trust. Moreover,
a certain degree of explainability is required by the General Data Protection Regulation
(GDPR) law in a DL-based decision-making tool before it can be used clinically [138, 139].
Finally, model interpretability methods might provide more in-depth information such as
hitherto unknown feature associations, potentially leading to knowledge discovery. This
Chapter provides a quantitative interpretability analysis of the predictions made by the
DenseNet40 model (Chapter 6), including an analysis of potential associations between
high attribution regions and the different dose levels within the radiation dose distribution
maps of the mandible. First, an analysis is included on the laterality correlation between
attribution maps, high dose region and ORN region. Second, the spatial overlap between
attribution maps and dose regions is assessed. Finally, a dose level-based pixel attribution
analysis is performed to assess how much importance the model is giving to the high and
low/intermediate dose regions separately.
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8.1 3D GradCAM voxel attribution maps

8.1 3D GradCAM voxel attribution maps

Interpretability and explainability are two closely related but different concepts. Inter-
pretable models inherently provide transparency on how the decisions were made (e.g., in
a decision tree, the user can follow the node splitting process to understand which variables
contributed most to the final decision). Explainable models are not only interpretable but
also able to provide an insight into the causes of the algorithm decisions [137].

Interpretability can either be local or global [139]. Local interpretability is obtained
on an image-by-image (or case-by-case) level whereas global interpretability highlights
the common image features that the DL model considers more relevant across the entire
dataset.

When a model is not intrinsically interpretable (e.g. random forests or deep CNNs),
we can apply post-hoc interpretability methods to achieve transparency in its predictions
[139, 140]. There are several post-hoc model interpretability methods described in the
literature; the interested reader is directed to a recent review by Salahuddin et al. [139] for a
more extensive description of these. This section focuses on attribution maps using the 3D
CNN based Gradient-weighted Class Activation Mapping (3D Grad-CAM) method [141].
In this Chapter, the 3D Grad-CAM post-hoc interpretability method is applied locally, and
an average of the case-by-case interpretability metrics is used to extract conclusions that
can contribute to the explainability of the DL model. Pixel attribution maps provide post-
hoc explanations of a model by highlighting the regions of the input image that the model
considers most relevant for its predictions [139]. Selvaraju et al. [141] developed a novel
3D CNN-based Gradient-weighted Class Activation Mapping method (3D-GradCAM) that
learns local geometric features within the input image based on the classification CNN’s
cost function. In this method, the global class discriminative localisation map for a given
input image, L3DGradCAM, is computed as per Equation 8.1 [141], where Al are the feature
maps in the last convolutional layer of the CNN and αl designates the spatial importance
for each feature map. The upsampled heatmap of the localisation map L3DGradCAM can be
overlaid with the input image for easier interpretation (Figure 8.1).

L3DGradCAM = ReLU(∑
l

αlAl) (8.1)

I implemented the 3D GradCAM pixel attribution method with the Captum [142]
PyTorch-based library. Note that 3D GradCAM does not alter the training of the model
but rather adds an extra layer during inference, which was applied at the end of the first
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dense block of the 3D DenseNet40 CNN architecture, just after the last convolution layer.
Attribution maps were normalised to within a pixel value range between 0 and 1 as per
Equation 8.2, where PVmin and PVmax are the global minimum and maximum attribution
values across the entire dataset, respectively.

AttributionMapnormalised = (PV −PVmin)/(PVmax −PVmin) (8.2)

(a)

(b)

Fig. 8.1 Axial slice of a radiation dose distribution map of the mandible (left) and a
visual overlay of the corresponding pixel-attribution map obtained with the 3D GradCAM
method (right). Both the dose and the attribution maps have been normalised to pixel
values between 0 and 1, with high pixel values (white on the dose map intensity scale and
red on the attribution map intensity scale) corresponding to high doses and high attribution
values, respectively. Figure a shows an example where the high dose region received high
attribution whereas figure b shows an example where the high attribution was given to the
lower doses.
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8.2 Laterality association between attribution maps, ORN
region and high dose region

Amongst other risk factors (described in Chapter 2, Section 2.4.2), mandibular ORN is
associated with radiation dose. In this section I investigate if the ORN region coincides
with the higher radiation dose regions for Cohort 3. I then compare the laterality of the high
attention regions to that of the high dose regions to investigate whether the DL network is
giving more attention to the high dose regions to correctly predict ORN.

