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A Bayesian Framework for Digital Twin-Based
Control, Monitoring, and Data Collection in

Wireless Systems
Clement Ruah, Student Member, IEEE, Osvaldo Simeone, Fellow, IEEE, and Bashir Al-Hashimi, Fellow, IEEE

Department of Engineering, King’s College London, London, UK

Abstract—Commonly adopted in the manufacturing and
aerospace sectors, digital twin (DT) platforms are increasingly
seen as a promising paradigm to control, monitor, and ana-
lyze software-based, “open”, communication systems that are
expected to dominate 6G deployments. Notably, DT platforms
provide a sandbox in which to test artificial intelligence (AI)
solutions for communication systems, potentially reducing the
need to collect data and test algorithms in the field, i.e., on the
physical twin (PT). A key challenge in the deployment of DT
systems is to ensure that virtual control optimization, monitoring,
and analysis at the DT are safe and reliable, avoiding incorrect
decisions caused by “model exploitation”. To address this chal-
lenge, this paper presents a general Bayesian framework with the
aim of quantifying and accounting for model uncertainty at the
DT that is caused by limitations in the amount and quality of data
available at the DT from the PT. In the proposed framework, the
DT builds a Bayesian model of the communication system, which
is leveraged to enable core DT functionalities such as control via
multi-agent reinforcement learning (MARL), monitoring of the
PT for anomaly detection, prediction, data-collection optimiza-
tion, and counterfactual analysis. To exemplify the application of
the proposed framework, we specifically investigate a case-study
system encompassing multiple sensing devices that report to a
common receiver. Experimental results validate the effectiveness
of the proposed Bayesian framework as compared to standard
frequentist model-based solutions.

Index Terms—Digital Twin, 6G, Reinforcement Learning,
Bayesian Learning, Model-based Learning

I. INTRODUCTION

A. Context, Motivation, and Overview

A digital twin (DT) platform is a cyberphysical system
in which a physical entity, referred to as the physical twin
(PT), and a virtual model, known as the DT, interact based
on an automatized bi-directional flow of information [1], [2].
Leveraging data received from the PT, the DT maintains an up-
to-date model of the PT [3], which is used to control, monitor,
and analyze the operation of the PT [4]. DT platforms are
increasingly regarded as an enabling technology for wireless
cellular systems built on the open networking principles of
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disaggregation and virtualization [5], which are expected to
be central to 6G [6]. Notably, through the available PT
model, DT platforms provide a sandbox in which to test
algorithms, protocols, and artificial intelligence (AI) solutions
for communication systems, potentially reducing the need to
collect data and carry out testing in the field, i.e., directly on
the PT [4], [7].

In this regard, a key challenge in the deployment of DT
systems is to ensure that virtual control optimization, moni-
toring, and analysis at the DT are safe and reliable, avoiding
incorrect decisions caused by model exploitation [8]. To ad-
dress this challenge, this paper presents a general Bayesian
framework with the aim of quantifying and accounting for
model uncertainty at the DT that is caused by limitations in
the amount and quality of data available at the DT from the
PT (see Fig. 1).

In the proposed framework, the DT builds a Bayesian
model of the communication system dynamics based on data
received from the PT. Unlike conventional frequentist paramet-
ric models, Bayesian models can quantify model uncertainty
by maintaining a distribution over the model parameters [9],
[10]. This enables ensembling-based control, prediction, and
analysis methods, whereby policies, predictions, and recom-
mendations are obtained by accounting for the agreements and
disagreements among several models that are consistent with
the available information. Intuitively, when different models
tend to disagree significantly on an output, this can be taken as
quantifiable evidence of model uncertainty. While ensembling
is routinely used in fields such as weather prediction [11], its
application to DT platforms is still largely unexplored, even
outside the field of telecommunications [12], [13].

The Bayesian model at the DT can naturally incorpo-
rate domain knowledge about the communication systems,
including traffic and channel models, while enabling data-
driven exploration of the system dynamics. With the available
Bayesian model, the DT can carry out the core functionalities
of control, monitoring, prediction, data-collection optimiza-
tion, and counterfactual analysis, while providing uncertainty-
aware outputs. We specifically investigate and detail control
via model-based Bayesian multi-agent reinforcement learning
(MARL), monitoring for anomaly detection, prediction of un-
observed dynamics with uncertainty quantification, and data-
collection optimization via directed model-based exploration.

As a possible embodiment of the proposed approach, the DT
platform may be implemented as an xApp, or as a collection of
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Fig. 1: A digital twin (DT) platform controlling, monitoring, and analyzing the operation of a communication system operates
along the phases of data collection 1⃝ (Sec. III-A), model learning 2⃝ (Sec. III), policy optimization 3⃝ (Sec. IV), and data-
collection policy optimization 4⃝ (Sec. IV-C); while also enabling core functionalities such as monitoring 5⃝ (Sec. V-A),
prediction 6⃝ (Sec. V-B), and counterfactual analysis 7⃝ (Sec. V-C). Each phase is marked by its corresponding circled number
in the figure. In the proposed Bayesian framework, the DT maintains a Bayesian model of the communication system, which
serves as the physical twin (PT). The Bayesian model quantifies model uncertainty, and enables safe and reliable control,
monitoring, and analysis via ensembling and model-disagreement metrics.

connected xApps, that run in the near-real-time RAN Intelli-
gent Controller (RIC) of an Open-RAN (O-RAN) architecture
[14]. As an exemplifying case study, we consider a multi-
access PT system consisting of a radio access network (RAN)
similar to that studied in [15]–[17]. It is emphasized that,
unlike [15]–[17], our goal here is not to address a particular
task via MARL, but rather to introduce a general framework
supporting the implementation of multiple functionalities at
the DT, including control via MARL, monitoring, prediction,
and data-collection optimization, despite the limited data trans-
fer from the PT to the DT.

B. Related Work
This section provides a short review of related papers.
1) DT platforms for communication systems: Position pa-

pers advocating for the use of DT platforms for the manage-
ment of next-generation wireless systems include [6], [18]–
[21]. Specific contributions to the design of DT platforms
for wireless systems have investigated mechanisms for DT-PT
synchronization [22], [23], DT-aided network optimization and
monitoring [7], DT-based control for computation offloading
via model-based RL [24]–[26], user association [27], as well
as the design of intelligent reflecting surfaces [28]. A layered
deployment strategy for DTs from edge to cloud in 5G
networks is studied in [29]; while the optimization of DT
deployment subject to resource and latency constrains in edge
servers is investigated in [30]. For general reviews on DT
systems, we refer the reader to [2], [13], [31]. To the best of
our knowledge, the adoption of a general Bayesian framework

for the development of DT platforms implementing control,
monitoring, and analysis functionalities is yet to be proposed.

2) Model-based reinforcement learning: Reinforcement
learning (RL) algorithms fall into two categories: model-free
algorithms, in which the policy is optimized through trial
and error interactions with the ground-truth environment, and
model-based algorithms, where a model of the environment
dynamics is first learned, and then used to optimize the
policy in a simulated environment [8]. In the context of
DT platforms, model-based algorithms are the natural choice
[24], [26], [32], [33]. In fact, they allow the DT to optimize
policies to be run at the PT, while bypassing the additional
communication overhead and potential safety hazards caused
by the interactions with the environment required by model-
free methods [34]. That said, DT-aided control can also benefit
from model-free RL, e.g., to refine a policy trained based on an
inaccurate model [34]. Conversely, model-free RL can benefit
from the DT model by exploring alternative actions inside the
DT simulation in-between training steps in the ground-truth
environment [26]. In addition, the learned dynamics also serve
other core DT functionalities, such as monitoring, prediction
and counterfactual analysis [4].

