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Abstract

Numerical Relativity (NR) is an entire field of study that attempts to harness the power of supercomputers

in order to solve complex problems within General Relativity (GR). Its original purpose was to provide

a means to simulate the late-inspiral and merger of binary black holes and neutrons stars, and provide

accurate templates of the resulting gravitational waves that can be employed to assist in their detection.

However, Numerical Relativity has now flourished into a plethora of novel avenues. From boson stars to

inflation - both within GR and modifications of it - NR is a pivotal tool in understanding a broad variety

of physically-realistic (albeit sometimes hypothetical) gravitating systems. In this thesis, we use NR to

explore two such intriguing scenarios: the merger of binary black holes within a particular modified theory

of gravity, and the stability of inhomogeneous inflation.
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Chapter 1

Introduction

This thesis is split into three main sections. We first describe the basics of NR: the 3+1 framework,

whereby one decomposes spacetime into its spatial and temporal components; the reformulated versions

of Einstein’s equations within this setting, namely the ADM and BSSN equations; how one obtains initial

data to be evolved; and the gauge (co-ordinate) choices necessary to acquire a stable evolution. This will

provide the framework for later research sections.

The next chapter centres on modified gravity. We provide a brief background on the subject, focusing on

scalar-tensor theories and the phenomenon of scalarization, in which a black hole or neutron star generates

a non-trivial scalar-field profile. This leads us to our research on the dynamical descalarization and spin-

induced dynamical scalarization/descalarization of binary black hole mergers, the former and latter having

been published in Physical Review Letters [5] and Physical Review D [6] respectively.

Lastly, we move to a cosmological setting - inflation. After a review of the theory, we look at the (soon to

be published) work on applying NR to investigate how inhomogeneities in the initial conditions affect the

outcome of inflation. We see that one has to alter both the standard NR techniques used to generate initial

data and those employed to evolve the gauge variables. This is a natural byproduct of NR originating as a

tool for astrophysics, and we therefore explore first-hand its ongoing development in the field of Cosmology.

We end the thesis with a review of the aforementioned topics and results, and describe ideas for future

work and possible novel directions of the field itself.
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Chapter 2

Basics of Numerical Relativity

In this chapter I will give an outline of the theoretical basis of numerical relativity. The concepts described

in this chapter are based on those given in the textbooks by Alcubierre [2]; Baumgarte and Shaprio [1];

and Shibata [7].

2.1 The 3+1 Formalism

Einstein’s equations are traditionally written in their fully covariant form. That is, the equations are

independent of all coordinate systems, thus they describe spacetime in a manner that is absent any clear

distinction between space and time. It is clear that such a formulation is not just elegant, but absolutely

fundamental; the universality of the theory hinges on its coordinate independence. However, from a

practical standpoint, one may need to abandon this covariant formalism in order to achieve an intuitive

analysis of a gravitating system. This intuition relies on having a clear distinction between space and

time, such that one can picture the evolution of a system given some initial input, as is the case for most

non-relativistic systems. More pertinently, re-framing spacetime in this manner provides a natural way of

characterising a system as a Cauchy (initial value) problem. This particular formulation, called the ADM

or 3+1 formalism, serves as the basis of our spacetime simulations.

In the 3+1 formalism, one transforms our 4-dimensional spacetime manifold M into an initial value for-

mulation via foliating the spacetime into a series of spacelike hypersurfaces Σ parameterised by a global

time function t (see Fig. 2.1).

Given that t is a scalar field, we can define a vector orthogonal to these hypersurfaces

Ωµ = ∇µt , (2.1)

with a norm that we define as

ΩµΩ
µ ≡ −1

α2
. (2.2)

Here α is called the lapse function and it is assumed α > 0 such that Ωµ is timelike. The lapse is a

crucial gauge function in NR as it measures the proper time of observes moving normal to the spatial
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Figure 2.1: Foliation of a manifold M into a series of spacelike surfaces Σ parameterised by a scalar field t which

acts as a global time function.

hypersurfaces. Subsequently, we introduce the normal vector

nµ = αΩµ , (2.3)

which is the normalized version of Ωµ:

nµn
µ = −1 . (2.4)

We would naturally want a metric purely for the spatial hypersurfaces. This spatial metric can be obtained

using the normal vector

γµν = gµν + nµnν , (2.5)

where one has effectively used the timelike property of nµ to remove the timelike parts of the 4D metric

gµν . One can see that the resultant spatial metric is indeed spacelike by contracting it with nµ:

γµνn
µ = gµνn

µ + nµn
µnν = 0 . (2.6)

