
This electronic thesis or dissertation has been 

downloaded from the King’s Research Portal at 

https://kclpure.kcl.ac.uk/portal/  

Take down policy 

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing 

details, and we will remove access to the work immediately and investigate your claim. 

END USER LICENCE AGREEMENT 

Unless another licence is stated on the immediately following page this work is licensed 

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ 

You are free to copy, distribute and transmit the work

Under the following conditions: 

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and 

other rights are in no way affected by the above. 

The copyright of this thesis rests with the author and no quotation from it or information derived from it 

may be published without proper acknowledgement. 

Processing of Cardiac Signals for Health Monitoring and Early Detection of Heart
Diseases

Bao, Xinqi

Awarding institution:
King's College London

Download date: 25. Dec. 2024



Processing of Cardiac Signals for
Health Monitoring and Early Detection

of Heart Diseases

Xinqi Bao

Supervisor: Dr. Ernest Kamavuako

Dr. Yansha Deng

The Department of Engineering
King’s College London

This dissertation is submitted for the degree of
Doctor of Philosophy

April 2023

1



Acknowledgements

Life is like a journey, and my PhD is also a significant adventure. During this period, I
had the privilege to explore and make my own contribution in the field of science and
technology. Besides, the experience of living abroad independently made me grow up
gradually. Although it feels like yesterday when I first arrived and started my project,
farewell always exists. Now, it is the time to summarize and prepare to embark on a new
journey. I dedicate this essay to all the people who helped and stood behind me. Without
you, it cannot be a success.

Although the 4-year PhD life was colorful, most of the academic work was still stressful
and challenging. So first of all, I would like to thank my supervisor Dr. Ernest. He guided
me patiently with wisdom to find the rhythm of research and helped me develop academic
skills. In addition, he gave me enough trust and opportunities to manage the laboratory,
participate in teaching, attend academic conference, try the entrepreneurship, and cultivate
comprehensive capabilities. These will benefit me for life.

The life of these years was not always smooth. The successful completion of my PhD
was also credited to the understanding and help of my family and friends. Therefore,
I firstly appreciate my parents that they can always support me firmly and be my solid
backing no matter what decision I made. I then thank my flatmates who are also my
colleagues, Dr. Fenghe and Yujia, to provide understanding and tolerance in my daily life,
and also inspire me in study. Dr. Xianqi, Yuzhi, Mengqi, Shilei and other PhD friends,
thank you all for always inviting me in holidays, so that I did not feel alone. Also thank my
lovely cat Matcha, who provided me a lot of happiness during the pandemic and always
released my anxiety when I worked late at night. These memories I will never forget.
Additionally, all the academics, colleagues and friends who worked and exchanged with
me were important components of my PhD life. Due to space limitations, cannot name
one by one. But I sincerely hope the friendship will last forever.

Where there are gains, there are also losses. For the people who were important and
have gradually disappeared in my life, thank Dr. Zhaozhang, you motivated me to do PhD
and made who I am now; thank Dr. Anqi, when facing the bottlenecks of research and
fatigue of life during the pandemic, you gave me mental support and encouragement to

2



persist in making myself better; thank Mingyi, your companionship has made me feel the
existence and enthusiasm in the simple life by rules.

Though I have experienced a lot of confusion and trough over the years, the memories
are all about sense of accomplishment and pride. The life journey still continues, and all
the experience and growth of these years will give me the capability and courage to face
all the pressures and challenges in future work and life.

3



Abstract

Cardiovascular disease (CVD) is the leading cause of mortality, accounting for 30% of
deaths worldwide. Early screening and real-time monitoring play a vital role in the de-
tection and taking necessary action to reduce the risk of worsening heart disease. The
initial suspicion often depends on the medical staff to listen to murmurs in the heart sound
(recorded as phonocardiogram, PCG) during auscultation, a sign of deflection from the elec-
trocardiogram (ECG) and other signs such as low oxygen saturation (SpO2) and changes in
respiration. However, these screening methods rely heavily on the physician’s auscultation
experience, the ability to interpret ECG signals, and the real-time monitoring of multiple
physiological signals. In the last decade, the rapid development of wearable devices and
machine learning, especially deep learning techniques, has enabled the miniaturised and
portable CVD screening devices in primary care.

Nonetheless, the existing devices mainly provide single physiological signal measure-
ment and cannot perform reliable assistive diagnoses, which limits the applicability of
these devices. As a result, it is of great value to integrate multiple signal measurements
with diagnostic capabilities on miniaturised screening devices in the future. For long-term
vision, the research aims at designing a multi-sensor miniaturised device for cardiac in-
vestigation and monitoring, however, this thesis aims at (1) developing machine learning
techniques to improve the computer-aided diagnosis of PCG and ECG; (2) assessing the
feasibility by experiments, utilising biomedical signal processing to eliminate the need
of physical respiration sensor. Specifically, the proposed objectives and outcomes are as
follows:

1) To assess the feasibility of localised ECG signal acquisition and analyse its
usability for PCG segmentation. We experimentally investigated the time property of
ECG and PCG signals at auscultation sites and the effect of ECG inter-electrode distance.
Results showed that ECG signal could be acquired stably at auscultation sites within a
small area (5 cm), which provides a theoretical basis for designing miniaturised integrated
ECG-PCG devices. Furthermore, the accuracy and robustness of PCG segmentation
have always been important issues affecting PCG recognition. The obtained temporal
relationships in this study will also make the device to perform reliable PCG segmentation
using ECG signals.
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2) To investigate the optimal use of deep learning input and propose a reliable algo-
rithm for PCG classification. The conducted research aimed at optimising the information
to improve the classification performance of deep learning. On recurrent neural networks
(RNNs), the study analysed input length’s influence on classification accuracy using Mel-
frequency cepstral coefficients (MFCCs). The results indicated that an overly short signal
length, such as one second, will weaken the network classification capability (reduce about
2-3% in accuracy). A comparative study was performed on deep convolutional neural net-
works (CNNs) to assess optimum time-frequency representations (TFRs) as input features
for PCG classification. The results showed that continuous wavelet transform (CWT) and
chirplet transform (CT) were slightly better than other TFRs including short-time Fourier
transfer (STFT), Wigner-Ville distribution (WVD) and Choi-William distribution (CWD).
Meanwhile, the appropriate increase of the CNN capacity and architecture optimisation
can improve the performance, while the network architecture should not be overly compli-
cated. Using prior knowledge and experience from the mentioned studies, A Hierarchical
Multi-Scale Convolutional Network (HMS-Net) was proposed and won the first prize in
the CinC/PhysioNet 2022 PCG classification challenge.

3) To design the deep learning algorithm for the detection of paroxysmal atrial fibril-
lation using single-lead ECG. A two-stage RNN network was proposed during the China
Physiological Signal Challenge 2021 (CPSC 2021) which had satisfying performance and
held the advantage of low computing load. It showed promising potential for terminal
equipment such as the miniaturized ECG-PCG device.

4) To provide accurate respiratory rate while eliminating the need of physical respi-
ration sensor. A study was conducted in the ECG-derived respiration (EDR) field to assess
the feasibility of extracting EDR from the localised ECG at the auscultation sites by exper-
iments. Results indicated that the ECG acquisition location barely affected the calculated
respiratory rate accuracy. This proved the possibility of providing reliable respiratory rate
from the ECG-PCG device without adding an extra sensor. In addition, the study was also
conducted to compare the effect of using embroidered and gel electrodes on the extraction
of EDR. Despite the slightly poorer performance of embroidered electrodes compared with
gel electrodes, embroidered electrodes showed potentials in future low-cost applications.
Stress test were also conducted for EDR by experiments. Current results indicated that
the artefacts caused by body movement affected greatly on the EDR extraction. Reduce
the swing of the ECG wires or using wireless ECG instead may be feasible solutions to
improve the performance.
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Chapter 1

Introduction

1.1 Background and Motivation

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, which accounts
for approximately 31% of the mortality [1]. According to World Health Organization’s
(WHO’s) report, the annual number of death in 2016 was 17.9 million, including around 3.1
million in China, 0.85 million in the USA, 3.9 million in Europe and 2.8 million in India,
etc [2]. If the trend continues, the number of mortality is probably estimated to 22.2 million
and the global cost on CVDs rises to 1,044 billion dollars by 2030. Currently, there are still
over 400 million people living with CVDs, this greatly affects the national productivity
and cause economic burden [3]. Besides, it is noteworthy that over three quarters of death
occur in the low and middle-income countries (LMICs) where the health systems are weak
and lack of standardized protocol-based management, essential medicines, monitoring
equipment, and medical staffs [4]. In LMICs, the CVDs risk assessments are not offered
in many primary care facilities, so patients may miss the best time for diagnosis [2].
This directly increases the difficulty and cost of treatment. Therefore, WHO proposed
‘HEARTS technical package’ in 2016, which highlights the importance of primary health
care in CVDs prevention [5]. In the high income countries, though the medical condition
is much better, it is still a huge expense in the primary care. According to ‘European
Cardiovascular Disease Statistics 2017 edition’, the cost of primary care in the EU is
approximately 9.5 billion euro in 2015. In the UK, it is around 1.65 billion euro [6].
Therefore, more automatic, precise and cheaper pre-diagnosis device or system can be of
great help to improve the detection onset of heart conditions and reduce the cost in primary
care. PCG and ECG are the two major signals of interest for the CVDs diagnosis. This
thesis focuses on using bio-medical signal processing and machine learning techniques to
improve the two cardiac signal monitoring and computer-aided diagnosis for the future
low-cost and portable devices.
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1.2 Primary Signals

1.2 Primary Signals

1.2.1 Phonocardiogram

Auscultation is the most common and effective way in early screening, which plays a vital
role in CVD detection for necessary action to lower the risk of worsening heart diseases.
The physicians use a stethoscope to listen to the murmurs in heart sound at different
auscultation sites of the patients and make pre-diagnosis. Heart sound is produced by the
closure of a valve or tensing of a chordae tendineae, and the visualized signal of heart sound
is PCG as shown in Figure 1.1(a). In healthy conditions, the first heart sound (S1) and
second heart sound (S2) are the two main components in the waveform, representing the
sound of mitral and tricuspid valve closure (S1) and the closure of the aortic and pulmonic
valves (S2), respectively. In addition, the third heart sound (S3) and fourth heart sound
(S4) are also innocent components seen on children’s PCG but rarely seen in adults. They
indicate the sound caused by an increase in ventricular blood volume and an atrial gallop
by blood being forced into a stiff ventricle. Figure 1.1(b) shows the full-band frequency of
this heart sound. The properties of the normal heart sound components are summarized in
Table 1.1.

Table 1.1 Heart Sound Components and their properties.

Heart Sound S1 S2 S3 S4
Duration (ms) 100–160 80–140 40–50 40–50

Frequency (Hz) 30–50 40–70 <30 <20

Occurrence
Sound of mitral Sound of aortic The sound caused Sound of an atrial

and tricuspid and pulmonic by an increase in gallop produced by
valve closure valve closure ventricular blood blood being forced

volume into a stiff ventricle

Pathological heart sounds differ from healthy ones due to the murmurs primarily caused
by the abnormal heart structure, such as turbulent blood flow caused by narrowed or leaking
valves [7]. Murmurs can occur in the systolic interval or the diastolic interval, reflecting
different types of CVDs, e.g., the most common mitral or aortic stenosis murmurs can be
seen during systole as shown in Figure 1.1(c) or Figure 1.2 (a) [8]. Figure 1.2 includes
some common types of murmurs with their spectrums. The frequency band of murmurs can
be ranged from 20-1000 Hz which is overlapped with heart sound, lung sounds (50-1000
Hz) and bowel sounds (150-2000 Hz) [9, 10]. In addition, there are usually ambient noise
and artifacts such as friction and body movement mingled in the PCG recording. Therefore,
it is challenging to identify the murmurs especially when the heart lesion is in early stage.

As shown in Table 1.1, the heart sound components are short in time and low in
frequency, and its principal frequencies are at the lower end of the human ear (20–20k Hz),
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1.2 Primary Signals

Fig. 1.1 (a) Visualisation of a healthy heart sound signal with its component locations. (b)
Spectrum of the healthy heart sound signal. (c) Murmurs in the heart sound. (d) Spectrum
of the heart sound with murmurs.

which is not sensitive to hear. Therefore, traditional auscultation has natural shortcomings.
Furthermore, in the heart sound analysis, murmurs are not always clearly visible, this
also causes misdiagnosis. As a result, it relies significantly on the physician’s listening
ability and clinical experience. Experienced cardiologists can distinguish between 73% and
80% accuracy of pathological murmurs, while inexperienced new physicians or trainees
can distinguish 20–40% accuracy [11, 12]. A misdiagnosis leads the patient to miss the
best time for treatment or increase the cost due to unnecessary further detection (e.g.,
electrocardiogram, cardiac ultrasound, and computerised tomography).

Computer-aided heart sound analysis has great potential to improve auscultation accu-
racy by overcoming human hearing limitations and clinical experience. However, there
are still a lot of challenges to be addressed before practical use. For example, not robust
heart sound segmentation techniques, unsatisfying classification accuracy in practical use
or imbalanced datasets for training machine learning models due to the limitation of data
acquisition. The more detailed review and research gap are presented in Section 2.1.
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1.2 Primary Signals

Fig. 1.2 (a) Mid-systolic murmur. (b) Holosystolic murmur. (c) Early-systolic murmur. (d)
Early-systolic & early diastolic murmurs. (e) Ealy-diastolic murmur.

1.2.2 Electrocardiogram

ECG is another commonly used approach in cardiac monitoring and diagnosis. It represents
the electrical activity of the heart and its waveform is as shown in Figure 1.3. The whole
electrical process starts with the spontaneous impulse generated at the Sinoatrial node
(SA node), then propagates to the atrioventricular node (AV node), causing the squeezing
of the atria as represented by the P wave. Afterwards, the electrical signal is transmitted
to the His bundle and Purkinje fibres, causing the contraction of the ventricles. The
ventricles are repolarized and ready for the next heart cycle. The QRS complex indicates
the depolarization, and the T wave shows the repolarization of the ventricles, respectively.
Thus duration and amplitude of these waves provide significant information for diagnosis
of heart conditions.

In clinical diagnosis, 12-leads ECG is used to provide more information of the electrical
propagation from a larger surface area surrounding the heart. With the ECG signals from
different angles and directions, the cardiologists can identify and locate the pathological
changes on the heart, such as the bundle branch blocks, localised conduction disorder,
premature beats, bradycardia, tachycardia, etc. In the portable and miniaturized devices,
the clinically used 12-lead ECG is no longer suitable, reduced or one lead ECG can
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1.2 Primary Signals

Fig. 1.3 A complete ECG cycle along with PCG.

still provide accurate heart rate to check various arrhythmias and can be used for PCG
segmentation according to the time relationship as shown in Figure 1.3. In general, the S1
onset is with QRS complex which are related with the procedure of ventricles contraction
and the closure of the bicuspid (mitral) and tricuspid value after the contraction. S2 follows
T wave which are related with the procedure of blood pumping out of the heart by aortic
and pulmonic valves while ventricles repolarize for next heart cycle.

In this project, ECG is mainly studied for heart rate monitoring and PCG segmentation
on a miniaturized portable device. Furthermore, the diagnostic capabilities of single
lead ECG signal is explored using machine learning techniques. The detailed research
motivations and objectives on ECG are given in Section 2.2.

1.2.3 Respiratory Rate

Respiratory rate (RR) is another physiological indicator focused in this project. It indicates
the breaths per minute, which is commonly used as an early warning sign in disease
detection. The normal RR of a healthy adult at rest is between 12–16 bpm [13]. Compared
with adults, children’s RR is higher. For an infant, it ranges from 30–60 bpm, and with
growth, the RR gradually reaches the adult level [14]. The resting RR of older people
may slightly increase. For the healthy independent seniors, it is 12–20 bpm, and those
who need long-term care can reach 16–25 bpm [15]. Generally, a resting RR outside of
these ranges may indicate a potential disease. An increased RR (tachypnea) may suggest
fever, dehydration, asthma, chronic obstructive pulmonary disease, heart disease, etc. [16].
A low RR (bradypnea) may reveal the use of narcotics, alcohol intake, abnormal body
metabolism, sleep apnoea, etc.
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1.3 Thesis Organization

Usually, the RR is calculated by counting the number of chest undulations in one
minute outside of intensive care [17]. However, this method is time-consuming and cannot
do continuous monitoring. In addition to manual counting, there are also devices for
measuring RR, such as the widely used chest strap or impedance-based pneumography
device [18]. Though, wearing a chest strap causes a sense of pressure when breathing, so
it is not suitable for long-term monitoring. Therefore, a portable and wearable method of
automatic RR measurement is in great need to effectively monitor breathing in real-time
and detect the first sign of physical deterioration in a timely manner. As part of the cardiac
monitoring research, studies can be conducted on using bio-signal processing techniques
to acquire RR without extra sensors, such as extracting from ECG and PCG. This can
contribute to design small-scale ECG-PCG integrated device and providing accurate RR
for monitoring or assessment. In the meantime, it can be of great commercial value for the
clinic and other researchers for its capability to measure multiple physiological parameters
effortlessly.

1.3 Thesis Organization

This thesis includes eight chapters in total, of which Chapter 4, 5, 6 and 7 are the main
technical chapters involving the conducted research. In this chapter, the background,
motivation, and epidemiology of this project were discussed. Furthermore, the mainly
focused physiological signals including PCG, ECG, and respiration were introduced. Their
potential research directions were also indicated including the PCG and ECG classification,
ECG for PCG segmentation, and respiratory signals extraction from ECG.

Chapter 2 provides a more detailed and comprehensive literature review of the above
potential research directions to clarify the research state of the art, and provide a theoretical
basis for the proposed research objectives in Chapter 3.

Chapter 3 is concise that highlights the research questions in the project and the research
strategy to answer them. This aims to facilitate readers to quickly understand and read.

Chapter 4 presents the analysis of the temporal relationship between ECG and PCG
signals at the auscultation sites. The purpose of this study is for a miniaturized ECG-PCG
integrated device to simultaneously provide two signal measurements while performing
accurate and robust PCG segmentation using the auscultation sites localised ECG as
reference.

Chapter 5 is the most informative chapter of this paper. It discusses the input optimiza-
tion of deep learning networks to improve the accuracy of PCG signal classification. The
effect of input signal length on different RNN networks are analysed, and the performance
of different time-frequency representations (TFRs) as CNN input are compared. Using
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1.3 Thesis Organization

the prior knowledge gained in the conducted research, the proposed winning algorithm in
PhysioNet 2022 PCG Classification Challenge is presented with its result.

Chapter 6 includes the study of ECG classification using deep learning. It presents
the proposed two-stage RNN for paroxysmal atrial fibrillation detection during China
Physiological Signal Challenge 2021.

Chapter 7 describes the research on EDR technology. The aim is for the future minia-
turized ECG-PCG integrated devices to provide reliable respiration rate while eliminating
the necessary of extra respiratory sensors. Therefore, the effects of using auscultation
site localised ECG to extract respiratory signals and the feasibility of using embroidered
electrodes were studied.

Chapter 8 concludes the thesis and discusses the possible research questions for future
work.

24



Chapter 2

Literature Review

Following the focused signals mentioned in Section 1.2, this section illustrates the review
outcome in the PCG and ECG classification, including the analysis system and existing
classification methods. For Respiratory Rate, the review is conducted on the extracting
approaches from synchronous ECG signals. By reviewing these information, the research
gaps and objectives is concluded in Chapter 3.

2.1 PCG Signal Classification

Computer-aided PCG analysis is of immense importance and potential to improve auscul-
tation accuracy. It can overcome the clinical experience and listening limitation by using
machine learning algorithms to learn the diagnostic ability on large amounts of data. A
typical PCG signal classification procedure is as shown in Figure 2.1, including filtration,
segmentation, feature extraction and classification.

Fig. 2.1 Typical steps for PCG signal classification.
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2.1 PCG Signal Classification

2.1.1 Filtration

In the recording of biomedical signals including PCG signals, the ambient noise and
artifacts such as friction and body movement are unavoidable. Besides the external noises,
the internal noises from the device circuit also exist, such as the white noise and powerline
interference. Therefore, the filtration is needed to reduce these noises. In general, the
filtration methods can be basically divided into: (1) linear filters [19–22] and (2) wavelets
[23–28]. Actually, there is no widely recognised better method or settings for filtration.
Because the selection of filtering method and the filter settings should depend on the
acquisition settings and quality of the data. However, it is worth noting that the premise
of filtration is avoiding signal distortion. Over-filtered signals may lose the diagnostic
information. For instance, the lung sounds and bowel sounds are noises coupled with
several types of murmurs in the frequency bands. As a result, these noises cannot be
eliminated completely and separately while the murmurs retained. On the contrary, under-
filtered (lower order or broader frequency band) can barely make efforts on the subsequent
processing.

2.1.2 Segmentation

In standard signal processing, segmentation means cutting the signal into segments by
moving windows. In contrast, heart sound processing means breaking the signal into heart
cycles and indicating the heart sound components. To avoid confusion, the ‘segmentation’
in this thesis means the conventional heart sound segmentation, and other verbs are used to
describe signal sliding.

During segmentation, the heart sound components including S1, S2, systole and diastole
can be located from the PCG signals. The success of segmentation can directly affect
the extraction of common features, such as the ratio of systolic to diastolic interval in the
time-domain, median frequency of the systole in the frequency-domain. Subsequently,
the final classification can not be accurate with failed segmentation. All the proposed
segmentation methods can be basically grouped into: (1) ECG reference based methods
use the R-peak and T wave to determine the locations of the heart sounds. It highly
requires the simultaneous recording of the ECG and PCG signals [29, 30], but robust
in performance and computationally efficient; (2) Envelope-based methods are more
commonly used techniques in non-ECG based segmentation. They use the signal energy to
do morphological transformation [31–33], but their performance decrease in the presence of
large environmental noise and murmurs; (3) Temporal-spectral parameters based methods
use the time-frequency domain characteristics of the heart sounds, murmurs, and noise to
segment the heart sound [34, 35]. Same as envelope-based methods, their performances on
signals with murmurs and noises are not satisfying; (4) Wavelet based PCG segmentation
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2.1 PCG Signal Classification

methods are the evolution of temporal-spectral parameters based methods [36–39]. They
decompose the signals to emphasize the heart sounds and suppress the effects of murmurs
and noises. The major challenge of wavelet-based segmentation method is to select
the appropriate filters, decomposition level and required sub-bands for heart sound and
murmurs detection; (5) Hidden Markov models (HMM) are also used for segmentation in
recent years [40, 41, 22], and they have outstanding performance in low signal-to-noise
ratio. At present, there is no widely recognized sufficiently effective PCG segmentation
method, but with the presence of simultaneous ECG recording, ECG-based segmentation
is more desirable for practical applications due to its robustness and simplicity.

2.1.3 Feature Extraction

Feature extraction is an important stage in any classification work, which can directly affect
the performance. For PCG classification, there are various features that can be selected.
For instance, from the morphology of the signal, features related with the component
amplitude and appearance can be extracted in the time domain, such as the mean and
standard deviation of S1, S2, systole and diastolic interval durations, the ratio of single
beat’s systole and diastole durations, and the ratio of the mean absolute amplitude during
systole to that during the S1 period in each heart beat [42, 43]. After converting the signal
into the frequency domain by Fourier transform, its frequency information such as max,
mean or median frequency value of the components, discrete energy spectrum, spectral
energy in specific frequency bands can also be used as features [44–47]. It is worth noting
that the extraction of these time domain or frequency domain features greatly rely on
the successful segmentation. In the time-frequency domain, both time and frequency
information are provided at the same time which benefits a wide range of signal analysis,
such as optics, acoustics, and biomedicine [48]. There are various methods that can convert
the signal from 1-D time domain into 2-D time-frequency domain, including short-time
Fourier transform (STFT), continuous wavelet transform (CWT), Chirplet transform (CT)
and Wigner-Ville distribution (WVD). The acquired time-frequency representations (TFRs)
after conversion are used as features for heart sound classification [49–51]. However, due
to the large size of TFRs as input, they are normally used in deep learning, such as
Convolutional Neural Networks (CNNs). Therefore, mel-frequency cepstrum coefficients
(MFCC) and wavelet are more commonly used features [28, 49, 52–56]. They can be
somehow understood as simplifying the frequency domain information and only retaining
the effective coefficients among the frequency bands. As a result, they can hold both
information from time and frequency domain while retain effective features. In general,
there is no widely-recognized best feature for heart sound classification, and the features
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2.2 ECG Signal Classification

are sometimes used in combination. The selection of the features depends more on the
classification method.