The laterality of the high dose region within the mandible dose distribution maps was
defined based on the mean voxel intensity of the right and left halves of the 3D dose map
(Figure 8.2). The same method was followed for defining the laterality of the high attention
region within the attribution maps. Common space registration was applied when creating
the mandible dose maps (Chapter 4, Section 4.3.3) and thus the image centre (both for the
dose maps and the attribution maps) coincides with the anatomical centre of the mandible
in most cases. However, because the same image splitting method has been used for dose
maps and attribution maps, the comparison between the two is valid on a patient-by-patient
basis even in the cases with slight deviations from the anatomical mandible centre.

Fig. 8.2 Axial slice of the whole (left), right half (middle) and left half (right) mandible
radiation dose distribution maps (top) and corresponding pixel-attribution maps (bottom).
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8.2.1 ORN region vs. dose maps

The laterality of the ORN region was determined from the clinical dental notes and was
left in 46.2% of cases and right in 36.3%. In 13.2% of cases the ORN region was bilateral
and in 4.4% of the cases the ORN developed in the anterior region of the mandible. In
71.4% of ORN cases, the ORN region (or part of it for the bilateral cases) developed in the
higher dose region.

8.2.2 Pixel-attribution vs. dose maps

The high attention region was found ipsilateral to the higher dose region in 73.2% of
all subjects and in 72.5% of ORN cases. When considering the correctly (true positives
and true negatives) and incorrectly (false positives and false negatives) predicted cases
separately, this association between high attention and high doses was observed in 74.0%
and 71.7% of cases, respectively.

8.2.3 Pixel-attribution vs. ORN region

As a result of the ORN-to-dose and attention-to-dose associations described above, the
high attention region was found ipsilateral to the ORN region in 68.1% of the ORN cases.

8.3 Spatial overlap

This section aims to quantify the spatial overlap between the pixel attribution maps and the
radiation dose maps. Different overlap metrics were computed: the percentage overlap
and Dice similarity coefficient (DSC) [143]. For this analysis, the normalised attribution
maps were thresholded based on the case-by-case mean attribution value. The thresholded
pixel attribution maps were then converted into a binary attribution mask. The dose
distribution maps were also converted into binary masks (with a 1 Gy threshold). Finally,
the dose distribution and pixel attribution masks were overlaid and the overlap metrics
were calculated (Figure 8.3). Table 8.1 provides the results from the overlap analysis.
A sensitivity analysis was included by exploring different thresholding levels: the mean
attribution map voxel level and 25% below and above the mean voxel value (Figure 8.4).
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Fig. 8.3 Schematics of the overlap analysis workflow, where the dose distribution and pixel
attribution maps are converted into binary masks that are then overlaid and overlap metrics
are calculated.

Fig. 8.4 Pixel attribution map (left) and corresponding binary mask with mean attribution
value thresholding (middle). A sensitivity analysis was performed for all overlap metrics
using a thresholding value of 25% below (right top) and above (right bottom) the mean
attribution value.
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8.3.1 Percentage overlap

The percentage overlap was calculated as the mean percentage of voxels within the overlap
of each dose map mask / attribution map mask combination with respect to the total number
of voxels in the smallest volume between the dose map and the attribution map masks as
per Equation 8.3.

Overlap(DoseMap,AttMap) = |DoseMap∩AttMap|
min(|DoseMap|,|AttMap|) (8.3)

8.3.2 Dice similarity coefficient

Additionally, the spatial overlap accuracy was quantified in terms of the Dice similarity
coefficient (DSC) calculated based on the true positive (TP), true negative (TN), false
positive (FP) and false negative (FN) values obtained from the overlap between the dose
map and attention map binary masks (Equation 8.4).

DSC(DoseMap,AttMap) = 2|DoseMap∩AttMap|
|DoseMap|+|AttMap| =

2T P
2T P+FP+FN (8.4)

Table 8.1 Results from the spatial overlap between the pixel attribution maps (at different
threshold levels) and the radiation dose maps. The metrics were calculated on a case-by-
case basis and the median over the entire cohort is reported here.

