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Abstract:

Bruton’s tyrosine kinase Inhibitors (BTKis) that target B cell receptor signaling have led to a
paradigm shift in CLL treatment. BTKis have been shown to reduce abnormally high CLL-associated T
cell counts and the expression of immune checkpoint receptors concomitantly with tumor reduction.
However, the impact of BTKi therapy on T cell function has not been fully characterized. Here, we
performed longitudinal immunophenotypic and functional analysis of pre- and on-treatment (6- and
12-months) peripheral blood samples from patients in the phase 3 E1912 trial comparing ibrutinib-
rituximab to fludarabine, cyclophosphamide and rituximab (FCR). Intriguingly, we report that

despite reduced overall T cell counts, higher numbers of T cells including effector cD8" subsets at
baseline and at the 6-month time-point associated with no infections and favorable progression-free
survival (PFS) in the ibrutinib-rituximab arm. Assays demonstrated enhanced anti-CLL T cell killing

function during ibrutinib-rituximab, including a switch from predominantly cD4" T-cell:CLL immune

synapses at baseline to increased cps?t lytic synapses on-therapy. Conversely, in the FCR arm, higher
T cell numbers correlated with adverse clinical responses and showed no functional improvement. We
further demonstrate the potential of exploiting rejuvenated T cell cytotoxicity during ibrutinib-
rituximab using the bispecific antibody glofitamab - supporting combination immunotherapy
approaches.
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Abstract

Bruton’s tyrosine kinase Inhibitors (BTKis) that target B cell receptor signaling have led to a paradigm
shift in CLL treatment. BTKis have been shown to reduce abnormally high CLL-associated T cell counts
and the expression of immune checkpoint receptors concomitantly with tumor reduction. However,
the impact of BTKi therapy on T cell function has not been fully characterized. Here, we performed
longitudinal immunophenotypic and functional analysis of pre- and on-treatment (6- and 12-months)
peripheral blood samples from patients in the phase 3 E1912 trial comparing ibrutinib-rituximab to
fludarabine, cyclophosphamide and rituximab (FCR). Intriguingly, we report that despite reduced
overall T cell counts, higher numbers of T cells including effector CD8" subsets at baseline and at the
6-month time-point associated with no infections and favorable progression-free survival (PFS) in the
ibrutinib-rituximab arm. Assays demonstrated enhanced anti-CLL T cell killing function during
ibrutinib-rituximab, including a switch from predominantly CD4" T-cell:CLL immune synapses at
baseline to increased CD8" lytic synapses on-therapy. Conversely, in the FCR arm, higher T cell
numbers correlated with adverse clinical responses and showed no functional improvement. We
further demonstrate the potential of exploiting rejuvenated T cell cytotoxicity during ibrutinib-
rituximab using the bispecific antibody glofitamab - supporting combination immunotherapy

approaches.



Introduction

E1912 was the first frontline phase 3 study to compare ibrutinib-based therapy (ibrutinib with
rituximab) to the chemoimmunotherapy fludarabine, cyclophosphamide and rituximab (FCR)." Long-
term follow-up has demonstrated superior PFS and OS for ibrutinib-rituximab relative to FCR.?
Nevertheless, clinical challenges remain including the current need for continuous therapy,
tolerability, residual and progressive disease. Immunotherapy represents a powerful combination or
alternative therapy to tackle resistant disease and deepen responses.”* However, T cell ‘exhaustion’ is
a major barrier for optimal immunotherapy.”® Dysfunctionality of T cells is characterized by increased
CLL-associated T cell subsets expressing inhibitory checkpoint molecules.” Furthermore, helper CD4* T
cells have a tumor-promoting capacity, while impaired immune synapse formation contributes to
suppressed CD8" T cell cytotoxicity.® Correlative studies have revealed that BTKis reduce abnormally
high T cell numbers and checkpoint receptor expression, while reducing malignant B cells.***
However, theimpact of BTKison T cell function and association with clinical response is less well
defined. Here, we leverage pre-, and on-treatment peripheral blood patient samples serially collected

from the E1912 trial and report on the impact of ibrutinib-rituximab versus FCR on T cells utilizing

immune-monitoring functional assays.



