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Abstract

Commercial positron emission tomography (PET) systems are continually evolving as manufac-

turers strive to improve image quality, whilst reducing radiation dose and acquisition times. The

impact of these developments on clinically relevant measures must be evaluated to ensure PET

imaging is used appropriately. Clinical trials designed specifically to evaluate new developments

in PET technology or methodology are expensive and time consuming, so alternative evalua-

tion approaches are required. One potential way to evaluate new PET developments is to use

simulated PET data along with forward modelling in a ‘virtual imaging trial’ framework. The

purpose of this project was to develop and validate the methodology for generating PET datasets

created by insertion of simulated lesions into real clinical PET datasets. This approach required

an accurate and reliable method for combining simulated lesions where the ground truth was

known, with the physiological uptake in real patient data with a realistic range of weight, body

mass indices and image noise levels. The validated methodology was then used for the evaluation

of new PET technologies, in particular use of time-of-flight (TOF), point spread function (PSF)

modelling and a Bayesian penalised likelihood (BPL) reconstruction algorithm.

The first stage of the work in this thesis involved designing a model of the General Electric

(GE) Healthcare Discovery 710 PET scanner to perform Monte Carlo simulations of realistic

lesions and to develop the methodology for inserting the lesions into real PET datasets in projec-

tion space. To validate the scanner model, measurements of spatial resolution and sensitivity

were performed according to the National Electrical Manufacturers Association (NEMA) NU-2

standard using simulated phantoms and results were compared to those measured for the real
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scanner. Additionally, accuracy of corrections was assessed using a simulated acquisition of a

uniform cylinder.

The validity of the insertion technique was tested by comparing recovery coefficients derived

from simulated spheres inserted into real PET datasets of the background compartment of

the NEMA image quality phantom to those from real acquisitions of the phantom containing

identical sized spheres. Anonymised PET datasets from 10 patients who had a measurable

pulmonary lesion were used to assess the ability of the technique to generate realistic lesions.

Characteristics from the real lesions were used to generate simulated lesions that were then

inserted into the contralateral lung of the same patient. To demonstrate the simulated lesions

were indistinguishable from real lesions, a two-alternative forced choice task was performed by

an experienced PET physician whereby they were asked to review the reconstructed PET images

for each patient and choose which of the two lesions they thought was simulated and rate their

confidence in identifying it.

To ensure that PET images created using the insertion technique could be used in place of real

PET data and a real PET imaging system for performing clinically relevant tasks, PET images

were generated for a cohort of 97 patients consisting of simulated lesions with characteristics

matching those from a population of real patients with known solitary pulmonary nodules

(SPNs). Quantitative measures of 18Fluorine-labelled fluorodeoxyglucose (18F-FDG) uptake

and diagnostic accuracy for the assessment of malignancy risk were then compared between the

cohorts of patients with real and simulated lesions.

Finally, the impact of new PET technologies on image quality and task-based measures was

evaluated using phantom and patient images generated using the validated methodology. The

influence of TOF, PSF modelling and BPL reconstruction on image quality was investigated

using technical image-based measures for the NEMA image quality phantom. For the task-based

assessment, 194 lesions were simulated with characteristics representative of real benign and

malignant SPNs and inserted into the anonymised raw PET datasets from 194 patients. The

PET data were reconstructed using parameters in use across clinical PET Centres in the UK

that incorporated TOF, PSF modelling and BPL. The resultant datasets were used to determine
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the influence of incorporating new technologies on measurements of 18F-FDG uptake using

standardised uptake values (SUVs) and the subsequent impact on the diagnostic accuracy for

categorising the lesions as malignant or benign. The diagnostic accuracy for each reconstruction

was assessed using lesion SUVmax, lesion SUVmean and the Herder score which combines the

18F-FDG uptake with the patient clinical and radiological characteristics to determine risk of

malignancy.
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Chapter 1

Introduction

1.1 The Role of Positron Emission Tomography in Oncology

Positron emission tomography (PET) is a non-invasive functional imaging technique used

widely in the management of patients with cancer from initial diagnosis and staging, response

assessment during and after treatment and for guiding radiotherapy treatment [1]. PET is

inherently quantitative and, with careful equipment calibration and consistent methodology,

measurements of tracer uptake by tumours or metabolic tumour volume have been shown to

correlate well with patient outcomes [2]. Functional imaging with PET can often pick up

changes before anatomical changes are seen on computed tomography (CT) and magnetic

resonance imaging (MRI), allowing clinicians to adapt treatment earlier and spare patients from

unnecessary treatments and side-effects [3, 4]. For example, in recent lymphoma clinical trials

patient treatment was adapted (escalated/de-escalated) based on results of 18Fluorine-labelled

fluorodeoxyglucose (18F-FDG)-PET scans performed during chemotherapy [5, 6]. These studies

showed better outcomes for patients with fewer side-effects and improved survival.

The clinical focus of this thesis was on the use of PET in the characterisation of solitary

pulmonary nodules (SPNs) therefore a full review of oncological applications of PET is beyond

the scope of this work. However, there is a strong-evidence base for the use of PET-CT in a variety

of oncological and non-oncological diseases as summarised in the current UK evidence-based

30



1.2 Methodological Advances in PET

guidance for the use of PET-CT [1]. For indeterminate SPNs, the British Thoracic Society (BTS)

guidelines recommend 18F-FDG-PET-CT imaging as part of the diagnostic pathway [7]. Any

solid non-calcified pulmonary nodules identified on CT, either through screening or incidental

findings, are initially assessed based on their radiological size and appearance. Nodules ≥ 8 mm

diameter (or ≥ 300 mm3 volume) are then assessed for risk of malignancy using the Brock

model [8] with nodules ≥ 10 % risk undergoing further investigation using 18F-FDG-PET-

CT. The addition of 18F-FDG-PET-CT in determining the risk of malignancy of indeterminate

SPNs has been shown to improve the diagnostic accuracy compared to CT alone [9, 10] and

a meta-analysis by Gould et al found a mean sensitivity and specificity of 93.9 % and 85.8 %

respectively [11].

1.2 Methodological Advances in PET

Compared to other imaging modalities, such as CT or MRI, PET suffers from relatively low

spatial resolution. Commercial PET systems are continually evolving as manufacturers strive

to improve the image quality and reduce imaging times. The first clinical PET scanner in the

UK was installed in 1992 [12], at this time PET systems did not include an integrated CT

scanner and only acquired PET data in two-dimensional (2D) mode. Typical intrinsic spatial

resolution for these early clinical systems was in the order of 6 mm full-width at half-maximum

(FWHM) and modest improvements are seen in the current wholebody PET systems with FWHM

measured as 4.1 mm to 5.9 mm [13, 14, 15]. With further improvements in detector design, it is

theoretically possible to achieve clinical PET scanners with a spatial resolution of 2.36 mm [16].

Notable advances in PET resulting in improved sensitivity and signal-to-noise ratio (SNR)

include three-dimensional (3D) acquisition modes, faster scintillation crystals allowing the use

of time-of-flight (TOF) information and improved reconstruction algorithms with more accurate

corrections incorporated in the system model [17, 18].
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1.3 Challenges in Assessment of Advances in PET

As a result of these advances, there are a range of software and hardware options available

in the clinical setting, not all of which have been independently evaluated in clinical trials.

To ensure any developments are put into practice appropriately, the impact of changes on

clinically relevant measures must be carefully evaluated and understood. However, it is difficult

to quantify the clinical impact of improved hardware and reconstruction methods as they are not

necessarily related to the more simple technical parameters associated with physical detector

characteristics [17]. Clinical trials, particularly large phase II/III randomised trials, are expensive,

complex and take a long time to complete [19]. Results of clinical trials often take years to be

published and implemented into clinical practice in which time the technology is likely to have

moved forward. As such, it is not feasible to conduct clinical trials every time there is a change

in PET scanner technology or methodology, and there is a need for more efficient, validated

methods of technology assessment to better inform clinicians and researchers how to incorporate

new PET developments into clinical trials and how this translates into clinical practice.

The accurate diagnosis and staging of cancer is crucial in selecting the appropriate course

of treatment to improve outcomes for patients whilst reducing unnecessary risks of morbidity

and costs associated with many therapies. PET imaging plays a significant role in this decision-

making process through detecting the presence and spread of cancer and characterising the

nature of the disease. Assessment of the clinical and cost-effectiveness of PET or indeed

any new imaging technology is complex. Several projects, such as the National Oncologic

PET Registry (NOPR) in the United States, have collected prospective data on the referring

physicians’ intended patient management before and after the 18F-FDG-PET study to assess

the impact of including the PET information on patient management [20]. This type of study

requires significant logistical planning and takes considerable time and expense to accrue the

data. Additionally, the assessment doesn’t take account of whether the clinician or patient opts to

act on the information provided by the PET, the efficacy of the treatments available at the time,

or the natural history of the disease itself [21]. Randomised controlled trials that typically apply
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the intention-to-treat methodology are also inappropriate in this context as the statistical analysis

includes all participants who are randomized to have a PET scan according to the group they

were originally assigned, regardless of whether or not the findings on PET were included in the

final treatment decision [21].

The performance of new PET technology and methodology, such as a new image recon-

struction algorithm, is often measured in terms of technical image-based metrics like SNR,

noise equivalent count rate (NECR) or quantitative accuracy. These measurements are often

made with physical or simulated phantoms, where the ground truth is known, providing an

objective measure of the technical scanner performance that can be replicated and compared

across systems. However, these measures of image quality do not take into account the complex

anatomy and physiology present in real patients and often do not correlate well with perceived

image quality by clinicians. Additionally, phantom and simulation assessments do not provide

a task-specific evaluation, and do not include many relevant variables that are likely to affect

the properties of the final image. These include patient-related factors such as body habitus,

variation in tracer biodistribution related to medication and/or sub-optimal pre-scan preparation

and variation in attenuation properties e.g. as a result of patient movement during the acquisition.

The performance may also depend strongly on the method of analysis used. In clinical prac-

tice, diagnostic tasks include lesion detection, characterisation of tumours using measurements

of radiopharmaceutical uptake or functional volume at a single time point and measurements

of changes in uptake or functional volume to assess response to therapy from a series of scans

at different stages of treatment. These diagnostic tasks are broadly divided into two types:

classification and estimation tasks. Classification tasks would include lesion detection and/or

localisation whilst estimation tasks include measurements of parameters that help to characterise

the lesion such as the degree of radiotracer uptake or metabolic tumour volume (MTV) [22]. The

characterisation of task-specific performance indices such as these in terms of bias and variability

is in general very hard to determine since the ground truth is unknown and is not necessarily

related in a simple way to the technical image-based metrics.

33



1.4 Virtual Imaging Trials

1.4 Virtual Imaging Trials

Use of modelling tools combining real clinical data and simulated image data in a virtual (or

‘in silico’) imaging trial framework has been proposed as a method for evaluating new imaging

technologies. In a virtual imaging trial (VIT) framework, a validated model of the real imaging

system is used to generate images for a virtual population of patients using anatomically and

physiologically realistic phantoms. By accurately modelling the acquisition process, images

can be generated where the ground truth is known and that incorporate the noise and resolution

characteristics of the physical imaging system. Systematic comparisons can then be made

through controlling different aspects of the patient population or imaging system to optimise the

imaging methodology for specific clinical applications. This makes VITs much more efficient

and cost effective than traditional clinical trials using real patients.

As discussed further in Section 2.3, VITs have been used for comparing 2D and 3D mam-

mography in breast cancer screening [23, 24] and to assess the ability of PET to detect a given

change [25, 26, 27, 28]. More recently, the Centre for Virtual Imaging Trials (CVIT) was

established at Duke University (\textcolor{blue}{https://cvit.duke.edu/about/cvit/}) with the aim

of using VITs to improve the diagnostic accuracy of CT in specific clinical applications. To

achieve this, the group are developing the tools for conducting VITs including a framework

for creating virtual patients using computational phantoms, manufacturer-specific models of

CT scanners, and task-based mathematical observers. Use of VITs in this way permits the

optimisation of CT protocols for a wide range of clinical applications and technology whist

minimising the radiation dose for patients.

The VIT concept can also be used in ‘digital twin’ studies. A digital twin is a virtual

representation of an individual patient generated by combining real-time data from the patient

and their environment with a model derived from population-based data. The digital twin can then

be used to investigate the influence of different factors and predict outcomes for the real patient

to aid in clinical decisions [29]. This concept has potential applications for personalising patient

care in nuclear medicine theranostics where the same target is used for radionuclide imaging
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and therapy [30]. By developing digital twins using mathematical models that incorporate the

pre-therapy radionuclide imaging to perform predictive dosimetry, the therapy plan (injected

activity, number of cycles etc) can be optimised for an individual patient.

1.5 Thesis Objectives and Structure

The purpose of this thesis was two-fold. First was to develop and validate the methodology

for generating PET images consisting of simulated lesions inserted into PET datasets from

real patients. This was achieved through the design and testing of a model of the PET system

for performing Monte Carlo simulations and developing the steps for insertion of simulated

objects into existing PET datasets in projection space. The methodology was validated through

comparing quantitative measures for real solitary pulmonary nodules (SPNs) in a population of

patients to simulated lesions with matching characteristics inserted into patient datasets.

The next stage was to use the described methodology to investigate the impact of new

technologies, in particular time-of-flight (TOF), point spread function (PSF) modelling and

the Bayesian penalised likelihood (BPL) reconstruction algorithm on image quality and task-

based measures. Assessments of image quality were performed using the National Electrical

Manufacturers Association (NEMA) image quality phantom. The impact of new technologies on

18F-FDG uptake measurements and subsequent determination of risk of malignancy for patients

with SPNs was evaluated using PET images generated using the validated methodology in a

virtual imaging trial.

The key aims of this thesis were to:

1. to develop and validate a methodology for generating PET images consisting of real patient

PET datasets with realistic simulated lesions

2. to use the validated methodology to generate images for use in a virtual imaging trial to

evaluate the impact of new PET technologies on task-based measures
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Chapter 2 provides an overview of the principles of PET imaging including a description of

the detector instrumentation and reconstruction techniques. Methods for assessing image quality

are also described covering both technical image-based metrics and task-based assessments. The

reader is also introduced to quantification in PET and common terminology used throughout this

thesis. This is followed by a review of phantoms and Monte Carlo techniques used for image

quality assessment. Lastly the concept of virtual imaging trials is introduced along with a review

of VITs in the literature.

Chapter 3 describes the model of the PET system used for simulation of the lesions and the

process of lesion insertion in projection space. The methodology and results are presented for

a series of phantom experiments performed to validate the model and the insertion technique.

Further, a visual review of 10 patient datasets with both a real and simulated SPN was performed

by a clinical expert to assess the realism of the inserted lesions.

Chapter 4 describes the process for generating simulated SPNs based on the characteristics

of an existing cohort of patients with real SPNs. The simulated lesions were then inserted into

real patient datasets to generate a cohort of 97 patients with simulated SPNs that mirrored the

data from a retrospective study performed on clinical patients with a known SPN referred for a

PET scan at the King’s College London & Guy’s and St Thomas’ PET Centre. Measurements of

18F-FDG uptake and diagnostic accuracy for the cohort of patients with simulated lesions were

compared to those for the cohort of patients with real SPNs.

Chapter 5 goes on to evaluate the impact of TOF, PSF modelling and BPL reconstruction

on image quality and task-based measures. The NEMA image quality phantom was used to

investigate technical image-based measures of image quality. PET images containing simulated

lesions with characteristics representative of real benign and malignant SPNs were generated

using the validated methodology described in the previous chapters and used in a VIT to

determine the impact of incorporating the new technologies on 18F-FDG uptake measurements

and subsequent determination of risk of malignancy.

Chapter 6 provides overall conclusions of the work in this thesis and potential areas for

further use of the methodology described.
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Chapter 2

Background

2.1 Principles of Positron Emission Tomography

During a positron emission tomography (PET) study, patients are injected with a chemical

compound that has been labelled with a positron-emitting radionuclide, known as a radiophar-

maceutical. The radiopharmaceutical circulates in the blood and may accumulate in tissues or

organs dependent on the biological pathway of the labelled compound. Images are acquired of

the radiopharmaceutical distribution in the patient using a PET scanner. The scanner consists of a

ring of detectors around the patient that detect the photons emitted from the radiopharmaceutical

which are reconstructed into three-dimensional (3D) images. This provides a non-invasive

method to investigate biological or physiological processes within the body. There are a range of

evidence-based indications for PET-CT [1], particularly in oncology, with the most widely used

radiopharmaceutical being 18Fluorine-labelled fluorodeoxyglucose (18F-FDG).

Normal differentiated cells primarily generate energy through mitochondrial oxidative phos-

phorylation which requires oxygen. Whereas, even in the presence of ample oxygen, cancer

cells predominantly generate energy through aerobic glycolysis whereby glucose is broken down

to produce energy in the form of adenosine triphosphate. This increase in glucose demand in

cancer cells compared to normal cells is known as the Warburg effect [31] and is exploited

in 18F-FDG-PET for imaging malignant tumours. 18F-FDG is a radiolabelled glucose analog
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and, like glucose, is transported into the cells via glucose transporters and phosphorylated by

hexokinase. Unlike glucose however, the FDG forms FDG-6-phosphate which cannot be further

metabolised and is trapped in the cancer cells. The accumulation of FDG-6-phosphate in the

cancer cells therefore results in increased radioactivity compared to the surrounding tissues

which is detected by the PET scanner.

18Fluorine (18F) is produced in a cyclotron by irradiating an 18Oxygen target (usually 18O

enriched water) with a high energy beam of protons. The proton interacts with the 18O nucleus

creating 18F. The physical and nuclear properties of 18F are given in Table 2.1.

Property of 18F Value

Half-Life 109.77 min

Positron Fraction 0.967

Mean Positron Energy 0.250 MeV

Max Positron Energy 0.634 MeV

Mean Positron Range in Water 0.6 mm

Max Positron Range in Water 2.4 mm

Table 2.1 Physical and nuclear properties of 18Fluorine [32].1 MeV = 1 ×106 electron volts (eV).

2.1.1 Positron Decay

The radionuclide contains a proton-rich nucleus making it unstable. To revert to its stable state,

the radionuclide undergoes positron decay whereby a proton is converted to a neutron along

with the emission of a positron (e+) and an electron neutrino (νe). The emitted positron travels

a short distance during which it loses kinetic energy as it undergoes inelastic collisions with

orbital electrons or nuclei. Once almost all the kinetic energy is lost, the positron undergoes

annihilation with an electron (e−) resulting in the emission of two annihilation photons, as shown

in Figure 2.1.
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Fig. 2.1 The unstable radionuclide undergoes positron decay whereby a proton (+) is converted to a
neutron (-) along with the emission of a positron (e+) and an electron neutrino (νe). After travelling a
short distance, the positron undergoes annihilation with an electron (e−) producing two photons (γ) at
approximately 180° to one another.

The distance from where the positron was emitted from the nucleus to the location where

annihilation occurred is known as the positron range. The size of the positron range depends

on the initial positron energy, which is dependent on the radionuclide, and the properties of

the material it passes through [32]. The finite positron range results in blurring of the source

distribution reducing the spatial resolution. The positron range for 18F is very short (Table 2.1)

resulting in a relatively small blurring effect with full-width at half-maximum (FWHM) of

0.54 mm [16] and therefore is not a significant limiting factor in the resolution for current PET

systems.

Another fundamental factor limiting the spatial resolution of PET systems is photon non-

collinearity. Both the electron and positron have rest masses of 511 keV therefore to conserve

mass and energy, the total energy of the two resultant annihilation photons is 1.022 MeV.

However, since the positron and electron are not normally at complete rest when the annihilation

event occurs, the annihilation photons are not emitted at exactly 180° to one another, but 180° ±

0.25°. The amount of blurring due to non-collinearity is dependent on the diameter of the ring of

detectors with a FWHM of 1.76 mm for a PET scanner with 800 mm diameter ring [33].
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The largest limiting factor to the fundamental resolution of PET scanners is the size of

the individual detector elements. As you move across the face of the detector element, the

response increases linearly from the edges towards the maximum at the centre. The FWHM of

the response is equal to half the width of the detector element. There are practical limitations

on the manufacture of very small detector elements, with detector widths for current clinical

PET systems of 4 mm to 6 mm and the latest Siemens system incorporating 3.2 mm crystal

elements [34].

2.1.2 Coincidence Detection

A coincidence event is when two annihilation photons are detected by opposing detectors in the

PET scanner within a short time interval, known as the coincidence timing window. The location

of the originating annihilation event is then assumed to be somewhere along the line of response

(LOR) joining the two detectors as shown in Figure 2.2.

Fig. 2.2 Coincidence detection of annihilation photons by opposing detectors in a PET scanner.

The total number of coincidence events measured by opposing detectors represents the total

radioactivity within the volume of patient tissue that lies along that LOR. The PET scanner is

calibrated by measuring the scanner response in counts per second (cps) to a known amount of
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radioactivity in Becquerels (Bq) in a known volume (ml) to provide quantitative measures of the

radioactivity concentration (Bq ml−1) in tissues.

2.1.2.1 True, Random and Scattered Coincidence Events

When two annihilation photons detected within the set coincidence timing window originate

from a single annihilation event located along the LOR joining the two detectors it is known as a

true event, Figure 2.3 a).

Fig. 2.3 Illustration of a) true, b) scattered and c) random coincidence events. If annihilation photons are
scattered b) or photons from different events are detected within the same coincidence timing window c),
the event is incorrectly located along the LOR joining the detectors as shown by the red dotted lines.

If one or both the annihilation photons from an annihilation event is scattered prior to

detection, the event can be incorrectly located along the LOR joining the two detectors as seen

in Figure 2.3 b). Scatter is mainly due to Compton scatter and can occur within the patient and

the scanner components so the ratio of scattered to true events depends on patient and scanner

geometry. Since scattered photons lose energy, the number of scattered photons detected is also

dependent on the lower energy window threshold settings. Figure 2.4 shows the spectrum of

photons detected for an 18F source. The energy resolution of the PET scanner is defined as the

FWHM of the 511 keV photopeak and the lower threshold on the energy window is set to include

the photopeak whilst excluding as many of the scattered photons as possible.
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Fig. 2.4 Spectrum of coincident singles for an 18F source showing the photopeak formed when the 511 keV
annihilation photons deposit all their energy in the detector. A lower energy threshold is used to exclude a
large proportion of the scattered events. The energy resolution of the scanner, is measured as the width of
the photopeak at the point where it is half the maximum frequency (FWHM), as shown by the red arrow
on the spectrum.

A random event is when the annihilation photons from two different annihilation events fall

within the same timing window and the annihilation event is incorrectly assigned to the LOR

joining the two detectors, Figure 2.3 c). The ratio of random to true coincidence events increases

with radioactivity in the patient and decreases with decreasing width of the coincidence timing

window.

2.1.3 PET Instrumentation

A PET detector or ‘block detector’ consists of a scintillator crystal segmented into elements with

reflective material in the gaps, coupled to either an array of photomultiplier tubes (PMTs), as

shown in Figure 2.5, or silicon photomultipliers (SiPMs).
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Fig. 2.5 Schematic of a PET detector showing the segmented scintillator crystal coupled to an array of
PMTs.

The incident 511 keV annihilation photon deposits its energy in the crystal lattice exciting an

electron from the valence band into the conduction band. On returning to the ground state, light

photons are produced which are converted into an electrical pulse by the PMTs or SiPMs. The

amplitude of the electrical pulse is proportional to the number of light photons produced in the

crystal which in turn is proportional to the energy deposited by the incident annihilation photon.

An energy window with upper and lower thresholds on the amplitude of the electrical pulse is

used to reject scattered events with energies outside the expected 511 keV photopeak.

A good scintillation crystal is characterized by high light yield, fast decay time, high density

and effective atomic number (Zeff), and low self-absorption in the visible range of the electromag-

netic spectrum. The two main scintillation materials used in clinical PET systems are bismuth

germanate (BGO) and lutetium-based scintillator materials such as lutetium-yttrium-orthosilicate

(LYSO). The key advantage of LYSO over BGO is the much faster decay time allowing the

use of time-of-flight (TOF) information (as explained later in this section). Lutetium-based

scintillator materials emit intrinsic radiation due to the presence of 176Lu which decays by beta

emission followed by gamma- and x-rays over a broad energy spectrum [35]. This gives rise to

a background of true and random coincidence events originating from the crystals themselves.

The scanner is unable to distinguish between these intrinsic events originating from the crystal
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and the extrinsic events originating from the object being imaged. Bettinardi et al measured

the total coincidence events originating from intrinsic radiation for the GE Discovery 690 as

∼1 × 103 counts per second (cps) [13]. The majority of these events are intrinsic randoms with

an intrinsic trues rate of only ∼1 cps which can be considered negligible compared with typical

coincidence rates of ∼258 × 103 cps.

PMTs have traditionally been the most widely used photodetector for PET systems. Due to

their large physical size, one-to-one coupling with individual crystal elements is not possible

with PMTs. Instead, a small number of PMTs (typically four) will cover all the elements in

the segmented crystal block. To determine the individual element location, the signals from all

PMTs are combined using Anger logic to provide the x and y positions [36]. Use of multiplexing

in this way however results in a loss of intrinsic resolution. More recently PET systems using

SiPMs have been available. This has been driven by the development of PET-MRI systems since

PMT performance is degraded in the presence of a magnetic field. SiPMs can be tightly packed

reducing light loss between individual photodetectors and they have fast single-photon timing

response which leads to improved timing resolution for TOF systems.

2.1.3.1 PET Acquisition

Since positron emitting isotopes can be incorporated into compounds that follow fundamental

processes in the human body, PET has the potential to measure physiological functions such as

rate of glucose metabolism, regional blood flow or receptor concentrations in absolute terms. This

requires sequential imaging of tissues over time (dynamic imaging) to obtain time-activity curves

of the supply of radiopharmaceutical to the tissue (known as the input function) and the activity

in the tissue (the output function). The data is then fitted to a kinetic model of the biological

system which separates the tissues and blood into compartments with a series of linear equations

that describe the exchange of materials between the compartments. Where the arterial blood

pool is not within the imaging field of view, blood sampling is required to determine the input

function. Due to the complexity of this type of study, absolute quantification is not feasible for
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routine scanning, therefore clinical PET scans consist of a single static acquisition at a particular

time after injection, known as the uptake time, to provide a ‘snapshot’ of the radiopharmaceutical

distribution. The uptake time is typically chosen as 60 minutes post injection for 18F-FDG-PET

in oncology [37].

For oncology applications most clinical PET scans are acquired from mid-thigh to the base

of the brain or vertex. The axial field of view (FOV) for current clinical PET scanners is 15 cm

to 26 cm, meaning that only a section of the patient can be imaged at one time. Acquisitions

are therefore performed with the patient moving through the scanner bore acquiring the PET in

either step-and-shoot or continuous motion mode. During continuous motion, the patient couch

travels through the scanner at a chosen speed whilst continuously acquiring the PET data. For

step-and-shoot, the PET acquisition is performed as a series of short static acquisitions called

‘bed positions’ with the couch repositioning the patient between each acquisition as shown in

Figure 2.6.

Fig. 2.6 PET scanners only cover a small section of the patient at once, so the patient is moved through
the scanner bore acquiring short static scans known as bed positions.

The bed positions are typically overlapped by 23 % to 50 % to compensate for the loss in

sensitivity at the axial extents of the FOV. To generate the final PET images, the data from

individual bed positions is combined either after reconstruction by using a weighted average of

the overlapped regions or by utilising the data from overlapped frames as input in the iterative
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loop during reconstruction [38]. The acquisition time for each bed position is chosen depending

on the scanner sensitivity, patient size and injected activity [37].

2.1.3.2 2D and 3D PET Systems

PET systems consist of multiple rings of detectors that make up the axial extent of the PET

scanner. In older two-dimensional (2D) PET systems, lead or tungsten septa were inserted

between the detector rings restricting the acquisition to LORs for detectors within the same

detector ring (direct planes) or one or two rings either side (cross planes). Modern clinical PET

systems do not have septa and acquire in 3D mode allowing detection of coincidence events

from oblique planes as shown in Figure 2.7.

Fig. 2.7 In 2D PET systems (left), septa between detector rings prevent LORs from oblique planes. 3D
PET (right) has no septa allowing LORs from oblique planes.

By including LORs from oblique planes, the sensitivity for 3D PET increases significantly

compared to 2D but suffers from a larger proportion of random and scattered events due to events

originating from outside the FOV (red dotted lines in Figure 2.7). Corrections for out of field
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scatter and randoms are incorporated into modern 3D PET reconstructions as discussed later in

this section.

2.1.3.3 Partial Volume Effect

The finite spatial resolution of PET systems results in blurring of small objects and spillover of

radioactivity between regions in the image. In addition to this, discrete image sampling does

not follow anatomical boundaries giving rise to voxel values that are the mean radioactivity

concentration from all the tissues contained within the volume [39]. Both these phenomena

are collectively known as the partial volume effect (PVE). The PVE results in small lesions <

3 × FWHM of the reconstructed image resolution appearing to have lower uptake and larger

volume than reality. This can result in significant bias in quantitative measurements of uptake

and volume.

Fig. 2.8 Reconstructed PET image of a phantom containing spheres filled with identical radioactivity
concentration. Profiles of the spheres are plotted showing the spill out of counts from the spheres into the
background and spill in from the background into the spheres.