Threshold value % overlap (median, IQR) DSC (median, IQR)

Mean attribution 97.43 (5.05) 0.927 (0.016)
25% below mean 98.88 (3.48) 0.913 (0.021)
25% above mean 95.89 (6.07) 0.940 (0.017)

8.4 Dose level-based pixel attribution analysis

This section provides two different approaches to a quantitative analysis on how much
attention the 3D DenseNet40 ORN prediction model is giving to the different dose levels
in the mandible radiation dose distribution map. First, the attribution maps were masked
with low, intermediate and high dose regions. Second, the dose maps were masked with
attribution maps thresholded at different attention levels. The methodology and results for
both approaches are provided below.
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8.4.1 Dose-based masked pixel attribution maps

For this analysis, the radiation dose distribution maps were separated into two binary masks
according to the following dose thresholds: D ≥ 45Gy (high doses) and 1Gy ≤ D < 45Gy

(low/intermediate doses). The normalised attribution maps were thresholded based on the
case-by-case 50th percentile (i.e., the median) attribution value. Then, the pixel attribution
map was then masked by the high and low/intermediate dose masks (Figure 8.5) and the
maximum attribution value per dose level was calculated (Figure 8.6) for the overall dataset
and the ORN and control groups separately.

Fig. 8.5 Workflow for masking the pixel attribution map with the high and low radiation
dose regions. The dose map is converted into high and low dose masks which, when
multiplied by the attribution map, result in the dose-based masked attribution maps. High
intensity pixels are shown in white and correspond to high dose and high attribution values
in the dose distribution and pixel attribution maps, respectively. In the case shown in this
image, the dose-based masked pixel attribution maps show that the low dose region is
receiving the highest pixel attribution values.

8.4.2 Attention-based masked dose distribution maps

For this analysis, the pixel attribution maps were masked into the low attribution level
(i.e., thresholded to contain the region with attribution values between the 50th and 98th

percentile) and the high attribution level (i.e., thresholded to contain the region with
attribution values above the 98th percentile) (Figure 8.7). The dose distribution maps were
then masked by these attribution masks and the maximum dose in the masked dose maps
was calculated per attribution level (Figure 8.8) for the entire dataset and the ORN and
control groups separately.
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Fig. 8.6 Boxplots of the maximum attribution value in the pixel attribution maps masked
with low and high dose regions for the entire cohort and the ORN and control groups sepa-
rately. High dose regions generally contain higher maximum attention values, especially
in the ORN group.

Fig. 8.7 Workflow for masking the dose distribution maps with the different levels of pixel
attribution. The attribution map is converted into high and low attribution masks which,
when multiplied by the dose map, result in the attribution-based masked dose maps. High
intensity pixels are shown in white and correspond to high dose and high attribution values
in the dose distribution and pixel attribution maps, respectively.
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Fig. 8.8 Boxplots of the maximum radiation dose value in the dose distribution maps
masked with low and high attribution levels for the entire cohort and the ORN and control
groups separately. High attribution regions generally contain higher doses. The ORN
group shows generally higher doses than the controls group but the difference in median
Dmax between high and low attribution masks is larger in the controls group.

8.5 Discussion

Explainability is key for achieving transparency in a DL-based toxicity prediction model
and gaining trust for its clinical implementation as well as potentially facilitating its
transferability to other domains [137]. Interpretability methods, both quantitative and
qualitative, are a first step towards model explainability.

Previous head and neck cancer studies have investigated associations between spatial
dose patterns and radiation-induced toxicities such as dysphagia [100] and trismus [106]
to identify the most critical anatomical regions. These studies, however, used a traditional
voxel-based approach to manually extract the highly associated voxel clusters. In other
anatomical regions more sophisticated interpretability methods have been used. For
example, Elhaminia et al. [144] implemented the DL-based Grad-CAM method for
attention analysis and observed associations between abdominal spatial dose patterns and
patient-reported toxicity. Liang et al. [145] also used Grad-CAM to interpret a 3D CNN
thoracic toxicity prediction model and obtained associations between low and high grades
of radiation pneumonitis and spatial dose patterns within the lungs. These studies, however,
only provide qualitative analysis of the Grad-CAM results. Our work is, to our knowledge,
the first study that analyses spatial dose associations with mandibular ORN incidence
using the DL-based 3D Grad-CAM voxel attribution method. We also explore quantitative
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analysis methods for the Grad-CAM results that have not yet been used in existing RT
toxicity studies.