Say that we want to define a generic timelike vector field throughout the spacetime. In order to do this,

we must also include a purely spatial vector living on each hypersurface in addition to the normal vector

nµ. Such a timelike vector field would then be given by

tµ = αnµ + βµ , (2.7)

where βµ is the spatial shift vector constrained to the hypersurfaces by the condition

nµβµ = 0 . (2.8)

We can now adopt a coordinate system suitable for our setup. Namely, we choose our three spacelike basis

vectors to reside on the spatial hypersurfaces, and our timelike basis vector to be the vector field tµ. This

means that tµ is the congruence along which the spatial coordinates propagate, and so the shift measures
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Figure 2.2: How the lapse function α and shift vector βi structure the coordinate system in the 3+1 decomposition.

The lapse quantifies the proper time measured by normal observers, effectively connecting hypersurfaces. The shift

encodes the relative velocity between the normal observers and lines of constant spatial coordinates. [1].

how much the spatial coordinates are displaced with respect to the normal vector, as one progresses through

the stack of hypersurfaces. Consequently, the coordinate freedom inherent in GR is entirely constrained

by specifying the lapse function and the shift vector. This is illustrated in Fig. 2.2. One should note that

in this adapted coordinate system (which still has degrees of freedom encoded in the lapse and shift gauge

functions) the timelike component of all spatial tensors vanish. Henceforth, we will use Latin superscripts

for both the spatial metric γij and shift vector βi in equations that consist of only spatial quantities.

Given that we have the spatial metric for the hypersurfaces, we can uniquely define spatial covariant

derivatives. These are simply the 4D covariant derivatives projected onto the spatial hyperspaces, the

projection operator being the raised spatial metric γ ν
µ . For example, given a generic tensor T ν

µ the spatial

covariant derivative is

DµT
α
ν = γ β

µ γ
α
δ γ

κ
ν ∇βT

δ
κ . (2.9)

The associated quantities, such as the spatial connection coefficients Γµ
να and 3D Riemann tensor Rµναβ,

then take the same form as their 4D counterparts, with Dµ replacing ∇µ and γµν replacing gµν .

2.2 The Extrinsic Curvature

In classical mechanics, a collections of particles are defined by their positions and velocities (or momenta).

After an initial specification, these quantities are then evolved through time using the corresponding

evolution equations. In the 3+1 formalism, the quantity analogous to position is the spatial metric γµν

defined earlier. On the other hand, we have yet to establish the quantity loosely associated with velocity

- the extrinsic curvature Kµν . There are a number of ways of to define the extrinsic curvature, though

ultimately they are all equivalent.



2.3 The Constraint and Evolution Equations 17

Firstly, one can define the extrinsic curvature in relation to parallel transport. That is, the extrinsic

curvature is a measure of the change of the normal vector under parallel transport

Kµν ≡ −γ α
µ γ

β
ν ∇αnβ , (2.10)

in which the second projection renders Kµν purely spatial. Defined this way, one can easily picture the

extrinsic curvature as a measure of the curvature of spatial hypersurfaces in relation to the 4D spacetime

they are embedded in (see Fig. 2.3). However, though powerful as a geometric concept, the form given by

(2.10) doesn’t clearly reveal the extrinsic curvature as a ’velocity’.

Figure 2.3: Extrinsic curvature quantifies how the normal vector nµ changes under parallel transport [2].

Alternatively, one can write the extrinsic curvature as the Lie derivative of the spatial metric along the

normal vector

Kµν ≡ −1

2
Lnγµν (2.11)

= βα∇αγµν + γµα∇νβ
α + γνα∇µβ

α .

Roughly speaking, the Lie derivative measures how much a tensor (the spatial metric) changes along a

vector (the normal vector) with respect to the corresponding coordinate change. Thus the idea that the

extrinsic curvature acts as a ’velocity’ becomes apparent, as it encodes how the spatial metric changes as

one progresses through the stack of hypersurfaces. The trace of the extrinsic curvature K is called the

mean curvature, it measures the change in the proper 3-volume along the normal vector

K = γµνKµν = −1

2
γµνLnγµν = −Ln ln γ

1/2 . (2.12)

2.3 The Constraint and Evolution Equations

Now that we have established the 3+1 framework, and have identified our dynamical variables γµν andKµν ,

we can recast Einstein’s field equations as an initial value problem. This can be achieved by projecting the

4D Riemann tensor (4)Rµναβ in (non-trivial) combinations of the spatial and normal directions, and then

using these projections to re-write Einstein’s equations in 3+1 form.