2.1.4 Classification

Classification is to use the machine learning methods to classify the input patterns into
specific classes. For PCG classification, it is the finial step to decide the health condition
of the heart based on the extracted features. In general, the mainstreamed classification
methods can be divided into two types: (1) traditional machine learning, including lo-
gistic regression [57], random forest [58], K-nearest neighbours (KNN) [49, 52, 57, 59],
regression tree [49], isolated self-organizing map (ISOM) [53], support vector machine
(SVM) [52, 55, 57, 60–62] and HMM [63]; (2) neural network based approaches, such
as artificial neural network (ANN) and its variants [28, 50, 51, 54, 64–70]. In recent
years, with the development of neural networks and deep learning, they are more used
for PCG classification. Compared with traditional machine learning, they can weaken the
dependence on segmentation and feature extraction, thereby enhancing the robustness of
the algorithm. Moreover, they also performed promising classification in terms of accuracy.
Therefore, an important research question of this thesis is to explore how to optimize the
input of deep learning to improve the classification accuracy.

2.2 ECG Signal Classification

ECG signal contains important diagnostic information on cardiovascular disease and
cardiac arrhythmia, therefore, accurate recognition and classification of ECG signal is a
hot topic in the biomedical research. Nonetheless, there are still remaining problems to be
addressed from practical use in the automatic classification. Because the morphological and
temporal characteristics of the ECG signals are significantly different from patient to patient
and varies by physical conditions[71–73]. For instance, sometimes the morphologies are
different for the same disease between patients or two different diseases show the same
characteristics on ECG signals.

Furthermore, compared with PCG, ECG signal has stronger monitoring significance.
It is often used for long-term detection such as bedside monitoring or wearable online
health monitoring. However, in the detection of abnormal heartbeats, each heart cycle in
the ECG needs to be analysed, which can be cumbersome and time-consuming for human
interpretation. This loses the timeliness of monitoring. Besides, the human interpretation
also requires deep knowledge in the cardiology and clinical experience. Therefore, reliable
computer-aided algorithms are needed to improve the situation.
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2.2 ECG Signal Classification

The typical ECG signal classification procedure is similar to PCG classification, in-
cluding pre-processing, feature extraction and classification.

2.2.1 Pre-Processing

In the ECG recordings, there are always artifacts mingled with the raw signals. Therefore,
the first step is to reduce the noise. The commonly existing noise include: (1) Powerline
interference, which is 50 (or 60 Hz) within 1 Hz frequency band. (2) Baseline wander,
which is normally caused by the breathing induced chest movement. Its frequency is
between 0.15 to 0.3 Hz. (3) Electrode contact noise, which is the result of deficiency
electrode-skin contact and unstable impedance. This can usually result in complete
distortion of the signal. (4) Muscular interference, which is generated by the muscle
contraction apart from the heart. The frequency band is between 0-500 Hz and dominant
in 50-150 Hz. (5) Instrumentation noise, which is produced measuring device internal
circuit. In the filtering stage, a band-pass filter is applied. The recommended frequency
range is 0.5-40 Hz [74], but other frequency bands such as 1-40Hz [75], 1-30Hz [76], and
0.1-100Hz [77] were also used in the previous studies.

After ECG filtering, resampling and normalization are two optional steps depending
on the data sets. Resampling aims to reduce the computational cost, and for ECG, the
signals can be downsampled to as low as 100 Hz without loss of useful information. Other
downsampling frequency such as 125 Hz [78], 250 Hz [79] or 360 Hz [80] were also
applied. Normalization can avoid amplitude biases between signals and DC offset effects.

2.2.2 Feature Extraction

R peak detection is the first and vital step in the feature extraction. The located R peaks
can provide the heart rate which is a important indicator for arrhythmia screening, and can
also help in the further detection of other ECG components. The most primitive method of
is using past knowledge to set threshold on ECG amplitude to detect R-peaks, which is
obviously not accurate and robust enough when facing noises, pathiological signals and
specific ECG leads. Afterwards, methods include wavelet transform based methods[81–86],
mathematical morphology based methods [87, 88], digital filtering methods [89–91], and
Shannon energy envelope-based methods were proposed [81, 92–95]. The Pan-Tompkins
method is the most well-known benchmark which is the combination of band-pass filter,
derivative filter and squaring to detect the R peaks [89].

In literature, various features has been proposed according to different analysis or
classification aims. Overall, these features can be divided into: (1) morphological features,
most are based on QRS, including R wave duration, R peak amplitude, QRS wave area,
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QS amplitude difference, QR slope, etc. [81, 96–104]; (2) statistical features, such as
maximum, minimum, mean, standard deviation, energy, entropy, kurtosis and skewness
[72, 105–110]. They are effective in analyzing the level of complexity and the distribution
in the time-series; (3) wavelet based features, which are powerful in the extraction of
time-frequency localization property [98, 111–115]. The advantage of the wavelet is
preserving both approximations and details during full sub-band decomposition which
can benefit the analysis; 4) other features, such as power spectral density-based attributes
[112, 113, 116, 117], auto-correlation analysis-based features [75, 118] and TFRs [119–
122] were also applied in the previous research. These features can be used independently
or in combination according to the detection purposes.

2.2.3 Classification

The analysis and classification of ECG can be used for disease diagnosis, heartbeat type
detection, biometric identification, emotion recognition, etc. The review in this part mainly
focused on the first two aims. In general, the classification methods used for ECG are
basically the same as that of PCG. The main differences are the input features. Therefore,
mainstreamed ECG classification methods can also be divided into: (1) traditional machine
learning, including linear discriminant analysis [79, 99, 109], KNN [79, 109, 123, 124],
decision tree [79, 125–127], SVM [128–131], bayesian [126, 129], linear regression [132],
logistic regression [109, 125, 133], etc; (2) neural network based approaches, including
CNN [119–122], recurrent neural network (RNN) [116, 134–136], fuzzy clustering ANN
[137–139], time-delayed neural network [140], generalized regression neural network
[141], etc. Since most of the previous studies were with different specific research aims
and applied different databases, it is impossible to objectively compare the performance of
these classifiers only by review. However, deep learning methods have a broader research
space due to their powerful feature mining ability that even raw ECG signals can be used
as input. Therefore, this thesis also focuses on the use of deep learning for one lead ECG
recognition.

2.3 ECG Derived Respiratory Rate (EDR)

In critical care (or intensive care unit, ICU), RR is also a vital parameter in the monitoring
of respiratory failure. It could be measured by the gas exchange using a ventilator,
capnography monitors, or spirometry devices, and chest electrical activities using electrical
impedance tomography (EIT), inductance plethysmography, or impedance pneumography
[142, 143].
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2.3.1 Respiration Rate Measurements

The current measurement of RR outside of the critical care still relies on manually counting
the chest undulations in one minute by the medical staff [144]. Although this practice
is easy to conduct without using extra medical devices, it has some drawbacks such as
(1) low accuracy. Subject’s awareness, poor visibility of a breath, and other interruptions
which greatly affect the measurement. Besides, in practice, the manual counting is not
completed in one full minute by the medical staff due to the heavy workloads. They usually
multiply the 30 s or 15 s measurement by 2 or 4 to assess the RR, which leads to further
inaccuracies [145]; (2) it is labour-consuming, as the medical staff can only conduct the
measurement on one patient at one time; (3) the measurement is not continuous. As an
early sign of physical deterioration, real-time and continuous monitoring can help alert the
staff to emergencies, such as heart failure, shock, diabetic coma. However, the intermittent
measurement cannot provide such information timely, so the RR is always underutilized.
External devices to automate the RR measurement can remedy the deficiencies associated
with manual counting to a certain extent. Despite this, there are still respective limitations
to each method. For the gas exchange-based techniques, they are accurate methods
to reflect the respiratory condition, but have no portability, which requires the patients
breathing in the external tube of the devices. So, these techniques are generally only
available in critical care [18]. The bioimpedance-based techniques such as impedance
pneumography can measure the electrical activities on the chest during inhalation and
exhalation. However, it requires the patients to wear a tight chest strap, which may cause
discomfort [146]. Additionally, patient movement, bad contact, and obstruction of breath
can cause inaccurate measurements. Acoustic sensors are also used in the measurement of
RR, however, their performance is affected by the environmental noise and skin friction
[147]. Therefore, wearable devices for automatic RR measurement are in great need to
effectively monitor the breath in real-time and detect the first sign of physical deterioration
promptly.

2.3.2 EDR Principle and Extraction Methods

Extracting respiratory signals from the ECG signals is a potential surrogate measurement
of RR. In recent years, ECG devices are becoming miniaturized, and sensors have been
integrated with sport bands, smartwatches, and other portable monitors. This provides
the feasibility and potentiality to design wearable ECG-based RR measurement devices.
The first study on respiration-induced ECG variation was proposed by Einthoven et al.
[147]. Flaherty and Riekkinen further analysed the respiration influence on children and
cardiac patients by isopotential surface-mapping and vectorcardiography (VCG) [148, 149].
Nowadays, it is well known that respiration-induced ECG variations are caused by (1)
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2.3 ECG Derived Respiratory Rate (EDR)

Respiratory Sinus Arrhythmia (RSA) that refers to the cyclic variation that the heart rate
accelerates during inhalation and decelerates during exhalation [150]. It can be reflected
in the ECG signals as the frequency modulation (FM) of the R-R interval between the R
peaks as shown in 2.2 (a). (2) Respiration-induced electrical axis rotation. During the
inspiration, the filling of the lungs stretches the heart apex towards the abdomen, and in
expiration, the emptying of the lungs compresses the heart towards the breast. Due to the
displacement of the heart, the electric cardiac vector will change during respiration [151].
In the ECG signal, this process can be indicated as amplitude modulation (AM) of the
R peaks as shown in 2.2 (b). (3) Baseline Wander (BW) is the artefact caused by body
movement, including breathing. The expansion and contraction of the thoracic cavity due
to respiration cause a slow and undulating baseline in the ECG signals as depicted in 2.2
(c) [152].

Fig. 2.2 (a) Respiratory Sinus Arrhythmia (RSA) induced frequency modulation (FM). (b)
Electrical axis rotation caused amplitude modulation (AM). (c) Baseline wander (BW)
caused by chest movement.

Several techniques to extract respiratory signals from the ECG, the so-called ECG-
derived respiration (EDR), have been proposed according to the respiration-induced ECG
variation mentioned above. Some techniques are based on multi-leads ECG signals [151–
155], while others attempt to extract respiratory information from one-lead ECG [156–161],
as well as direct band-pass (BP) filtering of the ECG within the respiratory frequency
band [152, 159, 162]. For the multi-leads EDR techniques, they mainly use the rotation
angles of VCG from multiple ECG leads, while the one-lead EDR methods focus on the
features related to the QRS complex, such as amplitude, interval, area, slopes. There is
no consensus on which one is better in the performance; however, for a wearable device,
one-lead ECG has the advantage in the system complexity and size. Since this thesis aims
at the future wearable ECG-PCG integrated device, the current EDR research is mainly
focused on standard ECG leads, especially lead II which is poor on portability. Therefore,
it is necessary to investigate whether measuring ECGs at unconventional locations, such as
chest with shortened electrode distances affects the EDR extraction.
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2.4 Review Outcome

In Section 2.1 and 2.2, the steps of PCG and ECG classification and related approaches
are introduced in detail. For PCG classification, segmentation is an important step in
traditional machine learning methods. It directly affects the performance of signal feature
extraction and classification. PCG segmentation is still an open question in the heart
sound analysis. ECG can be a reliable and stable reference for PCG segmentation. When
there are murmurs or noise underlying within the PCG signals, signal processing methods
for segmentation are normally not robust enough. As a result, it may affect the feature
extraction and classification performance. Therefore, integrating ECG with the system can
be an effective approach to solve this issue. However, it is unclear how is the auscultation
localized ECG like and there is no existing database to analyze. Considering that there is
electrical axis deflection when ECG signals are collected at different body positions, and
there may also exist time delay in the propagation of heart sounds on the chest. Therefore,
in the future miniaturized PCG-ECG integrated device, understanding and verifying the
time relationship of the two signals is the prerequisite to ECG for PCG segmentation.

In terms of PCG classification algorithms, the research has been conducted for decades.
Many machine learning approaches have been proposed, however, due to accuracy, porta-
bility and robustness issues, these is still distance from practical deployment of these
algorithms. In recent years, with the development of deep learning and advanced comput-
ing hardware, using deep learning to improve the recognition of heart sounds is a promising
solution. At present, deep learning methods mainly use spectrogram by STFT and scalo-
gram by CWT as inputs. It is worth studying to explore more effective input features or
optimize inputs to improve the classification performance. In addition, during the review,
we also found that the use of neural networks in many studies is not that reasonable. Some
networks are too small to extract sufficiently deep features and fully fit the input samples,
or excessively use complex neural networks, resulting in huge computing load which does
not have the potential for embedded or local device. Therefore, designing more reasonable
neural network for PCG classification is also a direction we can study.

Similar issues exist in ECG classification. Compared with PCG, which is mainly aimed
at diagnosis, ECG has more monitoring capacities and can be used for long-term detection
of cardiac lesions that are not obvious in the early stage. Furthermore, since ECG can
reflect a variety of heart conditions, it is necessary to design algorithms for specific heart
conditions. Therefore, the research on ECG classification can focus on paroxysmal heart
conditions.

2.3 introduced the respiration monitoring methods and the principle of EDR technology.
Respiratory rate is a critical indicator in the cardiac monitoring, and it is necessary to
be provided by the screening system. To make the device low-cost and miniaturized,

33



2.4 Review Outcome

it is possible to use EDR techniques rather than extra respiratory sensors to extract the
respiratory signal. At present, the main EDR researches are aimed at the conventional 12-
lead ECG. For the miniaturized PCG-ECG integrated equipment, the use of localized ECG
for EDR has not been studied. So, it is also necessary to verify its feasibility. Moreover,
conventional 12-leads ECG signals are collected by gel electrodes, which is not suitable for
future portable devices. Therefore, selecting appropriate sensor materials is also a question
worth researching. In addition, the researches on EDR are mainly at static, and there are
not many studies under the stress test. So, research is also needed.
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Chapter 3

Thesis Objectives and Research Strategy

This Chapter briefly summarizes the thesis aim, presents the objectives proposed after the
review in Chapter 2, and introduces the opted research strategy to address these objectives.

3.1 Aims and Objectives

As stated previously, early cardiac screening is of significant importance to prevent the
lesions deterioration. However, the accuracy of manual auscultation by physicians is
not high enough at present [38, 12]. As a result, most of the diagnosis rely on the
secondary screening modality such as ultrasound and computed tomography scan. But
these detections are not easily accessible, especially for the people in rural place and
low- and middle-income countries. In addition, these detections also require professional
physician interpretation. For large-scale cardiac screening, these detections not only
increase the cost of patients, but also consumes the medical resources of the hospital.
Therefore, a low-cost and portable system is particularly needed for improving the early
cardiac screening. The system can have trustworthy computer-aided heart sound analysis
capabilities, and can provide measurement of various physiological signals and indicators,
making early screening more efficient and reliable. This thesis aims at advancing the
realization of this system from two aspects : (1) developing machine learning techniques to
improve the computer-aided diagnosis of heart sound and ECG; (2) assessing the feasibility
by experiments, utilising biomedical signal processing to eliminate the need of physical
respiration sensor.

As discussed in Section 2.4, the proposed specific objectives includes:
1) To assess the feasibility of localised ECG signal acquisition and analyse its usabil-

ity for PCG segmentation.
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2) To investigate the optimal use of deep learning input and propose a reliable algo-
rithm for PCG classification.

3) To design the deep learning algorithm for the detection of paroxysmal atrial
fibrillation using single-lead ECG.

4) To provide accurate respiratory rate while eliminating the need of physical respi-
ration sensor.

3.2 Overview of Research Strategy

Since there is no existing database of auscultation localized ECG. The first objective can
be addressed by experiments to collect our own ECG-PCG data to test the feasibility of
measuring localized ECG and analyze the ECG-PCG time relationships to figure out how
the localized ECG can be used for PCG segmentation (Study I, Chapter 4).

The acquisition time period of pathological signals is quite long, so it is necessary to
use open-sourced database such as PhysioNet which has relatively large amount of PCG
data. The second objective is addressed by using these databases or attending world-class
challenges in this area (Study II, Study III and Study IV, Chapter 5).

The third objective is addressed same as the second one by attending challenges. This
solves the ECG data issue and can insure the research is meaningful (Study V, Chapter 6).

The forth objective is to assess the feasibility of using localized ECG for EDR. Since
there is no existing suitable database, this question is addressed by experiments to collect
data for analysis. Besides, for recycle use of the ECG sensors, we also explored using
embroidered electrodes for EDR. The stress test is also conducted to verify the performance
(Study VI, Study VII and Study VIII, Chapter 7).
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Chapter 4

Analysis of ECG and PCG Time Delay
around Auscultation Sites

4.1 Introduction

Heart sound auscultation and Electrocardiogram (ECG) are the two most common and
effective ways in the primary diagnosis of heart diseases. Their signal waveforms, phono-
cardiogram (PCG) and ECG can reflect the mechanical and electrical activities of the heart,
respectively. The PCG signal can reveal the physiological or pathological conditions of
cardiac valves and chambers to diagnose the structural heart disease (SHD), such as pro-
lapsed mitral valve, ventricular septal defect (VSD), tricuspid regurgitation. The ECG can
help to detect diseases associated with impulse conduction, such as arrhythmias, coronary
heart disease, heart attacks, etc. [163].

The normal cardiac cycle relies on the cooperation of electrical activity and mechanical
contraction of the atria and ventricles of the heart. The whole process is initially stimulated
by the spontaneous action potential in the sinoatrial (SA) node (represented as P wave
on ECG), then propagated to the atrioventricular (AV) node causing the atria contraction
and the blood is pumped into ventricles and the ventricular depolarization (represented as
QRS complex on ECG) begins. Once the ventricular pressure becomes greater than the
atrial pressure, the atrioventricular valves close (represented as S1 onset on PCG) and the
ventricular depolarization is finished. The continuation of the electrical signal goes through
the bundle of His to the Purkinje fibres causing the ventricle contraction and the blood
is pumped out of the heart. After the blood pumping out, the ventricles are repolarized
(represented as T wave on PCG) and relaxed. The closure of the semilunar valves cause the
S2 on the PCG. Therefore, the PCG and ECG are closely related in the time domain [164].

In order to fully utilise the diagnosis power of the PCG, it is of utmost importance
to segment S1 from S2. As described in 2.1.2, there is no widely recognized best PCG
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segmentation method, but with the presence of simultaneous ECG recording, ECG-based
segmentation is more desirable for practical applications due to its robustness and sim-
plicity. In the previous ECG-base PCG segmentation studies, S1 onset is conventionally
considered to occur after R peak [165–168]. [167] detailedly summarized the time property
of heart sounds that S1 starts 10–50 ms after R peak and lasts for 100–160 ms; S2 starts
280–360 ms after R-peak in ECG and lasts for 80–140 ms. For the practical applica-
tions, the development of microprocessor in the last two decades has made it possible to
make portable devices that can be of great value in primary care. Devices, such as the
SensiumVitals® system, Zio patch monitor and CAM patch monitor can collect the ECG
using a lightweight patch on the chest region. This provides the possibility to integrate
ECG and PCG together around the chest auscultation area, instead of measuring at different
places of the body. Integrating PCG and ECG together for concurrent measurement is
of great help to increase the portability and reduce the size in designing the small and
portable device or systems. Furthermore, combining ECG with PCG can provide more
comprehensive heart diagnosis [64, 169, 170]. In such case, the need for sophisticated
segmentation can be mitigated by using the ECG as reference signal and segmenting the
PCG accordingly.

To the best of our knowledge, research on automatic analysis of PCG is mainly based
on single channel signals and the time correlation described is not exhaustive on which
lead of ECG and auscultation site were used. However, multiple channels auscultation
provides more comprehensive information on the heart conditions. On this basis, there
are studies on multi-site PCG recording to visualize the heart related acoustic sounds by
cardiac acoustic mapping [171–175]. These studies not only provide a new way to analyse
the heart sound, but also illustrate that the heart sound generation and propagation delay in
the auscultation area. In addition, the ECG signals have morphological changes due to the
electrode placement around the chest. According to [176], the QRS complex shifts due to
the electrodes placement. Therefore, it is not known whether the correlation between ECG
and PCG remains the same when multiple channel signals are collected from different
auscultations sites. In the case of small-scale ECG-PCG device, the recordings of the ECG
should occur around the auscultation site. It is therefore of utmost importance to revisit the
time properties of ECG and PCG.

The primary aim of this study is to analyse the time delay between ECG and PCG at
different auscultation sites (A, P, T, M). The secondary aim is to investigate the changes
in the time occurrence of the R-peak in relation to the distance between the recording
electrodes. All the findings contribute to design small-scale ECG-PCG integrated device
and provide more precise time property for ECG-based PCG segmentation.
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4.2 Experimental Settings and Processing Methods

4.2.1 Data Collection

1) Subjects
The experiments were conducted on 12 human subjects with no history of heart diseases

(8 male/ 4 female, age range 21–28 years, mean 25.6 years). The procedures were approved
by the King’s College Research Ethics Committee (Approval No.: LRS-18/19-10673).
Subjects gave written informed consent prior to the experimental procedures.

2) Experimental Settings
The proposed experiment requires the simultaneous acquisition of ECG and PCG

signals at each auscultation site. A simple block diagram of this hardware system is shown
in Figure 4.1. The recording uses the commercial acquisition system (iWorx, model RA
834) as recorder. ECG devices (iWire-BIO4) and digital stethoscopes (ThinkLab One) are
connected with the recorder by iWire inputs and DIN8 inputs. The solid gel electrodes
(Ambu 0215M) are used as ECG sensors. The sampling frequency was 20 kHz to allow
fine resolution around the 0.05 ms. The filter for ECG was 0.05 – 40 Hz [177], and PCGs
were recorded with wideband mode (20 – 2000 Hz).

Fig. 4.1 Block diagram of the recording setup.

3) Experimental Procedures
Prior to commencing the experiments, we quantified the instrumentation delay. To

achieve this, all three iWire devices where connected on the same electrodes in a limb lead
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configuration while both microphones where placed close to the auscultation site A. The
sampling frequency was set to 100 KHz for this particular measurement. Instrumentation
delay was very negligible about 10 microseconds.

The experiments are performed in two stages, and the subjects should keep supine.
Stage I is to analyse whether the inter-electrode distance (IED) affects the ECG delays.
Three groups of disposable adhesive ECG sensors are placed at A site with 5 cm, 10 cm
and 15 cm IED as shown in Figure 4.2(a). The data is collected for 3 mins.

In Stage II, the effect of placement on ECG and PCG delays is analysed. Three
electrodes (red points) are positioned over the chest of a subject with standard Lead I as
reference. The other two iWire devices do the simultaneous recording with 10 cm IED at
each auscultation site. Two ThinkLab stethoscopes are put at the centre of the electrodes
(auscultation points). Each site is identified using the anatomical landmark and listening.
The placement of sensors in Stage II can be seen in Figure 4.2(b). Four groups of data are
collected corresponding to each auscultation site with 3 mins duration.

Fig. 4.2 (a) Placement of electrodes for different inter-electrode distanc (IED).
(b) Placement of sensors for different auscultation locations.

4.2.2 Signal Processing

In this study, the delays were analysed using the temporal locations of the R-peaks, the Q
points and the T wave ending points in ECG, and the S1, S2 starting points in PCG. The
processing was conducted in the Matlab® R2018b environment.

The captured ECG and PCG signals were filtered first to remove the unwanted noise.
For the ECG, a 3rd-order infinite impulse response (IIR) high-pass filter with 1 Hz is used
to eliminate the baseline wander [178]. For the PCG, a 150 Hz low-pass IIR Chebyshev
type I filter of order 3 is used to filter the lung sound. All filters were zero-phased.

The R-peaks, Q points and the T wave ending points are extracted from ECG signals,
and S1, S2 starting points are extracted from PCG signals. Figure 4.3 shows the extraction
results of the parameters.
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Fig. 4.3 The S1,S2 starting points in PCG, and Q, R, T points in ECG extraction result.

