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Abstract

The aim of the paper is to highlight some open problems concerning approx-
imation properties of Hardy spaces. We also present some results on the
bounded compact and the dual compact approximation properties (shortly,
BCAP and DCAP) of such spaces, to provide background for the open
problems. Namely, we consider abstract Hardy spaces H [X(w)] built upon
translation-invariant Banach function spaces X with weights w such that
w ∈ X and w−1 ∈ X ′, where X ′ is the associate space of X . We prove that
if X is separable, then H [X(w)] has the BCAP with the approximation con-
stant M(H [X(w)]) ≤ 2. Moreover, if X is reflexive, then H [X(w)] has the
BCAP and the DCAP with the approximation constants M(H [X(w)]) ≤ 2
and M∗(H [X(w)]) ≤ 2, respectively. In the case of classical weighted Hardy
space Hp(w) = H [Lp(w)] with 1 < p < ∞, one has a sharper result:
M(Hp(w)) ≤ 2|1−2/p| and M∗(Hp(w)) ≤ 2|1−2/p|.
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1. Introduction

For a Banach space E, let B(E) and K(E) denote the sets of bounded
linear and compact linear operators on E, respectively. The norm of an
operator A ∈ B(E) is denoted by ‖A‖B(E). The essential norm of A ∈ B(E)
is defined as follows:

‖A‖B(E),e := inf{‖A−K‖B(E) : K ∈ K(E)}.

For a Banach space E and an operator A ∈ B(E), consider the following
measure of noncompactness:

‖A‖B(E),m := inf
L ⊆ E closed linear subspace

dim(E/L) < ∞

∥∥A|L
∥∥
B(L)

,

where A|L denotes the restriction of A to L.
It follows from [19, formula (3.29)] that if A ∈ B(E), then

‖A‖B(E),m ≤ ‖A‖B(E),e. (1.1)

Motivated by applications to the Fredholm theory of Toeplitz operators (see
[24]), we are interested in the smallest constant C in the reverse estimate:

‖A‖B(E),e ≤ C‖A‖B(E),m for all A ∈ B(E). (1.2)

Note that such estimate is not true without additional assumptions on E
(see [2] and also [16]).

A Banach space E is said to have the bounded compact approximation
property (BCAP) if there exists a constant M ∈ (0,∞) such that given any
ε > 0 and any finite set F ⊂ E, there exists an operator T ∈ K(E) such that

‖I − T‖B(E) ≤ M, ‖y − Ty‖E < ε for all y ∈ F. (1.3)

Here I is the identity map from E to itself. The greatest lower bound of the
constants M for which (1.3) holds will be denoted by M(E).

A Banach space E with the dual space E∗ is said to have the dual compact
approximation property (DCAP) if there is a constant M∗ ∈ (0,∞) such that
given any ε > 0 and any finite set G ⊂ E∗ there exists an operator T ∈ K(E)
such that

‖I − T‖B(E) ≤ M∗, ‖z − T ∗z‖E∗ < ε for all z ∈ G. (1.4)
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The greatest lower bound of the constants M∗, for which (1.4) holds, will be
denoted by M∗(E).

It is easy to see that if E is reflexive, then E has the DCAP if and only
if its dual space E∗ has the BCAP. In this case M∗(E) = M(E∗).

Theorem 1.1. Let E be a Banach space.

(a) If E has the BCAP, then (1.2) holds with C = 2M(E).

(b) If E has the DCAP, then (1.2) holds with C = M∗(E).

Part (a) follows from [19, Theorems 3.1 and 3.6] (note that there is a typo
in [19, formula (3.7)], where the factor 2 is missing). Part (b) was proved in
[24, Theorem 2.2].

It follows from (1.1) and Theorem 1.1 that if a Banach space E has the
BCAP or the DCAP, then the essential norm ‖ · ‖B(E),e and the m-measure
of noncompactness ‖ · ‖B(E),m are equivalent.

The condition ‖I − T‖B(E) ≤ M is often substituted by ‖T‖B(E) ≤ M in
the definition of BCAP (see, e.g., [5, 6, 20, 21], and the references therein).
Let m(E) be the greatest lower bound of the constants M for which the
conditions in this alternative definition of BCAP are satisfied. Clearly,

m(E)− 1 ≤ M(E) ≤ m(E) + 1.

We are interested in M(E) rather than in m(E) because the former appears
naturally in estimates for the essential norms of operators by their measures
of noncompactnes (see Theorem 1.1 and [2, 9, 19, 24]). It is well known
that m(Lp[0, 1]) = 1, 1 ≤ p < ∞ (see, e.g., [22, Lemma 19.3.5]). The
value of M(Lp[0, 1]) was found in [25, Theorem 3.2]: if 1 ≤ p < ∞, then
M(Lp[0, 1]) = Cp, where Cp is the norm of the operator

Lp[0, 1] ∋ f 7−→ f −

∫ 1

0

f(t) dt ∈ Lp[0, 1],

i.e. C1 = 2 and, for 1 < p < ∞,

Cp := max
0≤α≤1

(
αp−1 + (1− α)p−1

)1/p (
α1/(p−1) + (1− α)1/(p−1)

)1−1/p
(1.5)

(see [11, formula (8)]).
For a function f ∈ L1 on the unit circle T := {z ∈ C : |z| = 1}, let

f̂(n) =
1

2π

∫ π

−π

f
(
eiθ
)
e−inθ dθ, n ∈ Z
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be the Fourier coefficients of f . Let X be a Banach space of measurable
complex-valued functions on T continuously embedded into L1. Let

H [X ] := {g ∈ X : ĝ(n) = 0 for all n < 0}

denote the abstract Hardy space built upon the space X . In the case X = Lp,
where 1 ≤ p ≤ ∞, we will use the standard notation Hp := H [Lp].