The impact of the PVE is dependent on the size of the objects being imaged and their

radioactivity concentration relative to the surrounding tissues. Figure 2.8 shows a reconstructed

PET image of the NEMA image quality phantom (Data Spectrum, Hillsborough, NC). The

phantom contains six spheres, with diameters from 10 mm to 37 mm, filled with a solution of

identical radioactivity concentration contained within a uniform background of dimensions as
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described in the NEMA standard [40]. Profiles plotted through the spheres on the reconstructed

image show that for all sphere sizes the counts are spread into the surrounding region causing

blurring at the edges. Additionally, as the spheres get increasingly smaller, the maximum

radioactivity concentration becomes increasingly lower than the ground truth. Various methods

have been proposed to correct for the PVE, as reviewed by Erlandsson et al [41]. However,

these methods have limitations and may worsen the accuracy and precision of quantification in

small tumours [42]. Improvements in detector design leading to better spatial resolution and

reconstruction techniques that incorporate resolution modelling and anatomical priors within the

reconstruction would lead to a reduction in PVE and thus more accurate quantification for small

lesions < 15-20 mm diameter.

2.1.3.4 Time-of-Flight

If the time of arrival for each annihilation photon from an event could be measured exactly, the

difference in the arrival times could be used to derive the exact location of the annihilation event

along the LOR. This principle is known as time-of-flight (TOF) PET. In reality, clinical scanners

have a finite timing resolution which results in an uncertainty in the measurement of the arrival

times. As discussed earlier, improvements in scintillator crystals and electronics have improved

the temporal resolution in lutetium-based PET systems with the latest clinical systems achieving

210 × 10−12 seconds [34]. The difference in arrival times and the uncertainty from the timing

resolution of the system are used within the reconstruction algorithm to constrain the location of

the event to within a few cm along the LOR rather than the event being equally likely to be at any

point along the LOR. Use of TOF better localises true events leading to better contrast recovery

and lower noise i.e. a gain in signal-to-noise ratio (SNR) [43]. TOF also improves rejection of

scattered and random events.
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2.1.4 Reconstruction

The basic data output from a PET system consists of a chronological list of positional, timing

and energy information for each detected coincidence event. This is known as list-mode data.

For TOF systems the time of arrival for the two photons is also included. Since list-mode data

can be particularly large, the data is usually binned in real-time into a smaller matrix known as a

sinogram. This groups events that fulfil certain energy, positional and timing criteria together

but at the expense of information about individual events. The construction of the sinogram is

demonstrated in Figure 2.9. For LORs at a given angle of acquisition, θ , coincidence events

from all the LORs are binned into a histogram based on the radial distance from the centre of

the scanner gantry, r. These histograms, known as projections, are then stacked in the matrix

according to the angle of acquisition (0° to 360°). For 3D PET, sinograms containing projections

from all oblique planes are also constructed in addition to the projections from direct planes.

These sinograms are then used to reconstruct 3D images of the object.

Fig. 2.9 The histogram of LORs from each angle around the radioactive point source (left) are stacked in a
sinogram (right) according to the distance from centre of the the scanner field of view r and the acquisition
angle θ .
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2.1.4.1 Filtered Backprojection

Traditionally data acquired using 2D PET systems were reconstructed using filtered backprojec-

tion (FBP) which is an analytic inversion method [44]. As seen previously in Section 2.1.3, the

number of coincident annihilation photons detected by two opposed detectors is approximately

proportional to the integral of the total radioactivity concentration along the LOR. The simplest

method of image reconstruction is backprojection whereby the counts from each projection in

the sinogram are ’projected’ across the image matrix, with the counts evenly distributed between

voxels that fall along the projection path. Counts from all projections are added to generate an

image approximating the radiation distribution. However, noise from the projections is also

propagated across the image creating a star artefact, therefore to reduce the noise a filter is

applied before backprojection. 2D PET data are reconstructed as a series of transaxial slices

which are then stacked to produce a 3D dataset. With 3D PET data the situation is complicated

by the fact that only a subset of the oblique planes are collected. This is discussed in more detail

by Colsher et al [45].

Analytic reconstruction techniques, such as FBP, use a simplified imaging model which is

easy to implement and fast to compute. However, this assumes PET data is noise-free when

in reality there are a number of stochastic uncertainties associated with PET imaging which

cannot be modelled using FBP reconstruction techniques thus limiting the accuracy of the final

reconstructed images [46].

2.1.4.2 Iterative Reconstruction

Many iterative reconstruction techniques were originally proposed in the ‘80s and ‘90s, but due

to their complexity, long reconstruction times and limitations in available computational power,

many did not translate into clinical practice. With cheaper and faster computational technology

and developments in PET scanner hardware and more efficient iterative algorithms, PET has

seen the introduction of new and modified iterative reconstruction techniques in clinical PET

systems. One key advantage of using iterative reconstruction methods is that they can incorporate
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modelling of all aspects of the system response including randoms, scatter and attenuation

improving the quantitative accuracy of the reconstructed images.

There are several iterative reconstruction algorithms described in the literature, as reviewed

by Qi and Leahy [44], most of which are based on the maximum likelihood-expectation max-

imisation (ML-EM) algorithm [47, 48]. The ML-EM algorithm starts with an initial guess of

the image, usually a uniform image with a constant value. This estimation image is forward

projected to generate projections matching the polar co-ordinates of the PET scanner. Correction

factors for each projection are derived by comparing the projections from this estimated image to

the measured projections. The correction factors are then back projected to generate a correction

image. The algorithm then multiplies the original estimation image by this correction image

and divides by weighting factors according to the model of the system response. This forms a

new estimated image which is used as input for the next iteration. This process repeats until the

estimated and measured data converge, with the corresponding image representing the maximum

likelihood (ML) solution. ML-EM reconstruction algorithms are generally slow and require a lot

of iterations to converge. To combat this, Hudson and Larkin developed an accelerated method

of ML-EM, known as ordered subsets-expectation maximisation (OS-EM), that groups the

projections into ordered subsets within each iteration [49]. This method speeds up convergence

by a factor proportional to the number of subsets. OS-EM is currently the most widely used

reconstruction in clinical applications.

Both ML-EM and OS-EM reconstruction algorithms converge to an image that best fits the

data, however if the data is noisy, as it is in PET imaging, inevitably the ML solution will also

be noisy [50]. One way to control the noise is to incorporate a regularisation function in the

algorithm based on prior knowledge of the imaging system or imaged object. Alternatively,

since the noise in the projections is amplified on each iteration, the algorithm can be stopped

before reaching convergence. Too few iterations however, will bias the result towards the initial

guess which is typically a uniform image so some level of noise must be allowed to achieve a

reasonable solution. Restricting the number of iterations in this way is widely used in clinical

applications. To further suppress noise in the final images, a Gaussian smoothing filter can
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be applied to the reconstructed image, but at the cost of reducing the image resolution and

increasing quantitative bias. Optimal selection of the number of iterations, subsets and FWHM

of the smoothing filter in OS-EM reconstructions is object- and task-dependent. Therefore, on

clinical PET systems the user is usually able to select the number of iterations, subsets and the

level of post reconstruction smoothing applied allowing them to decide the trade-off between

bias and noise for the intended application.

2.1.4.3 Bayesian Penalised Likelihood Reconstruction

Bayesian penalised likelihood or maximum a posteriori reconstruction methods include a priori

information about the imaging system or image formation process in the statistical model [51,

52]. Q.Clear is a proprietary BPL reconstruction algorithm implemented on newer GE PET

systems [53]. In this case the algorithm incorporates prior knowledge about the limited spatial

resolution of the scanner (point spread function modelling) and a regularising prior that penalises

the relative differences between neighbouring voxels [54]. The penalisation is greater for small

voxel differences, which are assumed to be noise, than for larger voxel differences which are

assumed to be signal. This allows each voxel to be run to convergence without introducing a

high level of noise in the images and removes the need to select iterations and subsets or apply a

post filter. The user does however have the option to choose the strength (β ) of the regularising

term relative to the data statistics which controls the image noise. Since it is allowed to run to

convergence, the reconstructed images should be closer to the truth and less noisy compared to

OS-EM if an appropriate β value is chosen.
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Fig. 2.10 PET images of the NEMA image quality phantom reconstructed using increasing β values.

Reconstructed PET images of the NEMA image quality phantom using Q.Clear with increas-

ing β values are shown in Figure 2.10. As can be seen for a β value of 100, the different sized

spheres appear well defined, but the images are noisier. As the regularisation term is increased,

the images become increasingly smooth, but with the edges of the spheres becoming less well

defined. Measurements of radioactivity concentration for the spheres also change depending on

the β value used as demonstrated in the plot of maximum activity concentration versus sphere

diameter in Figure 2.11.
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Fig. 2.11 Maximum radioactivity concentration measured for spheres of increasing diameter in PET
images reconstructed using Q.Clear with β values of 100, 400 and 700.

For the β = 100 reconstruction, the maximum voxel values for all sphere sizes are much

higher than the ground truth (dotted line). For the β = 400 and β = 700 reconstructions, the larger

spheres are closer to the ground truth, but as the strength of the regularisation is increased, the

resolution of the image is reduced and the radioactivity concentration measured for the smallest

spheres is underestimated. A β value of 400 is typically chosen as a compromise between image

noise and bias for 18F-FDG-PET in oncology applications [55].

2.1.5 Corrections

To produce more accurate quantification in the reconstructed images, the PET data need to be

corrected for decay, dead time, attenuation, scatter, randoms and variations in detector response.

These corrections are either applied to the raw PET data as a series of multiplicative factors prior

to image reconstruction [46] or they can be included within the system model.
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2.1.5.1 Attenuation

As photons from an annihilation event travel through the patient they may interact with atoms

within the tissues. At 511 keV, the photoelectric effect is negligible, and the most likely inter-

action is Compton scattering whereby the photon transfers some of its energy to an outer shell

electron ejecting it from the atom. As a result, the photon is scattered at an angle dependent on

the amount of energy transferred. If one or both annihilation photons are absorbed or scattered

outside the FOV, the coincidence event is not recorded, and the total number of coincidence

events detected along the LOR is decreased. This is known as attenuation. The degree of

attenuation is dependent on the thickness and atomic number (Z) of the tissue traversed and so

photons originating from the centre of the patient are attenuated more than those at the surface.

Before the development of hybrid PET-CT systems, attenuation correction was performed

using a transmission source consisting of a line source of 68Ge that rotated around the patient.

The attenuation factors were determined from the difference in transmission of the 511 keV

photons from the line source with the patient in the FOV compared to the transmission without

anything in the FOV. Modern PET-CT systems now use CT-based attenuation correction. The

CT data acquired as part of the PET-CT, are by design co-registered to the PET and as such can

be used to generate a scan-specific map of linear attenuation coefficients (µ-map) to correct the

PET data for attenuation during reconstruction.

Voxel values in CT images use a linear density scale of Hounsfield units (HUs), known as

the CT number. The CT numbers for different tissues are computed from the linear attenuation

coefficients of the tissues (µtissue) at CT energies relative to the linear attenuation coefficient of

water (µw):

CTnumber =
µtissue −µw

µw
.1000

To generate the µ-map the CT images are first interpolated to match the PET spatial resolution

and then a calibration curve, such as that shown in Figure 2.12, is used to convert the HU for

photons at CT energies (40 keV to 140 keV) to linear attenuation coefficients for 511 keV PET
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photons [56]. Figure 2.13 shows the µ-map generated for a CT scan of the NEMA image quality

phantom.

−1,000 −750 −500 −250 0 250 500 750 1,000
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

CT Number (HU)

L
in
e
a
r
A
tt
e
n
u
a
ti
o
n

C
o
e
ffi
c
ie
n
t
a
t
5
11

ke
V

(c
m

-1
)

140 keV

120 keV

100 keV

Fig. 2.12 Example of a bi-linear calibration curve used to convert CT numbers in HU acquired at different
keV to linear attenuation coefficients at 511 keV.

Fig. 2.13 Axial CT slice of the NEMA image quality phantom on the patient bed showing the six spheres
(left) and the derived µ-map (right).

The derived µ-maps are forward-projected to generate 3D sinograms matching the PET

scanner geometry. The attenuation correction factors (ACFs) for each projection in the sinogram

are calculated as the exponential of the integral along the LOR. The projections in the PET

sinogram are then multiplied by the corresponding ACF.
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2.1.5.2 Normalisation

The response measured for each LOR in a PET scanner varies due to differences in detector

geometry across the field of view (FOV) and random and systematic variations in the intrinsic

detector efficiencies. The normalisation correction is used to correct for these variations by

applying normalisation coefficients to each LOR during reconstruction. The exact procedure

for normalisation is vendor specific, but generally involves the acquisition of a ‘blank’ scan

where all detectors are exposed to a uniform radioactive source to measure the response along

each LOR [57]. The inclusion of oblique LORs in 3D PET resulted in a much larger number

of active LORs compared to 2D PET [58]. As such, direct normalisation using a routine

acquisition of a blank scan is impractical due to the long time required to acquire enough counts

in each LOR without excessive scatter and dead time effects. To overcome this, component-

based normalisation was developed whereby the total count rate variability is divided into two

components: the component due to detector geometry and the component due to differences

in the intrinsic crystal efficiencies [59]. As the scanner geometry does not change over time,

only one high statistics acquisition is required to measure the geometric correction factors for a

particular scanner design. The intrinsic crystal efficiencies however do change with time and

so the correction factors are calculated by performing a shorter daily scan as part of the routine

scanner quality control (QC) schedule [60]. The separate components of the normalisation

correction are saved along with the raw PET data acquired during an individual scan so can be

stored and used for retrospective reconstruction or processed using offline research tools.

2.1.5.3 Randoms

As previously discussed, the rate of random coincidence events is proportional to the rate of

singles events on the detector squared, which in turn is dependent on the activity in the FOV,

and the width of the coincidence timing window. The contribution of randoms to the total

coincidences can be significant particularly for scans using high activities and 3D acquisition

mode. Use of a narrow coincidence timing window helps to minimise the randoms fraction, but
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the window must remain wide enough to allow for the time taken for the annihilation photons

from true events to reach the detectors and the uncertainty in the coincidence timing [61].

There are two main techniques for correcting for randoms in PET systems. The first being

the estimation from the singles rate measured on the detectors [62, 63]. For a detector pair the

randoms rate R is:

R = 2tw.Cm.Cn

where 2tw is the coincidence timing window width and Cm and Cn are the rate of singles for each

channel from the two detectors. Integrating the product of the singles rates over time therefore

gives the total number of randoms for that LOR.

The second method is to use a delayed timing window offset from the main coincidence

timing window that directly measures the contribution from just the random events. This can

then be subtracted from the total coincidences acquired in the main window to leave the true

events. The advantage of using this method over estimation from the singles rate is that, unlike

the singles events, the coincidences detected in the delayed window are subject to the same

dead-time effects in the coincidence timing circuitry as the true events.

2.1.5.4 Scatter

The upper and lower thresholds for the energy window on a PET scanner are generally set quite

broad (typically 425 to 650 keV) which means many scattered coincidences are accepted and

cannot be easily separated from the true coincidences. This can cause significant degradation in

the image quality and quantitative accuracy [61]. Since all attenuation in PET is due to Compton

scatter, the CT image can be used to derive an estimation of the scattered events which is then

subtracted from the projection data. An alternative method uses the projections from outside the

imaged object which, after correction for randoms, should only contain misplaced events due to

scatter. The tails in the projections outside the imaged object are then extrapolated to estimate

the scatter contribution for the entire projection.
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2.1.5.5 Point Spread Function Modelling

As already described in Section 2.1.3.3, there are several physical effects that degrade the

resolution of a PET system leading to the PVE. Point spread function (PSF) modelling uses

simulations or experimental measurements of a point source at different locations in the FOV

to generate a model of the scanner response as a result of these effects for inclusion within

the system model. Use of PSF modelling can improve spatial resolution and contrast recovery

however, it can modify the structure of noise resulting in a ‘lumpy’ texture [64].

Fig. 2.14 PET image of the NEMA phantom reconstructed with PSF modelling in the system model. A
profile of the largest sphere shows the over- then under-shoot of the radioactivity concentration at the
edges compared to the ground truth (dotted line).

Additionally, edge and ringing artefacts can also be observed at the boundaries of struc-

tures [65]. An example of this can be seen in the PET image of the NEMA phantom in Figure 2.14

that has been reconstructed using PSF modelling. The profile of the radioactivity concentra-

tion in the largest sphere (blue line) shows how these artefacts could lead to overestimation of

quantitative measurements compared to the ground truth (dotted line) if the maximum value

were chosen. Therefore, while inclusion of PSF in the system model has been shown to improve

lesion detection [66, 67], it needs to be used with care to avoid misinterpretation of small lesions

for monitoring response assessment [68, 69].
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2.2 Image Quality Assessment in Medical Imaging

The intrinsic properties of the imaging system introduce noise and blurring in the signal of the

imaged object during acquisition and reconstruction. Image quality is a measure of the perceived

degradation in the reconstructed images determined by the reviewer. In addition to the properties

of the imaging system, the perceived image quality can also be linked to the level of reviewer

experience and the viewing conditions [70]. Many objective measures of varying complexity

have been used to assess image quality. These metrics do not reflect overall image quality and

have differing correlation to perceived image quality by reviewers [71, 72], but can be useful as

surrogates for certain features of image quality such as perceived image sharpness, contrast and

noise.

In diagnostic imaging there is usually no gold standard or ground truth to compare to. Where

histopathology or follow up imaging is available as a reference, it is often subject to selection bias

or lacks independence from the imaging procedure under test [19]. Trial designs for technology

assessment therefore evaluate the diagnostic accuracy of a new technology compared to existing

practice [71, 73]. Very few studies link perceived improvements in image quality due to new

technologies to clinical outcomes [74] and statistical significance may not translate to clinical

significance [75]. The results will also depend strongly on the intended clinical task and the

method of analysis used e.g. lesion detection, measurements of uptake or full kinetic analysis

using dynamic imaging.

2.2.1 Technical Image-based Metrics

The performance of new PET technology and methodology, such as a new image reconstruction

algorithm, is often measured in terms of technical image-based metrics such as signal-to-noise

ratio (SNR), contrast-to-noise ratio (CNR) and noise equivalent count rate (NECR). These are

measured using physical phantoms or simulations, where the ground truth is known, and can

provide objective measurements for comparison of different systems or for optimising parameters

of the imaging system. However, these assessments do not provide a task-specific evaluation, and
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do not include many relevant variables that are likely to affect the properties of the final image,

including patient-related factors such as body habitus, variation in tracer biodistribution related

to medication and/or sub-optimal pre-scan preparation and variation in attenuation properties e.g.

as a result of patient movement during the acquisition.

2.2.1.1 Noise Metrics

The standard deviation (SD) of reconstructed voxel values within a region of constant radioactivity

concentration is a simple measurement of noise in an image. Since the significance of the SD is

dependent on the size of the mean value, the coefficient of variation (COV) normalises the SD to

the mean allowing the comparison of variation in datasets with different means:

CoV (%) =
SD

Mean
×100

Neither the SD nor CoV fully characterise the image noise, so measurements using multiple ROIs

in a single image are used to derive the image roughness (IR) and the background variability

(BV) [40, 76]. The IR is the average of the CoVs for multiple ROIs and provides a measure of

the voxel-to-voxel variations across an image rather than for a single ROI. The IR is related to

the perceived noise in a single image [76]. BV is calculated by dividing the standard deviation

in mean values for all the ROIs, by the average of the mean values for all the ROIs. The BV

is therefore a measure of the region-to-region variation across the image which is useful in the

detection of non-uniformities.

Both IR and BV are measures of noise that are applicable to a single image, or realisation. If

multiple realisations are available, additional measures of noise can be made that more accurately

represent uncertainties in the images. Ensemble noise (EN) is the CoV in the mean for ROIs

across independent realisations and is inversely proportional to detection task performance [76].

Like BV, the EN provides a measure of the variation across regions in the image except across

multiple realisations. The standard deviation image can also be derived by calculating the SD

across realisations for each voxel. Often multiple realisations are not available for analysis

61



2.2 Image Quality Assessment in Medical Imaging

making BV and IR more widely reported for assessment of regional and voxel-wise variations

respectively. Since there is a linear correlation between BV and EN, BV can be used as a

surrogate for EN to quantify spatial variation where multiple realisations are not available [76].

2.2.1.2 Signal Metrics

The signal-to-noise ratio (SNR) is the ratio of the signal intensity in the imaged object (Sob ject)

to the standard deviation (noise) in the background region (SDbgd):

SNR =
Sob ject

SDbgd

Misplaced events due to scattered and random coincidences result in noise in the reconstructed

image. Therefore for a fixed signal intensity, the SNR decreases as the number of detected

scatter and random coincidences increases. The SNR doesn’t account for the signal intensity in

the background (Sbgd), therefore the contrast-to-noise ratio (CNR) is defined as the difference

between the signal intensity in the object and the background (contrast) divided by the standard

deviation in the background region:

CNR =
Sob ject −Sbgd

SDbgd

The noise in a PET image is related to the total number of detected coincidences which is made

up of true, scattered and random events. The noise equivalent count rate (NECR) incorporates

the effect of noise due to subtraction of the randoms and scatter contributions and provides a

direct link to the image SNR and the coincidence count rates [77]. The NECR is calculated as:

NECR =
T 2

(T +S+ kR)

where T , S and R are the count rates for true, scattered and random coincidences, and k is equal

to 1 for randoms correction from singles or 2 for randoms correction using a delayed coincidence

window to account for the noise component. The NECR is defined as the minimum number
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of coincident events required to obtain a statistically equivalent noise level in the presence of

measured scatter and random events if all incident events were considered as true events. NECR

is usually measured using phantoms as described in the NEMA standard [40], but an NECR

derived from patient data has been shown to have moderate correlation with clinically perceived

image quality [78].

2.2.1.3 Recovery Coefficients

The recovery coefficient (RC) is a widely used index of system performance in PET that is

measured using phantoms, such as the NEMA image quality phantom, that contain spheres of

different sizes filled with known radioactivity. The RC for a sphere is calculated as the ratio of

the radioactivity concentration measured in the image (Cmeasured) to the true concentration in the

sphere (Ctrue) [79]:

RC =
Cmeasured

Ctrue

RCs are measured for all the sphere sizes and plotted against sphere diameter to generate a

recovery curve. The maximum voxel value is most often used for determination of Cmeasured

as it is closest to the true value. Additionally, RCs are frequently calculated calculated using

the mean activity concentration for a VOI delineated using a relative threshold of the maximum

voxel value in the sphere. A threshold of 50 % corrected for local background is often chosen

as it is theoretically closest to the real volume and has been shown to have the best balance

for successfully defining the lesion edges for different tumour-to-background ratios and for

repeatability of volume measurements in phantom and patient test-retest experiments [80]. The

RCs depend on the system PSF, the size of the imaged object and noise, particularly when using

measurements based on the maximum voxel value [81].
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Fig. 2.15 Schematic plot of a recovery curve for an idealised PET system (red dotted line) and a typical
PET system without PSF modelling (blue line).

For an ideal system where the true radioactivity concentration is fully recovered, the RCs

would be 1 regardless of object size as shown in Figure 2.15 (red dotted line). The blue line

demonstrates the typical shape of the recovery curve using the maximum voxel values for a

real PET scanner. As previously discussed, the PVE causes the recovery of the radioactivity

concentration in the spheres to become increasingly poor as the sphere size decreases < 3 ×

FWHM, which is equivalent to around 18 mm to 20 mm for clinical PET systems. The bias is

the percentage difference between the measured RCs and the ideal recovery of 1.

Bias (%) =

(
Cmeasured

Ctrue
−1

)
×100

The variance in the RCs is calculated as the sample standard deviation for repeated measurements

and may be normalised to the mean to give the coefficient of variation (CoV). Recovery curves

are useful in the evaluation of new technology as they can characterise the response of PET

scanners under standard conditions.
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2.2.2 Task-based Image Assessment

In clinical practice, PET is usually performed for specific diagnostic tasks such as lesion

detection, quantification at a single time point or measuring response to therapy from a series of

measurements at different times. These tasks are broadly divided into two types – classification

and estimation tasks. Classification tasks would include lesion detection and/or localisation

whilst estimation tasks include measurements of parameters that help to characterise the lesion

such as degree of radiopharmaceutical uptake or volume [22]. The characterisation of task-

specific performance indices in terms of bias and variability is in general very hard to determine

as the ground truth is often unknown and is not necessarily related in a simple way to the basic

image-based indices. Often there is also a trade-off between bias and variance depending on the

intended application.

2.2.2.1 Classification Tasks

In medical imaging, classification tasks extract features from the images and use published models

or clinician experience to categorise patients to aid in diagnosis or management. Examples

of binary classification tasks in oncology include lesion present vs lesion absent or malignant

vs benign. In an imaging context, measures could be objective measurements based on a

characteristic of the tumour such as volume or uptake or could be subjective based on the

observers confidence rating.

A confusion matrix is a useful tool for determining the predictive quality of a diagnostic test

in performing a classification task using a chosen fixed threshold value. For example, to assess

how well a new diagnostic test can determine whether a person has a disease or not, predictions

from the diagnostic test are compared to the reference standard (this may be the ground truth or

an existing gold standard test). This gives four possible combinations for the outcome of the

diagnostic test as shown in the confusion matrix in Figure 2.16:

• True positive (TP) - the test correctly predicts the person has the disease.

• False negative (FN) - the test incorrectly predicts the person does not have the disease.
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• False positive (FP) - the test incorrectly predicts the person has the disease.

• True negative (TN) - the test correctly predicts the person does not have the disease.

Fig. 2.16 Binary confusion matrix showing the classification of the two groups according to the diagnostic
test versus the actual condition from the reference standard.

From this data, the sensitivity and specificity of the diagnostic test can be calculated. The

sensitivity or true positive rate (T PR) is the fraction of people who have the disease that were

correctly identified as positive by the diagnostic test:

T PR =
T P

T P+FN

A high sensitivity indicates the test predictions result in a small number of false negatives. The

specificity or true negative rate (T NR) is the fraction of people without the disease that were

correctly identified as negative by the diagnostic test:

T NR =
T N

T N +FP

A high specificity indicates the test predictions result in a small number of false positives. In

addition to the T PR and T NR, the false positive rate (FPR) and false negative rate (FNR) can

also be calculated as follows:

FPR = (1−T NR)

FNR = (1−T PR)
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where the FPR is the fraction of people without the disease that were incorrectly identified as

having the disease and the FNR is the fraction of people with the disease that were incorrectly

identified as being negative. Ideally a diagnostic test should have both a high sensitivity and high

specificity to ensure people with the disease are correctly identified whilst maintaining a low

false positive rate. The trade-off between sensitivity and specificity for a particular diagnostic

test is dependent on the severity of the disease and options for patient management, for example

the clinician will need to weigh the consequences of missing a patient with the disease who then

does not get treatment versus the consequences of a false positive leading to treating a patient

without the disease.

The sensitivity and specificity are useful metrics in the context of comparing the performance

of the diagnostic test to the reference standard, however they do not give an indication of the

likelihood that the diagnostic test can successfully identify whether people do or do not have

the disease, based on their test results [82]. Therefore, it is helpful to also provide the positive

and negative predictive values where the positive predictive values (PPV) is the probability that

people with a positive diagnostic test result actually do have the disease:

PPV =
T P

T P+FP

and the negative predictive values (NPV) is the probability that people with a negative diagnostic

test result actually do not have the disease:

NPV =
T N

T N +FN

Receiver operating characteristic (ROC) curve analysis is a statistical tool commonly used for

characterising diagnostic accuracy in medical imaging [83]. ROC curve analysis is used to

determine the ability of the diagnostic test to perform binary classification tasks compared to a

reference standard such as histology or long term follow up and enables the overall performance

of tests to be compared, independently of specific threshold values. The first stage in ROC

67



2.2 Image Quality Assessment in Medical Imaging

analysis requires determination of the sensitivity and specificity of the diagnostic test for a given

threshold. The TPR is then plotted as a function of the FPR as the threshold is varied as shown

in Figure 2.17.

Fig. 2.17 Example of a receiver operating characteristic curve.

ROC curve analysis can be used to compare thresholds for distinguishing between positive

and negative cases in the classification task or for comparing performance of different diagnostic

tests for the same classification task. The advantage of the ROC curve is that it demonstrates

the trade-off in TPR and FPR which can help in choosing the threshold or test most suitable

for the clinical scenario. The figure of merit for an ROC curve is the area under the ROC curve

(AUC). With reference to Figure 2.17, the orange dashed line would give an AUC of 0.5 which

would mean the diagnostic test is not able to distinguish between the two groups and is no better

than random guessing. The green line with an AUC of 1.0 demonstrates perfect discrimination

between the two groups i.e. 100 % TPR and 0 % FPR. A typical ROC curve for a diagnostic test
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would fall somewhere between these two (black line), the higher the AUC value the better the

test performs for a given task.

Since the AUC assesses the performance across all thresholds rather than just clinically

relevant thresholds and it doesn’t provide information on losses or gains for individual patients,

interpretation in a clinical context can be difficult. Alternatively, net benefit analysis can be

used for determining the clinical value of a test [84]. Net benefit analysis incorporates disease

prevalence and weighting for the consequences of a false positive or false negative result thus

providing a more representative measure of the clinical usefulness of including or excluding

a diagnostic test. The disease prevalence is relatively straight-forward to determine, however

the assessment of the clinical consequences, such as the benefit of early detection or the harm

of unnecessary treatment, can be subjective. To overcome this, either expert consensus can be

used to determine the weighting used, or the net benefit can be plotted for a range of appropriate

weights to derive a decision curve [85].