3) MARL for communication systems: In MARL, each
agent is given a partial observation of the global system state
[35], and the actions of one agent can influence the state
of another, rendering the dynamics non-stationary from the
single-agent perspective [36]. Thus, optimizing each agent in-
dependently often proves sub-optimal. State-of-the-art MARL
algorithms include centralized training with decentralized ex-
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ecution (CTDE) methods [37], in which training is done at a
central location that optimizes a set of single-agent policies
to be deployed at the individual agents. CTDE algorithms can
be implemented using value-based methods, often relying on
value-decomposition networks [38]; using actor-critic meth-
ods, typically based on the centralized critic with decentralized
actors (CCDA) paradigm [39]; or using both methods [40].
Identifying which agents contribute to the team’s success in
cooperative settings is not a trivial task, and is known as the
credit assignment problem. To tackle this problem, the COMA
algorithm in [41] proposes a counterfactual baseline to reflect
how the reward would have changed had the agent taken a
different action. Application of MARL in telecommunications
can be found in medium access control signaling protocols
[42], dynamic spectrum access [15] and network routing [43].

4) Uncertainty quantification in DT platforms: Non-
stationary dynamics and limited PT-to-DT communication in
real-world scenarios may cause the DT to “desynchronize”
with the ground-truth dynamics of the PT [22]. In turn,
model errors can result in model exploitation during policy
optimization, whereby the optimized policy takes advantage of
inaccuracies in the DT model and behaves sub-optimally with
respect to the ground-truth environment. Therefore, it is critical
that the DT reasons explicitly about its epistemic uncertainty
regarding its model of the PT [13] to avoid over-confident
and potentially biased decisions. To this end, references [44]
and [45] propose to use Bayesian models at the DT. Unlike
our work, the focus of these references is on monitoring and
predicting the health status of the PT components.

Model-based Bayesian RL, in which the Bayesian model
of the environment dynamics reflects the partial observability
of the transition probabilities, was investigated in [46], [47]
for single-agent applications. A key advantage of Bayesian
models in RL is that ensembling techniques support the
implementation of well-informed active exploration, or data-
collection, schemes, which target regimes with high epistemic
uncertainty [48]–[50].

C. Main Contributions

The main contributions of this paper are as follows.
• We introduce a Bayesian DT framework for the con-
trol, monitoring, and analysis of a communication system.
In the proposed framework, the DT maintains a model of
the PT dynamics via a distribution over model parameters,
supporting ensembling-based control, prediction of observed
and unobserved dynamics, and counterfactual analysis. The
model at the DT can incorporate domain knowledge about
the communication systems (see, e.g., [51]), including traffic
and channel models, and is trained based on data collected
from the PT. Data-collection policies can be optimized over
successive rounds based on available data at the DT.
• We investigate and detail the ensemble-based DT functional-
ities of control via MARL, monitoring for anomaly detection,
prediction with uncertainty quantification, and data-collection
optimization via directed model-based exploration.
• We present an application of the proposed general framework
to a multi-access PT system consisting of a RAN. For this

system, we carry experiments that validate the advantages
of the proposed Bayesian framework as compared to con-
ventional frequentist model-based approaches for (i) optimal
control, using performance metrics such as throughput and
buffer overflow; (ii) anomaly detection, with performance
evaluated via the receiving operating curve; (iii) prediction
of buffer overflow events under a new control policy, assessed
via accuracy and calibration metrics; and (iv) data-collection
optimization, focusing on benefits in terms of data efficiency.

This work was partially submitted for conference pub-
lication as [52]. The conference version presents a partial
description of the framework, including only a brief presenta-
tion of tabular model learning and of the DT functionality
of anomaly detection. In contrast, this paper provides full
details on the proposed framework, encompassing also neural
Bayesian learning, data-collection optimization, prediction,
and experimental results for data-collection optimization and
prediction.

The rest of the paper is organized as follows. In Sec. II,
we describe the PT system under study and its DT. Sec.
III covers model learning at the DT, including both tabular
and neural network-based approaches. Sec. IV details policy
optimization for control, introducing also a solution to the
problem of data-collection optimization. Sec. V addresses the
monitoring functionalities of anomaly detection, prediction
and counterfactual analysis. The application of the proposed
framework to a multi-access system is provided in Sec. VI,
and Sec. VII presents numerical results. Sec. VIII concludes
the paper.

II. PHYSICAL TWIN AND DIGITAL TWIN SYSTEMS

In this paper, we study a Bayesian methodology for the DT-
based optimization and monitoring of a telecommunications
network, which constitutes the PT. In this section, we describe
the system under study by first providing a general overview of
the interactions between the DT and the PT; then detailing the
general assumptions made on the ground-truth dynamic model
followed by the PT; and finally explaining the parametric
model of the PT assumed by the DT. The next section will
then describe the model learning process at the DT.

A. Overview

The system under study encompasses a multi-agent PT,
which describes a telecommunications network, and a single
DT located in the cloud, for a large PT system, or at the edge,
for a local PT system [53]. The network elements may be
mobile devices and/or central units or distributed units of a
5G system [54]. Note that we focus on the case of a single
DT, and leave the important problem of coordination among
multiple DTs to future work [29], [55]. The DT collects data
from the PT, either periodically or in an adaptive manner, and
the data is used to optimize a model of the PT dynamics. The
model learned at the DT is used to operate the PT, as well as to
provide monitoring functionalities such as anomaly detection,
prediction of the PT future possible states, and counterfactual
analysis [4].
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As detailed in Sec. II-B, the PT system under study consists
of multiple network elements, such as mobile devices and in-
frastructure nodes, which are generically referred to as agents.
Without loss of generality, the PT system at a given time can be
described as being in a specific state. The state of the system
may include, for instance, traffic load conditions at radio units
and packet queue lengths at the devices. Furthermore, the PT
state evolves over time according to a ground-truth transition
model that depends on the agents’ actions.

As detailed in Sec. II-C, the DT collects data from the
PT over dedicated periods of time (phase 1⃝ in Fig. 1). The
time interval between two data collection phases may vary,
depending also on the result of diagnostic tests at the DT
of current PT behavior, e.g., via anomaly detection (see Sec.
V-A). Based on the data obtained in each data collection
period, the DT constructs a model of the transition dynamics
of the PT (phase 2⃝ in Fig. 1).

The model is used by the DT to recommend control policies
to the PT (phase 3⃝ in Fig. 1), as well as to carry out monitor-
ing functionalities such as anomaly detection (phase 5⃝ in Fig.
1), prediction (phase 6⃝ in Fig. 1), and counterfactual analysis
(phase 7⃝ in Fig. 1). For example, the control policy may
dictate channel access strategies or scheduling algorithms. We
refer to Sec. VI for a specific instantiation of the framework
for a multi-access system.

An essential aspect of the model learned at the DT is the
quality of its uncertainty quantification [13]. In fact, it is
critically important for the DT to know what it knows, i.e.,
to be aware of which operating regimes of the PT are well
described by the DT model; as well as to know what it does not
know, i.e., to be aware of the operating regimes in which the
DT model may fail to correctly describe the operation of the
PT. A poorly calibrated DT model, i.e., a model that cannot
properly quantify its epistemic uncertainty, may yield unsafe
control decisions for the PT; provide incorrect predictions; and
fail to recognize abnormal PT behavior [13].

Data collection phases in successive periods may be carried
out by the PT with the supervision of the DT, which may
recommend specific data collection strategies (phase 4⃝ in
Fig. 1). Uncertainty awareness at the DT is also essential
for the optimization of the data-collection policy. In fact,
a well-calibrated model enables the DT to assess which
operating regimes of the PT call for additional information
to be collected to refine or correct the model.

B. Physical Twin
The PT system of interest consists of K agents, indexed

by integer k ∈ K = {1, . . . ,K}, that operate over a discrete
time index t = 1, 2, . . . The time index runs over the relevant
time units for the system of interest, which are typically time
slots or frames. The agents make decisions at each time t that
affect the evolution of the overall state of the system.

Formally, at each time t, each agent k takes an action
akt from a discrete set of possible actions. For instance, a
mobile device may decide whether to transmit or not in a
given time slot t. The action is selected by following a policy
that leverages information collected by the agent regarding the
current state st of the overall system.