Methods
CLL patient samples. Viable PBMCs at baseline, 6-, 12- and 18-month time-points from ECOG-ACRIN-
E1912 (supplemental Figure 1) were biobanked for longitudinal comparative immune analysis.

Supplemental Table 1,2" summarize the samples studied (ibrutinib-rituximab, n=89; FCR, n=62).

Immune-monitoring and functional assays are detailed in supplemental Methods.



Results and discussion

T cell monitoring and correlation with PFS, measurable residual disease (MRD) and infections

We initially investigated the impact of therapy on T cells and explored the association with clinical
outcome (Figure 1A). Flow cytometry measured the absolute numbers of

naive  (Tnaive, CD45RA"/CCR7"), central memory (Tcy, CD45RA/CCR7Y), effector memory (Tew,
CD45RA/CCR7’) and terminally differentiated effector memory (Temra, CD45RA™/CCR7") subsets in
patients at baseline, 6-month and 12-month treatment time-points (supplemental Table 3).
This analysis revealed a reduction in the majority of CD4" and CD8" T cell subsets during ibrutinib-
rituximab including naive and effectors (Figure 1B; supplemental Figure 2A,C) - consistent with T cell

normalization as previously reported for monotherapy.'®*

Expectedly, we observed a marked decrease
of subsets following FCR, with evidence of immune reconstitution at 12-months

(Figure 1B; supplemental Figure 2B,D)."* The frequencies of subsets remained relatively stable during
ibrutinib-rituximab, whereas FCR caused Tnaveand Tew to contract while Ty expanded
(Supplemental Figure 2E,F). Both therapies reduced the number of Tgeg, Th17 cells and NK cells
compared to baseline, but an increased Tge,/CD4 ratio post-FCR was observed

(supplemental Figure 3A-C)." Strikingly, patients on ibrutinib-rituximab with higher T cell numbers
including PD-1" effector CD8" and CD4" subsets at baseline had longer PFS (Figure 1D and F),
suggesting the importance of an existent but exhausted immune response before therapy.
Interestingly, higher levels of PD-L1-expressing CLL cells at baseline correlated with favorable PFS
(Figure 1D and F, and multivariable analysis in Supplemental Table 4). Furthermore, an elevated
frequency of effector CD8" T cells at the 6-month ibrutinib-rituximab time-point associated with
favorable PFS, whereas no association was detectable at 12-months (Figure 1D and F). Conversely,
higher T cell numbers correlated with worse PFS in the FCR arm, whereas increased NK cell
frequency at baseline associated with favorable outcome (supplemental Figure 4A). Consistent
with tumor-mediated exhaustion, greater numbers of PD-1* and PD-L1* CD8" T cell subsets associated
with higher MRD during ibrutinib-rituximab (supplemental Figure 5A). In contrast, elevated

frequencies of T cell 6



subsets not expressing checkpoint molecules including CD8" Temra and NK cells correlated with low
MRD during ibrutinib-rituximab, in keeping with reduced exhaustion. An association between T cells
and MRD was less evident in the FCR arm, except for increased checkpoint-expressing T cells at 12-
months that correlated with higher MRD (supplemental Figure 5B). Ibrutinib’s inhibition of ITK
enhanced Tyl polarization,m’17 but both therapeutic arms reduced Tyl and Ty2 numbers and Ty1/T42
ratios (supplemental Figure 6A,B). Nevertheless, an increased frequency of Ty2 and CD4/CD8 ratio
(baseline and 6-months) associated with unfavorable PFS and incidence of infection respectively
during ibrutinib-rituximab (Figure 1F,G). Whereas increased effector CD8" T cell numbers and CD16"
NK cells at 6-months was associated with no infections during ibrutinib-rituximab (Figure
1G). Conversely, increased T cells post-FCR correlated with infections (supplemental Figure 4B). In
sum, higher CD8" T cell numbers at baseline and early on-therapy, associated

with favorable clinical responses, while PD-1", PD-L1" subsets associated with greater MRD during

ibrutinib-rituximab.

