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Abstract
The gravitational-wave background (GWB) is a superposition of many as-

trophysical and cosmological sources, such as unresolved compact binaries,

cosmic strings, and phase transitions in the early universe. The first three

observing runs by LIGO/Virgo/KAGRA (LVK) have not made a detection

of the background. Nonetheless, the existing stringent upper limits can be

used to constrain theoretical models and study the early Universe.

In this thesis we explore the various aspects of the GWB - from its

detection to implications. We start with a careful treatment of correlated

magnetic noise sources that could limit our intrinsic detector sensitivity,

and even yield a false detection. In a separate study, we highlight the im-

portance of source separation in the case of a detection. By separating the

individual sources we may reveal remnants of early Universe processes.

The gravitational radiation that decoupled soon after the Big Bang is a

window into physics at energy scales inaccessible to particle colliders. We

search for GWB from a first-order phase transition in the LVK frequency

range, and in this way place constraints on couplings and masses of parti-

cles beyond the Standard Model. New physics could also present itself in

the form of parity violation in the early Universe and we search for hints

of a polarised GWB. Additionally, we study mergers of remnants formed

by the hypothetical first stars in the Universe, and the GWB they create.

We look ahead and investigate detection prospects with proposed detector

upgrades, providing strong motivation for the next generation of detec-

tors. Finally, we test general relativity using data on rotation curves of the

surrounding galaxies, and by measuring the speed of gravitational waves.
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Chapter 1

Introduction & Motivation

The first direct detection of gravitational waves (GWs) occurred on Septem-

ber 14th 2015 [1]. Advanced LIGO [2], a detector on Earth, was sensitive

to the stretching and shrinking of space-time from GWs emitted during a

merger of two black holes. This extreme event took place over a billion

years ago, at a luminosity distance of 410 Mpc. The discovery verified

predictions from Einstein’s theory of general relativity (GR) and allowed

us to study the strong-gravity regime of the theory [3, 4]. It has also re-

sulted in the emergence of gravitational-wave astronomy, with numerous

GW detections following the first one [5].

During their first two observational runs, O1 and O2, Advanced LIGO

and Advanced Virgo [6] detected gravitational wave signals from 10 binary

black hole (BBH) mergers, and one binary neutron star (BNS) merger [7].

During the third observation run (O3), numerous low-latency alerts for

binary black hole, binary neutron star, and neutron star-black hole merg-

ers were sent out to astronomers [8]. Exceptional events from O3 have

been published, including new compact neutron star-black hole merg-

ers [9, 10, 11]. All of the compact binary coalescences (CBCs) during the

first three observing runs mount to a staggering 90 GW events [12, 13, 14].

These detections have already made a broad-reaching impact on stellar as-

trophysics, the study of dense nuclear matter, and beyond [15].

Looking ahead, GWs may allow us to probe the earliest epochs of the
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Universe. Take for instance the precise measurement of the cosmic mi-

crowave background (CMB) [16] — although a very powerful tool, it can

only reveal information about the Universe up to the surface of last scat-

tering, 380,000 years after the Big Bang. Before this, the Universe was

opaque to electromagnetic radiation since it had not cooled down enough

for electrons and protons to combine into hydrogen atoms, and the hot

plasma contained free electrons that scattered photons [17, 18]. Gravita-

tional waves, however, were free to roam, and with sensitive enough in-

struments we could detect this relic radiation.

The focus of this thesis is the fraction of energy-density of the Universe

contained in gravitational waves, known as gravitational-wave background

(GWB). In Chapter 1 we define gravitational waves within the framework

of GR. We elaborate on the detectors that have been built to detect gravi-

tational waves, as well as future detector proposals. We then describe the

GWB and its detection methods, highlighting the well-studied astrophys-

ical contribution to the background. We finish with a discussion on some

of the difficulties due to the presence of correlated noise sources.

In Chapter 2 we dive into the GWB search strategy and novel methods

that we have developed to remove correlated magnetic noise. We present

an application of our methods to the third observing run O3. We finish

with the first detailed study on the impact of magnetic noise sources on the

sensitivity of the proposed Einstein Telescope, where we made projections

for necessary improvements in future GW detectors. Chapter 3 tackles

source separation of a GWB signal. Once a detection is made, we will

face the difficult task of identifying its origin. With the use of Bayesian

and machine learning tools, we find limits to separating sources in current

and future detectors. We study possible astrophysical and cosmological

implications of GWB detection in Chapter 4, ranging from primordial stars,

early Universe phase transitions to signs of parity violation. In Chapter 5

we investigate modifications to GR theory of gravity, and whether these
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leave an imprint on astrophysical and GW data. Concluding remarks can

be found in Chapter 6.

Throughout we adopt common notation, with Greek letters represent-

ing space-time indices and Roman letters representing spatial indices. Re-

peating indices are summed over under Einstein notation, e.g. a scalar

product of two n-dimensional vectors a⃗ and b⃗ is aibi = ∑n
i=1 aibi.

1.1 Gravitational waves
General relativity describes the fabric of space-time as a manifold with a

metric on it, gµν. The metric is a function of the coordinates, xµ = (ct, x,y,z),

and it defines lengths and times on the manifold 1. To define covariant

derivatives on the manifold, one requires Christoffel symbols:

Γρ
µν =

1
2

gρσ(∂µgσν + ∂νgσµ − ∂σgµν) , (1.1)

where ∂µ =
∂

∂xµ . Curvature of space-time is captured by the Riemann tensor,

Rµ
νρσ = ∂ρΓµ

νσ − ∂σΓµ
νρ + Γµ

ηρΓη
νσ − Γµ

ησΓη
νρ , (1.2)

the Ricci tensor, Rµν = Rη
µην, and the Ricci scalar, R = gµνRµν. The Ricci

scalar defines the gravitational action

S =
c3

16πG

∫
d4x

√
−g R +

∫
d4x

√
−g Lm , (1.3)

with Lm as the matter Lagrangian, and g as the determinant of the metric.

Varying the action with respect to gµν, one finds Einstein’s field equations

Rµν −
1
2

gµνR =
8πG

c4 Tµν , (1.4)

1Here we highlight the most important ideas of GR. Further reading on the topic can
be explored in the many graduate textbooks, e.g. [19, 20, 21].
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where the matter part of the action defines the energy-momentum tensor

Tµν, namely δ(
∫

d4x
√−g Lm)≡

∫ 1
2cd4x

√−gTµνδgµν. The Einstein’s equa-

tions are invariant under diffeomorphism, i.e. coordinate transformation

gµν(x)→ g′µν(x′) =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x). (1.5)

If there is no matter present Tµν = 0, the simplest solution to Einstein’s

equations is the Minkowski flat-space metric, ηµν =diag(−1,1,1,1), leading

to the special theory of relativity.

1.1.1 Linearised gravity

In this thesis we study GWs originated from distant sources, hence we can

work in the weak-gravity regime. For very small perturbations around flat

space-time, |hµν| ≪ 1, one can write

gµν = ηµν + hµν. (1.6)

There are several subtleties between symmetries of the full versus the lin-

earised theory of gravity and we discuss these briefly here. Note that

the diffeomorphism covariance is broken in linearised gravity because

only a limited choice of coordinates satisfies |hµν| ≪ 1. Instead, lin-

earised gravity is invariant under infinitesimal coordinate transformation,

xµ → x′µ = xµ + ξµ(x), provided that derivatives of ξµ(x) are at most of the

order |hµν|, giving

hµν(x)→ h′µν(x′) = hµν(x)− (∂µξν + ∂µξν). (1.7)

The linearised theory exhibits the Poincaré symmetry of translations,

boosts and rotations. The two latter transformations are often referred to

as Lorentz transformations,

x′µ → Λµ
ν xν. (1.8)
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These transformations leave the Minkowski metric unchanged

ηµν = Λρ
µΛσ

ν ηρσ, (1.9)

leading to Lorentz invariance of special theory of relativity. Therefore,

every infinitesimal space-time region obeys Lorentz covariance locally, with

physical laws independent of the inertial frame of reference.

Keeping only terms up to linear order in hµν, the Riemann tensor is

Rµνρσ =
1
2
(∂ν∂ρhµσ + ∂µ∂σhνρ − ∂µ∂ρhνσ − ∂ν∂σhµρ). (1.10)

Rewriting the perturbation in its trace-reversed form, h̄µν = hµν − 1
2 ηµνh,

the Einstein’s field equations become

□h̄µν + ηµν∂ρ∂σh̄ρσ − ∂ρ∂νh̄µρ − ∂ρ∂µh̄νρ = −16πG
c4 Tµν. (1.11)

With existing gauge freedom, we can simplify equations by fixing the

Lorenz gauge

∂νh̄µν = 0. (1.12)

The Einstein’s field equations are then a set of wave equations:

□h̄µν = −16πG
c4 Tµν. (1.13)

Combining the Lorentz gauge with the transverse-traceless (TT) gauge,

h0µ = 0, hi
i = 0, ∂jhij = 0, (1.14)
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leads to the following solution to the wave equations (1.13)

hTT
µν (t,z) =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

cos[ω(t − z/c)], (1.15)

where ω is the angular frequency of the wave. The GW perturbation is

a plus- (+) and cross- (×) polarised plane wave travelling along the z-

direction at the speed of light c. In the following section we describe how

GWs are generated, highlighting the merging of compact objects that has

been observed in Advanced LIGO/Virgo detectors.

1.1.2 Sources of gravitational radiation

For a system with mass density ρ(x⃗) to radiate away gravitational energy,

it must have a non-zero quadrupole moment, Iij, with the traceless part of

the quadrupole moment

IT
ij =

∫
ρ(x⃗)

[
rirj −

1
3

r2δij

]
d3r. (1.16)

The gravitational waves emitted are then given by

hTT
ij (t,r) =

2G
c4r

∂2 IT
ij (t − r/c)

∂t2 , (1.17)

and the energy radiated away in gravitational waves is

dE
dt

= − G
5c5

(
dIT

ij

dt3

)2

. (1.18)

The nature of GW radiation can be broadly divided into three categories:

• transient,

• continuous,
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• and background.

Transient GWs can be in the form of short bursts or the inspiral of two

compact objects (black hole/neutron star) orbiting one another [22]. Con-

tinuous waves are emitted by highly-spinning neutron stars, pulsars, that

slow down over time due to the loss of gravitational-wave energy. Finally

there are gravitational waves that originate from random, unresolved and

independent sources and combine to create a background, e.g. the gravita-

tional radiation from the early Universe. Below we discuss in more detail

the different types of GWs and what sources them.

Transient GW sources

Bursts of GWs may be emitted by cosmic strings, hypothetical 1-D topolog-

ical defects, and their features i.e. cusps and kinks [23]. Cosmic strings can-

not be avoided in case of spontaneous symmetry breaking from a grand-

unified theory to the Standard Model [24]. Cusps, kinks and kink-kink

collisions have well-modelled waveforms that have been used to search for

cosmic strings in the existing GW data [25]. In contrast, core-collapse su-

pernovae and gamma ray bursts are among sources of transient GWs that

are difficult to model. Great uncertainty in our theoretical understanding

of these events has motivated the "unmodelled" pipelines that search for a

wide range of sources [26]. If there are any unexpected sources of GWs,

we may identify them in the unmodelled searches.

Transient gravitational waves emitted from two compact objects merg-

ing are the only direct detection channel for GWs to date, and we now

demonstrate how they are modelled. A binary system of compact ob-

jects (e.g. black holes) orbiting one another radiates away gravitational

waves. Let us consider two masses in the x − y plane on a circular tra-

jectory with frequency f and at a distance R, with the relative coordinate

x⃗ = R(cos(2π f t), sin(2π f t),0). Reducing the problem to a single object

of mass µ = m1m2/(m1 + m2), we find non-zero components of the mass

quadrupole moment, I11, I22 and I12. Evaluating these and plugging into
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(1.17), the plane wave for each polarisation is

h+(t) =
2(GMc)5/3

c4R
(π fGW)2/3(1 + cos2 ι)cos(2π fGWt + ϕ0), (1.19)

h×(t) =
2(GMc)5/3

c4R
(π fGW)2/3 cos ιsin(2π fGWt + ϕ0), (1.20)

where Mc = (M1M2)
3/5/(M1 + M2)

1/5 is the chirp mass, and ι is the in-

clination. Note that the frequency of emitted gravitational waves is twice

that of the orbital frequency, fGW = 2 f . As GW radiation leaves the system,

the orbit shrinks and the compact objects speed up. Eventually the com-

pact objects become close enough to merge and leave behind a single (more

massive) compact object. The frequency of the GWs evolves over time as

ḟGW =
96
5

(
GMc

c3

)5/3

π8/3 f 11/3
GW . (1.21)

Consider the first GW event detected, GW150914 [27]. Figure 1.1 shows

the strain in the LIGO Hanford detector, overlaid with fitted waveform

templates for merging of two black holes. The chirp mass of the system

was deduced from the evolution of the frequency using (1.21).

So far we have discussed the first direct detection of GWs. Note, how-

ever, there was indirect evidence for their existence 40 years prior. The

Hulse-Taylor binary system of a neutron star and a pulsar orbiting each

other was discovered in 1974 [28], and its orbit decay due to GW emission

agrees with predictions from GR [29].

Continuous GW sources

Current detectors, in addition to the transient merger events, "listen out"

for continuous GWs from compact objects in orbit long before they merge

or from pulsars with large irregularities that give a quadrupole moment.

The GWs emitted have constant (or very slowly-varying) frequency and last

over long timescales. There has been no detection of these long-duration

coherent waves but stringent limits have been placed on the maximum
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Figure 1.1: Top panel: Reconstructed waveform for a system of two black holes
coalescing with parameters consistent with GW150914 event (strain
projected onto LIGO Hanford arms). Bottom panel: total mass of the
system and GW frequency associated with the matched waveform tem-
plate lead to relative velocity and effective separation of black holes
curves. Plot included in the original discovery paper [27].

strain amplitude, and in turn on pulsars’ ellipticity and r-mode amplitude

[30, 31].

Background GW sources

In the coming years, one of the main targets of GW detectors will be a

detection of the GWB. We expect GWB from unresolved binary mergers to

be detectable by the time Advanced LIGO and Advanced Virgo reach de-

sign sensitivity [32]. Other sources, both astrophysical and cosmological,

can contribute to the GWB, the most of exciting of which include primor-

dial GWs from the early Universe [33]. The background searches can also

complement transient GW searches, through, e.g. searching for alternative

polarisations of GWs [34, 35, 36], and they

can be used together with transient detections to constrain the star



1.2. Gravitational-wave detectors 10

Figure 1.2: Frequency span of a range of GW sources, from compact binaries and
pulsars to quantum fluctuations. Terrestrial interferometers have ac-
cess only to the very high frequencies, while the millihertz range will
be probed by the space-based detectors. Arrays of pulsars in the galaxy
are sensitive to the nanohertz GWs, while CMB B-mode will help study
primordial waves redshifted to as low as 10−15 Hz. This image is pre-
sented in [38].

formation history of the Universe [37]. Most of the work in the upcoming

chapters of this thesis concerns background GW radiation.

All the categories of gravitational waves discussed thus far span a wide

range of frequencies depending on what sources them. Detectors have been

built (and proposed) to probe the different frequencies, see Figure 1.2. We

now discuss current and future detectors, and their sensitivity to specific

sources of gravitational waves.

1.2 Gravitational-wave detectors
Gravitational radiation is very weak and therefore extremely difficult to de-

tect. Consider a human-built experiment designed to generate GWs: two

objects of equal mass 1000 kg, orbiting each other 1 km away from the de-

tectors. The prefactor in (1.20) is then 2(GMc)5/3/(c4R)∼O(10−50). Such
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minute changes in length are impossible to detect, which is why we turn

to the massive astrophysical objects as GW factories in the sky. Two stellar-

mass black holes merging into a single black hole give out GW radiation

with a typical strain of O(10−20). To detect a strain 100 000 smaller than

the size of the atomic nucleus, extremely sensitive apparatus needed to

be designed and built. The interferometry used by Michelson and Morley

in the 1887 experimental setup to determine Earth’s velocity in aether - a

medium believed to carry light waves - proved a useful starting point [39].

In a Michelson-Morley interferometer light emitted by a laser passes

through a beam splitter, then travels down two perpendicular arms of equal

length, reflects and travels back to recombine in the beam splitter. The re-

combined light is then directed towards a photodetector. Assuming a sta-

tionary, unperturbed system, with perfectly aligned reflected light beams,

the photodetector should detect constant (zero) intensity of light. This is

due to destructive interference of the two out-of-phase light beams. Should

the lengths of the interferometer arms change, the beams no longer cancel

out perfectly, and we have a signal. For the purpose of GW searches, the

photodetector would "see" a signal for the duration of the GW passing

through the detector, while the light storage arms experience stretching

and contracting.

Strain sensitivity scales with interferometer arm length and the square

root of the power of the laser on the beam splitter. The existing GW inter-

ferometers represent a far more advanced implementation of the Michel-

son interferometer design, namely dual-recycled, Fabry-Pérot Michelson

[40]. The modifications are necessary to make the detector sensitive to

tiny changes in distance caused by GWs. Dual-recycled refers to recycling

of light to increase laser power and improve the resolution of the instru-

ment, which is achieved with power recycling mirrors placed between the

laser and the beam splitter. The Fabry-Pérot resonator cavities increase

the light-beam travel distance with additional mirrors in each arm near
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the beam splitter, forcing the light to bounce back between them and the

mirrors at the arms’ ends. The distance light travels in LIGO and Virgo

detector arms, each 4 km and 3 km in length, increases to 1200 km and 200

km respectively with the use of Fabry-Pérot cavities.

Note that, to obtain (1.15) we fixed a gauge, in other words we choose a

specific frame of observation. We need to be careful when considering GW

detectors in this frame, since it is typically more useful to discuss results

in the detector frame. In the TT frame, particles originally at rest remain at

rest as the gravitational wave passes by. To understand this, let us examine

the equation for geodesics xµ - paths that non-accelerating particles would

follow,
d2xµ

dτ2 + Γµ
νρ

dxν

dτ

dxρ

dτ
= 0. (1.22)

In the TT gauge Γi
00 vanishes, hence if dxi/dτ = 0 then d2xi/dτ2 = 0. This

does not mean that all hope is lost in detecting GWs since they have

no physical effect on particles they pass through. After all, we are not

interested in coordinate distance L in the TT frame, but in the frame-

independent proper distance s between two test particles. This distance

changes due to a GW of frequency ω travelling by since

s =
√

gµνdxµdxν ≈ L[1 +
1
2

h+cos(ωt)]. (1.23)

Examining geodesics in the TT frame reveals that this reference frame can

be in effect reproduced by a freely-falling experimental setup [41]. Ground-

based detectors, however, due to Earth’s gravitational pull and rotation

come with many complications. At all times, in the detector frame we

observe an acceleration of 9.81ms−2, and relativistic rotating frame effects

e.g. Coriolis force. These effects mount to dominate any small changes in

the detector frame due to a passing gravitational wave by multiple orders

of magnitude. Existing detectors avoid these limitations by tracking move-

ment of freely-suspended test masses in a frequency window where gravi-
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Figure 1.3: The currently operational network of GW detectors, along with
planned LIGO India.

tational waves dominate, and any detector-frame effect can be neglected.

The advanced optics in GW interferometers make the detectors sensi-

tive enough to faint GW signals. They also make the detectors extremely

sensitive to human-produced vibrations, bound to contaminate the pho-

todetector output. Therefore, any GW detector should be positioned at a

remote site, far from any human activity to ensure minimum pollution.

Furthermore, when building a detector network, individual interferome-

ters should be located far from one another to avoid any coinciding noise

sources mimicking GWs. If two far-apart interferometers output identical

changes in strain (almost) simultaneously, this could be a smoking gun for

a GW that passed both of them. With this in mind, locations of the cur-

rent GW interferometer are reasonable: LIGO Hanford in the deserts of

Washington, USA, LIGO Livingston in the vast pine forest in Louisiana,

USA, Virgo in a quiet village in Tuscany, Italy, and KAGRA [42] in the

underground Kamioka mine, Japan, see Figure 1.3.

Generations of GW detectors

The original LIGO and Virgo detectors, with shorter detector arms and

less sophisticated design, belong to the first generation of GW interferome-
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ters which did not detect gravitational waves 2 [43]. Currently operational

Advanced LIGO (aLIGO), Advanced Virgo, KAGRA, are part of the sec-

ond generation of detectors (2G). Future upgrades of these detectors are

planned, with each upgrade approaching the design sensitivity. The suc-

cess of existing detectors has motivated discussion and planning for more

sensitive detectors. Third generation of detectors (3G) is expected to im-

prove strain sensitivity by an order of magnitude compared to 2G detectors.

The most developed proposal to date is the Einstein Telescope (ET) [44], a

triangular configuration 3 of three baseline pairs. Furthermore, the pro-

posal for another L-shaped interferometer with 20 and 40 km arms (com-

pare it to e.g. LIGO’s 4 km arms) is underway, referred to as the Cosmic

Explorer (CE) [45]. There is also LISA [46], following the success of LISA

pathfinder, which will be the first GW detector in the sky. We compare

the sensitivity curves between these detectors and showcase their science

goals.

1.2.1 Comparing detector sensitivities

A typical representation of GW detector sensitivity is a plot of the

noise power spectral density (PSD), or the amplitude spectral density

(ASD=
√

PSD) as a function of frequency. The one-sided noise PSD, Sn( f ),

is defined only over a physical range of frequencies ( f ≥ 0) as the ensemble

average 4

⟨ñ∗
i ( f )ñi( f ′)⟩ = 1

2
δ( f − f ′)Sn( f ), (1.24)

where ñi( f ) is noise of detector i in the frequency domain. Another useful

quantity is characteristic strain

hc( f ) =
√

f Sn( f ). (1.25)

2The GEO600 detector in Germany and TAMA 300 detector in Japan were part of the
first generation as well.

3There are ongoing discussions on the geometry and design of ET, but for the purpose
of this thesis we assume a triangular, cryogenic, high-frequency instrument.

4For example, over observation time period T, we denote ⟨a(t)b(t)⟩ =
∫ T

0 a(t)b(t)dt.
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On a characteristic strain against frequency graph, the area between the

signal and the detector sensitivity is the signal-to-noise ratio (SNR) of the

source.

From Figure 2 in [47] we can see that the cryogenic LIGO upgrade,

Voyager, is expected to increase sensitivity by a factor of 2 compared to the

current aLIGO sensitivity. Note that Advanced Virgo is less sensitive than

Advanced LIGO Hanford and LIGO Livingston, and as such has made

fewer detections. Having a third detector in the network, however, be-

comes important in localising sources, studies of source polarisation and

treatment of correlated magnetic noise [48]. Einstein Telescope and Cosmic

Explorer detector proposals span the same frequency range as Advanced

LIGO and Advanced Virgo and they are expected to see an order of mag-

nitude improvement in sensitivity relative to Advanced LIGO.

Until now, we have been able to explore the local Universe and detect

BBH mergers up to a redshift of about 2, and BNS mergers up to a redshift

of about 0.1. Note that due to lower progenitors’ masses, we are only sen-

sitive to the nearby neutron stars. Cosmic Explorer and Einstein Telescope

extend the astrophysical horizon to colossal z ∼ 40 for BBHs and z ∼ 10

for BNSs [49, 50]. If operational, ET and CE detectors could reveal a large

proportion of stellar-mass BBH mergers in the distant Universe [51]. One

may even find first direct evidence for existence of the elusive primordial

population of stars, which will be discussed in a later chapter.

The prospect of these 3G detectors will certainly lead to more frequent

detections of coalescence events, but we can look for other sources of grav-

itational radiation in an unexplored range of frequencies. LISA detector is

expected to start collecting data in mid-2030s, and it will provide access to

the millihertz range. Similarly to the ET proposal, LISA consists of three

baseline pairs forming an equilateral triangle. Short for Laser Interferome-

ter Space Antenna, it will have three spacecrafts containing two test masses

and two lasers to measure precisely the distance between the spacecrafts.
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A space-based GW detector has no limitations from e.g. seismic and mag-

netic noise sources on Earth. We are also not limited with the scale of the

detector and we can significantly extend the detectors arms. Separation be-

tween LISA test masses will be on the order of 106 km compared to 1 − 10

km here on Earth.

The long arms result in great sensitivity at the low-frequency, milli-

hertz range. This unexplored frequency domain brings with it the prospect

of discovering new GW sources, notably mergers of supermassive black

hole binaries, as well as extreme-ratio inspirals from objects captured by

supermassive black holes with mass ratios of 10000 : 1. There are also con-

tinuous waves from inspiralling white-dwarf binaries, which for most part

are treated as confusion noise in the detector. Later in this thesis we show

methods that we developed to separate massive black hole merger signals

from the Galactic white dwarf noise. The early inspiral signals from stellar-

mass binaries detected with LISA may be used to predict merger events

later observed with the high-frequency, Earth-based detectors.

There are other planned experiments, e.g. AION [52], AEDGE [53],

that use atom interferometry for measuring GWs, or ones that search

for changes in Earth’s position due to GWs using time measurements

from pulsars in the galaxy, referred to as Pulsar Timing Array projects,

e.g. NANOGrav [54]. The GWs detected in these experiments will be

complementary to the traditional optical interferometer data, with AION

and AEDGE filling the "frequency gap" between LISA and LIGO, and

NANOGrav experiment searching for GWs in the nanohertz range.

In this section we have seen that current 2G GW detectors can only

probe the local Universe. The many CBCs that are too distant and therefore

too weak to be detected individually, combine into GWB in the detectors.

We now describe how to detect this background and other sources that

contribute to it.
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1.3 Gravitational-wave background
Gravitational-wave background 5 is a superposition of many astrophysical

and cosmological sources, and it contains information about the distant

Universe. If we assume the background to be isotropic 6, Gaussian, station-

ary, and unpolarised, then it is fully characterised by the dimensionless

energy density per logarithmic frequency interval

ΩGW( f ) =
1
ρc

dρGW( f )
dln( f )

, (1.26)

where dρGW is the GW energy density in the frequency interval ln f to

ln f + dln f , and ρc = 3H2
0c2/(8πG) is the critical energy density to close

the Universe. It is common to model the GWB spectrum as a power law:

ΩGW( f ) = Ωref

(
f

fref

)α

, (1.27)

where Ωref is the amplitude at a reference frequency, fref, and α is the spec-

tral index. Unresolved CBCs in the LIGO frequency band are expected to

create a background spectrum with α = 2/3; whereas slow roll inflation

models and cosmic strings 7 are likely to be flat in frequency, i.e. with

α = 0. It is also common to consider a model that is flat in GW power,

which corresponds to α = 3, to mimic signals like those from e.g. super-

novae [33]. For an overview of the types of expected GWB spectra, we refer

the reader to Fig. 1 of [58]. We will expand on the GWB astrophysical and

cosmological sources in future sections. Recent estimates suggest that the

GWB could be detected by the Advanced LIGO and Advanced Virgo de-

tector network once these detectors reach design sensitivity and integrate

strain data for O(years) [32].

5Often referred to as the stochastic GWB [55].
6In the case of an anisotropic background, similarly to the treatment of CMB

anisotropies, one should study the angular power spectrum decomposed into spherical
harmonics or correlation between neighbouring pixels on a GW intensity sky map [56, 57].

7The GWB spectrum from cosmic strings is expected to plateau to a constant value in
the LVK frequency range, see Fig. 1 in [23].
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The combined data from the first three observing runs show no detec-

tion of the GWB. From the data, one can place upper limits on the back-

ground that are model-dependent, e.g. [59]:

• for a flat cosmological background, α = 0, the upper limit on the am-

plitude at 95% confidence level (CL) is

ΩGW < 5.8 × 10−9, (1.28)

• for a background sourced by CBCs, α = 2
3 , the upper limit on the

amplitude at 25 Hz and at 95% CL is

ΩGW < 3.4 × 10−9. (1.29)

Let us look more closely at the background detection methods and how to

obtain upper limits such as (1.28) and (1.29).

1.3.1 Detecting a background

The observed strain in GW detector i, si(t), is a combination of the GW

signal hi(t) and the underlying noise ni(t),

si(t) = hi(t) + ni(t). (1.30)

Unlike for transient signals, searches for a GWB require long integration

times because the signal is below the intrinsic detector noise. We search for

the GWB by cross-correlating outputs from two or more widely-separated

detectors, and in the case of no correlated noise sources between the detec-

tors, the only limiting factor of the search is total observation time [60, 38].

Working in the frequency regime, let us assume that the signal ob-

served by GW detectors, s̃i( f ), can be written as

s̃i( f ) = h̃i( f ) + ñi( f ), (1.31)
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where ñi( f ) is the Fourier transform of the instrument noise in detector i,

and

h̃i( f ) = ∑
A

∫
d2r̂ FA

i ( f , r̂)h̃A( f , r̂)e−2πi f x⃗i ·⃗r/c (1.32)

is the total GW signal in detector i located at x⃗i. Here FA
i ( f , r̂) is the re-

sponse of detector i to a plane-wave travelling in direction r̂ with polarisa-

tion A, and h̃A( f , r̂) is the Fourier amplitude of that plane wave. Conse-

quently,

⟨s̃∗i ( f )s̃j( f ′)⟩ = ⟨h̃∗i ( f )h̃j( f ′)⟩+ ⟨h̃∗i ( f )ñj( f ′)⟩

+⟨ñ∗
i ( f )h̃j( f ′)⟩+ ⟨ñ∗

i ( f )ñj( f ′)⟩. (1.33)

If we assume that the GWB is isotropic, Gaussian, stationary and unpo-

larised, then it is well-described by a single power spectral density SGW( f ),

⟨h̃∗i ( f )h̃j( f ′)⟩ = 1
2

δT( f − f ′)Γij( f )SGW( f ), (1.34)

where δT( f − f ′) is the finite-time approximation to the Dirac delta func-

tion, and SGW( f ) is the GW strain PSD related to the dimensionless energy

density as follows

SGW( f ) =
3H2

0
10π2

ΩGW( f )
f 3 . (1.35)

Note that, for the existing detectors, the overlap reduction function (ORF),

Γij( f ), accounts for all the relevant geometric factors when cross-correlating

data from different detectors [60, 61], as shown in Figure 1.4. For a pair

of co-located and co-aligned detectors, the ORF is equal to unity at all

frequencies.

In what follows, we consider a GWB search that uses a cross-

correlation estimator that is optimal for a Gaussian, stationary, unpolarised

and isotropic background. Our estimator, Ĉij( f ), for the GWB measured
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Figure 1.4: Overlap reduction function for LIGO Hanford (H), LIGO Livingston
(L) and Virgo (V) detectors.

from detectors i and j is

Ĉij( f ) =
2

Tobs

Re[s̃∗i ( f )s̃j( f )]
Γij( f )S0( f )

, (1.36)

where Tobs is the duration over which the Fourier transform is taken,

and S0( f ) is the spectral shape for a GWB that is flat in energy density,

S0( f ) = 3H2
0/(10π2 f 3). Note we only use the cross correlation, and not

auto-correlation, in the search because the noise PSD is not known pre-

cisely enough to be subtracted accurately, and therefore in practice the

cross correlation is nearly optimal 8.

In the limit where the total GW strain amplitude in detector i, h̃i( f ), is

much less than the intrinsic detector noise, ñi( f ), the variance of Ĉij( f ) is

given by

σ2
ij( f ) =

1
2∆ f Tobs

Pi( f )Pj( f )
Γij( f )2S0( f )2 , (1.37)

8In the case of space-based LISA, however, we expect the noise PSD to be well known
and dominated by the background from Galactic white dwarf binaries. Hence auto-
correlation can prove useful when searching for GWB with LISA [56].
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where Pi( f ) is the one-sided PSD of detector i between times t and t + Tobs,

and ∆ f is the frequency resolution.

In general, (1.36) and (1.37) are estimated for many short time-

segments of Tobs = 192 s and these segments are optimally combined in

a post-processing step given by

Ĉij( f ) =
∑k Ĉij,k( f )σ−2

ij,k ( f )

∑k σ−2
ij,k ( f )

, (1.38)

σij( f ) =

(
∑
k

σ−2
ij,k ( f )

)−1/2

, (1.39)

where k indexes the time segments. Combining (1.33)–(1.35) and substitut-

ing into (1.36) we find

⟨Ĉij( f )⟩ = ΩGW( f ) + 2Re

[
⟨ñ∗

i ( f )ñj( f )⟩
Tobs Γij( f )S0( f )

]
, (1.40)

where we have assumed that the GW signal and the intrinsic noise are

uncorrelated, ⟨h̃∗i ( f )ñj( f ′)⟩= 0, and that the noise in each frequency bin is

independent. It is clear from (1.40) that in the absence of correlated noise,

⟨Ĉij( f )⟩ is an estimator for ΩGW( f ). However, this is not the case when

⟨ñ∗
i ( f )ñj( f )⟩ ̸= 0. The treatment above is only an accurate description of the

cross-correlated data if there are no sources of correlated noise. Provided

this is the case, the largest contribution to the GWB is expected to arise

from unresolved binary mergers.

1.3.2 Astrophysical foreground

The transient signals from mergers of distant compact binary objects were

the first (and only) GW triggers in our interferometers. We were able to

detect these events because the masses of the compact objects involved and

distances from Earth lead to signals above the noise of the GW interferom-

eters. As discussed in 1.2.1, current detectors only "see" the local Universe,

i.e. redshift z ≲ 2 for BBH and redshift z ≲ 0.1 for BNS coalescences. Merg-
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ers of compact objects that are further away produce GW signals that are

too weak to be detected by the interferometers. Individually, these events

are buried in the noise of the detectors. Superimposing contributions from

all unresolved CBC events, however, leads to a GWB that may be picked

up by our detector networks

ΩGW( f ) =
f

ρcH0

∫
dθp(θ)

∫
dz

R(z,θ)dEGW( fs,θ)
d fs

(1 + z)Ez(z)
, (1.41)

where p(θ) is the probability distribution of the source parameters,

dEGW/d fs in the energy density emitted by a single source at a red-

shift z with parameters θ, and fs is the emitted frequency in the source

frame fs = f (1 + z). The merger rate R(z,θ) gives the number of coales-

cences per unit volume per unit time as a function of redshift. The factor

(1 + z) in the denominator converts the merger rate from the source to

the detector frame, and Ez(z) accounts for the considered cosmology, i.e.

the expansion history of the Universe, Ez(z) =
√

Ωm(1 + z)3 + ΩΛ, with

Ωm = 0.31,ΩΛ = 0.69 [62]. The unresolved CBCs contribution is expected to

dominate GWB and is often referred to as the astrophysical "foreground".

The energy spectrum is obtained by integrating over a sphere

dEGW

d f
=

πc3

2G
f 3r2

∫
dΩ
(
|h̃+( f )|2 + |h̃×( f )|2

)
, (1.42)

and for a detailed treatment we refer the reader to [41]. Substituting the

GW strain from compact objects spiralling towards each other, we have

dEGW

d fs
( fs) =

5(Gπ)2/3M5/3
c Fι

12
f−1/3
s (1.43)

×


(1 + ∑3

i=2 αiν
i)2 if fs < fmerg

fswm(1 + ∑2
i=1 ϵiν

i)2 if fmerg ≤ fs < fring

f 1/3
s wrL2( fs, fring,σ) if fring ≤ fs < fcut
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where fmerg, fring and fcut are the frequencies at the start of merger,

start of ringdown and end of emission in the source frame, respectively.

Fι is dependent on the source’s inclination, Fι = (1 + cos2ι)2/(4 + cos2ι).

L( fs, fring,σ) is the Lorentzian function centred at fring, with width σ, and

wm, wr are the normalisation constants ensuring the continuity between

the three phases. The factors ϵi and αi and the frequencies fmerg, fring and

fcut follow from analytical waveforms detailed in [63] and depend on the

symmetric mass ratio η = (m1m2)/(m1 + m2)
2 of the progenitors’ masses,

and the effective spin of the system χ = [(m1⃗s1 + m2⃗s2)/(m1 + m2)]⃗L/L.

The CBC events detected by LVK so far have stellar-mass black hole

progenitors of average mass 30 M⊙. For two non-spinning black holes

of mass 30 M⊙, the merging frequency is estimated to be fmerg = 121 Hz

[63]. The GWB searches, however, have low sensitivity at high frequencies

above 100 Hz, due to the ORFs for HLV network baseline pairs going to

zero at these frequencies and the f 3 factor in (1.36). This is clearly seen

in Table I of [59] which lists the frequency up to which 99% sensitivity of

each O3 baseline pair is contained. Therefore, we conclude that current

detectors are most likely to detect the inspiral part of the coalescence in

the GWB, f 2/3, represented by the first coalescence regime in (1.43). The

astrophysical foreground is hence typically modelled as a power law with

a spectral index 2/3.

It is worth noting that the GWB is obtained by integrating over all

redshift and therefore depends on the cosmic evolution of our Universe.

One must also integrate over the source parameters such as masses and

spins, making the above expression sensitive to properties of the entire

CBC population. This may prove particularly useful in interpreting burst

events that come from tails of probability distributions of CBC parameters.

A common assumption is that compact binary formation follows cos-

mic star formation, leading to a binary merger rate that peaks at redshift

around z ≈ 2 for high-metallicity progenitors, see Figure 1.5. Uncertainties
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Figure 1.5: A simplified model for the merger rate of black hole binaries detected
by Advanced LIGO/Virgo. We assume the merger rate is proportional
to the star formation rate in [64], and we use the local merger rate
from the O3 transient catalogue, RBBH(z = 0) = 19+18

−8 Gpc−3yr−1 [12].
The shaded region captures the uncertainty in the local merger rate
measurement.

in stellar formation and evolution models translate directly into uncertain-

ties in the astrophysical GWB [59]. There are further uncertainties in mass

and spin distributions of compact objects creating the background. A re-

cent and detailed analysis of astrophysical population properties can be

found in the inference studies of the LVK transient catalogues [65].

Carefully taking into account systematic and theoretical uncertainties,

and using the information from catalogues of individual CBCs detected in

the first three observing runs, one can make "forecasts" of the astrophys-

ical foreground. Detection of the GWB from unresolved CBCs could be

achieved by Advanced LIGO and Advanced Virgo at their design sensi-

tivities, see Figure 1.6. However, it is possible for magnetic noise that is

correlated between spatially separated ground-based detectors to mimic a

GWB signal. We finish this chapter with a discussion on a well-studied

source of correlated magnetic noise in detector strain.
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Figure 1.6: Predictions for ΩGW( f ) from binary black holes, binary neutron stars
and black hole-neutron star binaries using the fiducial astrophysical
model in [59]. The sensitivity curves from completed O2, O3 runs
confirm no detection of a background yet, but projections for future
detector upgrades, Design and A+ sensitivities, show these may probe
the astrophysical background. Figure presented in [59].