The state st is a vector encompassing all the variables
necessary to describe the evolution of the system from time
t onwards. State variables may be specific to different local
parts of the network, and may be functionally and seman-
tically distinct. For example, a state variable may describe
the current traffic conditions at a base station or the quality
of the wireless channel on a particular link. The state st
evolves according to some ground-truth transition probability
T (st+1|st, at). Specifically, the probability distribution of the
next state st+1 ∼ T (st+1|st, at) is modelled as a Markov
decision process (MDP), and only depends on the current state
st and joint action at = (a1t , . . . , a

K
t ) of all agents.

At each time t, each agent k observes a function okt of
the overall state st. This captures the fact that an agent k
typically has access only to local information about the state
of the system, such as the buffer queue length for a device or
the traffic load for a base station. We restrict our framework to
the case of jointly observable states [35], in which the state st
can be identified based on the collection of the observations
okt of all agents k ∈ K at time t. Mathematically, this means
the state st is assumed to be a function of the collection ot =
(o1t , . . . , o

K
t ) of all agents’ observations.

It is assumed that agents cannot communicate with each
other, and thus the overall information available at agent k
at time t amounts to its action-observation history hk

t =
(ok1 , a

k
1 , o

k
2 , . . . , a

k
t−1, o

k
t ). Accordingly, the behavior of agent

k is defined by a policy πk that assigns a probability πk(akt |hk
t )

to each possible action akt based on the available information
hk
t . Note that the presented framework is general enough to

subsume the case of a single, possibly composite, PT agent
by setting K = 1. The more general multi-agent setting
under study represents well many telecommunication settings
of interest (see Sec. I-B3), and has been studied as a use case
for DT platforms in, e.g., [56].

C. Digital Twin

The DT maintains a model of the PT ground-truth dynamics
T (st+1|st, at). To this end, the DT assumes a family of
parametric models Tθ(st+1|st, at) that are determined by a
parameter vector θ. In the model learning phase, the parameter
vector θ is optimized based on data collected from the PT. As
we will detail next, the model class Tθ(st+1|st, at) should
account for any known structure of the PT. For instance, the
DT may be aware that some of the actions in at only affect a
subset of the state variables in st.

In order to account for information available at the DT about
the structure of the PT, we partition the state st into M distinct
subsets {sit}Mi=1 of state variables, such that each subset sit of
state variables is a geographically and/or semantically distinct
unit. For instance, a subset sit may correspond to the queue
lengths of a subset of devices connected to the same base
station; while a subset sjt , with j ̸= i, may describe the channel
conditions for all devices connected to a base station.

Given the state subset {sit}Mi=1 and actions {akt }k∈K of all
agents, we introduce a graph with M current state-nodes, one
for each subset sit; K action-nodes, one for each action akt ;
and M future state-nodes, one for each subset sit+1. The graph



5

describes a factorization of the transition probability of the
form

Tθ (st+1|st, at) =
M∏
i=1

T i
θi

(
sit+1

∣∣s>i
t , a>i

t

)
, (1)

where s>i
t and a>i

t represent the collections of state variables
and actions that are considered to directly affect the evolution
of state variables in subset sit+1. We represent such depen-
dencies by adding a directed edge from action-nodes a>i

t and
state-nodes s>i

t to state-node sit+1. We refer to Fig. 2 for an
example. Note that subsets s>i

t and a>i
t may be empty. For

instance, as depicted in the example in Fig. 2, state variables
that define the channel qualities are generally not affected
by the agents’ actions (unless solutions such as intelligent
reflective surfaces are used [57]).

We denote as θi ⊆ θ the subset of model parameters
that directly account for the modelled dependence between
variables sit+1 and (s>i

t , a>i
t ). Accordingly, the DT defines

M independent parametric models T i
θi(sit+1|s>i

t , a>i
t ) that,

following the factorization in (1), define the overall dynamic
model Tθ(st+1|st, at) of the PT with model parameters θ =
{θi}Mi=1.

A table summarizing the notations can be found in the
Appendix A.

III. MODEL LEARNING AT THE DT

In this section, we will detail the model learning phase (Fig.
2 and phase 2⃝ in Fig. 1), during which the DT uses the data
collected from the PT to train the model parameters θ of model
(1). We first discuss the data-collection phase (phase 1⃝ in
Fig. 1), and then present two Bayesian learning methods with
different scalability properties.

A. Data Collection

At the beginning of each data collection phase, the
DT may provide the PT with a data-collection policy
πd = {πk

d(a
k
t |hk

t )}k∈K, with each agent k receiving policy
πk
d(a

k
t |hk

t ). These policies may be designed by the DT based
on information about the PT prior to the data collection phase.
Alternatively, the agents may follow fixed exploration policies,
such as distributions πk

d(a
k
t |hk

t ) that assign equal probability
to all possible actions akt for each agent.

Starting from an initial state s1 of the PT, all agents in
the PT execute the policy πd during T time steps. After time
T , each agent k communicates its sequence of observations
{okt }Tt=1 and actions {akt }Tt=1 to the DT. Based on this infor-
mation, and given that the states are assumed to be jointly
observable (see Sec. II-B), the DT can recover the dataset
Dπd

T = {(st, at, st+1)}Tt=1 of the T experienced transitions.
Sec. IV-C will discuss how the DT can optimize the data-

collection policy πd, while the next subsection covers the
model learning phase (phase 2⃝ in Fig. 1).

B. Bayesian Learning

Based on the dataset Dπd

T , the DT seeks to optimize the
parametric models in (1) to approximate the ground-truth

(a)

(b)

Fig. 2: (a) Example of a PT consisting of three devices and
two base stations. The internal states s1t , s2t and s3t of the three
devices may include local battery levels and queue lengths.
State variables s4t and s5t describe the propagation conditions
on the shared links from the devices to the base stations. Note
that, in this example, only the second device is in the coverage
range of both base stations. The actions a1t , a2t and a3t of each
respective device may include channel access decisions.
(b) Graph representing a possible factorization (1) assumed
at the DT for the state and action variables from time step
t to time step t + 1 for the system described in panel (a).
Accordingly, the DT assumes that the state of a device at time
t + 1 is affected by the corresponding device’s state at time
t, as well as the actions of the devices connected to the same
base station and the channel state for the given base station.

unknown transition distribution T (st+1|st, at). To this end,
we propose that the DT adopts Bayesian learning in order
to obtain a well-calibrated model. Bayesian learning aims at
evaluating the posterior distribution P (θ|Dπd

T ) of the unknown
model parameters θ. We define a factorized prior distribution
P (θ) =

∏M
i=1 P (θi) on the model parameters. The prior

distribution P (θi) can encode both domain knowledge and
previous experience obtained from previous data-collection
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phases. In particular, in some settings, some of the parameters
θi may be known to the DT. In this case, the prior is
concentrated at the known value, and the posterior P (θi|Dπd

T )
trivially coincides with the prior.

Given the factorization in (1), the posterior distribution
P (θ|Dπd

T ) also factorizes as P (θ|Dπd

T ) =
∏M

i=1 P (θi|Dπd

T ),
where the posterior distribution P (θi|Dπd

T ) is given by

P
(
θi
∣∣Dπd

T

)
∝ P (θi)P

(
Dπd

T

∣∣θi)
= P (θi)

T∏
t=1

T i
θi

(
sit+1

∣∣s>i
t , a>i

t

)
.

(2)

As we will discuss in the rest of this section, depending on
the size of the state and action spaces, computing the exact
posterior in (2) may not be feasible, and one should resort to
function approximations.