2.2.2.2 Estimation Tasks

Estimation tasks involve the measurement of parameters that describe certain characteristics of

the imaged object such its size, density or uptake. Quantitative measurements of metabolic uptake

in 18F-FDG PET images can provide additional information for staging, response assessment,

detection of recurrence or surveillance in oncology applications.

2.2.3 Quantification in PET

There are several metrics used to quantify PET uptake in clinical and research applications.

The standardised uptake value (SUV) is a simple semi-quantitative measure that normalises the

measured radioactivity concentration to the injected activity and distribution volume (DV). If

the radiopharamaceutical were distributed evenly throughout the volume, this would result in an

SUV of 1 everywhere. Use of SUV allows the comparison of uptake across different patients or

for different time points within the same patient. Body weight is most often used as a surrogate
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for DV in clinical practice [86] and will be used throughout this thesis, but lean body mass

(LBM) is also recommended as 18F-FDG doesn’t accumulate in fat tissues [87]. The SUV is

unitless assuming that 1.0 g of tissue is equivalent to 1.0 ml:

SUV =
Ct (kBq.ml−1)

At (MBq)/W (kg)

where Ct is the concentration of radioactivity in tissue at time t, At is the injected activity decay

corrected to time t and W is the patient weight measured on the day of scanning.

Reporting of the maximum standardised uptake value (SUVmax) is recommended for staging

and response assessment in oncological PET [37]. This takes the maximum SUV in a single

voxel within an ROI. The SUVmax has gained popularity in clinical use as it is easy to measure

and highly reproducible between observers within a single scan [88]. However, SUVmax is highly

susceptible to changes in the image noise [89] or selection of reconstruction parameters [90].

More recently the SUVpeak was defined and has been recommended for reporting solid

tumours [2]. This uses a sphere with a diameter of approximately 1.2 cm to produce a 1.0 cm3

volume spherical VOI centred around the hottest region in the tumour (not necessarily the hottest

voxel). One issue with using this definition for SUVpeak is that some tumours, particularly after

treatment, are often smaller than the 1.0 cm3 volume defined for the SUVpeak making it difficult

to assess treatment response [91]. Another potential downside for both SUVmax and SUVpeak

is that for larger lesions both are limited to a small part of the tumour and information about

the whole tumour volume is not utilised. For example, the SUVmax or SUVpeak alone cannot

differentiate between a large tumour with a small region of high uptake from a small tumour

with high uptake. It could however be argued that the region with the greatest 18F-FDG uptake,

and thus the highest metabolic activity, represents the most aggressive part of the tumour which

may be most indicative of prognosis or treatment response. A larger region could also include

non-tumour tissue, such as necrotic tumour or stomal tissue, and the average SUV for the whole

region rather than the maximal value will not reflect the actual tumour behaviour [92].
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Other potential measures include SUVmean, metabolic tumour volume (MTV) and total lesion

glycolysis (TLG) which is the product of the SUVmean and MTV. These measures all require

manual or automated segmentation of the tumour and can provide additional information about

the metabolism for the whole lesion which have been shown to have predictive or prognostic

value [93, 94]. Segmentation of PET images is challenging due to the relatively poor image

resolution, noise and the large variation in pathologies [95]. To overcome these challenges,

several automated segmentation algorithms of varying complexity have been developed as

summarised in AAPM Report 221 [96]. The most widely used techniques however are relatively

simple and involve the use of a fixed threshold whereby all voxels above either an absolute

value or a percentage of the maximum voxel value are included in the volume. Thresholds

of 41 % and 50 % are recommended based on phantom measurements [37], however optimal

thresholds are dependent on the image characteristics and will tend to overestimate volumes for

small lesions [95]. Figure 2.18 shows the difference in volumes for a lung lesion segmented

using thresholds of 41 % and 50 % of the maximum voxel value and an advanced gradient-based

algorithm (PETedge, Medical Image Merge (MIM) Encore v7.1.5, MIM Software Inc, Cleveland,

OH). The location of the SUVmax (green cross) and the SUVpeak volume (purple sphere) are also

shown.

Fig. 2.18 Axial, coronal and sagittal slices showing a lung lesion segmented using the gradient-based
algorithm (blue), 41 % threshold (red) and 50 % threshold (yellow). The location of the SUVmax is denoted
by the green cross and the SUVpeak volume by the purple sphere.

The quantitative values derived from these different volumes are also highly variable. As

seen in Table 2.2, the SUVmean, MTV and TLG values for the different volumes have differences

up to 15 %, 53 % and 30 % respectively.
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Segmentation Method

41 % Threshold 50 % Threshold Gradient Based

SUVmax 14.3 14.3 14.3

SUVpeak 12.2 12.2 12.2

SUVmean 9.2 10.0 8.4

MTV (cm3) 7.3 5.7 8.7

TLG (cm3) 66.4 56.4 73.2

Table 2.2 Quantitative values measured for the lung lesion in Figure 2.18 using different segmentation
techniques.

2.2.4 Phantoms for Image Quality Assessment

Physical and computational phantoms can be used for optimisation of the imaging process

where imaging real subjects is not practical or ethical due to the radiation exposure. In PET

applications, physical phantoms often consist of plastic containers of varying size and shape filled

with a radioactive solution. Standardised phantom designs are useful as reference objects and

provide a means to compare the performance of a particular PET scanner against other systems

or published values [97] and have been used successfully to harmonise imaging protocols for

multicentre clinical trials [98].

To overcome some of the limitations of physical phantoms, computational phantoms have

been designed that can be used with Monte Carlo techniques to model the physics of radiation

interactions within the body to produce simulated data for dosimetry and imaging applications.

This allows a range of variables to be investigated where the exact anatomy and activity con-

centration in the organs and tissues can be defined. Computational phantoms consist of virtual

3D anatomical models, the complexity of which have evolved significantly over the years [99,

100]. The latest generation of computational phantoms provide complex anatomical geometries

including detail about tissue densities providing more accurate simulations of radiation transport
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in the body. Compared to physical phantoms, computational phantoms provide greater versatility,

efficiency, precision and safety [100].

The 3D model in a computational phantom can either be mathematically defined or based on

segmented tomographic image data from real humans or objects (voxelised phantoms). Voxelised

phantoms, such as the International Commission on Radiological Protection (ICRP) reference

male and female voxelised phantoms [101], are anatomically accurate as they are based on

real CT, MRI and cross-sectional cryosection images, but only represent one specific patient’s

anatomy. It is difficult to model anatomical variations or motion in voxelised phantoms [102] and

the phantoms are limited to the resolution of the original dataset used for segmentation limiting

their accuracy.

Alternatively, mathematical models have been generated using computer-aided design (CAD)

to define the anatomical shapes from equations or geometric primitives. There are two math-

ematical methods of CAD for generating the surfaces of organs and tissues in computational

phantoms [100]. The first method uses constructive solid geometry (CSG) and combines simple

shapes (cylinders, spheres etc.) that can be described using quadratic equations. CSG based

phantoms such as the MIRD-5 phantom (Medical Internal Radiation Dose Committee Pamphlet

No.5) are easy to set up and, where the modelled geometry is relatively simple, can provide

good results for dosimetry applications. However, for the human body this results in simplistic

stylised phantoms that are not very accurate for simulating imaging data.

The latest generation of computerised phantoms use boundary representation (BREP) to

define the organ and tissue surfaces. BREP methods use topological and geometric information

providing the relationships between vertices, edges and faces as well as orientation. The surfaces

of the organs and tissues are defined as non-uniform rational B-spline (NURBS) with very smooth

faces or as a polygon mesh. This allows BREP-based structures to be much more flexible and

can describe much more complex anatomical structures. The 4D extended cardiac-torso (XCAT)

phantom uses BREP based CAD and the exterior of the object can be defined as NURBS [102].

It is classed as a hybrid computational phantom as it is based on segmented human data from

the Visible Human Project (https://www.nlm.nih.gov/research/visible/visible_human.html) but
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uses NURBS to define each object providing a more anatomically realistic phantom that can be

easily manipulated for a range of applications in biomedical imaging research [103]. The XCAT

phantom can therefore model anatomical variations and motion to generate a range of detailed

PET images. The range of anatomical variation however is limited as each new model is derived

from a template adult phantom based on the Visible Human data. The organs and tissues are also

modelled as being homogeneous which does not reflect the true tissue structure.

2.2.5 Monte Carlo Modelling

There are several software packages available for performing PET simulations, ranging from

more complex particle-tracking Monte Carlo based methods to simpler dedicated analytic

methods as reviewed by Buvat and Lazaro [104]. The choice of software depends on the level of

accuracy required versus the available computational resources and the time to create the number

of datasets required [105].

Monte Carlo modelling is widely used in nuclear medicine research and there are several

Monte Carlo simulation platforms available [106]. For geometry and tracking (Geant4) is a

well validated and maintained simulation toolkit developed for modelling of the passage of

particles through matter [107, 108, 109]. The Geant4 application for tomographic emission

(GATE) simulation platform [110, 111] is open-source software that incorporates the libraries

from Geant4 and is designed specifically to run simulations of SPECT and PET systems. GATE

has been widely used and previously validated for a number of clinical PET systems including

the GE Advance/LS PET scanners, Siemens ECAT and Philips Allegro [112, 113, 114]. Another

advantage of GATE is it allows the use of analytical phantoms defined in a macro as a series of

geometric shapes with assigned materials, or it can read in image data files, such as patient CTs,

to use as voxelised phantoms [115].

Use of well validated physical models along with detailed geometry descriptions of the PET

system produces accurate results, however simulations in GATE require a lot of computational

resources and time particularly where high activities and large distributions are simulated. One
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option to reduce the computing time is to make the simulation parallelisable allowing the

simulation to run on multiple processors at once and then merging the results. This can be run on

a desktop PC with multiple processors or distributed on a computer cluster or Grid infrastructure

where available [116, 117, 118].

The method proposed in this thesis to further reduce the resources and time required to gener-

ate many PET images is to perform Monte Carlo simulations of lesions using a validated model

of the clinical scanner which are then inserted into PET data from real patients. Use of accurate

physics-based approaches for the lesion insertion in projection space should result in images with

accurate contrast, blur and noise characteristics making the simulated lesions indistinguishable

from real lesions. This methodology will create PET datasets with the anatomical and physio-

logical variation from real patients containing simulated lesions where the characteristics can

be controlled. Once validated, these datasets will serve as an alternative to using real patients

in clinical evaluations of new PET technology in virtual imaging trials (VITs). This method

requires validation for a particular imaging system, but then can be used to rapidly simulate new

geometries or different tumour types for assessment.

2.3 Virtual Imaging Trials

Modelling and simulation of biological systems and investigation of treatment effects in a virtual

clinical trial (VCT) framework has become an established part of the drug development process

and is a key factor in improving efficacy [119]. To ensure PET is being used appropriately in

clinical trials and clinical practice, we require new and innovative ways to evaluate developments

in PET technology or methodology. One way to address this is through the use of virtual imaging

trials (VITs), also referred to as in silico imaging trials [120, 121]. For VITs, computational

phantoms are used to generate a virtual population of patients. Models of the imaging system

are used to simulate the imaging process and produce images of the population where the

ground truth is known. This provides much more flexibility than traditional clinical trials, as the

same population can be used to investigate multiple aspects of the imaging system, or the same
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imaging system can be used to simulate images of different populations. It is also much more cost

effective and doesn’t require real patients thus avoiding any associated radiation exposure. The

data from the VIT can then be assessed using observer studies or quantitatively using task-based

measures.

Results from VITs can be used in real clinical trials, either prospectively to inform the study

design through identifying sources of uncertainty, determining optimal imaging parameters or

for identifying aspects of the imaging that need to be standardised and, in some cases, if they

should be included in the exclusion criteria. Alternatively, the data could be used for informing

the data analysis prospectively or retrospectively by identifying appropriate task-based measures

that are sensitive enough to detect the effect under study or by determining whether to include

PET data that does not conform to the original study design.

VITs for breast screening applications are well established and there are two notable projects

that have developed and validated in silico tools for performing virtual clinical trials: the VICTRE

(Virtual Clinical Trial for Regulatory Evaluation) project [122, 123] and the OPTIMAM VCT

Toolbox [124]. Both project teams have developed a range of tools for performing in silico

imaging trials as part of a computational pipeline to compare digital mammography and breast

tomosynthesis. The key task in mammography is lesion detection and with the recent introduction

of digital breast tomosynthesis, detection rates have increased, however this comes at the cost

of doubling the radiation dose which is associated with an increased lifetime risk of cancer

induction [125]. VITs using these tools therefore are focused on optimization of radiation dose

and lesion detection. Both projects have similar principles whereby mathematical models of

breast tissue and breast masses are used to create voxelised phantoms. 2D and 3D mammography

images are then generated using ray-tracing to create projections of the breast phantom and using

Monte Carlo modelling to model the scatter-to-primary ratio. Noise and resolution characteristics

are then applied to match to a specific imaging system and x-ray parameters. Assessments of

lesion detection used human and model observers.

In CT and photon counting CT applications, Abadi et al have performed several VITs using

simulated acquisitions of the XCAT phantom to investigate the impact of image acquisition
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parameters on image quality [126, 127]. The authors used a validated scanner-specific model

that incorporates ray-tracing and Monte Carlo techniques to model the primary and scattered

signals. Assessment of the image quality consisted of technical image-based quality metrics and

the bias and variability in radiomics features for task-based assessment.

There are only a few published VITs in PET imaging and all have investigated the impact

of technical or biological factors on variability in quantitative measures or lesion detectability

rather than assessment of new technology. Harrison et al performed a virtual imaging trial to

assess the impact of variability in SUV on response assessment in longitudinal studies [25]. The

PET analytic simulation package (ASIM) [128, 129] was used to generate simulated images

of an anthropomorphic test object containing a spherical lesion approximating a breast lesion.

ASIM is an open-source package that generates projection data with defined noise and resolution

properties rather than fully modelling the physical processes in the imaged object and acquisition

hardware. This makes it much faster to produce a large number of sinograms using different

parameters and with multiple realisations than Monte Carlo packages such as GATE. However,

this comes at the expense of accuracy. Sinograms for a range of different tumour to background

ratios, tumour sizes and noise levels were generated and reconstructed using the open-source

software for tomographic image reconstruction (STIR) package [130]. The authors investigated

the impact of technical factors, patient preparation, acquisition and reconstruction parameters

and analysis methods on the bias and variability of SUVmax and SUVmean measurements. ROC

curve analysis was used to assess the impact of the variability on detecting a true change in SUV.

The anthropomorphic phantom used in the study was of a fixed size and didn’t contain realistic

heterogeneous uptake or realistic tumour shapes which limits the applicability of the results.

TOF-PET and advanced reconstructions with PSF modelling were also not investigated as part

of the study as these were not implemented in the open-source software at the time.

Kurland et al used a VIT framework to investigate the effect of uptake time on the required

sample size for multicentre PET trials measuring metabolic response using SUV [28]. Rather

than generation of simulated images, this study used simulated time activity curves using kinetic

parameters from a real population of patients with locally advanced breast cancer. The authors
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defined the sensitivity based on a 40 % decrease in SUV as a strong response to chemotherapy

and specificity as the probability of observing a change < 30 % given no true change in tumour

metabolism. The sensitivity was then used to determine the required sample size for different

distributions of uptake times compared to one with strict adherence to 60 minutes. Wangerin et

al also performed VITs using data from a real population of patients with breast cancer to

define the ground truth from kinetic modelling [26, 27]. Synthetic time activity curves were

generated to include biological variation and differences in uptake time. To replicate the noise

characteristics, multiple sinograms were generated in ASIM using the NEMA image quality

phantom. ROC curve analysis was performed using measurements of SUV and Ki. To investigate

lesion detectability a model observer was used. All these studies were based on a particular

tumour type meaning results may not be applicable to other tumour types. The PET images were

of the NEMA image quality phantom which again was of a fixed size and didn’t contain realistic

heterogeneous uptake or realistic tumour shapes.

The purpose of the work in this thesis is to generate PET images with the physiological

uptake from real patients and realistic lesions simulated using Monte Carlo modelling. Once

validated, these datasets will then be used in place of real clinical subjects to assess the impact

of TOF-PET and advanced reconstructions with PSF modelling on quantitative measures in a

virtual imaging trial.
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Chapter 3

Design and Validation of Monte Carlo

Simulations of the GE Discovery 710 and

Simulated Lesion Insertion Technique

3.1 Introduction

Virtual imaging trials have been presented as a way to investigate the impact of advances in

medical imaging technology in place of clinical trials which can be costly, and often unethical

where radiation is concerned [131]. This approach requires a method of generating synthetic

images that are representative of the patient population and provide meaningful figures of merit

for the intended task [132]. The main issues reported with use of synthetic images are that they

are either inaccurate or there is a large computational burden [133], therefore the methodology

for generating PET datasets in this work needs to address both these points.

Several methods for generating populations of PET data have been published. The use of

computational anthropomorphic phantoms with realistic anatomy such as the XCAT [102] or

Zubal [134] phantoms have been combined with Monte Carlo modelling to simulate whole PET

scans incorporating lesions [135, 136]. To generate more realistic variability in the PET images,

the computational phantoms can be adjusted to patient-specific anatomy and uptake [137]. Use of
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well validated Monte Carlo simulations in this way produces PET data based on accurate physics

of the acquisition system and the ground truth is known from the input simulation parameters.

However, as simulation time is proportional to the amount of activity being simulated, use of

Monte Carlo techniques to generate entire patients or phantoms is slow and computationally

demanding making it an impractical option to generate large datasets. Analytical simulation

tools such as SMART-PET [138] or PETSTEP [139] can be used for generating PET images of

entire patients or phantoms in a fraction of the time of Monte Carlo simulations. These tools

take an image representing the ‘true’ activity distribution, smooth it according to the PSF of the

PET system and forward project to generate sinograms which are then reconstructed into PET

images. To generate patient images, the user assigns the physiological uptake in the ‘true’ activity

images based on the segmented organs and tissues which results in unrealistic homogeneous

physiological uptake. The user must also define the noise level and the scatter and randoms

fractions which requires advance knowledge of the response of the imaging system to different

imaging conditions. The contribution of scatter, attenuation and randoms will vary depending

on the activity distribution, and the size and shape of the imaged objects or patients, therefore

generalisations are made which causes a loss of accuracy in the reconstructed images.

As discussed in Chapter 2 Section 2.2, image quality and quantitative accuracy are dependent

on the activity, size and shape of the lesions as well as the physiological uptake in surrounding

tissues and patient habitus. The technique proposed in this work combines the accuracy of

Monte Carlo modelling with the physiological uptake and habitus of real patients by inserting

simulated lesions into real patient scans in the projection-domain. Compared to insertion in

the image-domain, projection-domain insertion provides superior modelling of the acquisition

physics. This leads to more accurate knowledge of the impact of acquisition parameters, patient

factors and scanner properties on scatter, randoms and attenuation and in turn how these relate

to the final image quality and quantification of uptake. Simulating just the lesions using Monte

Carlo modelling means the ground truth of the simulated lesions is known while being less

computationally demanding than simulating a whole patient.
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One method of lesion insertion is to use forward-projections of real reconstructed patient PET

images to generate sinograms for the insertion of simulated lesions [140]. The sinograms from

the simulated lesions are then added to those of the patient and reconstructed. As the patient PET

images are already reconstructed using non-linear iterative techniques, the forward-projections

are not true representations of the original raw data from the scanner and cannot accurately portray

the influence of different acquisition and reconstruction parameters on the lesion characteristics.

The proposed technique uses the original sinogram data from the real patient acquisition exported

directly from the PET scanner. After insertion, the generated sinograms will be reconstructed

and corrections applied in the same way as the original sinogram data using the manufacturer

software. This will require an accurate and reliable method for insertion of the lesions.

This chapter describes the design and validation of the model of the clinical PET system

used to perform Monte Carlo simulations throughout this thesis [D710simu]. The methodology

used to generate and insert simulated lesions into real patient PET data in the projection-domain

is also described. This technique can be used to generate populations with different lesion

characteristics to evaluate a wide range of realistic imaging situations. In this thesis, the data

are used to investigate the impact of advanced reconstruction methods on clinical measures in

virtual imaging trials.

3.2 Methods

The first stage of the work was to set up the pipeline for performing Monte Carlo simulations of

the GE Discovery 710 PET scanner (General Electric Medical Systems, GEMS, Milwaukee, WI)

and process the output data to generate reconstructed PET images that are accurate and visually

realistic. The accuracy of the simulated data was validated by comparing the output of simulated

phantom acquisitions to real experimental data acquired on the clinical GE Discovery 710 PET

scanner at the King’s College London & Guy’s and St Thomas’ PET Centre [D710real]. The

methodology for insertion of the simulated objects into real PET data in projection space was

then developed and validated using phantom and clinical data.
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3.2.1 Monte Carlo PET Simulations

Monte Carlo simulations were set up using the Geant4 application for tomographic emission

(GATE) toolkit (version 8.2) incorporating the Geant4 libraries (version 10.5.p01) [110, 111,

141]. Simulations were performed on a Linux-based (Ubuntu 18.04) PC with an Intel® CoreTM

i9-9900K processor with 8 cores (16 threads) at 3.6 GHz base frequency and 64 GB RAM. The

basic steps in running a simulation in GATE are shown in Figure 3.1. Macro files are used to

define the physical properties of the objects to be imaged and the imaging system. The output

consists of detailed information for each detected event, including the location and timing, which

requires further processing to produce reconstructed PET images.

Fig. 3.1 Steps in performing a Monte Carlo simulation in GATE: geometry, density and activity of imaged
objects are provided as input to the model which outputs energy, position and timing information for each
detected event.

3.2.1.1 Modelling the GE Discovery 710 PET scanner

A series of macro files were written to define the GE Discovery 710 PET scanner geometry,

detector electronics and the physics processes for the Monte Carlo simulations. Figure 3.2

demonstrates the steps used to build the PET scanner geometry in GATE. The first step creates

the dimensions of the world within which the whole scanner geometry is contained. Next, the

components of the scanner are defined as volumes at different levels, each being a daughter of

the previous level: world → cylindricalPET → rsector → module → crystal. The dimensions
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(x, y, z) of each volume and their locations relative to the mother volume are specified in the

macro.

Fig. 3.2 GATE visualisation showing the addition of modules (green), blocks (red) and the crystals
(yellow) to construct the final D710simu model.

Fig. 3.3 GATE visualisation showing the construction of the individual modules and their arrangement in
the D710simu.

Appendix A shows a shortened version of the macro written to produce the D710simu

geometry. The cylindricalPET constructor was used and the detector configuration was based

on published information for the GE Discovery 690 [13] 1. In total, the scanner contained 13 824

crystals arranged in 32 modules around the scanner circumference giving an inner diameter

of 810 mm as illustrated in Figure 3.3. Each detector module (defined as an rsector in GATE)
1The GE Discovery 690 and 710 models have the same PET hardware configuration
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consisted of 2 × 4 blocks (defined as modules in GATE) which in turn contained 9 × 6 crystals.

Individual crystal dimensions were 4.2 mm × 6.3 mm and 25 mm depth. Additionally, the scanner

casing, end-shielding and detector backing were defined in the full macro.

The chemical composition of the materials used for the different components of the scanner

were defined in a materials database describing the elements and their mass fractions. The

composition of the lutetium-based scintillator material in the D710real was unavailable, therefore

the material used for the crystals in the D710simu was based on published data for the GE

Discovery RX [142]. The scintillator material was defined as lutetium-yttrium-orthosilicate

(LYSO) with a relative yttrium content of 6 % resulting in a density of 7.23 g cm−3.

To model the detector response and signal processing of the PET system, GATE uses a

digitizer module whereby the energy deposited in the crystal is processed via a series of filters to

generate digital pulses. The key parameters for the D710simu digitizer module were based on

published performance data [13] and known scanner settings as summarised in Table 3.1.

Digitizer Parameter Value

Mean Energy Resolution 12.4 %

at 511 kilo-electron volt (keV)

Energy Window Settings:

Lower Threshold 425 keV

Upper Threshold 650 keV

Coincidence Time Window Width 5.4 nanoseconds

Mean Coincidence Timing Resolution 544 picoseconds

Table 3.1 Parameters used in the digitizer modules for the D710simu model in GATE.

The crystal quantum efficiency, which sets the efficiency of the system to convert energy

deposited in the crystal into an electrical signal, was adjusted until the D710simu produced

matching coincidence and singles count rates for an identical acquisition of a uniform cylinder

on the D710real. A final value of 0.90 was chosen for the efficiency. The difference in measured
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prompts, randoms, scatter and singles for the cylinder scan were −3.7 %, −1.1 %, 6.7 % and

1.4 % respectively. The event data recorded by GATE provides exact crystal locations for each

detected photon which would result in a spatial resolution exceeding that of the real scanner.

Therefore, to obtain a spatial resolution analogous to that of the D710real, Gaussian blurring

was added to the radial and axial crystal locations before binning into sinograms. The degree of

blurring was adjusted iteratively to match the spatial resolution of the D710real measured using

point sources resulting in full-width at half-maximum (FWHM) values of 0.78 mm and 0.82 mm.

3.2.1.2 Defining the Phantom Input

A combination of analytical and voxelised phantoms were used as input for the simulations

in GATE. Analytical phantoms were defined in macros in the same way as the model of the

imaging system whereby the geometry and materials for the components of the phantom were

specified as volumes positioned within the world relative to the scanner volume. For voxelised

phantoms, CT images of the phantoms or patients were imported into GATE and the material

properties or radioactivity assigned according to the HU on a voxel-by-voxel basis using lookup

tables. For example, a voxel value of -1000 HU would be assigned as air with no radioactivity

present and a value of 0 HU assigned water with a certain radioactivity in Bq. The materials

database in GATE further defines the properties of the designated materials in terms of their

density, atomic number and mass to accurately simulate the physics of the particle interactions

within the different materials. Half-life and type of decay for the radioisotope were specified. To

account for the fact that 18F is not a pure positron emitter, the desired activity was multiplied by

the positron fraction of 0.9670.

3.2.1.3 Processing the Output PET Data from the Simulation

Positional and timing information for the detected singles and coincidence events were output in

ROOT files (ROOT Data Analysis Framework, CERN, version 6.20). Data from the ROOT files

were extracted to text files for further processing in MATLAB (The MathWorks, Inc, version
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2020b). Custom MATLAB scripts were written to pre-process the simulated PET data prior to

reconstruction as outlined in Figure 3.4.

Fig. 3.4 Outline of the pre-processing steps for the simulated PET data before reconstruction.

First the GATE crystal indexing was converted to the GE axial and circumferential indexing.

Coincidence events for each line of response (LOR) were then sorted into projections for all

direct- and cross-planes according to the D710real geometry and binned into 3D sinograms. For

3D time-of-flight (TOF) volumes, the difference in arrival times for coincidence events was also

used to sort the LOR data into separate time bins.

To obtain artefact-free results from the D710simu, it is important to correct for non-uniform

detection efficiencies as would be done for a real PET scanner [143]. On commercial scanners

non-uniformities in detector response are corrected for using component-based normalisation [59]

consisting of separate components relating to geometrical effects and individual crystal effi-

ciencies (see Section 2.1.5). The former is fixed for a specific scanner geometry; therefore it

was assumed the geometry for the D710simu was equivalent to the D710real and the geometric

component of the normalisation from the D710real was applied to the simulated data during

reconstruction as normal. Unlike the D710real however, crystals in the D710simu model had
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uniform response. To prevent over-or under-correction of the simulated data when inserted

into real scans, the simulated singles were divided by the individual crystal efficiencies for the

D710real and the simulated prompts sinograms were divided by the response for each LOR

derived from the crystal efficiencies.

For phantom acquisitions, the intrinsic radiation in the LYSO crystals was accounted for by

adding the individual crystal singles and prompts sinograms from the D710simu acquisitions to

those from scans of equivalent duration performed on the D710real without any activity in the

field of view (FOV). The contribution of intrinsic radiation to the coincidences count rate was

measured on the D710real as approximately 1000 cps based on a 1 hour scan with no activity in

the field of view.

To generate equivalent output to the D710real, all reconstructions and corrections (randoms,

normalisation, geometry, attenuation and scatter) were performed in MATLAB using the GE

proprietary PET Toolbox (Duetto, version 2.07) with parameters matching those used on the

D710real. The randoms correction method on the D710real is derived from the singles [63]

rather than using a delayed coincidence window technique. To retain all the required DICOM

header information and for compatibility with the toolbox, the prompts sinograms and individual

crystal singles data from the simulation were inserted into existing GE raw data files of matching

duration exported from the D710real.

3.2.1.4 Simulating Lesions

To generate PET images consisting of real patient scans with inserted simulated lesions, the

sinograms from simulated lesions performed on the D710simu were added to the sinograms from

real PET scans acquired on the D710real.

The voxelised activity and density phantoms for defining the lesions in GATE were generated

in MIM Encore (MIM Software Inc, version 7.1.5) from the CT component of real PET-CT

acquisitions on the D710real. The CT was resampled to 1.0 mm3 isotropic voxels and 3D volumes

of interest (VOI) used to define the size and shape of the lesions for insertion. For the density
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phantom, the voxels within the VOIs were set to the desired HU for the lesion. Conversion of

the CT HU to physical densities for tissues used a lookup table based on the data published by

Schneider et al [144]. To generate the activity phantom, all voxels outside the VOIs were set to

zero and those inside to 1. A text file was then used to specify the activity (in Bq) contained in

each voxel of the binary image equal to one.