In the majority of ORN cases of our cohort, ORN developed on the side of the mandible
with a higher mean planned dose. The 3D DenseNet40 model was able to capture this
dosimetric association based on the radiation dose distribution maps of the mandible by
giving high attention to the more highly irradiated mandible half in the majority of cases.
Based on the high percentage overlap obtained between the radiation dose maps and the
pixel attribution maps, it can be concluded that the DL model is focusing on the mandible
dose for its predictions. This is perhaps not surprising as the DL model was trained on
a dose distribution that was highly limited to the mandible structure. Based on the dose
level-based pixel attribution analysis (Section 8.4, the high dose regions (≥ 45 Gy) may
generally be playing a more important role as it receives the highest attention, especially
for the ORN group (as demonstrated by the boxplots in Figures 8.6 and 8.8). However, in
a number of subjects (e.g., the case shown in Figure 8.1b), a higher attribution was given
to the low dose regions.

An earlier statistical analysis by De Felice et al. [41] on a cohort of 36 patients from
our centre found that a majority of ORN cases had mean and maximum doses above 60 Gy.
A recent study by Möring et al. [63] also found that V60 Gy was significantly associated
with an increased risk of ORN. Kubota et al. [62] found V60Gy >14% to be an independent
risk factor for ORN, with V30Gy-V70Gy being significantly higher in the ORN group.
Aarup-Kirstensen et al. [61] obtained significant differences between the ORN and control
groups for intermediate and low doses between 30 Gy and 60 Gy.

Our results have shown that importance to high doses is more associated to ORN cases
than controls. Although further work is needed towards a fully explainable model, this
represents an important step towards gaining trust for the clinical implementation of a
DL-based ORN prediction model. Furthermore, the relatively high laterality association
between high attention regions and ORN regions implies that voxel attribution maps from
the 3D DenseNet40 could be used to produce an ORN risk map. Future work will explore
this possibility by utilising actual ORN region segmentations, either in the training or
evaluation of the DL models.

The dose maps on which the 3D DenseNet40 was trained were highly cropped and
excluded the dosimetric context outside the mandible. This was a limiting factor to the
GradCAM analysis. Future work will repeat this experiment with a broader dose distri-
bution combined with separate mandible masks and assess whether the 3D DenseNet40

118



8.5 Discussion

is able to identify the dose in the mandible as the most important information for its
predictions.

An alternative to attribution maps could be to perform a sensitivity analysis [137]
where, for instance, the voxel intensity of the radiation dose maps could be manually
altered to observe the resulting changes in the DL-based predictions. This approach was
followed by Ibragimov et al. [113] to identify critical-to-spare anatomical regions of the
liver during stereotactic body radiation therapy and produce a hepatobiliary toxicity risk
map. Similarly to comparing different CNNs for model development (Chapter 6), future
work will consider comparing a range of voxel-wise interpretability methods and analyse
their adequacy for this task [146].
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Chapter 9

The PREDMORN multi-centre study

One of the limitations in my experiments has been the small dataset size that results from
the low prevalence of a rare toxicity such as mandibular ORN. On the other hand, while
external validation of a model is a recognised [96] method for assessing how well the
model would perform on unseen and independent data, using a more diverse dataset to
train the model would certainly contribute to its generalisability. Moreover, unlike clinical
trials, multi-centre studies using real world data can benefit from larger patient diversity.

Consequently, I initiated collaborations with five other teaching hospitals with well-
maintained ORN databases and designed a multi-institutional study to develop, train and
validate robust and generalisable NTCP models for mandibular ORN using the largest
ORN dataset worldwide. Combining datasets from different institutions will not only
improve the generalisability of the models but also highlight potential correlations between
clinical practice and toxicity outcome. The study protocol has been registered in the OSF
registries under the DOI: 10.17605/OSF.IO/V9JKR (https://osf.io/v9jkr).