To capture more accurate R-peaks, the Pan-Tompkins algorithm [89] is used. The ECG
signal is differentiated filtered and squared to enhance the dominant peaks (QRSs) and
reduce the possibility of erroneously recognizing a T-wave as an R-peak. After the square,
the R peaks of the ECG can be easily detected by setting an appropriate threshold. By
using the intermediate coordinates between the R peaks, the ECG and corresponding PCG
can be cut into one cardiac cycle. The data is analyzed using 5 consecutive cycles. The
Q points are detected by calculating the slope on the left side of R. When the slope (first
derivative) is becoming greater than or equal to 0, the first lowest point is reached, which
is the Q point. The detection of T wave ending point is based on the relationship between
R peak and T wave, where T wave normally occurs 250 ms – 350 ms after R peak [179].
Therefore, the peak point in this period is the T peak, and then we use the same method of
Q detection to find T ending point by the first derivative.

For S1, S2 starting point detection, the short-term energy (STE) method is used. Its
equation is

En =
N−1

∑
m=0

x2
n(m), (4.1)

where En is the short-term energy of the signal Xn at frame n, and N is the length of the
frame. In our study, the frame length is 10 ms, and frame increase is 0.5 ms. There are
two thresholds to determine whether the sound is a heart sound or noise: energy threshold
and duration threshold. If the STE is larger than the lower energy threshold (10% of the
maximum energy), it is regarded as the potential start point. When it becomes larger than
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the higher energy threshold (25% of the maximum energy) and its duration is longer than
the threshold, this sound is regarded as heart sound.

After the parameter extraction, the captured data are shown in Table 4.1. It is worth
mentioning that during the parameter extraction, manual check is also used to reduce the
error and enhance its accuracy.

Table 4.1 Extracted data name from ECG and PCG. The subscripts (Ref, A, P, T, M)
mean the data is collected by the placement of the electrodes in standard Lead I or around
auscultation sites.

ECG R peak Q point

ECGRe f RRe f QRe f

ECGA RA QA

ECGP RP QP

ECGT RT QT

ECGM RM QM

T ending point S1 starting point S2 starting point

TRe f – –
TA S1A S2A

TP S1P S2P

TT S1T S2T

TM S1M S2M

4.2.3 ECG Delay Estimation Method

In this study, the Cross-correlation (CC) method is used for ECG delay estimation. CC is a
function to measure the similarity of two signals by calculating the sliding inner-product,
which is given as:

(s1 ∗ s2)[τ]≜
∞

∑
m=−∞

s1[t] s2[t + τ], (4.2)

where s1 and s2 are the two signals to be compared, s1[t] is the complex conjugate of
s1[t], and τ is the displacement for inner-product. When (s1 ∗ s2) is the largest, it means
the similarity is the greatest. For the ECG signals, they are regular and periodic, so the
displacement to get the maximum CC is equivalent to the delay between the two signals.
Using this relation, the time delay between the two ECG signals can be determined by:

τdelay = argmax
t∈R

((s1 ∗ s2)(t)), (4.3)
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4.2.4 PCG Delay Calculation Method

The PCG signals are relatively complicated and not regular as ECG. Thus using the CC
method causes a significant estimation error. Therefore, the delays are calculated directly
by the difference of the key points. The error is reduced by calculating the mean of the five
heart cycles. According to the extracted data in Table 4.1, the calculated delays are shown
in Figure 4.4.

Fig. 4.4 The calculated delays associated with PCG.

S1AM(AP, AT ) are the delays between S1 onset in site A and the other auscultation
sites. S2AM(AP, AT ) are the delays between S2 onset in site A and the other ausculta-
tion sites. RS1M(A, P, T ) are the delays between S1 onset and R peak in each auscul-
tation site. Rre f S1M(A, P, T ) are the delays between S1 onset and R peak in reference
ECG. QS1M(A, P, T ) are the delays between S1 onset and Q point in each auscultation
site. Rre f S2A(P, T, M) are the delays between S2 onset and R peak in reference ECG.
T S2A(P ,T , M) are the delays between S2 onset and T wave ending in each auscultation
site.

4.3 Results

4.3.1 PCG Morphological Variation among the Auscultation Sites

Figure 4.5 shows a representative comparison of PCG signals at different auscultation sites
from one healthy subject. Because the PCG were captured in pair during the experiment,
they are demonstrated with site A as reference. The PCG waveform is affected by various
factors, including the location of the recording site. Changing the recording site can lead
to visible changes in the morphology of the PCG waveform. Theoretically, when the
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stethoscope is placed over the apex of the heart, which is the lower tip of the heart, the S1
heart sound is usually more prominent in the PCG waveform. The S1 heart sound is caused
by the closure of the mitral and tricuspid valves at the beginning of systole (when the heart
is contracting). On the other hand, when the stethoscope is placed over the base of the
heart, which is the upper part of the heart, the S2 heart sound is usually more prominent
in the PCG waveform. The S2 heart sound is caused by the closure of the aortic and
pulmonary valves at the end of systole. As in Figure 4.5(a), the S2 amplitudes are similar
as S1 amplitudes at site A and P, while in Figure 4.5(b) and (c), S1 is viablely larger than
S2. There are also morphological differences in amplitude or duration. The reason of
these differences is that S1 and S2 are generated by the closure of different valves. Thus,
captured at specific sites may enhance the volume and affect the sound propagation.

Fig. 4.5 (a) PCG at site A and P. (b) PCG at A and T. (c) PCG at A and M.

4.3.2 The Effect of IED on ECG Delays

Figure 4.6 shows the IED of 5 cm and 15 cm compared with 10 cm. The delays of the
occurrence of R peak are all close to 0 ms (mean ± standard deviation; 5cm: -0.359 ±
2.181 ms, 15cm: 0.805 ± 1.861 ms), except one outlier. Therefore, we can basically
conclude that the IED does not affect the R peak occurrence significantly, and there is no
obvious regularity in the effect.

4.3.3 Delay between Standard Lead 1 ECG and Site Specific ECG

As shown in Figure 4.7, the delay between auscultation sites shows an increasing trend
from site A to site M. Compared with the standard lead I ECG, the ECG at A site is
normally negative, which means the R peaks at site A is advanced, R peaks at P and T are
close to standard lead I ECG; and R peak at M comes later than standard lead I ECG.
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Fig. 4.6 Inter-electrode distance (IED) caused ECG delay (10 cm as reference).

Fig. 4.7 The delay (mean ± standard deviation, SD) between auscultation sites ECG and
standard Lead I.

4.3.4 PCG Delay between Site A and the Rest

For the PCG delay between the auscultation sites (site A is as the reference), S1 and S2
are analysed separately. The results are shown in Figure 4.8. S1 onset becomes earlier
(negative) from A to M. However, S2 onset almost remains the same from A to T, but there
is a slight delay (positive) at M.

Fig. 4.8 The delay of S1 (red) and S2 (blue) in each auscultation site (A site as reference).
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4.3.5 Delay between ECG and PCG

Figure 4.9 shows the delay between S1 onset in each auscultation site and R peak in
standard Lead I ECG. The delay trend is similar to the S1 onset delay trend, but it can be
seen that at site A, the onset of S1 occurs after R-peak. When it comes to site M, the S1
onset is basically before R-peak. Figure 4.10 illustrates the delay of S1 onset, R-peak and
Q point in the auscultation site ECG. The delay trend is similar to the delay of Standard
Lead I, but it becomes larger. At site A and M, there are average 20 ms time difference
between S1 onset and R-peak. However, compared with Q point, the average delay in site
M is close to 0.

S2 is widely regarded as occurring right after T-wave. In this study, it is found that the
S2 onsets are basically after T wave ending points in auscultation area, except 4 groups of
outlier as shown in Figure 4.11(a). Besides, the relationship between Lead I ECG R-peak
and S2 onset is also presented in Figure 4.11(b).

Fig. 4.9 The delay between S1 onset for each auscultation site and R peak in standard Lead
I.

Fig. 4.10 The delay between S1 onset and R-peak/ Q-point in each auscultation site.

46



4.4 Discussions

Fig. 4.11 (a) The delay between S2 onset and T wave ending point in each auscultation
site. (b) The delay between S2 onset and R peak in Standard Lead I.

4.4 Discussions

This study aimed to analyse the time delay between ECG and PCG at different auscultation
sites (A, P, T, M), and investigated the changes in the time occurrence of the R-peak in
relation to the distance between the recording electrodes. The results shown firstly that the
time property for PCG segmentation based on ECG in the previous study can be misleading
and holds only for specific auscultation sites. In our recorded PCG signals, the S1 onset
was gradually advanced from auscultation site A to site M, while the S2 was delayed in the
meantime. This result is basically in line with our previous knowledge that S1 is generated
at heart apex (site M and T) and S2 is generated at heart base (site A and P) [180], so S1
should be captured at site M earlier and S2 should be captured at site A earlier. As the
result of heart sound propagation variation on the chest, the S1 onsets in the captured PCG
can occur before or after R peak in the ECG. Normally, the S1 onset is after R peak at site
A, before R peak at site M, and adjacent to R peak at site P and T. Therefore, distinguishing
the auscultation location is necessary for doing more precise segmentation.

Secondly, there is regularity in the translation of the R-peak relative to the auscultation
sites. Considering the body as a volume conductor, we can conclude the R-peak of the
ECG signals is conducted from site A to site M. Because site T and M coincide with the
chest lead in clinic, we also analyzed the open-source 12 leads ECG, and found analogous
delay trend between V2 to V6. This finding is similar to the electrical axis caused QRS
complex deviation, and the direction is reverse for PCG and thus care should be taken
when using the ECG as a reference signal to segment the PCG. When the signal is captured
at site M where S1 onset is far before R peak, Q point can be an alternative reference point
for the segmentation.

Thirdly, the IED has not effect on the R peak shifting. Thus, shortening the IED can be
of help to reduce the size when designing ECG-PCG integrated small device.
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Besides, it is found that the RSR’ (An ECG finding in which there are two R waves)
happened in 5 subjects’ site A ECG during the experiment. Normally the RSR’ occurs in
the conditions of right bundle branch block (RBBB) or left bundle branch block (LBBB)
[181], but there is no such physiological or heart conditions on the subjects. Therefore, it
worth noticing to choose appropriate R peak when using ECG to do PCG segmentation
under this condition. In our analysis, the first peak was used in the delay calculation and it
conforms to the rest trend.

Lastly, there are also some limitations in this study. The IED effects on ECG were
tested by only 5 cm, 10 cm and 15cm which was limited by the diameter of the electrodes
(4 cm). If there are more interpolations between them, the result can be more convincing
and accurate. In the analysis of IED effect on ECG, there is one outlier with around 15
ms R peak shifting cannot be explained. It is conjectured that the error was caused by the
misplacement of the electrodes.

The study found that when the ECG is captured at auscultation sites, the R peak of
ECG shifted backward regularly from A to M, and the distance between the electrodes did
not affect the R peak shifting. In addition, the propagation of the heart sound on the chest
caused a delay on S1 onset in the captured PCG signals. Therefore, the R peak shifting
and PCG delay lead that using R peak to directly locate S1 in PCG no longer accurate.
This can be improved by distinguishing the time property of each auscultation site. All
the findings are of help in designing small ECG-PCG integrated device, and providing
theoretical basis for using ECG to do more accurate PCG segmentation.
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Chapter 5

Classification of PCG Signal Using Deep
Learning Techniques

5.1 Introduction

Auscultation is the most common and practical approach in early cardiac screening. How-
ever, it is not always reliable due to physician’s clinical experience and listening ability.
Computer-aided heart sound analysis is a potential method to improve auscultation accu-
racy. It can overcome the limitation by using machine learning (ML) algorithms to learn
the diagnostic ability on large amounts of data.

The first published study on automatic heart sound classification can be traced back to
1963 when research used threshold to identify rheumatic heart disease [182]. Afterwards,
more ML techniques have been explored, such as logistic regression [57], regression
tree [49], K-nearest neighbors (KNN) [57, 52, 59], random forest [58], support vector
machine (SVM) [57, 60, 61], hidden Markov model (HMM) [63]. Besides traditional
ML approaches, neural network (NN) and its variants have been also applied to heart
sound classification [28, 183, 54]. With the development of NN and advanced computing
hardware, more dedicated and deeper NNs have been proposed, such as convolutional
neural networks (CNNs). CNN focuses on image recognition; and recurrent neural network
(RNN) is specialized in prediction sequence data such as audio and text [184, 185].
Compared with traditional ML methods, deep learning algorithms can neglect manual
feature extraction and use the raw signal as input with promising performance. After the
2016 PhysioNet/Computing in Cardiology (CinC) Challenge [42], using CNN or RNN
to conduct heart sound classification became the mainstream approach [50, 65, 66, 68–
70, 51, 186, 8, 187, 188].

This chapter introduces the three conducted studies on optimization of deep learning
(DL) inputs and architectures to improve the PCG classification. Section 5.2 is the
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preliminary knowledge for understanding these studies. The studies includes: (1) exploring
the signal duration effect on RNN and CNN performance in Section 5.3; (2) comparing
the performance of different time-frequency distributions as CNN input in Section 5.4; (3)
proposing novel algorithm for PhysioNet Challenges 2022 in Section 5.5. At last, Section
5.6 summarizes the three published works.

5.2 Preliminary

This section summarizes the preliminary knowledge for understanding the conducted
studies, including the principal and conversion of Time-frequency distributions (TFDs), ex-
traction of Mel-Frequency Cepstral Coefficients (MFCCs), basic concept of Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) with their mainstream
architectures. Besides, the PhysioNet Database for PCG classification and the evaluation
metrics are also introduced to avoid repeat instructions in subsequent studies.

5.2.1 Time-Frequency Representations

Time-frequency distributions (TFDs) represent signals in the time and frequency domains,
used in a wide range of signal analyses, such as optics, acoustics, and biomedicine [48]. For
bio-signals, TFDs are used to analyse electroencephalography (EEG), electromyography
(EMG), ECG, etc [189]. TFDs transform a 1-D signal in the time domain into a 2-D space,
containing both time and frequency information. This transformation can provide a more
intuitive visualisation of the frequency information. Furthermore, as inputs for CNNs, they
can also reduce the difficulty of frequency information mining. For PCG classification, the
murmurs are defined in time and frequency, therefore, the availability of this information
to the classifier is a reasonable basis for improvement. The short-time Fourier transform
(STFT) is the most commonly used transform, which is relatively simple to calculate.
However, it cannot effectively track the abrupt changes because a trade-off is needed
between the time and frequency windows’ size. This means that an increased time-domain
resolution worsens the resolution in the frequency domain and vice versa [190, 191]. The
continuous wavelet transform (CWT) is another approach for time-frequency analysis.
Compared with STFT, it can capture more local information by scaling and shifting the
mother wavelet to fit the raw signal. This improves the resolution but could not provide
greater frequency resolution at higher frequency bands [192]. However, due to the low-
frequency characteristics of the heart sound, this drawback of CWT can be neglected. Thus,
CWT is often used in PCG analysis [188, 193–195]. The Chirplet transform (CT) can
be regarded as a generalisation of both STFT and CWT, including four parameters: time,
frequency, scale, and chirp rate [191, 196, 197]. It also holds the advantage of detecting

50



5.2 Preliminary

instantaneous frequency trajectory used in PCG analysis [198, 196]. In addition to the
mentioned TFDs, Cohen’s class distributions such as Wigner-Ville distribution (WVD) and
Choi-Williams distribution (CWD) were also applied in the heart sound analysis [199, 200].
They can provide higher resolution, but with cross-term issues (also known as interference
terms). In [201], several TFDs were graphically compared and analysed on their ability to
visualise PCG events.

1) Short-time Fourier transform
Fourier transform is a linear integral transform that converts the signal x(t) from the

time domain into the frequency domain X̂ . To provide simultaneous time and frequency
information, STFT is applied with a sliding window function ω(t) on the signal conducting
a fast Fourier transform (FFT) within the windows to determine the frequency variation
over time. Eq. (5.1) defines the STFT:

X̂ST FT =
∫

∞

−∞

w(t − τ)x(τ)e− jωτdτ (5.1)

where the transform output X̂ST FT can be regarded as a time-dependent frequency spec-
trum (spectrogram), t and ω are the time and frequency of the window function. The
prerequisites of using STFT are signal stationarity within the window because burst or
transient signals will significantly affect the performance.

2) Continuous wavelet transform
Continuous wavelet transform (CWT) is another commonly used TFD that performs

well in non-stationary signals such as EEG and ECG. It can extract better local information
in both time and frequency domains. The CWT (scalogram) of signal x(t) can be calculated
as given in Eq. (5.2).

X̂CWT =
1√
α

∫ +∞

−∞

x(t)ψ∗
(

t −β

α

)
dt

=
√

α

∫ +∞

−∞

X(ω)ψ∗(αω)e jωβ dω

(5.2)

where α is the scale parameter that is inversely related to the frequency, β is the shifting
parameter, ψ∗(t) is the complex conjugate of the mother wavelet and ψ( t−β

α
) means the

contracted and stretched mother wavelet for fitting the signal x(t). In essence, the output
of CWT is the convolution of the input signal with the mother wavelet. Thus, on the right-
hand side equation, X(t) and ψ(ω) are the Fourier transformed x(t) and ψ(t), respectively.
Unlike STFT, which uses the same sliding window for all frequency bands, CWT can vary
the window size by the scaling parameter. The mother wavelet is contracted when the
scaling parameter is small, providing finer resolution. In contrast, the mother wavelet is
stretched when the scaling parameter is large, providing coarser resolution. Because the
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scaling parameter can be regarded as the inverse frequency, the pseudo-frequency of the
CWT can be approximated by Eq. (5.3):

f =
fmv fs

α
(5.3)

where fmv is the centre frequency of the mother wavelet, fs is the sampling frequency, and
α stands for the scale. [188] showed that Morlet is the most appropriate mother wavelet
for heart sound analysis.

3) Chirplet transform
Chirplet transform (CT) can be regarded as an improved wavelet transform by further

modifying the mother wavelet. It rotates the ’wavelet’ in the time-frequency plane, which
is equivalent to applying a nonnegative, symmetric, and normalized window ω(σ) (usually
a Gaussian window function) [202]. The output ’chirplet’ is windowed ’wavelet’ in scaling
and time-shifting. In addition, another two parameters are introduced, chirping (frequency
rotation operator) ΦR

α(t) and frequency shifting ΦM
α (t, t0), calculated by Eq. (5.4):

Φ
R
α(t) = e− jαt2/2

Φ
M
α (t, t0) = e jαt0t

(5.4)

where j =
√
−1, α is chirp rate, and t is time. The rotatory angle of the analytical associate

of the signal is θ = tan−1(−α) and the shift in the frequency is from ω to ω +αt0. The
analytical associate z(t) of the signal can be obtained by Hilbert transform. The chirplet
transform of a signal x(t) can be expressed as Eq. (5.5):

X̂CT (t0,ω,α) =
∫ +∞

−∞

z̄(t)W(σ) (t − t0)e− jωtdt (5.5)

where ω is the angular frequency, z̄(t) = z(t)ΦR
α(t)Φ

M
α (t, t0). The terminology of the rest

variables is the same as above.
4) Wigner-Ville distribution
Cohen’s class distributions are also known as bilinear or quadratic time-frequency

distributions. Wigner–Ville distribution (WVD) is one of Cohen’s class’s most used
distributions. As described, STFT needs to balance the time and frequency resolution;
however, the bilinear time-frequency distributions, such as WVD, can offer excellent
resolutions in the time and frequency domain without trade-offs. They convert the time and
frequency of the signal into the complex conjugate signal to present the energy distribution,
and their resolutions are only related to the signal length. The calculation of Cohen’s class
distribution is given by Eq. (5.6):
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Cx(t, f ) =
∫

∞

−∞

∫
∞

−∞

Ax(η ,τ)Φ(η ,τ)exp( j2π(ηt − τ f ))dηdτ (5.6)

where Ax(η ,τ)=
∫

∞

−∞
x(t+τ/2)x∗(t−τ/2)e− j2πt jdt is the ambiguity function and Φ(η ,τ)

is the kernel function (normally low-pass function) to reduce the noise. When Φ(η ,τ) = 1
it is the WVD, expressed as in Eq. (5.7):

X̂WV D(t, f ) =
∫

∞

−∞

x(t + τ/2)x∗(t − τ/2)e− j2π f τdτ (5.7)

Although WVD provides a better resolution of the signal TFD, it has the issue of
cross-term (false indication of the existence of the signal components), which is a common
problem of Cohen’s class distributions. Therefore, the smoothed pseudo-WVD is normally
selected to reduce the cross-term issue.

5) Choi-Williams distribution
The formal approach for reducing and eliminating the cross-term interference of

Cohen’s class distributions is to select the appropriate kernel function. However, this may
also corrupt the valuable information of the signal. Besides the pseudo-WVD, the Choi-
Williams distribution (CWD) with its kernel function Φ(η ,τ) = e−∂ (ητ)2

was showed its
potential for PCG visualization in [200].

5.2.2 Mel-Frequency Cepstral Coefficients

Mel-frequency cepstrum (MFC) is a vital representation in sound processing that uses Mel-
scale instead of linear scale to display the short-term power spectrum. The advantage of the
Mel-scale is that it can reflect more closely to the human non-linear auditory system. The
human auditory sense is more sensitive to identifying the voice changes in low frequency.
In contrast, people need a larger frequency band in high frequency (over 500 Hz) to
distinguish the same pitch increment. The relationship between the two scales (Hz and
Mel) is:

Mel( f ) = 2595log10(1+
f

200
) (5.8)

where Mel( f ) is the frequency in the Mel-scale, f is the frequency in the linear scale.
MFCCs are the coefficients derived at Mel filter banks that describe the energy distributed
in the different critical frequency bands. The extraction of MFCCs includes the following
steps:

1) Pre-emphasis
The purpose of pre-emphasis is to amplify and compensate the high-frequency com-

ponent that is suppressed in sound production. This will increase the Signal-to-Noise
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Ratio (SNR) and balance the frequency by enhancing the high-frequency content, which is
usually small in magnitudes. A pre-emphasis filter shown in Eq. (5.9) is generally applied
as:

x(t) = s(t)−µs(t −1) (5.9)

Here s(t) is the sound signal, x(t) is the filtered signal, and µ ∈ [0.9,1] is used for high-pass
pre-emphasis.

2) Fourier transform
To obtain the spectrum of the input signal, a STFT is used to convert the signal from

the time domain into the frequency domain. The conversion is:

X(k) =
N−1

∑
n=0

x(n)e−2 jπnk/N ,0 ≤ k ≤ N (5.10)

where x(n) is the input signal, X(k) is the corresponding Fourier coefficients, and N
represents the number of samples in each frame. The power spectrum is X(k)2.

3) Mel-scaled power spectrum
Mel spectrum could be obtained by the power spectrum passing through a set of

Mel-scaled filter banks, where the banks Bm(k) are:

Bm(k) =


0, k < f (m−1)

k− f (m−1)
f (m)− f (m−1) , f (m−1)≤ k ≤ f (m)

f (m+1)−k
f (m+1)− f (m) , f (m)≤ k ≤ f (m+1)

0, k > f (m+1)

(5.11)

m is each Mel filter of all M filters. k is the samples in frames. f (m−1), f (m) and
f (m+1) represent the beginning, medium, and end frequency of each Mel triangle filter.
The Mel-scaled power spectrum is the product of the power spectrum X(k)2 and the banks
Bm(k), which is:

P(n) =
N−1

∑
n=0

X(k)2eBm(k),0 ≤ m ≤ M (5.12)

4) Discrete cosine transform
MFCCs could be derived by the DCT of the logarithmic Mel spectrum:

MFCCs(i) =
M

∑
m=1

log[P(n)]cos
[

i
(

m− 1
2

)
π

M

]
,

i = 1,2,3, . . . ,L

(5.13)
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where L shows the order of frame for the MFCCs and M represents the number of Mel
filter banks.