To account for the fact that there was already tissue with uptake in the real data prior to

insertion, the activity set in GATE was scaled by subtracting the mean activity concentration

measured in the real PET images at the lesion location. The density phantom was also used for

CT-based attenuation correction of the PET data during reconstruction. The total coincidence

events in the region where the lesion is inserted in the healthy patient is made up of events

from the patient lung that are attenuated by the lung tissue (HUlung) and events from the lesions

attenuated by the lesion tissue (HUlesion). The HU in the CT used to derive the attenuation

correction factors (ACFs) for attenuation correction (HUctac) were adjusted to compensate for

the different proportions using a method analogous to that proposed by Stute et al [145]:

HUctac =

(
Clesion

Clesion +Clung

)
∗HUlesion +

(
Clung

Clesion +Clung

)
∗HUlung

where the mean activity concentrations in the lung (Clung) and lesion (Clesion) were used as

surrogates for the number of coincidence events. It was assumed the region of the lung where

the lesion was inserted had no structure and the mean HU value for the lung was used.

3.2.2 Validation of the Scanner Model using Phantoms

To validate the GATE D710simu model, simulations of the performance tests for spatial resolution

and system sensitivity were performed according to the National Electrical Manufacturers

Association (NEMA) NU 2-2012 Standard [146]. The simulated point and line sources consisted

of analytical phantoms defined in GATE using simple geometric shapes in a macro. Simulated

phantoms were filled with activities matched to those used in the real phantoms after accounting

for decay and residual syringe activities. The simulations were repeated three times and mean
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results for the D710simu were compared against identical performance tests conducted as part of

acceptance testing for the D710real at the King’s College London & Guy’s and St Thomas’ PET

Centre.

3.2.2.1 Spatial Resolution

Spatial resolution is often used to assess PET scanner performance and is a measure of the ability

of a system to resolve small objects. The resolution is dependent on the radionuclide and the

geometry of the scanner (see Section 2.1.1). Usually this is assessed using images reconstructed

using filtered backprojection (FBP) as it is a linear algorithm and easily comparable between

different PET systems [147]. In addition, it is useful to measure the spatial resolution for

reconstruction algorithms used clinically such as ordered subsets-expectation maximisation

(OS-EM).

Spatial resolution was measured for three 1 mm diameter 18F point sources created at the ends

of glass capillary tubes and suspended in air. Each source contained approximately 200 MBq ml−1

and was positioned at (x, y) locations of (0, -10), (0, -100) and (100, 0) mm respectively. 60 s

acquisitions were performed with the three sources located at the centre of the axial FOV and at

a quarter of the FOV (z = 0.0 mm and 39.3 mm).

PET data were reconstructed to give (x, y) pixel sizes of 0.8 mm × 0.8 mm and slice thickness

of 3.3 mm using 3D Fourier rebinning followed by 2D FBP (FORE-FBP) and 3D OS-EM

(VPHD). The VPHD reconstruction used 2 iterations, 24 subsets and a Gaussian post filter

of 6.4 mm FWHM to match the parameters used clinically. Profiles were plotted in all three

orthogonal directions on the reconstructed images of the point sources and the resolution

measured as the full-width at half-maximum (FWHM) and the full width at tenth maximum

(FWTM) of the peaks.
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3.2.2.2 System Sensitivity

The sensitivity of a PET system is defined as the number of counts measured per unit time per

unit radioactivity (cps kBq−1). Positron emitters require a significant amount of material around

the source to annihilate with an electron and produce the 511 keV coincident photons. However

any material surrounding the source also attenuates the photons so a direct measurement of

absolute sensitivity in air independent of attenuation and scatter is not possible [148].

To overcome this, the test described by the NEMA standard uses repeated measurements

of an 18F line source surrounded by increasing thicknesses of attenuating material, in this case

aluminium tubes. The thickness of the wall for the first aluminium tube (1.25 mm) is chosen

to match the maximum range of 18F positrons in aluminium (Emax = 0.634 MeV) [32]. It is

therefore assumed that all positrons are annihilated in the first tube and any decrease in count rate

observed with the additional tubes is purely due to attenuation of the photons [148]. To derive

the attenuation-free sensitivity, the data is extrapolated to give the sensitivity with no attenuating

material [149]. The activity in the line source should be sufficiently low to produce a randoms

coincidence rate of less than 5 % of the total event rate [146], which based on the manufacturer’s

recommendations, is < 10 MBq for the D710real [150].

System sensitivity was measured using a 70 cm line source filled with an 18F solution giving

4.83 MBq at the start of the first acquisition. The line source was inserted into the first aluminium

tube and suspended in air along the centre of the transaxial FOV. Five sequential 60 s acquisitions

of the line source were performed each with an additional aluminium tube to attenuate the

annihilation photons. The acquisitions were repeated with the line source suspended at 10 cm

radial offset. The PET data was processed in MATLAB using single-slice rebinning (SSRB)

following the procedure described in the NEMA NU 2-2012 Standard [146] and extrapolated to

zero attenuation to give the system sensitivity in air.
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3.2.2.3 Validation of Corrections

Acquisitions of a uniform cylinder are sensitive to errors in scanner calibration, normalisation,

scatter and attenuation corrections [151]. Therefore to check the accuracy of the corrections

applied during reconstruction of the D710simu data, matching acquisitions of a uniform cylinder

containing 18F were acquired on the D710real and D710simu according to the Quantitative Imaging

Biomarkers Alliance (QIBA) FDG PET-CT Profile [152]. The analytical phantom used as input

for the simulations in GATE consisted of a cylinder of water with dimensions of 9.8 cm radius

and 17.6 cm length surrounded by a 4 mm thick plastic shell. CT-based attenuation correction of

the D710simu PET data was performed using a synthetic CT of the cylinder created in MATLAB.

The physical densities of air, water and plastic (0.00 g cm−3, 1.00 g cm−3 and 1.18 g cm−3) were

transformed to Hounsfield units (HUs) for 140 kV p and the voxel values in the CT were set to

these values. A target activity concentration of 5 kBq ml−1 was chosen for the cylinder based on

an injected activity of 350 MBq assuming uniform distribution in a 70 kg patient. This is also

within the range of 3.7 kBq ml−1 to 7.4 kBq ml−1 recommended by QIBA [152].

The cylinder was filled with an 18F solution giving 4.78 kBq ml−1 at the start of the acquisition.

The phantom was suspended in air (Figure 3.5) and scanned for a total of 300 s. To speed up

the simulation time, the acquisition was performed as 5 × 60 s simulations and the data merged

before binning into sinograms to give the final 300 s dataset. PET data were reconstructed using

3D OS-EM (VPHD) with 2 iterations, 24 subsets, a Gaussian post filter of 6.4 mm FWHM and

voxel size of 2.7 mm × 2.7 mm × 3.3 mm.

91



3.2 Methods

Fig. 3.5 Visualisation of the D710simu model in GATE showing the uniform cylinder suspended in the
centre of the gantry.

The reconstructed PET images were analysed in MIM Encore (version 7.1.5, MIM Software

Inc.) using the procedure described by the QIBA FDG profile [152]. A circular region of interest

(ROI) of approximately 200 cm2 (16 cm diameter) was placed on the central axial slice and

copied to all other slices. To evaluate any quantification bias in the simulations, the mean activity

concentration measured for the reconstructed images was compared to the activity concentration

set in the simulation. The noise was measured as the standard deviation (SD) within each

ROI and the slice-by-slice variation as the SD in the mean activity concentration measured

for the individual slices. Values for the simulated cylinder were compared to the noise and

variation measured for a uniform cylinder acquired under the same conditions on the D710real

with matching activity.

3.2.3 Phantom Validation of the Lesion Insertion Technique

The physical NEMA IEC body phantom (Data Spectrum Corporation) was used for validation of

the lesion insertion technique. The NEMA phantom consists of a fillable ’torso’ background and

6 fillable spheres with inner diameters of 10, 13, 17, 22, 28 and 37 mm, as shown in Figure 3.6.
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Simulated spheres of water without walls were inserted into real acquisitions of the phantom

background and compared to acquisitions of the physical phantom with the spheres and the

background together.

Fig. 3.6 Photo of the physical NEMA IEC body phantom (left) alongside a schematic diagram (right)
showing inner diameters of the fillable spheres.

Separate acquisitions (n = 3) of the physical NEMA phantom on the D710real with both

background and spheres filled with 18F were used as the reference data [NEMAreal]. For each

acquisition, the phantom was placed on the patient couch and centralised in the gantry. The

mean 18F activity concentrations in the background and spheres at the time of scanning were

5.0 ± 0.6 kBq ml−1 and 26.5 ± 6.5 kBq ml−1. For all acquisitions a CT was acquired (140 kV p,

variable mA s, 0.5 s rotation time and 1.375 pitch) followed by a 3 min PET acquisition.

A single 10 minute list mode acquisition of the NEMA phantom background filled with 18F

without spheres was performed on the D710real. The activity concentration in the phantom at the

scan start was 7.8 kBq ml−1. The list mode data was binned into shorter scan durations of 95 s,

107 s and 123 s to achieve equivalent count statistics as the three real phantom acquisitions with

different background activity concentrations. The sinogram data was used for the insertion of the

spheres simulated using the same scan durations [NEMAsimu].
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Using the method described in Section 3.2.1, the CT of the NEMAreal was resampled to

1.0 mm3 isotropic voxels and the spheres defined using spherical VOIs with diameters matching

those of the real phantom, Figure 3.7a). For the density phantom, voxel values within the VOIs

were set to a fixed HU equivalent to the density of water (1.0 g cm−3), Figure 3.7b). Since the

background in the real phantom was also water, the HU was not adjusted in the CT used for

attenuation correction.

Fig. 3.7 Voxelised phantoms for defining the density and activity are generated using a real CT scan of the
NEMA phantom. a) Spherical VOIs are drawn on the resampled CT. b) HU within the VOIs are set to
match the density of water. c) Voxels outside the VOIs are set to zero.

For the activity phantom, Figure 3.7c), the background voxels were set to zero for no activity

and those within the VOIs set to 1. The activity for the simulated spheres was chosen to match

the spheres:background ratio of 5.3 ± 1.2 times the background in the NEMAreal. To account

for the fact that there was already activity in the phantom, the activity within the spheres was

reduced by the mean activity measured in the phantom background.
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Fig. 3.8 Steps involved in the insertion of the simulated spheres into the real NEMA background in the
projection-domain.

Figure 3.8 illustrates the steps involved in insertion of the simulated spheres into the real

phantom background using the technique described in Section 3.2.1. PET data were reconstructed

using 3D OS-EM (VPHD) and 3D OS-EM with TOF (VPFX) with 2 iterations, 24 subsets and a

Gaussian post filter of 6.4 mm FWHM.

The activity concentrations for the spheres and background in both the NEMAreal and

NEMAsimu were measured using MIM Encore. The activity concentration in the spheres was

measured as the maximum voxel value and the mean for a 3D VOI with a threshold of 50 % of

the maximum voxel value. Recovery coefficients (RCs) for the spheres were calculated as the

ratio of the measured to true activity concentration. Results for the three individual acquisitions

of the NEMAreal and NEMAsimu were averaged and plotted to generate the recovery coefficient

(RC) curves for comparison.

3.2.4 Insertion into Clinical Data

Anonymized PET-CT datasets from ten clinical patients with a measurable pulmonary nodule

were used for insertion of the simulated lesions. The PET-CT scans were acquired using 3 min
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per bed position with an 11 slice (23 %) overlap and reconstructed using VPFX (2 iterations, 24

subsets and 6.4 mm FWHM Gaussian post filter). The CT scans were acquired using 140 kV p,

variable mA s, 0.5 s rotation time, 1.375 pitch and reconstructed using the standard kernel and

adaptive statistical iterative reconstruction (ASiR) blending of 40 %. The mean and standard devi-

ation (SD) for injected activity, uptake time and body mass index (BMI) were 338.3 ± 35.0 MBq,

82.2 ± 9.3 min and 24.9 ± 4.6 kg m−2 respectively.

The reconstructed PET and CT images for the ten patients were resampled to 1 mm × 1 mm × 1 mm

voxels in MIM Encore. The real lesions were segmented on the resampled PET images using a

3D VOI with a threshold of 50 % of the maximum voxel value as this most closely matched the

anatomical extent of the lesions on the resampled CT and required the least manual adjustment.

Using the co-registered CT images, the VOIs were manually adjusted to exclude any non-tumour

tissues such as the heart or rib bone. For each PET scan the VOI was mirrored to the opposite

lung and, if necessary, shifted in the x-direction to ensure the lateral location was matched in

both lungs, as shown in Figure 3.9.
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Fig. 3.9 Example of a real lesion outlined on the PET image and copied to the contra-lateral lung (top) to
generate the voxelised density (bottom left) and activity (bottom right) phantoms used for the simulation
input.

To generate the density input image, the mirrored VOI was copied to the CT images and

the voxels within the VOI were set to 16 HU, this value was chosen based on the median

unenhanced HU measured by Swenson et al for malignant and benign solitary pulmonary

nodules (SPNs) [153]. The target activity set in the simulated lesion was derived from the

maximum activity concentration measured in the real lesion in the contralateral lung. To estimate

the true activity in the real lesion, partial volume correction (PVC) was applied using the real

lesion diameter and the recovery coefficient (RC) measured for the clinical reconstruction, 3D

OS-EM with TOF (VPFX), on the D710real using the technique described by Srinivas et al [154].

It was assumed the uptake and density in the area of the lung where the lesion was inserted was

uniform. If the lesion was located in the region where two bed positions overlapped in the real

scan, separate activity and density phantoms were created for each bed position with the lesion

located accordingly.
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The simulations were run for 3 min per bed position to match the real PET scans. Once

inserted, the PET scans were reconstructed using the same parameters as the original clinical

PET data. Two bed positions, covering the thorax, were reconstructed for all patients using an 11

slice bed overlap.

3.2.4.1 Quantitative Assessment

To assess the ability of the technique to faithfully reproduce the real lesions in the contra-lateral

lung, standardised uptake values (SUVs) were measured for the real and simulated lesions in the

reconstructed PET images. 3D VOIs using 50 % threshold of the maximum voxel value were

used to outline the lesions. If necessary, the VOIs were manually edited to exclude non-lesion

uptake and the SUVmax, SUVmean and SUVpeak values measured. The 1 cm3 sphere to define the

SUVpeak was allowed to extend beyond the VOI and was not restricted to the maximum voxel

value.

3.2.4.2 Clinical Observer Study

An experienced PET Physician then performed a blinded two-alternative forced choice (2AFC)

test to determine whether the simulated lesions were indistinguishable from the real lesions.

The 10 datasets were displayed and analysed using MIM Encore. The clinician was asked to

review the PET images as they would for a clinical PET study except without using the CT as

the synthetic lesions inserted in the contralateral lung of the CT were clearly artificial and would

bias the result. The PET windowing used settings of SUV 0 to 10 with an inverse linear colour

scale. They were asked to choose which lung they thought contained the simulated lesion and

the confidence in their choice using the following scale:

• definitely left

• probably left

• unsure

• probably right
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• definitely right

Additionally, they were asked to record any observations such as artefacts or clinical appearances

that informed their decision.

A weighted score was assigned to the answers as shown in Table 3.2, where a negative score

was assigned if the clinician correctly identified the simulated lesion. The score was weighted

according to their confidence in identifying the lesions meaning a score of −10 would indicate

the clinician was able to confidently identify all the simulated lesions.

Unsure Probably Definitely

Simulated lesion selected 0.0 −0.5 −1.0

Real lesion selected 0.0 0.5 1.0

Table 3.2 Weighted scoring assigned to the 2AFC clinician review. Negative values indicate the clinician
identified the simulated lesion.

3.3 Results

3.3.1 Validation of the Scanner Model using Phantoms

3.3.1.1 Spatial Resolution

Tables 3.3 and 3.4 show the axial and transverse spatial resolution measured for the D710simu

alongside results from the D710real using FORE-FBP and VPFX reconstructions. As shown,

the FWHM and FWTM results for the D710simu were similar to those for the the D710real with

maximum absolute differences of 1.03 mm for the FORE-FBP reconstruction and 1.00 mm for

the VPFX reconstruction.
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Spatial Resolution FWHM FWTM

(mm) D710real D710simu D710real D710simu

At 1 cm radius:

Transverse 4.69 ± 0.06 4.71 ± 0.01 9.18 ± 0.09 9.80 ± 0.02

Axial 5.54 ± 0.06 5.11 ± 0.02 11.23 ± 0.12 12.26 ± 0.01

At 10 cm radius:

Transverse radial 5.46 ± 0.06 5.57 ± 0.02 10.33 ± 0.05 10.99 ± 0.08

Transverse tangential 4.91 ± 0.04 4.93 ± 0.02 9.42 ± 0.02 10.41 ± 0.03

Axial 5.99 ± 0.05 6.00 ± 0.02 12.11 ± 0.07 12.97 ± 0.01

Table 3.3 Spatial resolution measured as full-width at half-maximum (FWHM) and full width at tenth
maximum (FWTM) for the D710real and D710simu scanners using the Fourier rebinning followed by 2D
FBP (FORE-FBP) reconstruction.

Spatial Resolution FWHM FWTM

(mm) D710real D710simu D710real D710simu

At 1 cm radius:

Transverse 7.44 ± 0.01 7.58 ± 0.01 13.85 ± 0.01 14.39 ± 0.02

Axial 6.48 ± 0.03 6.39 ± 0.05 13.22 ± 0.02 13.55 ± 0.08

At 10 cm radius:

Transverse radial 7.91 ± 0.01 8.06 ± 0.01 14.67 ± 0.03 15.10 ± 0.03

Transverse tangential 7.52 ± 0.02 7.71 ± 0.02 14.01 ± 0.02 14.58 ± 0.01

Axial 6.03 ± 0.01 6.37 ± 0.01 12.57 ± 0.03 13.57 ± 0.02

Table 3.4 Spatial resolution measured as full-width at half-maximum (FWHM) and full width at tenth
maximum (FWTM) for the D710real and D710simu scanners using the 3D OS-EM with TOF (VPFX)
reconstruction.
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3.3.1.2 System Sensitivity

The mean system sensitivity measured with increasing number of tubes surrounding the line

source is plotted in Figure 3.10. Extrapolation of the data to 0 tubes gave mean ± SD system

sensitivities for the D710simu and D710real of 6.83 ± 0.01cps kBq−1 and 6.83 ± 0.21 cps kBq−1

respectively.
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Fig. 3.10 Plot of mean system sensitivity for increasing number of tubes for the D710simu and D710real
acquisitions.

Figure 3.11 shows plots of sensitivity for each axial slice measured using the smallest

diameter tube at 0 cm radial offset. The mean difference between the slice sensitivity for the

D710simu and the D710real was 1.6 ± 2.3 %.
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Fig. 3.11 Axial sensitivity profiles for the D710simu and D710real acquisitions.

3.3.1.3 Validation of Corrections

Axial, sagittal and coronal images of the real and simulated uniform cylinders reconstructed

using VPHD are shown in Figure 3.12. No visual artefacts were observed in the reconstructed

images of the simulated phantom.
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Fig. 3.12 Reconstructed PET images of the simulated (top row) and real (bottom row) uniform phantom
acquisitions.

The mean activity concentration measured for each axial slice, after excluding results for

the 2 noisy slices at each end of the phantom, is plotted in Figure 3.13. The error bars show ± 1

standard deviation (SD) for the voxel values within the ROI on the individual axial slice. The

average difference between the slice mean for the real and simulated cylinders was 0.23 ± 1.52 %

(range −3.9 % to 2.5 %).
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Fig. 3.13 Plot of the mean activity concentration measured for each axial slice of the reconstructed PET
images for the D710simu and D710real acquisitions. The error bars represent the noise within each slice ± 1
standard deviation (SD).

The mean activity concentration measured for the simulated cylinder was 4.77 ± 0.07 kBq ml−1,

whilst the mean activity concentration for the real cylinder was 4.76 ± 0.02 kBq ml−1. Using the

true activity concentration set in the simulation for the phantom, this gave a bias of −0.24 %.

This compares to a bias of −0.46 % in the mean activity concentration measurements for the real

cylinder using the measurement of activity injected into the physical phantom.

3.3.2 Phantom Validation of the Lesion Insertion Technique

Figure 3.14 shows reconstructed PET images of the NEMAreal (top) and NEMAsimu (bottom).

In the images for the NEMAreal the plastic filling tubes can be seen below the spheres in the

coronal and sagittal slices. These are absent in the NEMAsimu images as they were not included

as part of the simulation. No other visual differences or artefacts were seen.
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Fig. 3.14 Axial, sagittal and coronal views of the reconstructed PET images. The top row shows the
NEMAreal and the bottom row the NEMAsimu.

Figures 3.15 and 3.16 show the recovery coefficient (RC) curves for the maximum and mean

activity concentration measured in the different sphere sizes for the NEMAreal and NEMAsimu

when reconstructed using 3D OS-EM (VPHD) and 3D OS-EM with TOF (VPFX). The average

± standard deviation (SD) differences in RCs for the NEMAsimu using the VPHD reconstruction

were 2.8 ± 5.9 % (range −6.5 % to 9.9 %) for the max and 2.6 ± 4.3 % (range −1.7 % to 9.9 %) for

the mean. For the VPFX reconstruction the average differences in RCs for the NEMAsimu were

−3.2 ± 4.6 % (range −8.1 % to 2.9 %) for the max and −3.6 ± 5.8 % (range −12.6 % to 2.4 %) for

the mean.
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Fig. 3.15 Plots of the average recovery coefficients for the different sphere diameters measured using the
3D OS-EM (VPHD) reconstruction. Results are shown for the max and mean activity concentration in the
NEMAreal and the NEMAsimu. The error bars represent ± 2×SD of the mean for the three acquisitions.
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Fig. 3.16 Plots of the average recovery coefficients for the different sphere diameters measured using
the 3D OS-EM with TOF (VPFX) reconstruction. Results are shown for the max and mean activity
concentration in the NEMAreal and the NEMAsimu. The error bars represent ± 2×SD of the mean for the
three acquisitions.
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3.3.3 Insertion into Clinical Data

3.3.3.1 Quantitative Assessment

The mean volume of the voxelised phantoms used to simulate the lesions was 3.2 ml (range 0.7 ml

to 6.6 ml) with mean activity concentration of 13.7 kBq ml−1 (4.2 kBq ml−1 to 30.4 kBq ml−1).

The mean simulation time for the lesions was 1.3 ± 0.2 min kBq−1. Figure 3.17 shows one of the

PET scans with a real pulmonary lesion in the right lung and a simulated lesion in the left lung.

Fig. 3.17 Axial and coronal slices of a real patient scan showing the real lesion (right lung) and inserted
simulated lesion (left lung).

The absolute differences in uptake measured for the real and simulated lesions for the

10 patients are plotted in Figure 3.18. Results for the SUVmax, SUVmean and SUVpeak are

shown with error bars representing the estimated standard deviation derived from the repeated

acquisitions/simulations of the NEMA phantom in Section 3.3.2. As can be seen on this plot,

the SUV measures for the simulated lesions were well matched with the real lesions except for

patient 8. In this case, the simulated lesion was located very close to the cardiac tissue which had

significant uptake compared to the lung background. As such, spill-in caused the simulated lesion

activity to be higher than the real lesion in the contralateral lung which was not located near to

cardiac tissue. After excluding the data from this patient, the average ± standard deviation (SD)

differences in the SUVmax, SUVmean and SUVpeak measurements were −0.20 ± 0.29, 0.00 ± 0.19

and −0.10 ± 0.26 respectively.
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Fig. 3.18 Absolute differences in SUVmax, SUVmean and SUVpeak measured for the simulated and real
lesions in the 10 patients. The error bars represent the estimated standard deviation for the absolute
differences derived from the variance in measurements for repeated phantom acquisitions/simulations.

3.3.3.2 Clinical Observer Study

Results for the clinical observer study are presented in Table 3.5. Overall, the clinician identified

the simulated lesion location for 4 patients, selected the real lesion for 4 patients and was unsure

in 2 patients giving an overall score of 0 (on a scale of -10 to 10). The clinician didn’t score any

of the lesions as ‘definitely’ which would suggest that the simulated lesions were not obviously

fake compared to the real lesions.
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Patient No. Location of Simulated Lesion Clinical Review Score

1 Left upper lobe Probably left −0.5

2 Left lower lobe Probably right 0.5

3 Left upper lobe Unsure 0.0

4 Left lower lobe Probably left −0.5

5 Right upper lobe Probably right −0.5

6 Right lower lobe Probably left 0.5

7 Left upper lobe Unsure 0.0

8 Left lower lobe Probably right 0.5

9 Right upper lobe Probably left 0.5

10 Right lower lobe Probably right −0.5

Table 3.5 Location of the simulated lesions for the 10 anonymised datasets and the results of the clinician
review.

For patients 1 and 8 the clinician commented on the sharpness of the lesions and chose the

sharper of the two which correctly identified the simulated lesion in patient 1 but not 8. The

real lesion for patient 4 was bilobed, but this wasn’t replicated in the simulated lesion as the

assigned activity was uniform making it easier to locate the simulated lesion. Whilst there were

not enough cases to perform a statistical test, the results show the described methodology for

insertion of simulated lesions into real patient scans can produce clinically realistic results.

3.4 Discussion

This chapter describes the methodology to generate reconstructed PET images consisting of real

patient physiology with simulated lesions of known characteristics. Simulations were performed

in GATE using a model of the GE Discovery 710 PET scanner that was validated against the

real PET system to ensure accuracy of the output data. Lesions were simulated after accounting

for existing uptake and density in the clinical images and then inserted into the real patient
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scans in projection space. The combined raw PET data were then reconstructed and corrections

applied using the GE research toolbox. Phantom assessment of the lesion technique showed the

methodology produced images of the simulated objects of similar appearance and uptake to those

of the physical objects acquired on the real scanner. Finally, a series of 10 simulated lesions were

inserted into anonymised patient scans and assessed using quantitative measures and a 2AFC

clinical observer study. The quantitative assessment showed SUVmax, SUVmean and SUVpeak

values were all closely matched to those of the real lesions they were modelled on and the clinical

observer study showed the technique could generate lesions that were indistinguishable from the

real lesions.

Unlike the physical phantom, the simulated spheres inserted into the NEMA phantom used

for validation of the D710simu were wall-less spheres of water. The spheres in the physical

NEMA phantom had vacuum formed plastic walls with a mean diameter of 1.05 ± 0.09 mm as

derived from weight measurements. Since there is radioactivity in the background compartment

of the NEMA phantom, the walls will create a gap with no radioactivity between the sphere

and background. This results in a reduction of the radioactivity measured in the sphere which

becomes greater as the sphere diameter is decreased. This is because the wall thickness becomes

more significant compared to the diameter of the sphere and the partial volume effect causes

averaging of the radioactivity in the sphere and the non-active space. To estimate the extent of

the systematic bias due to the presence of the walls the method described by Hofheinz et al can

be used [155]. Assuming an isotropic PSF with FWHM of 7.1 mm (from the average spatial

resolution measured at 10 cm for the VPFX reconstruction) and a sphere to background ratio of

5.3, the percentage difference in predicted recovery curves for the maximum voxel value can be

estimated as −0.6 % for the 17 mm sphere, −2.4 % for the 13 mm sphere and −5.0 % for the 10

mm sphere. The larger spheres show no bias. A similar pattern would be expected for the mean

activity concentration measurements as the thresholds are based on the maximum voxel value.

Stute et al also used a projection-domain method to insert 14 large lung lesions simulated

using a model of the Philips GEMINI GXL into a real patient scan [145]. The purpose of

their study was to generate a small number of PET images for assessment of segmentation
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techniques where the true volumes of the lesions were known. Instead, the scanner model

used for simulations in this thesis were of a modern PET system using LYSO crystals allowing

for assessment of the latest acquisition and reconstruction methods including TOF. The voxel

size used to define the lesions is much smaller (1 mm3, compared to 64 mm3) which keeps

the finer detail present in the lesions and doesn’t introduce unrealistic stepped edges in the

reconstructed images. This also allows much smaller lesions to be generated which are of

particular interest and clinical relevance in assessing new PET technologies. The methodology

proposed here for generating the voxelised density phantom for input into GATE incorporates a

method to automatically convert CT numbers into mass density and elemental weights as derived

by Schneider et al [144]. This avoids the need for segmentation of healthy tissues in the real

patient scan(s), as was performed in the work by by Stute et al [145], which would be too time

consuming for this work where individual lesions are inserted into many different real patient

scans rather than a single scan.

Clinical PET scans are acquired over 3 minutes and so real lesions are subject to respiratory

motion and the PET uptake may be blurred [156]. This is not accounted for in the lesions

simulated in this work. GATE has the ability to split simulations into time slices so data could be

simulated for a specified time at each position of the respiratory cycle. Therefore, the described

lesion simulation technique using GATE could be extended to include respiratory motion models

or real patient respiratory signals [157], but this would require the generation of voxelised activity

and density phantoms with the lesion positioned for the different points in the respiratory cycle.

The current methodology was designed to be used with the manufacturer software in order to

evaluate the effects of commercially available reconstructions. However, the advantage of using

GATE for the simulations is that the output data can also be used in open-source software, such

as CASToR [158], in situations where a more generalised solution is required that is not limited

to the specific manufacturer software.

Only a single reviewer performed the clinical observer study due to limited access to the MIM

Encore software. Results would be more robust if 2 or more observers independently reviewed

the datasets allowing an assessment of consensus between observer choice and confidence in
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identifying the simulated lesions for the ten patients. The review also only included the PET as

the synthetic lesions in the CT were clearly unrealistic, whereas in clinical practice the reviewer

would assess both the lesion morphology on CT and the 18F-FDG uptake on the PET.