1.3.3 Correlated magnetic noise

When searching for an isotropic GWB, one uses cross-correlation tech-

niques between spatially separated interferometers to detect a corre-

lated signal that is below the local noise of either individual instrument.

However, globally correlated noise sources remain present in the cross-

correlated data and can therefore affect the analysis. An example of such

a source is Schumann resonances [66, 67]. Schumann resonances are ex-

tremely low-frequency (< 50 Hz) electromagnetic excitations in the cav-

ity formed by the Earth’s surface and the ionosphere, driven by lightning

strikes across the globe. Given their global character, Schumann resonances

are correlated over distances of several thousands of kilometers and longer.

In 1952, Winfried Otto Schumann predicted the existence of global

extremely low frequency peaks in the electromagnetic field of the Earth,
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which were subsequently observed [68, 69]. The resonances are eigen-

modes of the conducting spherical cavity formed by the surface of the Earth

and its ionosphere, and are excited by lightning discharges [70]. They are

expected to couple magnetically to GW interferometers via, e.g. the mirror

suspension systems, electric cables and the electronics, thereby inducing a

correlated signal of terrestrial origin [71, 72, 73, 74]. Correlated noise in

GW detectors caused by Schumann resonances could be comparable to the

sensitivity of GWB searches performed by the advanced detector network

in the near future [60, 71, 72]. Analytic models of the impact of correlated

noise in GW detectors have been explored in recent work, such as [75, 76].

The first harmonic, which corresponds to the circumference of the Earth,

is at 7.8 Hz, and the subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3

Hz. The first mode has the strongest resonance peak, with each consecutive

peak being weaker than the previous one.

In Figure 1.7, we show the PSD seen in low-noise magnetometers on-

site at the Advanced Virgo detector. We can clearly see the first five har-

monics of the Schumann resonances. There is a diurnal variation in the am-

plitude of the Schumann resonances that corresponds to electrical storms

that start at similar times and places each day [77, 78]. The amplitude of

the resonance peaks can vary by as much as a factor of two between the

loudest and quietest times of the day, depending on the time of year and

the location [78, 79, 70]. What is shown in Figure 1.7 represents a trough

in the height of the peaks over the course of the day at Virgo. Despite

this diurnal variation, the spectrum is typically modelled as stationary for

simplicity.

If left untreated, this correlated magnetic noise in the interferometers

is a threat to the detection of a GWB. Can there be a successful detection of

GWB in the presence of correlated magnetic noise, both with current and

future GW detectors? We seek to answer this question in Chapter 2.



1.3. Gravitational-wave background 27

10 20 30 40

Frequency [Hz]

0.1

1

M
ag

n
et

ic
P

S
D

[p
T

2
H

z−
1
]

Data

Smoothed

Figure 1.7: Power spectral density of magnetometer data near the Advanced Virgo
detector. The blue is the inverse-averaged power spectral density for
many 32 s chunks of data for the period from 00:00–02:00 UTC on July
9th, 2019. We use inverse averaging to account for possible magnetic
transients that occur during this time. We produce the orange curve by
removing the large, narrow spectral features and applying a smoothing
filter. We can clearly see five harmonics of the Schumann resonances.
The large, narrow spectral features are caused by local magnetic noise
on site at Virgo.



Chapter 2

Gravitational-wave background

detection

2.1 Foreword
As plethora of model builders design theories and simulate the GWs that

could be produced as a result, instrumentalists are hard at work to reduce

noise in GW detectors. Without this important step, there would be no

data to guide us and inform us of the nature of our Universe. Before we

study the implications of GW data on physical theories, we should ensure

that the data we are analysing is gravitational, and not some terrestrial

contamination.

A common method for reducing noise in the presence of a station-

ary signal is Wiener filtering and it has been employed at LIGO to remove

sources of environmental noise [80, 81, 82]. In Wiener filtering, a target

station is defined, and noise measurements at other witness stations (and

correlations therein), are used to predict and subtract noise at the target

station. For the purpose of noise subtraction from GW interferometers, the

interferometer is the target station and the witness stations are e.g. nearby

seismometers or magnetometers probing the ambient seismic or magnetic

fields. If the witness sensors had infinite SNR, Wiener filtering would re-

move all of the correlated noise, but low SNR in the witness sensors leads



2.1. Foreword 29

to imperfect subtraction. Furthermore, Wiener filtering can only be applied

to linear coupling of external noise to GW strain, missing out on potential

non-linearities [83]. More recently, machine learning methods have been

developed that match performance of Wiener filters for linearly coupled

noise. The deep learning algorithms go beyond Wiener filtering since they

can learn arbitrarily high order couplings of the input data and subtract

non-linear couplings [84].

Another method to determine whether a signal is terrestrial or grav-

itational in origin is the geodesy [85, 86]. Geodesy relies on inferring the

relative separation and orientation of GW detectors from an estimate of

GWB, and checking if this is consistent with the actual geometry of the

detector network. Provided the two agree, one can deduce that the signal

is gravitational in origin. If there are inconsistencies, the detected signal is

not the GWB, but merely an artefact of terrestrial correlations.

Complementary to these existing studies of correlated noise in GW de-

tectors, we develop a Bayesian approach to detect a GWB in the presence of

correlated magnetic noise presented in 2.2. Like the Wiener filtering tech-

nique, we rely on witness sensors in the form of magnetometers located

in the vicinity of the GW detectors. Coherences between magnetometer

measurements at Hanford, Livingston and Virgo are used to model corre-

lated magnetic fields at the interferometer sites. With models of magnetic

coupling into the strain channels, we construct the correlated magnetic

noise contribution to the background for each baseline pair. We outline the

model selection methods used to establish if there is preference for mag-

netic correlated noise over white Gaussian noise in simulated data. Next

we investigate scenarios where both magnetic and GW signals are injected,

and test our method to search for presence of GWB in the data when there

is magnetic contamination. In 2.3 we apply this Bayesian analysis to mag-

netic noise in data from O3, confirming there was no magnetic contamina-

tion during the run. We finish the chapter by investigating magnetic noise
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in the 3G detector, Einstein Telescope, in 2.4. Here we make projections

for upper limits on coupling of magnetic fields to the detector strain chan-

nel and we conclude by commenting on necessary improvements in noise

reduction for next-generation detectors.

2.2 Detecting a GWB in the presence of corre-

lated magnetic noise
Schumann resonances are a potential source of correlated magnetic noise.

An estimate of the correlated magnetic noise budget in the isotropic GWB

search using data from the first, second and third observing run indicates

that it is not yet an issue for GWB studies [87, 59]. However, as detectors

grow more sensitive, this will likely change, and the magnetic noise budget

could dominate the signal [72]. Hence, a careful treatment of correlated

magnetic noise is of vital importance.

2.2.1 Simulating GW data with correlated noise

In this section, we discuss how we simulate GW data that is contaminated

with correlated noise due to the Schumann resonances. In 2.2.1 we present

a model for the coupling of magnetic fields into GW detectors. In 2.2.1 we

show how to simulate multiple data streams that have correlated Gaussian

noise components, and then we apply that method to our specific use case.

The Schumann resonances, being global excitations, are coherent

across the O(1000 km) distance scales between GW detectors [80, 88]. We

model the time-series induced in magnetometers from the Schumann res-

onances as Gaussian, stationary, and unpolarised, with a PSD that can be

described by a set of Lorentzians centred around the main harmonics. We

assume that the data in two magnetometers, m̃i( f ) and m̃j( f ), have a cross-

spectral density given by

⟨m̃∗
i ( f )m̃j( f ′)⟩ = 1

2
δT( f − f ′)γM

ij ( f )M( f ), (2.1)
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where M( f ) is the correlated power spectral density and γM
ij ( f ) is the mag-

netic analogue to the gravitational overlap reduction function, Γij. This

model is equivalent to expression (23) of [75], and we refer the reader to

that paper for an in-depth discussion of the model.

Coupling to detectors

Magnetic fields can induce noise in GW detectors by coupling to metallic

materials in the suspension system of the detector, or by inducing currents

in the cabling. The magnetic coupling is estimated by injecting magnetic

noise into the detector, and measuring the detector’s response, and the

response of the witness magnetometers near the detectors. Peaks in the

detectors’ strain channels are related to the peaks in the magnetometer

channels via the coupling function, T( f ) [71]:

ñ( f ) = T( f )m̃( f ). (2.2)

The exact frequency dependence of the coupling function is uncertain, and

it can change over the course of a long observation run [89]. Despite our

knowledge of the magnetic sources to a great precision, this uncertainty in

the detector response to terrestrial magnetic sources makes magnetic noise

challenging to study. Throughout this analysis, we will assume that the

coupling is constant in time, is well-described by a power law, and is real.

It takes the form

T( f ) = κ

(
f

10 Hz

)−β

× 10−23 strain/pT, (2.3)

where κ is the amplitude of the coupling at 10 Hz and β is the spectral index

of the power law. In [72], they estimated a coupling function with κ = 2,

β = 2.67 for LIGO Hanford Observatory (LHO). Measurements made after

the second observation run found κ = 0.38 at LHO and κ = 0.25 at LIGO

Livingston Observatory (LLO), and β = 3.55,4.61 [89] at LHO and LLO

respectively. Meanwhile for Virgo, post-O2 measurements indicate κ=0.275
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and β=2.50 [90]. These measurements highlight that the coupling functions

differ in both shape and amplitude at each site.

We made three simplifying assumptions in defining (2.3), and relaxing

each of these assumptions could be explored further in future work. For ex-

ample, it is known that the strength of the coupling function can change as

a function of time due to things like routine maintenance on the detectors.

Next, recent measurements at LHO indicate that T( f ) has a more compli-

cated frequency structure than a simple power law. There is evidence, for

example, of a shift to a positive spectral index at higher frequencies. Fi-

nally, the assumption that T( f ) is real will also need to be revisited in the

future. It could be modelled by multiplying (2.3) by a frequency-dependent

phasor term, eiϕ( f ), but there are no measurements at present for the fre-

quency structure of that phase or how it behaves as a function of time. It

is possible to generalise the simulations we perform to inject signals that

relax these assumptions and evaluate the effect they have on the method

we discuss later.

Simulating data

In this section, we first discuss how we generate correlated synthetic mag-

netometer data streams with a specific ORF and cross-power. We then

discuss how we translate that into strain data using a coupling function.

We close with a discussion of the parameters we use to simulate the data.

Simulating correlated Gaussian signals

We discuss simulating a correlated Gaussian signal with a specific M( f )

and γM
ij ( f ) between detectors. Let us consider a network of N detec-

tors. Individual on-site magnetometer measurements combine to give an

N-dimensional column vector, m̃( f ), and the magnetic overlap reduction

functions are then a hermitian N × N matrix, γM( f ):

⟨m̃( f )m̃†( f ′)⟩ = 1
2

δ( f − f ′)γM( f )M( f ). (2.4)
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The individual elements of the γM( f ) matrix represent the ORF between

different baselines, evaluated at f . We then decompose γM using a

Cholesky decomposition [91]:

γM( f ) = L( f )L( f )†, (2.5)

where L( f ) is a lower-triangular matrix. We can use L( f ) to construct the

correlated magnetometer data,

m̃( f ) =

√
M( f )

2
L( f )η̃( f ), (2.6)

with η̃( f ) being white Gaussian noise with a covariance matrix given by

the identity matrix:

⟨η̃( f )η̃†( f ′)⟩ = Iδ( f − f ′). (2.7)

Once we obtain m̃( f ), which mimics local magnetometer measurements,

we project it onto the detectors using a power law coupling function as

in (2.3). We inverse-Fourier transform that strain spectrum to produce h(t),

and add it to Gaussian detector noise that is uncorrelated between the

separate detectors and has a PSD consistent with design sensitivity for the

Advanced LIGO and Advanced Virgo detectors [92].

Correlated magnetic noise PSD and γM
ij ( f ) for synthetic data sets

When constructing a data set with synthetic magnetic noise, we must

choose a power-spectral density of the correlated magnetic signal between

sites, M( f ). This PSD should include the first several harmonics of the

Schumann resonances. Throughout the rest of this study, we model each

peak as a separate Lorentzian, with the fundamental peak having an am-

plitude of 1 pT2/Hz. A plot of the simulated PSD is shown in Figure 2.1.

We only include harmonics below 30 Hz for this study. While the true cor-

related magnetic PSD does not fall off as rapidly as our simulated version,

the steep coupling functions we consider in 2.2.3 will make higher frequen-
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cies negligible when the magnetic noise is projected onto the detectors.
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Figure 2.1: Injected M( f ) spectrum. We simulate the first four Schumann peaks
as Lorentzians with reasonable amplitudes and widths.

We use the real part of coherence measurements between magnetome-

ters located on site at LHO, LLO and Virgo to estimate γM
ij ( f ) for each

detector pair, and we use these measurements throughout the rest of this

work when creating synthetic data sets. Our use of the real part of the

coherences in this case does not affect the results. This can be seen by sub-

stituting (2.2) into (1.40). A term like (2.1) comes out, multiplied by Ti( f )

and Tj( f ), which are assumed to be real. A similar, explicit calculation

along these lines is done in Section 2.2.2. If Ti( f ) were not real, then we

would need to use the full, complex coherences for γM
ij ( f ). More details

related to these measurements are discussed in Appendix A.1. A plot of

the measured γM
ij ( f ) is shown for the three detector pairs of interest in

Figure 2.2. For comparison, we also include Γij( f ), which is the analogous

quantity for GWs. The differences between γM
ij ( f ) and Γij( f ) help us to dis-

criminate between correlated magnetic noise and a GWB in Section 2.2.2.

2.2.2 Simultaneous estimation of correlated noise and GWs

Various techniques have been proposed to address correlated noise due to

Schumann resonances in the output of GW detectors. The most prominent

of these techniques is Wiener filtering [71, 72, 80, 88]. The downside of
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Figure 2.2: From top to bottom we show γM
ij ( f ) (solid) and Γij( f ) (dashed) for ij =

HL, HV, and LV. We discuss how we measure γM
ij ( f ) in Appendix A.1.

Wiener filtering is that it requires a large coherence between the witness

and target channels, which means that for weakly coupled signals it can be

difficult to completely subtract the noise [80, 88].

We propose an alternative method to address correlated noise, specif-

ically as it pertains to a search for a GWB. We model the correlated mag-

netic noise in GW detectors using the data collected by the magnetometers

placed near the detector sites, and a parameterised model for the magnetic

field to GW detector coupling. We then include this model as a contribu-

tion to the estimator, Ĉij( f ) in (1.36), together with a GWB model. The way

we treat magnetometer data here is reminiscent of the “a priori” subtrac-

tion scheme presented in [72], except that here we offer a straightforward

way to handle uncertainty in the measurement of the coupling functions

by treating them as nuisance parameters that we marginalise over.
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Correlated noise model

We can rewrite (1.35) to include separate correlated magnetic and uncorre-

lated noise terms

s̃i( f ) = h̃i( f ) + ñu
i ( f ) + Ti( f )m̃i( f ), (2.8)

where ñu
i ( f ) is the uncorrelated noise in detector i, and Ti( f )m̃i( f ) repre-

sents the correlated magnetic noise. Substituting (2.8) and (2.3) into (1.36)

we find

⟨Ĉij( f )⟩ = ΩGW( f ) + ΩM,ij( f ), (2.9)

where ΩM,ij( f ) represents the magnetic contribution, which we derive next.

We construct the magnetic model, ΩM,ij( f ), by first treating local mag-

netometer data the same way we analyse GW strain data. We break the

magnetometer data into Tobs = 192 s data chunks, and we calculate the

cross-power term in the same way as (1.36), replacing the strain data with

local magnetometer data. That is, for the data between tk and tk + Tobs we

calculate

M̂ij,k( f ) =
2

Tobs

Re
[
m̃∗

i,k( f )m̃j,k( f )
]

Γij( f )S0( f )
. (2.10)

We post-process the magnetometer data with the same weights used for

post-processing the GW data, viz.

M̂ij( f ) =
∑k M̂ij,k( f )σ−2

ij,k ( f )

∑k σ−2
ij,k ( f )

. (2.11)

The weights, σij,k( f ), are the same as those expressed in (1.39). They are

calculated using GW strain data and not magnetometer data. This way we

treat the magnetometer data the same way the magnetic contribution to

the final Ĉij( f ) statistic is treated. We then use this final measurement to
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construct the magnetic contribution to the model, which is given by

ΩM,ij( f ) = κiκj

(
f

10 Hz

)−βi−β j

M̂ij( f )× 10−22. (2.12)

The factor of 10−22 assumes that the units of m̃i( f ) are T Hz−1.

Parameter Estimation and Model Selection

We use a parameter estimation and model selection scheme similar to those

set out in [35, 36, 93]. We choose a Gaussian likelihood for Ĉij( f ) given by

ln p(Ĉij( f )|θGW,θM) =− 1
2 ∑

f

[
Ĉij( f )− ΩGW( f ,θGW)− ΩM,ij( f ,θM)

]2
σ2

ij( f )

(2.13)

− 1
2

ln
(

2πσ2
ij( f )

)
,

where θGW and θM represent parameters for the GW and magnetic mod-

els respectively. In the case where we have cross-correlation statistics for

multiple baselines, we consider the total likelihood to be the product of

the individual likelihoods for each pair of detectors. The resulting multi-

baseline likelihood is given by

p({Ĉij( f )}ij∈pairs|θGW,θM) = ∏
ij∈pairs

p(Ĉij( f )|θGW,θM). (2.14)

It is straightforward to use (2.14) to estimate the posterior distribution of

the parameters, θGW and θM, either by brute-force calculation or by Markov

chain Monte Carlo methods [94, 95].

We will also compare different models for the data using Bayesian

model selection. The four models we consider are:

1. NOISE: ΩM( f ) = ΩGW( f ) = 0,

2. GW: ΩM( f ) = 0, ΩGW( f ) ̸= 0,

3. SCHU: ΩM( f ) ̸= 0, ΩGW( f ) = 0,
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4. GW+SCHU: ΩM( f ) ̸= 0, ΩGW( f ) ̸= 0.

The form of the GWB model, ΩGW( f ), is a power law with amplitude at

f = 25 Hz, θGW = Ω2/3 and spectral index α = 2/3 fixed. The form of

ΩM( f ) is given by (2.12) with θM = (κi,κj, βi, β j) when two detectors are

involved. Another set of coupling parameters (κk, βk) are included when a

third detector is used.

We compare these models using Bayes factors [96]. For example, com-

paring the GW model to the NOISE model we have

BGW
NOISE =

∫
dθGWp(Ĉij( f )|θGW)p(θGW)

N (2.15)

where N is given by evaluating (2.13) for ΩM( f ) = ΩGW( f ) = 0, and

p(θGW) is the prior on the GW model parameters. When BGW
NOISE > 1 there

is support for the GW model compared to the NOISE model. A further

discussion of interpretation of Bayes factors can be found in, e.g. chapter

3 of [38]. In this thesis, we will consider “strong” support for one model

over another when lnB > 8. The numerator of (2.15) is referred to as the

evidence of the GW model and is denoted ZGW. The prior distribution

used for each parameter in the model throughout the rest of this study is

shown in Table 2.1.

We use the nested sampler CPNest [97, 96] through the front-end pack-

age Bilby [98] to both explore the posterior distribution of each parameter

and to estimate the evidences for each model.

2.2.3 Results on synthetic data

In this section we show results for end-to-end simulations of a GWB search

using GW data with correlated magnetic noise. In 2.2.3 we briefly review

data simulation schemes in the time- and frequency-domains. In the rest

of this section we seek to answer three main questions:

1. How does including three detectors aid in our ability to detect the

correlated magnetic noise and constrain parameters associated with
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Parameter Prior
Ω2/3 LogUniform(10−12, 10−7)
κH Uniform(0, 10)
κL Uniform(0, 10)
κV Uniform(0, 10)
βH Uniform(0, 10)
βL Uniform(0, 10)
βV Uniform(0, 10)

Table 2.1: List of prior distributions used for each parameter for results presented
in 2.2.3.

it?

2. Can we detect GWs in the context of correlated magnetic noise? How

is the significance of the detection affected by the presence of that

noise?

3. Can a noisy measurement of M̂ij( f ) or a strong correlated magnetic

signal lead to a false GWB detection?

Synthetic data and parameters

We simulate the strain time-series for the LHO, LLO, and Virgo detec-

tors with correlated magnetic noise using the techniques described in Sec-

tion 2.2.1. We then run the standard pipeline used by LIGO-Virgo for the

isotropic search for a GWB to calculate Ĉij( f ) and M̂ij( f ) for all possible

detector pairs 1. All GWB injections are made in the frequency domain on

those data products and assume a power law spectrum with α = 2/3 to

mimic an astrophysical GWB from unresolved CBCs.

The three different year-long synthetic data sets we consider are de-

scribed in Table 2.2. We consider data sets with no correlated magnetic

noise (none), realistic correlated magnetic noise (realistic) based on post-

O2 measurements [89, 90], and strong correlated magnetic noise (strong).

The strong data set corresponds to a larger coupling strength than we cur-

rently observe, but is meant to be a stand-in for situations where we do

1https://git.ligo.org/stochastic-public/stochastic

https://git.ligo.org/stochastic-public/stochastic
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Run name κH βH κL βL κV βV
None 0 0 0 0 0 0
Realistic 0.38 3.55 0.35 4.61 0.275 2.50
Strong 5 3.55 5 4.61 5 2.50

Table 2.2: Correlated magnetic noise parameters for four different synthetic data
sets.

observe correlated magnetic noise. This could occur either due to an in-

crease in the sensitivity of detectors or a change in the coupling functions

themselves.

For Monte Carlo simulations of many noise realisations we will di-

rectly simulate (2.12) in the frequency domain. This simulation method is

used in the final two parts of this section, and will also consider the same

none, realistic, and strong scenarios detailed in Table 2.2.

Advantages in detecting correlated magnetic noise using three

detector network

We begin by looking at the advantage of having a three-detector, global

network as opposed to a simple two-detector network. To evaluate this

situation, we use the time-domain data discussed previously. We first look

at the effect using three detectors has on model selection, before discussing

the advantages of using three detectors when performing parameter esti-

mation.

In Table 2.3 we show log-Bayes factors comparing different models

when there is no injected GWB. The first column indicates the strength

of the correlated noise injection and the second column indicates which

detectors were used in the parameter estimation. The other four columns

present Bayes factors comparing different models.

The results for the none and realistic injections are shown in the first

four rows of Table 2.3. The log-Bayes factors indicate that there is no pref-

erence for a model with correlated magnetic noise compared to Gaussian

noise (lnBSCHU
NOISE) or for any model that includes a GWB compared to Gaus-
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Run Name Dets lnBGW
NOISE lnBSCHU

NOISE lnBSCHU+GW
NOISE lnBSCHU+GW

SCHU
None HL -0.65 -0.26 -1.0 -0.74
None HLV -0.75 0.45 -0.32 -0.77
Realistic HL -0.61 -0.36 -1.01 -0.65
Realistic HLV -0.57 -0.53 -1.18 -0.65
Strong HL 0.28 0.32 0.59 0.27
Strong HLV 0.59 33.29 33.67 0.38

Table 2.3: We show odds ratios that compare different models when no GW in-
jection is made. We show results for all three injected data sets using
just the Hanford (H), Livingston (L) pair, as well as the full Hanford,
Livingston, Virgo (V) network.

sian noise (lnBGW
NOISE and lnBSCHU+GW

NOISE ). Thus, insofar as our simple cou-

pling model is accurate, it is unlikely that at design sensitivity Schumann

resonances will be detectable after one year of integration time. However,

the coupling functions can change as a function of time, and how they im-

pact the search is highly sensitive to the strength and frequency spectrum

of the coupling between the magnetic field and the strain channel of the

detector.

The strong injection results are shown in the fifth and sixth rows of

Table 2.3. There is little evidence for correlated magnetic noise with the

Hanford-Livingston pair of detectors, but when we include Virgo to the

network, we make a clear detection, with lnBSCHU
NOISE = 33.29. This is due

to a degeneracy between the parameters in the two-detector case. With

only a single measurement of magnetic noise ΩM,ij, we cannot break the

degeneracy between coupling amplitudes κi and κj, and the spectral in-

dices βi and β j, see again (2.12). However, with three measurements of

magnetic noise in the three-detector case, we can recover individual mag-

netic parameters. While we make a detection of Schumann resonances,

lnBSCHU+GW
SCHU = 0.38 indicates that there is no preference for a model that

also includes a GWB compared to a model that contains just correlated

magnetic noise. Including a third detector significantly aids in our ability

to detect and characterise correlated magnetic noise in this situation.

It is also important that we are able to accurately recover the correct
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parameters for the GWB, even when there is a strong correlated mag-

netic noise injection. In Figure 2.3, we show a corner plot with 1- and

2-D marginalised posterior distributions for each parameter over which we

sample for the strong injection (last row of Table 2.2). In this case, there

is no GWB. The green posteriors indicate using only LHO and LLO, while

the blue include Virgo in the network as well. It is clear that including

Virgo significantly improves our estimates of the Schumann parameters.

In the two-detector scenario the magnetic parameters are nearly uncon-

strained. Whereas, when using the three-detector network, we are able to

achieve reasonable estimates of βH, βL and βV . This makes sense given

the model selection results (fifth and sixth rows of Table 2.3), which indi-

cate that adding Virgo improved our ability to detect correlated magnetic

noise. Furthermore, the posterior on Ω2/3 in Figure 2.3 can be used to set

an upper limit on Ω2/3 in the presence of correlated magnetic noise. In

Section 2.2.3, where we perform frequency domain injections, we will dis-

cuss how upper limits on Ω2/3 are affected by the presence of correlated

magnetic noise.

In Figure 2.4 we show the same as Figure 2.3, but with a GWB injection

of Ω2/3 = 10−8. The strength of this injection is chosen for illustrative pur-

poses. We see that the posterior on Ω2/3 is well-constrained but represents

an overestimate of the true injected value by 14%. Due to computational

restrictions, we are unable to perform repeated time-domain simulations

to evaluate whether this is a systematic bias in our method. However, we

did perform repeated frequency-domain simulations with magnetic and

gravitational-wave parameters drawn from the priors in Table 2.1. Using

probability-probability estimates as a diagnostic [99], we see no evidence

of systematic bias on our estimate of Ω2/3.

Including Virgo does not improve our ability to constrain Ω2/3. How-

ever, it adds significantly to our ability to detect and constrain parameters

in the correlated magnetic noise model. A correlated noise detection that
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Figure 2.3: Parameter estimation results for strong correlated noise injection and
no GWB injection. Blue lines and contours correspond to using Han-
ford, Livingston, and Virgo data. Green lines and contours correspond
to using only the Hanford, Livingston pair of detectors. Dashed lines
indicate the injected value of each parameter. It is evident that in-
cluding three detectors improves the recovery of κ and β for all three
detectors. In both cases, the posterior on Ω2/3 is consistent with no
GWB.

is dominated by pairs of detectors that include Virgo is still able to con-

strain the coupling function parameters in all three detectors, which means

that a third detector can aid in our ability to model the correlated noise

contribution in the detector pair that is most sensitive to a GWB. Finally,

this study hints at the advantage of having a network of three detectors for

the 3G detectors. Building two Cosmic Explorers, alongside a triangular-
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configuration of Einstein Telescope, could greatly improve the modeling of

correlated magnetic noise at the individual detector sites.
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Figure 2.4: Parameter estimation results for strong correlated noise injection and
Ω2/3 = 10−8. Blue lines and contours correspond to using Hanford,
Livingston, and Virgo data. Green lines and contours correspond to
using only the Hanford, Livingston pair of detectors. Dashed lines in-
dicate the injected value of each parameter. It is evident that including
three detectors improves the recovery of κ and β for all three detectors.
The posterior distributions of Ω2/3 for both scenarios are consistent
with one another, and indicate a 14% overestimate of Ω2/3.
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GWB detection with correlated magnetic noise

In this section we show we are able to detect GWs when correlated mag-

netic noise is present and we show how the presence of correlated magnetic

noise affects the significance of that detection. We performed 300 Monte

Carlo simulations, in the frequency domain, of the strong and none cor-

related noise parameters in Table 2.2. We did this for Ω2/3 = 0,10−8, and

3 × 10−9, assuming 1 year of integration time. The results are shown in

three panels in Figure 2.5, where we show the distribution of lnBSCHU+GW
SCHU

for each simulation. Throughout this section we use the full three-detector

network and all inference is done with the prior distributions in Table 2.1.

The top left panel of Figure 2.5, where Ω2/3 = 0, shows that for both

the strong correlated magnetic noise injection (blue, solid) and the no cor-

related magnetic noise case we see no preference for the model including

GWs compared to the one that only includes correlated magnetic noise, as

one would expect. In the absence of a detection of Ω2/3, we can use the

posterior distribution on that parameter to set 90% upper limits for each

of the 300 realisations. The median 90% upper limit on Ω2/3 set for the

ensemble of injections is 4.8 × 10−10 for both the strong and none cases.

In the top right panel of Figure 2.5 we show results for Ω2/3 = 3 ×
10−9, which is within the range of the expected GWB due to unresolved

CBCs [32]. There is mild evidence for a GWB for both distributions, with

the none distribution (orange, dashed) peaking at lnBSCHU+GW
SCHU ≈ 6 and

the strong distribution (blue, solid) peaking at lnBSCHU+GW
SCHU ≈ 4. It is clear

that when strong correlated noise is present the significance is lower than

when there is no correlated noise.

In the bottom panel of Figure 2.5 we show results for Ω2/3 = 10−8.

This value is larger than expected for an astrophysical background from

unresolved CBCs [32], but is chosen for illustrative purposes. When there

is strong correlated magnetic noise present (blue, solid) the distribution

peaks at a lower value than when there is no correlated magnetic noise
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Figure 2.5: We show the distribution of lnBSCHU+GW
SCHU for the strong (blue, solid)

and none (orange, dashed) injection parameters, and Ω2/3 = 0 (top
left), Ω2/3 = 3 × 10−9 (top right) and Ω2/3 = 10−8 (bottom). In the top
left panel we see no evidence for a GW detection. In the top right and
bottom panels we see evidence the presence of a GWB in both cases
(although that evidence is marginal in the top right panel). The pres-
ence of correlated magnetic noise has clearly shifted the Bayes factor
distributions downward.

injected (orange, dashed), indicating a drop in the significance of the GWB

detection when correlated magnetic noise is present. The median of the

simulations with strong correlated magnetic noise is lnBSCHU+GW
SCHU = 32.2

compared to lnBSCHU+GW
SCHU = 42.2 for the none simulation, corresponding

to a 31% drop in the detection statistic.

Figure 2.5 shows that the presence of correlated magnetic noise re-

duces the significance of a GW detection. In Figure 2.6 we show how

lnBSCHU+GW
SCHU scales with time for the strong (blue, solid) and none (orange

dashed) cases with an injection of Ω2/3 = 3 × 10−9. We also show a third

case where we consider a noisy measurement of M̂ij( f ), which we will dis-

cuss in Section 2.2.3. The strong and the none cases are clearly different,

and the time-to-detection (in this case the time to reach lnBSCHU+GW
SCHU = 8) is

increased to 2.1+1.7
−0.7 years for the strong case compared to 1.5+0.9

−0.6 years for
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Figure 2.6: We show how lnBSCHU+GW
SCHU scales as a function of time using 1000

injections in the frequency domain with increasing observation time
with a GWB injection of Ω2/3 = 3 × 10−9. The strong case (blue, solid)
is clearly below the none case (orange, dashed). We also show the
strong case with a noisy measurement of M̂ij( f ) with a magnetic SNR
of 5 (green, dash-dot). It does not appear that a noisy measurement of
M̂ij( f ) significantly hinders our ability to detect a GWB.

the none case (values given define the 68% confidence regions).

Can a poor measurement of M̂ij( f ) lead to a false GWB detec-

tion?

To this point, we have not considered the effect of local magnetometer

noise, which can reduce the significance with which we measure the noise

that is correlated between the detectors. In this section, we address whether

a low-SNR measurement of M̂ij( f ), defined in (2.11), or very strong corre-

lated noise could lead to a false GW detection. To evaluate this question,

we perform frequency-domain injections with increasing values of κ from

0 to 9 for each detector, and the same β values for LHO, LLO, and Virgo

that were used for the realistic and strong injections in Table 2.2. For this

test, we use the full three detector network and we extend the upper range

of the priors, shown in Table 2.1, on κ from 10 to 20.

We also vary the confidence with which we measure M̂ij( f ). We per-

form our frequency domain injection using M( f ) presented in Figure 2.1.
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Figure 2.7: We show a grid of lnBSCHU+GW
SCHU for different values of κ (the same κ

is used for all three detectors) and the magnetic SNR defined in (2.16).
The range of lnBSCHU+GW

SCHU across the whole grid is consistent with no
GWB detection. This indicates it is unlikely that a false GWB detection
could be caused by a noisy measurement of M̂ij( f ) or the presence of
strong correlated magnetic noise.

We then simulate a “measurement” at a chosen SNR in each frequency bin

by drawing M̂ij( f ) from a normal distribution with mean γM
ij ( f )M( f ) and

variance σ2
M( f ). Due to the fact that the SNR and M( f ) are chosen a priori,

we re-arrange the definition of the SNR to set the standard deviation in

each frequency bin,

σM( f ) =
γM

ij ( f )M( f )

SNR
. (2.16)

We perform frequency domain injections with SNRs ranging from 1 to 35.

In Figure 2.7 we show lnBSCHU+GW
SCHU for the range of κ and magnetic

SNR values we inject and with Ω2/3 = 0. The Bayes factors in Figure 2.7 are

consistent with no detection–they span a similar range to those in the top

panel of Figure 2.5, where we assumed a perfect measurement of M̂ij( f ).

This result indicates that a false detection of a GWB is unlikely, even with

an uncertain measurement of the Schumann resonances.

We also test whether a noisy measurement of M̂ij( f ) could increase
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time-to-detection of a GWB. We do this by showing how lnBSCHU+GW
SCHU

scales with time for κ = 5 (strong case) and SNR=5 in Figure 2.6 with the

green dash-dot curve. There is a not a clear reduction in detection strength

compared to the blue solid curve, which is the same correlated magnetic

noise strength but with a no-noise measurement of M̂ij( f ). The time-to-

detection for the noisy measurement case is 2.1+1.2
−0.9 years, which is around

50% longer than the case with no correlated noise and comparable to the

case where we make a noiseless measurement of the magnetic field.

Discussion

In this study we performed realistic simulations of correlated magnetic

noise in interferometric gravitational-wave detectors, and proposed a new

method to detect a GWB in the presence of that correlated magnetic noise.

The method reliably separates a GWB from correlated magnetic noise, al-

though the significance of a detection can be reduced - either by the pres-

ence of strong correlated noise, or through a noisy measurement of the

correlated magnetic fields. We also showed that a three-detector network

improves our ability to detect, estimate, and subtract the correlated mag-

netic noise compared to just a single detector pair.

The method presented here is an alternative to Wiener filtering, but

could also be used in tandem with Wiener filtering. For example, this

method could be used to find correlated noise that was not successfully

subtracted using Wiener filtering. Besides, any proposed GWB signal could

be verified using the geodesy methods discussed in [85]. In that scenario,

the maximum a posteriori parameters could be used to subtract off the

correlated magnetic noise, and the proposed remaining GWB signal could

be analysed using geodesy.

Improvements on the work could be achieved by using a model for the

magnetic coupling functions that is more flexible than a simple power law.

It should make direct comparisons with other proposed methods, and work

towards incorporating the time-variability of both coupling functions and
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Schumann resonances. This method is easily applicable to current searches

for GWB, and should help make a reliable detection of GWB using ground-

based interferometric detectors. In the following section we demonstrate

how our method was applied to the data from the O3 run to search for

signs of correlated magnetic noise.

2.3 Correlated magnetic noise during O3
The O3 run has set the most stringent upper limits to date on the

gravitational-wave background [59]. In the following section we will show

the results of applying the Bayesian methods mentioned in 2.2.2 to the O3

data, and summarise the magnetic noise study in [59].

Magnetometer data collected throughout the observing run, mi(t), can

be used to construct a magnetic correlations budget

Ĉmag,ij( f ) =
2

Tobs

|Ti( f )||Tj( f )|Re[m̃⋆
i ( f )m̃j( f )]

Γij( f )S0( f )
. (2.17)

Here m̃i( f ) are the Fourier transforms of the magnetometer channels, Ti( f )

the coupling of magnetic fields to the detector and S0( f ) the usual normal-

isation factor. The coupling functions were monitored throughout the run

by magnetic injections (of varying frequency and amplitude) and measure-

ments of the strain response in each detector. Figure 2.8 demonstrates that

even with the most pessimistic estimates of the magnetic budget, correlated

magnetic noise contribution to the background is well below the sensitiv-

ity of the O3 detector network. Therefore magnetic contamination was not

concerning in the third LVK run. Further, for the first time we used a

Bayesian framework to complement the study of the magnetic budget and

we were able to confirm that magnetic noise did not limit the sensitivity of

the GW detectors.
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Figure 2.8: Correlated magnetic noise budget, Ωmag, constructed using (2.17). The
uncertainty in the measurements of the coupling functions leads to uncertainty
in the magnetic budget. The most conservative estimate of the budget remains
two orders of magnitude below the power law integrated curve and 4 orders of
magnitude below the standard deviation of the cross-correlator estimated in O3.

2.3.1 Measurements of the magnetic coupling functions

We use weekly magnetic injections performed in O3 [100] to construct

more informative priors on magnetic parameters κ and β than the ones

listed in Table 2.1. Figures 2.9, 2.10, 2.11 show measurements of the cou-

pling functions at Hanford, Livingston and Virgo respectively. The mag-

netic coupling as a function of frequency for all three detectors can be

approximated as a power law 2. We set priors on magnetic parameters

such that the upper and lower limit for T( f ) encapsulate all of the mea-

surements – the two extremes are showed in Figure 2.9 - 2.11. The orange

line in the figures corresponds to T( f ) evaluated using the upper limit of

κ and β priors, while the blue line corresponds to T( f ) evaluated using

the lower prior limits. For κi the chosen prior distributions were chosen to

2Note that the power law approximation breaks down for high frequencies and we see
an increase in magnetic coupling to the strain channel at frequencies larger than 100 Hz.
This is not a problem for 2G detectors, since most of their GWB sensitivity lies in the
frequency range up to 100 Hz [59].
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be log-uniform from 0.01 to 10 for all of the detectors. The uniform priors

on the spectral indices varied between detectors, namely the β priors cho-

sen for the study were (0, 12), (1, 10) and (0, 7), for LHO, LLO and Virgo

respectively.
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Figure 2.9: Measurements of the LHO magnetic coupling function recorded
throughout the O3 run. The two lines plotted show the lower and upper limit
for the coupling function used as prior knowledge in our Bayesian analysis.
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Figure 2.10: Measurements of the LLO magnetic coupling function recorded
throughout the O3 run. The two lines plotted show the lower and upper limit
for the coupling function used as prior knowledge in our Bayesian analysis.
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Figure 2.11: Measurements of the Virgo magnetic coupling function recorded
throughout the O3 run. The two lines plotted show the lower and upper limit
for the coupling function used as prior knowledge in our Bayesian analysis.