C. Tabular Bayesian Learning

In this subsection, we consider small-scale models, in
which: (i) the state variable subsets sit take values in a
small discrete set Si; and (ii) each conditional distribution
T i
θi(sit+1|s>i

t , a>i
t ) can be expressed as T i

θi(sit+1|xi
t), where xi

t

is a function of variables (s>i
t , a>i

t ) that can take a small num-
ber of values in a set X i. In this case, the parameters θi may
be chosen to directly represent the transition probabilities, i.e.,
we can set T i

θi(sit+1|xi
t) = θi

sit+1|xi
t

with (sit+1, x
i
t) ∈ Si ×X i.

Note that we have the conditions∑
si∈Si

θisi|xi = 1, and, θisi|xi ∈ [0, 1], (3)

for all si ∈ Si and xi ∈ X i.
Exact computation of the posterior distributions

{P (θisi|xi |Dπd

T )}si∈Si for i ∈ {1, . . . ,M} and xi ∈ X i

can be done using the Dirichlet-Categorical model (see, e.g.,
[10]). To this end, we define the prior Dirichlet distribution
P ({θisi|xi}si∈Si) ∼ Dir({αi

si|xi,0}si∈Si) with parameters
αi
si|xi,0 > 0 for si ∈ Si, such that we have

P

({
θisi|xi

}
si∈Si

)
=

∏
si∈Si θisi|xi

αi
si|xi,0

−1

B
(
{αi

si|xi,0}si∈Si

) , (4)

where the beta function B({αi
si|xi,0}si∈Si) is taken as

a normalizing constant and depends only on the Dirich-
let parameters. Accordingly, the prior P (θi) factorizes as
P (θi) =

∏
xi∈X i P ({θisi|xi}si∈Si), and represents prior

knowledge or belief about the respective transition model T i
θi .

Given the available experience Dπd

T , the posterior distribution
P ({θisi|xi}si∈Si |Dπd

T ) for xi ∈ X i is given by the Dirichlet
distribution Dir({αi

si|xi,T }si∈Si) with the updated parameters

αi
si|xi,T = αi

si|xi,0 +

T∑
t=1

1{sit+1=si,xi
t=xi} (5)

for all si ∈ Si; where the indicator function 1{sit+1=si,xi
t=xi}

is equal to 1 whenever we have (xi, si) = (xi
t, s

i
t+1) ∈ Dπd

T ,
and 0 otherwise. Therefore, we update the Dirichlet parameters

by counting the number of experienced transitions (xi
t, s

i
t+1)

for all t ∈ {1, . . . , T}.
With tabular learning, the number of parameters to be

optimized is the same for both frequentist and Bayesian
frameworks, with the former relying on maximum likelihood
(ML) or maximum a posteriori (MAP) estimates. This is
generally the case in conjugate models, for which the posterior
distribution can be evaluated exactly (see, e.g., [10], [58]).

D. Neural Bayesian Learning
For more complex problems, computing the exact poste-

riors P (θi|Dπd

T ) in (2) is typically intractable, and the DT
must resort to using approximation methods. To illustrate this
approach, we specifically introduce M neural networks (NNs),
one per unknown factor T i

θi in (1). For i ∈ {1, . . . ,M},
the vector θi defines the parameters of the NN T i

θi that
takes as input the state and action variables contained in
s>i
t , a>i

t at some time t, and outputs a probability distribution
T i
θi(sit+1|s>i

t , a>i
t ) over the set of possible states sit+1 ∈ Si at

time t+ 1.
In order to approximate the posterior distribution

P (θi|Dπd

T ), we define here a conventional solution based on
mean-field variational inference (VI) [59]. Other approximate
inference algorithms, such as Markov chain Monte Carlo
(MCMC), would also be applicable [10].

In the most common implementation of VI, for each factor
i ∈ {1, ...,M}, one assumes a Gaussian prior given by
P (θi) = N (θi|0,Σi

p), where Σi
p = Diag(σi

p,1
2
, ..., σi

p,P i

2
)

is a diagonal covariance matrix with σi
p,j > 0 for j ∈

{1, . . . , P i}, and where P i denotes the number of pa-
rameter in the NN, i.e., the size of vector θi. The pos-
terior P (θi|Dπd

T ) is approximated through the parameter-
ized distribution q(θi|ϕi) = N (θi|µi,Σi) with mean vector
µi = (µi

1, . . . , µ
i
P i) and diagonal covariance matrix Σi =

Diag(σi
1
2
, ..., σi

P i

2
), with σi

j > 0 for all j ∈ {1, . . . , P i}.
Variational parameters ϕi = (µi

1, . . . , µ
i
P i , σi

1, . . . , σ
i
P i) are

optimized by addressing the problem of minimizing the vari-
ational free energy [10], i.e.,

argmin
ϕi

{
Eθi∼q(θi|ϕi)

[
− log

(
P
(
Dπd

T

∣∣θi))]
+KL

(
q(θi|ϕi)||P (θi)

)}
,

(6)

where

KL (P (X)||Q(X)) = EX∼P (X)

[
log

(
P (X)

Q(X)

)]
(7)

is the Kullback-Leibler (KL) divergence between two distribu-
tions P and Q. The free energy criterion in (6) is also known
as the negative evidence lower bound (ELBO) in the machine
learning literature.

While frequentist NNs directly minimize the log-loss
− log(P (Dπd

T |θi)) with respect to the P i parameters in θi,
optimization of Bayesian NNs via the presented, conventional,
VI solution, minimizes the free energy with respect to the
2P i parameters in vector ϕi. Using the reparameterization
trick [59], problem (6) can be addressed iteratively through
stochastic gradient descent on an optimization space that
encompasses twice the number of parameters as for frequentist
learning on the same NN architecture.
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IV. POLICY OPTIMIZATION

In this section, we discuss the policy optimization phase
(phase 3⃝ in Fig. 1), in which the DT leverages the approxi-
mate posterior P (θ|Dπd

T ) obtained during the model learning
phase (see Sec. III) to produce optimal control policies for the
multi-agent PT system. We will also describe the proposed
procedure to design efficient data collection policies for the
data collection phase (phase 4⃝ in Fig. 1).

A. Setting

During policy optimization (phase 3⃝ in Fig. 1), the DT aims
at optimizing the decentralized policy π = {πk(akt |hk

t )}k∈K
of the K agents so as to maximize some user-specified
performance criterion. This criterion is defined by a reward
function r(st, at, st+1), which determines the total discounted
return

Gt =

+∞∑
τ=t

γτ−tr(sτ , aτ , sτ+1), (8)

for some exponential discounting factor γ ∈ [0, 1] when the
PT applies the policy π. The optimal control problem consists
of the maximization of the average long-term reward [8]

max
π
Eπ(G1). (9)

This amounts to a Decentralized MDP (Dec-MDP) [35].
We emphasize that the DT has only access to the ensem-

ble of models Tθ(st+1|st, at) given by the posterior distri-
bution P (θ|Dπd

T ), and not to the ground-truth distribution
T (st+1|st, at), when addressing problem (9). In particular,
the DT cannot directly interact with the PT during the policy
optimization phase, and must solely rely on the observed data
Dπd

T .
Given that all policies are issued by the central DT platform,

policy optimization can naturally rely on CTDE methods char-
acterized by centralized training at the DT and decentralized
execution at the PT. This class of approaches bypasses non-
stationarity issues that affect decentralized learning schemes
[36].

B. Control Policy Optimization

Among possible CTDE methods (see Sec. I-B3), we focus
on the COunterfactual Multi-Agent (COMA) algorithm in
[41], a state-of-the-art CCDA method. The key distinction be-
tween the approach adopted here and the conventional COMA
implementation is the fact that the model Tθ(st+1|st, at) as-
sumed here is stochastic in the sense that the model parameter
vector θ is distributed according to the (approximate) posterior
distribution P (θ|Dπd

T ).
The proposed approach addresses the problem (9) via

model-generated virtual rollouts at the DT. In a manner similar
to [50], we account for the epistemic uncertainty encoded by
the posterior P (θ|Dπd

T ) by periodically sampling a parameter
vector θ ∼ P (θ|Dπd

T ) during policy optimization so as to
produce the next state st+1 ∼ Tθ(st+1|st, at) in the virtual
rollouts.