The classical Hardy spaces Hp with 1 < p < ∞ have the BCAP and the
DCAP with

M(Hp) ≤ 2|1−2/p|, M∗(Hp) ≤ 2|1−2/p| (1.6)

(see [24, Theorem 3.1]).
A measurable function w : T → [0,∞] is said to be a weight if 0 < w < ∞

a.e. on T. Let 1 < p < ∞ and w be a weight. Weighted Lebesgue spaces
Lp(w) consist of all measurable functions f : T → C such that fw ∈ Lp. The
norm in Lp(w) is defined by

‖f‖Lp(w) := ‖fw‖Lp =

(∫

T

|f(t)|pwp(t) dm(t)

)1/p

,

where m is the Lebesgue measure on T normalized so that m(T) = 1. Esti-
mates (1.6) remain true for the weighted Hardy spaces Hp(w) := H [Lp(w)].

Theorem 1.2. Let 1 < p < ∞, 1/p + 1/p′ = 1, and let w be a weight such
that w ∈ Lp and 1/w ∈ Lp′. Then the weighted Hardy space Hp(w) has the
BCAP and the DCAP with

M(Hp(w)) ≤ 2|1−2/p|, M∗(Hp(w)) ≤ 2|1−2/p|.

Let X be a Banach function space on the unit circle T equipped with
the Lebesgue measure dm and let X ′ be its associate space (see [4, Ch. 1]).
We postpone the definitions of these notions until Section 2.1. Here we only
mention that the class of Banach function spaces is very rich, it includes
all Lebesgue spaces Lp, 1 ≤ p ≤ ∞, Orlicz spaces Lϕ (see, e.g., [4, Ch. 4,
Section 8]), and Lorentz spaces Lp,q (see, e.g., [4, Ch. 4, Section 4]). For
a weight w, the weighted space X(w) consists of all measurable functions
f : T → C such that fw ∈ X . We equip it with the norm

‖f‖X(w) = ‖fw‖X.

4



We will suppose that w ∈ X and 1/w ∈ X ′. Then X(w) is a Banach function
space itself and L∞ →֒ X(w) →֒ L1 (see [13, Lemma 2.3(b)]).

For f ∈ X we will use the following notation:

(τϑf)(e
it) := f(ei(t−ϑ)), t, ϑ ∈ [−π, π].

A Banach function space is said to be translation-invariant if for every f ∈
X and every ϑ ∈ [−π, π], one has τϑf ∈ X and ‖τϑf‖X = ‖f‖X . Note
that all rearrangement-invariant Banach function spaces (see [4, Ch. 2]) are
translation-invariant.

The following analogue of (1.6) holds for the spaces H [X(w)].

Theorem 1.3. Let X be a translation-invariant Banach function space with
the associate space X ′ and let w be a weight such that w ∈ X and 1/w ∈ X ′.

(a) If X is separable, then the abstract Hardy space has the BCAP with

M(H [X(w)]) ≤ 2.

(b) If X is reflexive, then the abstract Hardy space H [X(w)] has the BCAP
and the DCAP with

M(H [X(w)]) ≤ 2, M∗(H [X(w)]) ≤ 2.

The paper is organised as follows. In Section 2, we collect preliminaries
on Banach function spaces. Further, we give some estimates for the adjoints
to restrictions of operators.

In Section 3, we show that if a translation-invariant Banach function space
X is separable, then the Hardy space H [X ] has the BCAP with M(H [X ]) ≤
2. Moreover, if X is reflexive, then H [X ] has the BCAP and the DCAP with
M(H [X ]) ≤ 2 and M∗(H [X ]) ≤ 2, respectively.

In Section 4, we observe that if X is a Banach function space and w is
a weight such that w ∈ X and 1/w ∈ X ′, then the Hardy spaces H [X ] and
H [X(w)] are isometrically isomorphic. This result combined with (1.6) and
the main result of Section 3 implies Theorems 1.2 and 1.3.