The possible projections of (4)Rµναβ are given by the following equations
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γ δ
α γ

κ
β γ

λ
µ γ

σ
ν

(4)Rδκλσ = Rµναβ +KµαKνβ −KµβKαν , (2.13)

γ δ
α γ

κ
β γ

λ
µ n

ν (4)Rδκλν = DβKαµ −DαKβµ , (2.14)

γ δ
µ γ

κ
ν n

λnσ (4)Rδλκσ = LnKµν +KµλK
λ
ν +

1

α
DµDνα , (2.15)

which are named the Gauss-Codazzi, Codazzi-Mainardi and Ricci equations respectively. For their full

derivation, see [1]. All other combinations of the spatial and normal projections vanish as a result of the

symmetries of the Riemann tensor. One should note that (2.15) contains the Lie derivative of the extrinsic

curvature along the normal vector, whereas (2.13) and (2.14) do not. As in (2.11) for the extrinsic

curvature, the nature of this Lie derivative is similar to that of a time derivative. As (2.13) and (2.14) do

not contain this time derivative, we will use them to derive the Hamiltonian and momentum constraints.

These constraint equations impose restrictions on the field data (γµν , Kµν) for each hypersurface. On the

other hand, (2.15) is used to derive an evolution equation.

For the Hamiltonian constraint, we start by contracting the Gauss-Codazzi equation twice, which results

in

γαµγβν Rαβµν = (3)R +K2 −KµνK
µν , (2.16)

the LHS of which can be expanded out to give

γαµγβν (4)Rαβµν = (gαµ + nαnµ)
(
gβν + nβnν

)
(4)Rαβµν (2.17)

= (4)R + 2nµnν (4)Rµν (2.18)

= 2nµnν (4)Gµν . (2.19)

Then using Einstein’s equation we obtain the Hamiltonian constraint

R +K2 −KµνK
µν = 16πρ (2.20)

where

ρ ≡ nµnν
(4)T µν , (2.21)

is the energy density measured by normal observers.

For the momentum constraint, we contract the Codazzi-Mainardi equation once to yield

γ δ
µ γ

κλnσ (4)Rδκλσ = DνK
ν
µ −DµK . (2.22)

Considering the LHS

γ δ
µ γ

κλnσ (4)Rδκλσ = −γδµnσ (4)Rδσ

= −γδµnσ (4)Gδσ , (2.23)
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where we have expanded out the second projection operator and made use of the symmetries of the

Riemann tensor in the first line, and invoked the definition of the Einstein tensor in the second line (noting

that the Ricci term vanishes). Again we insert Einstein’s equation to yield the momentum constraint

DνK
ν
µ −DµK = 8πSµ , (2.24)

where Sµ is the momentum density measured by normal observers, defined as

Sµ ≡ −γδµnσ (4)Tδσ . (2.25)

Lastly, to obtain a true evolution equation for the extrinsic curvature in terms of 3+1 quantities one must

decompose the 4D Riemann tensor in (2.15):

γ δ
µ γ

κ
ν n

λnσ (4)Rδλκσ = γδκγ σ
µ γ

λ
ν

(4)Rδλκσ − γ σ
µ γ

λ
ν

(4)Rλσ

= Rµν +KKµν −KµλK
λ
ν − γ σ

µ γ
λ
ν

(4)Rλσ

= Rµν +KKµν −KµλK
λ
ν − 8πγ σ

µ γ
λ
ν (

(4)Tλσ −
1

2
gλσT ) , (2.26)

where we substituted the Gauss-Codazzi (2.13) in the second line and Einstein’s equation in the third. We

then substitute this result into Ricci’s equation (2.15) to obtain

LnKµν = Rµν +KKµν − 2KµλK
λ
ν − 8π(Sµν −

1

2
γµν(S − ρ))− 1

α
DµDνα , (2.27)

where Sµν is the spatial stress tensor given by

Sµν ≡ γ α
µ γ

β
ν

(4)Tαβ , (2.28)

and S is its trace.

(2.10) and (2.27) give the Lie derivatives of the spatial metric and extrinsic curvature along the normal

vector, respectively. These are our evolution equations. However, given that we will use the adapted

coordinate system in which tµ is a basis vector, we would like to write these evolution equations so that

Lie derivative of these quantities is directed along this time vector. We can use (2.7) and the properties of

the Lie derivative to achieve this:

Ltγµν = −2αKµν + Lβγµν , (2.29)

LtKµν = α(Rµν +KKµν − 2KµλK
λ
ν )− 8πα(Sµν −

1

2
γµν(S − ρ))−DµDνα + LβKµν . (2.30)