The voxelised phantoms used for defining the simulated lesions in this work were derived

from real lesions in patient scans and used homogeneous uptake. It would be impractical to use

this method for generating larger sets of simulated lesions, therefore the next stage of this work

aims to develop an automated method to create synthetic lesions based on typical characteristics

seen in real lesions and incorporate heterogeneous uptake.

3.5 Conclusions

A model of the clinical GE Discovery 710 PET scanner has been designed and validated against

the real PET system for performing accurate simulations of phantoms and lesions. Further, a

technique for insertion of the simulated lesions into real patient PET data in projection space has

been developed. This allows for the generation of PET datasets combining the physiological and

anatomical variation observed in real patients with realistic simulated tumours where the size,

shape and uptake can be specified. These datasets will be used to investigate the impact of new

PET developments on image quality and quantitative measures in this thesis through the use of

virtual imaging trials.
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Chapter 4

Generation and Validation of PET Images

of Patients with Realistic Simulated

Solitary Pulmonary Nodules

4.1 Introduction

Chapter 3 describes the validation of the PET scanner model used for simulation of lesions and

the process of insertion into real patient PET data in projection space. This technique was shown

to be able to generate PET images with visual and quantitative characteristics similar to real

pulmonary lesions. To ensure that PET images created using this methodology can reliably be

used for performing clinically relevant tasks in place of real PET data and a real PET imaging

system in the context of virtual imaging trials, the data needs to be carefully validated [131].

In this thesis, the chosen method to perform this validation was to generate PET images for a

virtual population of patients consisting of simulated lesions with characteristics replicating a

population of real patients with known solitary pulmonary nodules (SPNs).

18F-FDG-PET imaging is used as a non-invasive way to help differentiate between malignant

and benign SPNs. SPNs are focal areas of abnormal tissue (lesions) ≤ 3 cm diameter in the

lung and are often found incidentally on chest x-ray or CT or through lung cancer screening
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programs [159]. These nodules can arise from several conditions that may be malignant or benign

such as neoplasms, infection, inflammation and, vascular and congenital abnormalities [159].

Cells in malignant nodules grow unregulated invading nearby healthy tissues and can metastasize

to distant sites via the blood and lymph system. Benign nodules are non-cancerous, tend to grow

slowly, and unlike malignant lesions, they do not metastasize or invade surrounding tissues. In

the management of patients with SPNs, it is important to determine as early as possible whether

the nodule is malignant or benign as if it is lung cancer one of the main factors determining

prognosis will be the stage at presentation.

In the UK, radiologically indeterminate SPNs are managed according to the British Thoracic

Society (BTS) guidelines which recommend the use of clinical prediction models [7]. Initial

CT-based assessment for patients with an SPN involves determining the malignancy risk using the

Brock risk prediction tool [8]. Patients with a risk ≥ 10 % undergo 18F-FDG-PET-CT imaging

to help further categorise the risk of malignancy using the Herder clinical prediction model [9].

The resultant risk is then used to help guide the patient management as shown in Table 4.1.

Risk of Malignancy Patient Management

< 10 % CT surveillance

10 % to 70 % Image-guided biopsy or, depending on individual risk and patient

preference, excision biopsy or CT surveillance

> 70 % Surgical resection where appropriate or non-surgical treatment

Table 4.1 Risk Stratification of SPNs as determined from the Herder clinical prediction model [9].

In this context, location of the SPN is already known from the previous CT or x-ray and PET

imaging is used to help in determining the risk of malignancy and potential spread. The risk of

malignancy is based on whether the 18F-FDG uptake within the SPN is greater than the lung

background (detection), liver or mediastinal blood pool (MBP) activity (estimation) making it

a joint detection-estimation task. In a meta-analysis Gould et al reported 18F-FDG-PET to be

93.9 % sensitive and 85.8 % specific at identifying malignant SPNs [11], however an increase in
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glucose metabolism is also seen in inflammatory processes resulting in false-positive results for

benign lesions [160].

Novel PET reconstruction algorithms that incorporate point spread function (PSF) modelling

to recover uptake due to loss of resolution, (Section 2.1.5), have been shown to improve signal-

to-noise ratio (SNR) and thus lesion detection in oncology applications [161, 66]. However,

there is also a significant impact on quantitative measures of tumour uptake, such as standardised

uptake value (SUV), and this effect is dependent on lesion size and tumour-to-background

ratio [162, 163]. Additionally, inappropriate selection of reconstruction parameters could lead to

underestimation of lesion uptake due to over-smoothing or overestimation from the appearance

of edge artefacts [68]. Use of these novel algorithms has been shown to have minimal effect on

uptake measurements for reference tissues such as the liver or mediastinal blood pool (MBP) [163,

164] so clinical assessments involving comparison of tumour uptake to these reference tissues

will also be impacted. This is the case for the characterisation of SPNs and so moving to these

novel algorithms could potentially increase the number of true-positive results for malignant

lesions but at the same time increase the number of false-positives i.e., making PET more

sensitive, but less specific for identifying malignant lesions. This could lead to inappropriate

changes in patient management if following guidance based on published data from patients who

underwent PET with older technology. It is important therefore to have a proper understanding

of the effect of novel reconstruction algorithms on measurements of lesion uptake particularly in

small lesions.

In the original study performed by Herder et al, derivation of the clinical prediction model

used PET scans acquired between 1997 and 2001 on an older PET-only bismuth germanate

(BGO) system acquiring in 2D mode. Since its publication, PET technology has evolved

significantly, firstly with the wide adoption of hybrid PET-CT systems whereby the CT is used for

attenuation correction and then use of 3D acquisition and reconstruction techniques. Subsequent

improvements in hardware and software have seen the introduction of time-of-flight (TOF)-

PET in systems with lutetium-based scintillation crystals and the use of novel reconstruction

algorithms incorporating PSF modelling. A later study by Al-Ameri et al retrospectively applied
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the Herder clinical prediction model to patients who were identified through the lung cancer

multidisciplinary team between 2008 and 2013 and had 18F-FDG-PET-CT to assess an SPN [10].

Histopathology and follow up imaging were used to confirm diagnosis. The authors found the

Herder model had a high accuracy for discriminating between malignant and benign lesions with

an area under the ROC curve (AUC) of 0.92, 95 % CI [0.88, 0.97] which was almost identical

to the original study by Herder et al, with an AUC of 0.92, 95 % CI [0.87, 0.97] [9]. Details of

the PET imaging parameters were not provided in the published paper but, based on the date

range of the study data, the PET would have been a combination of 2D and 3D PET-CT and

from 2010 onwards TOF-PET (data from UK PET Core Lab). This pre-dated the wide-spread

availability of novel reconstruction algorithms incorporating PSF and in particular the proprietary

Q.Clear reconstruction algorithm which was released by GE in 2014. Murphy et al investigated

the effect of the novel Q.Clear reconstruction algorithm on the assessment of malignancy risk

in SPNs for a cohort of patients scanned between 2013 and 2017 at King’s College London &

Guy’s and St Thomas’ PET Centre [165]. 97 patients who underwent 18F-FDG-PET-CT for

assessment of an SPN were identified retrospectively from the local Hospital database. 75 (77 %)

of the SPNs were malignant, and 22 (23 %) benign as determined by histological confirmation

(biopsy or surgical resection) or follow up imaging. The raw PET data for the 97 patients

were retrospectively reconstructed using the Q.Clear algorithm (β = 400) which includes PSF

modelling and a regularisation term to control noise in the reconstructed image (Section 2.1.4).

The accuracy in risk of malignancy determined using the novel reconstruction was then compared

to the risk using the standard clinical OS-EM reconstruction with TOF (VPFX with 2 iterations,

24 subsets and 6.4 mm Gaussian filter).

This chapter describes the generation of PET images for a virtual population of patients

with SPNs designed to replicate the real population from the study by Murphy et al [165]. The

methodology described in Chapter 3 was used to develop and insert simulated SPNs with the

same characteristics as those from the original study into raw PET data from ‘healthy’ patients in

the projection-domain. Analysis of the PET data generated from the virtual population followed

that used for the real population. Validation of the virtual population was then performed through
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comparison of quantitative measures and outcomes in terms of receiver operating characteristic

(ROC) curves and area under the ROC curve (AUC) for both populations. An automated method

of producing the synthetic lesions for input into the Monte Carlo model is also described.

4.2 Methods

Anonymised raw PET data and reconstructed 18F-FDG-PET-CT scans from 97 patients were

randomly collected from clinical scans performed at the King’s College London & Guy’s and

St Thomas’ PET Centre (IRAS project ID: 251611). To ensure anonymity of the data, the raw

PET and CT data were anonymised by clinical staff on the scanner prior to use in this work.

The only inclusion criteria were that PET scans were performed on a GE Discovery 710 scanner

at St Thomas’ Hospital following the standard clinical protocol, and that the raw PET data

was available. Since there are two GE Discovery 710 scanners, data was allowed from both

systems. It should be noted that selection of patient scans with physiological uptake of 18F-FDG

on a half body PET-CT scan was blinded to all clinical information so the patient condition

was unknown, however for the purposes of this thesis, the patient scans will be described as

‘healthy’ to differentiate from the PET-CT scans from patients in the study by Murphy et al with a

known SPN. Any PET-CT scans that didn’t cover at least base-of-brain to mid-thigh or contained

significant artefacts that could affect quantification, such as excessive motion or extravasation,

were excluded. These scans were then used for insertion of the simulated lesions to produce the

PET scans for the virtual population.

All PET-CT scans for the SPN and healthy cohorts were scanned at the King’s College

London & Guy’s and St Thomas’ PET Centre on the GE Discovery 710 PET systems . Patient

preparation and scan acquisition followed the standard clinical protocol for both patient cohorts.

Patients were fasted for 6 hours and blood glucose was checked prior to injection ensuring

blood glucose was < 11 mmol/L. The patient weight was measured on the day of the scan and

used for normalisation of SUVs. Injected activities were fixed rather than weight based with

mean ± standard deviation (SD) injected activities of 328.6 ± 25.7 MBq and 323.2 ± 23.4 MBq
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for the SPN and healthy cohorts respectively. The mean uptake time for the SPN cohort was

longer than that for the healthy cohort (83.6 ± 10.0 min versus 70.2 ± 12.7 min) due to a change

in the local protocol from 90 minutes to 60 minutes during the time the data was acquired. In

the SPN cohort 11 patients were scanned at 60 minutes (60.6 ± 0.9 min, range 59 to 62) and

86 patients were scanned at 90 minutes (86.5 ± 6.0 min, range 75 to 99). This compares to 69

patients scanned at 60 minutes (62.9 ± 3.4 min, range 57 to 72) and 28 patients scanned at 90

minutes (88.0 ± 8.8 min, range 75 to 106) for the healthy cohort.

Both PET and CT images were acquired from mid-thigh or toes to base-of-brain or vertex

under shallow inspiration. The CT used for attenuation correction and localisation was acquired

first using 140 kV p, variable mA s, 0.5 s rotation time and 1.375 pitch and reconstructed using

the standard kernel with ASiR blending of 40 %. The PET was acquired using 3 min per bed

position and 11-slice (23 %) overlap. PET data were reconstructed using the standard clinical

reconstruction (VPFX) and the novel Q.Clear reconstruction (QCFX) with the parameters shown

in Table 4.2.

118



4.2 Methods

Parameter Reconstruction Name

VPFX QCFX

Algorithm Used OS-EM BPL

Matrix Size 256 × 256 256 × 256

Pixel Size (mm) 2.73 2.73

Iterations 2 N/A

Subsets 24 N/A

Post Filter Gaussian None

FWHM = 6.4 mm

z-axis Filter 4 mm None

Strength (β ) of the Penalising Factor N/A 400

Time-of-Flight (TOF) Included Yes Yes

Point Spread Function (PSF) No Yes

Modelling Included

Table 4.2 Reconstruction algorithm and parameters used for the standard clinical reconstruction (VPFX)
and the novel Q.Clear reconstruction (QCFX). OS-EM = ordered subsets-expectation maximisation, BPL
= Bayesian penalised likelihood. Parameters that are not applicable for the particular reconstruction are
denoted as N/A.

4.2.1 Simulation of the Solitary Pulmonary Nodules

To generate a large set of PET images for the virtual population, simulated lesions with char-

acteristics similar to the original study were required for insertion into the healthy PET scans.

To achieve this, each patient in the healthy cohort was randomly assigned the radiological and

clinical characteristics from a patient in the SPN cohort. The designated radiological and clinical

features for the simulated lesions included the diameter measured on CT, the maximum 18F-FDG

uptake, lobar location and whether the SPN had a spiculated appearance. The simulated lesions

were designated as being malignant or benign based on the clinical outcomes measured for the
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real SPNs in the assigned patients from the SPN cohort. Real malignant SPNs were confirmed

by histopathology, either biopsy or surgical resection, and benign nodules by follow up imaging.

4.2.1.1 Automatic Generation of Synthetic Lesions

An automated method for creating the voxelised activity and density phantoms containing the

synthetic SPNs to use as input for the GATE simulation was developed in MATLAB (The

MathWorks, Inc, version R2020b). The synthetic lesions were generated using a 3D tumour

growth model based on the model described by Poleszczuk et al [166] and modified for the

purpose of this project.

The tumour growth model starts with a logical 3D array where all elements are set to ‘false’

to indicate they are unoccupied. Elements in the array are then set to ‘true’ when occupied by

a cell. Starting with an initial element in the array occupied by a cancer stem cell (CSC), the

model locates the unoccupied neighbouring elements and any existing cells undergo symmetric

or asymmetric division to produce either another CSC or a non-stem cancer cell (CC) on each

iteration of the algorithm. As part of the model, probabilities for symmetric cell division, cell

proliferation capacity, migration and spontaneous cell death can be adjusted [167]. Each element

in the array was chosen to be equivalent to 50 µm × 50 µm × 50 µm which is approximately 16

times the size of an individual cell assuming a cell diameter of 20 µm and cell density of 108

cells cm−3 [168]. This size was chosen partly due to limitations on the available memory on

the PC used to generate the lesions, but also to keep the time to generate each synthetic lesion

reasonable (median time 28 minutes). For a lobular or spiculated appearance the model was

adapted to include initialisation with up to eight occupied elements, benign lesions had 1 or 2,

spiculated 3 to 8 and malignant 1 to 8. Placement of the initialisation points used random x,

y and z co-ordinates drawn from a normal distribution with mean = central array co-ordinate

and standard deviation = 0.1 × lesion diameter. The model was also modified so the simulation

stopped once the occupied elements reached the assigned lesion diameter in either the x or y

direction.
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For the purposes of this project the size and shape of the lesions was of interest rather than

growth time or cell composition. Features of malignant and benign SPNs can overlap, but

malignant tend to be larger and have irregular or spiculated margins whereas benign lesions tend

to have smoother well-defined borders and are spherical in shape [169, 170]. To investigate

the impact of varying the probabilities of symmetric cell division, spontaneous cell death, cell

migration and cell proliferation capacity on the lesion appearance, 256 × 10 mm diameter

lesions were generated using a single initialisation point with probabilities from 20 % to 80 %

in 20 % increments. Figure 4.1 shows four of the 10 mm diameter lesions created with an 80 %

probability for a) symmetric cell division, b) spontaneous cell death, c) cell migration and d)

proliferation. All other probabilities were fixed at 20 %. It should be noted that the probabilities

were not independent of one another.

Fig. 4.1 Examples of 10 mm diameter synthetic lesions generated using the tumour growth model with
a single initialisation point. In the above examples, the probability under investigation was set at 80 %
while all others were fixed at 20 %. Probabilities under investigation were a) symmetric cell division, b)
spontaneous cell death c) cell migration c) and d) cell proliferation.

Increased probabilities for symmetric cell division and spontaneous cell death were associated

with denser lesions with smooth margins Figure 4.1 a) and b). High probabilities in both created

unrealistic lesion appearances so probabilities were restricted to ≤ 50 % for all lesions. The

probability of cell migration was inversely related to lesion density Figure 4.1 c). Increased

probability for cell proliferation generated lesions with increasingly irregular shapes and rough

margins more typical of malignant SPNs Figure 4.1 d). Using this data, probabilities were

randomly assigned from the ranges given in Table 4.3 to generate the 97 lesions for insertion.
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Probability Description Spiculated Range Malignant Range Benign Range

Symmetric cell division 10 % to 20 % 20 % to 40 % 30 % to 50 %

Spontaneous cell death 10 % to 20 % 20 % to 40 % 30 % to 50 %

Cell migration 70 % to 80 % 60 % to 80 % 40 % to 60 %

Cell proliferation 70 % to 80 % 50 % to 70 % 30 % to 50 %

Table 4.3 Probability ranges used in the tumour growth model to generate lesions with benign and
malignant characteristics.

For the voxelised phantoms, the logical array was converted to numerical values and resam-

pled to 1 mm3 voxels using linear interpolation to match the voxel size for the resampled CT

from the healthy patients. The resultant array contained values from 0 to 1 equivalent to the

fraction of occupied elements within that volume. The steps below were then used to derive the

radioactivity and material properties to assign to the voxels.

The target uptake for the simulated lesion was derived from the SUVmax for the real lesion in

the SPN patient measured using the clinical reconstruction (SUVSPN). Since the uptake in the

lung for the SPN and healthy patients were potentially different, the SUVmean measured in the

lung for the SPN patient (SUVlung) was subtracted from the SUVSPN to give the relative SUV

(SUV(SPN−lung)). It was assumed that the uptake in the lung was uniform. Estimation of the true

uptake in the real lesion (SUVpvc) was then performed by applying a partial volume correction

(PVC) to the SUV(SPN−lung) using the lesion diameter and a recovery coefficient (RC) curve

measured for the clinical reconstruction (VPFX) on the D710real using the technique described

by Srinivas et al [154]. Finally, the SUV(pvc) was converted into kBq.ml−1 to give the target

activity concentration of the lesion to be inserted into the healthy patient (CHealthy):

CHealthy (kBq.ml−1) = SUV(pvc).

(
At (MBq)
W (kg)

)

where At was the injected activity decay corrected to the acquisition time t, and W the healthy

patient weight from the DICOM header. The activity concentration was converted from kBq.ml−1

122



4.2 Methods

to Bq.mm−3 and each voxel in the synthetic lesion array was multiplied by this value to generate

the voxelised activity phantom. Since the voxels in the synthetic lesion array contained values

from 0 to 1 depending on the density of cells within that volume, activities towards the edges of

the lesion with lower cell densities contained lower activities as would be seen in a real lesion.

The HU for the synthetic lesions were assigned randomly from the ranges for the pre-

enhancement HU for malignant (16.5 ± 14.4) and benign (19.1 ± 21.2) lung nodules measured

by Swensen et al [153] assuming a normal distribution and each voxel in the synthetic lesion

array was multiplied by this value. To create the final voxelised density phantom, the synthetic

lesion array was inserted into the resampled CT for the healthy patient by replacing the existing

voxel values at the location of the lesion. Metadata from the SPN study included a record of

the nodule location according to the lobes of the lungs as shown in Figure 4.2. This was used

to guide the manual selection of the central point for placement of the simulated lesion in the

healthy patient CT using MIM Encore (MIM Software Inc, version 7.1.5).

Fig. 4.2 Sagittal, coronal and axial CT slices segmented to show the lobes of the lungs: purple = right
upper lobe (RUL), green = right middle lobe (RML), blue = right lower lobe (RLL), orange = left upper
lobe (LUL), red = left lower lobe (LLL).

The CT slice number and x, y slice locations of the central point of the lesion were then used

in the MATLAB script to derive the offsets for automatic placement of the synthetic lesions in

the resampled healthy patient CT to create the final voxelised phantom. For the activity phantom,

all voxels outside the lesion were set to zero. Figure 4.3 shows an example of the voxelised

density and activity phantoms for one of the patients in the study with a 22 mm synthetic lesion

in the left lung.
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Fig. 4.3 Axial slice of the density (left) and activity (right) voxelised phantoms showing a 22 mm synthetic
lesion used as the input for GATE.

Using these voxelised phantoms as input, simulated acquisitions were performed in GATE

matching the location and duration of the equivalent bed positions acquired for the healthy patient

scans. Processing of the output PET data from the simulation followed the steps described in

Chapter 3, Section 3.2.1.

4.2.2 Quantitative Evaluation of FDG Uptake in the Reference Tissues

and SPNs

Analysis of the reconstructed PET images containing the simulated lesions was performed in

MIM Encore and followed that used in the original study. The consensus results from the image

analysis performed by the consultant radiologist and clinical fellow in the original study were

used as the reference standard for comparison of the simulated lesion measurements. Image

analysis for the simulated lesions was conducted by this thesis author, a Clinical Scientist with

12 years experience in PET including the review and analysis of PET images.

In the original study by Murphy et al [165], the SUVmax in the liver and MBP were measured

for each patient using large manual 2D ROIs placed in the arch of the aorta and right lobe of the

liver as shown in Figure 4.4.
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Fig. 4.4 Axial PET and fused PET-CT slices showing the placement of the 2D ROIs used to measure the
SUVmax in the liver (top) and MBP (bottom).

The PERCIST guidelines however, recommend measurement of the blood pool in the

descending aorta and a smaller volume in the right lobe of the liver [2]. Therefore, additional

measurements of the SUVmax in the liver and MBP were made for the SPN cohort using a

3 cm diameter spherical VOI in the right lobe of the liver and a 1 cm diameter by 2 cm length

cylinder VOI placed in the descending thoracic aorta as described in the practical PERCIST

guidelines [87]. For consistency, the PERCIST volumes were used to measure the SUVmax in the

liver and MBP in both the SPN and healthy cohorts for determination of the risk of malignancy.

The SUVmax for the lung tissue was measured using a 2D ROI placed centrally in the lung in

which the lesion was to be inserted, avoiding any existing structures such as cardiac tissue, lung

walls or bronchi. The SUV tool in MIM was used for measuring the SUVmax in the nodule. This

involved loosely placing a 3D sphere over the nodule to include all the uptake, the SUV tool then

automatically marks the location of the maximum voxel and reports the SUVmax.

4.2.2.1 Derivation of the Malignancy Risk using PET

The clinical prediction model by Swensen et al [171] uses a probability estimate to determine

the risk of malignancy (Ps) for SPNs based on clinical and radiographic factors according to the
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equation:

Ps =
1

(1+ e−x)

where x is determined from the weighted contribution of the clinical and radiographic factors

defined in Table 4.4:

x =−6.8272+0.0391(age)+0.7917(cigarettes)+1.3388(cancer)+0.1274(diameter)

+1.0407(spiculation)+0.7838(upper)

Clinical or Radiological Factor Definition

Age Patient age in years

Cigarettes Current or former smoker

Cancer History of extra thoracic cancer

Diameter Diameter of SPN measured on CT (mm)

Spiculation Spiculation

Upper SPN located in upper lobe

Table 4.4 Definition of the clinical and radiographic factors used to determine risk of malignancy for
solitary pulmonary nodules (SPNs) in the Swensen clinical prediction model [171].

The factors used for the healthy cohort in this work, as summarised in Table 4.5, were

assigned from the clinical and nodule characteristics for the SPN population from Murphy et

al [165]. The Swensen scores were therefore identical for the two patient populations.
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Clinical or Radiological Benign Malignant All Patients

Characteristic (n=22) (n=75) (N=97)

Age (years)

Mean ± SD: 70.9 ± 9.4 68.9 ± 10.0 69.3 ± 9.9

Range: 53-85 32-87 32-87

Cigarettes (%) 72.7 86.7 83.5

Cancer (%) 22.7 29.3 27.8

Diameter (mm)

Mean ± SD: 11.4 ± 5.3 17.8 ± 5.5 16.4 ± 6.1

Median: 10.0 18.0 15.0

Range: 5-25 6-30 5-30

Spiculation (%) 22.7 65.3 55.7

Upper (%) 54.5 52.0 52.6

Table 4.5 Summary of clinical & radiological characteristics for malignant and benign lesions in the SPN
dataset [165].

The Herder risk model [9] refines the Swensen clinical prediction model by incorporating

the degree of 18F-FDG uptake measured on PET to determine the probably of malignancy (Ph):

Ph =
1

(1+ e−x)

where x combines the Swensen score (Ps) with a weighting factor based on the degree of 18F-FDG

uptake in the nodule using a four-point ordinal scale from absent to intense:

x =−4.739+3.691(Ps)+2.322( f aint)+4.617(moderate)+4.771(intense)

The 18F-FDG uptake for the nodules was graded using the SUVmax relative to the lung, liver and

mediastinal blood pool (MBP) using the definitions provided by Murphy et al [165] and given in

Table 4.6.
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Score 18F-FDG Uptake Definition in terms of Nodule

standardised uptake value (SUV)

1 Absent = lung SUVmax

2 Faint > lung SUVmax but ≤ MBP SUVmax

3 Moderate > MBP SUVmax and ≤ 2 × liver SUVmax

4 Intense > 2 × liver SUVmax

Table 4.6 Ordinal scale for classification of nodule 18F-FDG uptake compared to lung, liver and mediastinal
blood pool (MBP) measured on PET. Table reproduced from Murphy et al [165].

4.2.2.2 Statistical Analysis of Results for Healthy and SPN Cohorts

Results for the SUVmax measurements and calculated Herder risk scores are given as mean

± standard deviation (SD). The independent two-sample t-test was used for comparison of

continuous variables between the two patient cohorts and the dependent two-sample t-test

for comparison between reconstructions within the same patient cohort. A P value <.05 was

considered significant. Linear weighted Cohen’s Kappa (κ) was used to assess the agreement in

the ordinal classification of nodule 18F-FDG uptake between the healthy patients with simulated

lesions and the SPN patients with real SPNs. Levels of agreement were defined as: 0.21-0.4

= fair, 0.41-0.60 = moderate, 0.61-0.80 = good and 0.81-1.00 = very good [172]. Diagnostic

performance was assessed using area under the receiver operating characteristic (ROC) curve

(AUC) with 95 % pointwise confidence intervals (CIs) computed using 1000 bootstrap samples.

Comparison of AUCs was performed using the non-parametric method for correlated ROC

curves described by DeLong et al [173]. Sensitivity (Se), specificity (Sp), positive predictive

values (PPV) and negative predictive values (NPV) were determined for pre-defined Herder

score cut-off points of 10, 50 and 70 %. These cut-offs were chosen to match those used in the

original analysis by Murphy et al [165]. The BTS guidelines recommend further investigation or

biopsy for patients with > 10 % risk of malignancy and invasive intervention such as excision

or surgical resection for patients with > 70 % risk of malignancy [7]. CIs for sensitivity and
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specificity are Clopper-Pearson exact intervals [174] and standard logit intervals [175] for PPVs

and NPVs. Statistical analysis was performed in MATLAB version R2022b.

4.3 Results

4.3.1 Quantitative Evaluation of FDG Uptake in the Reference Tissues

4.3.1.1 Comparison of Regions used for Reference Tissue Measurements

Table 4.7 shows the mean ± SD SUVmax measured in the liver and MBP for the patients in the

SPN cohort using the large 2D ROIs and the PERCIST VOIs. Results are shown for both the 3D

OS-EM with TOF (VPFX) and BPL with TOF and PSF (QCFX) reconstructions.

Liver MBP

VPFX QCFX VPFX QCFX

2D ROIs 3.1 ± 0.6 3.0 ± 0.6 1.8 ± 0.4 1.7 ± 0.4

PERCIST VOIs 3.0 ± 0.6 2.8 ± 0.5 2.0 ± 0.4 2.0 ± 0.4

P values P<.001 P<.001 P<.001 P<.001

Table 4.7 Mean ± SD SUVmax measured for the liver and mediastinal blood pool (MBP) in the SPN
patient cohort using manual 2D ROIs and PERCIST VOIs.

These results show there were significant differences in the SUVmax for the SPN cohort when

measured using the large manual 2D ROIs compared to the PERCIST VOIs in both the liver and

MBP and for both reconstructions with all P values <.001. To determine whether this difference

in SUVmax for the reference tissues had an impact on the results, the 18F-FDG uptake in the

nodules was classified for both sets of reference tissue measurements following the scheme

described in Table 4.6 and using the consensus SUVmax for the real SPNs. Results showed very

good agreement between the classification of nodule uptake derived using the SUVmax measured

using 2D ROIs and using the PERCIST VOIs with κ=0.99, 95 % CI [0.95, 1.00] for VPFX and

κ=0.93, 95 % CI [0.82, 1.00] for QCFX reconstructions. For context, this was similar to the
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inter-observer agreement for the classification of nodule 18F-FDG uptake derived from individual

measurements of the liver and MBP by the two clinical reviewers using the manual 2D ROIs with

κ=0.93, 95 % CI [0.84, 1.00] for VPFX and κ=0.96, 95 % CI [0.89, 1.0] for QCFX [165]. All

further analysis of uptake for both patient cohorts used the reference tissue SUVmax measured

using the PERCIST VOIs.

4.3.1.2 Comparison of Reference Tissue Uptake in the SPN and Healthy Patient Cohorts

Box plots of the SUVmax measured in the reference tissues for real patients with SPNs and healthy

patients with simulated SPNs are shown in Figure 4.5. There was no significant difference

between the SUVmax measured for the liver, lung or MBP in the two cohorts using either

VPFX (P=.79, P=.88 and P=.73) or QCFX (P=.98, P=.95 and P=.78) reconstructions. These

results show the cohort of patients used for insertion of the simulated lesions have comparable

physiological uptake in the reference tissues to the original SPN patient cohort with real SPNs.
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Fig. 4.5 Box plots of the SUVmax measured for the reference tissues in real patients with an SPN and
healthy patients with a simulated SPN for VPFX and QCFX reconstructions. The × denotes the mean
SUVmax for each group.