The main part of the paper is Section 5, where some open problems con-
cerning approximation properties of Hardy spaces are stated and discussed.
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2. Preliminaries

2.1. Banach function spaces

Let M be the set of all measurable extended complex-valued functions
on T equipped with the normalized measure dm(t) = |dt|/(2π) and let M+

be the subset of functions in M whose values lie in [0,∞].
Following [4, Ch. 1, Definition 1.1], a mapping ρ : M+ → [0,∞] is called

a Banach function norm if, for all functions f, g, fn ∈ M+ with n ∈ N, and
for all constants a ≥ 0, the following properties hold:

(A1) ρ(f) = 0 ⇔ f = 0 a.e., ρ(af) = aρ(f), ρ(f + g) ≤ ρ(f) + ρ(g),

(A2) 0 ≤ g ≤ f a.e. ⇒ ρ(g) ≤ ρ(f) (the lattice property),

(A3) 0 ≤ fn ↑ f a.e. ⇒ ρ(fn) ↑ ρ(f) (the Fatou property),

(A4) ρ(1) < ∞,

(A5)

∫

T

f(t) dm(t) ≤ Cρ(f)

with a constant C ∈ (0,∞) that may depend on ρ, but is independent of f .
When functions differing only on a set of measure zero are identified, the set
X of all functions f ∈ M for which ρ(|f |) < ∞ is called a Banach function
space. For each f ∈ X , the norm of f is defined by ‖f‖X := ρ(|f |). The
set X equipped with the natural linear space operations and with this norm
becomes a Banach space (see [4, Ch. 1, Theorems 1.4 and 1.6]). If ρ is a
Banach function norm, its associate norm ρ′ is defined on M+ by

ρ′(g) := sup

{∫

T

f(t)g(t) dm(t) : f ∈ M+, ρ(f) ≤ 1

}
, g ∈ M+.

It is a Banach function norm itself ([4, Ch. 1, Theorem 2.2]). The Banach
function space X ′ defined by the Banach function norm ρ′ is called the as-
sociate space (Köthe dual) of X . The associate space X ′ can be viewed
as a subspace of the Banach dual space X∗ (see [4, Ch. 1, Theorem 2.9]).
The following lemma can be proved as in the non-periodic case (see [15,
Lemma 2.1]).

Lemma 2.1. Let X be a Banach function space and X ′ be its associate space.
Then X is translation-invariant if and only if X ′ is translation-invariant.
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2.2. Adjoints to restrictions of operators

In this subsection, we present some simple results, for which we could not
find a convenient reference.

Let X and Y be Banach spaces, X0 ⊆ X and Y0 ⊆ Y be closed linear sub-
spaces, and let A ∈ B(X, Y ) be such that A(X0) ⊆ Y0. Let A0 ∈ B(X0, Y0)
be the restriction of A to X0:

A0x0 := Ax0 ∈ Y0 for all x0 ∈ X0.

Let
X⊥

0 := {x∗ ∈ X∗ : x∗(x0) = 0 for all x0 ∈ X0}

and let Y ⊥
0 be defined similarly. Then X∗

0 and Y ∗
0 are isometrically isomor-

phic to the quotient spaces X∗/X⊥
0 and Y ∗/Y ⊥

0 , respectively (see, e.g., [7,
Theorem 7.1]). We will identify these spaces and will denote by [x∗] the
element of X∗/X⊥

0 corresponding to x∗ ∈ X∗, and similarly for [y∗].
It is easy to see that A∗(Y ⊥

0 ) ⊆ X⊥
0 . Indeed, take any y∗0 ∈ Y ⊥

0 and
x0 ∈ X0. Since Ax0 ∈ Y0, one has

(A∗y∗0)(x0) = y∗0(Ax0) = 0.

So, A∗y∗0 ∈ X⊥
0 . Hence the operator [A∗],

[A∗][y∗] := [A∗y∗] ∈ X∗/X⊥
0 , [y∗] ∈ Y ∗/Y ⊥

0

is a well defined element of B(Y ∗/Y ⊥
0 , X∗/X⊥

0 ) = B(Y ∗
0 , X

∗
0 ), and it is easy

to see that A∗
0 = [A∗]. Indeed, one has for every [y∗] ∈ Y ∗/Y ⊥

0 and x0 ∈ X0,

(A∗
0[y

∗])(x0) = [y∗](A0x0) = [y∗](Ax0) = y∗(Ax0) = (A∗y∗)(x0)

= [A∗y∗](x0) = ([A∗][y∗])(x0).

Lemma 2.2. Let X and Y be Banach spaces, X0 ⊆ X and Y0 ⊆ Y be closed
linear subspaces, and A ∈ B(X, Y ) be such that A(X0) ⊆ Y0. If A0 := A|X0,
then for every y∗ ∈ Y ∗, one has

‖A∗
0[y

∗]‖X∗
0
≤ ‖A∗y∗‖X∗ ,

where [y∗] is the element of Y ∗/Y ⊥
0 corresponding to y∗.

Proof. We have

‖A∗
0[y

∗]‖X∗
0
= ‖A∗

0[y
∗]‖X∗/X⊥

0
= ‖[A∗][y∗]‖X∗/X⊥

0
= ‖[A∗y∗]‖X∗/X⊥

0

= inf
x0∈X0

‖A∗y∗ + x0‖X∗ ≤ ‖A∗y∗‖X∗ .

which completes the proof.
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3. Bounded compact and dual compact approximation properties

of abstract Hardy spaces built upon translation-invariant spaces

3.1. Continuity of shifts in separable translation-invariant Banach function
spaces

We start with the following simple lemma.