5)Dynamic characteristic (∆&∆2MFCCs)
Because MFCCs can only describe the sound signal’s static information (spectral

envelope shape), heart sound is inherently time-variant, and the dynamic information may
help describe the signal more accurately. In addition, the human ear is more sensitive to
sound changes. Thus, to better emulate the auscultation procedure, adding the dynamic
information of the heart sound signal may improve the detection accuracy. The extraction
of ∆MFCCs is:

di =
∑

N
n=1 n(MFCCsn+i −MFCCsn−i)

2∑
N
n=1 n2

(5.14)

where di is delta coefficient between MFCCsn+i and MFCCsn−i at frame i, and N is usually
set to 2. Similarly, ∆2MFCCs(Di) could be calculated by:

Di =
∑

N
n=1 n(dn+i −dn−i)

2∑
N
n=1 n2

(5.15)

5.2.3 Convolutional Neural Networks

CNN is a deep learning model that consists of convolutional (Conv), pooling, and fully
connected layers. The Conv layer has a set of spatially small and learnable filters (kernels)
working as feature detectors. They move across the input matrix “like sliding window”,
calculating the dot product of the kernel parameters and windowed inputs. The output
can be interpreted as the extracted feature map subject to the kernels. Usually, more than
one kernel is used for the convolution. Thus, the output size is several times larger than
the input. For instance, an input size 32×32(1024) matrix after four kernels (size 3×3,
stride 1, padding 0) convolution outputs 4×30×30(3600). Therefore, the pooling layer
is used for down-sampling to reduce the feature maps and the amount of computation
and control overfitting. Max pooling is the most commonly used pooling layer, which
remains the maximum in the rectangular filtered region. Following the last instance, a
2×2 size max-pooling filter with a stride of two reserves only 25% of its original size,
so only 800 parameters are transferred to the next layer. The fully connected layers can
map the extracted features into catalogues for classification. Sometimes, a SoftMax layer
follows the fully connected layer to the logits into a class probability distribution before
the final output.

CNNs have developed rapidly since AlexNet surpassed the traditional methods by a
large margin in ILSVRC2012, a visual recognition competition [203]. CNNs have numer-
ous variants and differ in architecture, complexity, computation load. The mainstream
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architectures include MobileNetV3 [204], ResNet [205], SEResNet [206], and DenseNet
[207], as described below.

1) MobileNetV3
CNNs are composed of stacked convolutional blocks generally containing convolution,

normalisation, and non-linear activation layers. The depth and width of CNNs have to be
large to extract useful high-level visual features for prediction. However, the expensive
computational load caused by the over-expansion of the CNN scale might be unaffordable
for deploying such CNNs on either personal computers or mobile devices. Small-scale
CNNs can alleviate the computational load but might decrease the network performance.
Hence, efficient architecture design is crucial for CNNs to be deployed in mobile devices
with satisfactory performance.

MobileNetV3, proposed in 2019, is a lightweight CNN architecture that enables accu-
rate and efficient computation in mobile devices for visual recognition tasks. Till now, it
has been proved that MobileNetV3 can work efficiently in many computer vision tasks,
e.g., image classification, segmentation, detection. Its efficient and accurate computation
comes from some improvements, including depth-wise separable convolution, neural
architecture searching (NAS) [208], NetAdapt [209], etc. In particular, depth-wise sepa-
rable convolution is employed in all MobileNet series to reduce the number of trainable
parameters by factorising traditional convolutions. NAS and NetAdapt are employed to
optimise the network architecture at the block and layer levels. All these improvements
make MobileNetV3 an efficient CNN architecture with fast interface time.

Besides, MobileNetV3 includes MobileNetV3-small and MobileNetV3-large, varying
in depth and number of parameters. Hence, MobileNetV3 can act as the baseline for
analysing the impact of model size in the heart sound classification.

2) ResNet
Increasing the depth can enhance CNNs’ capacity, but it will bring about the vanishing

gradient problem when the networks are too deep. It means the gradient becomes infinitely
small via the multiple multiplications during backward propagation. Consequently, when
a model goes deeper, its performance reaches saturation and often drops rapidly. This
problem, also known as model degradation, occurred before ResNet was proposed in 2015.

ResNet is one of the most novel architectures in CNNs. Its essential contribution is
skip-connection, which enables deep training and dramatically alleviates the degradation
problem. With the operation, the function of some redundant layers turns into identity
mapping when the network saturates. The gradient of a layer thus can backwards propagate
directly to its previous layer without shrinking.

Although many CNNs have been used in the heart sound classification field, there is
still no evidence of whether a deeper network can improve the classification performance
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or decrease due to model degradation. Hence, ResNet-18/34/50 is explored here to analyse
the network depth impact while alleviating the degradation.

3) DenseNet
As aforementioned, ResNet builds a direct connection to allow gradient propagation be-

tween two connected layers. DenseNet makes more dense connections between all layers.
In other words, the input of one layer in DenseNet contains the inputs of all its preceding
layers. The dense connection improves the flow of both features and gradients, making
training DNNs easier. Furthermore, deeper layers in a network can extract higher-level fea-
tures, while lower-level features might also benefit the classification. The dense connection
in DenseNet, combining features from all layers to form multi-scale convolutional feature
maps, thus might help improve the heart sound classification. Notably, our study will
conduct experiments on DenseNet-121/169 which is affordable in terms of computational
cost.

4) SEResNet
Squeeze-and-Excitation (SE) is a module that improves the network representations

by modelling channel-wise interdependencies of convolutional features. It squeezes the
convolutional features across the spatial dimension to produce a vector describing the
channel-wise global distribution. The subsequent excitation assigns modulation weights
for each channel to rescale the convolutional features.

SE can easily embed to most existing CNN structures, e.g., ResNet, VGG, MobileNet,
ShuffleNet, and improve their performance. However, it has not been experimented with
whether SE can improve CNN performance in the heart sound classification yet. We,
therefore, embed it to ResNet-18/34/50 to verify if SE can help CNNs achieve higher
performance in this classification task.

5) Comparation of the CNNs Computing Load
Table 5.1 lists the number of trainable parameters and multiply-accumulates (MACs)

of all implemented CNNs.

5.2.4 Recurrent Neural Networks

Unlike CNN focusing on the spatial characteristics of the input, RNNs are specialised in
processing sequence data such as time series, text, and audio. Generally, RNNs conduct
the same computation procedure cyclically on each segment of the sequences, and the
following output is based on previous calculations. From network structure, it includes
memory to store the hidden internal state ht , which could be calculated by the previous
hidden state ht−1 and input xt , that

ht = fW (Wxhxt +Whhht−1 +bh) (5.16)
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Table 5.1 Number of parameters (in megabyte, M) and multiply-accumulates (MACs) (in
gigabyte, G) of the participated CNNs.

Model Params (M) MACs (G)

MobileNetV3-small 1.52 0.06
MobileNetV3-large 4.20 0.22

ResNet18 11.18 1.82
ResNet34 21.29 3.67
ResNet50 23.51 4.11

SEResNet18 11.27 1.82
SEResNet34 21.45 3.67
SEResNet50 26.04 4.11
DenseNet121 6.87 2.83
DenseNet169 12.33 3.36

where fW refers to the hidden layer function such as a tanh activation function with
parameter W shared across time (i.e., Wxh indicates the weight of the input-hidden layer,
Whh is the weight of the hidden-to-hidden layer, and Wyh is the weight of hidden-to-output).
b is the corresponding bias vector. The predicted output is:

yt =Wyhht +by (5.17)

However, this general architecture faces exploding weights and vanishing gradient
issues on long-term sequences. Therefore, methods such as LSTM were proposed to
improve this condition.

1) Long Short-Term Memory
LSTM reminds the general RNN architecture and changes the memory cell unit struc-

ture, making it capable of storing extended time intervals. As shown in Figure 5.1(a), input,
output, and forget gates control the information flow within the memory cell. For a given
input xt at specific time t, the corresponding output after passing the gates are:

It = σ (WIFxt +UhIht−1 +WCICt +bI)

Ot = σ (WxOxt +UhOht−1 +WCOCt +bO)

Ft = σ (WxFxt +UhFht−1 +WCFCt +bF)

(5.18)

where I, O, and F represent the input, output, and forget gate, respectively. Similar to
Eq.(5.16) and (5.17), W is the weight of recurrent connections (i.e., WIF indicates the
weight of the input-forget gates layer). h is the hidden state, and b is the bias. σ is the
sigmoid activation function. The memory Ct of this unit can be obtained by:

Ct = FtCt−1 + Ittanh(WxCxt +WhCht−1 +bC) (5.19)
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The hidden state vector (output vector) of this LSTM unit will be transferred to the
next time interval, and it can be calculated by:

ht = Ottanh(Ct) (5.20)

Fig. 5.1 Graphical structure of (a) Long Short-Term Memory unit; (b) Gated Recurrent
Unit; (c) Bidirectional Recurrent Neural Networks.

2) Gated Recurrent Unit
GRU can be regarded as a simplified LSTM unit that integrates the input gate with

the forget gate, forming a new update gate to decide the acceptance or abandonment of
the information. In addition, there is a reset gate to determine how much memory is to
be forgotten. The two gates work together to adaptively remember or forget during the
sequence reading. Its structure is shown in Figure 5.1(b). The computational flow in one
unit is given below:

Ut = σ (WxU xt +WhU ht−1 +bU)

Rt = σ (WxRxt +WhRht−1 +bR)

ĥt = tanh
(

Wĥxxt +U ˆhht
(Rtht−1)+bĥ

)
ht = (1−Ut) ĥt−1 +Ut ĥt

(5.21)

59



5.2 Preliminary

where U and R represent the update and reset gate. ĥ and h are the candidate activation
vector and output vector. The nomenclature of the rest variables is the same as the equations
before.

3) Bidirectional Recurrent Neural Networks
Standard RNNs are unidirectional with the constraint that they can only predict the

current state based on previous information. Because future information is not reachable at
that moment, bidirectional RNNs were proposed to improve this situation by connecting
opposite directional hidden layers to the same input. As a result, the output layer can
obtain both previous and future states information by the forward and backward pass. The
structure of the BiRNN is shown in Figure 5.1(c).

5.2.5 Datasets and Performance Metrics

The dataset used in Section 5.3 and Section 5.4 is from the PhysioNet 2016 database,
which consists of 3153 recordings, including 2488 normal and 665 abnormal cases. They
were recorded by different research teams using different electronic stethoscopes under
both clinical and non-clinical settings. Because of the uncontrolled measuring environment,
the duration of the recordings ranged from 5 to 120 s. Different noise types such as body
motion, ambient noise, and inside body sound (i.e., intestinal sound) were added to the
original heart sound. This fits the actual auscultation situation but causes more difficulty
to the classification algorithm. In addition, the subjects included children, adults, and the
elderly. The abnormal cases involve various heart conditions, especially coronary heart
disease and valvular diseases. More details about it can be seen in [42].

Accuracy is the key metric for evaluating the performance of a classification algorithm.
However, the data structure in this study was not balanced (normal: abnormal is approxi-
mately 3 : 1), so the true positive rate (sensitivity, Se), true negative rate (specificity, Sp),
and overall score (MAcc) were also calculated as in Eq. (5.22) to obtain balanced results.

Acc =
T P+T N

T P+FP+T N +FN

Se =
T P

T P+FN

Sp =
T N

T N +FP

MAcc =
Se+Sp

2

(5.22)

where T P (True Positive) and T N (True Negative) denote the correctly classified healthy
and unhealthy condition cases, respectively. Similarly, FP (False Positive) and FN (False
Negative) represent the false detection on the normal and abnormal sets, respectively. The
overall score (MAcc) is the average of the Se and Sp.
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The dataset and metrics for George B. Moody PhysioNet Challenges 2022 are describe
independently within Section 5.5.

5.3 Mel-Frequency Cepstral Coefficients of PCG Signals:
Classification with Recurrent Neural Networks

5.3.1 Introduction

As described in Section 2.1, computer-aided heart sound analysis has great potential to
improve auscultation accuracy by overcoming human hearing limitations and clinical expe-
rience. An electronic stethoscope is used instead of the traditional acoustic stethoscope to
record the heart sound signal. Then, a machine learning classification algorithm can con-
duct the automated diagnosis. Typical PCG signal classification algorithms include three
significant steps: segmentation (including component identification), feature extraction,
and classification [210]. Firstly, the conventional segmentation breaks the whole signal
into each heart cycle and locates the heart sound components. After segmentation, features
such as time-frequency, energy-based, wavelet transform, and MFCCs are extracted from
the signals to train a classifier. MFCCs are the most commonly used features in sound
processing studies. Their frequency bands in Mel-scale can approximate human auditory
system response more closely than linear-scaled spectrums because they consider the hu-
man ear perception sensitivity concerning the changing frequencies. Thus, using MFCCs
as features is particularly suitable for simulating the auscultation activity. Afterwards,
machine learning methods classify the input heart sounds into normal and abnormal classes
based on these features.

It is still an open question on the necessity of segmentation. As mentioned, conventional
segmentation aims to locate the heart sound components, helping extract the features,
especially in the time domain. However, there is no widely recognised golden standard
PCG segmentation technique. Unsuccessful segmentation conversely affect the accuracy
and robustness of the algorithm and increase computation load. In addition, several
representative studies without conventional segmentation have achieved considerable
performance in the heart sound classification [68, 211, 212, 70, 50, 213, 67]. Thus,
segmentation becomes an optional step that should depend on the selected features and
classifiers. Generally, algorithms without segmentation make use of deep learning methods
based on ANNs such as CNNs and RNNs. The signal is not segmented to identify
components in these algorithms but broken into signal pieces of equal duration. As a result,
different studies cut the heart sound recordings into various epoch durations, e.g., some
studies broke the recordings into one-second epochs to enlarge the dataset as much as
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possible for training and validation [70, 67]. In contrast, others were cut into five-second
pieces to retain more information in each segment [50, 65]. Different data structures and
settings make it hard to evaluate the proposed methods, so it is necessary to unravel how to
choose the appropriate PCG input duration for a given dataset.

The aim of this study is threefold: (1) to systematically investigate how the duration of
input PCG signals will affect the performance of deep learning methods; (2) to compare
the performance of commonly used RNNs, including GRU, LSTM, Bidirectional LSTM,
and GRU (BiLSTM and BiGRU) under different epoch lengths; (3) to ascertain if adding
dynamic information (deltas and delta-deltas of MFCCs) as the feature can improve the
performance of the tested deep learning methods. Ultimately, the findings of this study will
provide insight to determine reasonable input length, classifiers, and features for designing
deep learning PCG classification algorithms in the future.

5.3.2 Related Work

The earliest publication on automated PCG classification can be traced to 1963, when
Gerbarg et al. used a threshold-based method to identify rheumatic heart disease [182].
Since then, many articles have been published on the PCG segmentation techniques,
features selection, and classification methods. The proposed classification algorithms
include logistic regression [57], random forest [58], KNN [57, 52, 59], regression tree [49],
SVM [57, 60, 61], HMM [63], and ANN and its variants [28, 64, 54]]. However, it was
almost impossible to systematically and uniformly evaluate and compare the early research
performance in this field, as they used different datasets with different classification
tasks. With the development of deep learning techniques in recent years, more researchers
switched from traditional machine learning to deep learning methods to design improved
classification algorithms.

In 2016, PhysioNet/Computing in Cardiology (CinC) Challenge created an extensive
database sourcing from nine different heart sound databases with 4430 recordings col-
lected from 1072 healthy participants and patients with a variety of conditions [42]. This
database can be used for binary classification (normal and abnormal heart sound) and as the
platform to assess classifiers and features objectively. Furthermore, it provided the basis
for designing deep learning PCG classification methods. Despite ambiguous discussion on
the best classifier or the selection of features according to the PhysioNet challenge results,
almost half of the top performances, especially the top three applied the neural network
algorithms. This showed a great potential of deep learning in improving the performance
of automated PCG classification. For the feature selection, 4 of the top 10 algorithms used
MFCCs, given the proven track of their reliability and universality [214].
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Moreover, Yang and Hsieh used RNN without segmentation, ranking 13 in the Chal-
lenge (Acc: 79%) [215]. This method aroused interest in the necessity of segmentation and
led to future research on PCG classification using RNNs models. Practically, RNNs are
suitable for sound recognition with the advantage of exhibiting temporal dynamic charac-
teristics, and it has achieved great success in automatic handwriting and speech recognition
[216]. After the challenge, more researchers explored deep learning methods without
segmentation using the PhysioNet database. Table 5.2 outlines several representative
studies in recent years.

Table 5.2 Recent advancements in heart anomaly detection using deep learning.
TF: Time-Frequency, L: Window length, S: Window shift

Authors Year Segmented Features Model Acc (%)

Huai et al.[50] 2020 No. (L:5 s,S: 2 s ) TF CNN + LSTM 91.06
Deng et al.[65] 2020 No. (L:5 s) MFCCs CNN + LSTM 98.34
Xiao et al.[66] 2020 No. (L:3 s,S: 1 s ) MFCCs, PSDs CNN 93

Dissanayake et al.[67] 2020 No. (L:1 s,S: 0.1 s ) MFCCs CNN, LSTM 99.72
Zhang et al.[68] 2019 No. (L:2 s) TQP Features LSTM 94.66
Latif et al.[69] 2018 Yes. (2,5,8 cycles ) MFCCs RNNs 98.61

Maknickas et al.[70] 2017 No. (128 frames ) MFCCs CNN 84.15
Rubin et al.[51] 2017 Yes. (L:3 s) TF, MFCCs CNN 84

From Table 5.2, MFCCs could be considered the most frequent and mainstream
recognised feature. It is still controversial whether CNN or RNN (LSTM, BiLSTM, and
GRU) is more suitable for heart sound classification. A combined classifier seems to be
the future trend that could contain the advantages of both CNN and RNNs. Because the
data length of the recordings in the PhysioNet database varies from 5 s to 2 min, different
studies have cut the raw data into smaller lengths without segmentation. They have then
rebuilt the pre-processed datasets for training, validation, and testing. This unifies the data,
enlarges the training datasets, and improves the classification performance to a certain
extent. Typically, the epoch durations ranged from 1 s (approximately one heart cycle)
to 5 s (shortest heart sound recording in the PhysioNet database). However, various data
structures make it hard to compare their claimed performance objectively. Moreover, it
is unclear if the best input duration can ensure that both training sample size and each
sample’s information are sufficient.

This study fills the mentioned knowledge gap by breaking the PhysioNet datasets into
different lengths (1−5 s) to rebuild new datasets. Inspired by the previous studies, MFCCs
are chosen as features. Commonly used CNN and RNNs structures will be compared under
similar settings. The study will assess the effect of input length and classifier selection on
model performance.
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5.3.3 Methodology

1) Pre-processing
As the principal objective of this study is to investigate the PCG duration effect on the

classification performance, the raw heart sound recordings in the database are further cut
into 1 s (71,344 segments), 2 s (34,982 segments), 3 s (22,510 segments), 4 s (16,749
segments), and 5 s (13,015 segments) length without overlapping. Their labels are also
generated according to the raw database into normal and abnormal (two classes). Since
the testing datasets in the PhysioNet Challenge are not published, we divided the available
datasets into training: validation: testing by 8 : 1 : 1.

2) Feature Extraction
This study used MFCCs as the input feature for the deep learning models. The window

framing for the extraction is a hamming window with 30 ms length and 20 ms overlap.
Thirteen MFCCs are extracted for each window. The final feature map is a 13N × (100D
- 2) matrix, where N = 1 when only MFCCs are extracted and N = 3 when deltas and
delta–deltas are extracted as features. D is the duration length in second. Fig. 5.2 represents
the MFCCs features from 1 s heart sound recording under both healthy and unhealthy
conditions.

Fig. 5.2 (a) MFCCs, (c) ∆MFCCs, (e) ∆2MFCCs for normal heart sound recording. (b)
MFCCs, (d) ∆MFCCs, (f) ∆2MFCCs for abnormal heart sound recording.

3) Model Interpretation
Another objective of this study is to compare the performance of deep learning models

under similar conditions. Therefore, we built neural networks using different network
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structures, as shown in Fig. 5.3. The overall design is MFCCs features input to the specific
network module followed by a classification module to predict.

We applied three convolutional (Conv) layers with 32, 64, and 128 filters (size 3×3)
on each CNN layer. Each Conv layer is connected to a batch normalisation layer (scale 1,
offset 0, momentum rate 0.9) to speed up the training and reduce the sensitivity to network
initialisation before the activation function (ReLU). Two max-pooling layers (size 2) were
used before the second and third Conv layers to reduce the calculation amount. After the
layers, the spatial features of the input were extracted and transferred to the fully-connected
layer for classification.

The RNNs models used in this study were two layers. Because in our testing, the
one-layer model did not perform well on the heart sound classification with approximately
75% accuracy (two layers performed around 90%). This testing result stands in line with
the description in [69]. Furthermore, deeper layers do not show noticeable improvement in
the performance as well. The number of hidden units was all set to 50 in each RNN layer,
the state activation function was tanh and gate activation function was sigmoid.

Fig. 5.3 The deep learning network models used in the study: 3-layer CNN model, 2-layer
LSTM, BiLSTM, GRU, and BiGRU models.

4) Training Settings
The optimiser selected in this study is stochastic gradient descent with momentum

(SGDM, learn rate 0.01, momentum 0.9). Compared with the commonly used Adam
optimiser, its convergence speed may be slower, but its convergent result can be better
to find the best solution. The learning rate was constant 0.01, and data shuffling was
conducted for each epoch. Max epoch was set to 100, but an early stopping was applied
with the patience of 5 epochs to prevent overfitting.
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5) Statistical Analysis
To statistically analyse the PCG duration effect and compare the performances of the

models, we trained and tested all models ten times with different input PCG lengths to
avoid random results. For each time, all the models are shared with the same random
seed for the division of samples into training, validation, and testing sets to guarantee
comparability of the results. A non-parametric test (Mann–Whitney U test) were conducted
between results for statistical purposes.

5.3.4 Results

1) PCG Duration Effect on the Deep Learning Performance
The performances (in MAcc) of the proposed models using MFCCs, ∆MFCCs, and

∆2MFCCs as input are shown in Fig. 5.4. The RNN models (LSTM, GRU, BiLSTM, and
BiGRU) showed an apparent increase between 1 and 2 s (from approximately 0.87 to 0.89),
whereas there was no evident change trend between 2 and 5 s. Taking BiLSTM data as an
example for statistical analysis, the p-value of 1 and 2 s is 0.017, and it is over 0.45 among
2 to 5 s, which proved that our finding is not random. However, on the CNN model, the
effect of PCG duration is negligible from our results (p > 0.3 between different durations).
Thus, we can conclude that the 1 s length PCG segment is unsuitable for training RNN
models to classify heart sound, but it is acceptable for CNN models.

Fig. 5.4 The proposed models’ performance (10 times average) with different input PCG
signal lengths.

2) RNNs vs. CNN
Because there is no apparent PCG duration effect shown in Fig. 5.4 between 2 and

5 s, in this part, we analyse the performances of all the proposed models based on 5 s
PCG duration, which are summarised in Table 3. RNN models outperformed the CNN
model with the higher average accuracy, sensitivity, and overall score. Furthermore, the
difference among the four RNN models was negligible within 1.5%(p ≥ 0.175). The
best performance came from GRU with 94.07% in Acc, 94.81% in Sp, 91.29% in Se, and
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93.05% in MAcc. According to the current result, it is hard to say which RNN model is
the best for heart sound classification. Notably, RNNs had better overall performance than
the CNN model using MFCCs as input (p ≤ 0.044 paired with RNN models).

Table 5.3 Comparison between the deep learning models with 5 s PCG input (10 times,
average ± standard deviation %).

Model Acc Sp Se MAcc

LSTM 91.86 ± 1.20 95.42 ± 1.45 81.75 ± 5.95 88.58 ± 2.44
BiLSTM 92.64 ± 0.75 95.14 ± 1.33 84.77 ± 3.87 89.95 ± 1.58

GRU 92.13 ± 0.44 95.22 ± 1.37 83.01 ± 2.69 89.12 ± 0.87
BiGRU 92.35 ± 0.72 95.31 ± 1.87 83.24 ± 3.46 89.27 ± 1.04
CNN 90.08 ± 1.22 93.80 ± 2.46 79.02 ± 4.57 86.41 ± 1.7

3) Effect of Using ∆MFCCs and ∆2MFCCs as Features
The performance of adding ∆MFCCs and ∆2MFCCs as features are shown in Fig. 5.5.

Because the result is applicable on all RNN models, hereby in Fig. 5.4, only BiLSTM
performance is selected to display. It indicates no observed improvement on the RNN
models by using extended MFCCs as the feature (p = 0.748). However, on the CNN
model, using ∆MFCCs and ∆2MFCCs increased the classification accuracy a little bit
(≤ 2.5%, p = 0.003).