Finally, we re-write the constraint and evolution equations in the adapted coordinate basis, in which purely

spatial tensors have no timelike components and the Lie derivatives along the time vector tµ reduce to the

partial time derivative. These are summarised below:
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The ADM equations

Metric

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt) . (2.31)

Hamiltonian constraint

R +K2 −KijK
ij = 16πρ . (2.32)

Momentum constraint

Dj(K
ij − γijK) = 8πSi . (2.33)

Spatial metric evolution

∂tγij = −2αKij +Diβj +Djβi . (2.34)

Extrinsic curvature evolution

∂tKij = α(Rij +KKij − 2KikK
k
j )− 8πα(Sij −

1

2
γij(S − ρ))−DiDjα

+ βk∂kKij +Kik∂jβ
k +Kkj∂iβ

k . (2.35)

One should note that the constraint equations, if satisfied initially, should remain so throughout the

evolution. However, as we are dealing with numerics, errors tend to accumulate and thus the constraints

will inevitably be violated. It is therefore crucial to monitor these violations throughout the evolution to

ensure they do not grow to (relatively) large values. The only alternative would be to solve the constraints

at each time step of the evolution, but due to their elliptic nature this is a computationally time-consuming

enterprise and thus tends to be practically unfeasible.

More pertinently however is the issue of well-posedness in regard to the evolution equations, which we will

now address.

2.4 The BSSN Equations

Unfortunately, full 3D simulations using the ADM equations quickly become unstable (unless one applies

certain symmetries, which is of-course non-generic). This is the consequence of the fact that the ADM

system of equation is not well-posed. A well-posed system of equations has a unique solution which depends

continuously on the initial data. That is, the solution vector u (which consists of the n dependent-variables
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of the system) has a norm bounded by

||u(t, xi)|| ≤ keαt||u(0, xi)|| , (2.36)

for which k and α are constants that are independent of the initial data.

For hyperbolic equations, the concept of well-posedness is intimately linked to the notion of hyperbolicity.

Namely, a strongly-hyperbolic system of equations is well-posed, whereas a weakly-hyperbolic system is not.

To demonstrate this, one uses the fact that hyperbolic equation can be formulated in a way similar to the

source-less 3D wave equation, which in its first-order form is given by

∂tu+Mi∂iu = 0 , (2.37)

where Mi is a collection of n × n matricess that depend smoothly on the spatial derivative operators.

Considering an arbitrary unit vector ni one can then construct the principal symbol of the system

P ≡ Aini . (2.38)

For all hyperbolic equations, P has real eigenvalues. Strongly-hyperbolic systems are defined as those for

which P has a complete set of eigenvectors, whereas this is not the case for weakly-hyperbolic systems.

One finds that the existence of a complete set of eigenvectors allows for the construction of a norm of

the solutions which is constant in time, demonstrating that the system is well-posed. Furthermore, the

eigenvectors provide the characteristics along which the wave-like solutions travel, with finite speeds given

by the eigenvalues. Thus there exists a finite past domain of dependence (see [8] for more details).

The ADM evolution equations (2.34) and (2.35) can be shown to be weakly-hyperbolic. To remedy this,

one notes that the principal symbol is dependent on the highest-order derivatives of the system. Thus, if

we want to alter the ADM evolution equations so that they are strongly-hyperbolic, we need to address

the form of the highest-order derivatives - the second-order derivatives of the gravitational fields - that are

expressed. Fortunately, one can add multiples of the constraint equations to the evolution equations as

they vanish identically. Since the constraints also contain these second-order derivatives, we can use them

to alter the hyperbolic nature of the evolution equations.

The BSSN formalism, based on work by Baumgarte, Shapiro, Shibata and Nakamura [9,10], involves several

modifications. Firstly, one decomposes the extrinsic curvature into its trace K and traceless component

Aij = Kij −
1

3
γijK . (2.39)

Then a conformal re-scaling is applied to the metric and traceless extrinsic curvature

γij =
1

χ
γ̃ij , (2.40)

Aij =
1

χ
Ãij , (2.41)
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where γ̃ij and Ãij are the conformal spatial metric and conformal traceless extrinsic curvature, and the

conformal factor χ is set such that γ̃ij has unit determinant [11]:

χ = (det γij)
− 1

3 . (2.42)

We will see shortly how specifying the conformal factor in this way allows one to transform the evolution

equations into a ”wave-like” form. With the decompositions above we can find the evolution equations for

χ and K by taking the trace of the evolution equations for the spatial metric (2.34) and extrinsic curvature

(2.35) respectively:

∂tχ =
2

3
αχK − 2

3
χ∂kβ

k + βk∂kχ , (2.43)

∂tK = −DiD
iα + α

(
ÃijÃ

ij +
1

3
K2

)
+ βi∂iK + 4πα(ρ+ S) , (2.44)

where the Hamiltonian constraint (2.32) has been used to eliminate the Ricci scalar in the second equation.