Following the Bayesian framework developed in 2.2.2 and applying

the above-mentioned priors, we search for correlated magnetic noise in

the O3 data. We find no preference for correlated magnetic noise over

instrumental Gaussian noise, with log10BMAG
N = −0.03. Our results agrees

with the estimates of the magnetic budget and confirms that there was no

significant magnetic contamination in the O3 run.

Additionally, we search for simultaneous presence of a gravitational-

wave background and a magnetic correlated noise background. We use

a simple power law (1.27) to model ΩGW( f ) and set a log-uniform prior

on the amplitude from 10−13 to 10−5 along with a Normal distribution

(centred at 0, with standard deviation 3.5) as the prior distribution on the

spectral index. We find log10BMAG+PL
N = −0.3, suggesting there is no sig-

nificant evidence of a GWB in the data, consistent with the main results of

[59].

2.3.2 Future LVK runs and pygwb

The LVK Stochastic group 3 has designed a Python pipeline, pygwb, that

will serve the purpose of processing output from the strain channels and

3Following an initiative from Andrew Matas.
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producing the cross-correlator statistics in the upcoming observing runs.

This pipeline includes a parameter estimation module which I lead and

designed, with a careful treatment on correlated magnetic noise presented

thus far. Specifically, the parameter estimation module represents a cata-

logue of ΩGW( f ) models one can search for in the data using the hybrid

frequentist-Bayesian approach [59]. The module consists of a parent class

with generic definitions of likelihood and noise, and model-dependent

child classes that include details of the model parameters. It represents

a user-friendly and accessible interface for running parameter estimation

on GWB data. The details on pygwb are summarised in a technical note

included in Appendix B.

The latest results in a search for an isotropic GWB showed that Schu-

mann resonances are below the detector sensitivity; however as the sensi-

tivity increases they could limit the search. More importantly, one should

study their effect on searches with future Earth-based interferometers

which aim to have approximately one order of magnitude improvement

in sensitivity compared to current instruments. In the following section we

explore magnetic correlations in the context of ET and set targets (upper

limits) on ET’s magnetic coupling functions.

2.4 Correlated magnetic noise in Einstein Tele-

scope
The next-generation detectors will shine a light on GW events at higher

redshifts. Due to significant improvements in sensitivity compared to

the current-generation detectors, magnetic correlated noise in the form of

Schumann resonances could present a grave limitation. In this study we

focus on the European proposal for a 3G GW interferometer: the Einstein

Telescope [101]. We consider recorded magnetic activity at a candidate site

for the Einstein Telescope, and forecast the necessary measures to ensure

that magnetic contamination will not pose a threat to the science goals of
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this 3G detector. In addition to global magnetic effects, we study local

magnetic noise and the impact it might have on co-located interferometers.

We express our results as upper limits on the coupling function of mag-

netic fields to the interferometer arms, implying that any larger values of

magnetic coupling into the strain channel would lead to a reduction in the

detectors’ sensitivity.

The current ET proposal consists of three interferometers with an

opening angle π/3 forming an equilateral triangle. The no-longer oper-

ational Sos Enattos mine in Sardinia, Italy, is one of the possible locations

to host the future ET interferometer, another being the Euregio Rhein-Maas

at the intersection of the Belgian, Dutch and German borders [102]. Please

note that this work does not contain a site comparison and typical magnetic

spectra will be used to make statements on the impact of magnetic fields

on ET, regardless of its exact location.

The research and development, and design phase of ET is ongoing.

With this consideration we investigate the impact of fundamental magnetic

noise sources, such as Schumann resonances, on the ET interferometers.

We construct the maximal allowed magnetic coupling function so that the

fundamental magnetic sources are not limiting the sensitivity of ET, either

as an instrument itself or in its use for a search for an isotropic GWB.

In addition to low-frequency Schumann resonances, there are

high-frequency correlated magnetic fields from individual lightning

strikes [103], mainly situated in the frequency range 100 Hz - 1 kHz [104].

We will investigate the impact of these on ET’s sensitivity, as well as con-

sider possible limitations due to infrastructural noise.

In 2.4.1 we describe coupling of magnetic fields into ET. Section 2.4.2

focuses on the different magnetic data sets that will be used to make pro-

jections about the magnetic coupling function for ET. In 2.4.3 the magnetic

coupling functions are constructed and we will discuss the impact of our

results and their interpretation.
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2.4.1 Einstein Telescope configuration

We approximate ET as three interferometers and ignore the details of the

xylophone configuration [105]; this does not affect our results.

In what follows, we assume the three co-located, 10 km long arm inter-

ferometers in triangle configuration of ET, namely ET1,ET2,ET3, as having

identical sensitivity, and we take the unbiased estimator of ΩGW( f ) to be

(1.36). Furthermore, we neglect the difference in Γij between the baseline

pairs ij = ET1ET2,ET1ET3,ET2ET3, where we will be using ΓET1ET2 from

now on. For frequencies under 1 kHz the relative differences are [106]:

|ΓET1ET2 − ΓET1ET3 |
ΓET1ET2

< 5 × 10−7,

|ΓET1ET2 − ΓET2ET3 |
ΓET1ET2

< 2 × 10−7,

justifying our choice to neglect the difference between baseline pairs. The

normalisation factor S0( f ) is given by S0( f ) = (9H2
0)/(40π2 f 3) and Tobs is

the total observation time of the data-collecting period 4.

Equivalent to the cross-correlation statistic (1.36), one can construct a

magnetic cross-correlation statistic as in (2.17),

Ĉmag,ET1ET2( f ) = |κET( f )|2MET1ET2 ,

where MET1ET2 =
2

Tobs

|m̃∗
ET1

( f )m̃ET2( f )|
ΓET1ET2( f )S0( f )

,
(2.18)

and κET( f ) describes the coupling from magnetic fields to interferometer

ET1, where we have used κET( f ) = κET1( f ) = κET2( f ). To construct a

conservative magnetic cross-correlation statistic we take the modulus of

m̃∗
ET1

( f )m̃ET2( f ) rather than taking only the real part into account [107, 59].

When analysing data in a search for an isotropic GWB using inter-

4The form of S0( f ) for ET differs from that one of e.g. LIGO by a factor of 3/4. This
is due to the difference in opening angle between interferometers’ arms (π/2 for LIGO
and π/3 for ET) that leads to different normalisation factors in the ORF of LIGO and ET
baseline pairs [38].
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ferometers i and j, the magnetic coupling functions κi,j( f ) are measured

by injecting magnetic fields with known amplitude and frequency and

observing their impact on the output in the GW data si,j(t) [73, 74] (as

discussed in 2.3 for O3 data). However, in this study we will consider a

different approach: given a desired sensitivity and a magnetic spectrum

|m̃∗
ET1

( f )m̃ET2( f )|, we estimate the maximal allowed magnetic coupling

function κET( f ) such that ET will not be limited by this magnetic noise.

The sensitivity for a GWB search is different to the instantaneous sen-

sitivity of the ET interferometer, i.e. the one-sided ASD PET( f ) = PET1( f ) =

PET2( f ) = PET3( f ). In the case of an isotropic GWB search, the sensitivity

is given by the standard deviation on the cross-correlation statistic defined

in (1.37). This σET1ET2( f ) defines our uncertainty and therefore our sensitiv-

ity in a single frequency bin used in the analysis. However, when searching

for an isotropic GWB, one typically expects a broadband signal and often

assumes a power law GWB model. Hence, a useful measure of GWB sensi-

tivity is also the power law integrated (PI) curve. The PI curve, ΩPI
ET1ET2

( f )

is constructed using σET1ET2( f ) so that its tangent at any frequency repre-

sents the sensitivity at which one could detect a power law ΩGW( f ) with an

SNR of 1 for the ET1ET2 baseline [108]. Therefore, it serves as a good figure

of merit to identify broadband noise sources that could limit the sensitivity

of a GWB search.

To ensure that magnetic noise does not obstruct the isotropic search

for a GWB, we construct an upper limit on the magnetic coupling function

that we label “GWB," in the following way. We use (2.18) and take the

upper limit for the magnetic cross-correlation Ĉmag,ET1ET2( f ) to be the 1σ-

PI sensitivity curve – ΩPI
ET1ET2

– after one year of taking data:

κGWB
ET ( f ) ≡

√
ΩPI

ET1ET2

MET1ET2

. (2.19)

In addition, we explore a complimentary method for computing upper
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limits of the magnetic coupling function κET( f ). To investigate the impact

of magnetic noise sources on the ASD of an individual interferometer, we

construct what we refer to as the “ASD” upper limit:

κASD
ET ( f ) ≡ k

PET( f )
Pmag( f )

, (2.20)

where k is set to be 1/10 to require any single technical noise contribution

to be a factor of 10 lower than ET’s ASD, PET( f ). Pmag( f ) is the one-sided

ASD of the magnetometers witnessing the local noise of ET, assuming the

magnetic noise to be the same for the three individual ET interferometers

ET1, ET2 and ET3. If magnetic fields couple significantly at this level, they

will limit the expected sensitivity of the interferometer. The “ASD” up-

per limit should be investigated to prevent magnetic noise from drastically

impacting all science goals of the GW interferometer.

To make full use of ET’s capabilities when searching for an isotropic

GWB, one should use κGWB
ET ( f ). On the contrary, to find the level at

which magnetic fields might directly impact the instantaneous sensitivity

achieved by ET, then κASD
ET ( f ) is the relevant measure.

2.4.2 Magnetic data in Einstein Telescope

In this analysis we use observed, rather than simulated, magnetic data.

However, since the location and exact positioning of ET is unknown we will

estimate |m̃∗
ET1

( f )m̃ET2( f )| using a variety of observed magnetic spectra

that we describe below.

As a part of site characterisation of the Sos Enattos mine for ET [109,

110], magnetic field measurements were taken from 5 Hz to 100 Hz in

the exceptionally quiet environment inside the unused mine. We use 48

days of data taken from Nov 14 2019 to Dec 31 2019, using a single-axis

Metronix MFS-06e magnetometer positioned inside the Sos Enattos mine

about 200 m below ground level. The magnetometer is sampled at 250

Hz. Given these on-site measurements are available for Sos Enattos but not
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for the Euregio Rhein-Maas ET-candidate site, we will use the magnetic

spectrum observed at Sos Enattos as a reference estimate for the magnetic

spectrum at the future ET site: m̃ET( f ) = 2m̃SosEnattos( f ). The factor 2 allows

for higher magnetic fields at the final site and to be more conservative.

Further investigations into magnetic noise at Euregio Rhein-Maas could

help compare the two currently proposed sites, but we do not make any

statement about which site will be used as the actual location of the ET

detector. Site-specific amplifying or reducing ambient magnetic fields are

typically a second order effect that can be ignored. However, as shown by

measurements at KAGRA, local amplification of ambient magnetic fields

may not always be negligible [111, 42].

We show in Figure 2.12 percentiles of the magnetic ASD as measured

at Sos Enattos. We use the shape of the 10% magnetic percentile curve,

since it captures the peaks of the Schumann spectrum very well. We then

scale the amplitude to match the amplitude of the 95%-percentile curve

at 7.8 Hz, the first Schumann mode. This gives a good prediction for the

Schumann resonance spectrum at Sos Enattos.

This low-frequency range is where most of the sensitivity is for the

ongoing isotropic GWB searches, with the most recent LIGO-Virgo observ-

ing run containing 99% sensitivity to a flat ΩGW spectrum below 100 Hz

[59]. The sensitivity at high frequencies is suppressed since the ORF for

the LIGO and Virgo baseline pairs drops significantly with frequency and

approaches zero at a few hundreds of Hz. The same, however, may not be

true for the ET detectors, whose geometry leads to no suppression at high

frequency, and the anticipated ORF remains approximately constant up to

1 kHz, e.g. γET1ET2(1 kHz)/γET1ET2(1 Hz) = 99.48%. We therefore look to

place upper limits on the magnetic coupling function at high frequencies.

We estimate the correlated magnetic noise spectrum above 100 Hz

by computing the cross spectral density (CSD) between magnetometers

at LIGO Hanford and LIGO Livingston. The separation of several thou-
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Figure 2.12: Sos Enattos magnetic ASD constructed using 48 days of data from
Nov 14 2019 to Dec 31 2019. A one-directional magnetometer was
employed to collect the data in the mine approximately 200 m below
ground level. The line at 50 Hz is coming from the power mains.

sands of kilometers between the two sites ensures that the estimated spec-

trum only contains fundamental, global effects rather than local contribu-

tions. We consider the Hanford-Livingston baseline as the most conserva-

tive choice for magnetic CSD since these are the closest interferometers and

the impact of individual lightning strikes at frequencies above ∼ 100 Hz

drastically attenuates with increasing distance. Hanford and Livingston

both have two low-noise magnetometers on site, positioned at low-noise

locations orientated along the interferometers arms. We make use of an

“omni-directional” magnetic CSD, where we take into account all possible

cross-correlation combinations between the magnetometer pairs at both in-

terferometer sites,

CSDHL =[ |m̃∗
Hx
( f )m̃Lx( f )|2 + |m̃∗

Hx
( f )m̃Ly( f )|2

+ |m̃∗
Hy
( f )m̃Lx( f )|2 + |m̃∗

Hy
( f )m̃Ly( f )|2 ]1/2 .

(2.21)

Here Hx, Hy (Lx, Ly) represent the two orthogonal magnetometers at Han-
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ford (Livingston) pointing along the interferometer’s x- and y-arms. We

use data recorded from Apr 2 2019 to Mar 27 2020, which approximately

matches the O3 run. We assume CSDHL is a realistic estimation for the

magnetic noise at ET, where we include an additional factor of 2 reflecting

our uncertainty on the magnetic spectrum 5: |m̃∗
ET1

( f )m̃ET2( f )| = 4CSDHL.

We also investigate the impact of local magnetic noise. One should

study local magnetic noise carefully as this could be a correlated noise

source as well because each local corner station for the triangular ET set-

up will likely house mirrors for two of the three interferometers (separated

by ∼ 300 m and in different vacuum tubes). To model local magnetic fields

of a GW interferometer, we consider the local magnetic noise measured

in the central building (CEB) at Virgo site [73]. We use the 90% magnetic

percentile of data collected between Feb 10 2020 and Feb 16 2020 - during

the second half of the third observing run, O3b. This spectrum is quite

similar to the one observed in the Virgo CEB during O2 [112]. We assume

the local noise at Virgo is a realistic estimation for the local magnetic noise

at ET, where we include an additional factor of 2 reflecting our uncertainty

on the magnetic spectrum: m̃ET1( f ) = 2m̃VCEB( f ).

2.4.3 Limits on magnetic coupling in Einstein Telescope

We construct two complementary measures—κGWB
ET ( f ) and κASD

ET ( f )—of

the magnetic coupling function. In our analysis, we use two preliminary

design studies, called ETSingle and ETXylophone
6 [113, 105]. In the remain-

der of this work we will use the notation ET-S and ET-X as abbreviations

to refer to ETSingle, respectively ETXylophone. In Figure 2.13 we show the

sensitivity curves for both of these design options in the left panel. In the

right panel we show the PI curves for each of these design options for 1

year of integration time. The ET-X configuration is an order of magnitude

5A factor of 2 at the level of individual magnetic fields m̃ET( f ), corresponds to a factor
of 22 at the level of |m̃∗

ET1
( f )m̃ET2( f )|.

6In previous literature ETSingle and ETXylophone have also been referred to as respec-
tively ET-B, ET-D.
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Figure 2.13: The ET configurations – ET-S, ET-X [113, 105] – and their anticipated
sensitivity curves (left panel) as well as their power law integrated
curves after a year-long observation (right panel).

more sensitive at low frequencies as compared to ET-S. Figure 2.13, shows

ET-X could be sensitive to a GWB at the ΩGW( f ) ∼ 10−12 range, with an

SNR=1 after 1 year of observation. This seems to be consistent with earlier

investigations stating a GWB with strength ΩGW( f ) = 2 × 10−12 would be

detected with an SNR=5 after 1.3 years of observation time [114].

The upper limits presented here assume the reduction of the mag-

netic coupling is the only pursued method to prevent magnetic fields from

coupling significantly to the interferometer. Methods such, as the use of

Wiener filters [115], could also be used to reduce the effects of correlated

magnetic noise. However, the best strategy for ET will be to design the

magnetic isolation to be as good as possible.

In Figure 2.14 we show limits on the coupling imposed by our target

sensitivity measures. The κGWB
ET−X( f ) limits are indicated by the solid blue

curve, while κASD
ET−X( f ) limits are denoted by the dash-dotted yellow curve.

The average coupling measurements made at Virgo [73, 116], LIGO Han-

ford and Livingston [117, 118, 119, 100] during the O3 run are indicated
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Figure 2.14: “ASD” and “GWB” magnetic coupling function upper limits for
ET − X design sensitivity. Also included are the average of the mea-
surements of the coupling functions at LIGO Hanford, LIGO Liv-
ingston and Virgo during the O3 run for comparison.

by the green circles, smaller orange circles, and magenta stars respectively.

Please note that the magnetic coupling measurements only start from 11

Hz, 9 Hz and 7 Hz for respectively the Virgo, LIGO Hanford and LIGO

Livingston interferometers. In Figure 2.15 and Figure 2.16 we show high

and low-frequency coupling limits, κGWB
ET ( f ), respectively for each of the

design options (solid blue for ET-S, yellow dashed for ET−X). The average

coupling measurements at Virgo, Hanford, and Livingston are the same as

in Figure 2.14.

We notice that the upper limit on the magnetic coupling at certain

frequencies is allowed to be greater than the magnetic coupling at current

observatories 7, for example ≳ 30 Hz in the κASD
ET−X( f ) curve in Figure 2.14.

This means that one can be less concerned about Schumann resonance

magnetic noise coupling into ET as compared to LIGO/Virgo detectors.

7Above 100 Hz the weekly measurements of the magnetic coupling are often upper
limits rather than an actual measurements. However during some periods of “extreme”
magnetic coupling such high values are actually measured as well [73].
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Figure 2.15: Variation in the “GWB” magnetic coupling function upper limits for
the different ET designs. Also included are the average of the mea-
surements of coupling functions at LIGO Hanford, LIGO Livingston
and Virgo during the O3 run for comparison.

Figure 2.16: Upper limits on “GWB” magnetic coupling function of ET-S and -X at
high frequencies. Also included is the average of the measurements
of coupling functions at LIGO Hanford, LIGO Livingston and Virgo
during the O3 run for comparison.
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The reason for this result can be seen by considering the difference between

the magnetic coupling measured in units of [T−1] 8 and in units of [m T−1].

The latter takes into account the arm-length of the interferometer, Larm,

κ[T−1] =
κ [m T−1]

Larm[m]
.

Since ET is planned to have a 10 km arm-length, instead of 4 km (LIGO)

or 3 km (Virgo), the test masses displacements due to magnetic effects

measured in the units [m T−1] is allowed to be larger compared to existing

interferometers.

We emphasise that Figure 2.14 and Figure 2.15 use data measured at

the Sos Enattos candidate site for ET. However, given the similar ampli-

tude of the Schumann resonances around the globe, these results could

be transferable to another location and more specifically a second candi-

date site in the Euregio Rhein-Maas. That is assuming there is no extreme

magnification of magnetic fields due to local effects, as observed at KA-

GRA [111, 42]. To account for such a possibility we introduced a factor of

1/2 in our estimates of the coupling upper limits.

We illustrate in Figure 2.16 the effect of magnetic fields at ET above

a 100 Hz. An example of an analysis that could target a signal at these

higher frequencies is the study of a GWB from unresolved millisecond

pulsars. This search is complementary to the standard continuous-wave

search of individual pulsars, and can help constrain ellipticity of rotating

neutron stars [120, 121, 30]. Current forecasts predict an improvement of

one to two orders of magnitude in the sensitivity to ellipticity going from

LIGO-Virgo to ET. However, correlated magnetic noise at high frequencies

could weaken the ellipticity constraints (see, Figure 6 in [122]), and should

thus be treated carefully.

In our high-frequency analysis we have used the magnetic CSD mea-

sured between LIGO Hanford and LIGO Livingston, two widely separated

8The unit of magnetic coupling function [T−1] is often referred to as [strain T−1].
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Figure 2.17: Needed improvement factor as a function of frequency for the “ASD”
(left panels) and “GWB” (right panels) upper limits on the ET mag-
netic coupling function. The low-frequency (top panels) magnetic
coupling poses a greater challenge for the operation of ET compared
to the high-frequency (bottom panels) magnetic coupling, while
“GWB” upper limits on the magnetic coupling are more constrain-
ing than the “ASD” ones. In all panels, the dash-dotted blue line
indicates the line where no improvement is necessary.

sites, to ensure we are not dominated by local effects. However, since

magnetic fields from the sources contributing to this magnetic noise (e.g.

individual lightning strikes [104]) are attenuated over long distances, the

fundamental magnetic spectrum at ET could be stronger compared to our

predictions. Therefore one should be cautious interpreting the upper limits

presented in Figure 2.16. For the magnetic coupling above 100 Hz, we do

not show the upper limits calculated using the “ASD" formalism, (2.20),

since these limits are less stringent than the measured magnetic coupling

at present day interferometers.

We summarise these results in Figure 2.17, where we express the esti-

mated “ASD” and “GWB” upper limits as a factor of improvement needed

in the ET coupling function relative to Hanford, Livingston and Virgo cou-

pling functions. We show how this factor varies with frequency, as well as
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how it changes with the choice of ET design sensitivity. For frequencies

below ∼ 30 Hz, the magnetic coupling would need to drastically reduced,

with factors of improvement of the order 102 − 104 needed for the isotropic

GWB search, see top right panel. High-frequency coupling, on the other

hand, would only require up to a factor of 10 reduction in magnetic cou-

pling to run a successful GWB search (bottom right panel). Meanwhile,

from the “ASD” upper limits we do not require any improvement in cou-

pling function at frequencies above 30 Hz, see two left panels, confirming

that this is a less conservative constraint on the magnetic coupling.

Note that above 30 Hz Advanced LIGO’s magnetic coupling is domi-

nated by induction of currents in cables [74]. One mitigation strategy that

could be followed in this scenario is using, as much as possible, a cabling

network of optical fibers. The implementation of a large-scale optical fiber

network has been investigated and implemented at CERN [123]. An im-

portant factor for the reduced magnetic coupling for Advanced LIGO com-

pared to Advanced Virgo is that LIGO uses an electrostatic test mass actua-

tors whereas Virgo uses magnetic actuation [74, 116]. Further reducing the

number of magnets attached to the suspensions should reduce magnetic

coupling. Additional magnetic shielding can be a complementary method

to reduce the magnetic coupling [112]. Ultimately, if methods for magnetic

coupling reduction are insufficient one could consider the cancellation of

magnetic noise, similar to what is considered in the context of Newtonian

Noise [124, 125], albeit using magnetometers instead of seismometers.

Finally, if one is unable to reduce the effect from local magnetic fields

originating from e.g. used infrastructure, local magnetic noise sources will

dominate the fundamental magnetic noise discussed above. This leads to

the most stringent coupling upper limits, reported in Figure 2.18. To con-

struct these upper limits the magnetic noise as observed in the Virgo cen-

tral building is used. This represents a realistic magnetic environment in

present-day interferometers, however it may not be the most conservative.
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Figure 2.18: “ASD” and “GWB” magnetic coupling function upper limits of all ET
design sensitivities in the case the local magnetic noise is the same
level as the CEB at Virgo during O3. Also included are the average
of the measurements of coupling functions at LIGO Hanford, LIGO
Livingston and Virgo during the O3 run for comparison.

In the case of Virgo this local noise does not pose a serious problem

in the GWB search since it is uncorrelated with local magnetic noise at

far-away Hanford and Livingston detectors. Between co-located ET inter-

ferometers, however, the local noise could become correlated. This can

lead to drastically more stringent upper limits on the magnetic coupling.

If one wants to fully utilise the data for GWB searches, the magnetic cou-

pling should be well below the magnetic coupling measured at Hanford,

Livingston and Virgo, see Figure 2.18. Below ∼ 30 Hz, the instantaneous

detector sensitivity will be limited by magnetic noise if the coupling is not

reduced below the current day magnetic coupling of Hanford, which is

already significantly smaller compared to the coupling measured at Liv-

ingston and Virgo.

Discussion

Einstein Telescope is a powerful and promising instrument for detecting a

GWB, with an unprecedented low-frequency sensitivity compared to LIGO

and Virgo [122]. The ability to detect a GWB through correlation methods

between multiple detectors assumes the absence of correlated noise [126].
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However, globally coherent magnetic fields have been identified as a limit-

ing noise source for the present GW detector network [71, 72, 48]. As we

have shown, this is also the case for ET. More precisely, we have shown that

the magnetic coupling functions for ET must be better than those of LIGO

and Virgo by a factor of 102 − 104 for frequencies below 30 Hz, in order to

avoid correlated noise from Schumann resonances affecting GWB searches.

Reducing the magnetic coupling to prevent a significant impact on the

interferometers, and also to ensure that local magnetic noise is as small as

possible, is the best strategy for ET. This could be achieved by reducing the

number of magnets attached to the suspensions [74], additional shielding

[112], and using optical fibers as much as possible for signal transmission

[74]. There could also be a synergy with noise subtraction methods, such

as Wiener filters [115, 124, 125]. However they also could be used to reduce

the effects of correlated magnetic noise and loosen the requirements on the

magnetic coupling, as presented here.

Not reaching the reported upper limits on the magnetic coupling func-

tions could have a direct impact on the search for a GWB with ET. Note,

however, that reaching these upper limits is not necessarily a guarantee that

there are no effects by magnetic fields on the search for a GWB. The impor-

tance of correlated magnetic noise coupling will need to be considered as

ET is designed and constructed.

2.5 Afterword
In this chapter we discussed at length the impact of correlated magnetic

noise on sensitivity of current and future GW detectors. In addition to

already existing methods, such as Wiener filtering, we consider statistical

Bayesian tools to treat correlated noise present in the data. We described

the Bayesian framework and demonstrated its success in separating a GW

signal from correlated magnetic noise. This framework was used in the O3

run, and it proved that magnetic noise was not present in the data.
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Finally, we made projections for the coupling functions in the future ET

detector and pointed to improvement needed to ensure ET’s sensitivity is

not limited by magnetic noise. For gravitational-wave background searches

below ∼ 30 Hz it will be necessary for the Einstein Telescope magnetic

isolation coupling to be two to four orders of magnitude better than that

measured in the current Advanced LIGO and Virgo detectors.

When we detect a GWB signal, we will have the tools at hand to con-

firm that it is gravitational in nature, and not an artefact of correlated mag-

netic noise sources. The question naturally arises: If we have detected a

GWB, can we determine its components?



Chapter 3

Source separation

3.1 Foreword
Gravitational-wave background is a random signal produced by many

weak, independent and unresolved sources; it can be of cosmological or

astrophysical origin. A variety of early Universe processes, like quantum

vacuum fluctuations during inflation, post-inflationary preheating, first or-

der phase transitions, or topological defects (in particular cosmic strings)

can lead to a GWB [127, 128, 129].

An astrophysical contribution to the GWB comes from the superposi-

tion of unresolved GW sources of stellar origin. This includes burst sources,

like core collapse supernovae and the final stage of CBCs, together with

quasi-periodic long-lived sources like pulsars and the early inspiral phase

of compact binaries [130, 33]. A detection of a GWB can provide important

astrophysical information about, for instance, the mass range for neutron

star and black hole progenitors, or the rate of compact binaries [32]. It also

sheds light on particle physics models beyond the Standard Model and the

early stages of our Universe.

Once a GWB is successfully detected, there will be the challenge of

identifying the sources that contribute to it. Untangling these signals will

deepen our knowledge of merger rates and population models [131, 132,

133, 134], our understanding of exotic objects [135, 136, 137, 138] and in
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particular early Universe models [139, 140, 129, 141].

Extensive literature on separation of GWB sources confirms the im-

portance of this step in GW data analysis. Broadly, separation techniques

rely on non-gaussianity or temporal variation of the astrophysical back-

ground, as well as use singular value decomposition of the signal, see

e.g. terrestrial [142, 143, 144, 145, 146, 147] and space-based GW detec-

tor source separation studies [148, 149, 150, 151]. This chapter consists of

two parts; 3.2 tests separation of an astrophysical CBC background from a

cosmological background in terrestrial detectors using our Bayesian tools

described in the previous chapter, while 3.3 reflects on separating Galac-

tic confusion noise from CBC signals in space-based LISA using a novel

machine-learning method.

3.2 Terrestrial GW detectors
In this section, we consider backgrounds that comprise CBCs and addi-

tional cosmological sources for terrestrial detectors, and we set simultane-

ous upper limits on these backgrounds. We find that the Advanced LIGO,

Advanced Virgo network, operating at design sensitivity, will not allow

for separation of the sources we consider. Third-generation detectors, sen-

sitive to many more individual compact binary mergers, can reduce the

astrophysical GWB via subtraction of individual sources, and potentially

reveal a cosmological background [152, 153].

In this study, we adapt the parameter estimation analysis from 2.2.2,

which is based on techniques already present in the literature [154, 155,

156], to separate the astrophysical and cosmological contributions to the

GWB. We first discuss 2G detectors Advanced LIGO and Advanced Virgo.

We then move to 3G detectors, namely Einstein Telescope and Cosmic Ex-

plorer, and comment on how the study could be adapted to the space-

based LISA detector. The future detector networks require subtraction

of the "loud" CBCs from the GWB, prior to the parameter estimation
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[157, 146, 158, 159, 114], to ensure that the cosmological background is

not obscured by the astrophysical one. In 3.2.1 we discuss the individual

sources we choose for this study. We describe the GW signals injected and

the analysis we perform in 3.2.2. We summarise our results in 3.2.3 and

make concluding remarks.

3.2.1 Astrophysical and cosmological sources

CBC background

The CBC background is likely to be the largest contribution to the

GWB [32]. Therefore, any attempt to measure other contributions to the

background should be done in such a way as to simultaneously measure a

CBC background and other contributions. The analytic model describing

the CBC background depends on quantities such as redshift and merger

rates [130, 32]; the inspiral phase can be approximated as

ΩCBC( f ) = Ω2/3

(
f

25Hz

)2/3

. (3.1)

In the case of 2G detectors, we can use this approximation freely [160, 161].

When it comes to future GW detectors, however, the approximation cannot

be applied to the entire frequency band. Instead, one must also include the

contributions from the merger and ringdown phases that cause measurable

deviations from this approximation, as shown in (1.43) [146, 161]. For the

purpose of this study, we restrict ourselves to the range (10 − 100) Hz, the

frequency range over which the approximation in (3.1) is valid, even after

individual source subtraction [146].

The current estimate of the amplitude of the CBC spectrum from in-

dividual sources over the Advanced LIGO and Advanced Virgo frequency

range places an upper bound ΩCBC = 1.9 × 10−9, at a reference frequency

of 25 Hz [59]. This estimate includes contributions from binary black holes,

binary neutron stars, and black hole-neutron star systems.

There are numerous studies on subtracting resolvable CBC signals



3.2. Terrestrial GW detectors 74

from the data, and these can lead to a reduction in their contribution

to the GWB by as much as two orders of magnitude for binary black

hole signals and one order of magnitude for binary neutron star sig-

nals [157, 146, 158, 159, 114]. When considering future detectors like Ein-

stein Telescope and Cosmic Explorer, we assume a scenario where such a

subtraction has already been made – following the results from [146]. Note

that the imperfect subtraction of CBC sources may pose a serious threat

to digging out a cosmological background, and extensive research must be

done to improve the subtraction methods [152, 153].

Cosmic Strings

A phase transition followed by a spontaneously broken symmetry can

leave behind topological defects as remnants of a previous more symmet-

ric phase. One particular class of such defects is cosmic strings, line-like

defects, generically formed within the context of grand unified theories

[162].

A network of cosmic strings is mainly characterised by the string ten-

sion Gµ, where G is Newton’s constant, and µ is the mass per unit length.

The dynamics of a string network are driven by the formation of loops

and the emission of bursts of GWs, predominantly from cusps and kinks,

and kink-kink collisions [163, 25]. The superposition of these bursts leads

to a GWB over a large range of frequencies, making it a target for GW

searches from pulsar timing arrays in the nanohertz band as well as the

ground-based detectors we consider here [164, 165, 166].

In the high-frequency regime we consider, (10− 100) Hz, the spectrum

of the GWB is flat, i.e. ΩCS( f ) = const [167], and it only depends on the

averaged total power emitted by a loop, and the total number of loops. A

GWB analysis can thus put a limit on the string tension, and consequently

on the energy scale of the phase transition leading to the formation of these

objects.

The 95% credible upper limit placed after the first three LIGO obser-
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vation runs, assuming a uniform prior, is ΩCS = 1.3 × 10−8 [107, 59]. This

implies upper bounds to the string tension [25], Gµ ≤ 4 × 10−15, for the

loop distribution model in [168].

First Order Phase Transitions

If a phase transition occurred at temperatures (105 − 1010) GeV, the corre-

sponding GW spectrum would be observed in the (10− 100) Hz frequency

range we consider [169]. The phase transition associated with the breaking

of Peccei-Quinn symmetry, for instance, could have happened at such high

temperatures, leading to the QCD axion, a well motivated extension to the

Standard Model. In this scenario, the growth of the true vacuum bub-

bles, and their subsequent collisions, give out GWs due to several effects

[170]. The strongest of those is most likely due to sound waves from bub-

ble growth in plasma. The turbulence of the plasma in which the bubbles

grow can also produce GWs. Finally, GWs are emitted due to collision of

the scalar wall profiles. There exist numerical [171, 172, 173] and analytical

[174, 175] models for the shape of ΩGW as a function of frequency for each

of these contributions.

The frequency spectrum of the GWB produced by most models can be

captured by a smoothed broken power law:

ΩBPL = Ω∗
( f

f∗

)α1

[
1 +

( f
f∗

)∆
](α2−α1)/∆

. (3.2)

For example, numerical simulations find the GW spectrum due to the

sound waves in the plasma [176]

h2ΩSW( f ) = F(β, H∗,κSW,α, g∗,vw)
( f / fSW)3

[1 + 0.75( f / fSW)2]7/2 , (3.3)

where β is the transition strength, H∗ is the Hubble constant at the time

of GW production, κSW is the efficiency factor, α is the ratio of latent heat
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released in the phase transition to the heat of the radiation bath, g∗ is the

number of relativistic degrees of freedom, vw is the bubble wall velocity,

and fSW = fSW(β, H∗) is the peak frequency.

If we use (3.2) to approximate (3.3), then we have α1 = 3, α2 = −4

and ∆ = 2. Relating Ω∗ and f∗ to the long list of physical parameters that

control the phase transition is beyond the scope of this study. We will

discuss GWB from first-order phase transitions in greater detail in the next

chapter.

3.2.2 Bayesian simultaneous estimation method

We undertake a Bayesian parameter estimation and model selection study.

For a single GW detector pair, ij, the log-likelihood is obtained by setting

ΩM,ij = 0 in (2.13) 1, resulting in

log p(Ĉij( f )|θGW) = −1
2 ∑

f

[Ĉij( f )− ΩGW( f ,θGW)
]2

σ2
ij( f )

− log
[
2πσ2

ij( f )
] ,

(3.4)

where ΩGW( f ) is the model spectrum and θGW are the parameters that

define the model. We extend this analysis to include three GW detectors

by adding log-likelihoods for the individual pairs to construct a multiple-

baseline log-likelihood. To compare two models, M1 and M2, and make

statements about which is more favourable by the data, we utilise Bayes

factors.

While the posterior distribution of θGW is evaluated in conjunction

with Bayes factors, we can also analytically calculate a bound on covari-

ance between model parameters using the information matrix. This has

been used for estimating parameter covariance for GWB models in other

studies as well [177, 178, 161]. For the case of a Gaussian likelihood with

uncorrelated measurements (frequency bins) with an unbiased estimator,

1We assume the correlated magnetic noise to be reduced to a level that is below the
sensitivity of our detectors.
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the information matrix is given by

Iij(θ) = ∑
f

σ( f )−2
(

∂ΩGW( f ,θ)
∂θi

)(
∂ΩGW( f ,θ)

∂θj

)
. (3.5)

The covariance between model parameters is theoretically bounded below

by the inverse of the information matrix

covθ

(
θi,θj

)
≥
[
I−1(θ)

]
ij

. (3.6)

This bound, known as the Cramér-Rao lower bound, can be exceeded by

including, e.g. informative prior information. However, the structure of

the information matrix can still offer valuable insight into the degeneracy

of certain model parameters with one another and offer an intuitive picture

of the parameter estimation problem.

Injected Signal

We consider two types of injections: one containing a CBC and a cosmic

strings background, and another one containing a CBC and a background

due to phase transitions, see Table 3.1. The background labelled here as

CBC refers to what is left once we subtract the known CBC contribution,

i.e. it is the residual astrophysical background. For the second injection,

we choose a broken power law with exponents α1 = 3, α2 = −4, and ∆ = 2

which best describes ΩSW, the sound wave contribution to ΩGW. In this

case our Bayesian search estimates the peak frequency, f∗, as well as the

amplitude of the smooth broken power law, Ω∗.

The injection strengths we choose vary from one detector network to

another. The instrumental noise is included at the level of the design sen-

sitivity curves of the detectors. We consider O4 sensitivity for Advanced

LIGO and Advanced Virgo [179], ETXylophone for the Einstein Telescope

[105] and CE Wideband for the Cosmic Explorer [180]. The same prior is

used for the recovered amplitudes, Ω2/3,ΩCS,Ω∗, all of them log-uniformly
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distributed between 10−15 and 10−8. All results are presented for 1 year ob-

servation time.

ΩGW( f ) GW parameters, θGW
Injection 1 ΩCBC( f ) + ΩCS( f ) (Ω2/3,ΩCS)
Injection 2 ΩCBC( f ) + ΩBPL( f ) (Ω2/3,Ω∗, f∗)

Table 3.1: GW spectra injected, and the parameters estimated in the analysis.

3.2.3 Limits on sensitivity to cosmological backgrounds

We present results on source separation for a GWB detection with different

sets of GW detector networks.

Advanced LIGO and Advanced Virgo

In this section we consider separation of a cosmic strings signal from a CBC

signal with the current detector network operating at design sensitivity. We

vary injection strengths, with 25 injections log-uniformly distributed be-

tween Ω2/3 ∈ (10−9.4,10−8.4). These values were chosen by using 90% limits

on CBC background from [32]. We explore the flat cosmic strings spectrum

with 35 injections log-uniformly distributed between ΩCS ∈ (10−9.4,10−7.4).