As is typical in CCDA algorithms [40], in a manner similar
to standard actor-critic algorithms [8], the DT maintains a

centralized critic Qw(st, at), with parameter vector w, as
well as the decentralized policies πv = {πk

v (a
k
t |hk

t )}k∈K,
with common parameter vector v. During policy evaluation,
the critic Qw(st, at) aims at approximating the Q-value
Qπv (s, a) = Eπv

[Gt|st = s, at = a], i.e., the average
future return under policy πv starting from a given global
state s and joint action a. Then, during policy improvement,
policies πk

v (a
k
t |hk

t ) for all agents k ∈ K are updated to
maximize the expected return in (9). This is done by using the
centralized critic Qw(st, at) to reward actions that enhance the
performance at the system level. As we will detail next, during
the policy optimization phase, we alternate between policy
evaluation and policy improvement steps until convergence
of the decentralized policy πv . Upon convergence, only the
learned policies πk

v (a
k
t |hk

t ) need to be transmitted by the DT
to their respective agents.

During policy evaluation, the policy πv is kept constant
and the critic Qw is optimized by leveraging virtual rollouts
(s1, a1, r2, s2, a2, ...) obtained by following policy πv within
model Tθ(st+1|st, at). Since rollouts represent only a finite
number of terms in (8), the return Gt under policy πv is
approximated using the n-step truncated λ-return estimator
defined as [8]

Gλ
t:t+n = (1− λ)

n−1∑
l=1

λl−1Gt:t+l + λn−1Gt:t+n, (10)

with λ ∈ [0, 1], and

Gt:t+l =

l−1∑
l′=0

γl′r(st+l′ , at+l′ , st+l′+1) + γlQw̄(st+l, at+l).

(11)
The target critic Qw̄ in (11) is used to stabilize the training
procedure and shares the same architecture as Qw, with
parameters w̄ periodically copied from w [60]. Accordingly,
the critic loss function is defined as

Lw = Eπv

[(
Gλ

t:t+n −Qw(st, at)
)2]

, (12)

and the parameters w are obtained iteratively through gradient
descent, with target parameters w̄ updated every Ntarget ≥ 1
iterations.

After Ncritic ≥ 1 policy evaluation steps, a policy improve-
ment step is carried through gradient ascent with respect to
parameters v using the policy gradient theorem with a baseline
[8]. Accordingly, for each agent k ∈ K, the gradient is given
by:

∇vJ = Eπv

[∑
k∈K

∇v log
(
πk
v (a

k
t |hk

t )
)
Ak(st, at)

]
, (13)

where Ak(st, at) is the counterfactual baseline used by
COMA, and defined as

Ak(st, at) =Qw(st, at)

−
∑

ak∈{0,1}

πk
v (a

k|hk
t )Qw

(
st, (a

−k
t , ak)

)
, (14)

where a−k
t = {ak′

t }k′ ̸=k denotes the actions of all agents
except agent k at time step t. By marginalizing the contribution



8

of agent k in the baseline, Ak(st, at) quantifies the effect the
action akt of agent k has on the return as compared to its
default behavior akt ∼ πk

v (a
k
t |hk

t ). This in turn helps mitigate
the credit assignment problem [41].

In order to encourage exploration of the (virtual) state-action
space during the first policy optimization iterations, we draw
inspiration from the SAC algorithm [61] and use the alternative
reward

re(st, at, st+1) = r(st, at, st+1)− αe log (πv(at|st)) , (15)

with temperature hyperparameter αe > 0. The alternative
reward re in (15) adds an exploration bonus based on the
entropy of the policy πv , rewarding policies that are stochastic
and with high entropy, which in turn enables undirected
exploration of the state-action space. After a given number
of policy improvement steps, we return to the original reward
definition r until convergence of the control policy πv .

C. Data Collection Optimization
As discussed in Sec. III-A, the data-collection policy

πd(at|st) can be optimized by the DT based on the available
data and on the DT’s assessment about operating regimes
characterized by more significant model uncertainty. For this
purpose, the DT uses the available posterior parameter dis-
tribution P (θ|Dπd

T ) to identify transitions (st, at, st+1) that
yield high epistemic uncertainty, i.e., where models Tθ drawn
from distribution P (θ|Dπd

T ) disagree more significantly [10],
[62]. The resulting disagreement metric is used to engineer a
data collection reward rd. With such reward function, the data
collection policy πd is optimized at the DT by following the
approach described in Sec. IV-A with rd in lieu of r.

The reward function rd should capture the extent to which
the ensemble of models Tθ(st+1|st, at) with θ ∼ P (θi|Dπd

T )
disagree on the prediction of the next state st+1 given the
previous-step state-action pair (st, at) [49]. Among the meth-
ods presented in Sec. I-B4, one way to gauge this disagreement
is to use the mutual information I(st+1; θ|st, at) evaluated
under the posterior P (θ|Dπd

T ) [49]. Accordingly, the data
collection reward is defined as

rd(st, at) =H
(
Eθ∼P (θ|Dπd

T ) [Tθ(·|st, at)]
)

−Eθ∼P (θ|Dπd
T ) [H (Tθ(·|st, at))] ,

(16)

where H(P (·)) = Es∼P (s) [− log (P (s))] represents Shan-
non’s entropy for the argument distribution. Note that the
entropy terms in (16) are evaluated with respect to the distri-
bution of the next state st+1. In (16), the first term measures
the uncertainty on the next state st+1 for the ensemble model,
while the second term represents the average uncertainty asso-
ciated with each member model Tθ(s

′|st, at) of the ensemble
(see also [10]).

V. MONITORING FUNCTIONALITIES

In this section, we discuss three typical functionalities that
may be run at the DT in addition to control, namely anomaly
detection (phase 5⃝ in Fig. 1), prediction (phase 6⃝ in Fig.
1), and counterfactual analysis (phase 7⃝ in Fig. 1). These
functionalities are selected as representatives of tasks that are
facilitated by the use of uncertainty-aware Bayesian models.

A. Anomaly Detection

Anomaly detection aims at detecting significant changes in
the dynamics of the PT. To formulate this problem, assume
that, during the operation of the system following policy
optimization (phase 3⃝ in Fig. 1), the DT has access to the
information Dπ

TM = {(st, at, st+1)}T
M

t=1 about the state-action
sequence experienced by the PT within some monitoring time
window TM under the optimized policy π. The DT tests if
the collected data Dπ

TM is consistent with the data reported by
the PT during the most recent model learning phase (phase 1⃝
and 2⃝ in Fig. 1), or rather if it provides evidence of changed
conditions or anomalous behavior.

While frequentist learning is known to perform poorly
for detection of out-of-distribution, or abnormal, samples,
Bayesian learning has the key advantage of being capable of
quantifying epistemic uncertainty via disagreement-based test
metrics, a property also used in Sec. IV-C (see, e.g., [63]).
While in Sec. IV-C disagreement was evaluated on next-state
predictions, here the disagreement is defined in terms of the
log-likelihood of the observed data. Accordingly, we define as

LL (Dπ
TM |θ) =

TM∑
τ=1

log (Tθ(st+1|st, at)π(at|st)) (17)

the log-likelihood of model θ for the reported experience Dπ
TM ,

where π(at|st) =
∏

k∈K πk(akt |hk
t ). We then consider the test

metric given by the variance

Eθ∼P (θ|Dπd
T )

[(
LL (Dπ

TM |θ)

−Eθ∼P (θ|Dπd
T ) [LL (Dπ

TM |θ)]
)2]

,
(18)

estimated using samples from distribution P (θ|Dπd

T ). A larger
variance provides evidence of a large epistemic uncertainty,
which is taken to indicate an anomalous observation Dπ

TM as
compared to the model learning conditions.

B. Prediction

One of the key motivations behind the model-based ap-
proach adopted by the DT paradigm is the possibility of
predicting future states of the PT system by simulating the
operation of the system via the model. While frequentist mod-
els would generally provide unreliable measures of prediction
uncertainty, Bayesian models can not only provide useful point
predictions but also well-calibrated error bars.