Subtracting (2.43) from (2.34) and (2.44) from (2.35) then yields the evolution equations for the conformal

spatial metric and the conformal traceless extrinsic curvature:

∂tγ̃ij =− 2αÃij + γ̃ik∂jβ
k + γ̃jk∂iβ

k − 2

3
γ̃ij∂kβ

k + βk∂kγ̃ij (2.45)

∂tÃij = χ2
[
−(DiDjα)

TF + α
(
RTF

ij − 8παSTF
ij

)]
+ α

(
KÃij − 2ÃilÃ

l
j

)
+ Ãik∂jβ

k + Ãjk∂iβ
k − 2

3
Ãij∂kβ

k + βk∂kÃij , (2.46)

where the superscript ”TF” denotes the traceless part of the correspond tensor. Introducing the conformal

factor - as well as the traceless and trace components of the extrinsic curvature - have been shown to

improve the stability of simulations. However, the evolution equations are still not strongly-hyperbolic.

To achieve this, one first introduces of the conformal connection functions

Γ̃i = γ̃jkΓ̃i
jk

= −∂j γ̃ij , (2.47)

i.e. the contraction of the Christoffel symbols of the conformal metric Γ̃i
jk. The second equation is a

consequence of setting the determinant of the conformal spatial metric to unity. The reason for introducing

these functions is that they allow us to remove mixed second derivative terms present in the Ricci tensor.

That is, we can decompose the Ricci tensor into two parts

Rij = R̃ij +Rχ
ij , (2.48)

in which R̃ij is the Ricci tensor associated with the conformal spatial metric and Rχ
ij only depends on

the conformal factor. It is the former term which contain these mixed derivatives that spoil the clear

hyperbolic ”wave-like” nature of the corresponding evolution equations. By including these conformal

connection functions one can write the conformal Ricci tensor as

R̃ij = −1

2
γ̃lm∂m∂lγ̃ij + Γ̃kΓ̃(ij)k + γ̃lm

(
2Γ̃k

l(iΓ̃j)km + Γ̃k
imΓ̃klj

)
, (2.49)
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such that we only have Laplacian second-order derivatives. However, we now consider Γ̃i as independent

variables, and so we need their evolution equation. This arises from combining their definition (2.47) with

the evolution equation for the spatial metric (2.34):

∂tΓ̃
i = γ̃jk∂j∂kβ

i +
1

3
γ̃ij∂j∂kβ

k + βj∂jΓ̃
i − Γ̃j∂jβ

i +
2

3
Γ̃i∂jβ

j

− 2
(
α∂jÃ

ij + Ãij∂jα
)
. (2.50)

Crucially, to finally render the system strongly-hyperbolic we add the (conformally expanded) momentum

constraint (2.33) which removes the divergence term ∂jÃ
ij, giving the final form for the evolution of Γ̃i:

∂tΓ̃
i =− 2Ãij∂jα + 2α

(
Γ̃i
jkÃ

jk − 2

3
γ̃ij∂jK − 3

2
Ãij ∂jχ

χ

)
+ βk∂kΓ̃

i + γ̃jk∂j∂kβ
i +

1

3
γ̃ij∂j∂kβ

k

+
2

3
Γ̃i∂kβ

k − Γ̃k∂kβ
i − 16παγ̃ijSj . (2.51)

Thus, we have established the stable BSSN formulation which is summarised below:

The BSSN evolution equations

∂tχ =
2

3
αχK − 2

3
χ∂kβ

k + βk∂kχ (2.52)

∂tγ̃ij =− 2αÃij + γ̃ik∂jβ
k + γ̃jk∂iβ

k − 2

3
γ̃ij∂kβ

k + βk∂kγ̃ij (2.53)

∂tK =− γijDiDjα + α

(
ÃijÃ

ij +
1

3
K2

)
+ βi∂iK + 4πα(ρ+ S) (2.54)

∂tÃij =χ
2
[
−(DiDjα)

TF + α
(
RTF

ij − 8παSTF
ij

)]
+ α

(
KÃij − 2ÃilÃjj

)
+ Ãik∂jβ

k + Ãjk∂iβ
k − 2

3
Ãij∂kβ

k + βk∂kÃij (2.55)

∂tΓ̃
i =− 2Ãij∂jα + 2α

(
Γ̃i
jkÃ

jk − 2

3
γ̃ij∂jK − 3

2
Ãij ∂jχ

χ

)
+ βk∂kΓ̃

i + γ̃jk∂j∂kβ
i +

1

3
γ̃ij∂j∂kβ

k

+
2

3
Γ̃i∂kβ

k − Γ̃k∂kβ
i − 16παγ̃ijSj (2.56)

2.5 Initial Data

Now that we have established a formulation of Einstein’s equations that can be used to evolve initial data

in a numerically stable manner, we must address how one can sensibly specify this initial data in the first

place. Indeed, the constraint equations (2.32) and (2.33) already impose restrictions on our initial fields
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(γij, Kij). However, these are symmetric spatial tensors and thus they posses six independent components.