The upper limit of the injection range is consistent with constraints placed

on a cosmic strings GWB spectrum from data in the first three observa-

tional runs [59]. The Bayes factors we find are too low to differentiate

between the signals, with values ranging between -0.1 and 0.1, indicating

that one cannot distinguish models that include both spectra from mod-

els that include only a CBC background. Other methods, which seek to

model the contribution from individual CBCs on shorter time-scales, along

with an isotropic, flat background propose ways of overcoming these ob-

stacles [144, 145].

Third Generation Detectors

Operating at their anticipated O4 sensitivity, the Advanced LIGO, Ad-

vanced Virgo network cannot achieve source separation of a detected GWB

signal. We therefore pursue studies in future detectors. As was done in
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[146], we consider a network of Cosmic Explorer detectors at the Hanford

and Livingston locations, and Einstein Telescope at the Virgo site. Figure 1

in [146] estimates that after individual source subtraction, the residual CBC

contribution to the GWB is dominated by unresolved binary neutron star

mergers at the level of ∼ 10−11 at 10 Hz. We therefore use a log-uniformly

distributed range of Ω2/3 ∈ (10−11.8,10−10.8) at 25 Hz in the top panel of

Figure 3.1, and fix Ω2/3 = 1 × 10−11 for all the injections in the bottom

panel. We then use comparable signal strengths for the cosmological con-

tributions, in particular ΩCS ∈ (10−12.8,10−11.8) and Ω∗ ∈ (10−11.6,10−10.6).

The GW selection effect could favour the detection of the best ori-

ented and located sources, especially at larger redshift, disqualifying the

assumption of an isotropic GWB in the standard cross-correlation statis-

tic. This leads to a systematic bias in the residual background and hence

to a correction for the overlap reduction function [181, 182]. This could

provide another way for discriminating between an astrophysical from a

cosmological background.

From the top panel of Figure 3.1, we see that we start to confidently

separate a flat spectrum from the residual CBC signal for ΩCS = 4.5× 10−13.

Cosmic strings backgrounds lower than this get lost in the unrecovered

CBCs and cannot be singled out. Our sensitivity allows constraints to

be placed on the string tension as low as Gµ ≤ 3.0 × 10−17 and Gµ ≤
4.0 × 10−19, for the cosmic string loop distribution models [183] and [168],

respectively. Similar sensitivity to a cosmic strings spectrum is expected

from the space-based LISA detector, whereas the Square Kilometer Array

is expected to at most probe Gµ values 3 or 4 orders of magnitude less

sensitive [23].

As for a broken power law background due to an early Universe phase

transition, we find that the Cosmic Explorer and Einstein Telescope net-

work’s sensitivity is highly dependent on the break frequency of the spec-

trum, see bottom panel of Figure 3.1. The most conservative estimate we
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Figure 3.1: Variation of log Bayes factor with the injected power laws for cosmic
strings (top panel) and a first order phase transition (bottom panel)
for third-generation detectors. The residual CBC amplitude for the
bottom panel is Ω2/3 = 1 × 10−11 for all of the injections. The contour
plots show values of logB = 4 or logB = 8, which is roughly when we
start to see significant preference for one of the models, since logB =
8 corresponds to approximately SNR = 4.
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Figure 3.2: Precision with which we can measure f∗, Ω∗, and Ω2/3 for the broken
power law model, where σ for each parameter is estimated using the
bound in (3.6). The model parameter used for f∗ and Ω∗ is given by
the value of the x- and y-axes respectively. The residual CBC injection
is Ω2/3 = 1 × 10−11 for all simulations.

find of a detectable BPL signal (i.e. with logB = 8), is the one associated

with f∗ = 100 Hz, Ω∗ = 1.8× 10−11. Taking into account injected values for

α1,α2,∆, f∗, we estimate a signal of amplitude ΩBPL = 2.2 × 10−13 at 25 Hz.

We also look at the precision with which we can measure Ω∗, f∗ and

Ω2/3 using the covariance bound in (3.6). We use f∗/σf∗ as a proxy for

the precision of our f∗ measurement, with σf∗ = [cov( f∗, f∗)]
1/2 estimated

from (3.6) (and analogous expressions for Ω∗ and Ω2/3). In Figure 3.2,

we show the theoretical bound on this precision for Ω∗, f∗,Ω2/3 as a func-

tion of the strength and shape of the broken power law background. In

all three panels, the horizontal axis is f∗ and the vertical axis is log10 Ω∗.

The colour is the precision statistic discussed above. For all three panels,

we have fixed Ω2/3 = 1 × 10−11. The broken power law model parameters

are best estimated when f∗ ≈ 20 Hz and are improved as Ω∗ increases.

Interestingly, the theoretical precision with which we measure Ω2/3 is in-

dependent of Ω∗, but is dependent upon the shape, which is governed by
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f∗. This is because elements of the information matrix in (3.5) that involve

derivatives of Ω∗ and Ω2/3 are independent of both Ω∗ and Ω2/3 because

these variables appear linearly in separate terms of the combined model

ΩBPL( f ) + ΩCBC( f ). This means that the variance of Ω∗ and Ω2/3, and the

covariance between them are independent of these amplitudes. These vari-

ables are still correlated with each other – merely the covariance between

them is independent of the values themselves.

Discussion

We have looked at current, and future, terrestrial GW detectors to see if we

can successfully perform source separation of a detected GWB signal. This

is an important task, since it allows us to relate a detection to physical the-

ories underlying it and perhaps give us a hint of beyond Standard Model

physics. Although Advanced LIGO and Advanced Virgo sensitivity is not

sufficient to separate sources, we find promising results for 3G detectors

such as the Einstein Telescope and Cosmic Explorer [184, 185].

This analysis can be additionally extended by considering other cos-

mological sources of a GWB. One can for instance consider the minimal

Pre-Big-Bang model for which ΩGW( f ) today scales as f 3 at the low fre-

quency end of the spectrum, whereas in the high frequency range its be-

haviour depends on a dimensionless free parameter of the model [186].

Furthermore, one can consider the full analytical model for a CBC back-

ground (1.43), thereby expanding the studied frequency range.

Our study concerns the frequency range for ground based detectors.

The LISA observational band offers an exciting possibility to observe GWs

from phase transitions [170]. Much work has been done to develop meth-

ods to characterise an arbitrary GWB spectrum [187], as well as tech-

niques to distinguish a cosmologically produced GWB from Galactic bi-

naries [148], a binary black hole produced background [144], and instru-

mental noise [188, 148].

In the following section we investigate the impact of Galactic binaries
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on the detection of CBCs with the LISA detector. The noise produced by

the inspiral of millions of white dwarf binaries in the Milky Way may pose

a threat to one of the main goals of LISA mission: the detection of massive

black hole binary mergers. We present a novel study for reconstruction

of merger waveforms in the presence of Galactic confusion noise using

dictionary learning.

3.3 LISA detector
The space-based GW interferometer LISA will be sensitive to GWs in the

millihertz range. Other GW sources will be detectable at these frequen-

cies: inspiralling Galactic white dwarf binaries, inspiralling binaries with

extreme mass-ratio, or colliding true vacuum bubbles formed at the elec-

troweak phase transition [189, 190, 191]. The tens of millions of double

white dwarf binaries in the Galaxy could have an impact on detectability

of massive black hole binaries coalescing in the LISA frequency band [192].

LISA will observe continuous GWs from inspiraling white dwarfs, and

although it may be sensitive to individual sources, most will remain unre-

solved and these are referred to as Galactic confusion noise [193, 194, 195].

It has been shown that modulation of the Galactic noise could lead to a

reduction in SNR of other GW sources by a factor of 4 [196]. A LISA

Data Challenge 2 is underway to study the impact of overlapping Galac-

tic sources on the sensitivity to massive black hole mergers [197], and at-

tempts to separate the foreground from other GW sources have been con-

ducted [148, 198, 199, 200].

In this section we apply a dictionary learning method to separate CBCs

from the Galactic confusion noise in the LISA frequency band. Such a

method has been successfully applied in GW data analysis to classify and

denoise Advanced LIGO’s “blip” noise transients [201] and effectively im-

prove the performance of the detector. More precisely, we assess the suit-

2https://lisa-ldc.lal.in2p3.fr.

https://lisa-ldc.lal.in2p3.fr
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ability of the dictionary learning method for the classification and recon-

struction of massive binary black hole merger signals in the presence of

Galactic noise.

Previous studies focused on the inspiral of loud CBC sources and

demonstrated that SNR accumulated over time is sufficiently large to

overcome the noise from Galactic binaries [202]. In other literature, de-

tectability of CBCs was investigated for equal-mass and non-spinning bi-

naries [203, 204, 46], confirming the largest SNR is expected from bina-

ries with combined mass ∼ (105 − 106)M⊙. In particular, Figure 3 in [46]

presents two mass ranges with low SNR that could be affected by Galactic

confusion noise, namely (102 − 104)M⊙ and (107 − 109)M⊙.

Here we consider all of the mass ranges, along with varying spins and

redshifts, and we study their waveforms around coalescence time. The dic-

tionary learning method reconstructs CBC signals with ease in the trivial

case where the CBCs are above the Galactic noise, i.e. for the (105 − 106)M⊙

mass range. We find the dictionary learning method to be too computation-

ally expensive for very heavy mergers in the range (107 − 109)M⊙. How-

ever, our method succeeds in separating low-SNR binaries in the range

(102 − 104)M⊙ from the Galactic noise. Hence, the dictionary learning

method could significantly assist the detection of this prime LISA source.

3.3.1 Dictionary learning

Any CBC signal in the LISA band will be overlaid with continuous waves

from the inspiral of double white dwarfs. Therefore, we can model the

detector strain, y(t), as a superposition of the CBC signal u(t) and the

Galactic confusion noise n(t):

y(t) = u(t) + n(t). (3.7)
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We express the loss function as

J(u) = ||y − u||2L2
+ λR(u), (3.8)

and search for a solution uλ that minimises J(u), where || · ||L2 is the L2

norm. The first term in the loss function, often referred to as the error term,

measures how well the solution fits the data, while the regularisation term

R(u) captures any imposed constraints. The regularisation parameter λ

tunes the weight of the regularisation term relative to the error term; it is a

hyperparameter of the optimisation process.

The goal of the dictionary learning method [205] is to find the sparse

vector α that reconstructs the true signal u as a linear combination of

columns of a dictionary D,

u ∼ Dα, (3.9)

with D a matrix of prototype signals (atoms) trained to reconstruct a given

set of signals, which for our study is CBCs. Sparsity of the vector α is

imposed via the regularisation term R(u) = ||α||L1 , using the L1 norm.

Therefore, the constrained variational problem in (3.8) reads

αλ = argmin
α

{
||y − Dα||2L2

+ λ||α||L1

}
, (3.10)

and is called “basis pursuit” [206] or “least absolute shrinkage and selection

operator” (LASSO) [207].

The basis pursuit can be improved significantly if, instead of using a

predefined dictionary, we apply a learning process where the dictionary

is trained to fit a given set of signals. The procedure starts by selecting

templates of CBC waveforms and whitening the data. The waveforms are

aligned at the strain maximum and divided into patches, with the number

of patches (p) much larger than the length of each patch (d). To train the

dictionary we solve (3.10) considering both the sparse vector α and the
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dictionary D as variables:

αλ,Dλ = argmin
α,D

{
1
d

p

∑
i=1

||Dαi − xi||2L2
+ λ||αi||L1

}
, (3.11)

with xi denoting the i-th training patch. This problem is not jointly convex

unless the variables are considered separately as outlined in [208].

In our study we create training signals that contain CBC waveforms

only and no noise. The dictionary created is then tested on signals that

include new CBC waveforms combined with Galactic noise. We describe

briefly the massive black hole and white dwarf binary waveforms used in

our datasets below.

3.3.2 Training and testing datasets

We utilise the IMRPhenomD approximant [209] provided by the LISA Data

Challenge to model waveforms of binary black holes detectable by LISA,

capturing inspiral, merger and ringdown of the signal. Binaries with to-

tal mass (105 − 106)M⊙ are expected to have SNR ≥ 150, making sep-

aration from Galactic noise a trivial problem. CBCs in the mass range

(107 − 109)M⊙ have small frequencies, making it difficult for the dictio-

nary learning to reconstruct their sinusoidal behavior. We thus, study re-

construction capabilities of binary black holes with total mass ranging from

(102 − 104)M⊙. The dictionary is trained on a set of 100 noiseless CBC sig-

nals, simulated over one day with cadence ∆t = 2 s 3. Table 3.2 lists the

relevant parameters of the IMRPhenomD waveform and the corresponding

ranges of values we choose for the CBC sources. We simulate the data by

drawing randomly from the probability distribution of the parameters. The

redshift for all sources is fixed to z = 2, since changing the redshift leads

to a simple rescaling of the amplitude that has no impact on our whitened

data in the training set. Note that the same does not hold for the testing

3The cadence was chosen low enough to have a high sampling rate that avoids aliasing,
but high enough to allow for reasonable computational time.
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Parameter Distribution
Total mass (M⊙) logUniform[102,104]

Mass ratio Uniform[1,10]

Primary spin Uniform[-1,1]

Secondary spin Uniform[-1,1]

Redshift 2

Luminosity Distance (Mpc) 15975

Table 3.2: Parameters used to construct training CBC signals with the IMRPhenomD
waveform approximant. We choose values randomly from the uniform
distributions indicated in the right column, keeping redshift and lumi-
nosity distance fixed.

data, since changing redshift would change the relative amplitude of the

CBCs to the Galactic noise.

Consider two white dwarfs of mass M1 and M2 on a quasi-circular

orbit with inclination ι at a distance R. They emit GWs with amplitude

[210]

A+(Mc, R, fGW, ι) =
2G5/3M5/3

c

c4R
(π fGW)2/3(1 + cos2 ι), (3.12)

A×(Mc, R, fGW, ι) = −4G5/3M5/3
c

c4R
(π fGW)2/3 cos ι, (3.13)

for the + and × polarisations, respectively. The resulting plane wave has a

slight frequency shift over time, and for each polarisation reads

h+(t) = A+ cos
(

2π fGWt + ḟGWt2 + ϕ0

)
, (3.14)

h×(t) = A× sin
(

2π fGWt + ḟGWt2 + ϕ0

)
, (3.15)

where ϕ0 stands for the initial phase and ḟGW for the GW frequency time

derivative

ḟGW =
96
5

(
GMc

c3

)5/3

π8/3 f 11/3
GW . (3.16)

To simulate the LISA Galactic confusion noise we sum over GW signals
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Figure 3.3: Strain due to the inspiral of binary white dwarfs in the Galaxy as mea-
sured by LISA over a 1 year orbit. The modulation from LISA’s orbit
creates peaks at 1/4 and 3/4 of the year, when the normal of LISA’s
constellation plane is pointed at or away from the Galactic center.

from the white dwarf binaries in our galaxy:

n(t) =
N

∑
i=1

∑
A=+,×

√
3

2
FAhA,i(t), (3.17)

where F+,× stands for the detector response function [211]. The masses,

location, and orbital frequency of nearly 5 million white dwarf binaries in

the Milky Way are taken from [212].

We present the resulting Galactic confusion noise in Figure 3.3. The

orbit of LISA around the Sun introduces a modulation in the Galactic noise

(3.17), with maximum value when the normal of the LISA constellation

plane is closest to the binary location, as expected since white dwarfs are

supposed to cluster near the Galactic center. In our analysis, we will first

consider the Galactic noise at a time of the year when it is maximum. We

subsequently consider testing signals that combine Galactic noise and a

CBC signal.



3.3. LISA detector 89

3.3.3 Results

The hyperparameters of dictionary learning, namely the regularisation pa-

rameter λ, the atom (and patch) length d and the number of patches p,

have an impact on the quality of the signal reconstruction. We fix p = 3d/2

to ensure a complete dictionary (one where the number of atoms is greater

than atom length) and choose d ∈ [22,27]. Independently of our choice

of d, we find the optimal regularisation parameter to lie in the range

λopt ∈ [10−3,10−2] (see Appendix C for a detailed study). For the remain-

der of the analysis we fix λ = 10−3, as little quantitative differences to our

results are found with the choice of λ = 10−2.

To find the best dictionary size, for each reconstruction we calculate

the so-called overlap between the injected CBC waveform hi( f ) and the

recovered waveform hr( f ),

O =
(hi|hr)√

(hi|hi)(hr|hr)
, (3.18)

with

(x|y) = 2
∫ ∞

0

x( f )y∗( f ) + x∗( f )y( f )
Sn( f )

d f (3.19)

where Sn( f ) is the one-sided noise PSD. The overlap O can range between

-1 and 1, with 1 reflecting perfectly matched signals, and -1 implying per-

fect anti-correlation. The overlap is widely used in the GW community for

identifying transient CBC signals through matched filtering using wave-

form approximants template banks [213, 214, 215, 216]. We track this met-

ric across the testing dataset and choose the optimal atom length dopt that

maximises it, namely dopt = 4 (see Appendix C).

To have a metric for error, we also calculate the overlap between the re-

covered CBC and the present Galactic noise n, which we denote as O(hr,n).

In addition, we define the overlap difference ∆O = O(hr, hi)−O(hr,n) to

evaluate how much more the reconstructed signal has in common with the

injected signal than with Galactic noise.
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Figure 3.4: Overlap between reconstructed signal and injected CBC waveform as
a function of SNR for redshift z = 1,10 and fixed atom length d =
4, overlayed with recovery overlap between reconstructed signal and
noise for the same data.

We now study how well the CBCs can be reconstructed using a dictio-

nary with d = 4 and λ = 10−3. Specifically, we create two sets of 50 signals

with CBCs at redshift z = 1 and z = 10, and investigate how their recon-

struction varies with SNR. From Figure 3.4 we see that the overlap between

reconstructed signal and injected CBC waveform increases with SNR, while

the overlap between reconstructed signal and noise decreases with SNR, as

expected. Interestingly, the noise overlap is approximately constant until

SNR ≈ 10, where it starts to decrease, while the reconstruction starts to

improve significantly, with O(hr, hi) = 1 for some of the z = 1 waveforms.

Note that the z = 1 and z = 10 data sets do not differ greatly in overlap,

and when they do it is between sources of very different mass. Therefore,

we turn to study how overlap changes as a function of both redshift and

total mass of the CBC.

We begin by fixing mass ratio to 1 and both black holes’ spins to 1, for

simplicity, and we create a dataset of 400 CBC events with uniform spacing

1 ≤ z ≤ 20 and log-uniform spacing for total mass of the binary 102M⊙ ≤
Mtot ≤ 104M⊙. Each event is overlayed with Galactic noise at a yearly
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modulation maximum and minimum (see Figure 3.3), and reconstructed.

Resulting contours of signal overlap O(hr, hi) = 0.5, 0.9, overlap difference

∆O = 0, 0.75 and SNR = 5, 15, 25 are plotted in Figure 3.5. Although

generally speaking increasing SNR improves reconstruction capabilities,

reconstruction success is more dependent on the CBC’s total mass and

redshift.

In strong (maximum) Galactic noise scenarios, binaries with total mass

greater than 1330 M⊙ can be reconstructed with O(hr, hi) > 0.5 for the

redshift range. Reconstructions with O(hr, hi) > 0.5 in weak (minimum)

Galactic noise scenarios can be achieved for binaries with total mass greater

than 355 M⊙. Extremely good signal reconstruction, with overlap greater

than 0.9, can be achieved for sources with total mass greater than 1350 M⊙

up to redshifts of 3 in the pessimistic case, and up to redshifts as large

as 7.5 in the optimistic case. From Figure 3.5 one can also track how the

overlap difference ∆O varies with binary mass and redshift. All sources

that lie in the parameter space at the right of the ∆O = 0 contour lead

to reconstructed signals that are more similar to the true, injected signal

than the Galactic noise. In the pessimistic case this is true for total masses

greater than 1000 M⊙, and in the optimistic case for total masses as small

as 315 M⊙.

Discussion

Gravitational-wave signals from the inspiral of white dwarf binaries in the

Galaxy must be considered when studying detection of CBC signals with

LISA [192]. In this work we have modelled this Galactic confusion noise

and studied its impact on the reconstruction of massive black hole binary

merger signals using an approach based on learned dictionaries. We have

found dictionary learning to be a promising technique for detection of such

signals in the presence of Galactic noise. Reconstructing the CBC wave-

forms with dictionary learning can be optimised with atom length d = 4

and regularisation parameter λ ∈ [10−3,10−2].
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Figure 3.5: Overlap between reconstructed signal and injected CBC waveform as
a function of total mass and redshift in strong (top) and weak (bottom)
Galactic noise scenarios, fixing binary mass ratio to 1 and black hole
spins to 1.
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The threshold overlap between the injected and the reconstructed

signal, typically chosen to be O(hr, hi) = 0.5, can be achieved for bina-

ries with mass Mtot > 1330 M⊙ in strong Galactic noise, and with mass

Mtot > 355 M⊙ in weak Galactic noise at all redshifts. For CBCs with total

mass Mtot > 3150 M⊙, the reconstructed waveform and the true waveform

overlap greatly with O(hr, hi) > 0.9 up to redshift z = 3 and z = 7.5 in the

case of strong and weak Galactic noise, respectively. For all tested signals,

we calculate the overlap between the reconstructed CBC waveform and the

Galactic noise, and its difference to the overlap between the reconstructed

and injected CBC waveform. We conclude that the reconstructed signal

overlaps more with the true CBC signal than with the noise for binaries

with Mtot > 1000 M⊙.

3.4 Afterword
In this chapter we have demonstrated the success of Bayesian and machine

learning tools in source separation at ground-based and space-based de-

tectors respectively. As we await the first detection of a GWB, the great

technical challenge of separating the astrophysical and cosmological con-

tributions must be addressed. This will not be plausible with the sensitivity

of current 2G detectors, but one needs to utilise the future 3G detector net-

work. For LISA, the continuous GWs emitted by the inspiral of Galactic

binaries will create a signal that could limit detection of other GW sources.

The dictionary learning method we presented here proved successful at

recovering a CBC signal in the presence of white-dwarf noise.

We focus on implications for physical models once we have made a

detection of the background in the next chapter. What can a GWB detection

teach us about the physical theories governing the Universe?



Chapter 4

Gravitational-wave background

implications

4.1 Foreword
Experimental data is key in determining the laws of physics that govern

nature, and in particular experimental GW data has opened up a novel

way of studying the near and far Universe. The process that starts with

gathering GWB data and finishes with implications on physical theories

is complex and intricate. The first step in the pipeline is collecting data

and constructing useful and intuitive statistics. In the case of a detection,

exhaustive checks are undertaken to ensure the nature of the signal, as was

discussed in Chapter 2. The next necessary step is identification of sources

in the detected signal, methods for which were the focus of Chapter 3. The

final, and crucial, step is translating data constraints into different models,

either in the form of constraining the models’ parameters or simply ruling

them out. Model builders are patiently awaiting a detection, but a detection

is only meaningful if we can transform it into meaningful statements about

physical models.

Here we explore the parameter space of primordial-star remnants,

phase transitions, and search for signs of parity violation in GWB data.

We first inspect astrophysical implications, building on the properties of
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the CBC background described in 1.3.2. In the event of a strong first-order

phase transition (FOPT) that happened at energy scales
(
105 − 1010) GeV,

stochastic GWs produced could form a background detectable by terres-

trial detectors. We present constraints on FOPT models with O3 data, and

anticipate detectability with 3G detectors. To demonstrate the translation

from GW data to constraints on particle physics models, we present our

study on GWB from supercooled FOPTs. Finally, we showcase tools for

estimating parity violation in the case of a polarised background and their

limitations.

4.2 Primordial-star remnants
The most recent LVK observing run presented us with dozens of new

merger events and has expanded the stellar graveyard. Despite the in-

crease in the number of detections, we are yet to observe with confidence

an event that would suggest that the progenitor compact objects are rem-

nants of the oldest stars in the Universe [65] - the theoretically-postulated

population III (pop III) stars 1. Pop III stars are thought to have formed at

high redshifts at a time when the Universe was mostly made up of hydro-

gen and helium, and as such have low metallicity compared to the more

recently formed, population I/II (pop I/II) stars [218, 219, 220]. These old

stars have hitherto evaded sky surveys [221, 222, 223], and their detection

remains an objective for upcoming experiments, such as the James Webb

Space Telescope [224].

Pop III stars may help understand the early epochs of the Universe

and solve some puzzles in black hole formation [225, 226, 227]. Numerical

simulations show that these primordial stars could have led to the forma-

tion of super-massive black holes at high redshifts [228, 229, 230]. Mergers

of such heavy remnants would appear in the millihertz frequency range

explored by space-based detectors such as LISA [231]. The scope of our

1GW150914 could be a potential candidate [217].
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study, however, is detection prospects of terrestrial detector networks; we

focus on models that predict a pop III signal in the LVK frequency range.

The pop III formation channels and evolution mechanisms [232, 233] lead

to mass and redshift distributions different to that of pop I/II [234]. Con-

sequently, the contribution to the GWB from a superposition of unresolved

pop III-seeded CBCs may deviate significantly from that of unresolved pop

I/II sources [235, 236].

In this study, for the first time, we consider the possibility of separating

pop I/II and pop III GWB contributions. A previous study [237] suggests

that the total CBC background is dominated by pop I/II. However, pop III

can be uncovered using subtraction techniques and studying the residual

backgrounds [238, 132, 239, 143, 146]. As the sensitivity of detectors in-

creases and GW interferometers see more individual CBC events, a pop III

residual background emerges as the dominant signal over pop I/II residual

background [237].

We first study how to detect the GWB from pop III stars, and in the

case of a successful detection, we explore subsequent implications about

masses and redshifts of the population. We use the widely accepted Star-

Track (ST) simulation data [240] and apply our detection methods, ulti-

mately showing consistency of our implications analysis with the under-

lying population. The ST data is the most recent extensive catalogue of

merging binaries from pop I, II, III stars leading to a GWB in the LVK

frequency range [237].

4.2.1 GWB from population III remnants

The GWB is defined as the superposition of GWs from all unresolved

sources. We concentrate on the CBC (from pop I/II and III stars) contribu-

tion to the GWB, and express it as ΩGW( f ) defined in (1.41). For binary

neutron stars and neutron star-black hole mergers, we only consider the

inspiral phase and assume that the GW emission stops at the last stable

orbit. For binary black holes, we consider the three regimes of the coales-
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cence (inspiral, merger, ringdown phase) given by the corresponding phe-

nomenological waveforms [63] for circular orbits [241], as defined in (1.43).

Once the spectrum of ΩGW is calculated, we estimate the corresponding

SNR for a network of N detectors [38]:

SNR =
3H2

0
10π2

√
2T

[∫ ∞

0
d f

N

∑
i=1

∑
j>i

Γ2
ij( f )Ω2

GW( f )

f 6Pi( f )Pj( f )

]1/2

, (4.1)

with T the observational time, Pi and Pj the one-sided noise PSDs of de-

tectors i and j, Γij the previously-defined normalised overlap reduction

function characterising the distance and the relative orientation between i

and j for sources isotropically distributed in the sky.

We consider the StarTrack population synthesis code which models

stellar evolution 2, and in particular the FS1 model which concerns the

evolution of pop III stars [233], discussed in detail in [243]. It assumes that

pop III stars were formed in large gas clouds with a star formation rate

that peaks at redshift z ∼ 12, while the star formation rate for pop I/II stars

peaks at z ∼ 2 (see Fig. 4 in [233]). The corresponding background and its

detectability have been calculated [237] using a catalogue of sources rather

than the analytical expression (1.41). The calculation of the residual GWB

from the catalogue of sources is described in Appendix D.1.

If pop III exists, its signal will be superposed with a pop I/II signal.

For a dominant pop I/II signal, the pop III signal will remain hidden un-

derneath it, and one can only place upper limits on the amplitude of the

pop III contribution to ΩGW( f ). If, however, a pop III signal is the domi-

nant one, then we could detect deviations from the characteristic CBC 2/3

power law, and even get insight on the mass and redshift distribution of

pop III stars.

2The StarTrack model considers the low-metallicity approximation of Pop II stars for
the stellar evolution of Pop III. Recently [242] explored the impact of large uncertainties
in parameters governing the stellar modelling. It was found that these uncertainties in
numerous parameters overshadow any effects a low-metallicity approximation may have
on the final population.
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Figure 4.1: SNR obtained for residual CBC backgrounds considering design sensi-
tivities of Hanford (H), Livingston (L), Virgo (V), LIGO-India (I), KA-
GRA (K), Einstein Telescope (ET) and Cosmic Explorer (CE). The pink
bars correspond to SNR from pop I/II sources, the yellow from pop III
sources, and the green ones represent SNR from the combined residual
background (pop I/II and pop III sources).

Estimates of CBC contributions to ΩGW( f ) from ST simulations sug-

gest that pop III signal is lost in the pop I/II foreground. For 2G detector

networks – even by including LIGO, Virgo, LIGO-India, and KAGRA –

pop III is practically invisible and its contribution to the global SNR is neg-

ligible [237]. Third-generation terrestrial detectors, Einstein Telescope and

Cosmic Explorer, may reveal a pop III GWB. These future detectors will

have unprecedented sensitivity and they will be able to discover a great

number of individual CBCs, thereby reducing the GWB originating from

unresolved CBCs. Being more difficult to resolve, binaries from pop III per-

sist, resulting in a large contribution to the residual CBC background in 3G

detectors, see Figure 4.1. Detectors such as ET and CE may reveal a pop III

background after the subtraction of individually resolved merger events,

since subtraction methods are less efficient to detect the high-redshift and

low-frequency pop III CBCs.
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We compare in Figure 4.2 the total and residual background for two

3G networks: a pessimistic scenario with only ET (top) and an optimistic

scenario ET+2CE (bottom), with ET at the current Virgo site, and the two

CEs at LIGO Hanford and Livingston sites. It is worth noting that these

detector sites are chosen out of convenience and the discussion for where

3G detectors would be constructed is ongoing. Ultimately, our results

are qualitatively the same regardless of final detector location. The pop

III contribution in ET has a very small impact on the combined residual

background from pop I/II and III, but in ET+2CE the pop III residual

background clearly dominates for frequencies below ∼ 20 Hz. Figure 4.2

shows a change in the shape of the background. The peak frequency of

pop III spectrum changes slightly while the slope characterising the end

of emission decreases dramatically when we remove individually detected

sources.

To demonstrate the impact of subtraction of resolved CBCs on the pop-

ulation, we show in Figure 4.3 the probability density of the total redshifted

mass, Mz
tot = (1+ z)(m1 +m2), and the merger rate as a function of redshift,

R(z), for the whole catalogue and the residual one for ET+2CE network.

The sources remaining in the residual catalogue are the ones with the

highest redshift, affecting the total corrected mass distribution which is in

turn responsible for the changes in the GWB spectrum. We note that for

masses and redshifts lower than the ones provided by the StarTrack model,

the resulting GWB spectrum peak shifts to higher frequencies and the 2/3

power law dominates in the LVK frequency range.

We estimate the ET+2CE residual pop III parameters by searching for

the background using an optimal filter and performing a Bayesian analysis.

In our model, we include only isolated binaries in pop I/II, i.e. progenitors

coupled at formation that orbit one another for a billion years before merg-

ing. However, taking into account dynamical binaries brought together

in dense star clusters instead, will not affect our results. Indeed, even if
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Figure 4.2: Total and residual GWB of ET (top) and ET+2CE (bottom) detector net-
works. The pop I/II and pop III contributions are shown in green and
red, respectively, with the combined residual signal shown in black.

the masses can be larger, the redshift of dynamical binaries is similar to

that of isolated binaries. Consequently, dynamical binary sources can be

subtracted as efficiently as the isolated ones and the shape of the energy

density spectrum also follows the power law f 2/3 below 100 Hz. This is

discussed in [244] for 2G detectors (the results for 3G detectors will be

presented in an upcoming study).
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Figure 4.3: Comparison between the total (blue) and ET+2CE residual (orange)
catalogue for redshifted total mass distributions (top) and merger rates
(bottom).

4.2.2 Modelling of the background

The stochastic pipeline takes strain data s̃i,j from detectors, i, j, and con-

structs cross-correlation statistics using optimal filters as described in 1.3.1.

Let us construct a Gaussian log-likelihood such as (3.4), which allows

us to estimate the model parameters by finding the best-fit to the cross-

correlation data and minimising the likelihood function. To compare mod-

els and find which ones fit data better, we perform model selection with

Bayes factors.

We model a pop I/II CBC signal as a power law defined in (1.27),

setting fref = 25 Hz and spectral index 2/3, since CBCs detected thus far

lead to an inspiral signal in the low-frequency range. This can be seen in

Figure 4.2 where the total GWB from pop I/II and III in 3G detectors is
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presented. The pop III spectrum shows clear deviation from a 2/3 power

law, because signals from further away stars would be more redshifted

and would therefore be detected in their merger and ringdown phases.

We test search filters different from a 2/3 power law to investigate if the

deviation from pop I/II signal can be identified in a parameter estimation

study. Motivated by the shape of the residual pop III GWB in Figure 4.2,

we consider:

• power law with varying spectral index (PL), previously defined

in (1.27),

• broken power law (BPL)

ΩBPL
GW( f ) =


Ωpeak

(
f

fpeak

)α1
for f ≤ fpeak,

Ωpeak

(
f

fpeak

)α2
for f > fpeak,

(4.2)

• triple BPL

ΩTBPL
GW ( f ) =



Ωpeak

(
f

f (1)peak

)α1

for f ≤ f (1)peak,

Ωpeak

(
f

f (2)peak

)α2

for f (1)peak < f ≤ f (2)peak,

k Ωpeak

(
f

f (2)peak

)α3

for f > f (2)peak ;

(4.3)

k = ( f (2)peak/ f (1)peak)
α2 ensures continuity of the piecewise function, and

• smooth BPL, previously defined in (3.2).

The priors for each model’s parameters can be found in Appendix D.2.

If any of the filters above are preferred over a 2/3 filter, this could be an

indication of the presence of a pop III signal.
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4.2.3 Implications on the redshifted mass of the population

In the case of a detection, we examine whether we can constrain the

mass/redshift distribution from the optimal search parameters. Equa-

tion (1.41) shows that the parameters impacting the background shape are

the redshift-dependent merger rate and the progenitors’ mass distribution.

To understand how these population characteristics relate to model param-

eters, such as peak frequency and slope, we generate multiple spectra. We

assume spinless, equal-mass binaries [245]. We fix the merger rate and

vary the intrinsic mass input, observing how the shape of the GWB spec-

trum changes. Our results, however, depend on the choice of merger rate

(see Appendix D.3). This is due to a degeneracy between the effects that

merger rate and mass distribution have on the GWB [236]. We thus study

the dependence of ΩGW on the redshifted total mass of each binary in the

population, Mz
tot, and find a relationship between the mass and the peak

frequency of the spectrum.

We generate GW spectra with a merger rate from ST, varying the red-

shifted total mass, and find agreement (within 10%) between redshifted

ringdown frequency and the peak of the spectrum, see Table 4.1. We ob-

tain the same agreement if we use the merger rate in [236], suggesting

again that an estimate of the peak frequency can be used to constrain the

redshifted total mass of the population. This relationship, therefore, holds

independently of the evolution model of the pop III binaries.

Mz
tot fpeak f z

ring % difference
100 166.2 165.8 0.20
200 83.7 82.9 1.0
300 56.5 55.3 2.1
400 43.1 41.4 3.9
500 35.2 33.2 5.7

Table 4.1: Variation of the peak of GWB spectra with a change in redshifted total
binary mass. We find agreement between the peak frequency and the
redshifted ringdown frequency.

Current models of pop III remnant mergers are subject to great uncer-
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tainties, leading to merger rates of varying amplitude peaking at redshifts

between 7 and 15 [233, 246, 247, 248]. Since the amplitude of the back-

ground is proportional to the merger rate, a factor of ∼ 10 reduction in

the merger rate amplitude would make pop III GWB contribution unde-

tectable. If the peak of the merger rate appears at a lower redshift, the

background may be invisible, e.g. close to or below the pop I/II residual.

To quantify this statement we derive the GWB obtained for a toy model

based on StarTrack simulations by shifting the merger rate peak (see Ap-

pendix D.4). We conclude that for pop III merger rates that peak at redshifts

below z < 6, the pop III contribution is likely lost to the pop I/II residual.

4.2.4 Detection prospects with a 3G network

We simulate one year of observation time with the ET+2CE network, taking

the CBC background from the ST catalogue. We find the best-fit models to

the residual GWB that remains after subtracting the individual sources. A

model selection study shows preference for other filters over a 2/3 PL, see

Table 4.2. The models with a broken power law shown in the last 3 rows

are clearly favoured over a single power law model. However, we do not

observe a great increase in Bayes factor for the triple and smooth BPL over

just a BPL. Hence, a BPL filter is sufficient for a residual pop III GWB

search.

model, M ln BM
2/3

PL 28782
BPL 45825

triple BPL 46341
smooth BPL 46792

Table 4.2: Log Bayes factor of pop III filters compared to the 2/3 power law filter.

Already with a varying-index PL search we deduce that the 2/3 filter is

not appropriate, since the estimated power law index is α = −0.6 (we pro-

vide the corner plot in Appendix D.2). The more intricate filters, however,

fit the ΩGW spectrum well and capture the presence of the peak success-
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Figure 4.4: BPL fit to residual GWB spectrum of pop I+II+III from the ST simula-
tion. The peak frequency is estimated to fpeak = 15.4 Hz.

fully. To understand the redshifted mass distribution of pop III creating the

GWB, we investigate the peak frequency of the signal. We obtain a good es-

timate of the peak frequency using a BPL search filter, shown in Figure 4.4,

fpeak = 15.4 Hz. The redshifted ringdown frequency that matches the peak

frequency, f z
ring = 15.4 Hz, corresponds to Mz

tot = 1076M⊙. The ST red-

shifted mass distribution shown in the top panel of Figure 4.3, gives an av-

erage redshifted total mass of the residual population, < Mz
tot >= 1121M⊙.

Therefore, our estimate of average Mz
tot agrees well with the true value.

Discussion

Gravitational waves emitted from CBCs formed by pop III stars could rep-

resent a promising detection channel of the first stars formed in the Uni-
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verse. Although 2G detectors are unable to detect the GWB from pop III

stars, we have demonstrated that future GW interferometers could lead to

a detection. Employing the ET+2CE 3G detector network, we could suc-

cessfully subtract enough individual merger events to unravel the elusive

pop III GWB. Subtraction methods are more effective for nearby sources,

so the residual pop I/II signal can become sub-dominant to the pop III

residual. The 2/3 power law approximation of GWB energy density for the

CBC background breaks in this case due to the higher redshifted masses

of pop III. Instead of the 2/3 power law, the GWB spectrum peaks in the

low-frequency LVK range.

A model selection study showed that we could observe the peak

caused by the unresolved merger and ringdown GWs from pop III stars.