Fig. 5.5 Comparison between using mel-frequency cepstral coefficients only and using
mel-frequency cepstral coefficients with its deltas and delta–deltas on bidirectional long
short-term memory and convolutional neural networks.

5.3.5 Discussion

This study analyses the PCG duration effect on the heart sound classification performance
and compares the deep learning models using MFCCs as input features. Because of the
machine learning algorithm design, when limited training data are given, it is a standard
practice to segment the database further to increase the number of training sets for accuracy
improvement. Conventional segmentation (identification) breaks the PCG signals into each
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heart cycle for heart sound classification. However, segmentation is complicated work and
cannot always complete the task accurately, especially when there is a murmur or noise
inside. More studies just clipped the datasets by seconds in recent years, but no detailed
analysis on the effect of the split length. In this study, the results have shown that 1 s length
PCG is not an appropriate length on RNN models, while it might be applicable for the
CNN model. A normal heartbeat at rest ranges from 60 to 100 per minute, which means 1 s
length can only cover a complete heart cycle. For RNNs, they are specialised in processing
sequence data. Thus, the whole heart cycle will be helpful to provide more comprehensive
information for the trained network. However, the CNN model has the advantage of
exploring specific spatial characteristics, which means missing partial information, mainly
the edge information, may not directly affect the final performance of the classification.
From 2 to 5 s, there is a balance between the information amount of single data and total
sample size that did not affect the classification results. As a result, we suggest using 2 s
PCG length to process the datasets on RNN models because a shorter segment means the
potential for more repeated testing on one testing recording. This may be helpful to reduce
the random error increasing the algorithm robustness, also it could control the sensitivity
and specificity by appropriate threshold.

The comparison between deep learning models showed that RNNs performed better
than the CNN model when using MFCCs as input. Because the MFCCs as a sequence
to describe the instantaneous, spectral envelope shape of the heart sound signal did not
hold too much spatial information for CNN to extract. The CNN model may perform
better with a deeper structure or analyse the pattern-based time-frequency features such as
the heart sound spectrogram, Mel-frequency cepstrum, etc. However, it will also require
greater computing power to process during training. Among the RNN models, though
their performances were quite close in our study, we suggest GRU based on the computing
amount and processing time. In our testing (CPU: Intel(R) ES 1650 v3 @3.50 GHz, GPU:
NVIDIA Quadro M2000), using GRU to finish the training (5 s, MFCCs only, 30 epochs)
costs approximately 395 s, while LSTM needed 433 s and BiLSTM spent 588 s. From the
structure, GRU is simpler than LSTM with fewer gates to calculate, bidirectional RNNs
almost double the computing load by calculating the inverse propagation. Therefore, a more
straightforward structure neural unit was recommended when no noticeable performance
improvements were shown among them.

Thirdly, in exploring using ∆MFCCs and ∆2MFCCs as additional features, we found no
improvement on the final classification results of RNN models, but a slight increase in CNN
models. This may be because ∆MFCCs and ∆2MFCCs are derivatives of MFCCs, for RNN
input sequence, no additional information was added. However, the CNN model viewed the
input as a pattern; extended features can supplement more spatial characteristics. Another
interesting finding is that most MFCCs information to classify heart sound as normal or
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abnormal was based on the first three dimensions (MFCC1, MFCC2, and MFCC3), as
shown in Fig. 5.2. These dimensions correspond to the low-frequency band part of the
signal. We tested using the first three MFCCs instead of all 13 MFCCs as input and found
Acc 91.43%, Sp 94.39%, Se 82.07%,andMAcc88.23% on 5 s BiLSTM, which did not
show an apparent decrease in the performance. Thus, it is a potential way to reduce the
calculation amount.

This study found that the PCG duration will affect the deep learning performance,
and the commonly used 1 s length is not a reasonable option to process the datasets. We
suggested starting from 2 s since a bit longer duration can provide more information and
benefit the classification performance. However, only increasing the input length without
changing network architecture does not guarantee better performance. When using MFCCs
as training features, RNNs outperformed the CNN model, whereas there is no apparent
difference among the RNN models (LSTM, BiLSTM, GRU, or BiGRU, within 1.5%). In
comparison, GRU has the advantages of a smaller computational load and a faster training
speed. For MFCC features, adding dynamic information (∆MFCCs and ∆2MFCCs) of the
heart sound did not improve the RNN performance, and the improvement on CNN is also
minimal.

5.4 Time-Frequency Distributions of PCG Signals: Clas-
sification by Convolutional Neural Networks

5.4.1 Introduction

With the development of computer vision, deep CNN is partially undertaking the analysis
task to provide the auxiliary diagnosis. The TFDs were used as inputs to train the deep
learning algorithms [50, 217–221, 186, 8, 187]. However, due to the different databases,
inputs, and network architectures, it is unclear how selecting TFDs, and CNNs can affect
heart sound classification. Furthermore, many studies have proved that combining different
signal processing methods can improve classification performance [222–227]. Though,
their combining methods differ significantly, including channel-wise stacking [225], spatial
concatenation [222], hidden feature fusing [225–227] and input vector concatenation [228].
Among the combination methods, channel-wise stacking is the mainstream.

Nevertheless, this approach has received less attention in the heart sound classification
field. Hence, it is necessary to investigate whether the channel-wise stacking method to
combine the different TFDs can further improve the heart sound classification.

Overall, the aims of this study are: 1) to assess if the selection of the TFDs will
affect heart sound classification; 2) to compare the performance of several state-of-the-art
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CNNs with different capacity, depth, and architecture, for different TFDs; 3) to ascertain if
combined TFDs instead of single TFD as input can improve classification accuracy. Thus,
the main contribution of this study is to provide insight into the selection of CNN inputs
(in terms of TFDs) when designing heart sound classification methods.

5.4.2 Methodology

1) Pre-Processing
Referring to [229], the recordings were further segmented into 5s durations without

pre-processing overlapping, generating 13015 segments (9857 normal and 3158 abnormal).
Since the testing datasets were not included in the published Physionet challenge database,
we randomly divided the generated segments into training, validation, and testing sets by
8 : 1 : 1. In all three sets, the distribution of the normal and abnormal segments retained
approximately 3 : 1.

2) TFDs Extraction and CNN Models Selection
In this study, five TFD approaches were encompassed and compared as CNN inputs,

including STFT, CWT, CT, WVD, and CWD. The CNN models were selected with different
complexity and computing load, including MobileNetV3-Small/Large, ResNet-18/34/50,
SEResNet-18/34/50, DenseNet-121/169. The theories and properties of the TFD methods
have been provided in 5.2.1 and description of the CNNs models is included in 5.2.3. So
here, only introduce the experimental settings.

For STFT, a Hann window of length 128 ms was applied. The overlap length was
125 ms, and the FFT was 512 samples long. For CWT, Morlet was chosen was mother
wavelet according to [188]. A Gaussian window of 64 samples was applied for CT, and the
number of frequency axis points associated with the spectrum was set to 512. For WVD,
the smoothed pseudo-WVD was selected to reduce the cross-term issue. For CWD, ∂ = 3
according to [200], when the TFD can clearly show the time, frequency, and intensity of
the heart sound component.

Before the generated TFDs inputting into the CNNs, the TFD settings were also
manually checked the clarity of visualisation. Fig. 5.6 shows the generated TFDs from
both healthy and unhealthy subjects.

3) Training Settings
This study kept all the hyper-parameters consistent in all experiments for a fair com-

parison. The computer used one Nvidia Tesla V100 GPU card. The CNN training codes
are implemented by Pytorch 1.9 [230]. All CNN backbones were implemented by the
Timm library [231]. The training procedure was accelerated by automatic mixed precision
(AMP) in Pytorch to save the computing memory. The results were obtained by averaging
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Fig. 5.6 Visualisation of the generated TFDs. (Left) Healthy heart sound. (Right) Unhealthy
heart sound.

the measurements in 10 repeated experiments with different random seeds to make the
comparison more convincing and alleviate randomness concerns.

The input signal images for CNNs were resized to a standard resolution of 224×224
in three channels (RGB), and the pixel values were normalised with zero mean and unit
standard deviation. For raw signals and their log-scale form, their 2-D images were
generated by projecting the sequential signal amplitude in y-axis, connecting neighboring
points (equivalent to the “Plot” function), getting frame to obtain the waveform, and
resizing the figure to standard resolution. Both single TFD and their combination were
tested as CNN inputs. Specifically, we loaded three TFDs in greyscale and stacked the
three greyscale inputs in channel dimension. The dimension of the combined TFDs is
consistent with that of one single TFD, so no modification to the network architectures to
fit the input size was needed.

The employed optimiser is Adamw with 10−2 weight decay. According to the cosine
annealing decay schedule, the learning rate decays from an initial 10−2 to the minimum
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10−6 in 50 epochs. The batch size is set to 128 to ensure batch variety and avoid memory
overflow.

The performance of TFDs was compared with the baseline using original or log-scaled
raw signal as CNN inputs.

4) Statistical Analysis
All CNNs were trained and tested ten times with different TFDs. In particular, the

CNN training processes were set to be deterministic but with ten random seeds. The
non-parametric test (Mann-Whitney U test) was conducted for statistical significance based
on the experimental results. The p-value of the test can reveal whether a TFD or CNN
outperforms the other objectively. If the p-value is more significant than 0.05, there is no
significant difference between two TFDs or CNNs.

5.4.3 Results

1) TFD effects on the CNN performance
The overall performances (in MAcc, an average of 10 times) of the TFDs for 10 CNNs

are illustrated in Fig. 5.7a. It revealed that transforming from the 1-D time domain to the
2-D time-frequency domain by TFDs can stably improve the classification performance. In
particular, compared with the baseline (raw signal, 87.4%), the transform can improve the
overall performance by up to 2.5%. Among the five TFDs, CWT and CT achieved around
89.9% average MAcc, surpassing the others by approximately 0.5−1.3% STFT and WVD
achieved comparable MAcc of around 89.5%, slightly worse than CWT and CT. CWD
performed the worst with 88.6%. Besides, it is worth noting that using a log-scaled raw
signal can gain higher performance than the baseline raw signal, improving from 87.4% to
88.1% approximately.

Overall, CWT and CT were the two superior TFDs in our experiments, and there was
no statistical difference between them (p = 0.815). STFT and WVD followed with trivial
performance differences (p = 0.413). The p-values between CWT/CT and STFT/WVD
were in the range of 0.012 to 0.035 in pair, indicating CWT/CT outperformed STFT/WVD
statistically. CWD achieved slightly worse classification performance among the five
TFDs, and its p-value concerning any other TFD was more petite than 0.001, indicating
significant inferiority. Likewise, the baseline raw signal performed with the lowest MAcc,
and its p-values concerning the others are all infinitely close to 0, indicating that using
TFDs instead of the raw signal can improve the classification performance stably. Besides,
the log-scaled raw signal achieved an intermediate performance between the baseline
and the TFDs. Moreover, this can be proved objectively that its corresponding p-values
approached 0 infinitely.
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(a)

(b)

(c)

Fig. 5.7 (a) Overall performances of TFDs on all 10 CNNs, (b) Performances of TFDs
on ResNet18, (c) Performances of TFDs on DenseNet121. The horizontal lines and the
in-box white dots represent the median and average values, respectively.

As aforementioned, the overall performance differences were found among the TFDs.
It is worth noting that the differences are CNN model dependent. For example, Fig. 5.7b
and Fig. 5.7c demonstrated the performances of ResNet18 and DenseNet121, respectively.
It can be observed that the difference (> 1%) between STFT/WVD (MAcc: 89.47% /
89.96%) and CWT/CT (MAcc: 90.84% / 90.99%) existed for ResNet18. However, for
DenseNet121, their performances were all around 90.8%, with differences smaller than
0.4%.

2) Comparison of the CNN performances
The overall performances (in MAcc, an average of 10 times) of 10 CNNs with all

seven input types were illustrated in Fig. 5.8a. The models were sorted by the number
of parameters from left to right. It can be observed that the lightweight MobileNets
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did not perform well, achieving approximately 87.50% MAcc. On the other hand, the
performances of ResNet-18/34, SEResNet-18/34, and DenseNet121 were quite close,
around 89.6% MAcc with differences below 0.4%. DenseNet169 outperformed all the
others slightly and achieved 90.17% MAcc. Besides, ResNet50 and SEResNet50 using
bottleneck block architecture achieved an unsatisfactory performance of around 88.5%.

(a)

(b)

(c)

Fig. 5.8 (a) Overall performances of 10 CNNs with all seven input types, (b) Performances
of all the 10 CNNs on raw signal and CT. (c) Performances of the 10 CNNs concerning
the seven TFDs.
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To compare the performance of different CNNs, a statistical analysis was conducted.
Particularly, the p-value between MobileNet-Small and MobileNet-Large was 0.791,
which means they have no statistical difference. The p-values between ResNet-18/34 and
SEResNet-18/34 were above 0.05 (in the range from 0.313 to 0.987), implying no statistical
difference. The p-values of DenseNet121 concerning the four CNNs mentioned above
ranged from 0.087 to 0.193, except for ResNet34 (0.031). This showed that DenseNet121
had a statically close performance with ResNet18 and SEResNet18/34 but was slightly
better than ResNet34. DenseNet169 achieved relatively higher performance than the others,
with p-values smaller than 0.017. Besides the CNNs mentioned above, ResNet50 and
SEResNet50 shared close performance with a p-value of 0.357, higher than MobileNets
but lower than the others.

Besides the overall performance of 10 CNNs, raw signal and CT performances were
visualised on these CNNs as presented in Fig. 5.8b. The visualisation revealed the
difference between raw signal and CT but presented different relationships between CNNs.
For example, when using raw signal, DenseNet169 achieved the highest performance,
88.60%. But when using CT, it performed slightly worse than ResNet-18/34 or SEResNet-
18/34 (DenseNet169: 90.60%, others: approximately 90.90%). Fig. 5.8c represents the
overall performance using a surface plot.

3) Effect of combined TFDs as CNN Input
As described in 1), there was no apparent difference in the CNN performance using

the TFDs except that CWD performed slightly worse. Since the TFDs transform the
raw signals into different time-frequency domains, it is meaningful to analyse whether
combining TFDs can improve CNN performances. Therefore, experiments were conducted
on various channel-wise combinations of different TFDs as the inputs for CNNs. Notably,
three CNNs representing three different network architectures with higher depth and better
performance in 2) were selected, including ResNet34, SEResNet34 and DenseNet169, to
analyze the effect of the TFD combinations. MobileNets were not included because of the
slightly worse performance and shallower architectures had no advantage in fitting more
information. Although SE/ResNet50 were deeper in architectures, they were not selected
due to poorer performance compared with SE/ResNet34.

As aforementioned in 5.3.2, three out of the four TFDs (except CWD) are stacked in
channel dimension to form the combined TFDs. Table 5.4 lists the performances (10 times
average, sensitivity, specificity, and MAcc, respectively) of three CNNs using different
single or combined TFDs. The results showed that combining input did not improve
classification performance.
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Table 5.4 Comparison of classification performance (%) between combined TFDs and
single TFD (an average of 10 times).

Model
Combined vs. Single

Se Sp MAcc
CT CWT STFT WVD

ResNet34

✓ 85.83 95.97 90.90
✓ 83.85 95.97 89.80

✓ 84.17 95.65 89.91
✓ 84.81 95.49 90.15

✓ ✓ ✓ 85.51 95.24 90.38
✓ ✓ ✓ 86.11 95.37 90.74
✓ ✓ ✓ 83.44 94.94 89.19

✓ ✓ ✓ 85.80 95.41 90.61

SEResNet34

✓ 85.61 96.27 90.94
✓ 85.86 95.91 90.89

✓ 83.50 95.56 89.53
✓ 84.33 95.56 89.94

✓ ✓ ✓ 86.50 95.35 90.93
✓ ✓ ✓ 86.31 95.91 91.11
✓ ✓ ✓ 83.85 95.32 89.59

✓ ✓ ✓ 84.52 95.50 90.01

DenseNet169

✓ 85.76 95.44 90.60
✓ 86.11 95.73 90.92

✓ 87.29 96.22 91.76
✓ 85.25 95.56 90.41

✓ ✓ ✓ 85.92 96.37 91.14
✓ ✓ ✓ 85.57 96.29 90.93
✓ ✓ ✓ 85.89 95.79 90.84

✓ ✓ ✓ 86.66 96.31 91.48

5.4.4 Discussion

This study compared several commonly used TFDs to classify the heart sound signals
on ten mainstream CNNs and explored using combined TFDs as inputs to improve the
classification performance. In previous heart sound analysis studies, TFDs were only
discussed for providing better human visualisation or more comprehensive information.
They were used individually as CNN inputs in the classification, while no study has
objectively compared and analysed their performance under different CNNs. Computer-
aided analysis for heart sound is the future trend that shows the potential to overcome the
physician’s clinical experience and listening limitation, providing a more accurate and
robust diagnosis. Thus, it is reasonably necessary to know if and how the selection of
the TFDs will affect the CNN performance. This study filled this gap and researched the
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input and model selection. The results revealed that using log-scale for the raw signal
as input in the time domain can improve classification performance with approximately
1−2% in MAcc on MobileNetV3 but a trivial increase (< 1%) on deeper networks. On
almost all the models, converting the heart sound signal from the time domain into the
time-frequency domain by TFDs can improve classification performance by approximately
2.3% in MAcc.

Furthermore, the selection of TFDs was not decisive on the heart sound classification,
but it will still affect the performance. As illustrated in 1) of 5.3.3, where we compared
all TFDs, CT and CWT are the two superior TFDs that outperformed STFT and WVD by
a small margin and outperformed CWD. We assume that the slightly worse performance
(< 1% than the rest TFDs) of CWD is due to the parameter setting ∂ of its kernel function.
Although [200] claimed that ∂ = 3 could provide better resolution, it may filter out useful
information. Moreover, due to the different heart sound recording settings, a suitable ∂

may be further discussed. Even though TFDs were obtained by different mathematical
calculations with different visual representations, as shown in Fig. 5.6, the hidden informa-
tion provided was similar. Their morphological differences decrease significantly as CNN
input with lower resolution (224×224), resulting in similar classification performances.
Nevertheless, results suggest that CWT is more suitable than the rest TFDs as input for
heart sound classification.

Secondly, the performances of different CNNs concerning TFDs were compared. It
has been observed that the increase of model capacity was necessary for classifying the
2D inputs since the lightweight MobileNetV3-small/large performed worse than the other
models with more parameters. However, only increasing the depth or the parameter number
of CNNs without changing architecture does not guarantee a better result. This can be
observed from ResNet and SEResNet family as in Fig. 5.8, that their classification perfor-
mance remains the same when increasing depth from 18 to 34 (within 0.15% difference in
MAcc, p ≤ 0.313). Meanwhile, their performance significantly drops when increasing the
depth from 34 to 50 for the two CNNs. This drop may come from the convolutional block.
It changes from basic to bottleneck, where the convolutional features lose effectivity in
deeper layers. SE was an approach to improve network performance, while there was no
observed improvement in this study. This may be due to no extra valuable features were
extracted by squeezing the convolutional features across the spatial dimension.

Furthermore, DenseNet-121/169 with fewer parameters achieve comparable perfor-
mance to ResNet or SEResNet. It indicates that the dense layer-wise connection in
DenseNet combining multi-scale convolutional features might benefit the heart sound
classification. Based on the findings above, we conclude that increasing CNN capacity
appropriately and extracting multi-scale convolutional features are two significant factors
for improving CNNs performance in classifying 2D heart sound signals. Although Mo-
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bileNetV3 achieved lower performance than the other more extensive networks (< 3%
lower in MAcc), it costs much less computational resources as listed in Table 5.1. This
indicates that some tiny networks like MobileNetV3 can perform heart sound classification
in portable devices. In contrast, the other more extensive networks are more suitable for
deploying in medical institutes or high-performance computing devices.

Thirdly, we explored the TFD combinations on three CNN models, including ResNet34,
SEResNet34, and DenseNet169. The TFDs selected included CT, CWT, STFT, and WVD,
while CWD was excluded due to its worse performance. The combination was implemented
by placing three out of the four selected TFDs in the three channels of the input image
for CNNs. The results in Table 5.4 indicate that the combination methods did not yield
better performance than using single TFD for all selected CNNs. The lack of improvement
can be explained by the fact that the TFD representations as CNN inputs were similar and
sometimes overlapped; thus, the combined TFDs cannot provide extra helpful information
than a single TFD.

Although the combination of TFDs did not improve the heart sound classification per-
formance visibly, the performance of the CNNs and TFDs in this study is still considerable.
Compared with rank 1 (0.8602 in MAcc) in the 2016 PhysioNet/ Computing in Cardiology
(CinC) Challenge, the performance in this study (approximately 0.9 in MAcc) is higher.
This showed that using the appropriate TFD and deep learning model is the optimum
approach for heart sound classification.

This study revealed that when using CNN models to identify heart sound, it is beneficial
to convert the raw signal from the time domain into the time-frequency domain, providing
more comprehensive information to improve classification performance. Using TFDs can
alleviate the need for training deeper CNNs to achieve identical performance. The effect of
selecting time-frequency representations is not apparent for CNNs though they are different
in human visualisation; we recommend CWT due to its stable performance in this study,
generality, and understandability. For the CNN models, small-scale CNNs cannot perform
as well as large-scale models (approximately 2− 3% less in MAcc), but they showed
potential for embedded or portable devices. Among the mainstreamed large-scale CNN
models, only increasing the depth or the parameter number is unnecessary for performance
improvement and may even cause effectivity loss. The exploration of combining TFDs in
the channel dimension as CNN input did not show improvement.
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5.5 George B. Moody PhysioNet Challenges 2022

5.5.1 Introduction

Early screening is vital in detecting cardiovascular disease (CVD) and necessary action
to reduce the risk of worsening heart disease. The initial suspicion often depends on
the medical staff to listen to murmurs in the heart sound (recorded as phonocardiogram,
PCG) during auscultation. However, due to the limitation of listening ability and clinical
experience, auscultation is not always trustworthy [11]. Therefore, a more robust and
accurate computer-aided PCG analysis algorithm is greatly needed to improve the situation.

The existing PCG classification methods can be divided into two types: (1) feature-
based machine learning (ML) methods and (2) deep learning (DL) based methods. Feature-
based ML requires manual extraction of the features, which heavily depends on PCG
segmentation and feature settings. This usually causes robustness and portability issues.
The inputs can be raw signals or their time-frequency distributions (TFDs) for DL-based
approaches. Deep CNNs can extract the spatial features automatically, generally skip the
segmentation and require fewer input settings. However, DL approaches require large
datasets to improve classification performance. In recent years, large PCG datasets such as
[42] and [232] have made DL approaches more competitive.

In the previous study [233], the 2-D TFDs as inputs for PCG classification were proved
to outperform the raw signals on deep CNNs. Furthermore, the current mainstream CNNs
were designed for the image recognition field with the local attention characteristic [234].
The receptive field of each CNN layer is fixed without considering the long short-term
dependencies of the time-domain signal information. Therefore, the primary aim of this
study is to design a novel CNN with hierarchical multi-scale architecture to improve the
classification performance by fusing multi-scale features. In addition, the low-quality
recording segments involving artefacts may mislead the network optimisation. Hence,
the second aim of this study is to improve the classification accuracy by designing a
quality assessment method to correct the labels for the low-quality segments. The proposed
algorithm has been applied in the PhysioNet Challenge to verify the performance.

5.5.2 Methodology

1) Database and Pre-processing
The database used in this study is the PhysioNet Challenge 2022 publicly released data,

containing 3163 PCG recordings from 942 patients (Murmurs: 695 absent, 68 unknown
and 179 present; Outcomes: 456 abnormal and 486 normal.). See [235] for more details.
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In this study, the recording sampling frequency is downsampled from 4000 to 2000
Hz for faster data loading speed without information loss of the murmurs (ranging from
20−500 Hz [236]). Afterwards, the signal is normalised by z-score normalisation.

2) Quality Assessment Method
The murmur labels given in the database correspond to each auscultation location

recording of the patients, which means a recording is ’absent’, ’unknown’, or ’present’. In
[229], the PCG duration effect has been proved minor on CNN performance. Thus, in this
study, the recordings are cropped into 3s segments as CNN inputs, considering both the
shortest signal length 5s and CNN receptive fields.

However, the PCG recordings contain many low-quality segments caused by ambient
noise, artefacts, body friction, etc., which misleads CNN optimisation. Hence, a quality
assessment for the murmur label correction of segments is needed. Since the frequency of
normal heart sound is between 20−200 Hz, the energy of most murmurs is much less than
that of heart sound [236]. The selected assessment criteria is the ratio of spectral density
between 20−200 Hz to full band (0−1000 Hz), named quality ratio.