The constraint equations determine four of these, and coordinate freedom further reduces these by another

four. This leaves us with four final components - these are related to the two dynamical degrees of freedom

characterising the gravitational field and their time derivatives. The crux of the matter is this: how does

one determine which quantities are to be constrained and which are to be freely specified? In linearized

GR, the dynamical degrees of freedom are encoded in the polarization modes of gravitational waves,

identified as the transverse-traceless part of the perturbed metric. In the same spirit, we will decompose

the constraint equations into transverse and longitudinal components in attempt to associate the former

with the dynamical degrees of freedom and the latter with the constrained components.

This decomposition is very similar to that used to develop the BSSN equations, and even includes a

conformal transformation. The extrinsic curvature of the initial data is decomposed into its trace and

traceless components as in (2.39) and then a conformal transformation is applied to the spatial metric and

traceless extrinsic curvature

γij = ψ4γ̄ij , (2.57)

Aij = ψ−2Āij , (2.58)

where ψ is the conformal factor. As in the BSSN derivation, we can set the conformal factor such that the

determinant of the conformal spatial metric is unity, thus reducing the number of degrees of freedom in

the spatial metric itself. On the other hand, this conformal transformation is clearly quite different from

that used to derive the BSSN equations, which is why we have used ψ instead of χ as the conformal factor

and also stated conformal tensors using an over-bar rather than a tilde. The exponent of the conformal

factor chosen in (2.58) is natural as it means that Aij has zero divergence only when Āij does, whereas the

exponent of the conformal factor in (2.57) is convenient but somewhat arbitrary.

With these conformal quantities we can re-write the Hamiltonian (2.32) and momentum (2.33) constraints

as

8D̄2ψ − ψR̄− 2

3
ψ5K2 + ψ−7ĀijĀ

ij = −16πψ5ρ , (2.59)

D̄jĀ
ij − 2

3
ψ6γ̄ijD̄jK = 8πψ10Si , (2.60)

where R̄ and D̄i are the corresponding conformal Ricci scalar and conformal spatial covariant derivative,

respectively. It should be noted that, when present, conformally rescaling the RHS (matter sources) is

often necessary. Briefly put, this is to ensure that solutions are unique, a characteristic determined by the

sign of the conformal factor exponent in the source term. This issue will be addressed later in regards to

solving the constraints in an inhomogeneous inflationary spacetime.

We will perform one last decomposition - that of Āij. This can be done in a variety of ways, however we

will focus on what is called the conformal transverse-traceless decomposition (CTT). For this method one

splits Āij into its transverse and longitudinal components

Āij = Āij
TT + (L̄W )ij , (2.61)
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in which the first term is the transverse part and so has zero divergence

D̄jĀ
ij
TT = 0 , (2.62)

and the second (longitudinal) term is defined by the action of the conformal longitudinal operator L̄ on a

vector potential W i:

(L̄W )ij = D̄iW j + D̄jW i − 2

3
γ̄ijD̄kW

k . (2.63)

Concordantly, we can re-write the momentum constraint (2.60) as(
∆̄L̄W

)i − 2

3
ψ6γ̄ijD̄jK = 8πψ10Si , (2.64)

where (
∆̄L̄W

)i
= D̄j(L̄W )ij (2.65)

= D̄2W i +
1

3
D̄i

(
D̄jW

j
)
+ R̄i

jW
j (2.66)

is called the vector Laplacian.