To describe the problem, we define a prediction time lag
TH, corresponding to the number of time steps in the future
we wish to predict, and a target metric yp, which is a function
of future trajectories Dπ

TH = {(st, at, st+1)}T
H

t=1 within the
prediction time window duration TH, starting from a known
state s1. We also assume that the agents follow a known policy
π. As an example, the metric of interest yp may be the average
number of packet losses for a subset of devices connected to
the same base station over the next TH time steps (see Sec.
VII-F).

Under these conditions, the DT can roll out the model
defined by transitions Tθ and policy π in order to estimate
statistics of the target metric yp. With a Bayesian model,
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such statistics are further averaged over the posterior distri-
bution P (θ|Dπd

T ), providing a reliable measure of prediction
uncertainty. Accordingly, prediction using a Bayesian model
requires a number of samples that is larger as compared to
its frequentist counterpart by a factor given by the number of
models sampled from the posterior.

C. Counterfactual Analysis

The predictive methodology described in the previous sub-
section is also a useful tool for counterfactual analysis of
the PT behavior [7]. In such analysis, one wishes to assess
the impact that changes in the system, as described by the
ground-truth dynamics T , would have on some target metrics
of interest. To this end, one could roll out different models Tθ

or policies π implementing the given changes of interest, and
then evaluate measures such as the average treatment effect
[64].

VI. APPLICATION TO A MULTI-ACCESS SYSTEM

In order to illustrate the operation and the benefits of the
proposed framework for the implementation of a DT platform,
in the rest of the paper we focus on a multi-access IoT-
like wireless network as the PT system to be controlled
and monitored [15]–[17]. This system is implemented as a
numerical simulator, which is available on-line [65].

A. Setting

As illustrated in Fig. 1, the PT system under study comprises
K sensing devices that obtain data with correlated data arrivals
both in time [66] and across devices [15], and communicate
with a common base station (BS) over a channel with an
unknown distribution. Time is slotted, and each device may
transmit in a slot if its buffer is not empty.

With t denoting the time slot index, and following the
notation in Sec. II-B, each device k ∈ K observes its local
state okt = (qkt , g

k
t , d

k
t ), where qkt ∈ {0, 1, . . . , Qk

max} with
Qk

max ≥ 1 is the number of packets in the device’s buffer;
gkt ∈ {0, 1} is a binary variable indicating if a new packet is
generated (gkt = 1) at time t or not (gkt = 0); and dkt ∈ {0, 1}
indicates whether a packet sent at the previous time step t−1
from device k was successfully delivered at the BS (dkt = 1)
or not (dkt = 0). Satisfying the joint observability assumption
(see Sec. II-B), the overall state of the PT is fully identified
given the joint observations of all devices and is represented
by st = ot = (o1t , . . . , o

K
t ).

1) Policies: The access policy of device k is given by the
distribution πk(akt |hk

t ), where we have akt = 1 if the device
attempts to transmit the first packet in its buffer, and akt = 0
if it stays idle during slot t. Finally, we define the (binary)
packet-generation vector as gt = (g1t , . . . , g

K
t ), the successful

packet-delivery vector as dt = (d1t , . . . , d
K
t ), and the packet-

transmission vector as at = (a1t , . . . , a
K
t ).

Fig. 3: Dependency graph of the multi-access system. Thin
lines represent a 1 to 1 relationship per device (independent
between devices) while thick lines represent a many to many
relationship (correlated between devices)

2) Buffers: Each device k maintains a first-in first-out buffer
of maximum capacity Qk

max, where the buffer state qkt evolves
according to the deterministic update P (qkt+1|qkt , dkt+1, g

k
t+1)

given by

qkt+1 = min(Qk
max, q

k
t + gkt+1 − dkt+1). (19)

A device k can transmit a packet only if its buffer is not
empty, and action akt is automatically set to take value akt = 0
otherwise, resulting in the condition akt ≤ qkt . If device k
generates a new packet when the buffer is full and transmission
fails, i.e., if we have the equalities qkt = Qk

max, gkt+1 = 1, and
dkt+1 = 0, a buffer overflow event occurs at time step t + 1.
In this case, the oldest packet in the buffer is deleted without
being sent, and the newly generated packet at time t + 1 is
added to the buffer as per the update rule in (19).

3) Packet generation: The packet generation mechanism
is modelled as a Markov model P (gt+1|gt). To account
for spatial correlation, we partition the devices into clusters
{Ci}Ci=1 with Ci ⊆ K, Ci ∩Cj = ∅ if i ̸= j and

⋃C
i=1 Ci = K,

where each cluster Ci contains devices with correlated packet
arrivals. Accordingly, the data-generation dynamics factorize
without loss of generality as

P (gt+1|gt) =
C∏
i=1

P
(
gC

i

t+1

∣∣∣gCi

t

)
, (20)

where gC
i

t = {gkt }k∈Ci for i ∈ {1, . . . , C}.
4) Channel: The shared channel is described by the input-

output distribution P (dt+1|at), where packet delivery from
agent k can be successful (dkt+1 = 1) only if a packet
was transmitted (akt = 1), i.e., we have akt ≥ dkt+1. For
each successfully decoded packet, the BS sends back an
acknowledgement (ACK) message to the sending device k
over an error-free channel on the control plane.
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As an example to be adopted in the next section, in a multi-
packet reception (MPR) channel, the number of successfully
delivered packets nRx

t+1 =
∑

k∈K dkt+1 depends on the number
of simultaneous transmissions nTx

t =
∑

k∈K akt , and the
delivered packets are taken uniformly across all the agents
that transmit. Accordingly, the channel distribution is given
by [67]

P (dt+1|at) = P (nRx
t+1|nTx

t )×

∏
k∈K 1{ak

t ≥dk
t+1}( nTx

t

nRx
t+1

) . (21)

B. DT Model

Following the system description in the previous section,
the DT model assumes the factorization (1) illustrated in Fig.
3, which is of the form

Tθ(st+1|st, at) =PθG(gt+1|gt)× PθC(dt+1|at)×∏
k∈K

P (qkt+1|qkt , dkt+1, g
k
t+1),

(22)

where the deterministic queue dynamics
P (qkt+1|qkt , dkt+1, g

k
t+1) defined by (19) are assumed to

be known to the DT, and the model parameters θ = {θG, θC}
determine the packet generation and channel models,
respectively. The DT is also assumed to be aware of the
cluster partitions {Ci}Ci=1 in (20), e.g., based on the network
topology, so that the data generation model PθG(gt+1|gt)
consists of C independent models TθG,i(gC

i

t+1|gC
i

t ) with
parameters θG = {θG,i}Ci=1. As for the channel, the DT
optimizes an MPR model TθC(nRx

t+1|nTx
t ) of the unknown

ground-truth distribution P (nRx
t+1|nTx

t ) of the number of
received packets given the number of transmitted packets.

VII. NUMERICAL RESULTS

In this section, we present numerical results related to
the multi-access system introduced in the previous section.
The main goal is to analyze the advantages of the proposed
Bayesian framework at the DT for control, anomaly detection,
prediction, and data collection optimization.

A. Setup

Consider K = 4 sensing devices equipped with a buffer
of capacity Qk

max = 1 packet, with all buffers being initially
empty. This scenario is of interest for devices that transmit
updates, discarding previous packets from the queue as out-
dated. Devices 1 and 2 form the cluster C1, while devices
3 and 4 form cluster C2. The data generation distribution
within each cluster does not depend on previously generated
data, and is such that both devices cannot simultaneously
generate a packet, with a new packet being generated at
either device with probability 0.4. This capture a situation in
which devices monitor distinct parts of a process, e.g., the
location of a target in distinct spatial regions. The channel
allows for the successful transmission of a single packet with
probability 1; while, for two simultaneous transmissions, one
packet is received with probability 0.8 and both packets are
received with probability 0.2. More than two simultaneous
transmissions cause the loss of all packets.