Lemma 3.1. Let X be a translation-invariant Banach function space. If X
is separable, then for every f ∈ X,

lim
ϑ→0

‖τϑf − f‖X = 0. (3.1)

Proof. By [14, Lemma 2.2.1], a Banach function space X is separable if and
only if the set of continuous functions C is dense in X . Let f ∈ X and ε > 0.
Then there exists g ∈ C such that ‖f −g‖X < ε/3. Taking into account that
X is translation-invariant, we see that for all ϑ ∈ [−π, π],

‖τϑf − f‖X ≤ ‖τϑf − τϑg‖X + ‖τϑg − g‖X + ‖g − f‖X

= 2‖f − g‖X + ‖τϑg − g‖X

<
2

3
ε+ ‖1‖X‖τϑg − g‖C.

Since
lim
ϑ→0

‖τϑg − g‖C = 0,

the above inequality yields

lim sup
ϑ→0

‖τϑf − f‖X ≤
2

3
ε < ε.

Letting ε → 0, we arrive at (3.1).

3.2. Convolutions with integrable functions on translation-invariant Banach
function spaces

Recall that the convolution of two functions f, g ∈ L1 is defined by

(f ∗ g)(eiϕ) :=
1

2π

∫ π

−π

f(ei(ϕ−θ))g(eiθ) dθ.

The following lemmas might be known to experts, however we were not
able to find an explicit reference.
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Lemma 3.2. Suppose that X is a translation-invariant Banach function
spaces. If K ∈ L1, then the convolution operator CK defined by

CKg = K ∗ g, g ∈ X, (3.2)

is bounded on X and
‖CK‖B(X) ≤ ‖K‖L1 . (3.3)

If, in addition, K ≥ 0, then

‖CK‖B(X) = ‖K‖L1. (3.4)

Proof. For every h ∈ X ′, in view of Tonelli’s theorem (see, e.g., [3, Theo-
rem 5.28]) and Hölder’s inequality for Banach function spaces (see [4, Ch. 1,
Theorem 2.4]), one has
∫ π

−π

∣∣(K ∗ g)(eiϑ)h(eiϑ)
∣∣ dϑ ≤

1

2π

∫ π

−π

∫ π

−π

∣∣K(ei(ϑ−θ))
∣∣ ∣∣g(eiθ)

∣∣ ∣∣h(eiϑ)
∣∣ dθ dϑ

=
1

2π

∫ π

−π

∫ π

−π

∣∣K(eiθ)
∣∣ ∣∣g(ei(ϑ−θ))

∣∣ ∣∣h(eiϑ)
∣∣ dθ dϑ

=
1

2π

∫ π

−π

∣∣K(eiθ)
∣∣
(∫ π

−π

∣∣(τθg)(eiϑ)
∣∣ ∣∣h(eiϑ)

∣∣ dϑ
)
dθ

≤

∫ π

−π

∣∣K(eiθ)
∣∣ ‖τθg‖X‖h‖X′ dθ = 2π‖K‖L1‖g‖X‖h‖X′. (3.5)

In view of the Lorentz-Luxemburg theorem (see [4, Ch. 1, Theorem 2.7]), the
last inequality implies that

‖K ∗ g‖X = ‖K ∗ g‖X′′

= sup

{
1

2π

∫ π

−π

∣∣(K ∗ g)(eiϑ)h(eiϑ)
∣∣ dϑ : h ∈ X ′, ‖h‖X′ ≤ 1

}

≤ ‖K‖L1‖g‖X ,

which implies (3.3).
If, in addition, we suppose that K ≥ 0, then for a.e. ϕ ∈ [−π, π],

(K ∗ 1)(eiϕ) =
1

2π

∫ π

−π

K(ei(ϕ−θ)) dθ =
1

2π

∫ π

−π

K(eit) dt = ‖K‖L1 .

Hence,

‖CK‖B(X) = sup
f∈X\{0}

‖K ∗ f‖X
‖f‖X

≥
‖K ∗ 1‖X
‖1‖X

=
‖K‖L1‖1‖X

‖1‖X
= ‖K‖L1 .

Combining this inequality with (3.3), we arrive at (3.4).
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3.3. BCAP and DCAP of abstract Hardy spaces built upon translation-in-
variant Banach function spaces

Now we are in a position to prove the main result of this section.

Theorem 3.3. Let X be a translation-invariant Banach function space.

(a) If X is separable, then the abstract Hardy space H [X ] has the BCAP
with

M(H [X ]) ≤ 2.

(b) If X is reflexive, then the abstract Hardy space H [X ] has the BCAP
and DCAP with

M(H [X ]) ≤ 2, M∗(H [X ]) ≤ 2.

Proof. (a) For θ ∈ [−π, π] and n = 0, 1, 2, . . . , let

Kn

(
eiθ
)
:=

n∑

k=−n

(
1−

|k|

n + 1

)
eikθ =

1

n + 1

(
sin (n+1)θ

2

sin θ
2

)2

,

be the n-th Fejér kernel, and let

Knf := Kn ∗ f, f ∈ X.

It is well known that Kn ≥ 0, ‖Kn‖L1 = 1, and

(Knf)
(
eiϑ
)
=

n∑

k=−n

f̂(k)

(
1−

|k|

n+ 1

)
eikθ, (3.6)

where f̂(k) is the k-th Fourier coefficient of f (see, e.g., [18, Ch. I, Sec-
tion 2.5]). It follows from Lemma 3.2 that ‖Kn‖X→X = 1. Hence

‖I −Kn‖B(X) ≤ 1 + ‖Kn‖B(X) = 2.