With a good estimate of the peak frequency, we could deduce the aver-

age redshifted total binary mass distribution of the residual population.

Using the ST catalogue of binary sources, we have demonstrated the ef-

fectiveness of our Bayesian analysis combined with implications for the

retrieved parameters. We have derived the relationship between peak fre-

quency and redshifted total mass assuming equal-mass and non-spinning

binaries. Combining our study with possible future detections of individ-

ual Pop III mergers will help confirm existence of such primordial, low-

metallicity stars and obtain information about their characteristics.

In the following section we travel back in time and look at first-order

phase transitions in the very early stages of the Universe, when it was

too hot for primordial stars to form. We analyse the GWs generated by

particles beyond the Standard Model as the Universe expands and cools

down, allowing for symmetry breaking and phase transitions.

4.3 GWB from phase transitions
The Universe might have undergone a series of phase transitions (see,

e.g. [249, 250]). In the case of a first-order phase transition, once the
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temperature drops below a critical value, the Universe transitions from

a meta-stable phase to a stable one, through a sequence of bubble nucle-

ation, growth, and merger. During this process, a GWB is expected to be

generated [251, 252].

Since the inception of the Standard Model, particle physicist have

searched for a simpler, grand unified theory whose symmetry breaking

gives us the Standard Model. We now know that the electromagnetic

and weak nuclear force combine into a single electroweak force at ener-

gies above TEW ∼ 100 GeV. Upcoming LHC runs and future accelerators

will probe such high energy scales in hope to study the nature of the elec-

troweak transition. The Standard Model predicts a smooth crossover at the

electroweak scale [253] , but singlet extensions can offer a strong FOPT (see

e.g. review [254]). If a strong FOPT took place and bubbles of true vacuum

expanded and collided, the resulting milliHertz GWB could be detected

by LISA. This would represent an exceptional case of complementarity be-

tween high-energy colliders and GW interferometers.

Many compelling extensions of the Standard Model predict strong

FOPTs in addition to grand unification models [255, 256, 257], e.g. super-

symmetric models [258, 259, 260, 261, 262, 263], extra dimensions [264, 265],

composite Higgs models [266, 267, 268, 269, 270, 271, 272] and models with

an extended Higgs sector (see, e.g. [273, 274]). Generally there might exist

symmetries beyond the ones of the Standard Model, which are sponta-

neously broken through a FOPT; for example the Peccei-Quinn symme-

try [275, 276, 169, 277, 278], the B − L symmetry [279, 280, 281, 282], or

the left-right symmetry [283]. The nature of cosmological phase transitions

depends strongly on the particle physics model at high energy scales.

The GWB sourced by a FOPT spans a wide frequency range. The peak

frequency is mainly determined by the temperature at which the FOPT oc-

curs. Interestingly, if that temperature is in the range (105 − 1010) GeV –

an energy scale not accessible by any existing terrestrial accelerators – the
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produced GWB is within the frequency range of Advanced LIGO and Ad-

vanced Virgo [284, 285]. Such an energy scale is well-supported by either

the Peccei-Quinn axion model [286], which solves the strong CP problem

and provides a dark matter candidate, or high-scale supersymmetry mod-

els [287, 288, 289], among others. Especially, for axion-like particles, the

upper end of the Tpt we probe is at the energy scale where astrophysical

constraints, such as stellar cooling, lose their sensitivities [290]. In addition,

the lower end of the Tpt fits well in minisplit SUSY models where the Higgs

mass is explained.

In what follows we place constraints on the normalised energy density

in GWs from first-order strong phase transitions using data from Advanced

LIGO and Virgo’s first, second and third observing runs. We then focus on

the supercooling family of first-order phase transitions since these give a

particularly strong GW signal, before briefly commenting on GWs from

turbulence in the early Universe plasma.

4.3.1 Phase transition models

As the temperature of the Universe decreases, a new (true) vacuum with

a lower energy density may appear, along with a potential barrier separat-

ing it from the high-temperature (false) vacuum. The transition between

the two states corresponds to the formation of bubbles of true vacuum in

various patches of the Universe, and their subsequent expansion. The nu-

cleation rate per unit volume of such bubbles can be roughly estimated as

[291]

Γ(T) ∼ T4 exp
(
−S(T)

T

)
, (4.4)

where S(T) is the Euclidean action following a Wick rotation t → it, eval-

uated on the bubble solution interpolating between the false and true vac-

uum. The onset of a FOPT occurs at the nucleation temperature Tpt at

which Γ(Tpt) ≈ H4
pt, with Hpt denoting the Hubble parameter at that time,
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Hpt = H(Tpt).

A FOPT can be described by four parameters: the bubble wall velocity

vw, the nucleation temperature Tpt, the inverse of the transition’s duration

in Hubble units β/Hpt,

β

Hpt
= Tpt

d
dT

(
S(T)

T

)∣∣∣∣
T=Tpt

, (4.5)

and the strength of the transition α,

α =
ρvac(Tpt)

ρrad(Tpt)
, (4.6)

which is the ratio of the vacuum energy density to the radiation energy

density at nucleation temperature. It is well established that GWs can be

produced by mainly three sources: bubble collisions, sound waves, and

magnetohydrodynamic turbulence (see [191, 292, 176, 250] for recent re-

views). The GWB thus produced is described by the energy density spec-

trum ΩGW( f ). Each spectrum can be well approximated by a broken power

law, with its peak frequency determined by the typical length scale at the

transition, the mean bubble separation Rpt (which is related to β), and also

by the amount of redshifting determined by Tpt and the cosmic history.

The amplitude of each contribution is largely determined by the energy

released normalised by the radiation energy density α, its fraction going

into the corresponding source and vw. For now we do not consider the

contribution from magnetohydrodynamic turbulence as it always happens

together with sound waves and is subdominant. In addition, we note that

its spectrum is the least understood and might witness significant changes

in the future [191, 293, 294, 295, 296, 297, 298].

The dominant source for GW production in a thermal transition, as

most commonly encountered in the early Universe, is the sound waves in

the plasma induced by the coupling between the scalar field and the ther-

mal bath [173, 172, 141]. A good analytical understanding of this spectrum
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has been achieved through the sound shell model [299, 300, 301], though it

still does not capture all the physics [141, 302, 250] to match perfectly the

result from numerical simulations [191, 173]. We use the spectrum from

numerical simulations:

ΩSW( f )h2 =2.65 × 10−6
(

Hpt

β

)(
κSWα

1 + α

)2(100
g∗

)1/3

vw

×
(

f
fSW

)3( 7
4 + 3( f / fSW)2

)7/2

Υ(τSW) ,

(4.7)

where κSW is the fraction of vacuum energy converted into the kinetic en-

ergy of the bulk flow, a function of vw and α [303, 304]; g∗ is the number

of relativistic degrees of freedom, chosen to be 100 in our analysis; h is the

dimensionless Hubble parameter; fSW is the present peak frequency,

fSW = 19
1

vw

(
β

Hpt

)(
Tpt

100GeV

)( g∗
100

) 1
6

µHz, (4.8)

and Υ = 1 − (1 + 2τSWHpt)−1/2 [301] which is a suppression factor due to

the finite lifetime [301, 305], τSW, of sound waves. τSW is typically smaller

than a Hubble time unit [306, 307] and is usually chosen to be the timescale

for the onset of turbulence [176], τSW ≈ Rpt/Ū f , with Rpt = (8π)1/3vw/β

for an exponential nucleation of bubbles [300, 301], and Ū2
f = 3κSWα/[4(1+

α)] [176].

When sound waves, and thus also magnetohydrodynamic turbulence,

are highly suppressed or absent, bubble collisions can become dominant,

e.g., for a FOPT in vacuum of a dark sector which has no or very weak

interactions with the standard plasma. The resulting GW spectrum can

be well modelled with the envelope approximation [308, 309, 175], which

assumes an infinitely thin bubble wall and neglects the contribution from

overlapping bubble segments. In the low-frequency regime, ΩGW ∝ f 3 from

causality [174, 310, 311], and for high-frequencies ΩGW ∝ f−1 [171] due

to the dominant single bubble contribution as revealed by the analytical
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calculation [175]. The spectrum is [171, 175, 176]

ΩCOLL( f )h2 = 1.67 × 10−5∆(vw)

(
Hpt

β

)2( κϕα

1 + α

)2(100
g∗

)1/3

Senv( f ),

(4.9)

where κϕ = ρϕ/ρvac denotes the fraction of vacuum energy converted

into gradient energy of the scalar field. The amplitude ∆ is ∆(vw) =

0.48v3
w/(1 + 5.3v2

w + 5v4
w) and the spectral shape is Senv = 1/(cl f̃−3 + (1 −

cl − ch) f̃−1 + ch f̃ ) where cl = 0.064, ch = 0.48 and f̃ = f / fenv with fenv the

present peak frequency

fenv = 16.5
(

fBC

β

)(
β

Hpt

)(
Tpt

100 GeV

)( g∗
100

) 1
6

µHz, (4.10)

and fBC the peak frequency right after the transition fBC = 0.35β/(1 +

0.069vw + 0.69v4
w). More recent simulations going beyond the envelope

approximation show a steeper shape f−1.5 for high frequencies [312], and

it also varies from f−1.4 to f−2.3 as the wall thickness increases [313] (see

also [314, 315, 316]).

4.3.2 Searching for phase transitions in GWB data

Here we take two analysis approaches. First, we consider an approximated

broken power law including main features of the shape and its peak. We

then consider the phenomenological models (4.9) and (4.7), for contribu-

tions from bubble collisions and sound waves.

I. Broken power law model: The spectrum can be approximated by a

broken power law as (3.2). Here α1 = 3, from causality, and α2 takes the

values −4 and −1, for sound waves and bubble collisions, respectively. We

fix the α1 parameter in our search, but we let α2 vary uniformly between

-8 and 0, allowing for the values motivated by both contributions. The

value for ∆ is set to 2 for sound waves and 4 for approximating bubble

collisions. We run a Bayesian search for both values, but present results
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only for ∆ = 2, since it gives more conservative upper limits. In addition to

a search for the broken power law, we undertake a study on simultaneous

estimation of a CBC background and a broken power law background,

because current estimates of the CBC background [32, 317] show it as a

non-negligible component of any GWB signal.

The log-likelihood for a single detector pair is Gaussian, as previously

defined in (3.4). The search for an isotropic signal showed no evidence

of correlated magnetic noise, and a pure Gaussian noise model is still

preferred by the data [317]. Therefore, here, a contribution from Schu-

mann resonances [71, 88, 318] is neglected. The model we fit to the data is

ΩGW( f ,θGW), with parameters θGW. The set of GW parameters depends

on the type of search we perform.

The CBC spectrum is modelled as (1.27), with α = 2/3 and fref = 25 Hz.

We consider three separate scenarios: contributions from unresolved CBC

sources, with θGW = (Ωref); broken power law contributions, with θGW =

(Ω∗, f∗,α2); and the combination of CBC and broken power law contribu-

tions, for which θGW = (Ωref,Ω∗, f∗,α2). The priors used are summarised

in Table 4.3. To compare GW models and assess which provides a bet-

ter fit, we use Bayes factors. In particular, we consider logBCBC+BPL
noise and

logBCBC+BPL
CBC as indicative detection statistics.

II. Phenomenological model: Two scenarios are considered, correspond-

ing to dominant contributions from bubble collisions or sound waves, re-

spectively, following an approach similar to [169]. The analysis proce-

dure follows closely that of the broken power law search, with θGW =

(Ωref,α, β/Hpt, Tpt) including CBC background ΩCBC, and ΩGW from bub-

ble collisions and sound waves described by (4.9) and (4.7), respectively.

For bubble collisions, vw and κϕ are set to unity (for a detailed discus-

sion of the possible choices see [303, 191]). The remaining model param-

eters are varied in the ranges in Table 4.3. We note that the GW spectra

in (4.7) and (4.9) may not be applicable when α ≳ 10, e.g. in the case of su-
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Broken power law model
Parameter Prior

Ωref LogUniform(10−10, 10−7)
Ω∗ LogUniform(10−9, 10−4)
f∗ Uniform(0, 256) Hz
α1 3
α2 Uniform(-8,0)
∆ 2

Phenomenological model
Parameter Prior

Ωref LogUniform(10−10, 10−7)
α LogUniform (10−3, 10)

β/Hpt LogUniform (10−1, 103)
Tpt LogUniform (105, 1010) GeV
vw 1
κϕ 1

κSW f (α,vw) ∈ [0.1 − 0.9]

Table 4.3: List of prior distributions used for all parameters in the various
searches. The narrow, informative prior on Ωref stems from estimates of
the CBC background [32], and encompasses uncertainties on the mass
and redshift distributions of CBCs [317, 319]. The frequency prior is
uniform across the frequency range considered since we have no fur-
ther information about it.

percooling, and also a large α does not translate into a significant increase

in the GW amplitude since α/(1+ α)→ 1. Moreover, β/Hpt is related to the

mean bubble separation, up to an O(1) coefficient, and one should be cau-

tious when it is smaller than 1 [320, 306]. In this study, we conservatively

choose β/Hpt to be larger than 0.1.

For sound waves, we initially set vw = 1, and then explore different

values for vw in the range (0.7 - 1.0), corresponding to various detonation

and hybrid modes of fluid velocity profile [302, 303]. Here κSW is a function

of α and vw, e.g., for vw = 1, κSW increases from 0.1 to 0.9 as α increases

from 0.1 to 10. The rest of the parameters are varied as in the case of bubble

collisions.

4.3.3 Constraints from O3 data

I. Broken power law model: In Figure 4.5 we present posterior distributions

of parameters in the combined CBC and BPL search. The Bayes factor is
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Figure 4.5: Posterior distributions for the combined CBC and broken power law
search as a function of logΩref and the different parameters of the
model. The 68% and 95% CL exclusion contours are shown. The hori-
zontal dashed line in the posteriors indicate the flat priors used in the
analysis.

logBCBC+BPL
noise = −1.4, demonstrating no evidence of such a signal in the

data from the three observing runs. The 2-D posterior of Ωref and Ω∗

allows us to place simultaneous estimates on the amplitudes of the two

spectra. The 95% CL upper limits are Ωref = 6.1× 10−9 and Ω∗ = 5.6× 10−7,

respectively. If we take individual posterior samples of Ω∗, f∗ and α2 from

Figure 4.5, and combine them to construct a posterior of ΩBPL, we estimate

at 95% CL ΩBPL(25Hz) = 4.4× 10−9. The width of the α2 posterior suggests

no preference for a particular value by the data, and we are unable to rule

out any part of the parameter space at this time. Other searches give Bayes

factors logBBPL
noise = −0.78 and logBCBC+BPL

CBC = −0.81, once again giving no

evidence for a BPL signal, with or without CBCs considered.

To demonstrate the dependence of GW amplitude constraints on other

parameters, we present 95% CL upper limits on Ω∗ for a set of α2 and f∗
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in Table 4.4. We choose representative values of α2, for bubble collisions,

α2 = -1 and -2, and for sound waves, α2 = -4. The f∗ values are chosen to

represent broken power laws that peak before, at, and after the most sensi-

tive part of the LVK band, f∗ = 25Hz. As expected, the most constraining

upper limits are obtained for a signal that peaks at 25 Hz. For the signal in

the first column that peaks at 1 Hz, the faster it decays, the weaker it is at

25 Hz. Therefore, the more negative α2 values give less constraining upper

limits on the amplitude. Finally, the signal that peaks at 200 Hz gives sim-

ilar Ω∗ upper limits for all values of α2 since it resembles a simple α1 = 3

power law in the range with largest SNR. Note the upper limits in Table 4.4

are fundamentally different from results in Figure 4.5. In the former case

we fix f∗ and α2 and find Ω95%
∗ , while in the latter we marginalise over all

parameters to obtain Ω95%
∗ .

Broken power law model
f∗ = 1Hz f∗ = 25Hz f∗ = 200Hz

α2 = −1 3.3 × 10−7 3.5 × 10−8 2.8 × 10−7

α2 = −2 8.2 × 10−6 6.0 × 10−8 3.7 × 10−7

α2 = −4 5.2 × 10−5 1.8 ×10−7 3.7 × 10−7

Table 4.4: Upper limits for the energy density amplitude, Ω95%
∗ , in the broken

power law model for fixed values of the peak frequency, f∗, and nega-
tive power law index, α2.

II. Phenomenological model: We now estimate 95% CL upper limits on

ΩCOLL and ΩSW from bubble collisions and sound waves respectively. The

Bayesian analysis is repeated separately for ΩCOLL and ΩSW contributions,

with priors stated in Table 2.1, leading to Bayes factors logBCBC+COLL
noise =

-0.74 and logBCBC+SW
noise = -0.66, respectively.

In Figure 4.6 we present exclusion regions as a function of the differ-

ent parameters of the CBC+FOPT model, now under the assumption that

contributions from bubble collisions dominate, with vw = 1 and κϕ = 1. In

general, with the chosen prior, the data can exclude part of the parameter

space at 95% CL, especially when Tpt > 108 GeV, α > 1, or β/Hpt < 1.

Table III presents 95% CL upper limits on ΩCOLL(25 Hz) for several
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Figure 4.6: Posterior distributions for the CBC+FOPT search in the case of a phe-
nomenological model with dominant bubble collision contributions as
a function of logΩref and the different parameters of the model. The
68% and 95% CL exclusion contours are shown. The horizontal dashed
line in the posteriors indicate the flat priors used in the analysis.

β/Hpt and Tpt, where α is left as a free parameter to be inferred from the

data. We consider three values for β/Hpt, namely 0.1, 1, and 10, and four

for Tpt: 107, 108, 109, and 1010 GeV. Our constraints on ΩCOLL(25 Hz), as

computed at the reference frequency of 25 Hz, vary in the range 4.0 × 10−9

to 1.0 × 10−8, with more stringent limits at large β/Hpt or large Tpt. At

the largest values of β/Hpt and Tpt there is not enough sensitivity to place

constraints to the model. In all cases, the inferred upper limits on the CBC

background range between Ωref = 5.3 × 10−9 and 6.1 × 10−9.

Similarly, in Figure 4.7 we present the results for the CBC+FOPT hy-

pothesis in which the sound waves dominate with vw = 1 and κSW a func-

tion of vw and α. The Bayesian analysis shows sensitivity at large val-

ues of α and Tpt, but does not exclude regions in the parameter space at
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Phenomenological model (bubble collisions)
Ω95%

COLL (25 Hz)
β/Hpt \ Tpt 107 GeV 108 GeV 109 GeV 1010 GeV

0.1 9.2 × 10−9 8.8 × 10−9 1.0 × 10−8 7.2 × 10−9

1 1.0 × 10−8 8.4 × 10−9 5.0 × 10−9 −
10 4.0 × 10−9 6.3 × 10−9 − −

Table 4.5: The 95% CL upper limits on Ω95%
COLL(25 Hz) for fixed values of β/Hpt

and Tpt, and vw = κϕ = 1. The dashed lines denote no sensitivity for
exclusion.
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Figure 4.7: Posterior distributions for the CBC+FOPT search in the case of a
phenomenological model with dominant sound wave contributions
(vw = 1), as a function of logΩref and the different parameters of the
model. The 68% and 95% CL exclusion contours are shown. The hori-
zontal dashed line in the posteriors indicate the flat priors used in the
analysis.

95% CL. The analysis is then performed for given values of β/Hpt and

Tpt leaving α as a free parameter. As a result, a 95% CL upper limit on

ΩSW(25 Hz) of 5.9 × 10−9 is obtained for β/Hpt < 1 and Tpt > 108 GeV.

The analysis is repeated for models with reduced velocities of vw = 0.9,

vw = 0.8, and vw = 0.7, with Bayes factor logBCBC+SW
noise = −0.60 and upper
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limit Ωref ≈ 5.9 × 10−9, with no significant vw dependence. In all studied

cases, the models with reduced vw lead to significantly lower sound waves

predicted energy densities, and with no 95% CL exclusions.

Discussion

We have searched for signals from FOPTs in the early Universe, potentially

leading to a GWB in the LVK frequency band. The analysis is based on

the data from the three observation periods, for which no generic signals

above the detector noise has been observed.

We use the results to deduce implications for models describing GWB.

We first consider a generic broken power law spectrum, describing its main

features in terms of the shape and the peak amplitude. We place 95% CL

upper limits simultaneously on the normalised energy density contribu-

tion from unresolved CBCs and a FOPT, ΩCBC(25Hz) = 6.1 × 10−9 and

ΩBPL(25Hz) = 4.4 × 10−9, respectively.

The results are then interpreted in terms of a phenomenological model

describing contributions from bubble collisions or sound waves, showing

that the data can exclude a part of the parameter space at large temper-

atures. In a scenario in which bubble collision contributions dominate,

with vw = 1 and κϕ = 1, part of the phase space with Tpt > 108 GeV, α > 1,

and β/Hpt < 1 is excluded at 95% CL. For fixed values of β/Hpt = 0.1,

1 or 10 and Tpt = 107,108,109 or 1010 GeV, the 95% CL upper limits on

ΩCOLL(25Hz) vary in the range between 4.0 × 10−9 and 1.0 × 10−8 which

depends on the β/Hpt and Tpt values considered. In the case where sound

waves dominate, several scenarios are explored considering different vw.

The data only shows a limited sensitivity, and a 95% CL upper limit on

ΩSW(25Hz) of 5.9 × 10−9 is placed in the case of vw = 1, for β/Hpt < 0.1

and Tpt > 108 GeV. Altogether, the results indicate the importance of using

LIGO-Virgo GW data to place constraints on new phenomena related to

strong FOPTs in the early Universe.

We now move away from the general class of first-order phase tran-
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sitions, and study the special case of supercooled first-order phase transi-

tions, since these can lead to GWs with greater amplitude.

4.3.4 Supercooled phase transitions

A particularly interesting scenario is when the FOPT is supercooled, which

often increases the duration of the FOPT, leading to an enhancement of

the GW signal. These strong GW signals are more likely to be observed

compared to the non-supercooled ones.

A prolonged period of supercooling can arise in theories with

Coleman-Weinberg-type symmetry breaking [321] or in strongly-coupled

scenarios. Some models of this type are discussed in [322, 323, 324, 325,

326, 327, 328, 329]. The phenomenon of supercooling occurs when the

nucleation temperature is much lower than the scale of the symmetry

breaking triggering the FOPT, leading to a large FOPT strength, α ≫ 1. A

supercooled phase transition may have occurred during the inflationary

period, when the hot universe rapidly expanded and supercooled to very

low temperatures. Given the current sensitivity of LVK detectors, one

may expect that FOPT GW signals in reach of the experiment would most

probably come from a supercooled FOPT. In what follows we apply our

analysis of the LVK data to the theoretically well-motivated supercooled

models described in [306, 277], and derive the corresponding constraints

on their parameter space.

Our analysis is the first time the LVK data from the first three observ-

ing runs is being used to set limits on parameters of particle physics models

through a FOPT search. In particular, in the current analysis we apply our

priors directly at the level of the particle physics parameters, e.g. particle

masses and couplings. This presents a novel way of bridging the gap be-

tween data analysis and theoretical particle physics model building. For

details on the modifications to GW spectra from supercooled phase tran-

sitions and the generic constraints we can place on those with LVK data,

please refer to Appendices E.1 and E.2.
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Two well-motivated particle physics models

The phenomenon of supercooling occurs in theories with Coleman-

Weinberg-type symmetry breaking [321] or strong coupling. Several mod-

els of this type have been investigated in the literature in light of their en-

hanced GW signals [306, 277, 325, 279, 315, 271, 305, 329, 324, 326, 323, 327].

In this study, we focus on Model I [306] and Model II [277], which exhibit

approximate conformal symmetry. They are both well-motivated from a

particle physics point of view and have a minimal particle content. We

note, however, that our analysis can be applied to any other model with

supercooling. The general goal is to assess the detectability of signals from

supercooled FOPTs with the LVK detectors, and determine the regions of

parameter space that can be excluded with current GW data.

Model I

Theoretical framework

The first model we consider is based on a theoretically attractive mini-

mal U(1)B−L extension of the Standard Model gauge group [325, 306, 327].

Upon introducing three right-handed neutrinos, the theory is anomaly-

free, realises the seesaw mechanism, and can be incorporated into SO(10)

grand unification. The model includes only two new bosonic fields: a real

scalar ϕ and a gauge boson Z′.

The zero temperature scalar potential is given by

V0(ϕ) =
1
4

λϕϕ4 + ∑
i=ϕ,G,Z′

ni

64π2

{
m4

i (ϕ)

[
log

(
m2

i (ϕ)

µ2

)
− ci

]}
, (4.11)

where ni is the number of degrees of freedom, cϕ,G = 3/2, cZ′ = 5/6, µ is

the renormalisation scale, and G denotes the Goldstone boson. The field-

dependent masses are:

m2
Z′(ϕ) = 4g2ϕ2 , m2

ϕ(ϕ) = 3λϕϕ2 , m2
G(ϕ) = λϕϕ2 , (4.12)
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where g is the gauge coupling. The finite temperature part of the effective

potential is

VT(ϕ, T) =
T4

2π2 ∑
i=ϕ,G,Z′

ni

∫ ∞

0
dy y2 log

(
1 − e−

√
m2

i (ϕ)/T2+y2
)

+
T

12π ∑
j=ϕ,G,Z′

L

n′
j

{
m3

j (ϕ)− [m2
j (ϕ) + Πj(T)]

3
2

}
, (4.13)

with the thermal masses given by

Πϕ(T) = ΠG(T) =
(

g2 + 1
3 λϕ

)
T2 ,

ΠZ′
L
(T) = 4g2T2 , (4.14)

where the subscript L denotes longitudinal components.

This model has only two free parameters relevant for the GW signal:

the vacuum expectation value v of the scalar field ϕ, and the U(1)B−L gauge

coupling g. Trading v for the the gauge boson mass mZ′ , related via

mZ′ = 2gv , (4.15)

the two parameters describing Model I are (mZ′ , g).

Constraints from LVK O1+O2+O3 data

For each point (mZ′ , g) of the parameter space, one can compute the pa-

rameters describing the phase transition, i.e., TRH and β/HRH, and the

resulting GW spectrum. We note that the temperature of the thermal bath

at the time when the GWs are produced is not Tpt, but rather the reheating

temperature TRH, approximately given by

T4
RH ≃ 30

π2g∗
∆V, (4.16)

where ∆V is the potential difference between the true and false vacuum,

and g∗ is the number of relativistic degrees of freedom. It is often the case
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Model I Model II
Ωref LogU[10−10, 10−7] Ωref LogU[10−10, 10−7]
mZ′ LogU[104,1011]

(GeV)
F LogU[1.4×109, 1011]

(GeV)
g U[0.3, 0.4] λ U[0.325, 0.6]

Table 4.6: Summary of the priors used for parameter estimation for Model I and
Model II, where U stands for a uniform and LogU for a log-uniform
prior. The narrow prior on Ωref stems from estimates of the CBC back-
ground [330].

that TRH ≫ Tpt, especially for supercooled phase transitions. However, for

sufficiently fast reheating one has H(Tpt) ≃ H(TRH), which implies that

β/Hpt ≃ β/HRH [191].

We restrict ourselves to mZ′ ∈ [104, 1011] GeV and g ∈ [0.3, 0.4], which

corresponds to FOPTs where the GW signal is dominated by sound waves

[327]. If the gauge coupling g is chosen to be larger than 0.4, the FOPT is

not supercooled and α ∼ 1. Furthermore, we are not exploring values of g

below 0.3, as these correspond to a regime where both bubble collisions and

sound waves contribute considerably to the GW spectrum, as discussed in

[327].

We perform a parameter estimation search over this parameter space,

and include the contribution of the CBC background. The likelihood

is given by (3.4), with ΩGW = ΩCBC + ΩSW, where ΩSW is calculated

from (4.7) using the model parameters (mZ′ , g). Thus, the parameters of

the search are θGW = (Ωref, mZ′ , g). The priors are summarised in Table

4.6 and the results are shown in Figure 4.8 (upper panel) which depicts

the resulting posteriors. The upper limits on the amplitude of the astro-

physical CBC background are consistent with [331, 332]. Furthermore, a

region of parameter space around mZ′ ∼ O(108 GeV) is excluded, and cor-

responds to FOPT GW signals peaked within the frequency range of the

LVK detectors.

Model II

Theoretical framework
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Figure 4.8: Constraints on the parameter space (mZ′ , g) for Model I (top panel)
and on the parameters λ and F for Model II (bottom panel), together
with constraints on the astrophysical CBC background amplitude Ωref
using LVK data. The grey region in the bottom plot corresponds to a
region where nucleation does not occur and the phase transition does
not complete.
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This model is based on a radiatively broken U(1) Peccei-Quinn symmetry

[277], introduced to solve the strong CP problem, and leading to the ap-

pearance of a dark matter candidate – the axion. It extends the Standard

Model by including just two new complex scalar fields, S and X, which are

Standard Model singlets, and both carry Peccei-Quinn charges.

The tree-level scalar potential is

Vtree = λS|S|4 + λX|X|4 + λSX|S|2|X|2 . (4.17)

It exhibits a flat direction for λSX =−2
√

λSλX, which can be parameterised

by

(S, X) = (sinα, cosα)
σ√
2

, sin2α =

√
λX√

λS +
√

λX
. (4.18)

The mass of the field along the direction orthogonal to σ is

mτ = (4λSλX)
1/4σ . (4.19)

Assuming that the condition for the flat direction holds at the renormal-

isation scale Λ, and switching the parameter Λ for the field value at the

minimum of the potential F, the zero temperature scalar potential is given

by

V0(σ) =
2λSλX

16π2 σ4
(

log
σ

F
− 1

4

)
. (4.20)

At the minimum σ has a loop-suppressed mass, whereas the phase of X

is massless up to QCD anomalies, and becomes the axion with a decay

constant Fa = F cosα. The finite temperature part of the effective potential is

given by a formula analogous to (4.13), but with just a single term involving

mτ. To prevent the finite temperature effects from moving the true vacuum
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away from the flat direction, we set

λX = λS ≡ λ , (4.21)

which is equivalent to imposing a Z2 symmetry at the level of the La-

grangian. As a result, Model II is described by just two parameters: (λ, F).

Constraints from LVK O1+O2+O3 data

Similarly as for Model I, one can compute the FOPT parameters β/HRH

and TRH, and determine the GW spectrum. The ranges of parameters we

consider are: F ∈ [1.4 × 109, 1011] GeV and λ ∈ [0.325,0.6]. A value of F

smaller than 1.4 × 109 GeV (corresponding to an axion decay constant of

109 GeV) is experimentally excluded [333], whereas values of λ lower than

0.325 correspond to cases when the phase transition does not complete, i.e.,

no nucleation occurs.

We again conduct a parameter estimation directly on the parame-

ters of the model. In the case of Model 2 the dominant GW contribu-

tion comes from bubble collisions [277]. In the likelihood given by (3.4),

ΩGW = ΩCBC + ΩCOLL, where ΩCOLL is given by (4.9) and can be obtained

from the underlying model parameters (λ, F). The parameters used for the

search are θGW = (Ωref, F, λ) and the priors on Ωref, F and λ are sum-

marised in Table 4.6. The lower panel in Figure 4.8 displays the exclusion

regions implied by the current LVK data. The grey region represents part of

the parameter space where no nucleation occurs and the phase transition

does not complete. As shown in Figure 4.8, part of the parameter space

can be excluded at a 95% CL. This mostly puts constraints on the values

of λ, excluding smaller values, as these are the ones that give rise to the

strongest GW signals. Furthermore, one notes consistency with the usual

CBC upper limits found in this work, and in [331, 332]. We present a com-

parison between constraints on particle physics couplings from Models I

and II using different parameter estimation approaches in Appendix E.3.
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4.3.5 Future outlook

We complete our study by looking ahead and making projections for the

sensitivity of 3G interferometers to a supercooled FOPT that could have oc-

curred at energies inaccessible to particle colliders. The proposed Einstein

Telescope and Cosmic Explorer are expected to extend our astrophysical

horizon to distant redshift, revealing the majority of CBCs in the Universe.

This will help subtract individual sources and reduce the astrophysical

contribution to the GW background, in hope of revealing a cosmological

background.

We simulate 400 signals containing the residual CBC background [146]

and a bubble collision dominated supercooled phase transition for a range

of β/HRH and TRH values. We then compute the log Bayes factor of a

CBC+FOPT model to noise, and a CBC model only to noise; subtracting

the two determines the preference for the presence of a FOPT signal in the

data. The analysis is then repeated for the case of a dominant sound wave

contribution to the FOPT signal. The 3G network used places ET at Virgo

and two CEs at the Hanford and Livingston locations.

Our results are presented in Figure 4.9. With the future 3G detectors,

we find that a significant part of the parameter space can be probed in both

cases. Sound waves and bubble collisions dominated supercooled phase

transition scenarios are depicted in the top and bottom panels of Figure

4.9, respectively.

Discussion

To demonstrate the huge opportunity for particle physics arising from GW

searches, we carried out the pioneering study in which we used the data

from the O1, O2 and O3 runs to perform a Bayesian analysis and set direct

limits on the parameter space of particle physics models. In our analysis

we focused on supercooled FOPTs, since they are naturally characterised

by an enhanced signal strength, potentially already within the reach of

current LVK detectors.
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Figure 4.9: Preference for a model containing a supercooled phase transition and
an astrophysical CBC background over a model with an astrophysi-
cal background only. Injections of a bubble collision (BC) dominated
FOPT show great constraining power of such a signal with a network
of 3G detectors (top), and similarly for injections of a sound waves
(SW) dominated FOPT (bottom).

We applied our analysis to two well-motivated particle physics mod-

els, which address some of the most intriguing open questions about the

Universe: the dark matter puzzle, the strong CP problem, the origin of

the neutrino masses, and unification of forces. We place the Bayesian 95%

upper limits on the parameter space of those models, providing valuable

insight into the available room for new physics. The same strategy can

be used to impose limits on other models exhibiting supercooled FOPTs.

Apart from conducting the analysis using the available LVK O1-O3 data,

we provide an outlook on the reach of 3G detectors. This methodology
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Figure 4.10: GWB spectrum from turbulence in the plasma during a FOPT as a
function of frequency.

can also be applied to future LVK upgrades, as well as next-generation

detectors.

We conclude the discussion on first-order phase transitions by com-

menting briefly on the typically subdominant FOPT contribution to the

GWB - turbulence in the early Universe plasma.

4.3.6 Turbulence

The third, and final contribution to ΩGW from a first-order phase transition

is turbulence. Simulations show that bubble collisions induce magnetohy-

drodynamic turbulence in the plasma. If the turbulence cascade follows a

Kolmogorov spectrum, the GWs sourced are of the form [191]

Ωturbh2 = 3.35 × 10−4 vw

(
β

Hpt

)−1 ( κturbα
1+α

)3/2
(

100
g∗

)1/3

×
(

f
fturb

)3(
1 + f

fturb

)−11/3(
1 + 8π f

hpt

)−1
, (4.22)

with

fturb = 2.7 × 10−5 1
vw

β

Hpt

(
Tpt

100GeV

)( g∗
100

)1/6
Hz. (4.23)
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Figure 4.11: The blue shaded region represents the parameter space for which
Ωturb goes as f 3 and not f 2 near the spectrum peak.

The turbulence component of the GWB is expected to be subdominant to

both bubble collisions and sound waves.

In Figure 4.10 we can see that the frequency dependence differs from

the other FOPT contributions, namely low-frequency spectrum does not

scale as f 3 close to the peak, but f 2 instead. We investigate if there is a

parameter space that leads to f 3 dependence closer to the peak frequency

instead of f 2 as shown in Figure 4.10. We find this to be the case only for

very large values of vw and extremely low values of β/Hpt, see Figure 4.11.

Since such a choice of parameters is not typical for an FOPT signal, we

assume that the low-frequency spectral index of Ωturb is 2 and not 3. This

particular behaviour is a consequence of cascading of energy to smaller

scales in the turbulent plasma. Recent numerical simulations confirm a

further plateauing of the infrared GW background [334] to a linear scaling

with frequency followed by f−8/3 at high frequencies. Furthermore, vari-

ous numerical simulations produce varied high-frequency behaviour, e.g.

f−3/2 , f−2 and f−8/3 [335].

The large uncertainty in the shape of the turbulence GWB spectrum,

and its anticipated subdominance to both sound wave and bubble collisions
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contributions in the FOPT make it very difficult to search for this signal.

However, there may be another way of searching for turbulence-sourced

GWs. In the following section we focus on a highly probable attribute of

the turbulent GWB - its non-zero polarisation, and we investigate if we can

detect it with terrestrial interferometers.

4.4 Parity-violating GWB
Searches for an unpolarised isotropic GWB have been conducted in the past

using data gathered by ground-based interferometer detectors LIGO [2]

and Virgo [6], and this allowed upper limits on GWB energy density to be

placed [107, 336, 337]. However, a multitude of mechanisms in the early

Universe can create parity violation [338] that may manifest itself in the

production of asymmetric amounts of right- and left-handed circularly po-

larised isotropic GWs. Since astrophysical sources of the GWB are unlikely

to have this circular polarisation, a detection of such a signal can allow

cosmologically sourced GWs to be distinguished from the astrophysically

sourced component of the GWB. A closer analysis of polarised GWB can

place constraints on parity-violating theories.

Numerous parity-violating effects on the GWB have been studied in

the literature, including those resulting from the Chern-Simons gravita-

tional term [339, 340, 341] and axion inflation [342]. Another potential chi-

ral source for early Universe GWB is turbulence in the primordial plasma

induced either from cosmological first-order (electroweak or QCD) phase

transitions [343, 344, 345], or from the primordial magnetic fields that

are coupled to the cosmological plasma [346, 347, 348, 349, 350]. Parity-

violating effects on the GWB have been explored in detail before [351] from

a previous LIGO-Virgo observing run [352], as well as studied in the con-

text of current and future detector capabilities [353, 354, 355, 356, 357].

Since turbulence is a stochastic process, the GWs produced in the pro-

cess are stochastic as well. Similarly, a parity-violating turbulent source
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will produce circularly polarised GWs. Depending on the helicity strength

of the source, there are two types of turbulence GW spectra [358, 359].

Turbulence dominated by energy dissipation at small scales leads to a heli-

cal Kolmogorov (HK) spectrum, whereas turbulence dominated by helicity

dissipation at small scales leads to a helicity transfer (HT) spectrum. We fo-

cus on models that result in an HK spectrum, and consider the polarisation

degree associated with them.

In what follows we adopt the formalism of [360] and present a method

to detect parity violation in GW data. We first analyse existing GW data

to place upper limits on a simple power law parity violation model for the

normalised GW energy density ΩGW( f ). We consequently study the GWB

produced by turbulence in the primordial plasma and investigate what

upper limits can be placed with the inclusion of KAGRA and improved

LIGO and Virgo sensitivities.