(a) Ratio 0.28 (b) Ratio 0.52 (c) Ratio 0.26

Fig. 5.9 Spectrogram of a segment with a quality ratio of (a) 0.28 from signal labelled
’absent’. (b) 0.52 from the same signal. (c) 0.26 from signal labelled ’unknown’.

Fig. 5.9a and 5.9b are spectrograms of two segments from one ’absent’ recording.
Fig. 5.9c is of a segment from an ’unknown’ recording. There are visible differences
between 5.9a and 5.9b, especially in the higher frequency bands. On the contrary, these
high-frequency noises in 5.9a are similar to those in 5.9c. After manual frequency analysis
on recordings, the label correction strategy is: if the quality ratio is larger than 30%, this
segment murmur label follows the recording label. Otherwise, it is relabelled as ’unknown’.
It should be noted this label correction is only for murmur labels but keep outcome labels
unchanged.

3) Model Interpretation
The CNN inputs are the multi-scale spectrograms of 3s segments. Three scales (×1.0,

×0.5, ×0.25) are selected. The parameters for the spectrograms are given in Table 5.5.
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The multi-scale spectrograms provide CNNs with time-frequency features in different
resolutions and reduce the spatial information loss in single spectrogram.

Table 5.5 Parameter settings for multi-scale spectrogram.

Scale Nfft Window length Hop length
×1.0 446 200 27
×0.5 222 100 54
×0.25 110 50 108

(a) (b)

Fig. 5.10 (a) Overall structure of the HMS-Net. The in-box text denotes the layer parame-
ters, e.g., ’3×3 Conv, 128, /2’ represents a convolution layer with 128 3×3 kernels and
stride 2. The text above boxes denotes the output size. The colours in convolution blocks
indicate the information from certain scales. (b) Structure of a residual convolution block.

Inspired by [237, 238], in this study, a hierarchical multi-scale convolutional neural net-
work (HMS-Net) is proposed to improve the PCG classification performance by building
long short-term dependencies between multi-scale inputs with its hierarchical architecture.
Fig. 5.10a illustrates its overall structure. The fundamental element in HMS-Net, con-
volutional block, refers to ResNet [205], with its structure diagram shown in Fig. 5.10b.
Three-scale spectrograms of a segment input HMS-Net and output the 3-class murmur
prediction. For outcomes prediction, it combines with patient information and outputs the
binary result.

In HMS-Net, the convolutional features of the multi-scale spectrograms are extracted
at different depths. A larger scale requires deeper layers; thus, HMS-Net has four phases
containing layers with incremental depths for extracting features from different scales. For
example, in Phase 1, two sub-networks are employed to convolve the features from Scale
1 and Scale 2. The 2-scale features are then concatenated in channel dimension and passed
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to the next phase. Phase 4 summarises the multi-scale convolutional features by global
average pooling and classifies the segment with a linear layer. Overall, HMS-Net extracts
features from multiple scales separately at the beginning and fuse these features with its
hierarchical design.

Regarding the outcome classifier, patient information, including age, gender (one-hot),
pregnant status, height, and weight, is added as extra information to distinguish patients
with abnormal clinical outcomes. As shown in Fig. 5.10a, 256 patient features are extracted
from these information via a 4-layer multi-layer perceptron (MLP). The final outcome
prediction is obtained from both the convolutional features and the patient features.

4) Training Settings
The optimiser is Adamw and the max training epoch is set to 100. The initial learning

rate is 10−3. When the training loss has stopped decreasing for five epochs, the learning
rate is multiplied by 0.1. The loss function is cross-entropy with 0.1 label smoothing. In
each batch, 128 multi-scale spectrograms are fed to HMS-Net.

5) Murmur Classification
Since the HMS-Net is designed to classify the segments, for recording classification,

a sliding window with 3s width and 1s step is applied to classify the whole recording
continuously. For a frame slided by multiple windows, its label is calculated by the
averaged distribution probabilities of the passed windows. The prediction for the recording
is the serial labels per second. If the predicted ’unknown’ accounts for over 80% of
the serial labels, the recording is catalogued as ’unknown’. Otherwise, the recording is
classified with the majority of serial labels (exclude ’unknown’).

For patient classification, if one location recording is classified as ’present’, the patient
is labelled ’present’. In terms of ’absent’ and ’unknown’, the patients are classified by
the majority of location recording labels. When there is the same number of ’absent’ and
’unknown’ recordings of the patient, ’absent’ has the priority. All the mentioned thresholds
are chosen based on local testing.

6) Outcome Classification
Our outcome prediction strategy is similar to murmur prediction but does not involve

’unknown’ issue. The serial labels (’abnormal’ or ’normal’) per second are obtained by
sliding window as well. If over 1/3 frames are predicted as ’abnormal’, the recording is
predicted as ’abnormal’. When a patient has at least one predicted ’abnormal’ recording,
our strategy diagnoses the patient as ’abnormal’. Otherwise, the patient is diagnosed as
’normal’.
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5.5.3 Results

We used five-fold cross-validation by patients to fairly evaluate our methods. See [235] for
the scoring metrics of murmur weighted accuracy and outcome challenge score.

(a) (b)

Fig. 5.11 Confusion matrices of (a) murmur classification (b) outcome classification.

Our method achieved an average murmur classification accuracy of 91.37% (best
92.85%) on segments in the five-fold cross-validation. It performed 83.78% averaged
murmur classification accuracy on patients and 0.81 averaged weighted score. Fig. 5.11a
shows the confusion matrix of the best fold on patient classification. The overall accuracy
was 89.94%, respectively, on ’present’ was 85.0%, ’unknown’ was 53.84% and ’absent’
was 94.85%. The weighted murmur accuracy was 0.853. Regarding patient outcome
classification, our method achieved averaged 56.83% accuracy (best 62.96%) and 9808
averaged outcome (best 9242). The outcome confusion matrix for highest outcome score
is shown in Fig. 5.11b. In the blind validation set, the algorithm achieved 0.806 murmur
weighted accuracy and 9120 outcome challenge score, and in the blind testing set, they
were 0.776 and 12069, respectively.

5.5.4 Discussion

Label Correction The low-quality (’unknown’) segments or recordings caused by
artefacts exist considerably and are often fused with heart sounds and murmurs. When
training the CNN model on segment inputs, these low-quality parts greatly mislead the
model. It is necessary to identify them while often being neglected. Therefore, a quality
assessment method by spectral density was proposed to alleviate the label inconsistency
problem. With the assessment method, the accuracy on segments increased by approx-
imately 5%. Though, in the current method design, it did not involve too many criteria
considering the data loading speed for the DL methods. There is huge room to extend
the assessment criteria by the PCG time-domain or frequency-domain features to achieve
better label correction and improve the classification accuracy. In future work, removing
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the unknown segments in data pre-processing or alleviating its effect in the testing interface
should be studied.

HMS-Net HMS-Net holds the advantage of combining the features from multi-scale
spectrograms to improve the classification performance. However, work could still be
done on determining the optimal network depth and width, parameter optimisation, etc.,
to make the network more efficient. Furthermore, the low-quality segments issue made
it hard to objectively evaluate its segment classification performance when many label
inconsistencies occurred. This is also why the confusion matrix on segments was not
provided in the results. Despite this, in local tests, HMS-Net performed approximately 1%
better than ResNet34.

Outcome Prediction The clinical outcomes diagnosed by cardiologists are based
on multiple assessments. Only PCG with basic patient information is far from enough
to reliably and accurately identify the outcome. More patient diagnostic information
like echocardiogram can be served as extra inputs to provide CNNs with more valuable
information. Besides, the outcome result is quite sensitive to hyper-parameter settings.

Overall, this study proposed a hierarchical multi-scale convolutional neural network
with a signal quality assessment method to classify PCG. In the PhysioNet Challenge
2022, it performed outstandingly with 1st in murmur detection and also top scores in
clinical outcome. The proposed method may be inspiring and significant in future PCG
classification design.

5.6 Conclusion

This chapter discusses the works conducted on PCG classification. In Section 5.3, we
analyze the effect of signal duration on the classification of heart sounds. The results
of this study revealed that (1) very short heart sound signal duration (1 s) weakens the
performance of RNNs, whereas no apparent decrease in the tested CNN model was found.
(2) RNN outperformed CNN using Mel-frequency cepstrum coefficients (MFCCs) as
features. There was no difference between RNN models (LSTM, BiLSTM, GRU, or
BiGRU). (3) Adding dynamic information (∆&∆2MFCCs)) of the heart sound as a feature
did not improve the RNNs’ performance, and the improvement on CNN was also minimal
(≤ 2.5% in MAcc). The findings provided a theoretical basis for further heart sound
classification using deep learning techniques when selecting the input length.

In Section 5.4, we investigate the optimal use of TFD/ combined TFDs as input for
CNNs. The presented results revealed that: (1) The transformation of the heart sound
signal into the TF domain achieves higher classification performance than using of raw
signals. Among the TFDs, the difference in the performance was slight for all the CNN
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models (within 1.3% in average accuracy). However, Continuous wavelet transform
(CWT) and Chirplet transform (CT) outperformed the rest. (2) The appropriate increase of
the CNN capacity and architecture optimisation can improve the performance, while the
network architecture should not be overly complicated. Based on the ResNet or SEResNet
family results, the increase in the number of parameters and the depth of the structure do
not improve the performance apparently. (3) Combining TFDs as CNN inputs did not
significantly improve the classification results. The findings of this study provided the
knowledge for selecting TFDs as CNN input and designing CNN architecture for heart
sound classification.

In Section 5.5, we proposed the wining algorithm with a recording quality assessment
method based on frequency density distribution for label correction to prevent the poor-
quality recording segments from misleading network optimisation. Besides, a hierarchical
multi-scale convolutional neural network (HMS-Net) was designed to conduct both the
murmur (T1) and clinical outcome (T2) classification. HMS-Net extracts convolutional
features from the spectrograms on multiple scales and fuses them through its hierarchical
architecture. The network builds long short-term independencies between multi-scale
features and improves the classification performance. Finally, the prediction of a patient
is based on the ensembled segment predictions by sliding window. In the five-fold cross-
validation by patients, the proposed algorithm performed an average weighted accuracy of
0.81 (best 0.853) on T1 and an average challenge score of 9808 (best 9242) on T2. In the
Challenge hidden validation set, the proposed algorithm achieved 0.806 weighted accuracy
on T1 and 9120 challenge score on T2, ranking 1st and 4th out of 305 entries, respectively.
In the final hidden testing set, T1 was 0.776 ranking 1st , and T2 was 12069.
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Chapter 6

Classification of Paroxysmal Atrial
Fibrillation using Deep Learning
Methods on ECG Signals

6.1 Introduction

Atrial fibrillation (AFib) is an irregular heartbeat (arrhythmia) caused by the ectopic
impulses in the atrium. It may lead to blood clots, stroke, and heart failure, which are severe
hidden dangers to human lives. Furthermore, the AFib is a common issue for approximately
2% of people younger than 65 and 9% older than 65 [239]. The American Heart Association
guideline [240] classified Afib into four types: paroxysmal AFib, persistent AFib, long-
standing persistent AFib, and permanent AFib based on the duration and recoverability.
While in clinics, physicians usually sort them into paroxysmal and persistent types only.
Paroxysmal AFib episodes can last several seconds, hours, or even days before returning to
normal sinus rhythm. Lack of intervention may lead the paroxysmal into persistent AFib,
which is irreversible. Due to the intermittent characteristics of the paroxysmal AFib, it
is generally neglected by patients before deteriorating into a persistent type. As a result,
the all-cause mortality rate is approximately 6.3% on AFib patients [241]. Therefore, it is
vital to have an algorithm that can work automatically in the early screening to prevent the
paroxysmal AFib from worsening to persistent AFib or more severe health issues.

ECG is the most commonly used approach in cardiac diagnosis. It represents the
electrical activity of the heart. The whole electrical process starts with the spontaneous
impulse generated at the Sinoatrial node (SA node), then propagates to the atrioventricular
node (AV node), causing the squeezing of the atria as represented by the P wave. After-
wards, the electrical signal is transmitted to the His bundle and Purkinje fibres, causing the
contraction of the ventricles. The ventricles repolarizes and ready for the next heart cycle.
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The QRS complex indicates the depolarization, and the T wave shows the repolarization of
the ventricles, respectively. However, AFib is caused by irregular fast squeezing of the atria
leading the heart walls quiver, or fibrillate. This phenomenon it is reflected by disorganized
electrical activity (ectopic impulses instead of SA impulse) in the atrium, so its ECG signal
differs from normal, as shown in Figure 6.1. Morphologically, the AFib ECG has irregular
intervals, a narrow QRS complex, and undulating P waves. Thus, using ECG signals to
identify the AFib is a practical approach in designing automatic classification algorithms.

Fig. 6.1 The cardiac cycles of normal and AFib ECG.

Computer-aided algorithms for AFib detection have been developed for decades,
and the proposed algorithms covered the conventional machine learning (ML) methods
such as support vector machine (SVM), k-nearest neighbours algorithm (KNN), random
forest, discriminant analysis, etc [242–247]. These conventional ML approaches relied
on manually extracted features such as average, standard deviation, and entropy of RR
intervals in the time domain [248], power spectral density in the frequency domain, and
statistical features such as kurtosis and skewness [247]. With the development of deep
learning (DL) in recent years, approaches such as convolutional neural network (CNN) and
recurrent neural network (RNN) have also been tested on AFib detection [249–251]. They
hold the advantage of neglecting feature extraction and using raw ECG signals as input and
have also achieved promising performance. Though there are tons of researches focusing
on AFib classification, only few pieces of research work have focused on paroxysmal
AFib detection due to the lack of suitable databases. As a result, paroxysmal AFib is often
unrecognized [252]. Therefore, it is pretty meaningful to explore the capability of the
neural network (NN) in the identification of paroxysmal AFib.

In this study, the primary aim is to propose an algorithm that can classify the non-AFib,
persistent AFib, paroxysmal AFib, and their onsets. The secondary task is to constrain
the computing load while achieving comparable performance, making it available for a
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standard laptop or embedded system. All the findings provide knowledge on using NNs to
classify paroxysmal AFib and contribute to designing small-scale portable ECG devices
which can do real-time monitoring of the heart conditions.

6.2 Two-Stages RNN Algorithm with Feature Extraction

6.2.1 Database and Pre-processing

The database used in this research was CPSC2021[253]. It includes 1436 ECG record-
ings (475 Persistent AFib, 229 Paroxysmal AFib, 732 Non-AFib) from 100 subjects (24
Persistent AFib, 23 Paroxysmal AFib, 53 Non-AFib).

In this study, a two-stage algorithm is designed to conduct the detection of paroxysmal
AFib and its onsets. The flowchart of the proposed algorithm is shown in Figure 6.2.
In Stage I, a Bidirectional Long short-term memory (BiLSTM) network was used to
classify the ECG segments into Non-AFib and AFib segments. Then the ECG signals
consisting of AFib segments were transferred to Stage II and classified into Persistent AFib
or Paroxysmal AFib. A moving window was employed to classify the whole signal and
detect AFib onsets. The processing was conducted in Matlab® R2021a environment, using
a laptop (CPU: i7-8650U, RAM: 16G, no GPU).

Fig. 6.2 The flowchart of the designed algorithm.
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Before the two classification stages, the ECG signals were pre-processed. The raw
ECG signals were normalized (z-score), filtered with 0.5 – 30 Hz bandpass filter (3rd order
Butterworth), then segmented into 5s segments for training (without overlap). After seg-
mentation, 699040 ECG segments were generated (421022 Non-AFib, 212098 Persistent,
and 65920 Paroxysmal) for training.

6.2.2 Evaluation Metrics

The validation accuracy of the two stages indicates their capability to identify the small
segments (within windows). The overall performance of the algorithm can be reflected by
the score of the testing recordings. In this paper, the CSPC2021 Challenge scoring scheme
is considered [253].

The score includes two parts: the first part (Ur) classifies the AFib correctly, and the
score matrix is shown in Figure 6.3. The second part (Ue) is meant to detect the AFib
onsets. If the onsets and end of the AFib episodes were detected within ±1 R-peak, Ue+1,
within ±2, Ue+0.5.

Fig. 6.3 The score matrix for part one.

The overall score (U) is calculated by:

U =
1
N

N

∑
i=1

(
Uri +

Mai

max{Mri,Mai}
×Uei

)
, (6.1)

6.2.3 Architecture of the Algorithm

Stage I: BiLSTM
BiLSTM is one type of RNN algorithms that showed outstanding performance in the
analysis of data sequence, such as speech and text recognition [254, 185]. In the proposed
algorithm, a simplified structure with two layers of BiLSTM (hidden units: 50) was applied.
The inputs for the BiLSTM layers were 5s segments. After BiLSTM, it is connected with
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a fully connected layer to project the results into Non-AFib (0) and AFib (1) two classes.
The overall structure of Stage I is shown in Figure 6.4(a).

Fig. 6.4 (a) The Stage I structure, (b) The Stage II structure.

During training, the used training sets included non-AFib segments labeled (0), persis-
tent AFib segments labeled (1), while paroxysmal AFib segments were also labeled (1) to
increase the sensitivity. Training and Validation Proportion was 7:3. 20% recordings (285)
were randomly left for the whole signal testing, including 145 non-AFib, 95 persistent, and
45 paroxysmal recordings. The optimizer selected in this study was stochastic gradient
descent with momentum (SGDM). The initial learning rate was 0.001 with a drop factor of
0.2, the max epoch of 10, and the batch size of 256. The network can identify the non-AFib
segments of the ECG signal. For the complete signal classification, a moving window (size:
5s, slide: 1s) was conducted on the signal to classify each segment. A majority voting was
applied to avoid sudden incorrect classification. Each time frame was covered by 5 sliding
windows, so the time frame is only labeled AFib when more than 3 windows (segments)
were classified as AFib.

Stage II: Feature extraction ANN
In the testing phase, the use of a relatively simplified DL network (with two layers
BiLSTM and three Conventional layers structure, such as Stage I) didn’t perform well
in the identification of paroxysmal or persistent AFib. The loss didn’t go down and the
training accuracy remained at 69.15%, which means the network was uncapable to learn.
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Deeper and complex network structure were excluded to avoid increasing the computation
burden. Therefore, manual features extraction was applied in the classification stage,
where entropy and standard deviation of RR intervals (which are commonly used as input
features for classification) were selected. The process of Stage II is shown in Figure 6.4(b).
R-peaks were extracted by Pan–Tompkins algorithm (Pan and Tompkins, 1985). Five RR
intervals were clipped as a segment, and the entropy and standard deviation were extracted
from the segments. Afterward, they were sent to the fully connected layers to classify into
non-AFib or AFib segments. Similar to Stage I, a moving window (size: 5 intervals, slide:
1 interval) was also applied to identify the whole signal as persistent or paroxysmal. The
entropy calculation is given by the equation:

E(R) =−
n

∑
i=1

P(Ri) logP(Ri) (6.2)

where E is the entropy of the segment, Ri indicates each RR interval length and P is the
occurrence probability.

The training sets were only persistent AFib labelled (1), and paroxysmal AFib segments
were labelled according to the reference label. Because the paroxysmal segments were
approximately 30% of persistent segments, and the non-AFib segments of the paroxysmal
are less. Therefore, a moving window (size: 5 intervals, slide: 1 interval) was applied to
section more paroxysmal segments to balance the data structure. The rest training settings
were the same as Stage I.

6.2.4 Results and Discussion

For Stage I, the validation sets achieved 90.14% accuracy to classify the non-AFib and
AFib segments with a specificity of 93.65% and sensitivity of 84.82%, respectively. The
result indicated that Stage I could identify the non-AFib segments well but may miss some
AFib segments. However, it wasn’t an issue for the whole signal because the majority
voting and the appropriate threshold can improve the overall performance and remedy the
sensitivity. In the testing phase, a 2.5% threshold was set which means if less than 2.5% of
the signal is classified as AFib, the overall signal is regarded as non-AFib. By this approach,
the accuracy of non-AFib signals classification could be increased approximately from
92.62% to 96%. Theoretically, raising the threshold can improve the non-AFib accuracy
on validation to almost 100%, but it loses its sensitivity and generalization.

For Stage II, on the validation sets, it achieved the accuracy of 92.56% with a specificity
of 86.24% and sensitivity of 95.77% to classify non-AFib and AFib segments on the AFib
signals. The result showed that Stage II might tend to classify the healthy segments
into AFib segments. However, because of the considered two stages design, non-AFib
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signals have been excluded before Stage II; thus, it won’t affect the overall classification
performance. It only affects the detection of the onset of the AFib.

During the testing recordings, the two-stages method achieved 2.0953 overall mark, in-
cluding 0.8714 Ur and 1.4039 Ue. It showed a satisfying performance on the classification,
while the onset detection can be improved. Furthermore, the total neural network is only
about 1.6 MB in Matlab (coding in Python can be smaller, approximately 500 k.), which is
possible to use on a personal laptop or embedded device.

This study aimed to design an algorithm using NNs to detect paroxysmal AFib and
make the computing load small enough for a portable embedded ECG device. This is done
because patients typically neglect paroxysmal AFib due to its intermittent characteristics
and lack of appropriate databases. In this study, a two-stage algorithm was designed using
the CSCP2021 database, and its capability to classify the AFib segments and onsets on
the validation sets proved. Firstly, the use of a two-stage method rather than one NN is
justified. Before the training, our preconceived thought on paroxysmal AFib was like
intermittent non-AFib and AFib waveforms in the ECG signals. However, it is not, or
at least the BiLSTM or Conventional Neural Network (CNN) cannot easily learn it. For
non-AFib or AFib segments from the non/persistent AFib signals, the network in Stage I
can learn in a very short time within one epoch, while the segments from paroxysmal could
not regress, and the loss didn’t go down (training accuracy also stuck at 69.15%, which is
approximately equal to the data proportion). This may indicate that the paroxysmal AFib
may hold pathological characteristics even in the healthy episodes and using a simplified
network cannot classify the non-AFib or AFib episodes. There is no doubt that using
the deeper NN with complex structure, such as adding lots of CNN layers and attention
layers, can learn the difference. Still, it makes the computing load quite extensive, which is
contrary to the original intention. Therefore, a second phase was included for the detection
of the paroxysmal onset. Secondly, the use of Stage II to finish the whole classification
task is tested. However, the performance was not satisfying due to the oversensitivity
of the Stage II network and its trend to identify the segment as AFib. Besides, feature
extraction relies greatly on reliable and accurate R peak detection. When the signal has
massive motion artefacts, the failed R peak detection causes an error in the algorithm.
This is another advantage of the two-stage structure. Thirdly, there is still room for the
improvement of the overall performance. In the blind test of the challenge, the overall mark
is decreased from 2 to approximately 1.7. This result showed that the generalization needs
to be improved, especially in Stage II. Currently, only two features were used while adding
more features might be a solution to improve the algorithm. Besides, appropriate window
length may also affect the result. Currently, a 5s window on Stage I and five intervals on
Stage II are used. Longer window length may provide more information, especially on the
feature extraction of Stage II. Short duration cannot maximize the feature difference.
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6.3 Conclusion

This study proposed a two-stage neural network algorithm that can detect paroxysmal AFib
and its onsets. For performance, it can achieve 90.14% and 92.56% accuracy on non-AFib
and AFib segments classification respectively in the two stages, got 2.0953 overall mark
on our testing sets. As few researches have focused on paroxysmal AFib detection using
NNs, the finding of this study provides knowledge for the further researches in this area.
In the meantime, the proposed method also holds the advantage of a small computing load,
making it possible for embedded ECG devices.
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Chapter 7

Studies on EDR Extraction

7.1 Introduction

The respiratory rate (RR) is a vital physiological parameter in prediagnosis and daily
monitoring. It can be obtained indirectly from Electrocardiogram (ECG) signals using
ECG-derived respiration (EDR) techniques. As part of the study in designing an early
cardiac screening system, this part of thesis aimes to provide accurate respiratory rate
while eliminating the need of physical respiration sensor using EDR methods.

This chapter introduces the three conducted studies on EDR extraction. Section 7.2
is to assess the feasibility of extracting EDR from the localised ECG at the auscultation
sites by experiments. Section 7.3 is about exploring using embroidered electrodes to
extract the EDR. Section 7.4 introduces the progress on EDR under stress test. Section 7.5
summarizes the works.