It follows from Lemma 3.1 that a separable translation-invariant Banach
function space X is a homogeneous Banach space in the sense of [18, Ch. I,
Definition 2.10]. Hence [18, Ch. I, Theorem 2.11] implies that Kn converge
strongly to the identity operator on X as n → ∞. Moreover, (3.6) implies
that Kn maps H [X ] to H [X ]. Thus M(H [X ]) ≤ 2.
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(b) If X is reflexive, then X∗ = X ′ is also separable (see [4, Ch. 1,
Corollaries 4.3-4.4 and 5.6]) and translation-invariant (see Lemma 2.1). It
follows from the above that the adjoint operators K∗

n = Kn : X ′ → X ′

converge strongly to the identity operator as n → ∞. Applying Lemma 2.2
to A = I −Kn, X0 = Y0 = H [X ], one concludes that the adjoint operators
K∗

n : (H [X ])∗ → (H [X ])∗ also converge strongly to the identity operator as
n → ∞. Hence M∗(H [X ]) ≤ 2.

4. Proofs of Theorems 1.2 and 1.3

4.1. BCAP and DCAP of isometrically isomorphic Banach spaces

The next lemma follows immediately form the definitions of the BCAP
and the DCAP.

Lemma 4.1. Let E and F be isometrically isomorphic Banach spaces.

(a) The space E has the BCAP if and only if F has the BCAP. In this case

M(E) = M(F ).

(b) The space E has the DCAP if and only if F has the DCAP. In this
case

M∗(E) = M∗(F ).

4.2. Isometric isomorphism of weighted and nonweighted abstract Hardy spaces

Having in mind the previous lemma, we show that H [X ] and H [X(w)]
are isometrically isomorphic under natural assumptions on weights w.

Lemma 4.2. Let X be a Banach function space with the associate space X ′

and let w be a weight such that w ∈ X and 1/w ∈ X ′. Then H [X(w)] is
isometrically isomorphic to H [X ].

Proof. Let D be the unit disc: D := {z ∈ C : |z| < 1}. A function F analytic
in D is said to belong to the Hardy space Hp(D), 0 < p ≤ ∞, if the integral
mean

Mp(r, F ) =

(
1

2π

∫ π

−π

|F (reiθ)|p dθ

)1/p

, 0 < p < ∞,

M∞(r, F ) = max
−π≤θ≤π

|F (reiθ)|,

11



remains bounded as r → 1. If F ∈ Hp(D), 0 < p ≤ ∞, then the nontangen-
tial limit F (eiθ) exists almost everywhere on T and F ∈ Lp(T) (see, e.g., [7,
Theorem 2.2]). If 1 ≤ p ≤ ∞, then F ∈ Hp (see, e.g., [7, Theorem 3.4]).

It follows from w ∈ X , 1/w ∈ X ′ and Axiom (A5) that w ∈ L1, 1
w
∈ L1.

Then logw ∈ L1. Consider the outer function

W (z) := exp

(
1

2π

∫ π

−π

eit + z

eit − z
logw(eit) dt

)
, z ∈ D

(see [12, Ch. 5]). It belongs to H1(D) and |W | = w a.e. on T.
It follows from the definition of X(w) that

‖Wf‖X = ‖wf‖X = ‖f‖X(w) for all f ∈ H [X(w)]. (4.1)

Since X(w) is a Banach function space, Axiom (A5) implies that X(w) ⊆ L1

and H [X(w)] ⊆ H1. Take any f ∈ H [X(w)]. Let F ∈ H1(D) be its analytic
extensions to the unit disk D by means of the Poisson integral (see the proof
of [7, Theorem 3.4]). Since W,F ⊆ H1(D), Hölder’s inequality implies that
WF ∈ H1/2(D). It follows from (4.1) and Axiom (A5) that Wf ∈ X ⊆
L1. Hence WF ∈ H1(D) (see [7, Theorem 2.11]). So, Wf ∈ H1 ∩ X =
H [X ]. This proves that the mapping f 7→ Wf is an isometric isomorphism
of H [X(w)] into H [X ].

Repeating the above argument, one gets that the mapping g 7→ 1
W

g is
an isometric isomorphism of H [X ] into H [X(w)]. Hence H [X(w)] and H [X ]
are isometrically isomorphic.

4.3. Proof of Theorem 1.2

By Lemma 4.2, the spaces Hp and Hp(w) are isometrically isomorphic.
Therefore, in view of (1.6) and Lemma 4.1, the weighted Hardy space has
the BCAP and the DCAP and

M(Hp(w)) = M(Hp) ≤ 2|1−2/p|, M∗(Hp(w)) = M∗(Hp) ≤ 2|1−2/p|,

which completes the proof.

4.4. Proof of Theorem 1.3

It follows from Lemma 4.2 that the spaces H [X ] and H [X(w)] are isomet-
rically isomorphic. Now part (a) (resp., part (b)) follows from part (a) (resp.,
part (b)) of Lemma 4.1 and part (a) (resp., part (b)) of Theorem 3.3.