This Chapter aims to describe the protocol itself and how it was designed as well as
the challenges encountered during this collaborative effort. The actual protocol has been
published in the Radiotherapy & Oncology journal as supplementary material in a Protocol
Letter [147]. This study is expected to run beyond the time frame of my PhD; thus, the
data analysis results will not be included in this Chapter but rather in subsequent Journal
publications.
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9.1 Study design

9.1 Study design

The PREDMORN study involves six teaching hospitals (see Appendix A): Guy’s and St
Thomas’ NHS Foundation Trust (GSTT, UK) in collaboration with King’s College London
(KCL, UK), Odense University Hospital (OUH, DK), Catalan Institute of Oncology Girona
(ICO, ES), University Medical Centre Groningen (UMCG, NL), MD Anderson Cancer
Centre (MDACC, US) and Erasmus MC Cancer Institute (EMC, NL). Most of these
centres already had a well-curated ORN database but only OUH, UMCG and MDA were
able to provide full datasets for their entire HNC population. Therefore, a retrospective
observational-analytical case-control study design [148] was agreed.

9.2 Patient selection

Since inclusion of the entire HNC population was not feasible for all centres, a 2:1 ratio
of controls to ORN cases was agreed as a compromise to increase statistical power. For
each centre, the distribution for the ORN group was obtained with regards to a) primary
tumour sites (oral cavity, oropharynx, paranasal sinus/nasopharynx, larynx/hypopharynx,
salivary glands and unknown primary (neck)) and b) treatment year for each primary
tumour site. A 2:1 subset of controls was then randomly selected for each primary tumour
site from the same treatment year (Figure 9.1). All other confounders are considered
variables for the subsequent correlation and modelling analysis. A summary of the patient
inclusion/exclusion criteria agreed for the ORN and control groups can be found in Table
9.1 below.

9.3 Data collection

The methods in this study were designed to only consider DVH data and clinical and
demographic variables in the first instance. A second phase of this study will carry out
further analysis and modelling with the inclusion of radiation dose distribution maps
from all the institutions involved as a continuation of the DL-based work carried out in
this thesis. The PREDMORN protocol benefited from the contributions and criticism by
leaders from different disciplines across several organisations. After extensive discussions
among the different experts involved (oncologists, oral medicine specialists, physicists,
epidemiologists, etc.), relevant dosimetric, clinical and demographic variables were agreed
(see Appendix B). To facilitate the data collection process, I provided each participating
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9.3 Data collection

Table 9.1 Inclusion and exclusion criteria for the PREDMORN study.

Inclusion criteria • HNC cases treated radically with RT or chemo-radiation (CRT)
and post-operative RT (PORT)+/- chemotherapy (C-PORT) using
IMRT or VMAT.

Specific to ORN cases:
• Confirmed diagnosis of ORN (any grade). ORN defined clinically
as ‘an area of exposed bone in the mandible that had been present
for at least 8 weeks in a previously irradiated field, in the absence
of recurrent tumour’ [19]. NB: cases with recurrences outside of
the HN region are included.

Specific to control cases:
• Any histology except for T1/2N0 Larynx cases, as these do not
receive significant dose to the mandible.

Exclusion criteria • Datasets without available CT volume, RT structure or RT dose
DICOM files.

• ORN outside the mandible (e.g., maxilla). NB: if multiple ORN
sites, cases are included if at least one of the sites is the mandible.

• Cases with re-irradiation to the HN region.

• Cases treated with less than a radical dose of radiation and/or
those with life expectancy less than 12 months.
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9.4 Data transfer

Fig. 9.1 Flow diagram of the control-case cohort selection process.

centre with an Excel database template that included all these variables with drop-down
lists with the agreed options for each variable, where appropriate. For the dosimetric
variables, the anonymised raw DVHs were exported by each centre and the R package
‘DVHmetrics’ was used to extract the agreed metrics. These included the following:
Dmean, Dmax, Dmin, D2%, D5% - D95% in 5% steps, D98%, V5Gy – V75Gy in 5Gy
steps in the first instance with smaller steps also being considered for future analysis.

9.4 Data transfer

The data transfer process was initiated in parallel to the protocol development and data
collection processes at each individual organisation. The data transfer process is entirely
dependent on obtaining a data transfer agreement (DTA). We initially explored a ‘Joint
Controllers’ data transfer approach in order to facilitate joint use of the study data by
all parties. However, a ‘Controller to Controller’ approach was considered more legally
efficient by the organisations’ legal teams. Thus, individual DTAs were agreed between
KCL/GSTT and the other institutions individually, where each institution could use the data
for its own purposes and KCL/GSTT requested access to that data. Ethic approvals were
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already in place at each institution for the use of the clinical data shared with GSTT/KCL.
A provision for the transfer of DICOM files for future image-based analysis collaborations
was included in the DTAs agreed. The legal and procedural challenges encountered in
setting up data transfer agreements and data transfer process of the PREDMORN study are
described in an e-poster that will presented at the ESTRO 2023 conference [149].