The rest of the study is organised as follows: in 4.4.1 we present our

methodology which we then apply to the parity violation models described

in 4.4.2. In 4.4.4 we state our results from existing GW data as well as future

prospects.

4.4.1 Searching for parity violation in GWB data

We use the plane-wave expansion of the metric hab at cosmic time t and

position vector x⃗ [56]:

hab(t, x⃗) = ∑
A

∫ ∞

−∞
d f
∫

S2
dΩ̂ hA( f ,Ω̂)e−2πi f (t−x⃗·Ω̂)eA

ab(Ω̂), (4.24)

where eA
ab(Ω̂) is the polarisation tensor for a wave travelling in direction Ω̂.

We use the circularly polarised bases eR = (e+ + ie×)/
√

2 and eL = (e+ −
ie×)/

√
2 to obtain the right- and left-handed modes hR = (h+ − ih×)/

√
2

and hL = (h+ + ih×)/
√

2, respectively. Right- and left-handed correlators

can then be written as
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⟨hR( f ,Ω̂)h∗R( f ′,Ω̂′)⟩
⟨hL( f ,Ω̂)h∗L( f ′,Ω̂′)⟩

 =
δ( f − f ′)δ2(Ω̂ − Ω̂′)

4π

I( f ,Ω̂) + V( f ,Ω̂)

I( f ,Ω̂)− V( f ,Ω̂)

 ,

(4.25)

where I,V are the Stokes parameters, with V characterising the asymmetry

between right- and left-handed polarised waves, and I(≥ |V|) the wave’s

total amplitude. For V = 0, (4.25) would be simply the correlator for unpo-

larised isotropic GWB (1.34). The standard cross-correlation statistic Ĉd1d2

in the case of a polarised background estimates a modified GWB spectrum

Ω′
GW [361, 56]:

Ω′
GW = ΩGW

[
1 + Π( f )

Γd1d2
V ( f )

Γd1d2
I ( f )

]
(4.26)

where

Γd1d2
I ( f ) =

5
8π

∫
dΩ̂(F+

d1
F+∗

d2
+ F×

d1
F×∗

d2
)e2πi f Ω̂·∆x⃗,

Γd1d2
V ( f ) = − 5

8π

∫
dΩ̂(F+

d1
F×∗

d2
− F×

d1
F+∗

d2
)e2πi f Ω̂·∆x⃗. (4.27)

We denote by Γd1d2
I the standard overlap reduction function of two detectors

d1,d2, and by Γd1d2
V the overlap function associated with the parity violation

term. The polarisation degree, Π( f ) = V( f )/I( f ), takes on values between

-1 (fully left polarisation) and 1 (fully right polarisation), with Π = 0 being

an unpolarised isotropic GWB. The variance associated with the estimator

Ĉd1d2 is the same as for the isotropic search, see (1.37).

To proceed we perform parameter estimation and fit GW models to

data using a hybrid frequentist-Bayesian approach [362]. We assume that

correlated-noise sources have been either filtered out [88] or accounted

for [48]. The normalised GW energy density model we fit to the data is

Ω′
GW( f ,θ), with parameters θ including both GW parameters as well as

parameters of the Π( f ) model.
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4.4.2 Sources of parity violation

We will apply our method to two classes of GW models. First, we perform a

generic search for a parity violating GWB, with power law behaviour (1.27)

and fref = 25 Hz. The amplitude prior we use is log-uniform between 10−13

and 10−5, and the spectral index prior is a Gaussian distribution centred at

0 with a standard deviation 3.5, following the priors used in [336]. We will

search for this model in the currently available GWB data and place upper

limits on its parameters.

Second, we use a broken power law spectral shape, motivated by high

energy physics. Since we have not detected a GWB yet, we will investigate

detection prospects of this more complicated turbulence model with future

improved detector sensitivities and forecast what one can learn about its

parameters. Extensions of the Standard Model of particle physics can imply

parity violation at the electroweak energy scale being manifested through

helical (or chiral) turbulent motion [363, 364]. Parity-violating turbulent

sources will produce circularly polarised GWs [365], with a broken power

law spectral shape peaking at the characteristic frequency of the source.

Recent numerical simulations show that at frequencies below the charac-

teristic frequency ΩGW ∼ f [298]. Above the characteristic frequency, the

decaying power law depends on the turbulence model [366]. As an exam-

ple, in our analysis we focus on choice model [367]:

ΩGW( f ) =


Ωpeak

(
f

fpeak

)
, f ≤ fpeak

Ωpeak

(
f

fpeak

)−8/3
, f > fpeak .

(4.28)

We set fpeak = 25 Hz, the most sensitive frequency band of LVK detectors,

to find the most optimistic prospects of detecting a broken power law GWB

model.
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4.4.3 Degree of parity violation

In addition to modelling the GW spectrum, we need a model for the

amount of polarisation of the turbulence spectrum.

Two factors influence the shape of Π( f ): type of turbulence and helic-

ity strength (see Fig. 1 in [368]). To understand these factors, let us look at

the velocity two-point function of a turbulent fluid

⟨u∗
i (k)uj(k

′)⟩ = (2π)3δ(3)(k − k′)[PijPS(k) + iϵijl k̂lPH(k)], (4.29)

with Pij = δij − kik j/k2 and ϵijk the 3-dimensional Levi-Civita symbol. Here

PS(k) is the symmetrical and PH(k) is the helical part of the power spec-

trum. These are modelled as power laws PS(k) = S0knS and PH(k) =

A0knS−nH
S knH , where S0 and A0 are the amplitudes for the symmetric and

helical parts of the velocity spectrum respectively, and ks is the turbulence

cut-off scale. The ratio of A0 to S0 characterises the helicity strength. Im-

posing causality (PS(k) ≥ PH(k)), maximum helicity occurs for turbulent

motion with A0/S0 = 1. The spectral indices in the PS(k) and PH(k) power

law models are determined by the type of turbulence.

An HK spectrum is dominated by energy dissipation at small scales,

whereas an HT spectrum is dominated by helicity dissipation at small

scales. Depending on helicity strength, we observe either HK or a com-

bination of HK and HT spectra. HK spectrum is observed in weakly heli-

cal turbulence at all scales k. For strongly helical turbulence, however, HT

spectrum is observed at small k, and HK at large k. For the HK spectrum

we have nS = −11/3, nH = −14/3, while for HT the spectral indices are

nS = nH = −13/3.

Previous studies [365, 369] calculated, numerically, the net circular po-

larisation of GWs for different initial turbulent conditions to get the po-

larisation degree Π over a range of scales, and found frequency-dependent

models of Π. In the following, we will study both the simplified Π = const.

model, as well as a frequency-dependent polarisation model. In the former
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simplified case, the prior for Π is uniform between -1 and 1. For the lat-

ter case, we adopt the functional form Π( f ) =±( f /1 Hz)β with a uniform

prior on β between -2 and 0. This simple functional form is motivated

by the theoretical models predicting Π to decay with frequency [369, 370].

Furthermore, since we consider frequencies larger than 1 Hz (terrestrial de-

tectors are limited by seismic noise at low frequencies), this choice ensures

that Π( f ) is well defined and remains within the physical range [-1,1].

4.4.4 Can we determine the polarisation degree?

We place upper limits on parameters of the simpler, power law, GWB

model using LVK data. Following this, we discuss detection prospects of

model-dependent, broken power law turbulence spectra as the sensitivity

of the interferometers increases and more interferometers are added to the

network.

O3 results

We search for a power law GWB spectrum, as described in (1.27), with a

simple Π = const. polarisation model in the recent O3 data [337]. We find

no preference for a particular Π value in the [-1,1] prior range. We find

the upper limit on the amplitude of the power law to be Ω95%
ref = 7.0× 10−9.

Calculating the Bayes factor, we find lnBΠ ̸=0
Π=0 =−0.02, concluding that there

is no preference for parity violation models versus no parity violation ones.

It is worth noting that we found the HLV network to be more sensitive

to right-hand polarisations compared to left-hand ones. Plotting the Ωref

versus α confidence curve generated from O3 data, one observes that it is

easier to constrain Ωref for entirely right-handed polarised GWs (Π = 1)

than it is for left-handed (Π = −1) ones, see Figure 4.12. Excluding the

HL detector baseline however, results to a less obvious polarisation bias for

right- or left-handed GWs.

To understand the origin of this bias we investigate the asymmetry in

the overlap reduction ratio, ςHL ≡ ΓHL
V /ΓHL

I , for the HL detector pairing



4.4. Parity-violating GWB 136

Figure 4.12: Ωref − α confidence curve at 95% (solid) and 68% (dashed) level for
assumed Π =±1. We see more stringent constraints in the Π = 1 case
(blue) than with the Π = −1 case (red).

Figure 4.13: Overlap reduction function ratio ς for HL (top), HV (middle) and LV
(bottom) baselines.

plotted in Figure 4.13, along with the corresponding overlap reduction ra-

tios ςHV and ςLV for the HV and LV baselines, respectively. While ςHV and

ςLV are roughly periodic in the considered frequency range ( f ≲ 130Hz),

ςHL is preferentially positive in this frequency range. Preferentially positive

ςHL combined with Π > 0 in (4.27) leads to a larger Ω′
GW, hence leading to
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stricter constraints on right-hand polarised signals.

In addition to the frequency-independent, Π( f ) = const. model, we

search for a power law parity violation signal, assuming a right- and left-

handed frequency-dependent degree of polarisation Π( f ) = ±( f /1 Hz)β.

There is no detection of a GWB power law signal with frequency-

dependent polarisation degree, but for an assumed right- and left-handed

polarisation we can place an upper limit on the amplitude, Ω95%
ref = 4.9 ×

10−9 and Ω95%
ref = 7.4 × 10−9, respectively, after marginalising over α and β.

Positive polarisation was expected to have stricter upper bounds based on

HLV network’s higher sensitivity to entirely right-hand polarisation seen

in Figure 4.12. Since more stringent, we only present positive polarisation

results. Figure 4.14 shows posterior distribution of amplitude, ΩGW, and

spectral index, α, of a power law GW signal, as well as the posterior of the

polarisation degree parameter, β. The α posterior is similar to the Gaus-

sian prior distribution, implying that we cannot deduce anything about the

spectral index, α, of the GW power law from the O3 data. Finally, with O3

data, we do not constrain the β parameter space.

Since we see no detection of a parity-violating signal in O3 data when

we use a simple power law model with a frequency-independent polarisa-

tion degree, as well as a frequency-dependent one, we do not proceed to

search for the broken power law model in (4.28) – such a model would also

be undetectable with the data from O3. Instead, we study the prospects of

detecting the complex model with a more sensitive GW detector network.

Future prospects

With each observing LIGO-Virgo run, we see improved upper limits on the

GWB, expecting to have a detection in one of the future upgrades of the

detector network. Let us therefore investigate the possibility of detecting

a parity violation signal with the A+ sensitivity of LIGO, AdV+ sensitivity

of Virgo, and including KAGRA at Design sensitivity to the network [179].

We simulate the cross-correlation function that contains a GW signal as
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Figure 4.14: 95% CL and posterior distribution obtained using O3 data for the
model of power law GWB spectrum with parity violation Π( f ) =
( f /1 Hz)β.

well as instrumental noise of the detectors. We note that our simulations

are for three years observation time. Adding more GW detectors to the

network and extending the observation time both lead to improvements in

our sensitivity.

Ultimately, we would like to explore the prospects of a detection of a

physically motivated, parity-violating signal. This is why in the following

section we focus on the detection of a turbulence signal, and not that of a

simple power law model. We simulate a broken power law ΩGW, induced

by turbulence as described in 4.4.2 [cf. (4.28)]. To investigate the detection

prospects of such a signal, we vary the amplitude of the simulated spec-

trum by doing 1000 simulations log-spaced between Ωpeak ∈ [10−10,10−7].

Going forward, we assume the polarisation dependence of the simulated

spectrum is given by right-handed polarisation Π( f ) = ( f /1 Hz)−1/2, as

our results indicated stronger positive polarisation sensitivity in the HLV

network. We discuss below our results and their dependence on a devia-
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tion of the polarisation parameter β from the −1/2 value.

Figure 4.15 shows the variation of signal-to-noise Bayes factor, B, of

the simulations, focusing particularly in the region Ωpeak ∈ [10−10,10−8]. A

lnB factor of 8 is equivalent to a frequentist SNR of 4 [56], and as such,

we take this value to be our detection threshold. Consequently, all points

above the solid line in Figure 4.15 will be considered as detected. This leads

to an upper limit of Ωpeak = 1.5 × 10−9; any louder signal is expected to be

detected with great significance by the A+ detectors.

However, even if we can confidently claim a detection of a turbulent,

broken power law GWB, we might not be able to constrain its polarisa-

tion. Repeated simulations show that the spectral amplitude Ωpeak plays

the main role in the recovery of the polarisation content. More precisely, we

find that stronger signals yield better results for the recovery of the Π( f )

model, i.e. of the β parameter. Our analysis also shows that the inclusion of

simulated data from the Virgo and KAGRA detectors is critical in recover-

ing the polarisation of a simulated GWB. We find that for simulations with

amplitude Ωpeak ≥ 5 × 10−8, we confidently recover the β = −1/2 value,

see Figure 4.16. We quantify our confidence in recovery of β by requiring

95% (2σ) of its posterior distribution to be within 0.1 of the simulated value.

Therefore, we conclude that the amplitude of the GW spectrum needs

to be more than 30 times larger than its detection threshold in order to

recover the β = −1/2 parameter value, and detect a polarisation. Only

with such a strong detection, one can study the polarisation model and its

implications for parity violation theories.

Weaker GWB may still allow us to place an upper limit on β. Posteriors

for these weak GWB simulations are skewed toward the lower end of the β

prior. To demonstrate this, Figure 4.17 shows the variation of the median

value of β posteriors as a function of the simulated spectral amplitude. We

find that the median of the posterior starts to deviate downward from β =

−1/2 for Ωpeak < 5 × 10−8, agreeing with our previously stated definition
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of confident recovery. For even weaker simulations, Ωpeak ≲ 5 × 10−9, the

signal becomes too weak to constrain polarisation at all.

To check the dependence of our results on the simulated value of the

β parameter, we repeat the analysis for β = −1 and 0 [369]. The detection

threshold for each of the data sets is the same as before, Ωpeak = 1.5× 10−9,

suggesting that when we claim a detection, it will be independent of the

amount of polarisation of the signal. However, the signal strength needed

to successfully recover β depends on the polarisation model. Namely, the

smaller the value of β is, the stronger the simulation amplitude is needed.

For β = −1 we are unable to recover it within our simulation range. The

β = 0 simulation, with a frequency-independent polarisation, is recovered

with signals of amplitude Ωpeak = 1 × 10−8, only 7 times stronger than

the simulation threshold. The only simulation that successfully recovers β,

and is not already ruled out by the first three LIGO-Virgo observing runs,

is β = 0, implying that even if we include 4 detectors, and consider 3 years

of observation time, it will be challenging to probe frequency-dependent

polarisation models.

Discussion

We searched for GWB generated by sources of parity violation in recent

GW data and simulated GW data (future sensitivities of LVK detectors).

We found no evidence for such a signal in O3 data and we placed an up-

per limit on the amplitude of a power law GW model, Ω95%
ref = 4.9 × 10−9,

7.4 × 10−9 for right- and left-hand polarisation, respectively. A bias for

constraining right-handed polarised waves was found to be due to the ge-

ometry of the LIGO Hanford-Livingston detector baseline, leading to better

constraints of Π > 0 polarisations.

When simulating data for future detection prospects, we considered

a chiral turbulence source in the early Universe. The results we ob-

tained are model-dependent. For a GWB modelled as a broken power law

(4.28), the LVK detector network is sensitive to peak amplitudes down to
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Figure 4.15: Bayes factor as a function of amplitude of the simulated signal. Each
point represents one of our 1000 simulations. The solid line represents
lnBsignal

noise = 8.
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Figure 4.16: Variation of 2σ value of the β posterior for each of the 1000 simula-
tions. The solid line represents 2σ = 0.1.
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Figure 4.17: Variation of the median of the β posterior for each of the 1000 simu-
lations.

Ωpeak = 1.5× 10−9. Our analysis showed that we are able to better estimate

the parameters of the parity violation model for stronger simulated GW

backgrounds, as well as when the Virgo/KAGRA detectors are included

in the analysis, highlighting the importance of having a multi-detector net-

work. For β = −1/2 we found that successful recovery of β requires GWB

amplitude of at least Ωpeak = 5 × 10−8, which is excluded by existing GW

data. Hence, even if we detect a turbulence signal, we might not be able

to deduce its polarisation. The recovery of frequency-independent polar-

isation (β = 0) showed more promising results and we might be able to

constrain such signals in the future observing runs.

Although this study used the current LIGO and Virgo detectors as

well as the upcoming KAGRA detector, it would be interesting to apply

the same study to additional ground detectors added to the network such

as LIGO-India, as well as next-generation detectors. Note that due to un-

certainty in geographical locations (i.e. uncertainty in ORFs) of the planned

terrestrial detectors, the study cannot be extended to these at the moment.
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4.5 Afterword
In this chapter we have demonstrated the wide reach GWB studies can

have on different areas of physics: from astrophysics and particle physics

to early Universe cosmology.

Astrophysical background from pop III-seeded CBCs presents a com-

plementary tool to the individual detections of these mergers, and it can

measure average properties of the population. Detecting a first-order phase

transition GWB spectrum would hint at Beyond Standard Model physics

at, or above, the electroweak scale. With such a detection we could identify

the masses and couplings of the underlying particle physics model, as we

showed in the example of a supercooled FOPT. Furthermore, a non-zero

polarisation of the GWB may give constraints on inflation or help describe

turbulent motion of the plasma in the early Universe. It is certain that as

we lower the sensitivity with future upgrades and the next generations of

GW detectors, we continue to push the frontiers of theoretical physics.

Until now, we have considered GR to be the correct description of

gravity. In the next chapter we will put this assumption to test by exploring

modified gravity theories and their astrophysical and GW signatures.
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Modifications to gravity

5.1 Foreword
General relativity has exhibited immense success in Solar System tests

[371], as well as weak-field [372] and strong-field regimes (e.g. merger

events [373] and pulsars [374]), in recent years. While the success of GR

strongly suggests that this theory is indeed a good description of gravity,

exploring modifications to it is an important test of the theory itself. More-

over, a modification of GR may make it UV-complete, or provide a natural

explanation of the current accelerated expansion of the Universe without

the need of a dark energy component [375].

The widely celebrated gravitational-wave event GW170817 which saw

two neutron stars merging, not only in the gravitational spectrum [376], but

in the electromagnetic spectrum too, had large consequences on the field of

modified gravity. Comparing the time delay between the gravitational and

the electromagnetic signal placed a stringent constraint on the difference of

the speeds of the two to be less than 1 part in 10−15 [377]. This constraint

ruled out theories of gravity that predicted a significant deviation of the

propagation speed of gravitational waves from the speed of light (see con-

straints placed in e.g. [378], [379], [380]). The challenge and important task

is to identify the most promising surviving theories and find ways to test

them given the currently available data.
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In this chapter we motivate massive gravity, and present constraints we

have placed on a particular formulation of it, namely quasi-dilaton massive

gravity (QDMG). We finish the chapter with statements on a general class

of modified gravity theories that leads to a difference in GW and light

speed in the LISA frequency band. All calculations presented below as-

sume natural units, c = h̄ = 1.

5.2 Introduction to massive gravity
It is widely accepted that the graviton, as Einstein’s theory of gravity sug-

gests, is a massless particle of spin-2 with 2 degrees of freedom. Promoting

the graviton from a massless to a massive spin-2 field, however, is a chal-

lenge that has intrigued physicists for a long time. In fact, the first attempts

to write down an action for a massive spin-2 gravity field date back to the

1930s. Fierz and Pauli recognised that the new additional mass term would

need to preserve diffeomorphism invariance, hence simply a linear combi-

nation of hµνhµν and hµ
µhν

ν would not suffice. They solved this issue by using

a method developed by Stückelberg a few years earlier for the case of Proca

fields [381]. Adding the so-called Stückelberg field, χµ, they obtained what

is now referred to as the Fierz-Pauli term [382]

LFP = −1
8

m2
(
(hµν + 2∂(µχν))

2 − (h + 2∂µχµ)2
)

, (5.1)

where, under a diffeomorphism given by

hµν → hµν + ∂(µϵν), (5.2)

the fields transform as

χµ → χµ −
1
2

ϵµ. (5.3)

The Stückelberg field is commonly split into its vector and scalar part

χµ =
1
m

Aµ +
1

m2 ηµν ∂νπ. (5.4)
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Note that now there are 5 degrees of freedom in total: two tensors, two

vectors 1 and one scalar, as is expected for a massive spin-2 field. The

helicity-1 modes decouple from external sources, but the helicity-0 mode

couples directly to matter and introduces the vDVZ discontinuity [383].

The problem of the discontinuity was solved in 1972, where including non-

linear kinetic terms of π had the effect of screening the new degree of

freedom, a process known as the Vainshtein mechanism [384].

Consequently, the Fierz-Pauli treatment was successfully finalised by

the early 1970s. However, this is a treatment of a linearised gravity theory,

where the massive spin-2 field is a perturbation to the Minkowski back-

ground as discussed in 1.1.1. What we are after, of course, is a full theory

of gravity. Enforcing non-linear diffeomorphism invariance introduces fur-

ther complications in the form of ghost instabilities, higher order deriva-

tives of χµ. The negative kinetic terms lead to energy unbounded from

below and therefore an ill-defined theory. It took until 2010 for the prob-

lem of ghosts to be resolved by de Rham, Gabadadze and Tolley (dRGT)

[385]. But before their work, came the work of Dvali, Gabadadze and Por-

rati in 2000, with DGP theory representing an important milestone on the

road to a ghost-free theory of massive gravity [386].

Developed in 2000, DGP theory is the first attempt at a braneworld

approach to massive gravity. A massless spin-2 graviton in 5 dimensions

has 5 independent polarisations, the same number of degrees of freedom

that a massive spin-2 graviton has in 4 dimensions. Perhaps this coinci-

dence is what inspired the line of reasoning followed by Dvali et al. They

started with a 5-D Einstein-Hilbert action, and a 4-D brane located at a sin-

gle point in the extra dimension with all of the Standard Model confined

to it. Projecting the resulting "Einstein’s equations" from 5 to 4 dimensions

gives rise to the linearised Fierz-Pauli mass term, an exciting discovery for

anyone who has ever performed the calculation. The theory contains no

1We work in the Coulomb gauge with ∂i Ai = 0.
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ghosts, since one starts from a 5-D theory equivalent to GR. Interestingly,

the graviton comes out not as a propagator with a pole, but as an infinite

sum of free propagators with mass µ, and with a resonance at µ = 0, the

so-called "soft mass". This extremely simple and elegant theory goes on

to explain late-time acceleration of the Universe in one of the branches of

its solution. As tempting as it is, one should not be swayed by the beauty

of DGP, because this theory has been ruled out, both by cosmology con-

straints [387], and more recently by gravitational waves [388]. In fact, DGP

is a great example of how much constraints matter: constraining a modified

gravity model is just as important as formulating it.

Despite the DGP braneworld model being ruled out, it served its pur-

pose in helping develop crucial ideas for massive gravity since dRGT, bi-

gravity and multigravity, all rely on the existence of a 5th dimension. In

these theories, the extra dimension is no longer continuous like in DGP, but

it is instead discretised. To every point in the extra dimension, we assign

a 4-D metric. If we allow only nearest-neighbour interaction between the

metrics, we obtain multigravity. For dRGT and bigravity, the extra dimen-

sion is discretised and reduced to only two points, the difference being that

in dRGT only one of the metrics is dynamical, whereas in bigravity this is

true for both metrics. The interactions between the metrics bring about a

mass term in the Lagrangian, which now is in the form of a pole in the

propagator, i.e. a "hard mass". The action for dRGT is of the following

form:

SdRGT =
∫

d4x
√
−g
[
− M2

Pl
2

R(g) + m2M2
Pl

4

∑
n=0

αnLn(K(g, f )) + Lm(g,Φ)
]
.

(5.5)

The two metrics, gµν and fµν, are the dynamical and the fiducial metric

respectively. The fiducial metric enters the Lagrangian only through the

interaction term with the dynamical metric. In other words, it does not

directly couple to the matter fields, Φ, and it does not explicitly affect the
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geodesics. The fiducial metric is generally defined in terms of the Stück-

elberg fields, fµν = ∂µϕa∂νϕbηab, where ϕa = xa − 1
MPl

χa. The interaction

term is parameterised by the matrix K = I −
√

g−1 f , with its eigenvalues

in the form of elementary symmetric polynomials, Ln (explicitly defined

in Appendix F.1). The coefficients αn are chosen such as to avoid any ghost

instabilities.

The K matrix interaction term, with the square root of the two metrics,

makes calculations in dRGT significantly non-trivial. In order to attempt

any analytic analysis of the theory, one can resort to several different ap-

proaches, and the most frequently used are:

• assume proportionality, gµν = C2 fµν [389],

• set fµν to be the Minkowski metric and gµν to be a time-dependent

Schwarzschild metric [390],

• take the decoupling limit [390].

We resort to taking the decoupling limit, since the second approach is more

useful when investigating black holes solutions, and we see no obvious

reason why the proportionality condition in the first approach should hold

in the most general case.

The name given to the decoupling limit is rather misleading, since

it is not an actual limit. It is a scaling that preserves all of the physical

propagating degrees of freedom, and separates tensor, vector and scalar

modes. We expect new interactions in the theory to arise at an energy

scale in-between the graviton mass, m, and the Planck mass, MPl. The

Lagrangian in the decoupling limit is derived by keeping the so-called de-

coupling scale, Λ3 =
(
m2MPl

)1/3, constant, and letting MPl → ∞ and m → 0.

One can think of it as an expansion in 1/MPl, with the relative contribution

of the terms in the expansion determined by the above-mentioned scaling

relations. Note that in the case MPl → ∞, the dynamical metric reduces

to Minkowski (canonically normalised perturbation, 1
MPl

hµν → 0), and the
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Einstein-Hilbert term reduces to its linear form. From here it is clear that

the decoupling limit is not appropriate if we are considering non-linear

gravity regimes. If, however, we are looking at weak-field gravity sys-

tems, this is an acceptable simplification. The resulting Lagrangian, in the

absence of any matter, with Êαβ
µν as the linearised Einstein tensor on the

Minkowski background,

LDL
dRGT = −1

4

(
hµνÊαβ

µν hαβ +
5

∑
n=2

cn

Λ3(n−2)
3

L(n)
Gal[π]− 2(α3 + 4α4)

Λ6
3

hµνX(3)
µν [Π]

)
,

(5.6)

shows the scalar degree of freedom to acquire a galileon symmetry. The

new additional symmetry makes it possible to attempt an analytical treat-

ment of the theory. We neglect the vector degrees of freedom as these do

not couple to matter, and we show expressions for L(n)
Gal[π] in Appendix F.1.

The last term is a coupling term between the tensor and the scalar mode

(the scalar part of the Stückelberg field), with Πµν = ∂µ∂νπ, and it is also

defined in Appendix F.1. Note that the fields hµν and π are canonically

normalised. The decoupling limit trick has been used to investigate phys-

ical systems such as binary pulsars, and compact object binaries with the

two objects far away enough from one another for the weak-field regime to

hold [391].

In 2013, quasi-dilaton massive gravity was proposed as a promising

solution to the dRGT cosmology problem [392]. In the following section

we will discuss this modified gravity theory and study ways to constrain it,

before moving to the more general class of gravity theories with frequency-

dependent GW speed.

5.3 Quasi-dilaton massive gravity
Massive gravity has gained increasing interest over the past years due to

the first formulation a ghost-free theory of massive gravity, dRGT [385].
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Here we look for ways to test an extension of dRGT theory: quasi-dilaton

massive gravity, which is a dRGT theory with an additional quasi-dilaton

scalar field [392].

In 5.3.1 we motivate this specific choice of a modified gravity theory

and set up the theoretical framework in which we work. In 5.3.2 we con-

sider two different possible approaches to constraining the theory. The

first approach is motivated by the ever-growing data in the GW sector and

looks at depletion of a GW signal in a massive gravity theory. The second

approach considers astrophysical tests of QDMG, in particular changes to

the form of the Bardeen potentials, which in turn leads to modifications to

the rotation curves of the theory. Bardeen potentials are gauge-invariant

and they govern the behaviour of scalar perturbations [393] 2.

5.3.1 Theoretical motivation

The theoretical formulation of dRGT gravity was a turning point for all

development in the field of massive spin-2 gravity, as it is the first fully

complete ghost-free theory of massive gravity. In addition, with its origin

in extra dimensional braneworlds, dRGT allows one to entertain even the

possibility of a UV completion of the theory [394]. As promising as the the-

oretical advancements in dRGT are, its phenomenology makes it difficult

to practically constrain the theory. It passes all hitherto proposed tests and

agrees with GR, making the two indistinguishable. Out of the additional

degrees of freedom, the vector modes do not interact with matter, and the

scalar mode is Vainshtein-screened close to a source which significantly

represses both its production and detection [390]. In addition, a great con-

cern in searching for tests of the theory is that dRGT gravity does not

support stable cosmological Friedman-Lemaître-Robertson-Walker (FLRW)

solutions. Hence, to promote dRGT to a cosmological theory, one has to

add extra degrees of freedom, be it in the form of tensorial modes (e.g.

bigravity [395]) or scalar modes (e.g. f(R) massive gravity [396]).

2In the Newtonian limit they are simply the Newtonian gravitational potentials.
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In what follows, we focus on quasi-dilaton massive gravity, a scalar-

extended dRGT theory with a quasi-dilaton field leading to stable FLRW

solutions. We note that the existence of a quasi-dilaton type of field is

well-founded within string theory and it arises from compactification of

the extra dimensions [397]. The action of quasi-dilaton massive gravity is

SQDMG =
∫

d4x
√
−g
[
− M2

Pl
2

R(g) +
ω

2
(∂σ)2

+m2M2
Pl

4

∑
n=0

αnLn(K(g, f ,σ)) + Lm(g,Φ)
]
, (5.7)

where σ is the quasi-dilaton, g is the dynamical metric, f is the Stückel-

bergised fiducial metric, and coefficient ω > 0. The interaction term now

includes the quasi-dilation field as follows:

K = I − eσ/MPl

√
g−1 f . (5.8)

It is the interaction between the dynamical metric, fiducial metric and the

quasi-dilaton field that gives rise to the graviton mass, m. Note that the

fiducial metric enters the Lagrangian only through the interaction term

with the dynamical metric. In other words, it does not directly couple to

matter fields, Φ, and it does not explicitly affect the geodesics.

Similarly to dRGT theory, to make calculations simpler, one can take

the decoupling limit of the above action [398]. The Lagrangian in the

decoupling limit is derived by keeping the so-called decoupling scale,

Λ3 =
(
m2MPl

)1/3, constant, and letting MPl → ∞ and m → 0. We remind

the reader that taking this decoupling limit allows us to study all of the

degrees of freedom of the theory without needing to keep track of GR

non-linearities. Note that in our analysis we ignore the vector gravitational

degrees of freedom since these do not couple to matter. Interestingly, tak-

ing the decoupling limit of QDMG leads to a bi-Galileon theory of gravity,

i.e. the scalar gravitational field and the quasi-dilaton field both acquire a
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galilean symmetry [392].

The Lagrangian of the theory of interest (i.e in the decoupling limit)

then reads

LDL
QDMG = −1

4

(
hµνÊαβ

µν hαβ +
5

∑
n=2

cn

Λ3(n−2)
3

L(n)
Gal[π]− 2(α3 + 4α4)

Λ6
3

hµνX(3)
µν [Π]

)
−ω

2
(∂σ)2 +

1
2

σ
4

∑
n=1

(4 − n)αn − (n + 1)αn+1

Λ3(n−1)
3

Ln[Π]

+
1

2MPl
hµνTµν +

1
2MPl

πT − 2 + 3α3

4MPlΛ3
3

∂µπ∂νπTµν , (5.9)

where Λ3 is the decoupling scale (same as for dRGT), π is the gravitational

scalar degree of freedom and σ is the quasi-dilaton field as before. The

decoupling limit is valid for typical scales bigger than 1/m, where m is

the graviton mass, and in QDMG we expect this to be of the order of the

Hubble scale, m ≈ H0 [399]. Note that all of the fields have been canonically

normalised.

In the next section we explore two approaches that may constrain

quasi-dilaton massive gravity. We firstly estimate the decay probability of

helicity-2 to helicity-0 modes, and find that the decay width is too small to

leave a trace in the gravitational wave signal. We then investigate the effect

that QDMG could have on astrophysical scales, e.g. galaxies and clusters

of galaxies. In particular, we investigate whether we can constrain QDMG

and its parameters from rotation curves and gravitational lensing. We note

that a similar analysis has been done for beyond-Horndeski theories in

[400, 401] and more recently in [402].

5.3.2 Constraints from GW and astrophysical data

Depletion of the gravitational wave signal

One of the unsurprising consequences of working with a massive, instead

of a massless, theory of gravity is that the dispersion relation for gravi-

tational waves gets modified. The correction to the dispersion relation in
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QDMG looks similar to that in dRGT theory where the tensor mode ac-

quires a mass contribution that is of the order of the mass of the graviton

[403]. Current graviton mass bounds put an upper constraint on the mass,

m < 10−22 eV [404, 405].

Here we investigate the possibility of depletion of the GW signal due

to the decay of tensor modes to scalar ones. Our results agree with the

analysis in [406], where it was showed that higher derivative corrections in

the Horndeski effective field theory of dark energy are too small to modify

the GW signal. Working in the decoupling limit of QDMG, outside the

Vainsthein screening region, the Lagrangian reduces to that of linearised

massive gravity, since the waves mostly travel through vacuum [407]. Va-

lidity of the decoupling limit for GWs detected by Advanced LIGO and

Virgo is under debate, since the decoupling scale is close to the energies

observed by the mentioned detectors [408], and we will discuss more in

later sections. LISA, however, will probe scales that are well below the

decoupling scale, and therefore the use of the decoupling limit is not a

concern for this upcoming GW experiment. The relevant Lagrangian sim-

plifies to [390]

L =
1
2

hµνÊαβ
µν hαβ +

1
12

π□π − 1
2

m2(h2
µν − h2) +

1
12

m2πh +
1
6

m2π2. (5.10)

Corrections to the above expression might come from higher order interac-

tions in the decoupling limit. Generic interactions are of the form [390]

Lj,k,l = m2M2
Pl

(
h

MPl

)j(
∂A

mMPl

)2k(
∂2π

m2MPl

)l

. (5.11)

Constraints one should keep in mind are j+ 2k+ l > 2, with j,k, l ∈ N [390].

We set k = 0 for the remainder of the calculation, since we are not interested

in helicity-1 interactions, which leads to j + l > 2. The first interaction that

arises at Λ3 decoupling scale, h(∂2π)2, can be removed by field diagonali-
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sation. Therefore, the first correction term is of the form h(∂2π)3 or (∂2π)4.

We are exploring the possibility of depletion of the tensorial gravitational

waves by their decay into scalars, so we examine the first of the two terms.

This additional interaction appears in the Lagrangian as

L103 = m2M2
Pl

(
h

MPl

)(
∂2π

m2MPl

)3

=
1

m4M2
Pl

h(∂2π)3. (5.12)

Despite a 3-body decay of this type being dynamically forbidden, it is pos-

sible in the presence of a background. Since Λ3
3 = m2MPl, this term reduces

to L103 =
1

Λ6
3
h(∂2π)3. The vertex factor contribution to the amplitude is

gµν
103 = ηµν 1

Λ6
3

p2
1p2

2p2
3 =

1
Λ6

3
ηµν(m2

π)
3, (5.13)

where pis are the outgoing momenta of the scalar particles, and mπ is

the is the mass of the scalar degree of freedom. From (5.10), we see that

m2
π = 1

3 m2. The resulting amplitude squared is

∑
spins

|M|2 = 2

(
1

Λ6
3

m6
π

)2

=
2m12

π

m8M4
Pl

. (5.14)

The expression for the differential decay probability reads

dΓ =
(2π)4

2m ∑
spins

|M|2dΦ3(p; p1, p2, p3), (5.15)

where dΦ3(p; p1, p2, p3) is the phase space of a 1 → 3 body decay. We apply

the treatment of 3-body decay in the centre of mass frame of the decaying

particle found in the Particle Data Group Review [409]:

dΓ =
1

(2π)3
1

32m3 ∑
spins

|M|2dm2
12dm2

23, (5.16)

where m is the mass of the decaying particle and m2
ij = p2

ij = (pi + pj)
2 are
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combinations of masses and momenta of the new particles. Taking the

mass of the scalar to be of the order of the mass of the tensor 3, we find∫
dm2

12dm2
23 ≈ O(m4). Therefore

Γ ≈ 1
(2π)3

m5

M4
Pl

≈ 10−225eV. (5.17)

An order of magnitude estimate implies that a detailed calculation is not

worth pursuing. The decay width is too small to affect the signal. For

comparison, the decay width of the τ lepton is of the order ≈ 10−3 eV

[410]. We conclude that in QDMG there can be no observable depletion of

the GW signal due to the decay of the tensor mode into the scalar one.

Rotation Curves

In this section we move from GW signals to a regime that allows for as-

trophysical tests of quasi-dilaton massive gravity [399]. We are now in-

terested in manifestations of the theory on galactic scales. Quasi-dilaton

massive gravity exhibits Vainshtein screening, and within the Vainshtein

radius the scalar graviton degree of freedom is heavily suppressed [392]. It

has been suggested, however, that in beyond Horndeski theories, the Vain-

shtein screening is only partially effective when time-dependent cosmolog-

ical fields are considered [401]. One would expect a similar phenomenon

arising in QDMG. A promising direction of research is analysis of the shape

of the galaxy rotation curves. In the following, we first find the evolution

of the Bardeen potentials, and then compare the predictions of the theory

to data taken by SPARC [411]. Comparing the QDMG predictions to astro-

physical data, we set an upper limit to the graviton mass. As mentioned

earlier, we work in the decoupling limit of QDMG and use (5.9) as our

starting point.

3Reasonable assumption from (5.10).
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The FLRW metric in the longitudinal gauge reads

ds2 = a2(τ)
[
− (1 + 2Ψ(r,τ))dτ2 + (1 − 2Φ(r,τ))δijdxidxj

]
, (5.18)

with Ψ and Φ scalar perturbations defined as the usual Bardeen potentials.