12



5. Concluding remarks and open problems

5.1. Exact values of the norms of the operators I − Kn and I − Pr on Lp

and Hp

Upper estimates for the norms of the operators I−Kn play a crucial role
in the proof of estimates (1.6) (see [24]). Consider also the operators I −Pr,
where

Prf := Pr ∗ f, 0 ≤ r < 1,

and Pr is the Poisson kernel

Pr(e
iθ) :=

∞∑

k=−∞

r|k|eikθ =
1− r2

1 + r2 − 2r cos θ
, θ ∈ [−π, π], 0 ≤ r < 1.

The following theorem provides a two-sided estimate for operators of this
type.

Theorem 5.1. Let K ∈ L1, ‖K‖L1 = 1, K ≥ 0, and K̂(n) ≥ 0 for all n ∈ Z.
Then the following estimate holds for the convolution operator CK defined by
(3.2)

Cp ≤ ‖I − CK‖B(Lp) ≤ 2|1−2/p|, 1 ≤ p ≤ ∞, (5.1)

where C1 = 2 = C∞ and Cp is given by (1.5) for p ∈ (1,∞).

Proof. It follows from Lemma 3.2 that ‖CK‖B(Lp) = 1, and hence

‖I − CK‖B(L1) ≤ 2, ‖I − CK‖B(L∞) ≤ 2

(cf. the proof of Theorem 3.3). Since K̂(n) ≥ 0 and K̂(n) ≤ ‖K‖L1 = 1,
n ∈ Z, the Parseval theorem gives ‖I − CK‖B(L2) ≤ 1. (In fact, one can

easily see that ‖I − CK‖B(L2) = 1, since K̂(n) → 0 as n → ∞ due the to
Riemann-Lebesgue lemma.) Then the Riesz-Thorin interpolation theorem
implies that

‖I − CK‖B(Lp) ≤ 2|1−2/p|, 1 < p < ∞, (5.2)

which proves the upper estimate in (5.1).
Since trigonometric polynomials are dense in L1, it follows from Lemma

3.2 that CK can be approximated in norm by finite rank operators. So,
CK : Lp → Lp is a compact operator. The equality

1

2π

∫ π

−π

K(ei(ϕ−θ)) · 1 dθ = ‖K‖L1 = 1
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implies that CK preserves constant functions. Then

‖I − CK‖B(Lp) ≥ Cp, 1 ≤ p < ∞,

(see [25, Theorem 3.4]).
It is left to prove the lower estimate in (5.1) for p = ∞. In the case

p = ∞ or p = 1, (5.1) turns into the equality ‖I − CK‖B(Lp) = 2, which
follows from Lemma 3.2 and the fact that L∞ and L1 have the Daugavet
property (see [1, Theorem 1 and the references therein] and [26, Corollary 6
and its proof]): ‖I − T‖B(Lp) = 1 + ‖T‖B(Lp) for every operator T ∈ K(Lp),
p = ∞ or p = 1.

It is easy to see that Kn and Pr satisfy the conditions of Theorem 5.1
and map Hp into itself. Clearly,

‖I −Kn‖B(Hp) ≤ ‖I −Kn‖B(Lp), ‖I −Pr‖B(Hp) ≤ ‖I −Pr‖B(Lp), 1 ≤ p ≤ ∞.

The above remarks lead to the following.

Open problem 5.2. Let n ∈ Z+ and r ∈ [0, 1). Find the exact values of
‖I −Kn‖B(Lp) and ‖I −Pr‖B(Lp) for 1 < p < ∞, and of ‖I −Kn‖B(Hp) and
‖I −Pr‖B(Hp) for 1 ≤ p ≤ ∞.

It seems that the above problem is open even for n = 1. For n = 0, one
has (I −K0)f = f − f̂(0) = (I −P0)f and

‖I −K0‖B(Lp) = Cp

(see [11, formula (8)]), but the value of ‖I −K0‖B(Hp) does not seem to be
known for p ∈ [1,∞) \ {2}. What is known is that

‖I −K0‖B(H∞) = 2 (5.3)

(see [10, Theorem 2.5]) and

‖I −K0‖B(Hp) < ‖I −K0‖B(Lp)

for sufficiently small p ≥ 1. Indeed, ‖I −K0‖B(Lp) = Cp → 2 as p → 1, while

‖I −K0‖B(Hp) < 1.7047

for sufficiently small p ≥ 1 (see the proof of [10, Theorem 2.4]).
It follows from the lower estimate in (5.1) that

‖I −Kn‖B(Lp) ≥ ‖I −K0‖B(Lp). (5.4)

An analogue of this estimate holds in the Hp setting.
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Lemma 5.3. For every n ∈ Z+,

‖I −Kn‖B(Hp) ≥ ‖I −K0‖B(Hp).