4.3.2 Quantitative Evaluation of FDG Uptake in the SPNs

4.3.2.1 Comparison of SUV Measured for the Real SPNs and Simulated Lesions

The Bland-Altman plot in Figure 4.6 shows the difference between the SUVmax measured for

the simulated lesion and the assigned real SPN using the VPFX reconstruction. The differences

are plotted as a function of the SUVmax measured for the real SPN on the VPFX reconstruction.

The green dotted line represents the mean difference and the red dotted lines show ±1.96 SD

limits of agreement. This plot indicates the methodology for generating the simulated lesions

could reproduce the SUVs from the real SPNs with a mean difference in SUVmax of 0.03, 95 %

CI [-1.0, 1.1]. However, as shown by the black linear regression line, as the real nodule SUVmax

increases there is a bias in the simulated lesion SUVmax which goes from negative to positive.
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Fig. 4.6 Bland-Altman plot of the differences between the SUVmax measured for the real and simulated
nodules using the VPFX reconstruction, plotted against the real nodule SUVmax. Dotted red lines show
±1.96 SD limits of agreement.

A similar bias was also seen when plotting the differences in SUVmax against the diameter of

the real SPN as measured on CT, Figure 4.7. This suggests that the partial volume correction

used for estimating the true uptake in the real lesions underestimates for smaller lesions and

overestimates for larger lesions.
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Fig. 4.7 Bland-Altman plot of the differences between the SUVmax measured for the real and simulated
nodules using the VPFX reconstruction, plotted against the real nodule diameter. Dotted red lines show
±1.96 SD limits of agreement.

The plot in Figure 4.8 shows the SUVmax measured for the individual lesions on the QCFX

reconstruction versus the SUVmax measured on the VPFX reconstruction. As shown by the linear

regression lines, the change in SUVmax from VPFX to QCFX for the simulated lesions in the

healthy cohort (orange dotted line) followed a similar trend to that of the real SPNs (green dotted

line).
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Fig. 4.8 Plot of the SUVmax measured for the real and simulated nodules using the QCFX reconstruction
against the SUVmax measured using the VPFX reconstruction.

Table 4.8 shows the mean ± SD in SUVmax for the nodules in the SPN and healthy cohorts

for both reconstructions. Results are presented for all nodules, and grouped as malignant and

benign with P values in the last column. There was no significant difference between the nodule

SUVmax measured for the SPN and healthy cohorts for either reconstruction across all nodules

or when separating between malignant and benign lesions.
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All Nodules (N=97) SPN Cohort Healthy Cohort P value

VPFX 5.0 ± 3.6 5.0 ± 3.7 .95

QCFX 7.0 ± 5.3 7.0 ± 5.0 .999

Malignant Nodules (n=75)

VPFX 5.9 ± 3.5 5.9 ± 3.6 .92

QCFX 8.4 ± 5.2 8.3 ± 4.8 .98

Benign Nodules (n=22)

VPFX 1.8 ± 1.3 1.7 ± 1.3 .90

QCFX 2.5 ± 2.0 2.6 ± 2.1 .90

Table 4.8 Mean ± SD SUVmax for nodules in SPN and healthy cohorts measured using the VPFX and
QCFX reconstructions.

As expected from the results of the original study, the SUVmax measured for the nodules in

the SPN cohort using the QCFX reconstruction were significantly higher than that measured

using the VPFX reconstruction (P<.001). This result was also seen in the SUVmax measurements

for the healthy cohort (P<.001). This was also true when separating nodules in both SPN and

healthy cohorts into malignant nodules (P<.001, P<.001) and benign nodules (P<.001, P=.002).

Figure 4.9 shows ROC curves for the diagnostic performance of SUVmax for predicting

malignancy using the VPFX (left) and QCFX (right) reconstructions in the SPN and healthy

cohorts. There was no significant difference in the area under the ROC curve (AUC) for the SPN

0.88 [0.79, 0.94] and healthy cohorts 0.90 [0.78, 0.96] when using the VPFX reconstruction

(P=.86). There was also no significant difference in the AUC for the SPN 0.86 [0.76, 0.93] and

healthy cohorts when using the QCFX reconstruction 0.87 [0.77, 0.94] (P=.92).
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Fig. 4.9 ROC curves for the diagnostic performance of SUVmax for predicting malignancy using both
VPFX (left) and QCFX (right) reconstructions in the SPN and healthy cohorts. Blue and orange shaded
areas show 95 % CIs for the SPN and healthy ROC curves respectively.

4.3.2.2 Comparison of Classification of FDG Uptake for the Real SPNs and Simulated

Lesions

Frequencies for the classification of the nodule 18F-FDG uptake in the two cohorts are plotted in

Figure 4.10. The number of patients in each group are identical for both the SPN and healthy

patient cohorts and for both reconstructions. However, the classification was lower for one

patient (moderate rather than intense) and higher for one patient (intense rather than moderate)

in the healthy cohort compared to the SPN cohort when using the QCFX reconstruction.

Fig. 4.10 Frequencies of 18F-FDG uptake classification for the SPN and healthy cohorts using VPFX
reconstruction (left) and QCFX reconstruction (right).
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Agreement for the SPN and healthy cohorts was perfect for the VPFX reconstruction κ=1.00,

95 % CI [1.00, 1.00] and very good for the QCFX reconstruction κ=0.98, 95 % CI [0.92, 1.00].

This compares to the inter-observer agreement for the classification of 18F-FDG uptake reported

by Murphy et al of κ=0.85, 95 % CI [0.71, 0.99] for VPFX and κ=0.89, 95 % CI [0.74, 1.0].

Results were very similar for the SPN and healthy cohorts with the classification of 18F-FDG

uptake increasing in 26 (26.8 %) patients between the VPFX and QCFX reconstructions in

both cohorts. This increase in classification was only seen in patients with faint or moderate

uptake (scores 2 and 3) on the VPFX reconstruction and the increase was only by one group

i.e. from 2 to 3 or 3 to 4. In the SPN cohort 8 (8.2 %) patients (6 malignant, 2 benign) went

from faint using VPFX to moderate using QCFX and the corresponding patients with matched

clinical and diagnostic characteristics in the healthy cohort also went from faint using VPFX to

moderate using QCFX. 18 (18.6 %) patients went from moderate to intense uptake in both the

SPN and healthy cohorts, 17 of these (14 malignant, 3 benign) were the corresponding patients

with matched clinical and diagnostic characteristics.

4.3.2.3 Comparison of Herder Risk Score for the Real SPNs and Simulated Lesions

Mean ± SD Herder scores for both cohorts are shown in Table 4.9. Since the Swensen scores

applied from the initial trial data and the 18F-FDG uptake classification using the VPFX recon-

struction were identical for the SPN and healthy cohorts, the Herder scores were also identical.

There was no significant difference in Herder risk scores for the SPN and healthy cohorts using

the QCFX reconstruction for all nodules (P=.997) or when grouped into malignant (P=.99) or

benign nodules (P=.99).
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Herder Score (%) VPFX QCFX P value

SPN Cohort All nodules 69.2 ± 31.3 73.4 ± 29.2 .002

Malignant 78.5 ± 23.1 82.5 ± 19.1 .007

Benign 37.4 ± 35.2 42.2 ± 35.8 .07

Healthy Cohort All nodules 69.2 ± 31.3 73.4 ± 29.2 .002

Malignant 78.5 ± 23.1 82.6 ± 19.0 .007

Benign 37.4 ± 35.2 42.2 ± 35.8 .07

Table 4.9 Mean ± SD Herder scores for the nodules measured on the VPFX and QCFX reconstructions
for both SPN and healthy cohorts.

As found in the original SPN study, there was a significant difference in Herder scores

between the VPFX and QCFX reconstructions for all nodules driven by the difference in uptake

between reconstructions for malignant nodules. This was also seen in the Herder scores for the

healthy cohort with P values for all nodules and malignant nodules <.05 as given in Table 4.9.

In both cohorts, there was no significant difference in Herder scores for the VPFX and QCFX

reconstructions for benign nodules (P=.07).

Figure 4.11 shows the ROC curves for the diagnostic performance of Herder scores for

predicting malignancy in the healthy and SPN cohorts when using the VPFX (left) and QCFX

(right) reconstructions. There was no significant difference between the diagnostic performance

of the Herder scores for the two cohorts using VPFX (P>.999), with an AUC of 0.83, 95 % CI

[0.72, 0.91] for both the SPN and healthy cohorts, or for QCFX (P=.995) with an AUC of 0.84,

95 % CI [0.73, 0.91] for both cohorts.
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Fig. 4.11 ROC curves for the the diagnostic performance of Herder scores for predicting malignancy in
the SPN and healthy cohorts using VPFX reconstruction (left) and QCFX reconstruction (right). Blue and
orange shaded areas show 95 % CIs for the SPN and healthy ROC curves respectively.

Sensitivity (Se), specificity (Sp), positive predictive values (PPV) and negative predictive

values (NPV) for both the SPN and healthy cohorts are presented in Table 4.10 for VPFX

and Table 4.11 for QCFX. Results are shown for Herder score cut-offs of 10 %, 50 % and

70 %. No differences were observed between the diagnostic performance for the SPN and

healthy patient cohorts with identical results across all Herder cut-offs for both VPFX and QCFX

reconstructions.
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Herder Cut-Off (%) SPN Cohort Healthy Cohort

10 Se 0.99 [0.93, 1.00] 0.99 [0.93, 1.00]

Sp 0.18 [0.05, 0.40] 0.18 [0.05, 0.40]

PPV 0.80 [0.77, 0.83] 0.80 [0.77, 0.83]

NPV 0.80 [0.32, 0.97] 0.80 [0.32, 0.97]

50 Se 0.89 [0.80, 0.95] 0.89 [0.80, 0.95]

Sp 0.64 [0.41, 0.83] 0.64 [0.41, 0.83]

PPV 0.89 [0.83, 0.94] 0.89 [0.83, 0.94]

NPV 0.64 [0.46, 0.78] 0.64 [0.46, 0.78]

70 Se 0.76 [0.65, 0.85] 0.76 [0.65, 0.85]

Sp 0.68 [0.45, 0.86] 0.68 [0.45, 0.86]

PPV 0.89 [0.81, 0.94] 0.89 [0.81, 0.94]

NPV 0.45 [0.34, 0.58] 0.45 [0.45, 0.58]

Table 4.10 Sensitivity (Se), specificity (Sp), positive predictive values (PPV) and negative predictive
values (NPV) derived for Herder cut-offs of 10, 50 and 70 % for both cohorts when using the 18F-FDG
uptake measured on the VPFX reconstruction. Values in brackets show the 95 % CI.
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Herder Cut-Off (%) SPN Cohort Healthy Cohort

10 Se 0.99 [0.93, 1.00] 0.99 [0.93, 1.00]

Sp 0.18 [0.05, 0.40] 0.18 [0.05, 0.40]

PPV 0.80 [0.77, 0.83] 0.80 [0.77, 0.83]

NPV 0.80 [0.32, 0.97] 0.80 [0.32, 0.97]

50 Se 0.96 [0.89, 0.99] 0.96 [0.89, 0.99]

Sp 0.55 [0.32, 0.76] 0.55 [0.32, 0.76]

PPV 0.88 [0.82, 0.92] 0.88 [0.82, 0.92]

NPV 0.80 [0.55, 0.93] 0.80 [0.55, 0.93]

70 Se 0.83 [0.72, 0.90] 0.83 [0.72, 0.90]

Sp 0.68 [0.45, 0.86] 0.68 [0.45, 0.86]

PPV 0.90 [0.83, 0.94] 0.90 [0.83, 0.94]

NPV 0.54 [0.39, 0.67] 0.54 [0.39, 0.67]

Table 4.11 Sensitivity (Se), specificity (Sp), positive predictive values (PPV) and negative predictive
values (NPV) derived for Herder cut-offs of 10, 50 and 70 % for both cohorts when using the 18F-FDG
uptake measured on the QCFX reconstruction. Values in brackets show the 95 % CI.

4.4 Discussion

The work in this chapter used the insertion methodology described in Chapter 3 to generate

images for a cohort of patients comprising of real clinical PET data with simulated lesions.

Characteristics of the lesions were assigned based on a real population of patients with a known

solitary pulmonary nodule (SPN). Validation of the cohort containing the simulated nodules was

performed by comparison of quantitative measures of 18F-FDG uptake and diagnostic accuracy

for the assessment of malignancy risk with the cohort with real SPNs. Results showed no

statistical difference in the SUVmax, Herder scores or diagnostic accuracy for the two cohorts.

These results show the lesion insertion technique described in this thesis can produce images of

a virtual patient population with results similar to those seen in a real population. Agreement in
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the classification of 18F-FDG uptake for the two cohorts was comparable to or better than the

inter-observer agreement reported in the original study by Murphy et al [165].

There are a number of physical, technical and biological factors that can affect quantification

of 18F-FDG uptake [176]. By selecting a cohort of patients scanned on the same scanners in

the same centre as the real SPN patients to use for lesion insertion, the intention was to ensure

many of these factors, such as patient preparation, scanner calibration and scanning technique,

were consistent. However, due to a change in the local clinical protocol from 90 to 60 minutes

uptake, more patients were scanned at 60 minutes in the cohort used for lesion insertion in this

thesis (71 %) compared to the cohort of patients with real SPNs (11 %). The mean uptake time

for the healthy cohort was therefore shorter than that for the SPN cohort by 16.0 %. Chin et

al compared SUV measurements for healthy tissues in patients scanned either at 1 hour or 3

hours post injection [177]. The authors found no significant difference in SUV for liver or lung

tissues, but there was a moderate decrease in SUV for the aortic blood pool at 3 hours which was

significant. Therefore, a large difference in uptake times between the healthy patients used for

the lesion insertion in this thesis and the SPN cohort, could have resulted in a systematic bias in

uptake measurements for the MBP which would in turn influence the classification of 18F-FDG

for patients where the SPN uptake was close to the MBP uptake. Comparison of the reference

tissues for the healthy and SPN cohorts used in this thesis showed no significant difference in

SUVs measured for the liver, lung or MBP indicating that the difference in uptake times was not

large enough to measure a significant change in MBP uptake.

In the original study by Murphy et al [165], measurements of SUVmax for analysis of the

SPN cohort were made on the clinical workstations using Hermes Hybrid Viewer (Hermes

Medical Solutions) whereas the measurements for this thesis were made using MIM Encore.

Therefore, to ensure SUV results agreed between the two software, quantitative assessments

were performed in both software using a NEMA phantom acquired on the D710real. All SUV

measures were identical to 1 decimal place allowing results from the different software to be

used interchangeably.
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In this thesis, the 18F-FDG uptake in the SPNs was classified using the four-point scale

described by Murphy et al with classification confirmed using the SUV measured in the reference

tissues and nodules [165]. Use of SUV measurements in combination with an ordinal scale can

reduce variability between readers and avoid misinterpretation due to the influence of background

activity on perceived uptake in the lesions [178]. The ordinal scale recommended by the BTS

guidelines [7] relies on qualitative assessment to classify nodules using the four-point scale

and this has become routine in clinical practice. In the study by Ordidge et al, retrospective

evaluation of the 18F-FDG uptake in SPNs for 100 patients was performed using the four-point

BTS scale [179]. The authors found excellent interobserver agreement for three experienced

reviewers with intraclass correlation coefficient (ICC)=0.97, 95 % CI [0.96, 0.98]. In a another

study by Fatania et al, seven clinicians with varying levels of experience from four different

imaging centres retrospectively scored the 18F-FDG uptake on PET-CT in 50 patients with

SPNs [180]. The authors found good interobserver reliability between all seven reviewers with

ICC=0.78, 95 % CI [0.67, 0.85] when using the four-point BTS scale.

There are several techniques for generating synthetic lesions described in the literature,

mostly geared towards making visually realistic lesions in CT or x-ray applications and for the

assessment of segmentation algorithms in PET applications. These techniques involve the use of

segmented lesions [181, 182] or mathematical models [183]. Methods involving segmentation of

real lesions require experts to outline the lesions on real clinical images to create a library of

lesions to sample from, which is time consuming. This also requires access to large datasets of

images with lesions for each tumour type of interest. The segmented lesions will be dependent on

the characteristics of the original imaging system on which they were acquired, in particular the

finite voxel size will limit the resolution of the synthetic lesions which may result in unrealistic

stepped edges. For the purposes of this project, a mathematical model was sought to allow

automatic generation of the synthetic lesions avoiding the need for segmentation. Rashidnasab

et al investigated two mathematical models for generating 3D masses for insertion into 2D

mammograms which were evaluated with observer studies [184]. Of these two, the random

walk (RW) technique was very similar to the tumour growth algorithm described in this thesis

143



4.4 Discussion

except the only parameters that could be modified for the RW method were the size and density

of the lesion, meaning the lesions were all very spherical in shape. The second method used

diffusion limited aggregation (DLA) which was based on a fractal growth model used originally

for modelling crystal growth. The observer study showed the RW method produced masses of

real appearance 68 % of the time and the DLA technique 84 % of the time, compared to 94 % for

real lesions. Although both these methods could produce lesions with realistic visual appearance,

unlike the 3D tumour model employed for producing synthetic lesions in this thesis, neither was

based on a model incorporating biological processes. It should be noted, the tumour growth

model used in this thesis did not account for existing structures within the lung, however it is too

complex to model an entire tumour and its neighbouring environment [185].

With advances in computational power and machine learning methods, generative adversarial

networks (GANs) provide an alternative method for generating images of realistic lesions. There

are two parts to a GAN, a generator and a discriminator, both of which are neural networks.

The generative model is trained using real data, such as CT images of pulmonary lesions,

and generates new examples. These examples are fed into a discriminative model which then

classifies the data as real or fake. The result of the classification by the discriminator is then fed

back into the generator model using backpropagation to further train the generative model. As

each subsequent image is created, they become more realistic and eventually the generator model

is able to create images that the discriminator is unable to distinguish from the real data. Several

groups have already explored the use of GANs for creating synthetic lesions including breast

lesions from mammography images, [186], focal liver lesions from CT images, [187] and lung

lesions mimicking ground glass nodules from CT images [188]. Results from observer studies

in each case have demonstrated the lesions are difficult to distinguish from the real lesions. It

should be noted however, that in all cases the authors have used 2D images for the input and

output. In order to extend the GANs for use with 3D data, as required for the work in this

thesis, a significant increase in the amount of training data and computational resources would

be required.
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The synthetic lesions were resampled to 1 mm3 voxels for generating the voxelised phantoms

for input into the Monte Carlo model. This could lose some of the finer detail from the synthetic

lesions, however this is much smaller than the PET scanner resolution of 6 mm to 7 mm and is

smaller than the theoretically achievable spatial resolution of 2 mm to 2 mm so should not affect

the results in this work.

In the Bland-Altman plots an upwards trend in the differences between the SUVmax in the

simulated and real nodules was observed as the SUV in the real nodule increased and also as the

nodule diameter increased. This is likely due to the fact that the true uptake in the real nodules

was unknown and were estimated using a partial volume correction (PVC) using RCs based on

phantom data. To derive the PVC, manual measurements of the real SPN made by the clinician on

CT were used which, particularly for smaller lesions, would also be subject to the partial volume

effect. Measurements were to the nearest mm and the phantom used to derive the correction

uses unrealistic spherical objects. The real SPNs would also be subject to patient motion which

would further degrade the spatial resolution in the PET images resulting in underestimation of

the SUV [189]. Despite this, results showed good agreement between the SUVmax measurements

for the simulated lesions and the real nodules from which the characteristics were derived and

there was no significant difference in the AUC derived from the two patient cohorts.

The study by Murphy et al [165] was made possible by the fact that raw PET data were

archived and could be retrieved for retrospective reconstruction using the new Q.Clear algorithm

which was included as part of a software upgrade to the existing PET scanner. In most PET sites

however, raw PET data is not stored beyond a couple of weeks so this type of study would not

be possible. For a single patient the reconstructed PET images are around 40 MB compared to

500 MB for the raw PET data making long term storage of raw data expensive. Additionally, it

would be difficult to predict which conditions will be of interest so all data would need to be

stored and carefully curated to make it useful. Use of the insertion technique described in this

thesis would allow the storage of a much smaller selection of raw PET data with typical uptake

for 18F-FDG-PET and this same data could be used for investigation of various tumour types by

insertion of lesions with different characteristics at different anatomical locations.
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Further work in this thesis will use the validated methodology for generating virtual patient

populations and extend it to investigate the effect of new technologies on quantitative measures

in the context of clinical trials.

4.5 Conclusions

PET images of a virtual population of patients with simulated lesions have been generated and

validated against a real cohort of patients scans with known SPNs making the novel method

described in this thesis suitable as a surrogate for real populations of patients for virtual imaging

trials.
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Chapter 5

Phantom and Clinical Assessment of the

Impact of New PET Technologies on Image

Quality and Diagnostic Performance for

Determining Risk of Malignancy in Solitary

Pulmonary Nodules

5.1 Introduction

The previous chapters describe the methodology for simulation of solitary pulmonary nodules

(SPNs) and their insertion into real PET data in projection space to generate images for use in

virtual imaging trials (VITs). Validation comprised of generating PET images of a population

of healthy patients with simulated lesions, using the methodology described in this thesis, and

comparing quantitative measures of 18F-FDG uptake and derivation of malignancy risk from the

relative PET uptake to those measured for real SPNs in a real population of patients. Results

showed the classification of FDG uptake for the real and simulated lesions was comparable
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to the inter-observer agreement reported for dual readers of the real SPNs and there was no

significant difference in the diagnostic performance for classification of nodules as malignant or

benign using the Herder risk score. The aim of this chapter was to investigate the impact of new

technologies, specifically time-of-flight (TOF), point spread function (PSF) modelling and the

use of a Bayesian penalised likelihood (BPL) reconstruction, on technical image-based metrics

of image quality and on diagnostic accuracy for task-based measures.

There are a number of factors that affect quantification in PET [190] which can impact on

clinical diagnosis or response assessment [191]. Variation due to patient related factors can be

minimised through use of matching patient preparation and acquisition protocols. Technical

factors leading to the partial volume effect however are dependent on scanner geometry, the

reconstruction algorithm used and the implementation of corrections within the system model.

Often these will vary between manufacturers and between scanner models making it very difficult

to be prescriptive in how PET scans should be acquired and reconstructed. Additionally, PET-

CT scanner hardware and software have advanced significantly over the last decade with the

introduction of fully 3D iterative reconstruction, time-of-flight (TOF), point spread function

(PSF) modelling, continuous motion and most recently solid state photon detectors. This has

resulted in a range of different technologies in clinical PET centres across the UK.

There are guidelines for 18F-FDG-PET-CT for tumour imaging which give general recom-

mendations for patient preparation, image acquisition and reconstruction to improve consistency

in reporting and use of semi-quantitative measures across platforms and institutions [37]. These

guidelines recommend the use of physical phantoms for harmonisation of PET image quality

with the aim of allowing comparison of PET images and quantitative measures across different

scanners and sites. In the UK and Europe, matching of recovery coefficients determined using the

NEMA image quality phantom is the accepted method for inter-comparison between systems [37,

192]. Use of this technique has been successfully applied for multicentre lymphoma trials in the

UK since 2003 [98] and is currently used by the UK PET Core Lab (http://www.ncri-pet.org.uk/)

and EARL (https://earl.eanm.org/) for PET-CT scanner accreditation. Despite these recommen-

dations to use harmonised parameters, sites still opt to use locally derived parameters which are
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often subjective and based on the preference of the radiologist(s). Whilst this provides images

that are visually acceptable, this makes comparison of quantitative values difficult.

Advancements in PET technology have resulted in improved sensitivity, timing resolution and

spatial resolution which have been shown to result in overall CNR gain. Lower noise and good

signal recovery are generally associated with optimal image quality, and potentially improved

diagnostic accuracy for lesion detection. However, since the ground truth is unknown for real

lesions it is difficult to assess the diagnostic accuracy in tasks that involve characterisation

of lesions based on uptake or size. The aim of this chapter therefore was to investigate the

impact of new technologies, in particular the use of TOF, PSF and Bayesian penalised likelihood

(BPL) reconstruction algorithm, on the image quality and quantitative measurements of 18F

activity concentration for spheres of different sizes in the NEMA image quality phantom.

Further, PET images consisting of real PET scans containing simulated lesions were generated

using the techniques described in the previous chapters to investigate the influence of these

new technologies on 18F-FDG uptake measurements and the subsequent impact on diagnostic

performance for assessment of malignancy risk in patients with SPNs.

5.2 Methods

In the first part of this work, the impact of new technologies on image quality and quantitative

measurements of 18F-FDG uptake were investigated using the NEMA image quality phantom.

Real scans of the physical phantom with simulated spheres inserted using the validated technique

in Chapter 3 were reconstructed first using OS-EM with and without incorporation of TOF

information and PSF modelling, then using BPL with TOF and PSF. Images were analysed using

the technical image-based metrics described in Chapter 2, Section 2.2.1. To further investigate

the impact of these new technologies on diagnostic performance, PET images of a patient

population with SPNs were generated using the insertion technique described in Chapters 3

and 4. These datasets were also reconstructed using OS-EM with and without incorporation of

TOF information and PSF modelling and with the BPL reconstruction algorithm. The diagnostic
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performance in determining malignancy risk was assessed for each of the reconstructions using

receiver operating characteristic (ROC) curve analysis.

5.2.1 Assessment of the Impact of New Technologies on Image Quality

using the NEMA Phantom

5.2.1.1 Generation of NEMA Phantom Images with Simulated Spheres

The background compartment of the physical NEMA image quality phantom (Data Spectrum

Corporation) was filled with an 18F solution, and a 5 min acquisition performed on the GE

Discovery 710 PET-CT scanner (General Electric Medical Systems, GEMS, Milwaukee, WI)

at the King’s College London & Guy’s and St Thomas’ PET Centre. Four sets of wall-less

spheres of water with diameters of 10, 13, 17, 22, 28 and 37 mm were simulated with different

activities of 18F using the GATE toolkit (version 8.2). The spheres were then inserted into the

raw PET data from the real acquisition of the phantom background using the technique described

in Chapter 3, Section 3.2.2. The activity concentration in the background compartment was

7.8 kBq ml−1 at the start of the acquisition and the activity concentrations for the inserted spheres

ranged from 33 to 62 kBq ml−1 resulting in four phantom datasets with sphere-to-background

ratios (SBRs) of 4.2, 4.9, 6.5 and 7.9 to 1.

The PET data were reconstructed using 3D OS-EM (VPHD), 3D OS-EM with TOF (VPFX),

3D OS-EM with TOF and PSF (VPFXS) and BPL with TOF and PSF (QCFX) using the GE

proprietary PET Toolbox (Duetto, version 2.07). The parameters for each reconstruction are

shown in Table 5.1. These reconstruction parameters were chosen as they cover a range of

settings currently used in clinical practice by UK sites (data from UK PET Core Lab http://www.

ncri-pet.org.uk/). Recovery coefficients (RCs) for both the VPHD and VPFX reconstructions

fulfil the requirements for accreditation by the UK PET Core Lab and the VPFX reconstruction

is used clinically at the King’s College London & Guy’s and St Thomas’ PET Centre.
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Reconstruction Name

Parameter VPHD VPFX VPFXS QCFX

Algorithm Used OS-EM OS-EM OS-EM BPL

Matrix Size 192 × 192 256 × 256 256 × 256 256 × 256

Pixel Size (mm) 3.65 × 3.65 2.73 × 2.73 2.73 × 2.73 2.73 × 2.73

Slice Thickness (mm) 3.27 3.27 3.27 3.27

Iterations 2 2 2 N/A

Subsets 24 24 16 N/A

Gaussian Post Filter (mm) 6.4 6.4 4.0 N/A

z-axis Filter (mm) 4 4 4 N/A

Strength (β ) of the Penalising Factor N/A N/A N/A 400

Time-of-Flight (TOF) Included No Yes Yes Yes

Point Spread Function (PSF) No No Yes Yes

Modelling Included

Table 5.1 Reconstruction algorithms and parameter settings used in the assessment. OS-EM = ordered
subsets-expectation maximisation, BPL = Bayesian penalised likelihood. Parameters that are not applica-
ble for the particular reconstruction are denoted as N/A.

5.2.1.2 Assessment of Noise in the Phantom Background

The noise in the uniform background of the phantom was characterised using the background

variability (BV), as defined in the NEMA standard [40], and the image roughness (IR) [76]. As

discussed previously in Section 2.2, the BV measures the region-to-region variation, and the IR

measures the voxel-to-voxel variation within a single image.

Twelve circular ROIs of 37 mm diameter were placed on an axial slice centred on the spheres

and copied to axial slices at +19.6, +9.8, -9.8 and -19.6 mm to the central slice. Smaller ROIs

with diameters matching the diameters of the spheres (10, 13, 17, 22 and 28 mm) were then

drawn concentric to the 37 mm ROIs to give a total of 60 ROIs for each diameter. Figure 5.1

shows the placement of the 37 mm diameter ROIs on the axial slice centred on the spheres. The
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ROIs were copied to each reconstruction for each sphere-to-background ratio (SBR) and the

mean and standard deviation (SD) measured for all individual ROIs.

Fig. 5.1 Axial slice of the NEMA phantom centred on the spheres showing the placement of the 37 mm
ROIs used to determine the image noise.