We are concerned with equations of motion of the two Bardeen potentials,

as well as of the two galileons. We split π and σ respectively into a back-

ground cosmological value and its perturbation: π(r, t) = π0(t) + ϕ(r, t)

and σ(r, t) = σ0(t) + λ(r, t). For the rest of this work, we work on small

time scales where we neglect expansion; we ignore a(t), H(t) and time

derivatives of all fields, focusing on the effects coming solely from π and

σ, not from the FLRW metric. Because of this, it is also appropriate to use

the decoupling limit of QDMG from (5.9). Furthermore, we consider only

terms up to the cubic galileon [412]. Higher-order terms containing the

fields or their first derivatives are also neglected. Varying the action with

respect to the perturbations we then obtain 4 equations in the presence of

a non-relativistic source, Tµν = diag(ρ,0,0,0), given by:

2∇2Φ − α3 + 4α4

Λ6
3

[(∇2ϕ)3 − 3∇2ϕ(∇i∇jϕ)(∇i∇jϕ)

+ 2(∇i∇jϕ)(∇j∇kϕ)(∇k∇iϕ)] =
1

MPl
ρ , (5.19)

∇2(Ψ − Φ) = 0, (5.20)

ω∇2λ − 6∇2ϕ +
2 − 3α3

Λ3
3

[(∇2ϕ)2 − (∇i∇jϕ)(∇i∇jϕ)] +
α3 − 4α4

2Λ6
3

[(∇2ϕ)3 − 3∇2ϕ(∇i∇jϕ)(∇i∇jϕ) + 2(∇i∇jϕ)(∇j∇kϕ)(∇k∇iϕ)] = 0,
(5.21)
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3
2
∇2ϕ +

3
4
(2 + 3α3)

Λ3
3

[(∇2ϕ)2 − (∇i∇jϕ)(∇i∇jϕ)]− 3(α3 + 4α4)

Λ6
3

[(∇2Ψ)(∇2ϕ)2 − (∇2Ψ)(∇i∇jϕ)(∇i∇jϕ)− 2(∇2ϕ)(∇i∇jϕ)(∇i∇jΨ)

+2(∇i∇jΨ)(∇j∇kϕ)(∇k∇iϕ)]− 6∇2λ +
2(2 − 3α3)

Λ3
3

[(∇2λ)(∇2ϕ)

−(∇i∇jλ)(∇i∇jϕ)] +
3(α3 − 4α4)

2Λ6
3

[(∇2λ)(∇2ϕ)2 − (∇2λ)(∇i∇jϕ)(∇i∇jϕ)

−2(∇2ϕ)(∇i∇jϕ)(∇i∇jλ) + 2(∇i∇jλ)(∇j∇kϕ)(∇k∇iϕ)] =
ρ

2MPl
.

(5.22)

It is straight-forward to notice that the typical Poisson’s equation for

the Bardeen potential Φ is altered by the presence of the scalar mode shown

in (5.19). Interestingly, however, the Laplace’s equation (5.20) remains the

same as in the GR case, with Ψ = Φ. Already at the level of the equations of

motion, we can deduce that gravitational lensing tests are not an appropri-

ate means of constraining this theory, since the quantity that we probe with

lensing, Φ+Ψ
2Φ = 1 is indistinguishable from the exact same GR prediction.

Assuming spherical symmetry, integrating the above expressions by

parts and using variables

x ≡ ϕ′

r
, y ≡ Ψ′

r
, z ≡ Φ′

r
, A ≡ M(r)

8πMPlr3 , q ≡ λ′

r
, (5.23)

where the primes denote radial derivatives, we obtain the following set of

simultaneous equations:

z − α3 + 4α4

Λ6
3

x3 = A, (5.24)

y − z = 0, (5.25)

ωq − 6x +
2(2 − 3α3)

Λ3
3

x2 +
α3 − 4α4

Λ6
3

x3 = 0, (5.26)
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3
2 x + 3(2+3α3)

2Λ3
3

x2 − 6(α3+4α4)

Λ6
3

x2y − 6q

+4(2−3α3)

Λ3
3

qx + 3(α3−4α4)

Λ6
3

x2q = A. (5.27)

Combining the first three coupled equations and plugging into (5.27) gives

a quintic for x, for which we give the full expression in Appendix F.2.

Taking the quintic term to be the dominant one, we can approximate

− 3
Λ12

3

[
2(α3 + 4α4)

2 +
1
ω
(α3 − 4α4)

2

]
x5 = A. (5.28)

We use this equation to find the form of x, which will then provide a

prediction for the shape of rotation curves.

The velocity of objects within the galaxy undergoing circular motion is

v2

r
=

∂Ψ
∂r

, (5.29)

which in terms of our new variables reads

v2 = r2y. (5.30)

Most of galaxy’s mass is in its dark matter halo, and in this work we assume

it to obey the Navarro-Frenk-White (NFW) profile [413]:

ρNFW =
ρs

r
rs

(
1 + r

rs

)2 , (5.31)

with rs and ρs as the typical halo parameters.

Using (5.24), (5.25) and (5.28), and assuming an NFW distribution, we
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get the following equation for the dark matter velocity profile

v2
dm = 4πGr2

s ρs

{
1
R

(
ln (1 + R)−

(
1 + 1

R

)−1
)

−γ R
1
5

(
ln (1 + R)−

(
1 + 1

R

)−1
) 3

5
}

, (5.32)

where R = r/rs, with

γ =
(
4πGρs

)− 2
5 m

4
5

α3 + 4α4

[6(α3 + 4α4)2 + 3
ω (α3 − 4α4)2]

3
5

. (5.33)

We can constrain the γ parameter by fitting the theoretical predictions to

the rotation curves data. We use best-fit values of ω and α coefficients from

[399]. Since γ is a function of m, by constraining γ we can put an upper

limit on the graviton mass.

We use the data from the SPARC galaxy catalogue [411] to reconstruct

rotation curves. The observed speed is not only due to the dark matter

present, but there are gas, disk and bulge (if applicable) contributions too:

v2(r) = v2
gas(r) + Υdisk v2

disk(r) + Υbulge v2
bulge(r) + v2

dm(r), (5.34)

where Υ is the stellar-to-mass ratio. We must subtract all the matter con-

tributions from the data to obtain vdm, and then compare against our pre-

dictions. We use Υdisk,Υbulge,rs and ρs values from Table 4 in [414]. Our

results could be refined with a Monte Carlo Markov Chain simulation [415]

to find posterior best-fit values of all the parameters: in this case the NFW

parameters and the γ parameter from QDMG, as well as Υdisk and Υbulge.

All of the galaxies in the SPARC catalogue are characterised by a quan-

tity, Q, which refers to the quality of the galaxy’s rotation curve. We con-

sider galaxies with Q = 1, in other words galaxies with the best quality

rotation curves. We also choose carefully high mass and high luminosity

galaxies because the NFW profile provides the best fit for those types of



5.3. Quasi-dilaton massive gravity 160

galaxies [415]. On a single plot (see for instance the case of two representa-

tive galaxies in Figure 5.1) we compare the NFW profile in the GR case and

the corresponding one in the QDMG case fit for the data. The galaxies that

we take show consistency in the value of γ that fits the dark matter galaxy

profile (5.32) to data. The constraint placed on the graviton mass from this

is

m ≤ 10−31 eV. (5.35)

This bound satisfies all constraints hitherto imposed on the mass of the

graviton from Advanced LIGO/Virgo and Solar System tests [416]. Typ-

ically, massive gravity theories are motivated with the aim of explaining

the origin of Dark Energy, and indeed values of m of the order of Hubble,

m ≈ 10−33 eV, can accomplish this [385]. Our constraint does not disqualify

such a statement, neither does it rule out massive gravity as a proposal for

explaining the late-time accelerated expansion of the Universe. However,

one may wonder whether one can come up with an astrophysical test that

could falsify massive gravity. In other words, could such a tiny mass be

ever detected? The most promising constraints we can hope to probe in

the upcoming decades will be through LISA when we will be able to de-

tect masses up to 10−25 eV [416]. At present, we do not see a way for the

constraint derived in (5.35) to be tested with GW data.

However, one should keep in mind that our result comes with sub-

tleties and caveats. Along the way, we made numerous approximations:

we decided to take (scientifically motivated) limits of QDMG that allowed

us to proceed with our analytical analysis. These approximations included

going only up to the cubic galileon in the decoupling limit, as well as set-

ting the background values of the scalar fields π0 and σ0 to 0. We anticipate

opportunities for future work within going beyond these approximations.
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Figure 5.1: Dark Matter contribution to rotation curves, GR case and QDMG
case, for 2 galaxies in the SPARC catalogue, NGC7814 (top panel) and
NGC5005 (bottom panel). In the limit m = 0, the QDMG fit coincides
with the GR fit. We have investigated what maximum graviton mass
still keeps the theoretical QDMG fit within the error bars of the data.

Discussion

We have looked for ways to lift the mathematical success of dRGT theory

to a phenomenological level. The lack of stable cosmological solutions in

massive gravity led us to extend the theory by adding a quasi-dilaton field,

leading to quasi-dilaton massive gravity. Having resorted to this theory,

we found a promising direction of study in analysing rotation curves of

galaxies. The new scalar degrees of freedom in QDMG affect equations

of motion of the dark matter within the galaxies and they are expected to

alter the dark matter halo profile. The extent to which the dark matter

profile can change is constrained by rotation curves data. We combine the
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observations collected in the SPARC database with our theoretical predic-

tion. In order for QDMG to agree with the data, the graviton mass must be

m ≤ 10−31 eV. This result does not contradict any previous bounds on the

mass of the graviton, and leaves massive gravity as a viable dark energy

candidate theory.

We finalise this chapter with a discussion on frequency-dependent GW

speed. In probing GW speed and studying modified gravity theories with

the LISA detector, we argue there may be a new, independent, method for

redshift mapping of sources.

5.4 LISA probe of gravitational-wave speed
The constraint from GW170817 [417, 418, 419, 420] is widely considered

a major challenge to extended gravity theories predicting a non-standard

GW propagation speed. However, it can also inform discussions on proper-

ties required for these gravity models to possess a healthy UV completion.

This is the viewpoint of [408], which added a degree of subtlety to the

interpretation of the data that has not yet been considered widely in the lit-

erature (though see e.g. [421] for further theoretical work on the topic). In

[408], compelling arguments and examples are presented suggesting that

the speed of propagation of GWs may vary as a function of the energy

scale. The starting point is the observation that at low energies, most the-

ories spontaneously break Lorentz invariance through a time-dependent

vacuum expectation value of an additional field(s). Such a time-dependent

vacuum expectation value is essential for driving cosmic acceleration, but

it usually leads to a tensor speed cT < 1 due to non-minimal couplings be-

tween extra fields and gravity. Explicit examples of this phenomenon arise

in the context of Horndeski theories and their extensions, Beyond Horn-

deski or DHOST [422, 423, 424, 425, 426, 427, 428].

On the other hand, if the UV completion of an extended gravity the-

ory is required to be Lorentz invariant (as is usually the case), then nec-
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essarily the graviton speed becomes luminal at high energies. The tran-

sition between non-luminal and luminal speed is likely to occur well be-

fore (or at most, around) the strong-coupling scale of the theory, which

for Horndeski-like theories is typically Λ3 = (MPl H2
0)

1/3 ∼ 260 Hz. This

is within the frequency band of ground-based GW detectors: as a conse-

quence, ground measurements might correspond to the frequency range

for which the Lorentz invariance of the theory has already enforced lu-

minal propagation speed. At lower frequencies, for example in the LISA

frequency band (∼ 10−5 − 10−1 Hz), the speed of GWs may instead be

different from one.

The relation between frequencies at source ( fs) and at detection ( fo),

which scale as the inverse of time differences ( f ∼ 1/∆t), reads

fo

cT( fo)
=

fs

(1 + z) cT( fs)
, (5.36)

where z is the redshift of the source. Notice that, in the frequency regimes

where cT( f ) is frequency-independent, we find

fs = (1 + z) fo, (5.37)

which is the standard relation connecting frequencies at emission and at de-

tection. In general, however, a frequency-dependent GW velocity requires

to generalise (5.37) to (5.36).

It is convenient to define a dimensionless quantity ∆ that measures the

deviation from the standard relation (5.37) for GWs propagating through

cosmological distances:

∆ =
fs − (1 + z) fo( fs,z)

fs
(5.38)

= 1 − cT( fo)

cT( fs)
. (5.39)

The quantity ∆ can be expressed as function of fs, or of fo, depending on
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which is more convenient. A value ∆ ̸= 0 indicates that cT is a non-constant

function of frequency. In the following sections we study the spectrum of

∆ for a particular effective field theory cT Ansatz, before briefly looking at

how precise measurements of cT can help with redshift mapping of LISA

sources.

5.4.1 Theoretical motivations for the GW speed Ansatz

We are motivated by the arguments of [408]: suppose there exists a scalar

theory valid up to a strong coupling scale Λ, with new physics (e.g extra

degrees of freedom) entering at the scale M ≤ Λ. Let us assume a homoge-

neous scalar background ϕ0(t) that spontaneously breaks Lorentz invari-

ance, ϕ0(t) = α Λ t, parameterised with a constant parameter α (although it

may be mildly time-dependent, with |α̇/α| ≤ H). The spontaneous break-

ing of Lorentz invariance typically leads to a scalar speed different to that

of light. We consider for example the partial UV completion of (6) in [408].

It leads to a dispersion relation,

ω2 = k2 − α2 ω2M2

M2 − ω2 + k2 . (5.40)

The propagation speed is defined through the dispersion relation

ω2 = c2(t, k) k2. (5.41)

Therefore (5.40) leads to a scalar speed given by

c2
s (k) = 1 +

k2
⋆

k2 − k2
⋆

k2

√
1 + 2

(
1 − c2

0
) k2

k2
⋆

. (5.42)

Although motivated by scalar theories, we adopt this expression in the

tensor case for simplicity. Here

k⋆ =
M√
2 c0

; c2
0 =

1
1 + α2 . (5.43)
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Note that the function (5.42) has the properties

cs(k ≪ k⋆) = c0, (5.44)

cs(k ≫ k⋆) = 1, (5.45)

showing consistency with GR at large scales. Rewriting tensor speed in

(5.42) in terms of frequency ( f ≡ 2π k), one obtains

cT( f ) =

[
1 +

f 2
⋆

f 2 − f 2
⋆

f 2

√
1 + 2

(
1 − c2

0
) f 2

f 2
⋆

]1/2

. (5.46)

We can analytically compute the slope of the speed

nT( f ) ≡ d ln cT

d ln f
(5.47)

=
1 +

(
1 − c2

0
)

f 2/ f 2
⋆ −

√
1 + 2

(
1 − c2

0
)

f 2/ f 2
⋆√

1 + 2
(
1 − c2

0
)

f 2/ f 2
⋆

(
1 + f 2/ f 2

⋆ −
√

1 + 2
(
1 − c2

0
)

f 2/ f 2
⋆

) .

There exists an inflection point at

fin

f⋆
=

√√√√ c0

(√
2 + c0

)
1 − c2

0
, (5.48)

which is an increasing function of c0. At the inflection point the slope of

cT( f ) is maximal, resulting

nmax
T ( fin) =

(1 − c2
0)(

1 +
√

2 c0

)2 , (5.49)

which is a decreasing function of c0.

The parameterisation (5.46) is controlled by two free parameters:

a fiducial frequency f⋆ around which cT changes rapidly, and a low-

frequency speed c0 with 0 < c0 ≤ 1. Ansatz (5.46) is motivated by the

analysis in [408] of an UV completion of a scalar field theory, where the
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Figure 5.2: Plot of the effective field theory Ansatz for frequency-dependent cT( f ),
as given by (5.46).

scalar velocity depends on the energy, and smoothly (but rapidly) connects

from c0 to 1 as the energy increases. The transition from c0 to unity occurs

within a relatively small interval as the frequency increases (see Figure 5.2);

the width of the transition is not a free parameter and depends entirely on

c0.

5.4.2 Identifying source redshift with precise measure-

ments of GR deviations

A frequency profile for cT( f ) as (5.46) implies that all the frequency-

dependent effects occur in a relatively small frequency band centred

around f⋆.

One can easily compute numerically the function ∆( f ), introduced in

(5.39), which is the important quantity that controls the deviations from

GR. We plot ∆( f ) in Figure 5.3 for representative choices of parameters.

We notice that this function has a pronounced peak, whose maximal value

∆max depends on c0, but also on the redshift z at which the GW source event

occurs. To understand better how ∆( f ) evolves over the z − c0 parameter

space, we evaluate the amplitude and the position of the maximum of the

function for redshifts log-uniformly distributed from 0.1 to 10, and values

of c0 uniformly distributed between 0.1 and 0.9, see Figure 5.4. We see that

maximum deviation from GR occurs at frequencies of the order f⋆ and for
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Figure 5.3: Plot of ∆ for the EFT-inspired Ansatz, as defined in (5.39). Left panel:
z = 0.2; Right panel: z = 2.

small c0 and large z, as expected. We perform least squares polynomial fits

to obtain a simple phenomenological fit relating ∆max to c0 and z that is

valid up to large redshifts (z = 15):

∆max(c0, z) = (1.07 − 1.04 c0)

[
1 − 1

(1 + z)(1.07−0.84 c0)

]
. (5.50)

This relation suggests that if we were able to measure with good precision

deviations from GR induced by Ansatz (5.46), we might then be able to

extract independent information on the redshift of the source, which might

be helpful to build a Hubble diagram with GW sirens.

Recent work suggests that in a multiband scenario, e.g. with a merger

event detected during the inspiral by LISA and during the merger by ter-

restrial detectors, we will be able to place constraints between graviton

speed and speed of light to 1 part in 10−15 [429]. The two parameters f⋆

and c0 controlling the location and height of the transition (with c0 = 1 cor-

responding to the GR case) can indeed be constrained very well with LISA.

Forecasting LISA capabilities to measure these quantities, one finds that

both parameters influence considerably GW waveforms. We conclude that

for massive-black-hole binaries in specific mass ranges (with total binary

mass Mtot ∼ 105M⊙), the parameters f⋆ and c0 characterising Ansatz (5.46),

can be constrained to a fractional error of order percent level or better, with

respect to their fiducial values.
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Figure 5.4: Variation of maximum value of ∆ (left panel) and the position of
the maximum (right panel) with redshift and c0, for the EFT-inspired
Ansatz of (5.46).

5.5 Afterword
General relativity has indisputably helped us understand gravitational ef-

fects in the Universe over the last 100 years, in both weak-field and more

recently strong-field regimes. However, one cannot ignore its incomplete-

ness at the UV scale and its incompatibility with Quantum Mechanics. Ad-

ditionally, the dark energy and dark matter contents of the Universe are

added ad-hoc, and their origin remains uncertain. Various modified grav-

ity theories have been proposed to address these issues (for an extensive

review, see [430]). Note that some of the models presented in [430] have

since been constrained or ruled out completely by GW data, verifying once

again the richness of information we can extract from GWs.

In this chapter we constrained a promising class of theories, massive

gravity with an added quasi-dilaton field, with astrophysical data. We also

discussed an effective field theory approach to gravity, and we demon-

strated how one can use precision measurements with LISA as a novel and

independent way to perform redshift mapping of CBC sources. The quest

for a UV-complete theory of gravity that can explain dark energy and dark

matter continues.
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Conclusions

Throughout this thesis we have covered various aspects of the gravitational-

wave background: from detection methods, separation of sources to pa-

rameter estimation of physical models.

We presented the first careful treatment of correlated magnetic noise

when searching for the background with the current detector network. The

methods we developed for simultaneous estimation of correlated magnetic

noise and GWB were used in the LVK O3 isotropic search, and these have

now been integrated into the official collaboration pipeline, pygwb. The

magnetic coupling should continue being monitored and work should be

done to include any temporal variation in upcoming LVK observation runs.

In the case of the proposed 3G Einstein Telescope, we estimated the mag-

netic noise that could contaminate the signal. We placed upper limits on

the magnetic coupling functions of the detector that still allow it to achieve

its science goals. Once its site has been confirmed, it remains to perform

site-specific tests of magnetic noise sources.

Next we investigated source separation in 2G, 3G and space-based

GW detectors. Separating astrophysical and cosmological background will

prove difficult for current detectors, but with a network of Einstein Tele-

scope and Cosmic Explorer we could reveal cosmological signals using

CBC subtraction techniques. Source separation will rely heavily on the

quality of subtraction of individual sources, and significant improvements
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in this field are required. Furthermore, for LISA we applied a dictionary

learning method that successfully reconstructed mergers of massive black

holes in the presence of confusion noise due to the inspiral of millions of

white dwarf binaries in the Milky Way. The success of this method cer-

tainly invites for future work and may be useful in studying detection of

other GW sources.

The main aim of this thesis was to constrain physical models using

GWB data. The astrophysical background from unresolved merger events

is expected to be the dominant contribution to the GWB. We showed that

with 3G detectors we may be able to observe the astrophysical background

from the oldest, most distant pop III stars. Observing the background,

and its characteristic peak frequency, could tell us about the population’s

macroscopic properties such as average redshifted binary mass. One can go

further and study what the slope of the background reveals about the pop-

ulation, as well as consider attempts of disentangling the broken power law

spectrum from other viable sources such as first-order phase transitions.

Symmetry breaking in the early Universe as it cools down and expands

could have led to a first-order phase transition. Bubbles of true vacuum ex-

panding into the false vacuum and eventually colliding leave a trace in the

GWB. Symmetry breaking at energy scales inaccessible to particle collid-

ers would lead to a signal in the terrestrial GW detector frequency range,

e.g. Peccei-Quinn mechanism. We placed constraints on phase transition

parameters from the most recent LVK run. In the special case of a super-

cooled phase transitions, we placed direct limits on particle couplings’ of

two representative symmetry-breaking models. This analysis will continue

to be repeated with each subsequent LVK run, and it will probe increas-

ingly more parameter space of Beyond Standard Model theories.

A possible signature of a first-order phase transition may be hiding in

the polarisation of the GWB. Typically, the GWB is modelled under the as-

sumptions that it is unpolarised. However, turbulent motion of the plasma
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during the growth and collision of bubbles of true vacua may have a non-

zero chirality, which could in turn lead to a polarised GWB spectrum. We

search for signals of polarity in current GW data and consider how our

results would change with future detector upgrades. Once site locations

of next-generation detectors are selected, one will be able to estimate their

overlap reduction functions, which will allow for studies of parity violation

with 3G interferometers.

Finally we discuss modifications to GR, in search of a UV complete

theory of gravity. We present astrophysical constraints on quasidilaton

massive gravity arising from the rotation curves of galaxies. With LISA

space-based detector we will be able to perform precision measurements of

the speed of GWs. This could provide an independent and new avenue for

redshift mapping of sources, helping to put tighter bounds on the Hubble

constant. Work is also underway to combine multiband GW detections to

study modified gravity theories at different energy scales.

The future of gravitational-wave physics is bright. With the improve-

ment in detector sensitivity, we will continue to detect more coalescence

events, as well as start to see the background from the unresolved mergers.

Along with the advancements of data analysis and modelling, we will be

able to subtract individual CBCs and reduce the astrophysical foreground.

This is when we start to explore cosmological sources and probe the Uni-

verse beyond the surface of last scattering. With gravitational-wave data,

we will being to paint a clearer picture of the physics of the early Universe.



Appendix A

Correlated magnetic noise

A.1 Simulated magnetic noise properties
We use low noise magnetometers on-site at the Advanced LIGO and Ad-

vanced Virgo detectors and correlate them to deduce what γM
ij , defined

in (2.1), looks like. A discussion of the magnetometers and their locations

is given in [88]. We use the real part of complex coherence (RPCC), defined

as

γM
ij ( f ; t) = Re

 m̃∗
i ( f ; t)m̃j( f ; t)√

m̃∗
i ( f ; t)m̃i( f ; t)

√
m̃∗

j ( f ; t)m̃j( f ; t)

 (A.1)

where m̃i( f ; t) is the Fourier transform of the data from magnetometer i

starting at time t evaluated at frequency f . We calculate the numerator and

denominator of γM
ij ( f ; t) separately over 4 s segments and average them

separately over 1800 s of data to create an estimate of γM
ij ( f ; t) for that

1800 s chunk of data. We do this for each 1800 s chunk of data available

from from July 9, 2019 00:00 UTC – September 7 2019 00:00 UTC. We then

take a histogram at each frequency over all of the 1800 s measurements. A

heatmap of this histogram is shown in Figure A.1 for each possible detector

pair. For the simulations discussed in 2.2.3, we use the median over the

time chunks at each frequency, indicated by the white line in each panel in

Figure A.1. This is indicated by the white line in Figure A.1.
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Figure A.1: Color indicates histogram of RPCC of Hanford-Livingston for each
1800 s chunk of data available for 60 days. The median value of all
RPCC measurements taken at each frequency is shown in white.

The RPCC is not an exact measurement of γM
ij ( f ). It approximates this

value only insofar as the the “signal”, M( f ), dominates the noise in the

individual magnetometers. However, in the absence of a reliable analytic

calculation (which is available in the GW case, for example), it is a good

heuristic for capturing the sign and general shape of γM
ij ( f ).



Appendix B

pyGWB

The isotropic background searches in the first three LVK observing runs

have placed stringent constraints on the GWB amplitude. This was

achieved using a hybrid frequentist-Bayesian approach where one defines

a gaussian likelihood for N pairs of baselines,

p(ĈI J( fk)|Θ) ∝ exp

−1
2

N

∑
I J

∑
k

(
ĈI J( fk)− ΩM( fk|Θ)

σ2
I J( fk)

)2
 , (B.1)

with ΩM( fk|Θ) as the GWB model and Θ as its parameters. The likeli-

hood defined in Eq. (B.1) is used to Bayesian update the priors on model

parameters and output the posterior distributions of those parameters,

p(Θ|ĈI J( fk)) ∝ p(ĈI J( fk)|Θ) p(Θ). (B.2)

Until now, the GW strain was analysed and processed with stochastic.m

to give the data products ĈI J( fk) and σI J( fk), and a separate parameter esti-

mation analysis followed. In pygwb, for the first time, we include parameter

estimation as a part of the data handling and analysing process. The Pa-

rameter Estimation (PE) module implements Bayesian tools to search for a

GWB in the data. In particular, this module represents a simple and user-

friendly toolkit for any model builder to constrain their physical models

with GW data.
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The PE module is built on class inheritance, with GWBModel as the par-

ent class. The class attributes are a list of Baseline objects I J the user

wishes to include in the analysis, a label for the model in question, as well

as a list of polarisations. The last of the attributes is set to tensor unless

specified, giving the user the flexibility to change polarisation and explore

models that predict a scalar or vector polarisation of the GWB. The methods

of the parent class are functions shared between the different GWB mod-

els, e.g. the definition of likelihood in Eq. (B.1), as well as the definition

of noise likelihood (Eq. (B.1) with ΩM( fk|Θ) = 0). If the calibration_epsilon

attribute of the Baseline object is not set to 0, then the likelihoods include

calibration uncertainty corrections [431]. The parent class also includes so-

called abstract methods that must be defined in every child class, namely

a dictionary of the model parameters Θ, as well as the definition of the

model ΩM( fk|Θ).

Child classes in the PE module inherit attributes and methods of the

GWBModel class. Each child class represents a single GWB model, and com-

bined they form a catalogue of available GWB models to study with the

LVK data. The inheritance structure of the module makes it straightfor-

ward to expand the catalogue, allowing users of the pygwb package to add

their own ΩM( fk|Θ) models 1. The pygwb documentation contains infor-

mation on the existing models in the catalogue, with a description of the

parameters and the dependence of the background on the parameters [432].

The documentation also covers a tutorial to assist the user with running PE

on the data. Here we go through the example of searching for a power law

GWB in the data with the PowerLawModel class. To search for a power law

spectrum in the data,

ΩGW = Ωref

(
f

fref

)α

(B.3)

it is sufficient to run the following command lines.

1Any changes to the PE module must be reviewed and approved by the assigned mod-
ule lead via GitLab.
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1 kwargs_pl = {"baselines":[HL,HV,LV], "model_name":'PL', "fref":25}

2 model_pl = PowerLawModel(**kwargs_pl)

3 priors_pl = {'omega_ref': bilby.core.prior.LogUniform(1e-13, 1e-5,

4 '$\\Omega_{\\rm ref}$'),

5 'alpha': bilby.core.prior.Gaussian(0, 3.5, '$\\alpha$')}

6 pl=bilby.run_sampler(likelihood=model_pl, priors=priors_pl, sampler='dynesty',

7 npoints=1000, walks=10, npool=10, outdir='./pe/', label='pl', resume=False)

In Line 1 we create a dictionary of the attributes relating to the model

we would like to study. Note that in addition to the generic attributes

that should be set for any model, i.e. the list of baselines and model la-

bel, the user must define the reference frequency for the power law model

(B.3). Next, the PowerLawModel likelihood class is instantiated in Line

2. One more step before running parameter estimation is specifying the

prior distributions of the model parameters, see Lines 3 and 4. Finally

we let the Bilby sampler perform parameter estimation by specifying the

previously-defined likelihood and priors. The user has flexibility in choos-

ing the sampler as well as the sampler settings, which can be studied using

the extensive Bilby documentation.



Appendix C

Dictionary learning: optimal

hyperparameters

C.1 Optimal regularisation parameter
In theory there exists an optimal regularisation parameter λopt such that we

retrieve the best reconstruction of a CBC signal. For each signal in the test-

ing dataset, we vary λ ∈ [10−8,10−1] and reconstruct the CBC waveform.

The calculated overlap between the reconstructed signal and the injected

CBC, O, can be seen in Figure C.1. For all reconstructions with λ ≲ 10−3,

O plateaus. Some cases “dipped" to a minimum O before dramatically

increasing as λ increased. Regardless of the O behavior each CBC demon-

strated, the optimal regularisation parameter λopt took on a value between

10−3 and 10−2. This behavior was consistent over differing atom length d

and Galactic noise strength.

C.2 Optimal atom length
The length of the columns of the dictionary significantly impacts quality

of reconstruction. We fix λ = 10−3 and vary dictionary size d ∈ [22,27]

to find the value of atom length that results in best reconstruction of the

CBC signals. In Table C.1 we report the change in the sum of Os for all

50 individual testing samples as we alter the atom length. With this we
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Figure C.1: Optimal value of the regularisation parameter is between 10−3 and
10−2. For λ < 10−3 the O curve plateaus.

atom length, d ∑i (Oi)
4 14.3
8 10.2

16 6.65
32 5.65
64 6.95.

128 7.93

Table C.1: Variation in the total sum of overlaps as a function of atom length. The
optimal atom length that gives best reconstruction is dopt = 4.

identify the optimal atom length to be dopt = 4.



Appendix D

Pop III suplemental material

D.1 Residual background
To analytically calculate the residual background when individually de-

tected sources are removed, one typically multiplies the total merger rate

R(z;θ) by a factor 1 − ϵ(z,θ), where the efficiency ϵ(z,θ) is the probabil-

ity for a source at redshift z with parameters θ to be detected, integrated

over inclination, polarisation and position in the sky (see [433]). In our

analysis, however, the residual background catalogue is obtained by sub-

tracting all sources individually detected by the interferometer network.

For each source k we calculate the individual signal-to-noise ratio ρk as-

suming optimal-matched filtering and uncorrelated gaussian noise in the

detectors as follows:

(
ρk
)2

=
N

∑
I=1

4
∫ fi,max

fi,min

∣∣H̃k
∣∣2

PI( f )
d f , (D.1)

where

H̃k = F+,I( f ,Θk,ψk)h̃k
+( f ) + F×,I( f ,Θk,ψk)h̃k

×( f ), (D.2)

with F+,I and F×,I the antenna factors of detector I for polarisations + and

× that depend on source inclination Θk and position in the sky ψk, while

h̃k
+ and h̃k

× are the Fourier transforms of the gravitational waveforms of the

source k. PI( f ) is the one-sided power spectral noise density of detector
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Figure D.1: Varying-α PL fit to residual GWB spectrum of pop I+II+III from the
StarTrack simulation. We see that the α estimate is not 2/3 which
would be expected for pop I/II.

I. A residual catalogue is computed by removing all sources with ρk > 12.

Note that confusion noise, although an important issue for LISA due to the

presence of e.g. white dwarves, early inspirals of stellar-mass black holes

and monochromatic signals from supermassive black-hole binaries [151],

does not pose a problem for the frequency range of terrestrial detectors

that we consider. The SNR of individual compact binary sources above

5 Hz is not lowered due to overlapping signals, as was demonstrated in

[182].

D.2 Priors
All of the models for a population III signal have the same log-uniform

prior distribution for the gravitational-wave background amplitude rang-

ing between 10−13 and 10−5. As for the remaining parameters, we use
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• power law (PL): α =N (0,3.5),

• broken power law (BPL): α1 = U(2/3,5/3),α2 = U(0,−8), fpeak =

U(10,100),

• smooth BPL: α1 = U(2/3,5/3), α2 = U(0,−8), f∗ = U(10,100),∆ =

U(0,10),

• triple BPL: α1 = U(2/3,5/3), α2 = U(0,−8),α3 = δ(2/3), f 1
peak =

U(10,100), f 2
peak = U(10,100).

Here U(a,b) denotes a Uniform distribution between a and b, and N (µ,σ)

is a normal distribution with mean µ and standard deviation σ. For models

with a break frequency we use a uniform prior for the first power law index

between 2/3 and 5/3, since this represents the inspiral/merger regime of

the compact binary coalescence. Triple BPL has the third spectral index

fixed to α3 = 2/3 since we expect the inspiral phase of population I/II

signal to dominate at higher frequencies. In Figure D.1 we show the corner

plot of the PL search, with strong support for α = −0.6.

D.3 Intrinsic mass distribution
We study the relation between peak frequency of population III GWB spec-

trum and the mass distribution of the sources. We fix the merger rate as a

function of redshift to be the one of StarTrack FS1 model. For total mass,

Mtot = m1 + m2 varying between 10 and 90 M⊙, we generate ΩGW spectra

and record the frequency at which the spectra are maximum. We then find

a best-fit curve for the data,

fpeak = f0

(
90M⊙
Mtot

)
Hz, (D.3)

with f0 = 12.8 Hz, see Figure D.2. However, changing the merger rate

to the one from [236], we find a different best fit curve, with f0 = 53.7

Hz, implying that the intrinsic mass may be difficult to extract from the
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Figure D.2: StarTrack merger rate evolved, equal-mass binaries. We find a re-
lationship between peak frequency and total intrinsic mass of the
merger. This is a model-dependent statement.

estimate of the spectrum peak. We find more promising results if we study

the redshifted total mass and its relation to peak frequency, as described in

the main text.

Finally, the estimated Mz
tot can be depicted as a curve in the redshift-

intrinsic total mass plane since Mz
tot = (1+ z)Mtot, see Figure D.3. Note that

we have included a 10% uncertainty error in matching of the ringdown and

the peak frequency for consistency with our findings in Table 2 of the main

text.

D.4 Merger rate uncertainties
There are important differences in modelling pop III mergers [233, 246,

247, 248]. In some extreme cases pop III stars have lower redshifts, hence

they would be more easily resolved individually and contribute less to the

background. When this contribution goes below the pop I/II residual, its

detection would not be straightforward. We use toy models close to ST to

derive the background obtained as we shift the merger rate peak by ∆z. The

new catalogs are built using the merger rates shown in Figure D.4, primary
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Figure D.3: Mz
tot = 1076M⊙ constraint shown in the Mtot-z plane, including 10%

error bars accounting for the uncertainty of the estimate of Mz
tot from

fpeak.

masses similar to those in ST and uniform distribution for the mass ratio.

Spins and eccentricities are neglected. We show in Figure D.5 the obtained

background for each toy population. Residual backgrounds for negative

∆z exhibit lower amplitude as compared to the fiducial model (∆z = 0)

due to the higher number of resolved binaries. The background obtained

with higher redshifts, exhibits bumps with higher amplitude followed by a

sharper decrease due to the absence of sources at low redshifts.

Figure D.4: Merger rates used to generate toy populations. The black line exhibits
the merger rate of ST.
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Figure D.5: Residual background obtained with toy populations close to ST
model. The different colors correspond to different merger rates
shown in Figure D.5. In grey we show the constraints for the resid-
ual detectability: for pop I/II in dashed line, and the PIC curve for
ET+2CE in dotted line.



Appendix E

Supercooled first-order phase

transition

E.1 Gravitational waves from supercooled phase

transitions
Several processes contribute to the GW signal from a supercooled FOPT.

Those include bubble collisions, sound waves, and turbulence, the last of

which will not be considered here, as it is generally subdominant [434, 191].

When calculating the contribution of bubble collisions to the GW signal, we

assume that, in the limit of large α, the fraction of the latent heat deposited

into the bubble front κbc ∼ 1, leading to [435, 171, 191]

h2Ωcoll( f ) ≈ (4.88×10−6) ( f / fbc)
2.8

1 + 2.8 ( f / fbc)
3.8

(
HRH

β

)2(100
g∗

)1
3

(E.1)

with the peak frequency fbc,

fbc ≈ (3.7 × 10−5 Hz)
( g∗

100

)1
6
(

β

HRH

)(
TRH

1 TeV

)
. (E.2)

When considering cases in which the released energy can efficiently trans-

fer to the plasma in the form of sound waves, we assume κsw ∼ 1, and the
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resulting spectrum is [172, 191]

h2Ωsw( f ) ≈ (1.86 × 10−5) ( f / fsw)
3[

1 + 0.75 ( f / fsw)
2
]7/2

(
HRH

β

)(
100
g∗

) 1
3

, (E.3)

where the peak frequency, fsw, is

fsw ≈ (1.9 × 10−4 Hz)
( g∗

100

) 1
6
(

β

HRH

)(
TRH

1 TeV

)
. (E.4)

Implicit in this spectrum is an infinite sound wave lifetime, τsw. Note that

this is a good approximation only if turbulence and other damping pro-

cesses are ignored, which is what we assume in this study 1. Furthermore,

in the supercooling limit, the α dependence vanishes from the spectra 2.

In the following we will consider the cases of bubble collision or of

sound waves separately, assuming that one of the two mechanisms domi-

nates the GW generation during the FOPT.

E.2 Constraints on supercooled phase transitions

using LVK data
To place constraints on model parameters using public data from LVK’s

third observing run O3 [331], we apply a Bayesian search following the

methodology of [332]. Although a search for FOPT signals was already

performed in [332], we now apply this search under the assumption that

the signal comes from a supercooled phase transition. This allows for

a simplification of the GW spectra, and therefore, less parameters in the

Bayesian inference search, resulting in an increased ease of reusability of

1The finite sound wave lifetime, τsw, results in a multiplicative factor that is a function
of τsw and the expansion rate of the Universe when the sound waves were active [305, 301].
Currently, the value of τsw remains highly uncertain, though an analytical estimate is
usually adopted in the literature. Since this effect is simply an extra overall factor, it could
be taken as an additional parameter in the Bayesian inference.

2The GW spectra in [435, 434, 171, 172, 191] are simulated for FOPTs not exhibiting
large supercooling. In our analysis we assume that those results can be extrapolated to
the region of large α.



E.2. Constraints on supercooled phase transitions using LVK data 187

the obtained upper limits.