7.2 Estimation of the Respiratory Rate from Localised
ECG at Different Auscultation Sites

7.2.1 Introduction

Since the researches on EDR mainly focused on traditional 12-leads ECG and barely on
localized ECG signal. Therefore, it is worth researching how the EDR performance within
auscultation sites is. The aim of this study is threefold: (1) To investigate if the location of
the electrodes at auscultation sites affect the EDR algorithm accuracy; (2) to compare the
performance of one-lead EDR algorithms based on the mentioned respiration-induced ECG
variation; (3) to compare time-domain and frequency-domain features for RR estimation.
All the findings will contribute to providing more accurate RRs for the integrated cardiac
screening device.

94



7.2 Estimation of the Respiratory Rate from Localised ECG at Different Auscultation
Sites

7.2.2 Methodology

1) Subjects
The experiments were conducted on 12 healthy human subjects (8 male/4 female,

age range 21-29 years, mean 25.9 years) with no history of heart diseases or respiratory
issues. The procedures were approved by the King’s College Research Ethics Committee
(Approval No.: LRS-18/19-10673). Subjects gave written informed consent before the
experimental procedures.

2) Experimental Setup
The standard Lead I ECG (as reference ECG), auscultation site ECG (captured at

auscultation site A, P, T, M with 10 cm inter-electrode distance), and respiratory signals
were recorded simultaneously during the experiment. A simple block diagram of the
experimental setup is shown in Fig. 7.1. The sensors for ECG signals were solid gel
electrodes (Ambu WS, size: 36×40 mm, Medico Electrodes International LTD., Uttar
Pradesh, India), and the respiratory signal was captured by a small microphone (developed
at the Centre for Robotics Research (CORE) at Kings College London, UK) placed under
the subject’s nose. The recording used the commercial acquisition system (iWorx, model
RA834, iWorx Systems Inc, Dover, NH, US) and ECG devices (iWire-BIO4, iWorx
Systems Inc, Dover, New Hampshire, US). The sampling frequency was 1 kHz and the
analog filter for the ECG was 0.05–40 Hz [177].

Fig. 7.1 Block diagram of the recording setup: Red dots are Lead I Electrocardiogram
(ECG) as a reference, green dots are auscultation site ECG. The grey dot is the microphone
for respiration recording. iWire BIO4 is for ECG recording. All the data is transferred to
the computer for processing through iWorx RA 834.
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During the experiment, subjects should keep supine and remain calm. Besides, subjects
were required not to make sound from the larynx to ensure the sound captured was only
respiration. The Lead I ECG and different auscultation site ECG signals were measured in
pairs together with the respiratory signals. The duration of each recording group was three
minutes, and two minutes break was given between different auscultation site trials.

3) Signal Processing
In this study, EDR signals were obtained using BW, AM, FM, and BP algorithms from

the reference (Lead I) and auscultation sites ECG signals, respectively. The RRs were
estimated from the EDR signals using time and frequency domain features as detailed
later. The performance of the algorithms and the effect of the locations were analysed by
comparing it with the measured respiratory rate. The processing was conducted in the
Matlab ® R2018b environment, and the statistical analysis was performed using IBM ®

SPSS version 26.
The captured ECG signals and respiration sounds were filtered first to remove the

unwanted artifacts and noise. For the ECG, a zero-phase 3rd-order Butterworth high-pass
filter at 0.1 Hz was used to eliminate the large artifacts which were not related to respiration
[178]. For the respiration sound, a 3rd-order Butterworth band-pass filtered (0.1–0.5 Hz)
was used to smooth the waveform.

In AM, BW, and FM algorithms, R-peak detection was a vital step, as all the features
to be captured were related to R peaks. In this study, the Pan–Tompkins algorithm was
used to detect R-peaks in the ECG signals [89].

1. AM algorithm: The amplitude changes due to the respiration in the ECG signals
was obtained by connecting the captured R-peaks.

2. BW algorithm: Based on the R-peaks, Q points were found using the gradient
descent method. Then, the baseline wander could be generated by connecting the middle
points between R-peaks and Q points [144].

3. FM algorithm: The intervals between the R peaks were calculated. The resulting
signal was the frequency modulation caused by respiratory sinus arrhythmia. Afterward,
all the signals generated by the algorithms above were interpolated to the same sample size
of its raw ECG signals to increase the resolution.

4. BP algorithm: A band-pass filter (0.1–0.5 Hz) was used to capture the EDR signals.
Although the normal RR for a healthy adult ranges between 0.2–0.35 Hz at rest, in
our processing, we appropriately expanded the range to enable it to respond to special
situations, such as the subjects’ occasional deep or rapid breaths. Besides, a wider band
can help to further analyse the frequency components when there are no dominant peaks.
Representative derived respiration signals by the methods above are shown in Fig. 7.2.

The reference RRs were obtained from the filtered respiration sound recorded using
a nostril microphone. It was manually counted in the waveform to ensure accuracy. The
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Fig. 7.2 A representative derived respiration signals from auscultation site ECG and
reference respiration signal.

estimated RRs from EDR signals were calculated by automatically counting in the time
domain and using the median frequency (between 0.1–0.5 Hz), respectively. For the
counting method, a moving average filter (window length: 50 ms) was used first to smooth
the EDR signals and eliminate sub-peaks. Then, peak detection with the threshold of the
signal mean value provided the estimated RR. The median frequency was chosen according
to our previous study, which was proven to be the best feature in the frequency domain to
estimate RR from EDR signals [162].

4) Statistical Analysis
The mean absolute errors (MAE) between the EDR-based estimated RR and reference

RRs was used as the performance measure provided as mean ± standard error (SE). A three-
way repeated-measures analysis of variance (ANOVA) was used to compare MAE. Factors
were the features (counting and median frequency), EDR algorithms (AM, BW, FM, BP),
and ECG locations (A, P, T, M, Lead I). A P-value of less than 0.05 was considered
significant. Data were log-transformed to obey normality and variance homogeneity was
satisfied.

7.2.3 Results

1) ECG Morphological Variation among the Auscultation Sites
Fig. 7.3 shows a representative local ECG morphological variation compared with

the lead I ECG from one subject. From (a) to (d), it can be seen that the amplitude of the
R-peak, s-wave, and T-wave become larger from auscultation site A to M. Besides, it is
also found that the R-peak of the site A ECG is normally on the left-hand side of it on Lead
I ECG, which means the R-peak is advanced (approximately 10 ms by average). However,
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it shifts to the right-hand side when measured at site M, which means its onset is delayed
(approximately 15 ms by average). Another phenomenon could also be observed that in
the site A ECG, there is a J-point elevation shown as grey dots in (e). This happened on
five subjects, and in 3 of them, the J point is even higher than the R-peak.

Fig. 7.3 The local ECG morphological variation compared with reference Lead I ECG.

2) Location Effect on EDR among the Auscultation Sites
Table 7.1 summarized the EDR MAE of each subject averaged across estimation

techniques and given per auscultation site. ANOVA results indicate that there is no
statistical difference between the five sites (p = 0.746), and there was no interaction
between EDR algorithms and sites (p = 0.516). All four EDR algorithms have quite
close MAE between each auscultation sites, including average MAE at A: 1.656 ± 0.351
bpm (breath per minute), P: 2.297 ± 0.476 bpm, T: 1.733 ± 0.461 bpm, M: 1.467 ± 0.326
bpm, and reference ECG (Lead I): 1.834 ± 0.378 bpm. This indicates that RR can be
harvested using ECG anywhere on the chest with negligible location effect. Fig. 7.4 further
visualized the location effect with different algorithms.

3) The Performance of the EDR Algorithms
After statistical analysis of the MAE on each subject with different EDR methods shown

in Table 7.2, there was a significant difference between the four EDR algorithms (p <
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Table 7.1 The ECG-derived respiration (EDR) mean absolute errors (MAE) of each subject
for each auscultation site and Lead I ECG signals, averaged across estimation techniques
in bpm.

A P T M Lead I

Subject1 0.16 0.06 0.14 0.12 0.08
Subject2 2.27 3.74 1.77 0.86 2.00
Subject3 1.88 1.37 3.17 2.15 2.60
Subject4 0.50 1.69 0.54 0.82 0.83
Subject5 1.27 1.10 0.28 0.14 0.47
Subject6 5.79 4.61 6.91 3.23 5.45
Subject7 1.60 2.60 0.38 2.60 2.24
Subject8 2.54 5.41 3.16 3.47 2.24
Subject9 0.73 0.20 0.67 0.53 1.16
Subject10 0.36 1.62 1.69 1.25 1.11
Subject11 0.85 2.10 1.03 1.46 1.45
Subject12 1.93 3.06 1.07 0.99 2.39

Mean 1.66 2.30 1.73 1.47 1.83

Fig. 7.4 The performance (MAE ± SE bpm) of the EDR algorithms on different auscultation
sites and Lead 1 ECG signals.

0.001). The BW algorithm performed with MAE = 1.446 ± 0.181 bpm, closely followed
by the AM algorithm with 1.589 ± 0.1966 bpm. Post hoc analysis revealed no statistical
difference between BW and AM (p = 0.31), however, they were both significantly better
(p < 0.05) than BP (MAE of 2.656 ± 0.258) and FM (MAE of 3.855 ± 0.329 bpm).

4) Time vs. Frequency Domain
Deriving respiration rate using the median frequency (overall MAE 1.80 ± 0.223 bpm)

outperformed the counting method (overall MAE 2.98 ± 0.312 bpm) in the time domain
(p < 0.001) suggesting stability of the frequency domain, although a significant interaction
(p < 0.001) with the applied method was observed. From Fig. 7.5, it can be seen that
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Table 7.2 The ECG-derived respiration mean absolute errors of each subject on different
ECG-derived respiration methods, averaged across auscultation sites in bpm.

BW AM FM BP

Subject1 1.61 1.92 5.86 1.93
Subject2 1.65 2.88 3.26 2.45
Subject3 1.33 1.82 2.04 0.47
Subject4 2.19 1.99 4.06 2.19
Subject5 0.91 0.92 1.54 2.93
Subject6 0.49 0.41 3.55 3.67
Subject7 0.34 0.66 0.73 0.86
Subject8 0.76 0.75 3.23 1.19
Subject9 3.98 3.54 11.93 6.75
Subject10 0.45 0.38 2.08 0.38
Subject11 1.81 2.02 3.36 3.59
Subject12 1.84 1.78 4.61 5.89

Mean 1.45 1.59 3.85 2.69

the median frequency can provide a more accurate estimated RR on BW, AM, and FM
algorithms. However, counting in the time domain is more accurate for the BP algorithm.

Fig. 7.5 The mean absolute error (MAE ± SE bpm) of the EDR rates between EDR
algorithms and estimation methods. Freq: Median frequency in the frequency domain,
Count: Automatic counting in the time domain.

7.2.4 Discussion

This study aimed at analysing the performance of one-lead EDR algorithms in auscultation
site ECG signals and EDR rate estimation in both time and frequency domain. The results
show:
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Firstly, it is found that the location effect on the obtainment of EDR between ausculta-
tion site and Lead I ECG signals is negligible in our experimental data. The result revealed
that the ECG morphological variation between auscultation sites happened on the onset
and amplitude of the ECG components including the R-peak delayed from site A to M,
and the amplitude increase of R-peak, s-wave, and T-wave. These won’t directly affect
the EDR signals extraction, but it is worth noticing in cardiac researches. It is still unclear
on the occurrence of J-point elevation or RSR’ (An ECG finding in which there are two
R waves) in five subjects’ site A ECG signals. Normally they are pathological, but the
subjects were confirmed healthy with no heart conditions, and this can be normal for the
age group. The high J-point or double R-peaks may interfere with R-peak detection when
the fake R-peak is higher than the true one. In our study, the performance of the four
chosen EDR techniques was not affected, however, it may have an impact on the QRS area
or slope based EDR methods. In the study of Sakai, it indicated that the location of the
electrodes affected the quality of EDR signals and the more accurate RR estimation was
obtained when the electrodes were attached near the heart [157]. The best placement was a
negative electrode at the bucket-handle and a positive electrode at pump-handle movements
of the ribs. However, in our experiment, electrodes were placed at auscultation sites on
the upper chest, which were already close to the heart. Besides, as we want to design a
miniaturised device, the inter-electrode distance was fixed and short (10 cm). Therefore,
from the physiological mechanism, the locations in our study barely have an effect on
the respiratory sinus arrhythmia, and the effect on the respiration-induced electrical axis
rotation and chest undulation-induced baseline wander are minimal. This result verifies
that the location effect on RR estimation can be ignored in designing an integrated cardiac
screening device.

Secondly, the BW and AM algorithms outperformed FM and BP algorithms. Although
BW has a slightly smaller MAE (1.446 ± 0.181 bpm) than AM (1.589 ± 0.1966 bpm), the
difference (p = 0.315) is not statistically significant in our experiment data, which cannot
confirm that the performance of BW is better than AM so far. This is in contrast with
some previous work. In Charlton’s study, it was shown that the BW performed better than
AM without statistical analysis [144]. The performance of FM and BP methods are in
line with previously reported MAE using the PhysioNet’s MIMIC-II database, while the
results of AM obtained in this study are similar to the MAE reported by [159] using their
experimental data. It seems like the experimental setting for the database had a significant
impact on the performance of EDR algorithms. Because our experiments were conducted
under ideal conditions where the subjects were required to lie down calmly without any
movement, the MAE was much lower than studies that have made use of the database.

For respiratory sinus arrhythmia induced FM, the magnitude of the oscillation varies
from individual to individual, so that the obtained EDR signal is not that conspicuous
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sometimes [158]. For example, the FM waveform of 0–50 s is shown in Fig. 7.2, the
EDR signal in that period is messy, thus it can dramatically affect the peak detection in
the time domain, causing inaccurate RR estimation. That should be the reason for FM’s
poor performance. For the BP algorithm, the choice of the frequency band is the current
limitation. Though the frequency band (0.1–0.5 Hz) used in this study is appropriately
extended, it is still not enough to capture RR from young children and stress tests. Besides,
the use of a simple band-pass filter cannot remove unwanted interferences completely. The
low-frequency component between 0.1–0.2 Hz, which is related to the baroreceptor reflex
(blood pressure is regulated by the baroreceptors through the autonomic nervous system)
and the high-frequency harmonic between 0.4–0.5 Hz interfere with the RR estimation in
the frequency domain [255]. Therefore, an adaptive frequency band is essential to improve
the performance of using a band-pass filter.

Thirdly, the RR estimation in the frequency domain is found to be better than the
time domain for BW, AM, and FM [256]. This result is the opposite of Charlton’s result,
which said Fourier analysis was inferior to breath detection in the time domain [144]. As
discussed above, there are conditions where the EDR is not conspicuous enough, thus in
the time domain, it is hard to detect the corresponding respiration related peaks, while
still possible to capture it based on the power spectral density function. Besides, at the
beginning and end of the EDR signals, there may be incomplete breathing, this leads to the
error for counting in the time domain. As there are not many breaths per minute, these
errors are considerable for the RR estimation. Using frequency features reduces this error
moderately. However, it is also noticed that the performance of frequency estimation for
the band-pass filter is worse than counting in the time domain as there are mentioned
lower-frequency and higher-frequency components in the spectrum which weaken the
domination of the respiratory band. Therefore, further analysis of frequency components
is needed to improve accuracy when using the BP algorithm.

In this study, our research focused on the EDR of healthy adults at rest, and the
experimental conditions were ideal that the subjects kept supine and breathed evenly
without any movement. However, there are conditions of practical application that need to
be considered including EDR performance on irregular respiration, such as deep breath or
an increased respiration rate. Improvement still can be done to improve the RR estimation
accuracy. The current validation study has compared four algorithms of the existing
algorithms. More algorithms and fusion methods could be tested to improve the accuracy
for clinical use. Future studies can include RR estimation throughout monitoring via a
Holter-like monitor.

This study analysed the location effect on EDR algorithms’ performance between
auscultation sites and compared four EDR algorithms to estimate RRs in the time and
frequency domain. The results showed that, firstly, the location of the ECG electrodes
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between auscultation sites barely affects the estimation of RR. Secondly, the BW and AM
algorithms outperformed than FM and BP algorithms in generating the approximation of
the respiratory signal. Thirdly, RR estimation in the frequency domain is more reliable
except on BP algorithms. All the findings contribute to building chest-based multiple
physiological parameter monitors and providing more accurate RR estimation using EDR
algorithms.

7.3 Comparison between Embroidered and Gel Electrodes
on ECG-Derived Respiration Rate

7.3.1 Introduction

In the design of wearable ECG devices, the choice of sensor is very important. The
commonly used gel electrode is not suitable to wear for a long time, because it can
cause skin discomfort. There are a number of benefits to using an embroidered electrode
instead of a gel electrode: 1) comfort in wearing, 2) reusability, 3) unobtrusiveness
when sewed on the clothes, 4) low-cost [257]. In recent years, textile electrodes are
gaining application in different fields, such as capturing the electromyography (EMG)
[257–259], electroencephalography (EEG) [260, 11], and electrocardiogram (ECG) [10],
[11]. There are also studies proposed to extract respiratory signals from ECG using textile
electrodes [261, 262]. However, their performance in capturing ECG-derived respiration
(EDR) signals are not systematically compared with gel electrodes. Besides, embroidered
electrodes also have the drawback, as the captured signal quality is usually affected by
the fit to the skin, so the signals collected by embroidered electrodes are usually not as
good as the gel electrodes [263]. Therefore, in this study, we analyze the effect of using
embroidered electrodes to obtain the EDR signals.

The primary aim of this study was to compare the performances of embroidered
electrodes and gel electrodes on deriving EDR signals. The second aim was to investigate
the effect of using mean frequency, median frequency, peak frequency and counting in
the time domain to estimate RR. All the findings help consolidate the use of embroidered
electrodes in wearable medical devices and provide the basis for designing more accurate
EDR algorithms.

7.3.2 Methodology

1) Subjects
The experiments were conducted on nine healthy human subjects with no history

of heart diseases (6 male/ 3 female, age range 21–28 years, mean 25.2 years). The
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procedures were approved by the King’s College Research Ethics Committee (Approval
No.: LRS-18/19-10673). Subjects gave written informed consent prior to the experimental
procedures.

2) Experimental Setup
The textile electrodes used in the experiment were developed at the Centre for Robotics

Research (CORE) at Kings College London. They are made of silver coated thread
(Electro-Fashion Conductive Thread, Kitronik, 40Ωm−1) embroidered into linen fabric
with a Vilene cut away stabiliser. The embroidered pattern used is a 20 mm diameter circle
with a cross hatched fill pattern. The hatching has a 2 mm separation and two iterations
of embroidery are performed [257]. The solid gel electrodes used in the experiment were
Ambu WhiteSensor WS (36× 40 in mm). They were all positioned over the chest of a
subject with standard Lead I for concurrent acquisitions of the ECG signals. The embroi-
dered electrodes were fixed with medical tapes to enhance the adhesion. A microphone
was placed under the subjects’ nose to record the actual respiration as a reference. The
recording used the commercial acquisition system (iWorx, model RA 834) and ECG
devices (iWire-BIO4) as recorder. The sampling frequency was 1 kHz and the filter for the
ECG was 0.05 – 40 Hz. A simple block diagram of this hardware system is shown in Fig.
7.6.

Fig. 7.6 Block Diagram of the recording setup: Red dots (textile electrodes), black dots
(gel electrodes), the green dot is GND using gel electrodes. The order of red and black
positions was randomly assigned. The blue dot is the microphone for respiration recording.
iWire BIO4 is for ECG recording. All the data is transferred to the computer for processing
through iWorx RA 834.

During the experiments, all the subjects should keep supine and remain calm. The
duration of the recording was 3 minutes, repeated 3 times, totaling 9 minutes worth of data.
Breaks of 2 minutes were given between trials.
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3) Respiration signal extraction method
In this study, the baseline wander of the ECG was used to capture the EDR signals,

which has shown to perform better than the other methods [144]. The processing was
conducted in the Matlab® R2018b environment and the statistical analysis was performed
using IBM® SPSS version 26.

The captured ECG signals and respiration sound were filtered first to remove the
unwanted noise. For the ECG, A zero-phase 3rd-order Butterworth high-pass filter with 0.1
Hz was used to eliminate the artifacts. For the respiration sound, a 3rd-order Butterworth
band-pass filtered (0.1 - 0.5 Hz) was used to smooth the waveform.

The Pan–Tompkins algorithm was used to capture the R peaks in the ECG signals,
then found the Q points using the gradient descent method based on R peaks [89]. The
baseline wander can be generated by connecting the middle points of the R peaks and Q
points [159]. A representative derived respiration signals (baseline wander) and reference
respiration signal are shown in Fig. 7.7(b).

The numbers of breaths were counted in the recorded respiration sound manually
to ensure the accuracy, then the reference RRs were obtained by the counted numbers
divided by the experiment duration (3 mins). The EDR rates were calculated using the
counting method in the time domain, and frequency features. For the counting method,
the respiration signal was interpolated to the same sample size of its raw ECG signal first
to increase the signal resolution. Then, we used a moving average filter (window length:
50 ms) to smooth the respiration signal and automatically detected the number of peaks
with the threshold of the signal mean value to get the RR of the ECG duration. For the
frequency methods, the mean frequency, median frequency and peak frequency of the EDR
signal between 0.1 to 0.5 Hz were calculated and multiplied by the time duration to get
RRs. The spectrum of the representative EDR signals are shown in Fig. 7.7(c).

The mean absolute errors (MAE) between EDR rates and reference RRs were calculated.
Then, using a two-way repeated measures analysis of variance (ANOVA) with factors
electrode materials and RR methods, performances could be compared.

7.3.3 Results

Results for the embroidered and gel electrodes EDRs were presented in Fig. 7.8. The
P value between electrode materials was 0.077, which means there was no statistical
difference between the performance of embroidered electrodes and gel electrodes in
capturing EDR signals. However, the absolute values of the errors were lower for gel
electrodes compared to embroidered electrodes. For the difference between the estimation
methods, the P value was 0.01, which means there was a statistical difference between
the methods. From Fig. 7.8(b), the median frequency provides the smallest MAE among
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Fig. 7.7 (a) A segment of the ECG signals captured by embroidered and gel electrodes; (b)
A representative derived respiration signals (baseline wander) and reference respiration
signal; (c) The spectrum of the representative EDR signals in (b).

the methods. No interaction was found between electrodes and methods and post hoc
analysis revealed no difference among frequency features, but both the mean and median
frequencies performed better than the counting method.

7.3.4 Discussion

1) Embroidered electrodes with gel electrodes
The aims of this study was to investigate the performance of embroidered electrodes

in capturing EDRs and analyse which frequency feature best estimates RR. From the
results, we can see that the embroidered electrodes can be used to capture EDR signals,
because there is no statistical difference compared with gel electrodes. However, from
the MAE and standard error (SE), it shows the embroidered electrodes performance not
as good as Gel electrodes in capturing EDRs. By analyzing specific data, we found that
the cause of the poorer performance of embroidered electrode EDR was the failure of
R-peak detection. Because the embroidered electrodes require a close fit with the body,
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7.3 Comparison between Embroidered and Gel Electrodes on ECG-Derived
Respiration Rate

Fig. 7.8 (a) The mean absolute error (MAE ± standard error, SE, measured in breaths
per minute, bpm) of the EDRs between methods and electrode types. (b) The interaction
between the RR estimation methods (MAE ± SE). The difference is significant at the 0.05
level is marked with *.

huge artifacts were generated when the contact was poor. Some artifacts were not filtered
during pre-processing, which caused the Pan-Tompkins algorithm (Squaring) to fail. These
artifacts can be eliminated by further digital signal processing, enhancing the performance
of the embroidered electrode EDR.

We also calculated the p value between the two types of electrodes after removing the 4
large error group data (caused by R peak detection failure), which increased from 0.077 to
0.666. That means the performance between the two types of electrodes on EDR would be
closer. Because our experiments were conducted under ideal conditions that the subjects
were required to lie down calmly without any movement, the MAE of gel electrodes (1.21
± 0.72 SE bpm) in our results was smaller than the previous studies (4.87 in counting/
7.51 in Fourier bpm) [144]. But the performance of embroidered electrodes in obtaining
EDR (MAE 3.05 ± 1.83 SE bpm) was not good compared with the results of Park et al.
(MAE 1.13/ 1.09 bpm for two types of textile electrodes) and Shen et al. (MAE 1.4 - 2.3
bpm) [264, 262]. Although the comparison cannot directly reflect the performance of our
embroidered electrodes due to the different experimental environments. We can still find
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that the size of the embroidered electrode and appropriate placement can enhance their
stability. In the future study, the stress testing, such as walking and running can also be
conducted to examine the performance of embroidered electrodes in capturing EDR.