B. Implementation
1) Data Collection: Unless stated otherwise, we adopt a

random data collection policy that sets πk
d(a

k
t = 1|hk

t ) = qt
for all k ∈ {1, 2, 3, 4} with probability qt uniformly and
independently selected in the interval [0, 1] at each step t.

2) Model Learning: Model learning at the DT is carried us-
ing the Categorical-Dirichlet model as described in Sec. III-C
with all prior Dirichlet parameters set to 0.01. The DT adopts
a memoryless model TθG,i(gC

i

t+1) for the data generation
process with model parameters θG,i = {θG,i

g′Ci }g′Ci∈{0,1}|Ci|

for i ∈ {1, 2}. Furthermore, the channel model is defined by
the model parameters θC = {θCnRx|nTx}nRx≤nTx∈{0,...,K}.

3) Reward: In a similar manner to [17], we assume that
the reward in (8) takes the form

r(st, at, st+1) =
∑
k∈K

βkrk(okt , a
k
t , o

k
t+1), (23)

with

rk(okt , a
k
t , o

k
t+1) =


+ξ if dkt+1 = 1
−ξ if qkt = Qk

max, gkt+1 = 1 and
dkt+1 = 0

−1 otherwise,
(24)

where the first condition corresponds to successful packet
delivery and the second condition to buffer overflow. The
constants {βk}k∈K and ξ > 0 are hyperparameters under the
control of the network operator at the DT. In our experiments,
we set βk = 1 for all k ∈ {1, 2, 3, 4}, ξ = 50, and the discount
parameter in (8) is set to γ = 0.95.

4) Actor and Critic: The critic Qw(st, at) and the policies
πk
v (a

k
t |hk

t ) for the COMA algorithm presented in Sec. IV-A
are implemented as feedforward neural networks. Specifically,
the policy πk

v (a
k
t |hk

t ) takes as input its current observation
okt , along with the positional input pt = (t mod L), where
L = 4 is a hyperparameter, resulting in a policy of the
form πk(akt |okt , pt). More precisely, each neural network
πk
v (a

k
t |hk

t ) outputs L probabilities {πk
v (a

k
t |okt , p)}L−1

p=0 such
that πk

v (a
k
t |hk

t ) =
∏L−1

p=0 1{p=pt}π
k
v (a

k
t |okt , p). Partitioning

time into frames of L slots, πk
v (a

k
t = 1|okt , p) can be in-

terpreted as the probability of sending a packet during slot
p within the current frame. The adoption of more complex
policies using recurrent neural networks (RNNs) [68] is left
for future work.

C. Benchmarks
Throughout the experiments, we compare the performance

of the proposed Bayesian framework to the two follow-
ing benchmarks. The first is a frequentist model-based ap-
proach, which obtains a maximum a posteriori (MAP) estimate
θMAP = argmaxθ P (θ|Dπd

T ) of the model parameter vector
θ during model learning with all Dirichlet prior parameters
set to 1.01. This choice guarantees well-defined solutions for
the MAP problem. The frequentist approach uses the single
optimized model TθMAP(st+1|st, at) for policy optimization,
anomaly detection, and prediction. For policy optimization, we
also consider an oracle-aided model-free scheme, in which the
policy optimizer is allowed to interact with the ground-truth
distributions (20) and (21) until convergence.
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(a)

(b)

Fig. 4: Throughput (a) and buffer overflow probability (b) as a
function of the size of the dataset available in the model learn-
ing phase for the proposed Bayesian model-based approach,
as well as the oracle-aided model-free and frequentist model-
based benchmarks. Metrics are averaged over time and over
50 independent model learning and policy optimization cycles.

D. Policy Evaluation

In this section, we evaluate the performance of policy
optimization in the ground-truth environment by using the
following metrics: (i) the throughput, i.e., the average number
of packets successfully sent at each time step (Fig. 4a);
and (ii) the average probability of buffer overflow across all
devices (Fig. 4b). We focus on the impact of the size of
the model learning dataset Dπd

T by varying the number of
random data collection steps T from 0 to 20 prior to the model
learning phase. The results are averaged over 50 independent
data collection, model learning and policy optimization cycles
(phases 1⃝, 2⃝ and 3⃝ in Fig. 1).

From Fig. 4, we observe that, in regimes with high data
availability during the model learning phase, i.e., with large
T , both Bayesian and frequentist model-based methods yield
policies with similar performance to the oracle-aided bench-
mark. In the low-data regime, however, Bayesian learning
achieves superior performance as compared to its frequentist
counterpart with, for instance, a 20% increase in throughput at
T = 10. With frequentist learning, which disregards epistemic
uncertainty, policy optimization is prone to model exploitation,
whereby the optimized policy is misled by model errors
into taking actions that are unlikely to be advantageous in
the ground-truth dynamics. By using an ensemble of models
with distinct transition dynamics in state-action space regions
with high epistemic uncertainty, Bayesian learning reduces the
sensitivity of the optimized policy to model errors.

(a)

(b)

Fig. 5: Mean receiver operating characteristic (ROC) curves (a)
and area under ROC curves (AUC) (b) for the Bayesian and
frequentist anomaly detection tests. Solid lines in (a) represent
model learning dataset sizes of T = 20 steps, while dashed
lines correspond to dataset sizes of T = 50 steps. Mean AUCs
in (b) are represented by an horizontal bar, while boxes denote
the 25% and 75% quantiles and whiskers denote the 10% and
90% quantiles. Results are obtained from 50 independent data
collection and model learning cycles.

E. Anomaly Detection

We now consider the performance of anomaly detection, as
defined in Sec. V-A, by assuming that an anomalous event oc-
curs when device 2 is disconnected, resulting in an anomalous
packet-generation distribution P̃ (gt+1) for which a packet is
generated at device 1 only with probability 0.4, and no packet
is generated either at device 1 or 2 with probability 0.6. To
focus on such anomalies at the packet generation level, we
use the log-likelihood LL(Dπ

TM |θ) =
∑TM

t=1 log(TθG,1(gC
1

t+1))
in the disagreement metric (18). Furthermore, as mentioned in
Sec. VII-C, we consider as benchmark a standard test based
on the log-likelihoods LL(Dπ

TM |θMAP) obtained from MAP-
based frequentist learning.

For each model learning dataset size T = 20 and T = 50,
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(a) (b)

(c)

(d)

Fig. 6: Reliability plots for packet drop prediction with time lag TH = 4 for (a) the frequentist MAP model and (b) the
Bayesian model. (c) Expected calibration error and (d) accuracy of the predictions for both Bayesian and frequentist models as
a function on the prediction time lag TH, ranging from TH = 1 to TH = 10. All the results are averaged over 20 independently
learned models.

we compute the Bayesian disagreement metrics and frequentist
log-likelihoods for 16000 independently sampled monitoring
datasets Dπ

TM with TM = 1, where half of the datasets
are sampled from the ground-truth distribution under normal
circumstances, while the other half is sampled with device
2 disconnected. We then report the false positive rates (FPR)
and the true positive rates (TPR) of the anomaly detection tests
in Fig. 5 by varying the detection threshold. The experiment
is repeated 50 times over independent data collection and
model learning phases (phases 1⃝ and 2⃝ in Fig. 1), while the
optimized policy π used to report experiences Dπ

TM remains
the same.

For both model-learning dataset sizes of T = 20 and
T = 50 steps in Fig. 5b, Bayesian anomaly detection achieves,
on average, a higher area under the receiver operating charac-
teristic (ROC) curve; with a 5% average area increase and a
22% larger area at the 25% quantile for T = 20 compared
to its frequentist counterpart. From Fig. 5a, the proposed
Bayesian framework is also observed to uniformly outperform
the frequentist ROC curve for T = 20 steps, while providing
higher performance at lower FPR for T = 50 steps. For
instance, at a TPR of 0.75 in Fig. 5a, the Bayesian anomaly
detector has a FPR of 0.30 for a model learning dataset size
of T = 20 and a FPR of 0.15 for a dataset size of T = 50;
whereas the frequentist benchmark has a FPR of 0.34 for
T = 20 and 0.21 for T = 50. These results suggest that
measuring epistemic uncertainty, instead of likelihood, can
yield more effective and robust monitoring solutions.