Ibrutinib-rituximab promotes CD8" synapses and immunotherapy-triggered killing function

Next, we characterized the cytolytic function of therapy-reshaped T cells against baseline CLL cells
(Figure 2A,B). T cells from both 6- and 12-month ibrutinib-rituximab time-points showed enhanced
killing function compared to pre-treatment levels. In contrast, T cells post-FCR showed no cytolytic
improvement. Notably, patients who experienced grade 3 infections during ibrutinib-
rituximab showed lower anti-CLL T cell cytotoxic function (Figure 2C). Hypothesizing altered T
cell:CLL interactions, we next performed conjugation assays. T cells during ibrutinib-rituximab
showed augmented formation of polarized F-actin synapses with baseline CLL cells (Figure 2D;
supplemental Figure 7A). In comparison, T cells post-FCR exhibited distinctly non-polarized
synapses (Figure 2E). Given the opposing roles of patient CD4" and CD8" T cells,® we examined these
subsets and detected an increased frequency of granzyme B* CD8" T cell:CLL synapses

at both ibrutinib-rituximab time-points compared to baseline, where CD4" T cell:CLL synapses
dominated. This switch in the CD4"/CD8" synapse balance was not detected post-FCR (Figure 2F,G;

supplemental Figure 7B-D). Interestingly, in 7



keeping with pro-tumoral CD4" T cells, increased formation of CD4" T cell:CLL F-actin® synapses at
baseline correlated with unfavorable PFS and grade 3 infections during ibrutinib-rituximab (Figure 2H;
supplemental Figure 7E). Together, these data demonstrate that ibrutinib-rituximab promotes
previously exhausted CD8" T cell activity, that could provide a gateway for immunotherapy.

91018 Here, we detected a reduced

Ibrutinib is known to reduce PD-1 expression on patient T cells.
frequency of PD-1-expressing T cell subsets during ibrutinib-rituximab, as well as PD-L1-expressing T
cells except for CD8" Tgy at 6-months (Figure 1D,E; Supplemental Figure 8). In contrast, T cell PD-1/PD-
L1 expression was relatively unaffected following FCR. This prompted us to investigate checkpoint
blockade in our cytotoxicity assay (Figure 2I-K; Supplemental Figure 9). Both ibrutinib-rituximab- and
FCR-exposed T cells were insensitive to anti-PD-1. Whereas anti-PD-L1"° increased anti-CLL T cell
cytotoxicity at the 6-month ibrutinib-rituximab time-point only, suggesting a narrow window for
checkpoint blockade activity."” This led us to investigate whether the T cell-engaging bispecific
antibody glofitamab (CD20xCD3)* could trigger improved cytolytic responses. T cells from all
ibrutinib-rituximab time-points tested up to 18-months showed increased anti-CLL T cell killing
following glofitamab treatment, compared to baseline (Figure 2L-N). However, T cells post-FCR did not
respond to glofitamab, including the later time-point. Overall, these data support the ability of

ibrutinib-based  therapy to  enhance T cell-mediated cytotoxicity induced by bispecific

immunotherapy.

In summary, our data highlights the importance of T cells during ibrutinib-rituximab, with higher T cell
numbers and rejuvenated cytotoxicity accompanying favorable clinical responses. Our exploratory
findings that increased levels of PD-1-expressing T cells, as well as PD-L1-expressing CLL cells prior to
therapy associate with longer PFS, suggests that ibrutinib-rituximab appears to capitalize on T cell-
mediated immune surveillance in patients. Strikingly, opposing associations were found in the

chemoimmunotherapy arm and T cells showed no functional improvement post-FCR. Previous studies



have reported CD8" T clonotype expansion during ibrutinib therapy,*? likely reflecting active
immunosurveillance. Taken together, tumor debulking and alleviation of T cell exhaustion during BTKi-
based therapy,”** may promote CD8" T cell activity. The switch from CD4" T cell:CLL interactions at
baseline to CD8" Iytic synapses during ibrutinib-rituximab supports this concept. Although ibrutinib-
rituximab did not increase Tyl numbers, we do not exclude ITK inhibition contributing to beneficial
immunomodulation.*® Furthermore, our longitudinal assays designed to evaluate changes in T cell
cytolytic function with therapy, revealed that revitalized cytotoxicity during ibrutinib-rituximab could
23-25

be maximized with glofitamab, further supporting combination immunotherapy approaches.