Thus (2.59) and (2.64) are our final constraint equations. To obtain consistent initial data, one follows the

steps given below:

The conformal transverse-traceless decomposition

Hamiltonian Constraint

8D̄2ψ − ψR̄− 2

3
ψ5K2 + ψ−7ĀijĀ

ij = −16πψ5ρ , (2.67)

Momentum Constraint

(
∆̄L̄W

)i − 2

3
ψ6γ̄ijD̄jK = 8πψ10Si , (2.68)

Method

1. Specify γ̄ij, K and Āij
TT (and the matter terms ρ and Si if present)

2. Solve the Hamiltonian (2.59) and momentum (2.64) constraints for ψ and W i respectively

3. Use the results to assemble γij and Kij to be used in the evolution equations

One can choose to specify the free data such that the constraints are greatly simplified. For the case of

setting up binary black hole initial data - which we will use in the modified gravity chapter - one chooses

K = 0, as well as γ̄ij = ηij i.e. conformal flatness. The former assumption decouples the momentum

constraint from the Hamiltonian constraint (as the second term on the LHS of (2.68) vanishes), whereas
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the latter reduces the vector Laplacian to a simple operator of partial differentials. The Hamiltonian and

momentum constraints are then simply given by

D̄2ψ +
1

8
ψ−7ĀijĀ

ij = 0 , (2.69)

∂j∂jW
i +

1

3
∂i∂jW

j = 0 . (2.70)

One can solve the momentum constraint (2.70) analytically, yielding Āij in terms of the initial linear and

angular momentum of the black holes (to be specified). The solution of the Hamiltonian constraint (2.69)

for the conformal factor can be written as

ψ =
M1

r1
+

M2

r2
+ u , (2.71)

where ri is the coordinate distance to the centre of the ith BH. The masses Mi are equivalent to the

respective BH masses only at infinite separation. The Brill–Lindquist solution - given by the first two terms

of (2.71) - solves the homogeneous (time-symmetric i.e.Kij = 0) form of (2.69), which is simply Laplace’s

equation for ψ1. The singularities at ri = 0 are coordinate rather than physical - they correspond to spatial

infinity of two separate universe each connected to the original spacetime via Einstein-Rosen bridges (see

Fig. 2.4). Given these singular points are technically not part of the manifold, they are referred to as

punctures. For the inhomogeneous case, the inclusion of u in the solution (2.71) is a correction given the

presence of the second term in (2.69). Substituting (2.71) into (2.69) yields an elliptic equation for u that

is not only regular everywhere but also possesses a unique solution without requiring boundary conditions

to be imposed on the punctures. Consequently, one can now calculate the conformal factor using only

asymptotic flatness for the exterior boundary.

However, for other spacetimes the presence of non-vanishing matter terms in the constraint equations

(2.67) and (2.68) can greatly complicate the process of obtaining solutions via CCT. For instance, when

scalar fields are present one encounters issues obtaining unique solutions. This problem - and its solution

- will be addressed in the chapter on inflation.

2.6 Gauge Conditions

The inherent coordinate freedom of GR is encoded in the lapse function α and shift vector βi. The former

quantifies the manner in which the spatial hypersurfaces are embedded in the 4D spacetime by measuring

the proper time of observers moving normal to these hypersurfaces (with velocity nµ). The latter dictates

how spatial coordinates move as one progresses through the stack of spatial hypersurfaces, with respect to

the normal observers. What values - or conditions - one chooses for these gauges is not arbitrary. They

may simply encapsulate coordinate freedom, but this choice of coordinates when simulating any particular

system can greatly affect the stability of the simulation and is therefore highly dependent on the character

1As Laplace’s equation is linear one can superpose an arbitrary number of BH solutions ψi = Mi/ri
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Figure 2.4: Diagram of the Brill-Lindquist solution for two BHs - the universe is connected to two separate

spacetimes by Einstein-Rosen Bridges [1].

of the system itself. All simulations throughout this work employ the same conditions on the lapse and

shift: 1+log slicing for the lapse (
∂t − βj∂j

)
α = −2αK , (2.72)

and Gamma-driver for the shift

∂tβ
i =

3

4
Bi , (2.73a)

∂tB
i = ∂tΓ̄

i − ηBi . (2.73b)

though a slight modification of the 1+log lapse condition will be necessary when we evolve inflationary

spacetimes.

2.6.1 1+log slicing

The 1+log slicing condition (2.72) has a number of important (and useful) properties. First and foremost,

it exhibits strong singularity avoidance. That is, the lapse goes to zero before coordinates ever reach a

physical singularity. This behaviour of the lapse - vanishing as one approaches a singularity - is known as

the collapse of the lapse. We can demonstrate this behaviour by considering 1+log slicing with a zero shift

vector

∂tα = −2αK , (2.74)

and then using the contracted form of the ADM evolution equation for the spatial metric (2.34) one can

obtain

d ln γ
1
2 =

1

2
dα . (2.75)

One can now see where 1+log slicing gets its name, as integrating the equation above yields

α = 1 + ln γ (2.76)
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where we have set the integration constant to one. Alternatively, one can write

γ1/2 = Ceα/2 , (2.77)

in which C is an integration constant. Thus, we see that as the lapse collapses (α −→ 0) the volume element

remains finite and so a singularity is not reached.