Proof. Take any f ∈ Hp \ {0} and set fm(e
iθ) := f(eimθ), m ∈ N. Then

f ∈ Hp and ‖fm‖Hp = ‖f‖Hp (see [8, Theorem 5.5]). Let m > n. It follows

from (3.6) that Knfm = f̂(0) = K0fm = K0f . Hence

‖I −Kn‖B(Hp) = sup
g∈Hp\{0}

‖(I −Kn)g‖Hp

‖g‖Hp

≥ sup
f∈Hp\{0}

‖(I −Kn)fm‖Hp

‖fm‖Hp

= sup
f∈Hp\{0}

‖(I −K0)fm‖Hp

‖f‖Hp

= sup
f∈Hp\{0}

‖(I −K0)f‖Hp

‖f‖Hp

= ‖I −K0‖B(Hp),

which completes the proof.

The same argument as in the proof of Lemma 5.3 applies in the Lp setting
and provides a simpler proof of (5.4).

5.2. Exact value of the norm of the backward shift operator on Hp

We think that the question about the exact value of ‖I − K0‖B(Hp) is
particularly interesting, and although it is a special case of Problem 5.2, we
state it again below in terms of the backward shift operator

(Bf)(eiθ) := e−iθ
(
f(eiθ)− f̂(0)

)
= e−iθ

(
(I −K0)f

)
(eiθ), f ∈ Hp.

Clearly,

|Bf | = |(I −K0)f | =⇒ ‖Bf‖Hp = ‖(I −K0)f‖Hp for all f ∈ Hp

=⇒ ‖B‖B(Hp) = ‖I −K0‖B(Hp).

In particular,
‖B‖B(H∞) = 2

(see (5.3) and [10, Theorem 2.5]).

Open problem 5.4. Let 1 ≤ p < ∞. Find the exact value of the norm
‖B‖B(Hp) of the backward shift operator.

15



5.3. Exact values for M(Hp) and M∗(Hp)

It seems that estimates (1.6) and the estimate M(H1) ≤ 2, which follows
from Theorem 1.3(a), are all what is known about the values of M(Hp) and
M∗(Hp). So, it would be interesting to get nontrivial lower and better upper
bounds for M(Hp) and M∗(Hq) and, moreover, to solve the following.

Open problem 5.5. (a) Find the exact value of M(Hp), 1 ≤ p < ∞.
(b) Find the exact value of M∗(Hp), 1 < p < ∞.

Given that M(Lp) = ‖I −K0‖B(Lp) (see [25, Theorem 3.2]), it would be
interesting to know whether M(Hp) = ‖I −K0‖B(Hp).

5.4. Estimates for M(H [Lϕ]) and M∗(H [Lϕ]) in the case of some Orlicz
spaces Lϕ

Let ϕ : [0,∞) → [0,∞] be a convex nondecreasing left-continuous func-
tion that is not identically zero or infinity on (0,∞) and satisfies ϕ(0) = 0.
For a measurable function f : T → C, define

Iϕ(f) :=

∫

T

ϕ(|f(t)|) dm(t).

The Orlicz space Lϕ is the set of all measurable functions f : T → C such
that Iϕ(λf) < ∞ for some λ = λ(f) > 0. This space is a Banach space when
equipped with either of the following two equivalent norms: the Luxemburg
norm

‖f‖ϕ := inf{λ > 0 : Iϕ(f/λ) ≤ 1}

and the Orlicz norm (in the Amemiya form)

‖f‖0ϕ := inf
k>0

1

k
(1 + Iϕ(kf)).

It is well known that

‖f‖ϕ ≤ ‖f‖0ϕ ≤ 2‖f‖ϕ for all f ∈ Lϕ.

We denote by P the set of all quasi-concave functions ρ : [0,∞) → [0,∞),
that is, the functions ρ such that ρ(x) = 0 precisely when x = 0, the function

ρ(x) is increasing and the function ρ(x)/x is decreasing on (0,∞). Let P̃
denote the subset of all concave functions in P.
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It follows from [17, Lemma 3.2] that if 1 ≤ p < q ≤ ∞ and ρ ∈ P̃ , then
the function ϕ, inverse to the function ϕ−1 defined by

ϕ−1(0) := 0, ϕ−1(x) := x1/pρ
(
x1/q−1/p

)
, x ∈ (0,∞), (5.5)

is convex. Moreover, if 1 < p < q < ∞, then ϕ and its complementary
function ϕ∗ defined by

ϕ∗(x) := sup
y>0

(xy − ϕ(y)),

satisfy the ∆2-condition for all x ≥ 0, that is, there exist K,K∗ > 0 such that
ϕ(2x) ≤ Kϕ(x) and ϕ∗(2x) ≤ K∗ϕ∗(x) for all x ≥ 0. Then Lϕ is reflexive
(see, e.g., [23, Corollary 15.4.2]).

For 1 < p, q < ∞, put

γp,q := inf

{
γ > 0 : inf

x+y=γ, x≥0, y≥0
(xp + yq) = 1

}
.

It follows from [17, Proposition 4.3] that γp,q continuously increases in p and
q. Moreover, if p ≤ q, then

21−1/p ≤ γp,q ≤ 21−1/q.

For r ∈ (1,∞), define r′ by 1/r + 1/r′ = 1.