Overall, this report underscores the importance of trial-associated science to understand how BTKis

modulate T cells and supports the development of immunotherapy-based therapies.
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Figure Legends

Figure 1. Higher CD8" T cell numbers at baseline and early on-therapy associate with favorable PFS and
no infections during ibrutinib-rituxumab. (A) Schematic of the E1912 trial and biobanked PBMC

samples collected at baseline (B/L), 6 (6M) and 12 (12M) month time-points for correlative T cell
analysis. PFS, infection and MRD clinical outcome data collected. (B) Absolute numbers of CD8" Tey
cell subsets (CD45RA™ CCR7') for ibrutinib-rituximab (n=86 patients) and FCR (n=50) at the time-points
indicated. Patient data are presented as Box and whiskers (10-90 percentile) (log scale) plots. (C)
Percentage of PD-1" CD8" Tgy subsets during ibrutinib-rituximab (n=86) or FCR (n=50). (B,C) Data are
the mean = SEM, statistical analysis between time-points assessed using the Wilcoxon signed-rank

test. (D) Table schematic summarizes the significant correlations (Cox model) between
higher immune subset levels (flow cytometry, median values used as cut-off point) and PFS for
patients on ibrutinib-rituximab (n=88 patients with 13 experiencing

disease progression). Green rows (correlations with Hazard Ratio (HR) values < 1) indicate
higher immune subsets associated with longer PFS, while higher immune subsets associating with
shorter PFS (HR > 1) are highlighted in blue rows. Confidence intervals (95%) and P values shown.

(E) Schematic summarizing the significant correlations (Wilcoxon test) between immune subsets and
infection (any infection) during ibrutinib-rituximab (n=88 patients). Negative t-statistics (t.stat)
indicate higher immune subset levels in patients who did not develop infection (green rows). In

contrast, correlations with a positive t.stat

indicate higher immune subset levels in patients who developed infection (blue rows). (F) Kaplan-
Meier curves of immune subsets associated to good prognosis for the ibrutinib-rituximab arm.
Higher levels of % PD-L1" CD19" cells (High: 12 progression events/43 patients, Low: 1
progression event/43 patients), absolute number of PD-1'CD8" Ty (High: 3 progression
events/43 patients, Low: 10 progression event/43 patients) and PD-1°CD4" T cells (High: 3
progression events/43 patients, Low: 10 progression event/43 patients) at baseline associate with
longer PFS. Higher percentage of CD8" Tev (High: 3 progression events/42 patients, Low: 10

progression event/43 patients) at the 6-month time-

13



point associate with longer PFS. Absolute number data is referred to as “ab”. P values indicated.

*P<.05; ¥*P<.01; ¥**P<.001; ****P<.0001; n/s, not significant.

Figure 2. Ibrutinib-rituximab promotes CD8" T cell lytic synapse activity and supports immunotherapy-
triggered anti-CLL killing function. (A) lllustration of the autologous cytotoxicity assay using anti-CD3/-
CD28 activated T cells (cytolytic T lymphocytes, “CTLs”) from B/L, 6M and 12M time-points mixed with
target B/L CLL B cells (pulsed with superantigen as a model antigen) with flow-based quantification of
T cell killing function. (B) T cell-mediated CLL cell death comparing T cells purified from B/L, 6M and
12M time-point samples (n=30 patients per treatment arm). Data at 6M and 12M was normalized to
B/L levels to generate fold change values for each patient. (C) The association between patient’s T cell
killing function (12M ibrutinib-rituximab time-point, n=30) and infection status during ibrutinib-
rituximab (no infections versus grade 2 or 3 infections) (Wilcoxon test, P=.01). (D, E) Representative
confocal medial optical section and 3D volume rendered images of T cell:CLL conjugates formed
between patient T cells (B/L, 6M and 12M on-ibrutinib-rituximab (D) or FCR (E)) interacting with
autologous B/L CLL B cells (blue, CMAC dyed). Bar charts: quantitative relative recruitment index (RRI)
analysis of F-actin polarization (red, rhodamine phalloidin) in T cell:CLL conjugates (n=50 patients per
treatment arm). (F) Box and violin plots (Min-Max) showing the % of CD4" or CD8" T cell:CLL
conjugatesformed from the total/all T cell:CLL conjugates in B/L, 6M and 12M ibrutinib-rituximab