The BV was calculated for each ROI diameter ( j) and each SBR as:

BVj (%) =
SD j

CB, j
×100

where CB, j is the mean activity concentration measured for all 60 ROIs of diameter j and SD j is

the standard deviation in the activity concentration measurements for the 60 ROIs of diameter j

calculated as:

SD j =

√
∑

K
k=1 (CB, j,k −CB, j)2

K −1

CB, j,k is the mean activity concentration for each individual ROI (k) of diameter j and K is the

total number of ROIs.

The IR was calculated as the CoV for each individual ROI (k) averaged over all 60 ROIs:

IR j (%) =
∑

K
k=1

SD j,k
CB, j,k

×100

K
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5.2.1.3 Assessment of the Signal Recovery in the Spheres

The signal recovery for the spheres was measured using recovery coefficients (RCs). The activity

concentration for the spheres was measured for each reconstruction using both the maximum

voxel value within the spheres (Cmax) and the mean for a VOI defined using a threshold of 50 %

adapted for the local background (CA50). The RCmax and RCA50 were then calculated for the

different sphere sizes as:

RC =
Cmeasured

Ctrue

where Cmeasured is the activity concentration measured in the reconstructed PET images (either

Cmax or CA50), and Ctrue the activity concentration set in the simulations. The bias in the RCs

was calculated as:

Bias (%) =

(
Cmeasured

Ctrue
−1

)
×100

and the variance was the standard deviation in the measurements for the different SBRs.

The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were also calculated for

each sphere size and reconstruction as:

SNR =
Cmax

SD j

CNR =
Cmax −CB, j

SD j

5.2.2 Assessment of the Impact of New Technologies on Diagnostic Perfor-

mance

5.2.2.1 Generation of Patient PET Images with Simulated Lesions

In addition to the 97 patients collected for the healthy cohort in Chapter 4, a further 103

anonymised raw PET data and reconstructed clinical 18F-FDG-PET-CT scans were collated

using the methodology described in Section 4.2 (IRAS project ID: 251611). The PET-CT scans

were acquired on one of two GE Discovery 710 PET systems at the King’s College London &
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Guy’s and St Thomas’ PET Centre. Selection of the PET datasets was blinded to all clinical

information. After initial inspection of the PET images, 6 patient datasets were excluded due to

significant motion in the thorax or extravasation, resulting in a total of 194 datasets suitable for

lesion insertion. All patient preparation followed the routine clinical protocol of fasting for 6

hours prior to injection and the blood glucose was checked to ensure blood glucose was < 11

mmol/L. The mean ± SD injected activity for all patients was 322.2 ± 21.4 MBq. 50 patients were

scanned using an uptake time of 90 minutes, (86.6 ± 7.8 min), and 144 patients using 60 minutes

uptake time, (62.9 ± 3.6 min) with a mean uptake time for all patients of (69.0 ± 11.6 min). The

acquisition and reconstructions protocols were identical for the two PET scanners and both were

accredited by the UK PET Core Lab which requires ongoing annual quality assurance to ensure

consistent performance.

The PET and CT used for lesion insertion were acquired from mid-thigh or toes to base-of-

brain or vertex under shallow inspiration. The CT used for attenuation correction and localisation

was acquired first using 140 kV p, variable mA s (15 – 100 mA, noise index 40), 0.5 s rotation

time and 1.375 pitch. CT images were reconstructed with 2.5 mm slice thickness using the

standard kernel and ASiR blending of 40 %. The PET was acquired using 3 min per bed position

and 11-slice (23 %) overlap. The time per bed position was increased to 4 min per bed for

patients over 100 kg.

After insertion of the simulated nodules, the PET data were reconstructed using 3D OS-EM

(VPHD), 3D OS-EM with TOF (VPFX), 3D OS-EM with TOF and PSF (VPFXS) and BPL with

TOF and PSF (QCFX). The parameters for each reconstruction were identical to those used for

the phantom assessment as shown in Table 5.1.

5.2.2.2 Clinical and Diagnostic Characteristics

Of the 194 patient datasets, 150 (77.3 %) were randomly designated as malignant and 44 (22.7 %)

benign. A summary of the assigned clinical and radiological characteristics is given in Table 5.2.

154



5.2 Methods

Clinical or Radiological Benign Malignant All Patients

Characteristic (n=44) (n=150) (N=194)

Age (years)

Mean ± SD: 70.9 ± 9.3 68.9 ± 10.0 69.3 ± 9.8

Range: 53-85 32-87 32-87

Cigarettes (%) 72.7 86.7 83.5

Cancer (%) 22.7 29.3 27.8

Diameter (mm)

Mean ± SD: 11.4 ± 5.2 17.8 ± 5.5 16.4 ± 6.1

Median: 10.0 18.0 15.0

Range: 5-25 6-30 5-30

Spiculation (%) 22.7 65.3 55.7

Upper (%) 54.5 52.0 52.6

Table 5.2 Summary of assigned radiological characteristics for the simulated lesions and the designated
clinical characteristics for the patients used for insertion.

The clinical characteristics (age, smoking status, and previous cancer) were assigned ac-

cording to the proportions reported for patients with real malignant and benign SPNs in the

study by Murphy et al [165]. The size, location, and presence of spiculation for the simulated

lesions were also assigned using the radiological characteristics measured for the nodules in the

real population. For the nodule size, the distribution of sizes for the real benign and malignant

SPNs were modelled using lognormal and normal distributions respectively. The BTS guidelines

recommend a minimum diameter of 5 mm for monitoring SPNs as the risk for nodules < 5 mm

is less than 1 % [7]. Therefore, the diameters for the simulated malignant and benign lesions

were randomly generated from the truncated lognormal and normal distributions using lower

and upper limits of 5 mm and 30 mm respectively. The nodules were then simulated using these

lesion characteristics and inserted into the real PET data using the methodology described in

Chapters 3 and 4.
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5.2.2.3 Quantitative Evaluation of FDG Uptake in the Reference Tissues and SPNs

All analysis was performed using MIM Encore (MIM Software Inc, version 7.1.5). SUVmax

and SUVmean were measured for the liver and MBP as described in the simplified PERCIST

guide [87]. The liver volume was defined using a 3 cm diameter spherical VOI placed in the right

side of the liver. MBP uptake was measured using a 1 cm diameter by 2 cm length cylindrical

VOI placed in the descending thoracic aorta. Additionally, the SUVmax and SUVmean were

measured for the lung using a 3 cm diameter spherical VOI placed in the right lung avoiding the

bronchials. The standard clinical OS-EM reconstruction with TOF (VPFX with 2 iterations, 24

subsets and 6.4 mm Gaussian filter) and the CT were used to guide placement of the reference

regions which were then copied to the other reconstructions.

SUVmax and SUVmean were measured for the simulated SPNs. For delineation of the lesions

to derive SUVmean, a commercially available gradient-based algorithm, PETedge+ (MIM Encore

v7.1.5, MIM Software Inc, Cleveland, OH), was chosen. To define the SPN volume a large

spherical VOI was manually placed over the nodule on the VPFX PET scan, the VOI was

automatically copied to the other reconstructions and then resized using the PETedge+ algorithm.

The resultant volumes were not manually adjusted.

The nodule 18F-FDG uptake measured using both SUVmax and SUVmean was classified for

each reconstruction according to the ordinal scale shown in Table 5.3 using both SUVmax and

SUVmean for the reference tissues.

Score 18F-FDG Uptake Definition in terms of Nodule Weighting

standardised uptake value (SUV) Factor

1 Absent = lung SUV 0

2 Faint > lung SUV but ≤ MBP SUV 2.322

3 Moderate > MBP SUV and ≤ 2 × liver SUV 4.617

4 Intense > 2 × liver SUV 4.771

Table 5.3 Ordinal scale for classification of 18F-FDG uptake measured on PET. Nodule uptake was
classified using both the SUVmax and SUVmean for the lung, liver and mediastinal blood pool (MBP).
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5.2.2.4 Derivation of Malignancy Risk

First the risk of malignancy (Ps) was calculated for the SPNs using the clinical prediction model

by Swensen et al [171]:

Ps =
1

(1+ e−x)

where x was determined from the assigned clinical and radiographic factors as:

x =−6.8272+0.0391(age)+0.7917(cigarettes)+1.3388(cancer)+0.1274(diameter)

+1.0407(spiculation)+0.7838(upper)

The probably of malignancy (Ph) was then calculated using the Herder risk model [9]:

Ph =
1

(1+ e−(−4.739+3.691(Ps)+y))

where Ps is the Swensen risk derived from the clinical and radiological characteristics and y is

the weighting factor based on the degree of 18F-FDG uptake using the ordinal scale as given in

Table 5.3.

5.2.2.5 Statistical Analysis

Results are presented as mean ± standard deviation (SD) for continuous variables and frequencies

and percentages (%) for ordinal data. Pairwise comparison of the SUV and Herder risk was

performed for each of the reconstructions with a P value <.05 considered statistically significant.

The diagnostic performance for each of the reconstructions was assessed using sensitivity (Se),

specificity (Sp), positive predictive values (PPV) and negative predictive values (NPV) for

pre-defined cut-off points. Results are reported using 95 % confidence intervals (CIs), with

Clopper-Pearson exact intervals for sensitivity and specificity [174] and standard logit intervals

for PPVs and NPVs [175]. The overall diagnostic performance for discriminating malignancy

are given as area under the receiver operating characteristic (ROC) curve (AUC) with 95 %

pointwise CIs computed using 1000 bootstrap samples. Comparison of AUCs was performed
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using the non-parametric method for correlated ROC curves described by DeLong et al [173].

Optimal cut-off values were determined for ROC curves using Youden’s J statistic [193]. All

statistical analysis was performed in MATLAB version R2022b.

5.3 Results

5.3.1 Assessment of the Impact of New Technologies on Image Quality

using the NEMA Phantom

5.3.1.1 Assessment of Noise in the Phantom Background

Figure 5.2 shows axial PET slices of the NEMA image quality phantom reconstructed using

the different parameters for SBRs of 4.2:1 (top) and 7.9:1 (bottom). On visual assessment, the

spheres were visible across all reconstructions and for all SBRs. The spheres appear sharper

going from VPHD→VPFX→VPFXS→QCFX, and there was no perceptible difference in noise

between the reconstructions.

Fig. 5.2 Axial slices showing the different reconstructions of the NEMA image quality phantom. OS-EM
= ordered subsets-expectation maximisation, BPL = Bayesian penalised likelihood, TOF = time-of-flight
and PSF = point spread function. The sphere-to-background ratio (SBR) is 4.2:1 for the top row and 7.9:1
for the bottom row.
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Table 5.4 shows the mean background variability (BV) and image roughness (IR) measured

for the different reconstructions using the 37 mm ROIs. Results are quoted as the mean ± SD for

the different SBRs.

Reconstruction BV (%) IR (%)

VPHD 2.98 ± 0.10 7.13 ± 0.44

VPFX 2.18 ± 0.13 7.61 ± 0.49

VPFXS 2.13 ± 0.10 6.65 ± 0.44

QCFX 1.96 ± 0.08 7.60 ± 0.55

Table 5.4 Background variability (BV) and image roughness (IR) measured using the 37 mm ROIs for the
four different reconstructions. Values are the mean ± SD for the different sphere-to-background ratios
(SBRs).

The results in Table 5.4 show a decrease in BV for the OS-EM reconstruction when incorpo-

rating TOF information (VPFX) and PSF modelling (VPFXS) and this was seen for all ROI sizes.

Overall, the OS-EM reconstructions had higher BV than the BPL reconstruction (QCFX), which

contains both TOF and PSF. These results indicate the accuracy of the corrections (attenuation

and scatter) are improved with the addition of TOF and PSF within the reconstruction resulting

in less region-to-region variation in the images. Conversely the VPHD reconstruction, which had

the highest BV, had lower IR than both the VPFX and QCFX reconstructions. This is because

the pixel size for the VPHD reconstruction was significantly larger (3.65 mm × 3.65 mm) than

that used for the VPFX and QCFX reconstructions (2.73 mm × 2.73 mm) thus reducing the

pixel-to-pixel noise. The VPFXS reconstruction had the lowest IR of all the reconstructions

which is a consequence of increasing noise correlation for neighbouring pixels when using

PSF modelling. A similar decrease in IR with the addition of PSF was seen in the phantom

experiments by Tong et al [76]. This effect was not observed for the QCFX reconstruction due

to the regularising prior which controls the image noise.

159



5.3 Results

5.3.1.2 Assessment of the Signal Recovery in the Spheres

RCmax and RCA50 are plotted against the sphere diameters for each of the reconstructions and

sphere-to-background ratios (SBRs) in Figure 5.3.

Fig. 5.3 Plots showing the recovery coefficients (RCs) for the maximum voxel value (RCmax) and mean
(RCA50) as a function of sphere diameter. Results are plotted for the four reconstructions using the
different sphere-to-background ratios (SBRs). OS-EM = ordered subsets-expectation maximisation, BPL
= Bayesian penalised likelihood, TOF = time-of-flight and PSF = point spread function.

All reconstructions showed decreasing signal recovery as sphere size decreased for both

RCmax and RCA50. The QCFX reconstruction demonstrated the greatest signal recovery across all

sphere sizes followed by the VPFXS reconstruction as a result of the inclusion of PSF modelling.

The biases in measured activity concentration for VPHD and VPFX were similar across all

sphere sizes with maximum differences of 6.4 % in RCmax and 4.8 % in RCA50. For the RCmax

the biases in measured activity concentration were ≤ 8.3 % for spheres ≥ 22 mm using VPHD

and ≤ 9.8 % for spheres ≥ 17 mm using VPFX. The biases in measured activity concentration

were also similar for the VPFXS and QCFX reconstructions but only for spheres ≥ 17 mm with

maximum differences of 3.3 % in RCmax and 5.6 % in RCA50. For spheres ≤ 17 mm, the rate
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of decrease in RCmax and RCA50 was greater for VPFXS than for QCFX. There were no trends

observed in the variance in RCmax for the different SBRs when using any of the reconstructions

reconstructions. For RCA50 the variance was similar for all sphere sizes, but increased for the 10

mm sphere using all reconstructions. The VPFXS had the lowest variance whilst VPFX had the

highest.

Figure 5.4 shows the SNR and CNR for the 4.2:1 and 7.9:1 SBRs. Overall, the VPFXS and

QCFX reconstructions both outperformed the VPHD and VPFX reconstructions in terms of SNR

and CNR. Both the VPHD and VPFX reconstructions had similar signal recovery, whereas the

VPHD had lower IR which resulted in higher SNR and CNR. It should be noted however, the

VPHD reconstruction had greater BV than the VPFX reconstruction which is not accounted for

in the SNR or CNR calculations. Again, due to the low IR and good signal recovery, the VPFXS

reconstruction had the highest SNR and CNR for spheres ≥ 17 mm. The QCFX and VPFXS

demonstrated similar SNR and CNR for the smaller spheres (10 mm and 13 mm) due to the

greater decrease in recovery seen for VPFXS.
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Fig. 5.4 Plots of the SNR and CNR measured using the maximum voxel value as a function of sphere
diameter. Results are plotted for the four reconstructions with SBR of 4.2:1 for the top row and 7.9:1 for
the bottom row.

5.3.2 Assessment of the Impact of New Technologies on Diagnostic Perfor-

mance

5.3.2.1 Comparison of Diagnostic Performance for Derivation of Malignancy Risk using

the Swensen Score

The Swensen risk scores for all patients were derived using the assigned clinical and diagnostic

characteristics. Figure 5.5 shows the ROC curve for the diagnostic performance for the Swensen

risk scores in predicting malignancy. The AUC using the Swensen score alone was 0.78, 95 %

CI [0.70, 0.84].
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Fig. 5.5 ROC curve for the diagnostic performance of Swensen score in predicting malignancy. The AUC
is shown with 95 % CIs.

5.3.2.2 Comparison of FDG Uptake in the Reference Tissues

The SUVmax and SUVmean measured for the reference tissues in all patients using the four

different reconstructions are presented as box plots in Figure 5.6.
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Fig. 5.6 Box plots showing the SUVmax and SUVmean measured for the reference tissues using the four
reconstructions. The × denotes the mean value for each reconstruction.

Table 5.5 shows the P values for the pairwise comparisons of the uptake measured for the

reference tissues using the four different reconstructions. When using SUVmax, there was no

significant difference in the MBP uptake measured for any of the reconstructions. There were

also no significant differences in the SUVmax measured for the liver or lung when using the
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VPHD and VPFX reconstructions or when using the VPFXS and QCFX reconstructions. There

were however significant differences in the uptake for both liver and lung using SUVmax with the

VPHD and QCFX reconstructions and the VPFX and VPFXS reconstructions. For VPHD and

VPFXS reconstructions, there was no significant difference in the liver SUVmax, but there was

for the lung and the opposite was seen for the VPFX and QCFX reconstructions.

SUVmax SUVmean

Reconstructions Liver Lung MBP Liver Lung MBP

VPHD vs. VPFX .95 .55 .92 .88 <.001 .77

VPHD vs. VPFXS .07 <.001 .21 .61 <.001 .63

VPHD vs. QCFX .02 .01 .28 .67 <.001 .94

VPFX vs. VPFXS .02 .03 .56 .97 .99 >.99

VPFX vs. QCFX .004 .28 .65 .98 .99 .98

VPFXS vs. QCFX .94 .78 >.99 >.99 >.99 .93

Table 5.5 P values for pairwise comparison of the uptake measured in the reference tissues when using the
four different reconstructions. Results are shown for measurements of SUVmax and SUVmean.

There were no significant differences between the SUVmean measured in the liver or MBP for

any of the reconstructions. There were also no significant differences between the SUVmean in the

lung for any of the reconstructions that included TOF (i.e. VPFX, VPFXS and QCFX), but there

were significant differences in the SUVmean measured in the lung for the VPHD reconstruction

when compared to the other three reconstructions with all P values <.001.

5.3.2.3 Comparison of FDG Uptake in the Nodules

The nodule SUVmax and SUVmean measured using the four reconstructions are shown in the box

plots in Figure 5.7. Results are shown for all nodules (top row) and separated into malignant

(middle row) and benign nodules (bottom row).
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Fig. 5.7 Box plots showing the SUVmax and SUVmean measured for all nodules (top row), malignant
nodules (middle row) and benign nodules (bottom row) for the four reconstructions. The × denotes the
mean value for each reconstruction.

As can be seen by these box plots, the measured nodule uptake was higher using the VPFXS

and QCFX reconstructions for both SUVmax and SUVmean. This result was more pronounced in

the malignant lesions which tended to have higher uptake than the benign lesions. P values for
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the pairwise comparisons of the uptake measured when using the different reconstructions are

shown in Table 5.6. There were no significant differences between the SUVmax measured for all,

malignant or benign nodules when using VPHD and VPFX or VPFXS and QCFX. There were

significant differences between the SUVmax measured in the nodules for all other reconstructions,

except in benign nodules for VPHD and VPFXS or VPFX and VPFXS.

SUVmax SUVmean

Reconstructions Benign Malignant All Nodules Benign Malignant All Nodules

VPHD vs. VPFX >.99 .91 .94 .99 .88 .90

VPHD vs. VPFXS .90 .01 .03 .95 .01 .03

VPHD vs. QCFX .047 <.001 <.001 .09 <.001 <.001

VPFX vs. VPFXS .87 .001 .006 .86 .001 .003

VPFX vs. QCFX .04 <.001 <.001 .045 <.001 <.001

VPFXS vs. QCFX .22 .36 .28 .27 .28 .23

Table 5.6 P values for pairwise comparison of the uptake measured in the nodules when using the four
different reconstructions. Results are presented for SUVmax and SUVmean across all nodules and separated
into malignant and benign nodules.

Results showed there was no significant difference between the SUVmean measured using

VPHD and VPFX or the VPFXS and QCFX reconstructions either for all nodules nor when

separated into malignant and benign nodules. For benign nodules there was only a significant

difference observed in the SUVmean measured using VPFX and QCFX. When considering all

nodules together, there were significant differences in the SUVmean measured using either the

VPHD or VPFX reconstructions and both the VPFXS and QCFX reconstructions. This was

driven by the difference in SUVmean for the malignant nodules.

Figure 5.8 shows the ROC curves for the diagnostic performance of SUVmax (left) and

SUVmean (right) in predicting malignancy using the four different reconstructions. There was

no significant difference between the AUCs derived using SUVmax and SUVmean when using

VPHD (P=.17), VPFX (P=.74), VPFXS (P=.94) or QCFX (P=.75) reconstructions.
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Fig. 5.8 ROC curves for the diagnostic performance of SUVmax (left) and SUVmean (right) in predicting
malignancy using the four different reconstructions. AUCs are shown with 95 % CIs.

Table 5.7 shows the P values for the pairwise comparisons of the diagnostic performance

of both SUVmax and SUVmean when using the four different reconstructions. As can be seen,

there was no significant difference in the diagnostic performance of the VPHD and VPFX or

VPHD and VPFXS reconstructions when using either SUVmax or SUVmean. There were however

significant differences in the diagnostic performance of both SUVmax and SUVmean when using

VPFX and QCFX and VPFXS and QCFX reconstructions. There were also significant differences

in diagnostic performance between VPHD and QCFX and VPFX and VPFXS but only when

using SUVmax.

Reconstructions SUVmax SUVmean

VPHD vs. VPFX .75 .32

VPHD vs. VPFXS .36 .90

VPHD vs. QCFX .03 .07

VPFX vs. VPFXS .046 .13

VPFX vs. QCFX .008 .006

VPFXS vs. QCFX .01 .01

Table 5.7 P values for pairwise comparison of the diagnostic performance of both SUVmax and SUVmean
when using the four different reconstructions.
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Optimal cut-offs for SUVmax and SUVmean were derived using Youden’s J statistic and are

given in Table 5.8 for each reconstruction. Despite the higher sensitivity seen for QCFX, the

Youden’s index was slightly worse than the other reconstructions due to the lower specificity

and this was seen for both SUVmax and SUVmean. The optimal cut-offs and the sensitivity /

specificity for the VPHD, VPFX and VPFXS were very similar when using SUVmean, however

this was not the case for SUVmax where there were noticeable differences in the sensitivity and

specificity at the optimal cut-off points and the cut-offs for SUVmax ranged from 1.67 for VPFX

to 3.18 for VPHD.

Reconstruction SUV Specificity Sensitivity Youden’s

Cut-off (Sp) (Se) Index

SUVmax VPHD 3.18 0.89 0.76 0.65

VPFX 1.67 0.68 0.95 0.63

VPFXS 2.59 0.75 0.87 0.62

QCFX 2.52 0.66 0.91 0.57

SUVmean VPHD 1.62 0.75 0.87 0.62

VPFX 1.66 0.75 0.88 0.63

VPFXS 1.79 0.75 0.88 0.63

QCFX 1.89 0.68 0.91 0.59

Table 5.8 Optimal cut-offs for SUVmax and SUVmean using the four different reconstructions. Cut-offs
were derived using Youden’s J statistic assuming equal weights for false negative and false positive results.

5.3.2.4 Comparison of Diagnostic Performance for Derivation of Malignancy Risk using

the Herder Score

Figure 5.9 shows the ROC curves for the diagnostic performance of Herder risk scores derived

using a) SUVmax for both nodules and the reference tissues, b) nodule SUVmax and SUVmean for

the reference tissues, and c) SUVmean for both nodules and the reference tissues. The AUCs for

the different reconstructions are shown along with 95 % CIs.
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Fig. 5.9 ROC curves for the diagnostic performance of Herder score derived using a) nodule SUVmax
and SUVmax for the reference tissues, b) nodule SUVmax and SUVmean for the reference tissues, and c)
nodule SUVmean and SUVmean for the reference tissues in predicting malignancy using the four different
reconstructions. AUCs are shown with 95 % CIs.

Pairwise comparison showed no significant difference in AUCs for any of the reconstructions

when using any of the three methods for classifying the 18F-FDG uptake in the nodules as

demonstrated by the P values in Tables 5.9 and 5.10.
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Nodule SUVmax + Nodule SUVmax + Nodule SUVmean +

Reconstructions Ref SUVmax Ref SUVmean Ref SUVmean

VPHD vs. VPFX .83 .19 .81

VPHD vs. VPFXS .40 .18 .52

VPHD vs. QCFX .96 .91 .90

VPFX vs. VPFXS .18 .35 .63

VPFX vs. QCFX .81 .80 .89

VPFXS vs. QCFX .17 .053 .44

Table 5.9 P values for pairwise comparison of the diagnostic performance of Herder score for the different
reconstructions. Results are shown for Herder risk score derived using SUVmax for both nodules and
reference tissues, SUVmax for the nodules and SUVmean for the reference tissues and SUVmean for both
nodules and reference tissues.

Reconstruction

Classification Method VPHD VPFX VPFXS QCFX

Nodule SUVmax vs. Nodule SUVmax .67 .74 .78 .41

+ Ref SUVmax + Ref SUVmean

Nodule SUVmax vs. Nodule SUVmean .26 .81 .11 .36

+ Ref SUVmax + Ref SUVmean

Nodule SUVmax vs. Nodule SUVmean .35 .64 .25 .17

+ Ref SUVmean + Ref SUVmean

Table 5.10 P values for pairwise comparison of the diagnostic performance of Herder score derived using
SUVmax for both nodules and reference tissues, SUVmax for the nodules and SUVmean for the reference
tissues and SUVmean for both nodules and reference tissues. Results are shown for the four different
reconstructions.

Optimal cut-offs for the Herder risk score derived using: SUVmax for both the nodules and

reference tissues; nodule SUVmax and SUVmean for the reference tissues; and SUVmean for both

nodules and reference tissues are given in Table 5.11 for each reconstruction. The diagnostic

performance of the Herder score was slightly worse than when using SUV alone for all methods
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of classification. Use of nodule SUVmax and SUVmean for the reference tissues demonstrated the

greatest difference in cut-offs between reconstructions and had the lowest performance across

all reconstructions. When using SUVmax for both the nodules and reference tissues, VPFX

and VPFXS showed similar performance and the optimal cut-offs were identical. The optimal

cut-offs were identical for VPHD, VPFX and QCFX when using SUVmean for both nodules and

reference tissues. As was seen previously for the SUV results, QCFX showed a higher sensitivity,

but lower specificity compared to the other reconstructions.

Reconstruction Herder Specificity Sensitivity Youden’s

Cut-off (%) (Sp) (Se) Index

Nodule SUVmax VPHD 49.5 0.68 0.87 0.56

+ Ref SUVmax VPFX 23.9 0.66 0.94 0.60

VPFXS 23.9 0.64 0.94 0.58

QCFX 63.8 0.64 0.88 0.52

Nodule SUVmax VPHD 23.5 0.59 0.94 0.53

+ Ref SUVmean VPFX 28.2 0.59 0.95 0.54

VPFXS 50.7 0.61 0.95 0.56

QCFX 75.7 0.73 0.79 0.51

Nodule SUVmean VPHD 49.5 0.71 0.88 0.59

+ Ref SUVmean VPFX 49.5 0.71 0.88 0.59

VPFXS 23.9 0.61 0.94 0.55

QCFX 49.5 0.61 0.94 0.55

Table 5.11 Optimal cut-offs for Herder score using the SUVmax for both the nodules and reference tissues,
nodule SUVmax and SUVmean for the reference tissues and SUVmean for both nodules and reference tissues
for the four different reconstructions. Cut-offs were derived using Youden’s J statistic assuming equal
weights for false negative and false positive results.
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5.4 Discussion

5.4.1 Assessment of the Impact of New Technologies on Image Quality

using the NEMA Phantom

The sphere sizes used for the phantom experiment ranged from 10 mm to 37 mm and were based

on those in the real physical phantom which are derived from the specifications in the NEMA

NU-2 standard [40] However, the range of lesion sizes used in this thesis for the assessment of

diagnostic performance were from 5 mm to 30 mm, therefore in future studies it would be of

interest to extend the range to include smaller sphere sizes especially as this is the range where

the greatest difference is seen between the new and old technologies. Overall the incorporation

of TOF in the OS-EM reconstruction didn’t show a noticeable improvement in bias, SNR or

CNR compared to the OS-EM without TOF. Both the reconstructions with PSF performed better

than the non-PSF reconstructions, with QCFX performing better in terms of minimising bias and

VPFXS performing better for SNR and CNR.

5.4.2 Assessment of the Impact of New Technologies on Diagnostic Perfor-

mance

The AUC when using the Swensen score alone was 0.78, 95 % CI [0.70, 0.85] for the population

used in this thesis which had a prevalence of malignancy of 77.3 %. In the original study by

Swensen et al [171], in which the clinical risk score was derived, the authors reported an AUC of

0.83 ± 0.02, however the prevalence for malignancy in the population studied was much lower at

26.4 %. The later study by Herder et al [9] which developed the Herder risk score combining the

clinical risk with 18F-FDG-PET uptake had a prevalence of malignancy of 57.5 % and reported

an AUC of 0.79, 95 % CI [0.70, 0.85], which was similar to the AUC for the population used in

this thesis. In current clinical practice, only a subset of patients with SPNs would be referred

for 18F-FDG-PET-CT therefore it is to be expected that populations in studies investigating the

usefulness of PET will be biased towards malignant lesions as was the case for the population in
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the study by Murphy et al [165] whose characteristics were used for the population used in this

thesis.