2) Frequency feature on EDR
According to our results, the choice of method has an impact on the estimated RRs.

From Fig. 7.8, we can also see that using the median frequency to calculate EDR is more
accurate than the other methods. This result is different from that proposed in Charlton’s
paper [144]. His results show that counting in the time domain is more accurate than
Fourier in the frequency domain because the low-quality segments of the signals were
eliminated before processing. However, our results prove that the EDR estimation in the
frequency domain can work even better. Besides, frequency estimation is more robust,
especially when the electrodes are in poor contact for a short period, and small segment
of the ECG signal is lost. This barely affects the EDR in the frequency domain, but for
counting in the time domain, it may lose the number of breaths during that period. In the
frequency domain, the peak frequency method did not perform well is due to the RR is
mutative, which can be represented as multiple peaks in the spectrum. Therefore, only
using the highest peak can cause an error on the estimated RRs, and the error can become
larger when breath irregularly. For the mean and median frequency, our results show that
the median frequency provides more accurate RRs.

The study found that using embroidered electrodes can provide highly accurate RRs
as gel electrodes, but proper electrode-skin contact is the prerequisite to ensure EDR
performance. Besides, we found that using median frequency of the obtained EDR signals
outperformed the counting method. All the findings contribute in building medical device
using embroidered electrodes and providing more accurate RR estimation using EDR
signals in the frequency domain.

7.4 Verification of the ECG-Derived Respiration Rate Per-
formance under Stress Test

7.4.1 Introduction

As discussed in Section 2.4, most of the current EDR researches are mainly aimed at
the static, and few analyze under stress test. However, cardiac stress test can reflect the
abnormal coronary blood flow in heart muscle tissue when the subjects are maximally
exercising. The results have great significance for evaluating some hidden or early cardiac
diseases, such as coronary artery disease. Besides, the stable and reliable EDR methods
under stress test can also enhance the monitoring and portability of the future ECG-
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PCG integrated devices by providing real-time respiratory rate. The preliminary research
completed so far focused on the traditional 12-lead ECG. The specific research aims
include: (1) To verify the EDR performance under stress test by comparing with static; (2)
to investigate whether the selection of ECG lead has an impact on the extraction of EDR;
(3) to compare the commonly used EDR methods and find out a more suitable method for
stress test. All the findings contribute to verifying the feasibility of EDR technology under
stress test, and designing a more accurate and trustworthy EDR methods.

7.4.2 Methodology

1) Subjects
The experiments were performed on 7 healthy human subjects (5 male/2 female, age

range 22-24 years) with no history of heart diseases or respiratory issues. The procedures
were approved by the King’s College Research Ethics Committee (Approval No.: LRS-
18/19-10673). Subjects gave written informed consent before the experimental procedures.

2) Experimental Setup
There were two phases during the experiments. In Phase One (static test), subjects kept

supine. Their 12-leads ECG signals and oronasal pressure breathing signals were recorded
simultaneously. The 12-leads ECG include six precordial leads (V1, V2, V3, V4, V5 and
V6), three standard limb leads (I, II and III), and the augmented limb leads (aVR, aVL
and aVF). The sensors for ECG signals were solid gel electrodes (Ambu WS, size: 36 ×
40 mm, Medico Electrodes International LTD., Uttar Pradesh, India), and the roronasal
pressure breathing signal was captured by oxygen mask with hose. The recording used the
commercial acquisition system (iWorx, model RA 834, iWorx Systems Inc, Dover, NH,
US) and ECG devices (iWire-ECG12, iWorx Systems Inc, Dover, New Hampshire, US).
The recording lasted 10 minutes.

In Phase Two (stress test), subjects were required to ride a fitness bike at a constant
rate. In the meantime, their ECG signals and breathing signal were also recorded for at
least 8 minutes. When the heart rate had exceeded 50% than static, the acquisition can be
early-stopped to guarantee the health of participants.

Besides, to reduce the noise effect, silence were kept during the whole experiments. The
sampling frequency of the recording device was 200 Hz. Fig. 7.9 shows the experimental
settings during each phase.

3) Signal Processing
In this study, we also used BW, AM and FM and as EDR features. The signal processing

method was the same as that in 7.2.2, so it is not be repeated here. Considering that there
were huge artefacts in the ECG signals under stress test, in this study, we applied a moving
window to extract EDR to reduce the artefact effect. The window size was 1 minute, and
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Fig. 7.9 Experimental settings for each phase. (a) static test; (b) stress test.

the moving step was 20 seconds. In the result analysis, the averaged EDR rate of the
experimental signals was used. MAE between EDR rate and reference respiratory rate was
calculated to evaluate the performance.

7.4.3 Results

1) Stress test vs. Static
Table 7.3 summarizes the EDR performance under static test and Table 7.4 shows the

performance under stress test. For static test, the overall MAE is approximately 2.17 bpm.
In Table 7.4, the ’-’ means the EDR was failed due to unsuccessful R-peak detection. In
the MAE calculation, the EDR rate was taken as 0. The overall MAE is approximately
5.48 bpm which is dramatically larger than static test and cannot be regarded a trustworthy
respiratory rate.

2) ECG Lead Selection Effect on EDR
Fig. 7.10 shows the EDR performance with different ECG leads under static test and

stress test. Under static test, the EDR at precordial (V1 - V4) leads performed better. Under
stress test, considering the huge errors group by failed EDR extraction, it cannot intuitively
show the difference. However, lead I and aVL performed worse due to failure in almost all
R-peak detection.

3) Comparison of the EDR Methods
After calculation from Table 7.3 and Table 7.4, it is found that under static test, BW

(averaged MAE 1.40 bpm) performed better than AM (averaged MAE 2.05 bpm) and FM
(averaged MAE 3.03 bpm). However, under stress test, the three methods performed all
bad, with averaged MAE 5.65 bpm, 5.82 bpm and 4.95 bpm, respectively. The difference
between them are also not statistically significant.
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Table 7.3 EDR Performance (MAE) under static test in bpm.
S: Subject, Res: Reference Respiratory Rate

I II III V1 V2 V3 V4 V5 V6 aVR aVL aVF Res

S1—BW 0.12 4.52 0.06 0.34 0.30 0.30 0.58 0.71 0.06 0.32 0.09 1.34
17.80S1—AM 0.05 0.48 0.10 0.39 0.83 0.69 0.78 0.63 0.19 0.47 0.18 0.25

S1—FM 0.41 0.41 0.45 0.35 0.39 0.42 0.43 0.41 0.37 0.38 0.39 0.34
S2—BW 0.18 1.19 0.26 0.24 0.30 0.34 0.32 0.27 4.61 0.34 1.21 2.37

17.20S2—AM 1.29 5.98 4.20 0.22 0.29 0.32 0.87 0.59 6.23 7.01 6.59 6.14
S2—FM 0.26 0.27 0.27 0.26 0.26 0.27 0.27 0.27 0.27 0.26 0.37 0.27
S3—BW 1.04 3.26 0.52 0.55 0.58 0.67 0.67 1.92 6.62 3.01 1.36 7.58

17.43S3—AM 0.69 7.77 1.71 3.46 0.85 0.79 1.10 2.35 7.60 7.48 7.29 7.71
S3—FM 6.02 5.74 5.10 5.46 5.53 5.71 5.67 5.67 5.21 6.05 5.46 5.45
S4—BW 5.47 1.39 2.33 0.82 1.96 2.11 2.10 3.14 1.29 1.30 1.83 1.31

19.19S4—AM 5.53 1.34 1.83 1.00 1.41 1.37 1.51 1.85 1.35 1.26 1.35 1.34
S4—FM 8.03 7.31 7.02 6.86 7.28 7.59 7.34 7.35 7.23 7.98 7.77 8.19
S5—BW 1.63 1.35 1.39 1.23 1.32 1.60 1.35 1.37 1.43 1.07 1.68 1.40

13.84S5—AM 1.67 1.33 1.20 0.46 1.15 1.29 1.44 1.44 1.37 1.26 1.11 1.35
S5—FM 1.98 1.93 1.91 1.90 1.92 1.96 1.92 1.92 1.92 1.11 1.92 1.96
S6—BW 1.31 3.92 0.97 0.70 1.27 1.03 1.28 2.14 2.31 0.31 1.43 2.97

17.45S6—AM 1.40 2.82 0.75 0.83 1.23 1.01 1.11 1.34 1.85 1.02 1.21 2.41
S6—FM 5.91 5.33 4.79 5.94 5.70 5.52 5.50 5.32 5.28 5.04 5.64 5.29
S7—BW 0.23 0.79 0.28 0.45 0.32 1.36 0.22 0.43 1.90 0.28 0.17 1.81

14.52S7—AM 3.74 2.51 4.24 0.32 0.24 2.80 1.15 0.38 2.48 2.85 2.64 2.32
S7—FM 0.21 0.21 0.20 0.21 0.21 0.21 0.21 0.22 0.21 0.22 0.22 0.21

Mean 2.25 2.85 1.88 1.52 1.59 1.78 1.71 1.89 2.85 2.34 2.38 2.95
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Table 7.4 EDR Performance (MAE) under stress test.
S: Subject, Res: Reference Respiratory Rate, -:Failed EDR extraction by unsuccessful
R-peak detection.

I II III V1 V2 V3 V4 V5 V6 aVR aVL aVF Res

S1—BW 0.02 1.12 0.89 0.03 2.45 0.46 0.04 0.57 6.23 0.66 7.89 2.14
16.26S1—AM 0.12 0.53 3.35 1.49 3.31 2.39 1.19 0.29 6.02 0.66 8.46 2.14

S1—FM 0.64 1.32 1.20 0.91 0.41 0.50 0.52 0.94 5.44 1.64 8.42 0.68
S2—BW - 1.31 1.93 0.84 2.52 1.17 1.69 0.81 0.73 - - 0.99

12.57S2—AM - 1.86 2.37 0.47 1.82 1.77 0.64 0.54 1.30 - - 1.09
S2—FM - 1.38 0.16 0.32 0.59 0.84 0.29 0.30 0.28 - - 0.29
S3—BW 1.48 0.12 0.81 1.72 0.27 0.99 0.86 1.64 0.25 1.11 0.51 0.17

11.86S3—AM 2.43 0.13 0.74 1.83 0.64 1.25 1.04 1.85 0.12 1.54 0.87 0.01
S3—FM 0.28 1.18 1.25 1.26 1.32 1.35 1.37 1.34 0.78 1.24 2.12 0.02
S4—BW - 8.82 7.56 7.93 7.74 11.47 11.71 10.94 10.24 10.93 - 9.79

22.16S4—AM - 9.97 7.11 9.65 7.08 10.45 11.45 11.03 10.20 11.11 - 11.92
S4—FM - 7.52 7.37 14.51 6.41 14.53 13.74 12.08 9.54 7.77 - 6.65
S5—BW - 3.69 2.65 2.38 4.54 0.15 5.15 4.50 4.43 17.96 3.54 4.23

17.95S5—AM - 3.82 2.50 0.07 2.65 1.93 5.25 5.47 4.45 17.96 2.21 4.50
S5—FM - 5.35 2.95 5.86 4.96 9.69 7.95 6.48 8.92 17.96 3.75 8.70
S6—BW - 9.40 9.52 6.55 10.08 8.58 8.15 8.58 8.27 9.46 - 9.30

18.13S6—AM - 9.49 9.67 8.82 10.09 8.55 8.14 8.60 8.48 9.64 - 9.30
S6—FM - 0.29 0.36 1.68 0.29 1.84 0.30 0.29 2.55 2.07 - 1.50
S7—BW - 0.77 - 3.08 1.83 2.78 2.18 2.09 1.00 2.40 - 0.23

13.17S7—AM - 0.93 - 2.99 2.37 2.83 2.60 1.98 1.18 2.65 - 0.19
S7—FM - 0.45 - 0.73 0.01 0.45 0.45 0.45 0.13 2.23 - 0.44

Mean 12.24 3.31 4.85 3.48 3.40 4.00 4.03 3.85 4.31 - 11.23 3.54

Fig. 7.10 EDR performance with different ECG leads. (a) under static test; (b) under stress
test.

7.4.4 Discussion

For EDR under static test, the overall MAE 2.17 bpm basically stands in line with the
research in Section 7.2. Besides, after specific analysis, it can also be found that the
performance of the overall EDR under the static test is relatively stable and reliable except
for a few results with large errors. However, under stress test, the overall MAE 5.48 bpm is
not satisfying and cannot be regarded as trustworthy respiratory rate. Though, medical taps
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were used to fix the ECG wire reducing the swing, the artefacts were still large and cannot
be easily remove by processing techniques. As a result, the huge movement artefact caused
R-peak detection failure leading failed EDR extraction. However, this does not mean that
EDR is completely unfeasible under stress test. Because it worth noticing that on Subject
1, 2 and 3, the EDR performed satisfying with tiny error on specific leads. Therefore, we
can basically conclude that reducing artefacts by wire swing is critical for applying EDR
under stress test. Using wireless ECG may be a potential surrogate.

In static test, the precordial leads (V1 - V4) seemed to have better performances com-
pared with limb leads. Because they may perceive the breathing induced chest undulation
better, and affected less by the small unconscious movements of the body. However, in
stress test, it is unlikely to say which lead performed better so far, but Lead I and aVL
obviously performed worse. After analyzing the waveforms of the 12-lead ECG signals, it
is found that the amplitude of Lead I ECG is usually smaller. As a result, it is easier to be
obliterated when there is huge artefact. aVL is derived from Lead I, so the same problem
may exist.

In the comparison of the EDR methods, under static test, this study got the same result
as Section 7.2 that BW performed better than AM and FM. However, under stress test,
since these methods all relied on R-peak extraction, it was unlikely to evaluate their pros
and cons so far. More EDR methods, such as EMD, can be tried in follow-up research.

In addition to the above findings about EDR, we also found that comparing static and
stress tests, only one subject had a significant increase in respiratory rate (from 19.19
to 22.17 bpm), while the rest basically remained or even decreased. The analysis of the
breathing signal revealed that people actively adjust to deep breathing to maintain the
respiratory rate during exercise, and only increase the rate when it cannot be maintained. It
is reflected in the respiration signal as the amplitude of the signal becomes larger. This
knowledge can be also helpful in the design of future experiment protocol.

7.5 Conclusion

This chapter discusses the works conducted on EDR techniques for eliminating the nec-
essary of extra respiratory sensor. In Section 7.2, we experimentally analyze whether
the accuracy of ECG derived RR depends on the auscultation sites. Experiments were
conducted on 12 healthy subjects to obtain simultaneous ECG (at auscultation sites and
Lead I as reference) and respiration signals from a microphone close to the nostril. Four
EDR algorithms were tested on the data to estimate RR in both the time and frequency
domain. Results reveal that: (1) The location of the ECG electrodes between auscultation
sites does not impact the estimation of RR, (2) baseline wander and amplitude modulation
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algorithms outperformed the frequency modulation and band-pass filter algorithms, (3)
using frequency domain features to estimate RR can provide more accurate RR except
when using the band-pass filter algorithm. These results pave the way for ECG-based RR
estimation in miniaturised integrated cardiac screening device.

In Section 7.3, we compared embroidered electrodes with gel electrodes on their
performance in capturing EDR signals and analysed which frequency feature best estimates
RR. Data were collected from 9 healthy subjects. Results reveal that (1) embroidered
electrodes performed similarly to gel electrodes (P = 0.077), (2) using the median frequency
of the obtained EDR signals is significantly better (P = 0.01) than the counting methods
in the time domain. The obtained results are relevant for the future development of
textile-based sensors.

In Section 7.4, we discussed the feasibility of EDR under stress by experiments. Data
were collected from 7 healthy subjects. Current results revealed that the wired ECG is not
reliable for EDR under stress test with huge artefacts. In the future study, we may test
wireless ECG and more EDR methods.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

This thesis aims at advancing the design of a multi-sensor miniaturised device for cardiac
investigation and monitoring. The main works focus on : (1) developing machine learning
techniques to improve the computer-aided diagnosis of PCG and ECG; (2) assessing the
feasibility by experiments, utilising biomedical signal processing to eliminate the need of
physical respiration sensor. Specifically, the contributions of this thesis include:

1) Assess the feasibility of localised ECG signal acquisition and analyse its usability
for PCG segmentation. In Chapter 4, we experimentally investigated the time property of
ECG and PCG signals at auscultation sites and the effect of ECG inter-electrode distance.
Results showed that ECG signal could be acquired stably at auscultation sites within a small
area (5 cm), which provides a theoretical basis for designing miniaturised integrated ECG-
PCG devices. The inter-distance of the electrodes for ECG does not affect the occurrence
time of the R-peak. Besides, the delay between R-peak and onset of first heart sound (S1)
depends on the auscultation site e.g. S1 onset occurs before the R-peak at auscultation
site M. This study suggests that small integrated ECG-PCG devices can be made by
reducing the distance between the ECG electrodes. In the meantime, distinguishing the
auscultation location is necessary for performing more precise PCG segmentation using
ECG as reference.

2) Investigate the optimal use of deep learning input and propose a reliable algorithm
for PCG classification. In Section 5.3, a study was conducted aiming at analysing the
duration effect on the commonly used deep learning methods to provide insight for future
studies in data processing, classifier, and feature selection. The results of this study
revealed that: 1. very short heart sound signal duration (1 s) weakens the performance
of RNNs, whereas no apparent decrease in the tested CNN model was found. 2. RNN
outperformed CNN using Mel-frequency cepstrum coefficients (MFCCs) as features. There
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was no difference between RNN models (LSTM, BiLSTM, GRU, or BiGRU). 3. Adding
dynamic information (∆&∆2MFCCs)) of the heart sound as a feature did not improve
the RNNs’ performance, and the improvement on CNN was also minimal (≤ 2.5% in
MAcc). The findings provided a theoretical basis for further heart sound classification using
deep learning techniques when selecting the input length. In Section 5.4, a comparative
study was performed on deep convolutional neural networks (CNNs) to assess optimum
time-frequency representations (TFRs) as input features for PCG classification. The
results showed that the transformation of the heart sound signal into the TF domain
achieves higher classification performance than using of raw signals. Among the TFDs,
the difference in the performance was slight for all the CNN models (within 1.3% in
average accuracy). However, Continuous wavelet transform (CWT) and Chirplet transform
(CT) outperformed the rest. Besides, the appropriate increase of the CNN capacity and
architecture optimisation can improve the performance, while the network architecture
should not be overly complicated. Based on the ResNet or SEResNet family results, the
increase in the number of parameters and the depth of the structure do not improve the
performance apparently. In additional, combining TFDs as CNN inputs did not significantly
improve the classification results. The findings of this study provided the knowledge for
selecting TFDs as CNN input and designing CNN architecture for heart sound classification.
In Section 5.5, a HMS-Net was proposed and won the first prize in the CinC/PhysioNet
2022 PCG classification challenge. Its recording quality assessment method was based on
frequency density distribution for label correction to prevent the poor-quality recording
segments from misleading network optimisation, and its network builds long short-term
independencies between multi-scale features and improves the classification performance.

3) Propose a deep learning algorithm for the detection of paroxysmal atrial fibril-
lation using single-lead ECG. In Chapter 6, a two-stage RNN network was proposed
during the China Physiological Signal Challenge 2021 (CPSC 2021) which had satisfying
performance (90.14% and 92.56% accuracy on non-AFib and AFib segments classification
respectively in the two stages) and held the advantage of small size (approximately 500 k).
It showed promising potential for terminal equipment such as the miniaturized ECG-PCG
device, personal laptop, mobile phone or embedded device. This will add side application
for the future device.

4) Explore the feasibility to provide accurate respiratory rate while eliminating
the need of physical respiration sensor. In Section 7.2, a study was conducted in the
ECG-derived respiration (EDR) field to assess the feasibility of extracting EDR from the
localised ECG at the auscultation sites by experiments. Results indicated that: 1. the
location of the ECG electrodes between auscultation sites does not impact the estimation of
RR. 2. baseline wander and amplitude modulation algorithms outperformed the frequency
modulation and band-pass filter algorithms, and 3. using frequency domain features
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to estimate RR can provide more accurate RR except when using the band-pass filter
algorithm. These results pave the way for ECG-based RR estimation in miniaturised
integrated cardiac screening device. In Section 7.3, a comparative study was performed
to test using embroidered electrodes to capture ECG signals for EDR extraction. Results
reveal that: 1. embroidered electrodes performed similarly to gel electrodes (P = 0.077); 2.
using the median frequency of the obtained EDR signals is significantly better (P = 0.01)
than the counting methods in the time domain. The obtained results showed potentials
in future development of low-cost textile-based sensors applications. In Section 7.4, we
experimentally test the EDR performance under stress test. Results showed that the wired
ECG is not reliable for EDR under stress test with huge artefacts, using wireless ECG may
be a potential surrogate to improve the performance.

In general, this thesis verified the feasibility of ECG-PCG integrated device through
experiments, and analyzed the segmentation of PCG using localized ECG as a reference.
Using the open-source databases, exploration was conducted on the optimization of deep
learning input to improve the PCG classification accuracy. Furthermore, with the prior
knowledge in the exploration, a novel algorithm (HMS-Net) with recording quality as-
sessment method was proposed which achieved a leading score in the PhysioNet 2022
Challenge. On ECG classification, a deep learning algorithm was proposed for atrial
fibrillation detection, adding side application for the future device. To provide accurate
respiratory rate while eliminating the need of physical respiration sensor, experiments were
conducted to prove the possibility of providing reliable respiratory rate from the ECG-PCG
device without adding an extra sensor.

8.2 Future Work

Although this thesis fully demonstrates the feasibility of miniaturized ECG-PCG integrated
device, including sensor fusion, automatic auscultation and providing more physiological
indicators. There is still work to do before deployment. Some potential future research
directions are listed as follows:

1) To investigate the refined classification of PCG using machine learning tech-
niques. So far, the vast majority of PCG classification researches still stay in the binary
classification of whether there is murmur or not. However, the specific types of murmurs,
the location of the murmurs, and the evaluation of the severity of the murmurs are still
relatively blank. Furthermore, the existing databases are general for murmurs. The author
thinks that more specific scenario, such as valve surgery tracking, congenital heart disease
exacerbation with refined classification of PCG will greatly enhance the practicality of this
technique.
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2) To explore more diagnostic capabilities of single lead ECG signal using machine
learning techniques. In this thesis, we explored using deep learning to do ECG classifi-
cation on atrial fibrillation. Actually, there are more heart conditions can be detected by
single lead ECG, such as supraventricular premature beat, supraventricular tachycardia,
ectopic rhythm and atrial flutter. Therefore, there is still distance on the multi-class ECG
classification. Besides, there are still remaining problems to be addressed from practical
use in the automatic classification. Because the morphological and temporal characteristics
of the ECG signals are significantly different from patient to patient and varies by physical
conditions[71–73]. For instance, sometimes the morphologies are different for the same
disease between patients or two different diseases show the same characteristics on ECG
signals. In addition, for localized ECG, its morphology is likely to be different from
standard ECG leads, so explore using localized ECG for classification is also a potential
question to solve.

3) To conduct study of multi-channel PCG signals for classification improvement.
In the case of heart disease, there should be interactions among the auscultation sites
[265]. Theoretically, multi-channel simultaneous PCG measurement can reflect more
comprehensive information of heart sound propagation in the cardiac region. For binary
classification, this will contribute in identifying the existence of murmurs. In addition,
multi-location measurements will also help determine specific murmur types and severity.
In the PhyioNet 2022 database, although multi-channel data are also presented, they are
not measured simultaneously. So, it is not conducive to building a model of murmur
propagation. Therefore, it is worthy of continuing study in this aspect.

4) To improve the EDR performance under stress test In our experiments, EDR was
not reliable in stress test due to the motion-induced artefacts. And, the artefacts are mainly
caused by wobble on the ECG wire. Therefore, follow-up research can be carried out to
test wireless ECG, or design a more novel method to complete EDR under stress test. In
this way, ECG-based heart rate and respiration rate monitoring will greatly improve the
daily monitoring ability and portability of the device.
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