9.5 Data modelling

Based on published literature I proposed three different ML-based data modelling ap-
proaches: a LASSO logistic regression (LASSO-LR) [150], a regularised greedy forest
(RGF) [151] and a Bayesian neural network (BNN) classifier [152, 153]. In the LASSO-
LR, the most relevant variables are ‘automatically’ selected by shrinking their coefficients
within the model to zero (L1 regularization penalty). The model coefficients can be re-
trieved to obtain the importance assigned to each variable. In an RGF, relative importance
scores are obtained for each input variable. For the BNN method, however, a prior variable
selection step is required using methods such as recursive feature elimination or stepwise
selection [154]. Although I have worked with EQD2-corrected doses (both DVH and dose
map data) in the experiments included in this thesis, the agreement for this study was to
include the fractionation schedule (i.e., total prescribed dose and number of fractions) as
an additional confounder instead. Given the intrinsic correlation of the different dosimetric
variables extracted from a DVH, a parallel principal component analysis (PCA) [155, 156]
was included in the protocol as a method to create a new, independent and uncorrelated
subset of dosimetric variables (principal components, PC) based on the DVH-based vari-
ables. One important disadvantage of this method is that PCs are not directly interpretable
from the clinical perspective. This study explores the use of PCs into NTCP models in
parallel with the more traditionally used DVH metrics, and a total of six different models
are compared.

9.6 Model evaluation

Internal validation and external validation of a model are necessary steps [157, 158] to
correctly assess the model performance and identify potential overfitting issues. In this
study, both types of validation will be included, i.e. as a combination of the study types
1b and 3 described by Collins et al. [96]. Cases from one institution will be selected as
the external validation dataset. Data from the other institutions will be combined into a
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single dataset for model development and internal validation. This combined dataset will
be split into training (60%), internal validation (20%) and test (20%) sets maintaining
the original class ratios (i.e. ORN vs. control case numbers) following a stratified nested
cross-validation (CV) approach (described in Chapter 3, Section 3.2.2).

Model discrimination performance will be assessed on the test and external validation
sets using the AUROC, the proportion of variance [159] and the discrimination slope [160].
Model calibration will be assessed using the Hosmer-Lemeshow test [161]. Models will
be ranked according to their parsimony based on the Bayesian Information Criterion (BIC)
statistic [162].

9.7 Discussion

Recently published ORN prediction studies [114, 115] have concluded that their results
are limited by small datasets. Other recent ORN studies [63] have focused on a particular
sub-group of ORN patients, which does not facilitate extrapolation of their results to other
centres. Multi-centre collaborations can enable more generalisable and statistically robust
toxicity prediction models. Unlike clinical trials, multi-centre studies using real world data
benefit from a larger patient diversity. However, the data collection process may be more
challenging due to ethical or consent related issues, especially in late toxicities such as
mandibular ORN.

The methodology described in the study protocol, especially the data modelling meth-
ods, is an initial suggestion that was accepted by all participating centres with the ac-
knowledgement that further or alternative methods might be explored depending on the
characteristics of the final dataset available.

The diversity of expertise in the members involved in the study was in turn the cause
of delayed consensus in several aspects of the protocol. Initiating the legal process for the
DTAs at an early stage while data was still being collected can reduce delays to the start
of the data analysis. However, a more standardised and streamlined data sharing process
to facilitate multi-centre collaborations would further limit unnecessary delays and costly
resources and promote more robust clinical research studies, thus resulting in improved
quality of patient care.

Future work will include DL-based NTCP models for ORN using the PREDMORN
study dataset. Prospective data collection (e.g., in the form of a clinical trial) may also be
considered as a continuation of this study in the future. Collaborations have already been
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initiated with Newcastle upon Tyne Hospitals NHS Foundation Trust and the Clatterbridge
Cancer Centre NHS Foundation Trust for potential external validation of the results and
conclusions that will be obtained from the PREDMORN study.
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Chapter 10

Conclusion

This chapter contains the final discussion and conclusions of this thesis. First, it summarises
the novel scientific contributions of this thesis and their clinical impact. Second, it discusses
the limitations of this work and possible future directions to address these limitations.
Finally, overall conclusions are drawn.