Theorem 5.6 ([17, Theorem 5.1]). Let 1 < p < q < ∞ and ρ ∈ P̃. Suppose
that ϕ−1 is defined by (5.5). If T ∈ B(Lp) and T ∈ B(Lq), then T ∈ B(Lϕ)
and

‖T‖B(Lϕ) ≤ Cp,q max
{
‖T‖B(Lp), ‖T‖B(Lq)

}
,

where Lϕ is equipped with the Luxemburg norm or with the Orlicz norm, and

1 ≤ Cp,q := min
{
(2γp,q)

1/p, (2γq′,p′)
1/q′
}
≤ 21/(pq

′)+min{1/p,1/q′}. (5.6)

Using this interpolation theorem, we can refine the results of Theorem
3.3(b) for some Orlicz spaces.

Theorem 5.7. Let 1 < p < q < ∞ and ρ ∈ P̃. Suppose that ϕ−1 is defined by
(5.5) and the corresponding Orlicz space Lϕ is equipped with the Luxemburg
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norm or with the Orlicz norm. Then the Hardy-Orlicz space H [Lϕ] has the
BCAP and the DCAP with

M(H [Lϕ]) ≤ min{2,Λp,q}, M∗(H [Lϕ]) ≤ min{2,Λp,q},

where
Λp,q := Cp,q max

{
2|1−2/p|, 2|1−2/q|

}
, (5.7)

and the constant Cp,q is defined by (5.6).

Proof. It is well-known and easy to check that each Orlicz space is translation-
invariant. As it was mentioned above, Lϕ is reflexive under the assumptions
of the Theorem. Therefore, by Theorem 3.3(b), the Hardy-Orlicz spaceH [Lϕ]
has the BCAP and the DCAP with M(H [Lϕ]) ≤ 2 and M∗(H [Lϕ]) ≤ 2. It
remains to show that

M(H [Lϕ]) ≤ Λp,q, M∗(H [Lϕ]) ≤ Λp,q. (5.8)

It follows from (3.6), (5.2) and Theorem 5.6 that for all n ∈ Z+,

‖I −Kn‖B(H[Lϕ]) ≤ ‖I −Kn‖B(Lϕ)

≤ Cp,q max
{
‖I −Kn‖B(Lp), ‖I −Kn‖B(Lq)

}

≤ Cp,q max
{
2|1−2/p|, 2|1−2/q|

}
= Λp,q,

where the Orlicz space Lϕ is equipped with the Luxemburg norm or the
Orlicz norm. As in the proof of Theorem 3.3(b), this implies (5.8).

It follows from (5.6) and (5.7) that if p and q are sufficiently close to 2,
then M(H [Lϕ]) < 2 and M∗(H [Lϕ]) < 2. Given that the value of M(Hp) is
not known, it would perhaps be too ambitious to ask about the exact values
of M(H [Lϕ]) and M∗(H [Lϕ]). Nevertheless, we think it would be interesting
to get more information on these quantities.

5.5. Estimates for M(H [Lp,q]) and M∗(H [Lp,q]) in the case of Lorentz spaces
Lp,q

The distribution function mf of a measurable a.e. finite function f : T →
C is given by

mf (λ) := m{t ∈ T : |f(t)| > λ}, λ ≥ 0.
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The non-increasing rearrangement of f is defined by

f ∗(x) := inf{λ : mf(λ) ≤ x}, x ≥ 0.

We refer to [4, Ch. 2, Section 1] for properties of distribution functions and
non-increasing rearrangements.

One of the closest classes of translation-invariant spaces to the class of
Lebesgue spaces Lp, 1 ≤ p ≤ ∞ consists of the Lorentz spaces Lp,q defined as
follows. For 1 ≤ q ≤ p < ∞, the Lorentz space Lp,q consists of all measurable
functions f : T → C for which

‖f‖p,q :=

(∫ 1

0

[t1/pf ∗(t)]q
dt

t

)1/q

< ∞.

This is a rearrangement-invariant Banach function space with respect to the
norm ‖ · ‖p,q (see, e.g., [4, Ch. 4, Theorem 4.3]). The Lorentz space Lp,p is
isometrically isomorphic to the Lebesgue space Lp.

It follows from Theorem 3.3 that if 1 ≤ q ≤ p < ∞, then the Hardy-
Lorentz space H [Lp,q] has the BCAP with

M(H [Lp,q]) ≤ 2, (5.9)

because Lp,q is separable in this case. Moreover, if 1 < q ≤ p < ∞, then the
Hardy-Lorentz space H [Lp,q] has the DCAP with

M∗(H [Lp,q]) ≤ 2, (5.10)

since the Lorentz space Lp,q is reflexive in this case.
Having in mind estimates (1.6), which can be stated as follows:

M(H [Lp,p]) ≤ 2|1−2/p|, M∗(H [Lp,p]) ≤ 2|1−2/p|, 1 < p < ∞,

it seems natural to formulate the following.

Open problem 5.8. (a) Let 1 ≤ q ≤ p < ∞. Find a nontrivial lower bound
for M(H [Lp,q]). Improve the upper bound for M(H [Lp,q]) given by (5.9).

(b) Let 1 < q ≤ p < ∞. Find a nontrivial lower bound for M∗(H [Lp,q]).
Improve the upper bound for M∗(H [Lp,q]) given by (5.10).
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