Below, two approaches will be explored parameterising the GW back-

ground signal as a broken power law and using the spectra provided in the

previous section (see Eqs. (E.1) and (E.3)). In both cases, the contribution

from the astrophysical background, i.e., from unresolved compact binary

coalescences (CBCs), will be taken into account as well. This background

is expected to follow a power law

ΩCBC( f ) = Ωref

(
f

fref

)2/3

, (E.5)

where fref is a reference frequency taken, as usual, set to fref = 25 Hz [331].

It is worth noting that the constraints obtained in this section are general

and can be applied to any model exhibiting supercooling to constrain the

underlying physical parameters.

E.2.1 General broken power law search

To constraint a GW background from FOPTs, we model the GW spectrum

by a broken power law as

Ωbpl( f ) = Ω∗
( f

f∗

)n1

[
1 +

( f
f∗

)∆
](n2−n1)/∆

, (E.6)

where n1 and n2, respectively, denote the spectral indices before and after

the peak, ∆ is a peak smoothing parameter, and Ω∗ and f∗ can be related

to the peak amplitude and peak frequency of the spectrum. Note that the

spectra introduced in Eqs. (E.1), (E.3), follow a broken power law with pa-

rameters n1 = 3, n2 = −1, ∆ = 4 and n1 = 3, n2 = −4, ∆ = 2 for bubble

collisions and sound waves, respectively. We perform a parameter esti-

mation search for both contributions separately, corresponding to the case

where one of them dominates the GW spectrum. In each case, the values

of n1, n2, and ∆ are set to the relevant values of that contribution, as given

above. Note that in [332], n2 was allowed to vary.
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Figure E.1: Constraints from LVK O3 data on the broken power law parameters
of a FOPT signal, together with the contribution from the CBC back-
ground, assuming dominant bubble collision spectrum (top) and a
dominant sound waves spectrum (bottom).

The likelihood to perform this search is given by Eq. (3.4), where

ΩGW = ΩCBC + Ωbpl. The GW parameters to be constrained are θGW =

(Ωref, Ω∗, f∗) with priors given in Table E.1 and results shown in Fig-

ure E.1 for bubble collisions (top panel) and sound waves (bottom panel).

From the posteriors of the amplitude of the CBC background, Ωref, upper

limits (ULs) at 95% confidence level (CL) are obtained. The value for the

case in which bubble collisions dominate is 5.60 × 10−9, which is consis-
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Broken power law Phenomenological
Ωref LogU[10−10,

10−7]
Ωref LogU[10−10,

10−7]
Ω∗ LogU[10−9,

10−4]
β/HRH LogU[1,103]

f∗ LogU[10−2, 103] TRH LogU[105,1010]

Table E.1: Summary of the priors used for parameter estimation for the bro-
ken power law model search and the phenomenological model search,
where LogU stands for a log-uniform prior. The narrow prior on Ωref
stems from estimates of the CBC background [330]. The peak frequency
is chosen such that it lies in the region of highest sensitivity in LIGO-
Virgo. Values lower than 1 for fi/HRH are not considered, since other-
wise the phase transition would not take place.

tent with the upper limit obtained in [331, 332]. The UL in the case when

sound waves dominate is also consistent with previous searches, with a

value 5.70 × 10−9. Similarly, 95% confidence level contours are obtained

on the amplitude and peak frequency of the contribution from FOPTs,

Ω∗ and f∗, as depicted in Figure E.1. The values of the Bayes factor are

logBCBC+BC
noise =−1.26 and logBCBC+SW

noise =−0.80, showing no evidence for a

FOPT signal in the data.

E.2.2 Phenomenological search

We now proceed with a different model assumption. Instead of the general

broken power law model used above, we consider the GW spectra intro-

duced in Section E.1, more specifically Eqs. (E.1) and (E.3), corresponding

to bubble collisions and sound waves, respectively. The likelihood used

to perform this search is given by Eq. (3.4), with ΩGW = ΩCBC + Ωcoll

and ΩGW = ΩCBC + Ωsw for bubble collisions and sounds waves, respec-

tively. Therefore, the GW parameters to be constrained in this search are

θGW = (Ωref, β/HRH, TRH). We again highlight the difference with the

search conducted in [332], where the α parameter was included. As dis-

cussed earlier, for supercooled FOPTs, for which α ≫ 1, neglecting this

parameter is a valid assumption. The priors on the parameters used for

parameter estimation are given in Table E.1, and the resulting posterior
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Figure E.2: Constraints from LVK O3 data on the phenomenological parameters
β/HRH and TRH of a supercooled FOPT signal, together with the con-
tribution from the CBC background, assuming a dominant bubble col-
lision spectrum (top) and a dominant sound waves spectrum (bottom).

distributions are presented in Figure E.2. From the posteriors of the am-

plitude of the CBC background, Ωref, ULs at 95% CL are obtained. The

value for the case in which bubble collisions or sound waves dominate is

5.89 × 10−9 and 5.93 × 10−9, respectively. They are consistent with the up-

per limit obtained in [331, 332]. Furthermore, exclusions at 95% CL for

temperatures TRH and inverse duration of the FOPT β/HRH are depicted

in Figure E.2.
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Let us emphasise that the constraints derived above can be used in

any model exhibiting supercooling. More precisely, once a model and its

parameters are specified, one can compute the expected FOPT parameters

β/HRH and TRH (or equivalently Ω∗ and f∗) and compare them with the

95% confidence UL provided here. In this way, one uses GW data to ex-

clude regions of the parameter space in concrete particle physics models.

We will illustrate this in the next section for two particle physics models.

E.3 Comparison of constraints on particle physics

couplings
Let us now compare the exclusion regions obtained directly on the param-

eters of the models in Section 4.3.4 and the ones deduced from the analysis

in E.2. Given a parameter choice for (mZ′ , g) or (F,λ), one can verify

whether the corresponding (β/HRH, TRH) or ( f∗,Ω∗) are excluded using

the search analysis in E.2. The exclusion region comparison is shown in

Figure E.3. Good agreement is found between the various exclusion re-

gions, regardless of the search performed. This illustrates the reusability of

the results obtained in E.2 to constrain any supercooled FOPT at a particle

physics model level.
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Figure E.3: Comparison of the constraints on the parameter space (mZ′ , g) for
Model I (top panel) and on (λ, F) for Model II (bottom panel) obtained
by constraining the model parameters directly as in Figure 4.8 (blue
line), with those obtained by adopting the BPL model as given in Fig-
ure E.1 (gray line), and those adopting the phenomenological model
in Figure E.2 (red line).



Appendix F

Quasidilaton massive gravity

F.1 QDMG Lagrangian in the decoupling limit
We write below all terms in the Lagrangian of quasi-dilaton massive gravity

in the decoupling limit,

LDL
QDMG = −1

4

(
hµνÊαβ

µν hαβ +
5

∑
n=2

cn

Λ3(n−2)
3

L(n)
Gal[π]− 2(α3 + 4α4)

Λ6
3

hµνX(3)
µν [Π]

)
−ω

2
(∂σ)2 +

1
2

σ
4

∑
n=1

(4 − n)αn − (n + 1)αn+1

Λ3(n−1)
3

Ln[Π]

+
1

2MPl
hµνTµν +

1
2MPl

πT − 2 + 3α3

4MPlΛ3
3

∂µπ∂νπTµν.

(F.1)

The galileon Lagrangians are defined below:

L(2)
Gal[π] = (∂π)2, (F.2)

L(3)
Gal[π] = (∂π)2□π, (F.3)

L(4)
Gal[π] = (∂π)2

(
(□π)2 −∇µ∇νπ∇µ∇νπ

)
, (F.4)
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L(5)
Gal[π] = (∂π)2

(
(□π)3 − 3□π∇µ∇νπ∇µ∇νπ

+2∇µ∇νπ∇ν∇λπ∇λ∇µπ
)

.
(F.5)

Next, we define X(3)
µν as

X(3)
µν =

(
[Π]3 − 3[Π][Π2] + 2[Π3]

)
ηµν

−3
(
[Π]2Πµν − 2[Π]Π2

µν − [Π2]Πµν + 2Π3
µν

)
,

(F.6)

where Πµν = ∂µ∂νπ. Finally, we explicitly write out the expressions for

Ln[Π]:

L1[Π] = 3![Π], (F.7)

L2[Π] = 2
(
[Π]2 − [Π2]

)
, (F.8)

L3[Π] = [Π]3 − 3[Π][Π2] + 2[Π3]. (F.9)

F.2 Equation for x
We expand and show in full detail the equation for x = ϕ′

r :

[
3
2
− 36

ω

]
x +

3
Λ3

3

[
2 + 3α3

2
+

12(2 − 3α3)

ω
− 2(α3 + 4α4)

Λ3
3

A

]
x2

+
8

Λ6
3

[
3(α3 − 4α4)− (2 − 3α3)

2

ω

]
x3 − 10

Λ9
3

[
(2 − 3α3)(α3 − 4α4)

ω

]
x4

− 3
Λ12

3

[
2(α3 + 4α4)

2 +
1
ω
(α3 − 4α4)

2

]
x5 = A

(F.10)



Bibliography

[1] B. P. Abbott et al. Observation of Gravitational Waves from a Binary

Black Hole Merger. Phys. Rev. Lett., 116(6):061102, 2016.

[2] J. Aasi et al. Advanced LIGO. Class. Quant. Grav., 32:074001, 2015.

[3] Emanuele Berti, Kent Yagi, and Nicolás Yunes. Extreme Gravity

Tests with Gravitational Waves from Compact Binary Coalescences:

(I) Inspiral-Merger. Gen. Rel. Grav., 50(4):46, 2018.

[4] Emanuele Berti, Kent Yagi, Huan Yang, and Nicolás Yunes. Extreme

Gravity Tests with Gravitational Waves from Compact Binary Coa-

lescences: (II) Ringdown. Gen. Rel. Grav., 50(5):49, 2018.

[5] R. Abbott et al. The population of merging compact binaries inferred

using gravitational waves through GWTC-3. 11 2021.

[6] F. Acernese et al. Advanced Virgo: a second-generation interfero-

metric gravitational wave detector. Class. Quant. Grav., 32(2):024001,

2015.

[7] B. P. Abbott et al. GWTC-1: A Gravitational-Wave Transient Catalog

of Compact Binary Mergers Observed by LIGO and Virgo during the

First and Second Observing Runs. Phys. Rev., X9(3):031040, 2019.

[8] https://gracedb.ligo.org/superevents/public/O3/.

[9] B.P. Abbott et al. GW190425: Observation of a Compact Binary Coa-

lescence with Total Mass ∼ 3.4M⊙. Astrophys. J. Lett., 892(1):L3, 2020.

https://gracedb.ligo.org/superevents/public/O3/


BIBLIOGRAPHY 196

[10] R. Abbott et al. GW190814: Gravitational waves from the coalescence

of a 23 solar mass black hole with a 2.6 solar mass compact object.

The Astrophysical Journal, 896(2):L44, jun 2020.

[11] R. Abbott et al. Observation of Gravitational Waves from Two Neu-

tron Star–Black Hole Coalescences. Astrophys. J. Lett., 915(1):L5, 2021.

[12] R. Abbott et al. GWTC-2: Compact Binary Coalescences Observed by

LIGO and Virgo During the First Half of the Third Observing Run.

Phys. Rev. X, 11:021053, 2021.

[13] R. Abbott et al. GWTC-2.1: Deep Extended Catalog of Compact Bi-

nary Coalescences Observed by LIGO and Virgo During the First

Half of the Third Observing Run. 8 2021.

[14] R. Abbott et al. GWTC-3: Compact Binary Coalescences Observed

by LIGO and Virgo During the Second Part of the Third Observing

Run. 11 2021.

[15] Eemeli Annala, Tyler Gorda, Aleksi Kurkela, and Aleksi Vuorinen.

Gravitational-wave constraints on the neutron-star-matter Equation

of State. Phys. Rev. Lett., 120(17):172703, 2018.

[16] N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters.

Astron. Astrophys., 641:A6, 2020. [Erratum: Astron.Astrophys. 652, C4

(2021)].

[17] Steven Weinberg. The quantum theory of fields. Vol. 2: Modern applica-

tions. Cambridge University Press, 2013.

[18] Ruth Durrer. The Cosmic Microwave Background. Cambridge Univer-

sity Press, Cambridge, 2008.

[19] Sean M. Carroll. Spacetime and Geometry. Cambridge University Press,

7 2019.



BIBLIOGRAPHY 197

[20] Robert M. Wald. General Relativity. Chicago Univ. Pr., Chicago, USA,

1984.

[21] Charles W. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. W.

H. Freeman, San Francisco, 1973.

[22] Nils Andersson et al. The Transient Gravitational-Wave Sky. Class.

Quant. Grav., 30:193002, 2013.

[23] Pierre Auclair et al. Probing the gravitational wave background from

cosmic strings with LISA. JCAP, 04:034, 2020.

[24] Rachel Jeannerot, Jonathan Rocher, and Mairi Sakellariadou. How

generic is cosmic string formation in supersymmetric grand unified

theories. Phys. Rev. D, 68:103514, Nov 2003.

[25] R. Abbott et al. Constraints on Cosmic Strings Using Data from

the Third Advanced LIGO–Virgo Observing Run. Phys. Rev. Lett.,

126(24):241102, 2021.

[26] R. Abbott et al. All-sky search for short gravitational-wave bursts in

the third Advanced LIGO and Advanced Virgo run. Phys. Rev. D,

104(12):122004, 2021.

[27] B. P. Abbott et al. Observation of Gravitational Waves from a Binary

Black Hole Merger. Phys. Rev. Lett., 116(6):061102, 2016.

[28] R. A. Hulse and J. H. Taylor. Discovery of a pulsar in a binary system.

Astrophys. J., 195:L51–L53, 1975.

[29] Joel M. Weisberg and Joseph H. Taylor. Relativistic binary pulsar

B1913+16: Thirty years of observations and analysis. ASP Conf. Ser.,

328:25, 2005.

[30] R. Abbott et al. Search for continuous gravitational waves from 20

accreting millisecond X-ray pulsars in O3 LIGO data. 9 2021.



BIBLIOGRAPHY 198

[31] R. Abbott et al. Narrowband searches for continuous and long-

duration transient gravitational waves from known pulsars in the

LIGO-Virgo third observing run. 12 2021.

[32] Benjamin P. Abbott et al. GW170817: Implications for the Stochastic

Gravitational-Wave Background from Compact Binary Coalescences.

Phys. Rev. Lett., 120(9):091101, 2018.

[33] Nelson Christensen. Stochastic Gravitational Wave Backgrounds.

Rept. Prog. Phys., 82(1):016903, 2019.

[34] B. P. Abbott et al. GW170814: A Three-Detector Observation of Grav-

itational Waves from a Binary Black Hole Coalescence. Phys. Rev.

Lett., 119(14):141101, 2017.

[35] Thomas Callister, A. Sylvia Biscoveanu, Nelson Christensen, Maxim-

iliano Isi, Andrew Matas, Olivier Minazzoli, Tania Regimbau, Mairi

Sakellariadou, Jay Tasson, and Eric Thrane. Polarization-based Tests

of Gravity with the Stochastic Gravitational-Wave Background. Phys.

Rev., X7(4):041058, 2017.

[36] Benjamin P. Abbott et al. Search for Tensor, Vector, and Scalar Polar-

izations in the Stochastic Gravitational-Wave Background. Phys. Rev.

Lett., 120(20):201102, 2018.

[37] Thomas Callister, Maya Fishbach, Daniel Holz, and Will Farr. Shouts

and Murmurs: Combining Individual Gravitational-Wave Sources

with the Stochastic Background to Measure the History of Binary

Black Hole Mergers. 3 2020.

[38] Joseph D. Romano and Neil J. Cornish. Detection methods for

stochastic gravitational-wave backgrounds: a unified treatment. Liv-

ing Rev. Rel., 20(1):2, 2017.



BIBLIOGRAPHY 199

[39] Albert Abraham Michelson and Edward Williams Morley. On the

Relative Motion of the Earth and the Luminiferous Ether. Am. J. Sci.,

34:333–345, 1887.

[40] Aidan F. Brooks et al. Overview of Advanced LIGO Adaptive Optics.

Appl. Opt., 55:8256, 2016.

[41] Michele Maggiore. Gravitational Waves. Vol. 1: Theory and Experiments.

Oxford Master Series in Physics. Oxford University Press, 2007.

[42] T. Akutsu et al. Construction of KAGRA: an Underground Gravita-

tional Wave Observatory. PTEP, 2018(1):013F01, 2018.

[43] H. Grote and D. H. Reitze. First-Generation Interferometric

Gravitational-Wave Detectors. In 46th Rencontres de Moriond on Grav-

itational Waves and Experimental Gravity, pages 5–18, Paris, France,

2011. Moriond.

[44] M Punturo et al. The einstein telescope: a third-generation gravita-

tional wave observatory. Classical and Quantum Gravity, 27:194002, 01

2010.

[45] David Reitze, Rana X Adhikari, Stefan Ballmer, Barry Barish, Lisa

Barsotti, GariLynn Billingsley, Duncan A. Brown, Yanbei Chen,

Dennis Coyne, Robert Eisenstein, Matthew Evans, Peter Fritschel,

Evan D. Hall, Albert Lazzarini, Geoffrey Lovelace, Jocelyn Read, B. S.

Sathyaprakash, David Shoemaker, Joshua Smith, Calum Torrie, Sal-

vatore Vitale, Rainer Weiss, Christopher Wipf, and Michael Zucker.

Cosmic explorer: The u.s. contribution to gravitational-wave astron-

omy beyond ligo, 2019.

[46] Pau Amaro-Seoane et al. Laser Interferometer Space Antenna. 2 2017.

[47] Evan D. Hall and Matthew Evans. Metrics for next-generation



BIBLIOGRAPHY 200

gravitational-wave detectors. Classical and Quantum Gravity,

36(22):225002, November 2019.

[48] Patrick M. Meyers, Katarina Martinovic, Nelson Christensen, and

Mairi Sakellariadou. Detecting a stochastic gravitational-wave back-

ground in the presence of correlated magnetic noise. Phys. Rev. D,

102(10):102005, 2020.

[49] Ssohrab Borhanian, Arnab Dhani, Anuradha Gupta, K. G. Arun, and

B. S. Sathyaprakash. Dark sirens to resolve the hubble-lemaître ten-

sion, 2020.

[50] Evan D. Hall and Matthew Evans. Metrics for next-generation

gravitational-wave detectors. Class. Quant. Grav., 36(22):225002, 2019.

[51] Matthew Evans et al. A Horizon Study for Cosmic Explorer: Science,

Observatories, and Community. 9 2021.

[52] L. Badurina et al. AION: An Atom Interferometer Observatory and

Network. JCAP, 05:011, 2020.

[53] Yousef Abou El-Neaj et al. AEDGE: Atomic Experiment for Dark

Matter and Gravity Exploration in Space. EPJ Quant. Technol., 7:6,

2020.

[54] Maura A. McLaughlin. The North American Nanohertz Observatory

for Gravitational Waves. Class. Quant. Grav., 30:224008, 2013.

[55] Pablo A. Rosado. Gravitational wave background from binary sys-

tems. Phys. Rev. D, 84:084004, 2011.

[56] Joseph D. Romano and Neil. J. Cornish. Detection methods for

stochastic gravitational-wave backgrounds: a unified treatment. Liv-

ing Reviews in Relativity, 20(1), Apr 2017.



BIBLIOGRAPHY 201

[57] David Alonso, Carlo R. Contaldi, Giulia Cusin, Pedro G. Ferreira, and

Arianna I. Renzini. Noise angular power spectrum of gravitational

wave background experiments. Phys. Rev. D, 101(12):124048, 2020.

[58] Arianna I. Renzini, Boris Goncharov, Alexander C. Jenkins, and

Pat M. Meyers. Stochastic Gravitational-Wave Backgrounds: Current

Detection Efforts and Future Prospects. Galaxies, 10(1):34, 2022.

[59] R. Abbott et al. Upper limits on the isotropic gravitational-wave back-

ground from Advanced LIGO and Advanced Virgo’s third observing

run. Phys. Rev. D, 104(2):022004, 2021.

[60] Nelson Christensen. Measuring the stochastic gravitational-radiation

background with laser-interferometric antennas. Phys. Rev. D,

46:5250–5266, Dec 1992.

[61] Chiara M. F. Mingarelli, Stephen R. Taylor, B. S. Sathyaprakash, and

Will M. Farr. Understanding Ωgw( f ) in Gravitational Wave Experi-

ments. arXiv e-prints, page arXiv:1911.09745, November 2019.

[62] N. Aghanim et al. Planck 2018 results. VIII. Gravitational lensing.

Astron. Astrophys., 641:A8, 2020.

[63] P. Ajith et al. Inspiral-merger-ringdown waveforms for black-hole

binaries with non-precessing spins. Phys. Rev. Lett., 106:241101, 2011.

[64] E. Vangioni, K. A. Olive, T. Prestegard, J. Silk, P. Petitjean, and

V. Mandic. The Impact of Star Formation and Gamma-Ray Burst

Rates at High Redshift on Cosmic Chemical Evolution and Reioniza-

tion. Mon. Not. Roy. Astron. Soc., 447:2575, 2015.

[65] R. Abbott et al. Population Properties of Compact Objects from the

Second LIGO-Virgo Gravitational-Wave Transient Catalog. Astrophys.

J. Lett., 913(1):L7, 2021.



BIBLIOGRAPHY 202

[66] W. O. Schumann. Über die strahlungslosen Eigenschwingun-

gen einer leitenden Kugel, die von einer Luftschicht und einer

Ionosphärenhülle umgeben ist. Zeitschrift Naturforschung Teil A,

7:149–154, February 1952.

[67] W. O. Schumann. Über die Dämpfung der elektromagnetischen

Eigenschwingungen des Systems Erde - Luft - Ionosphäre. Zeitschrift

Naturforschung Teil A, 7:250–252, March 1952.

[68] W. O. Schumann. Über die strahlungslosen Eigenschwingun-

gen einer leitenden Kugel, die von einer Luftschicht und einer

Ionosphärenhülle umgeben ist. Zeitschrift Naturforschung Teil A,

7(2):149–154, February 1952.

[69] W. O. Schumann and H. König. Über die Beobachtung von “atmo-

spherics” bei geringsten Frequenzen. Naturwissenschaften, 41(8):183–

184, January 1954.

[70] Colin Price. ELF Electromagnetic Waves from Lightning: The Schu-

mann Resonances. Atmosphere, 7(9):116, Sep 2016.

[71] Eric Thrane, Nelson Christensen, and Robert Schofield. Correlated

magnetic noise in global networks of gravitational-wave interferom-

eters: observations and implications. Phys. Rev., D87:123009, 2013.

[72] E. Thrane, N. Christensen, R. M. S. Schofield, and A. Effler. Corre-

lated noise in networks of gravitational-wave detectors: subtraction

and mitigation. Phys. Rev., D90(2):023013, 2014.

[73] Irene Fiori et al. The hunt for environmental noise in virgo during

the third observing run. Galaxies, 8(4), 2020.

[74] P Nguyen et al. Environmental noise in advanced LIGO detectors.

Classical and Quantum Gravity, 38(14):145001, jun 2021.



BIBLIOGRAPHY 203

[75] Yoshiaki Himemoto and Atsushi Taruya. Impact of correlated mag-

netic noise on the detection of stochastic gravitational waves: Es-

timation based on a simple analytical model. Physical Review D,

96(2):022004, Jul 2017.

[76] Yoshiaki Himemoto and Atsushi Taruya. Correlated magnetic noise

from anisotropic lightning sources and the detection of stochastic

gravitational waves. Physical Review D, 100(8):082001, Oct 2019.

[77] D.D. Sentman. Handbook of Atmospheric Electrodynamics, volume 1.

CRC Press, Boca Raton, 1995.

[78] Colin Price and Alexander Melnikov. Diurnal, seasonal and inter-

annual variations in the schumann resonance parameters. Journal

of Atmospheric and Solar-Terrestrial Physics, 66(13):1179 – 1185, 2004.

SPECIAL - Space Processes and Electrical Changes in Atmospheric L

ayers.

[79] Hongjuan Zhou, Haiyan Yu, Bingxia Cao, and Xiaolin Qiao. Diur-

nal and seasonal variations in the schumann resonance parameters

observed at chinese observatories. Journal of Atmospheric and Solar-

Terrestrial Physics, 98:86 – 96, 2013.

[80] Michael W. Coughlin et al. Subtraction of correlated noise in global

networks of gravitational-wave interferometers. Class. Quant. Grav.,

33(22):224003, 2016.

[81] Jennifer C. Driggers, Matthew Evans, Keenan Pepper, and Rana Ad-

hikari. Active noise cancellation in a suspended interferometer. Rev.

Sci. Instrum., 83:024501, 2012.

[82] M. Coughlin, J. Harms, D. C. Bowden, P. Meyers, V. C. Tsai,

V. Mandic, G. Pavlis, and T. Prestegard. Coherence-based approaches

for estimating the composition of the seismic wavefield. 11 2019.



BIBLIOGRAPHY 204

[83] Sukanta Bose, Bernard Hall, Nairwita Mazumder, Sanjeev Dhurand-

har, Anuradha Gupta, and Andrew Lundgren. Tackling excess noise

from bilinear and nonlinear couplings in gravitational-wave interfer-

ometers. J. Phys. Conf. Ser., 716(1):012007, 2016.

[84] Rich Ormiston, Tri Nguyen, Michael Coughlin, Rana X. Adhikari,

and Erik Katsavounidis. Noise Reduction in Gravitational-wave Data

via Deep Learning. Phys. Rev. Res., 2(3):033066, 2020.

[85] Thomas Callister, M.W. Coughlin, and J.B. Kanner. Gravitational-

wave Geodesy: A New Tool for Validating Detection of the Stochastic

Gravitational-wave Background. Astrophys. J. Lett., 869(2):L28, 2018.

[86] Kamiel Janssens, Thomas A. Callister, Nelson Christensen,

Michael W. Coughlin, Ioannis Michaloliakos, Jishnu Suresh, and Nick

van Remortel. Gravitational-Wave Geodesy: Defining False Alarm

Probabilities with Respect to Correlated Noise. 12 2021.

[87] B. P. Abbott et al. Search for the isotropic stochastic background

using data from Advanced LIGO’s second observing run. Physical

Review D, 100(6):061101, Sep 2019.

[88] Michael W. Coughlin et al. Measurement and subtraction of Schu-

mann resonances at gravitational-wave interferometers. Phys. Rev.,

D97(10):102007, 2018.

[89] https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=

39199.

[90] https://logbook.virgo-gw.eu/virgo/?r=40025.

[91] Giancarlo Cella, Carlo Nicola Colacino, Elena Cuoco, Angela Di Vir-

gilio, Tania Regimbau, Emma L. Robinson, and John T Whelan.

Prospects for stochastic background searches using Virgo and LSC

interferometers. Class. Quant. Grav., 24:S639–S648, 2007.

https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=39199
https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=39199
https://logbook.virgo-gw.eu/virgo/?r=40025


BIBLIOGRAPHY 205

[92] B. P. Abbott et al. Prospects for observing and localizing

gravitational-wave transients with Advanced LIGO, Advanced Virgo

and KAGRA. Living Reviews in Relativity, 21(1):3, April 2018.

[93] V. Mandic, E. Thrane, S. Giampanis, and T. Regimbau. Parameter

Estimation in Searches for the Stochastic Gravitational-Wave Back-

ground. Physical Review Letters, 109(17):171102, October 2012.

[94] W.R. Gilks, S. Richardson, and D.J. Spiegelhalter. Markov Chain Monte

Carlo in Practice, 1996.

[95] Nelson Christensen and Renate Meyer. Markov chain Monte Carlo

methods for Bayesian gravitational radiation data analysis. Phys. Rev.

D, 58:082001, Sep 1998.

[96] John Skilling. Nested sampling for general Bayesian computation.

Bayesian Anal., 1(4):833–859, 12 2006.

[97] John Veitch, Walter Del Pozzo, Cody, Matt Pitkin, and ed1d1a8d.

johnveitch/cpnest: Minor optimisation, July 2017.

[98] Gregory Ashton et al. BILBY: A user-friendly Bayesian inference li-

brary for gravitational-wave astronomy. Astrophys. J. Suppl., 241(2):27,

2019.

[99] Samantha R Cook, Andrew Gelman, and Donald B Rubin. Validation

of software for bayesian models using posterior quantiles. Journal of

Computational and Graphical Statistics, 15(3):675–692, 2006.

[100] Kara Merfeld et al. aLIGO LHO Logbook. https://alog.ligo-wa.

caltech.edu/aLOG/index.php?callRep=48212.

[101] M. Punturo et al. The Einstein Telescope: A third-generation gravita-

tional wave observatory. Class. Quant. Grav., 27:194002, 2010.

https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=48212
https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=48212


BIBLIOGRAPHY 206

[102] Florian Amann et al. Site-selection criteria for the Einstein Telescope.

Rev. Sci. Instrum., 91(9):9, 2020.

[103] Izabela Kowalska-Leszczynska et al. Globally coherent short du-

ration magnetic field transients and their effect on ground based

gravitational-wave detectors. Class. Quant. Grav., 34(7):074002, 2017.

[104] Matthew Ball, Robert Schofield, and Raymond Frey. Intersite Mag-

netic Signals from Lightning. Technical Report T2000634, LSC, 2020.

[105] S. Hild et al. Sensitivity Studies for Third-Generation Gravitational

Wave Observatories. Class. Quant. Grav., 28:094013, 2011.

[106] Nils Andersson et al. Einstein telescope design study: Vision docu-

ment. 2009.

[107] B. P. Abbott et al. Search for the isotropic stochastic background

using data from Advanced LIGO’s second observing run. Phys. Rev.,

D100(6):061101, 2019.

[108] Eric Thrane and Joseph D. Romano. Sensitivity curves for searches

for gravitational-wave backgrounds. Phys. Rev. D, 88(12):124032,

2013.

[109] L. Naticchioni et al. Characterization of the Sos Enattos site for the

Einstein Telescope. J. Phys. Conf. Ser., 1468(1):012242, 2020.

[110] Renato Romero. Radio waves below 22 khz.

[111] S. Atsuta, T. Ogawa, S. Yamaguchi, K. Hayama, A. Araya, N. Kanda,

O. Miyakawa, S. Miyoki, A. Nishizawa, K. Ono, Y. Saito, K. Somiya,

T. Uchiyama, M. Uyeshima, and K. Yano. Measurement of schumann

resonance at kamioka. Journal of Physics: Conference Series, 716:012020,

may 2016.



BIBLIOGRAPHY 207

[112] A Cirone, I Fiori, F Paoletti, M M Perez, A R Rodríguez, B L

Swinkels, A M Vazquez, G Gemme, and A Chincarini. Investigation

of magnetic noise in advanced virgo. Classical and Quantum Gravity,

36(22):225004, oct 2019.

[113] S Hild, S Chelkowski, A Freise, J Franc, N Morgado, R Flaminio, and

R DeSalvo. A xylophone configuration for a third-generation grav-

itational wave detector. Classical and Quantum Gravity, 27(1):015003,

dec 2009.

[114] Ashish Sharma and Jan Harms. Searching for cosmological

gravitational-wave backgrounds with third-generation detectors in

the presence of an astrophysical foreground. Phys. Rev. D, 102:063009,

Sep 2020.

[115] Michael W. Coughlin et al. Measurement and subtraction of Schu-

mann resonances at gravitational-wave interferometers. Phys. Rev. D,

97(10):102007, 2018.

[116] A. Cirone, A. Chincarini, M. Neri, S. Farinon, G. Gemme, I. Fiori,

F. Paoletti, E. Majorana, P. Puppo, P. Rapagnani, and et al. Magnetic

coupling to the advanced virgo payloads and its impact on the low

frequency sensitivity. Review of Scientific Instruments, 89(11):114501,

Nov 2018.

[117] D Davis, J S Areeda, et al. Classical and Quantum Gravity,

38(13):135014, jun 2021.

[118] P Nguyen. aLIGO LHO Logbook. 57672, 2021.

[119] Philippe Nguyen et al. aLIGO LHO Logbook. 49521, 2019.

[120] Dipongkar Talukder, Eric Thrane, Sukanta Bose, and Tania Regim-

bau. Measuring neutron-star ellipticity with measurements of

https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=57672
https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=49521


BIBLIOGRAPHY 208

the stochastic gravitational-wave background. Phys. Rev. D,

89(12):123008, 2014.

[121] R. Abbott et al. Gravitational-wave Constraints on the Equatorial

Ellipticity of Millisecond Pulsars. Astrophys. J. Lett., 902(1):L21, 2020.

[122] Michele Maggiore et al. Science Case for the Einstein Telescope.

JCAP, 03:050, 2020.

[123] Mohammad Amin Shoaie, Stefano Meroli, Simao Machado, and

Daniel Ricci. Evolution of optical fibre cabling components at cern:

Performance and technology trends analysis. Optical Fiber Technology,

42:69–74, 2018.

[124] Jan Harms and Ho Jung Paik. Newtonian-noise cancellation in full-

tensor gravitational-wave detectors. Phys. Rev. D, 92:022001, Jul 2015.

[125] F Badaracco and J Harms. Optimization of seismometer arrays for the

cancellation of newtonian noise from seismic body waves. Classical

and Quantum Gravity, 36(14):145006, jun 2019.

[126] Nelson Christensen. Stochastic gravitational wave backgrounds. Re-

ports on Progress in Physics, 82(1):016903, nov 2018.

[127] Bruce Allen. The Stochastic gravity wave background: Sources and

detection. In Relativistic gravitation and gravitational radiation. Pro-

ceedings, School of Physics, Les Houches, France, September 26-October

6, 1995, pages 373–417, 1996.

[128] Michele Maggiore. Stochastic backgrounds of gravitational waves.

ICTP Lect. Notes Ser., 3:397–414, 2001.

[129] Chiara Caprini and Daniel G. Figueroa. Cosmological Backgrounds

of Gravitational Waves. Class. Quant. Grav., 35(16):163001, 2018.



BIBLIOGRAPHY 209

[130] Tania Regimbau. The astrophysical gravitational wave stochastic

background. Res. Astron. Astrophys., 11:369–390, 2011.

[131] L. Boco, A. Lapi, S. Goswami, F. Perrotta, C. Baccigalupi, and

L. Danese. Merging Rates of Compact Binaries in Galaxies: Perspec-

tives for Gravitational Wave Detections. 7 2019.

[132] Xing-Jiang Zhu, Eric J. Howell, David G. Blair, and Zong-Hong Zhu.

On the gravitational wave background from compact binary coales-

cences in the band of ground-based interferometers. Mon. Not. Roy.

Astron. Soc., 431(1):882–899, 2013.

[133] Rory Smith and Eric Thrane. Optimal Search for an Astrophysical

Gravitational-Wave Background. Phys. Rev. X, 8(2):021019, 2018.

[134] Colm Talbot and Eric Thrane. Measuring the binary black hole mass

spectrum with an astrophysically motivated parameterization. Astro-

phys. J., 856(2):173, 2018.

[135] Jose J. Blanco-Pillado, Ken D. Olum, and Xavier Siemens. New limits

on cosmic strings from gravitational wave observation. Phys. Lett. B,

778:392–396, 2018.

[136] Christophe Ringeval and Teruaki Suyama. Stochastic gravitational

waves from cosmic string loops in scaling. JCAP, 12:027, 2017.

[137] Vitor Cardoso and Paolo Pani. Testing the nature of dark compact

objects: a status report. Living Rev. Rel., 22(1):4, 2019.

[138] Tania Regimbau and Jose Antonio de Freitas Pacheco. Gravitational

wave background from magnetars. Astron. Astrophys., 447:1, 2006.

[139] B.P. Abbott et al. An Upper Limit on the Stochastic Gravitational-

Wave Background of Cosmological Origin. Nature, 460:990, 2009.



BIBLIOGRAPHY 210

[140] M.C. Guzzetti, N. Bartolo, M. Liguori, and S. Matarrese. Gravita-

tional waves from inflation. Riv. Nuovo Cim., 39(9):399–495, 2016.

[141] Mark Hindmarsh, Stephan J. Huber, Kari Rummukainen, and

David J. Weir. Shape of the acoustic gravitational wave power spec-

trum from a first order phase transition. Phys. Rev. D, 96(10):103520,

2017. [Erratum: Phys.Rev.D 101, 089902 (2020)].

[142] Tania Regimbau and Scott A. Hughes. Gravitational-wave confusion

background from cosmological compact binaries: Implications for

future terrestrial detectors. Phys. Rev. D, 79:062002, 2009.

[143] T. Regimbau, M. Evans, N. Christensen, E. Katsavounidis,

B. Sathyaprakash, and S. Vitale. Digging deeper: Observing pri-

mordial gravitational waves below the binary black hole produced

stochastic background. Phys. Rev. Lett., 118(15):151105, 2017.

[144] Sylvia Biscoveanu, Colm Talbot, Eric Thrane, and Rory Smith. Mea-

suring the primordial gravitational-wave background in the presence

of astrophysical foregrounds. arXiv e-prints, 2020.

[145] Suvodip Mukherjee and Joseph Silk. Time-dependence of the astro-

physical stochastic gravitational wave background. Mon. Not. Roy.

Astron. Soc., 491(4):4690–4701, 2020.

[146] Surabhi Sachdev, Tania Regimbau, and B. S. Sathyaprakash. Sub-

tracting compact binary foreground sources to reveal primordial

gravitational-wave backgrounds. Phys. Rev. D, 102(2):024051, 2020.

[147] Haowen Zhong, Rich Ormiston, and Vuk Mandic. Detecting cos-

mological gravitational waves background after removal of compact

binary coalescences in future gravitational wave detectors. 9 2022.

[148] Matthew R. Adams and Neil J. Cornish. Detecting a stochastic grav-



BIBLIOGRAPHY 211

itational wave background in the presence of a galactic foreground

and instrument noise. Phys. Rev. D, 89:022001, Jan 2014.

[149] Mauro Pieroni and Enrico Barausse. Foreground cleaning and

template-free stochastic background extraction for LISA. JCAP,

07:021, 2020. [Erratum: JCAP 09, E01 (2020)].

[150] Guillaume Boileau, Nelson Christensen, Renate Meyer, and Neil J.

Cornish. Spectral separation of the stochastic gravitational-wave

background for LISA: Observing both cosmological and astrophysi-

cal backgrounds. Phys. Rev. D, 103(10):103529, 2021.

[151] Nikolaos Karnesis, Stanislav Babak, Mauro Pieroni, Neil Cornish,

and Tyson Littenberg. Characterization of the stochastic signal origi-

nating from compact binary populations as measured by LISA. Phys.

Rev. D, 104(4):043019, 2021.

[152] Bei Zhou, Luca Reali, Emanuele Berti, Mesut Çalışkan, Cyril Creque-
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