F. Prediction

In this section, we are interested in predicting the number
of packet drops, i.e., buffer overflows, experienced across all
devices starting from a uniformly sampled state s1. We collect
T = 100 data samples using a random data collection policy
πd, train a Bayesian model P (θ|Dπd

T ), and use it to produce
an optimized policy π as described in Sec. IV-A. Following
Sec. V-B, we define our target metric over the time lag TH ∈
{1, . . . , 10} as

yp =

TH∑
t=1

∑
k∈K

1{qkt =Qk
max,g

k
t+1=1,dk

t+1=0}, (25)

where the state variables of future trajectories in Dπ
TH are

taken with respect to the optimized policy π. Note that, since
the optimized policy π differs from the data collection policy
πd, the datasets Dπd

T and Dπ
TH are drawn from two distinct

distributions. Therefore, the number of packet drops yp cannot
be predicted from the currently available data Dπd

T , and the
accuracy of the prediction depends on how well the learned
model Tθ at the DT can generalize to new, unseen, conditions.

In order to estimate the packet-drop rate yp, we roll out
10-steps trajectories from s1 using the learned model. Fur-
thermore, for the Bayesian model, we average the confi-
dence of each prediction over 20 sampled models Tθ with
θ ∼ P (θ|Dπd

T ), with 100 trajectories per model; while,
for the frequentist MAP benchmark, we only average 100
trajectories over the single model TθMAP with θMAP =
argmaxθ P (θ|Dπd

T ). The predicted outcome yp in (25) is
tested against 100 outcomes sampled from the ground-truth
environment with policy π and starting state s1. We average
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(a)

(b)

Fig. 7: (a) Throughput and (b) buffer overflow probability
as a function of the number of data collection rounds using
a random (dark gray) and an optimized (light gray) data
collection policy, as described in Sec. IV-C. All the results are
averaged over 50 independent data collection, model learning
and policy optimization cycles.

our results over 20 independent data collection and model
learning cycles (phases 1⃝ and 2⃝ in Fig. 1) for 200 uniformly
sampled starting states s1.

We evaluate the performance both in terms of accuracy
(Fig. 6d) and calibration (Fig. 6a-c). Calibration performance
is evaluated using the standard reliability plot and expected
calibration error (ECE) [69]. As seen in Fig. 6d, the predic-
tion accuracy of the Bayesian and frequentist approaches are
very similar for all values of TH ∈ {1, . . . , 10}. However,
as we increase the prediction time lag TH, the frequentist
approach tends to make incorrect decisions with a high level
of confidence, while Bayesian learning correctly evaluates its
confidence level.

To see this, we first observe the reliability plots in Fig. 6a-
b, which are obtained for TH = 4. Reliability plots evaluate
prediction accuracy as a function of the confidence level of the
decision output by the model. Perfect calibration is obtained
when the confidence (light gray) and accuracy (dark gray) bars
are equal. As anticipated, the frequentist model is observed
to be overconfident, while the Bayesian model provides a
good match between confidence and accuracy at all confidence
levels with a meaningful rate of occurrence (displayed at the
bottom of the reliability plots). The ECE, which evaluates the
average difference between confidence and accuracy [69] (Fig.

6c), confirms the advantages of Bayesian learning in terms of
quality of uncertainty quantification.

G. Data Collection Optimization

An optimized data collection policy, as described in Sec.
IV-C, can be useful to improve the estimate of the channel
distribution P (dt+1|at) since the latter can be explored by
controlling the number of transmitted packets. In this last
experiment, we evaluate the advantages of data collection
policy optimization across four data collection rounds.

During each round i ∈ {1, 2, 3, 4}, the DT collects in-
formation about T d = 5 transitions in the ground-truth
environment using the data collection policy πd,i. The latter
is optimized as discussed in Sec. IV-C using the available
data D≤i−1 =

⋃i−1
j=1 D

πd,j

Td . Note that in this problem the data
collection reward (16) can be evaluated in closed form using
the digamma function [70].

We evaluate the advantage of the optimized data collection
scheme by training a control policy π as detailed in Sec. IV-A
using the model P (θ|D≤i) available at the end of each round,
and evaluating its performance in the ground-truth environ-
ment in terms of throughput (Fig. 7a) and buffer overflow
probability (Fig. 7b), as described in Sec. VII-D. The results
presented in Fig. 7 are averaged over 50 independent data
collection (with and without optimization), model learning and
policy optimization cycles (phases 1⃝, 2⃝, 3⃝ and 4⃝ in Fig.
1).

Since the data collection policy πd,1 is trained using the
prior model P (θ) during the first round, the models Tθ with
θ ∼ P (θ) tend to disagree under most transitions, and the
performance of the optimized data collection scheme is close
to its random counterpart. However, after the first round, the
data collection reward (16) is able to target a smaller subset
of transitions with higher epistemic uncertainty, yielding a
18.5% increase in throughput at the end of the second round
compared to random exploration. As the number of rounds
increases, the performance gap between the two collection
strategies is reduced and we approach the optimal performance
of the oracle-aided benchmark in Fig. 4.

VIII. CONCLUSIONS

This paper has proposed a Bayesian framework for the de-
velopment of a DT platform aimed at the control, monitoring,
and analysis of a communication system. By accounting for
model uncertainty via ensembling, and compared to conven-
tional single-model approaches, the proposed Bayesian DT
framework was shown to obtain more reliable performance for
multi-agent RL-based control, prediction, anomaly detection,
and data collection in the regime of limited data available
at the DT from the PT. For some quantitative examples, we
demonstrated a 20% increase in throughput for multi-access
transmission from IoT devices, with an additional 18.5%
increase obtained by using an optimized data-collection policy;
a 5% larger area under the ROC curve for anomaly detection;
and a reduction by half of the calibration error for prediction.
Future work may investigate the application of the Bayesian
DT framework to other use cases in telecommunication [24],
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[28]; the use of more complex policies accounting for partial
observability at each agent [68]; as well as the presence of
multiple interacting DTs and/or PTs [55], along with the
optimal allocation of DTs across cloud and edge [29], [30].

APPENDIX A
TABLE OF NOTATIONS

Notation Meaning
K Number of agents in the PT system
okt Observation of agent k at time step t

st Overall state of the PT system at time step t

sit
i-th subset of state variables of the PT system
at time step t

akt Action of agent k at time step t

at Joint action of all agents at time step t

hk
t

Action-observation history of agent k up to time
step t

πk(akt |hk
t ) Policy of agent k

π(at|st) Decentralized policy of all agents
πk
d (a

k
t |hk

t ) Data-collection policy of agent k
πd(at|st) Data-collection policy of all agents
T (st+1|st, at) PT ground-truth transition probability

Tθ(st+1|st, at)
DT model of the PT transition probabilities with
parameter θ

T i
θi
(sit+1|s

>i
t , a>i

t )
DT model of the transition probabilities of the
i-th state subset with parameter θi

Dπd
T

Dataset containing T transitions collected from
the PT system under policy πd

r(st, at, st+1) Reward function for transition (st, at, st+1)

re(st, at, st+1) Reward function with exploration bonus
αe Exploration bonus temperature parameter
rd(st, at) Data collection reward function
Gt Total discounted return from time step t

γ Discounting factor
TM Monitoring time window

Dπ
TM

Monitoring dataset containing TM transitions
collected from the PT under policy π

TH Prediction time lag

Dπ
TH

Predicted PT trajectory under policy π contain-
ing TH transitions

yp Prediction target metric

TABLE I: Notations
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