time-point samples (n=15 patients). Representative confocal images of CD8" (white) and CD4" (green)

T cell conjugates with CLL B cells (blue) at B/L versus on ibrutinib-rituximab therapy. (G)

Representative confocal 3D volume rendered images of Granzyme B (GrB, white) expression at CD8" T
cell synapses comparing ibrutinib-rituximab and FCR 12M time-point samples. (H) Kaplan Meier curve
showing the association between the strength of polarized F-actin CD4" T cell:CLL immune synapse
interactions in patient B/L samples and their PFS outcomes during ibrutinib-rituximab. Median F-actin
RRI values were used as a cut-off point to determine “weak” (< median RRI) versus “strong” (> median

RRI) CD4" T cell synapses (n=52 patients). Patients’ showing strong CD4" T cell:CLL immune synapses
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at B/L showed significantly adverse PFS (9 progression events/29 patients) compared to patients
showing weak CD4" T cell:CLL interactions (1 progression event/23 patients). (Cox model, P=.01,
HR=9.14 (95% Cl:1.15-72.47). Bar chart: F-actin RRI analysis of CD4" T cell:CLL conjugates at B/L and
representative 3D volume rendered confocal images comparing patients who progressed (n=7) or not
(progression-free, n=7) during ibrutinib-rituximab. (I) lllustration of the cytotoxicity assay following ex
vivo treatment of purified T cells (BL, 6M and 12M time-points) and B/L CLL cells with anti-PD-1 (aPD-
1) or anti-PD-L1 (aPD-L1) blocking antibodies (10 pug/ml) or isotype controls. (J, K) T cell killing function
against autologous B/L CLL cells examining T cells at B/L or at the 6-month ibrutinib-
rituximab (orange) or FCR (blue) time-points following ex vivo treatment with (J) aPD-1 or
isotype control (indicated using “-“) (B/L: n=6, ibrutinib-rituximab: n=13, FCR: n=15) or (K) aPD-L1 or
isotype control (- ) (B/L: n=6, ibrutinib-rituximab: n=23, FCR: n=13). (L) lllustration of the autologous
cytotoxicity assay incorporating the CD20xCD3 glofitamab or a non-binding antibody control. (M, N) T
cell-mediated CLL cell death using purified T cells from B/L, 6M, 12M or 18M time-points ibrutinib-
rituximab (M) or FCR (N) against target B/L CLL B cells following ex vivo treatment with
glofitamab (0.01 pg/ml) or non-binding antibody control (indicated as “-“) (B/L n=13; ibrutinib-
rituximab 6M, 12M n=6, 18M n=5; FCR 6M, 12M n=7, 18M n=5 patient samples). Data for all
cytotoxicity assay time-points were normalized to isotype antibody control (J, K) or non-binding
antibody control (M, N) treated sample levels and presented as fold change data for each
immunotherapy treated patient sample. *P<.05; **P<.01; ***P<.001; ****P<.0001; n/s, not
significant. Wilcoxon signed-rank test (B, D, E, J, K, M, N), multiple comparisons mixed effect ANOVA (F)
and Mann-Whitney U test (H). Mann-Whitney U test was used to compare cell death between
CD20-TCB-treated conditions at B/L, 6M, 12M and 18M. Original image magnification of x63,

scale bars: 10 um. Bar chart data presented as mean = SEM.
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