10.1 Summary

Existing prediction models for mandibular ORN rely solely on DVH data as a surrogate for
the dosimetric risk factors. Clinically, population-based generic dose-volume constraints
are used during the treatment planning process to limit the radiation dose received by
the mandible. The bone composition and vascularisation variations within the mandible
result in a heterogeneous radiobiological response, with some regions more prone to ORN
development than others. Moreover, this radiobiological response also varies between
patients. As opposed to a DVH, radiation dose distribution maps preserve the spatial dose
information that can be used to capture these radiobiological and anatomical heterogeneities
when predicting radiation-induced toxicities. The use of spatial dose metrics in NTCP
modelling has increasingly gained research interest over recent years.

The primary aim of the work presented in this thesis was exploring how ML and DL
methods can contribute to personalised and explainable NTCP modelling of mandibular
ORN using spatial dose information. The major contributions of this thesis are summarised
below:
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• The first major contribution of this thesis was the use of ML methods in the context
of mandibular ORN incidence prediction.

• The second major contribution of this thesis was the implementation of a DL-based
pipeline to predict mandibular ORN incidence. A 3D deep CNN was trained to
automatically obtain spatial dose information from radiation dose distribution maps
that was used to classify ORN vs. no ORN, with comparable predictive performance
to more traditional DVH-based ML approaches.

• The third major contribution of this thesis was the implementation of multimodality
DL fusion strategies for combining the image-based spatial dose information with
clinical and demographic variables into a more comprehensive ORN NTCP model.

• The fourth major contribution of this thesis was the implementation of interpretability
methods with in-depth quantitative analysis as a first step towards gaining trust for
the clinical implementation of a DL-based ORN prediction model.

• Finally, the fifth major contribution of this thesis was the design and development
of the multi-institutional PREDMORN study to develop, train and validate robust
and generalisable NTCP models for mandibular ORN using the largest ORN dataset
worldwide.

10.2 Current limitations and future directions

This section discusses the main limitations of the work presented in this thesis and possible
solutions that could be explored in future work. It also analyses the assumptions made and
how these may affect the proposed methods.

Radiation dose. A large amount of the work included in this thesis is based on radiation
dose information extracted retrospectively from the clinical treatment planning systems.
Below are some of the limitations related to this process:

• The radiation dose distributions were obtained from the clinical radiotherapy treat-
ment plans, which are a simulation of the dose distribution based on a pre-radiotherapy
CT scan rather than the actual dose delivered during treatment. The actual absorbed
dose distribution during treatment was not available for the patients included in this
study. This is a common limitation in existing retrospective studies. Future work
should assess the differences between planned and delivered doses and the resulting
uncertainties in the prediction of ORN.
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• Head and neck cancer patients may experience anatomical changes due to weight
loss over the radiotherapy treatment course. These often result in the need to fit a new
immobilisation mask and to replan the radiation distribution accordingly. In these
cases, a plan and a replan will be available, each with a fraction of the total number of
treatment sessions delivered. The clinical approach to obtaining the overall planned
dose distribution is to perform a weighted sum of both plans based on the number of
treatment fractions they were used for. This approach, however, was not possible
in the Monaco TPS as the summed plan could not be exported. Thus, the plan with
the largest amount of delivered fractions was considered as delivered for the entire
treatment course. It was considered that excluding these patients from the study
would have a more detrimental effect than the dosimetric uncertainties introduced by
this approximation. The department is currently transferring all the patients planned
with the Monaco TPS to the Eclipse TPS, which will enable correctly summing the
plan and replan dose distributions in future studies.

• Chapter 2 (Section 2.2.3) describes the conversion from Dw,m to Dm,m for some of
the RT plans created with the Monaco TPS using the stopping power ratios of water
and the different tissue types. However, this conversion may introduce uncertainties
as the tissue densities might not be well defined in the TPS [163]. We are currently
participating in a study led by ICO that aims to assess how the dosimetric correlations
with ORN are affected by the differences between the two dose calculation modes,
Dw,m and Dm,m.