The number of patients used for the investigation of diagnostic performance in this thesis

was relatively small (N=194) and there were significantly more malignant (77.3 %) than benign

lesions (22.7 %). As such, there were not enough patients available to split the study into different

nodule size groups for further analysis. Weir et al investigated the impact of nodule size on the

diagnosis of SPNs in a prospective multicentre trial [194]. They found as lesion size decreased

there was a reduction in sensitivity coupled with an increase in specificity. The authors suggested

the use of different diagnostic thresholds according to the nodule size, with optimal SUVmax

cut-offs of 1.75 for nodules < 12 mm, 2.55 for nodules 12-16 mm and 3.6 for nodules > 16 mm.

In this prospective multicentre study, the scanners used reconstructions that were harmonised

using the NEMA image quality phantom and prevented the use of PSF and BPL. Based on the

results from this thesis, the optimal cut-offs are likely to be different when incorporating these

new technologies. It is therefore important if using specific SUV cut-offs to re-validate and

adjust as required when using the latest PET technologies. With a larger cohort of patients, the

technique used in this thesis could be used in place of real patients for investigating the optimal

cut-offs using these new technologies.

An automated method for delineation of the lesion was chosen to define the SUVmean to avoid

the requirement of manual delineation by an expert which is time-consuming and can be prone

to large inter-observer variability [195, 196]. Use of a threshold based on the maximum voxel

value are popular for segmentation of lesions in PET as they are widely available across vendor

software and easy to implement, however they do not perform well with small and/or low contrast

lesions [95, 197] and the optimal threshold is dependent on the characteristics of the scanner

and the lesion-to-background ratio [198, 199]. Instead, a gradient-based algorithm, PETedge+

(MIM Encore v7.1.5, MIM Software Inc, Cleveland, OH), was chosen. To define the volume

a large spherical VOI was manually placed over the lesion and automatically resized using

the PETedge+ algorithm. Gradient-based methods can also be biased due to spatial resolution

blur which distorts the real lesion boundary [96], however they have been shown to be more
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accurate and robust compared to thresholding techniques particularly in small and/or low contrast

lesions [200].

The PERCIST guidelines recommend using SUVpeak which consists of a 1 cm3 sphere in

the hottest region of the lesion which doesn’t necessarily include the SUVmax [87]. However,

due to the small size of many of the lesions in this study, the SUVpeak volume would extend

beyond the lesion uptake and include lung background within the volume losing the benefit

of increasing the resolution with the new PET technologies. An alternative method has been

proposed by Hasenclever et al and has been applied for assessment of residual uptake for patients

with Hodgkin’s Lymphoma [91]. In this case, the authors defined the SUVpeak as the average

over the maximum SUV voxel and the three hottest adjacent ones.

In a recent study of lymphoma patients, Zwezerijnen et al [201] concluded that the liver

SUVmean was the most reproducible metric compared to SUVmax and SUVpeak when considering

VOI size, location, reconstruction protocol and image noise level. The authors recommended

the use of a 3 cm diameter spherical VOI to determine the SUVmean, as was used in this thesis,

and it is recommended for use in clinical trials. Whilst tumour SUVmax has been shown to have

high inter-observer reproducibility for the same image [202], it has been shown to have poor

inter-study reproducibility compared to SUVmean [203, 204]. In a meta-analysis by Lodge et

al, repeatability for SUVmax and SUVmean were found to be similar [205]. This was due to the

fact that whilst SUVmean uses volume averaging across voxels, and therefore is less influenced

by noise than SUVmax, delineation of tumours was less consistent than selection of the single

hottest voxel.

In the original study by Herder et al, the authors used visual grading for grouping the SPN

uptake according to a 4-point ordinal scale of absent, faint, moderate and intense [9]. No further

detail was provided by the authors to indicate how the visual grading was performed making it

difficult to reproduce as the scale is subjective and may be different depending on the readers

experience and thresholding of the PET images. The BTS guidelines recommend qualitative

assessment using the following four-point scale [7]:
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• Absent: uptake indiscernible from background lung tissue

• Faint: uptake less than or equal to mediastinal blood pool

• Moderate: uptake greater than mediastinal blood pool

• Intense: uptake markedly greater than mediastinal blood pool

Again, this scale could be interpreted differently by different readers, particularly when differen-

tiating between moderate and intense uptake. For the purposes of this thesis, the SPN uptake

was classified according to the ordinal scale provided by Murphy et al [165]. This scale closely

matches the BTS guideline, except it specifies the use of SUVmax as cut-offs for the reference

tissues and intense uptake is defined as > 2 x the liver SUVmax. The BTS scale is widely used in

UK clinical practice and has been shown to have good interobserver agreement [180, 179]. In

the multi-observer study by Fatania et al [180], the authors found no significant difference in the

diagnostic accuracy for classifying SPN 18F-FDG uptake according to the BTS four-point scale

(AUC=0.768) compared to using SUVmax (AUC=0.794), P=.43. Therefore it is reasonable to

expect the results from this thesis using the SUVmax to confirm the classification of SPN uptake

reflect those of visual assessment using the BTS scale which is more representative of clincial

practice.

The Youden’s J statistic was used to derive the optimal cut-offs for the SUV and Herder

risk scores. The index applies equal weight to the sensitivity and specificity, however, use of

a diagnostic threshold that favours sensitivity over specificity is generally used in the clinical

management of SPNs to minimise the number of false-negative test results. This is because

the consequences of missing a malignant SPN and missing an opportunity for treatment is

more undesirable than the consequences of a false-positive test result which may involve an

unnecessary biopsy or surgery [11].
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The uptake measured for the reference tissues using SUVmax was found to be variable across

the different reconstructions and did not reflect the results for background variability (BV) and

image roughness (IR) from the phantom measurements. The SUVmean however appeared to be

more stable across reconstructions for both the MBP and liver and may prove a more reliable

measurement.

Compared to the Swensen score alone, incorporation of the degree of 18F-FDG resulted

in an improved diagnostic performance regardless of the reconstruction used or the method of

measurement. Interestingly, use of SUV without incorporation of the clinical and radiological

characteristics demonstrated better diagnostic performance, suggesting that the weighting of

the PET component in the Herder score equation could be increased to improve the diagnostic

accuracy further. There was no significant difference seen in the diagnostic performance of the

Herder score when using TOF, PSF modelling or the BPL reconstruction although optimal cut-

offs were different depending on the method of uptake classification used and the reconstruction.

There were significant differences between the diagnostic performance for the different

technologies when using SUV particularly for the BPL reconstruction which also demonstrated

the lowest AUC for both SUVmax and SUVmean. This is due to the fact that whilst the sensitivity

increased, the specificity also decreased compared to the other reconstructions. Ultimately, this

is due to the fact that 18F-FDG is a non-specific radiotracer and by improving the recovery of

the signal in smaller objects, more benign lesions are being classified as malignant. Use of

appropriate cut-offs for newer technologies would therefore be required to ensure that there isn’t

an unacceptable decrease in specificity resulting in significant false positives. Results showed no

significant difference in the diagnostic performance of nodule SUVmax and SUVmean when using

the same reconstruction suggesting either metric could be used for measuring nodule uptake.
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Overall Conclusions & Discussion

6.1 Overall Conclusions

Continuous improvements in PET scanner instrumentation and more accurate corrections within

the system model have led to a range of technologies in clinical use. Evaluation of the impact of

these technologies on clinically relevant measures is challenging, particularly as repeat scanning

of individuals is unethical due to the risks of ionising radiation. Current methods of assessment

often use small cohorts of patients where the ground truth is unknown or phantom studies

which don’t take account of the wide variation in patient sizes and noise levels observed in

patients. Novel methods for assessing the impact of new technologies on clinically relevant

measures are needed to ensure they are implemented appropriately. The aim of this thesis was to

develop the methodology for the simulation of realistic lesions and their insertion into patient

datasets to allow the generation of a large number of PET images that could then be used in

place of real PET scans for evaluating new technologies in virtual imaging trials. To ensure the

images generated using the proposed methodology could be reliably used in place of patient

PET images acquired on the real PET scanner, the methodology was validated by comparing

the diagnostic performance for a cohort of patients with simulated lesions against a cohort

of patients with known solitary pulmonary nodules (SPNs). A virtual imaging trial was then

performed to investigate the use of time-of-flight (TOF), point spread function (PSF) modelling
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and a Bayesian penalised likelihood (BPL) reconstruction algorithm on quantitative measures of

18F-FDG uptake and the diagnostic performance in separating malignant and benign lesions for

a cohort of patients with simulated SPNs.

A model of the clinical PET system was designed using the GATE toolkit and this was used

for performing Monte Carlo simulations of the lesions in this thesis. The toolkit incorporates

well-validated physics models which can accurately simulate an object containing radioactivity

and the response of the imaging system. To generate images as close as possible to the real

scanner, data from the simulations were binned into sinograms and inserted into existing real

PET data accounting for attenuation, normalisation, randoms and intrinsic radiation prior to

reconstruction using the GE Duetto toolbox. The performance of the model was tested using

simulated phantoms following the NEMA NU-2 standard. The results presented in Chapter 3

showed the spatial resolution for the model was within 1.00 mm of the real PET scanner when

using the clinical reconstruction (OS-EM with TOF, 2 iterations, 24 subsets and 6.4mm Gaussian

post filter). The model also had identical system sensitivity and the axial slice sensitivity was

within 1.6 ± 2.3 % of the real PET scanner. Real pulmonary nodules from 10 patients were

segmented and used as input for simulating lesions that were then inserted into the contralateral

lung of the same patient. This method was shown to be able to generate clinically realistic

lesions with SUVmax and SUVmean measurements within −0.20 ± 0.29 and 0.00 ± 0.19 of the

real lesions they were modelled on.

The next stage of the thesis was to show that the proposed methodology could generate PET

images combining the physiological and anatomical variation observed in patients with realistic

simulated lesions where the characteristics (18F-FDG uptake, size, appearance and location) were

defined using the those from real tumours. Validation of the methodology consisted of comparing

the diagnostic performance for a virtual population of patients with simulated lesions against a

real cohort of patients scans with known SPNs. SUVmax measurements for the simulated lesions

showed good agreement with the SPNs and there was no significant difference in the diagnostic

performance for predicting malignancy. As such, the novel method described in this thesis is
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suitable for generating virtual PET images to use as a surrogate for populations of patients in

virtual imaging trials.

One of the key aims of this thesis was to evaluate the impact of TOF, PSF modelling and a BPL

reconstruction algorithm on image quality and diagnostic accuracy. First a phantom assessment

was performed to investigate the impact of these technologies on noise, signal-to-noise ratio

(SNR) and contrast-to-noise ratio (CNR) as well as bias in quantitative measures. Next, PET

images for a population of patients with simulated SPNs were generated using the novel method

described in Chapters 3 and 4. The diagnostic accuracy in determining malignancy was assessed

using SUV alone and in combination with the clinical and radiological characteristics using the

Herder risk score. The phantom results demonstrated incorporation of PSF and use of the BPL

reconstruction outperformed OS-EM with and without TOF. The OS-EM with PSF showed the

maximum SNR and CNR across all sphere sizes, whilst the BPL reconstruction demonstrated

the smallest bias. This suggests that use of PSF would improve diagnostic accuracy for lesion

detection tasks, whereas the BPL reconstruction would be optimal for accurate quantification. In

the assessment of SPNs the location of the lesions is already known from previous radiological

imaging and the degree of PET uptake is used to help in classifying the lesions as malignant or

benign. The diagnostic performance of PET for classifying the SPNs was shown to be better than

using clinical and radiological characteristics alone and this was true for all technologies and

SUV metrics. Overall, use of SUV performed better when used alone rather than incorporating

with the clinical and radiological characteristics. This is likely due to the fact that the original

Herder score was derived using old PET technology consisting of a PET-only bismuth germanate

(BGO) system acquiring in 2D mode and the diagnostic sensitivity has significantly improved

with newer 3D PET-CT systems. The reduction in diagnostic performance when using the Herder

score may however be balanced out by the fact that there was no significant difference in the

results seen for the different reconstructions or the different SUV metrics.

The majority of publications investigating the diagnostic accuracy of 18F-FDG-PET in

determining the risk of malignancy in SPNs omitted details about the methodology used for

analysis of the PET uptake or were missing important technical information about the PET
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acquisition and reconstruction. However, determination of uptake using visual methods alone

has been shown to have good interobserver reproducibility when using the four-point scale

recommended by the BTS guidelines [180] and represents current UK clinical practice [7].

There are several technical, physical and biological factors that can affect quantification using

SUVs [176] however with careful standardisation of protocols and scanner harmonisation, the

within-subject repeatability of tumour SUVs can be reduced to give a coefficient of variation of

approximately 10 % [205]. Published studies should include details about the PET acquisition

and reconstruction parameters used to provide the reader with an idea of the repeatability and

technology included. Recommended information to include would be whether the study was

single- or multi-centre and, if the latter, whether harmonisation of scanners and protocols was

performed. There are a number of professional bodies that promote harmonisation schemes for

PET, such as the European Association of Nuclear Medicine Research Ltd (EARL) accreditation

program, the Society of Nuclear Medicine and Molecular Imaging (SNMMI) Clinical Trials

Network and the American College of Radiology (ACR) Imaging Network, all of which have

slightly different standards and use various phantoms so details of the scheme should be included

or if a local harmonisation methodology was used this should be provided as supplemental

information. A full table of scanner models and reconstruction parameters used in the study

would be ideal, but in cases where this isn’t feasible, the data should at least describe the range

of technology included in the study: for example PET-CT and PET-MR, TOF, PSF, BPL or solid

state photon detectors.

There are a number of clinical applications for PET in oncology [1]. The focus of the work

in this thesis was to investigate the impact of new PET technologies on the characterisation of

SPNs using a four-point scale. Similarly, response assessment of lymphoma uses a five-point

scale, known as the Deauville score [206], which compares the uptake in the lymph nodes to

reference tissues. Recent studies have shown management changes in 4.3 % of patients when

using BPL [207] and 5 % for OS-EM with PSF [208] when compared to OS-EM alone. The

current guidelines for management of lymphoma patients were developed before the introduction

of these new PET technologies. Virtual imaging trial (VIT) could therefore have a role in
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predicting the impact of these technologies on quantitative assessment of treatment response

in lymphoma and subsequent changes in therapeutic decisions without the need to perform

large-scale clinical trials. The novel methodology described in this thesis could be applied

to perform these VITs. A statistical model such as that described by Tomei et al [209] or a

generative adversarial network (GAN) (see Section 4.4) could be used to generate lymphoma

lesions with realistic sizes, locations and uptakes to be used as input for the Monte Carlo model.

PET-CT is also used in staging and detection of recurrence or metastatic disease for a number

of oncological applications. As discussed in Chapter 2, improvements in PET hardware and

software have led to increased spatial resolution and contrast recovery providing better small

lesion detection [210]. To predict the performance of human observers in task-based assessments,

such as lesion detection, the PET data generated using the methodology described in this thesis

could be used to develop mathematically derived model observers [211] or convolutional neural

network-based model observers, such as that described by Han et al [212]. These could then

be applied to datasets reconstructed using different algorithms or using advanced corrections

removing the reliance on experienced reviewers.

3D PET scans are typically acquired over 2-3 minutes with patients breathing freely, whilst

the CT is acquired within a fraction of the respiratory cycle. As a result of respiratory motion,

the uptake in lesions is blurred on PET and can be mis-registered with CT leading to inaccurate

attenuation correction [156]. Respiratory gating using external devices, consisting of a camera or

pressure belt, that track movement of the chest wall have been available for some years. However,

clinical adoption has been limited due to the complexities of the device set up [7]. More recently

data-driven respiratory gating (DDG) has become available on clinical PET systems, where

software is used to extract the respiratory waveform from the PET data, removing the need for

an external device. In recent studies, the performance of two DDG solutions was compared to

external gating devices. Büther et al retrospectively assessed the Siemens DDG solution on the

Biograph mCT for 56 patients with suspected malignancies in the thorax and abdomen [213].

The authors found the DDG method was able to generate accurate respiratory signals and produce

results comparable to the ANZAI belt system (Anzai Medical Co. Ltd, Tokyo, Japan). In another
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retrospective study by Walker et al, the DDG solution on the GE Discovery 690 and 710 was

compared to the Varian camera-based, real-time position management (RPM) system (Varian

Medical Systems) in 144 patients who underwent wholebody 18F-FDG-PET-CT [214]. Results

showed the DDG system had a lower failure rate compared to the external device, a larger

increase in SUVmax and improved image quality as rated by an experienced radiologist. Routine

use of DDG in four-dimensional (4D) PET-CT has the potential to improve lesion detection and

quantification, particularly in small pulmonary nodules located close to the diaphragm where

respiratory motion is greatest [215]. VITs could be used in this context to compare 3D and

4D-PET-CT along with advanced reconstruction algorithms and incorporation of PSF to assess

the impact of on the diagnostic accuracy for characterisation of SPNs. The lesion simulation

methodology described in this thesis could be adapted to incorporate respiratory motion by using

real patient respiratory patterns to split the simulations into shorter time frames based on the

respiratory cycle and shifting the voxelised phantom containing the lesion between frames.

With careful validation the use of artificial intelligence (AI) is likely to become widely

adopted for the formation of images and reconstruction in medical imaging, including PET [216].

By training with existing PET data, AI can take advantage of the vast amount of prior information

and incorporate this in the image reconstruction to improve spatial resolution and reduce noise.

Further, the AI can learn to optimise the image for a given clinical task. AI also has a role

in the interpretation of medical images and, with validation and regulatory approval, adoption

of commercial AI applications for medical image assessment will lead to more accurate and

efficient use of data for diagnosis and characterisation of diseases. This has the potential to

improve patient management and reduce unnecessary additional imaging or interventions. In

particular, there have been a number of AI applications developed to detect and characterise

pulmonary nodules based on CT from lung cancer screening [217]. In the UK an NIHR-funded

multi-centre prospective observational cohort study, Determining the Impact of Optellum’s Lung

Cancer Prediction Solution (DOLCE), has just opened. The intention of the study is to compare

physician decision making using the current standard of care with an AI-based lung cancer

prediction (LCP) tool in 5-30mm solid and part-solid pulmonary nodules. If the study shows
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there are clinical and health-economic benefits of the LCP tool this will provide the evidence to

support clinical translation of this emerging AI technology.

The latest generation of clinical PET-CT scanners now incorporate silicon photomultiplier

(SiPM) detectors in place of photomultiplier tubes (PMTs) [218]. As a result, the TOF resolution,

spatial resolution and sensitivity have significantly improved compared to the equivalent PMT-

based system evaluated in this thesis. Further work looking at these newer systems would be

of great interest as data is currently very limited in the literature and a number of UK sites are

installing these systems. With continued manufacturer co-operation, modification of the model

in GATE would be feasible to set up the latest GE MI PET-CT scanner (General Electric Medical

Systems, GEMS, Milwaukee, WI). Access to the raw and reconstructed PET data for patients

scanned on the GE MI would need to be sought, but if that could be achieved, virtual imaging

trials using the methodology proposed in this thesis could be performed to investigate how the

significant improvements in TOF resolution, spatial resolution and sensitivity would impact on

clinically relevant measures. This would be particularly valuable in the context of clinical trials

either for helping inform the appropriate technical inclusion/exclusion criteria when designing

PET studies, or for deciding whether to include certain PET data retrospectively.
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Appendix A

Macro used to Define the PET Scanner

Geometry in GATE

## Define the WORLD geometry:

# Needs to be slightly larger than inserted scanner and phantom objects

/gate/world/geometry/setXLength 90. cm

/gate/world/geometry/setYLength 90. cm

/gate/world/geometry/setZLength 52. cm

/gate/world/setMaterial Air

## Define the scanner DETECTOR GEOMETRY:

# PET system => cylindricalPET [LEVEL 0]

/gate/world/daughters/name cylindricalPET

/gate/world/daughters/insert cylinder

/gate/cylindricalPET/placement/setTranslation 0.0 0.0 0.0 cm

/gate/cylindricalPET/geometry/setRmax 445. mm

/gate/cylindricalPET/geometry/setRmin 400. mm
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/gate/cylindricalPET/geometry/setHeight 157.1 mm

/gate/cylindricalPET/setMaterial Air

# GE PET module => rsector [LEVEL 1]

/gate/cylindricalPET/daughters/name rsector

/gate/cylindricalPET/daughters/insert box

/gate/rsector/placement/setTranslation 417.6 0.0 0.0 mm

/gate/rsector/geometry/setXLength 25.0 mm

/gate/rsector/geometry/setYLength 78.1 mm

/gate/rsector/geometry/setZLength 156.7 mm

/gate/rsector/setMaterial Air

# GE PET unit => module [LEVEL 2]

/gate/rsector/daughters/name module

/gate/rsector/daughters/insert box

/gate/module/placement/setTranslation 0.0 0.0 0.0 mm

/gate/module/geometry/setXLength 25.0 mm

/gate/module/geometry/setYLength 78.1 mm

/gate/module/geometry/setZLength 156.7 mm

/gate/module/setMaterial Air

# GE PET block => submodule [LEVEL 3]

/gate/module/daughters/name submodule

/gate/module/daughters/insert box

/gate/submodule/placement/setTranslation 0.0 0.0 0.0 mm

/gate/submodule/geometry/setXLength 25.0 mm

/gate/submodule/geometry/setYLength 38.35 mm

/gate/submodule/geometry/setZLength 38.35 mm

/gate/submodule/setMaterial Air
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# PET crystal => crystal [LEVEL 4]

/gate/submodule/daughters/name crystal

/gate/submodule/daughters/insert box

/gate/crystal/placement/setTranslation 0.0 0.0 0.0 mm

/gate/crystal/geometry/setXLength 25. mm

/gate/crystal/geometry/setYLength 4.26 mm

/gate/crystal/geometry/setZLength 6.39 mm

/gate/crystal/setMaterial LYSO

# Repeat the crystal array (9 x 6) => crystal [LEVEL 4] # no gaps

/gate/crystal/repeaters/insert cubicArray

/gate/crystal/cubicArray/setRepeatNumberX 1

/gate/crystal/cubicArray/setRepeatNumberY 9

/gate/crystal/cubicArray/setRepeatNumberZ 6

/gate/crystal/cubicArray/setRepeatVector 0.0 4.26 6.39 mm

# Repeat the block array (2 x 4) => submodule [LEVEL 3]

/gate/submodule/repeaters/insert cubicArray

/gate/submodule/cubicArray/setRepeatNumberX 1

/gate/submodule/cubicArray/setRepeatNumberY 2

/gate/submodule/cubicArray/setRepeatNumberZ 4

/gate/submodule/cubicArray/setRepeatVector 0.0 39.75 39.45 mm

# Repeat the unit array (1 x 1) => module [LEVEL 2]

/gate/module/repeaters/insert cubicArray

/gate/module/cubicArray/setRepeatNumberX 1

/gate/module/cubicArray/setRepeatNumberY 1

/gate/module/cubicArray/setRepeatNumberZ 1
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/gate/module/cubicArray/setRepeatVector 0.0 0.0 0.0 mm

# Repeat the module array => rsector [LEVEL 1]

/gate/rsector/repeaters/insert ring

/gate/rsector/ring/setRepeatNumber 32

# Attach the modules (rsector), units (module), blocks (submodule) and crystals

to the PET system

/gate/systems/cylindricalPET/rsector/attach rsector

/gate/systems/cylindricalPET/module/attach module

/gate/systems/cylindricalPET/submodule/attach submodule

/gate/systems/cylindricalPET/crystal/attach crystal

# Attach the crystal as a sensitive detector

/gate/crystal/attachCrystalSD

202


	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 The Role of Positron Emission Tomography in Oncology
	1.2 Methodological Advances in PET
	1.3 Challenges in Assessment of Advances in PET
	1.4 Virtual Imaging Trials
	1.5 Thesis Objectives and Structure

	2 Background
	2.1 Principles of Positron Emission Tomography
	2.1.1 Positron Decay
	2.1.2 Coincidence Detection
	2.1.2.1 True, Random and Scattered Coincidence Events

	2.1.3 PET Instrumentation
	2.1.3.1 PET Acquisition
	2.1.3.2 2D and 3D PET Systems
	2.1.3.3 Partial Volume Effect
	2.1.3.4 Time-of-Flight

	2.1.4 Reconstruction
	2.1.4.1 Filtered Backprojection
	2.1.4.2 Iterative Reconstruction
	2.1.4.3 Bayesian Penalised Likelihood Reconstruction

	2.1.5 Corrections
	2.1.5.1 Attenuation
	2.1.5.2 Normalisation
	2.1.5.3 Randoms
	2.1.5.4 Scatter
	2.1.5.5 Point Spread Function Modelling


	2.2 Image Quality Assessment in Medical Imaging
	2.2.1 Technical Image-based Metrics
	2.2.1.1 Noise Metrics
	2.2.1.2 Signal Metrics
	2.2.1.3 Recovery Coefficients

	2.2.2 Task-based Image Assessment
	2.2.2.1 Classification Tasks
	2.2.2.2 Estimation Tasks

	2.2.3 Quantification in PET
	2.2.4 Phantoms for Image Quality Assessment
	2.2.5 Monte Carlo Modelling

	2.3 Virtual Imaging Trials

	3 Design and Validation of Monte Carlo Simulations of the GE Discovery 710 and Simulated Lesion Insertion Technique
	3.1 Introduction
	3.2 Methods
	3.2.1 Monte Carlo PET Simulations
	3.2.1.1 Modelling the GE Discovery 710 PET scanner
	3.2.1.2 Defining the Phantom Input
	3.2.1.3 Processing the Output PET Data from the Simulation
	3.2.1.4 Simulating Lesions

	3.2.2 Validation of the Scanner Model using Phantoms
	3.2.2.1 Spatial Resolution
	3.2.2.2 System Sensitivity
	3.2.2.3 Validation of Corrections

	3.2.3 Phantom Validation of the Lesion Insertion Technique
	3.2.4 Insertion into Clinical Data
	3.2.4.1 Quantitative Assessment
	3.2.4.2 Clinical Observer Study


	3.3 Results
	3.3.1 Validation of the Scanner Model using Phantoms
	3.3.1.1 Spatial Resolution
	3.3.1.2 System Sensitivity
	3.3.1.3 Validation of Corrections

	3.3.2 Phantom Validation of the Lesion Insertion Technique
	3.3.3 Insertion into Clinical Data
	3.3.3.1 Quantitative Assessment
	3.3.3.2 Clinical Observer Study


	3.4 Discussion
	3.5 Conclusions

	4 Generation and Validation of PET Images of Patients with Realistic Simulated Solitary Pulmonary Nodules
	4.1 Introduction
	4.2 Methods
	4.2.1 Simulation of the Solitary Pulmonary Nodules
	4.2.1.1 Automatic Generation of Synthetic Lesions

	4.2.2 Quantitative Evaluation of FDG Uptake in the Reference Tissues and SPNs
	4.2.2.1 Derivation of the Malignancy Risk using PET
	4.2.2.2 Statistical Analysis of Results for Healthy and SPN Cohorts


	4.3 Results
	4.3.1 Quantitative Evaluation of FDG Uptake in the Reference Tissues
	4.3.1.1 Comparison of Regions used for Reference Tissue Measurements
	4.3.1.2 Comparison of Reference Tissue Uptake in the SPN and Healthy Patient Cohorts

	4.3.2 Quantitative Evaluation of FDG Uptake in the SPNs
	4.3.2.1 Comparison of SUV Measured for the Real SPNs and Simulated Lesions
	4.3.2.2 Comparison of Classification of FDG Uptake for the Real SPNs and Simulated Lesions
	4.3.2.3 Comparison of Herder Risk Score for the Real SPNs and Simulated Lesions


	4.4 Discussion
	4.5 Conclusions

	5 Phantom and Clinical Assessment of the Impact of New PET Technologies on Image Quality and Diagnostic Performance for Determining Risk of Malignancy in Solitary Pulmonary Nodules
	5.1 Introduction
	5.2 Methods
	5.2.1 Assessment of the Impact of New Technologies on Image Quality using the NEMA Phantom
	5.2.1.1 Generation of NEMA Phantom Images with Simulated Spheres
	5.2.1.2 Assessment of Noise in the Phantom Background
	5.2.1.3 Assessment of the Signal Recovery in the Spheres

	5.2.2 Assessment of the Impact of New Technologies on Diagnostic Performance
	5.2.2.1 Generation of Patient PET Images with Simulated Lesions
	5.2.2.2 Clinical and Diagnostic Characteristics
	5.2.2.3 Quantitative Evaluation of FDG Uptake in the Reference Tissues and SPNs
	5.2.2.4 Derivation of Malignancy Risk
	5.2.2.5 Statistical Analysis


	5.3 Results
	5.3.1 Assessment of the Impact of New Technologies on Image Quality using the NEMA Phantom
	5.3.1.1 Assessment of Noise in the Phantom Background
	5.3.1.2 Assessment of the Signal Recovery in the Spheres

	5.3.2 Assessment of the Impact of New Technologies on Diagnostic Performance
	5.3.2.1 Comparison of Diagnostic Performance for Derivation of Malignancy Risk using the Swensen Score
	5.3.2.2 Comparison of FDG Uptake in the Reference Tissues
	5.3.2.3 Comparison of FDG Uptake in the Nodules
	5.3.2.4 Comparison of Diagnostic Performance for Derivation of Malignancy Risk using the Herder Score


	5.4 Discussion
	5.4.1 Assessment of the Impact of New Technologies on Image Quality using the NEMA Phantom
	5.4.2 Assessment of the Impact of New Technologies on Diagnostic Performance

	5.5 Conclusions

	6 Overall Conclusions & Discussion
	6.1 Overall Conclusions

	References
	Appendix A Macro used to Define the PET Scanner Geometry in GATE