Mandible segmentation. In some oral cavity cancer cases, part of the mandible is re-
moved during surgery, a procedure known as mandibulectomy, sometimes with subsequent
reconstruction typically using flap bone. In this work only the mandible bone was included
during manual segmentation of the mandible structure and any external bone was excluded
as it strictly considered ORN developing on the mandible bone only. However, it would be
of high clinical interest to investigate how the inclusion of the reconstructed bone as part
of the mandible structure could potentially modify our findings.

Mandible dose map. The processing steps for the image data described in Chapter 4
(Section 4.3.4) include the masking of the dose map to obtain a mandible dose map. This
approach, largely inspired by Dean et al. [128] and Ibragimov et al. [102], was followed
to aid the network to focus on the mandible structure. Reber et al. [115] did not mask the
dose map but used the mandible structure to crop the dose map thus minimising its size.
Further work will include an assessment of whether the exclusion of radiation dose and
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anatomical information surrounding the mandible has a significant effect on the prediction
of ORN with DL methods.

ORN severity classification. Mandible ORN is a rare toxicity, and the data sets
available are naturally small. Low patient numbers make it difficult to attempt a multiclass
prediction task where not only incidence but also ORN severity is predicted. Although the
morbidity caused by ORN (at any grade) is such that the prediction of its incidence alone
would already be an important clinical decision-support contribution, future work will aim
at increasing the size of the study cohort to allow for ORN severity prediction.

Multimodality fusion. Chapter 7 (Section 7.2) described how dose maps and clinical
variables were combined using early and late fusion strategies, which are the recommended
types for small datasets [133] but may be outperformed by joint fusion strategies. Future
work will explore the development of more complex joint strategies with a larger dataset.

ORN laterality analysis. Chapter 8 (Section 8.2) described the laterality association
analysis between high attention regions, ORN regions and high dose regions. While
the laterality of the high attention and high dose region was assessed by dividing the
corresponding maps into two equal parts, this was not possible with the ORN region
because the ORN region segmentation was not available for all subjects. The laterality of
the ORN region was obtained from the clinical notes. Although common space registration
was applied to all cases, it is possible that in some cases the mandible was not perfectly
central. While this did not introduce any errors when comparing the laterality of the high
dose and high attention regions, this is not necessarily the case with respect to the ORN
region. Future work will aim at obtaining the manual segmentation of all the ORN regions
on the planning CT image so that the laterality of the ORN region can be determined in
the same way as for the high dose and high attention regions.

External validation. The work presented in this thesis was based on a single-institution
dataset. Although a number of methods were applied to enhance its generalisability (nested
cross-validation, dropout, etc.), external validation of the methods and results is essential.
A collaboration established with the Odense University Hospital in Denmark has allowed
the transfer of the DICOM files for their cohort. I am currently processing these files and
the results of the external validation of my work with their data will be published at a later
stage.

Multi-toxicity modelling. As discussed in Chapter 2 (Section 2.1.4), HNC toxicities
are often associated. Although this thesis has focused on mandibular ORN, planned future
work will investigate the associations between ORN and other HNC toxicities, with the
ultimate aim of developing a DL-based HNC multi-toxicity prediction model.
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Model calibration. In the experiments included in this thesis, a binary classification
of ORN vs. no ORN has been explored based on the output of models. Without model
calibration, however, the output of the models cannot be interpreted as true probabilities.
Thus, for the clinical implementation of the methods explored, the models would need to
be calibrated in order to calculate the actual toxicity risk at an individual patient level.

10.3 Conclusions

This thesis has explored the potential of DL methods in the prediction of mandibular
ORN incidence. Previous ORN prediction models have used DVH data as the dosimetric
risk factor for ORN. However, DVH data excludes any spatial dose information from the
clinical RT treatment plan. In this thesis, 3D radiation dose distribution maps have been
used instead of DVH data, which allow the inclusion of anatomical and radiobiological
heterogeneities within the mandible. In addition, multimodality fusion strategies have been
explored to combine the dose maps with other clinical risk factors. Finally, the DL-based
predictions have been analysed with interpretability methods that confirmed spatial dose
associations with the incidence of mandibular ORN. The promising results reported in this
work might stimulate further work on the use of DL methods for toxicity prediction in
head and neck cancer as a comprehensive clinical decision-support tool.
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