A second important property of (2.72) is that its hyperbolic - note its similarity to the wave-equation. It

is possible to incorporate the gauge equations in elliptic form i.e. without involving a time parameter.

For instance, setting K = ∂tK = 0 on every hypersurface yields an elliptic equation for the lapse. This is

called maximal slicing as it ensures that the volume of each hypersurface is always maximum with respect

to perturbations of the hypersurfaces. Though physical singularities are avoided by construction, it is

notoriously computationally expensive to solve elliptic equations on every hypersurface. This is why we

do not solve the constraint equations at each stage of the evolution, settling for just monitoring constraint

violation to ensure they do not grow too large. Therefore, employing a hyperbolic gauge condition is ideal

in regards to efficiency, as one simply evolves the gauge functions along with the evolution variables. It

is worth noting that, as a hyperbolic system, there is an associated finite gauge speed. Since the gauge

functions are of a coordinate rather than a physical nature, a faster-than-light gauge speed is possible

(arguably preferable in fact, as one may want to alter the coordinate system of a region long before

physical signals reach it).

2.6.2 Gamma-driver shift

We have seen how the 1+log slicing condition prevents the occurrence of singularities in our computational

domain. That is, it prevents spatial volume elements converging to zero. Similarly, the Gamma-driver

condition for the shift vector uses the spatial coordinate freedom to retain numerical stability by preventing

these volume elements from being distorted too strongly. In our highly dynamic spacetime simulations,

one can expect such distortions e.g. from the presence of a black hole. If such distortions become excessive,

they may result in unfeasibly large gradients in the spatial metric. We will show how the Gamma-driver

shift condition (2.73) deals with this issue below.

We are trying to minimise certain changes in the spatial metric, specifically changes in the shape of the

volume elements rather than their sizes (the latter being controlled by the lapse condition). Since the size

of the volume elements is encoded in the conformal factor χ, we need only to ensure the conformal spatial

metric components do not change. That is, the time derivative of γ̃ij is itself a measure of this distortion.

Consequently, we would like to set its divergence to zero as a way of minimising the distortion over the

hypersurface. This is effectively the purpose of the first term in the RHS of (2.80b)

∂tΓ̃
i = ∂j∂tγ̃

ij , (2.78)

which we could set to zero (Gamma-freezing condition) if we were fine with elliptic gauge conditions.

However, as with the lapse conditions, we would like a hyperbolic formulation to reduce computational
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cost. That is the reason for the other terms in (2.73) - they turn a strict elliptic equation into a hyperbolic

one such that the system relaxes to ∂tΓ̃
i = 0 in simulation time (though the second term on the RHS of

(2.80b) is a damping term used to avoid strong oscillations in the shift vector).

2.6.3 The Moving Puncture Gauge

The combination of 1+log slicing and Gamma-driver shift is particularly effective in evolving stable binary

black hole spacetimes for which the initial data is of puncture form (2.71). Consequently, this combina-

tion is known as the moving puncture gauge. As the name suggests, this gauge allows the punctures to

propagate safely throughout the numerical domain without generating significant errors. The singularities

associated with the punctures retain their coordinate nature - no physical singularities arise. However,

their topological form is somewhat altered during the evolution; the punctures no longer represent spatial

infinity of a separate asymptotically flat spacetime. Rather, the slicing causes the wormhole to stretch into

an infinitely long cylinder of finite radius. Simultaneously, the shift condition effectively moves coordinate

points away from the inner asymptotic region and into the throat. Ultimately, this leads to a ’trumpet’

geometry in which the puncture is the throat itself.

The Moving Puncture Gauge

1+log slicing(
∂t − βj∂j

)
α = −2αK , (2.79)

Gamma-driver shift

∂tβ
i =

3

4
Bi , (2.80a)

∂tB
i = ∂tΓ̄

i − ηBi , (2.80b)

where η > 0 is a parameter to be chosen.

Naturally one may worry about having singularities moving around the numerical domain, even if they are

just coordinate rather than physical. This issue is remedied by comparing how we conformally transform

the spatial metric for both BSSN and the initial data, given by (2.40) and (2.57) respectively. Thus we

have χ = ψ−2, meaning the coordinate singularity in ψ is not present in our evolved χ. However, one

usually places a lower limit on χ for the sake of numerical precision near the puncture.
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Chapter 3

Modified Gravity

3.1 Background

Einstein’s Theory of Relativity is arguably one of the most elegant theories of modern physics. The

unification of the ostensibly disparate nature of time, space and gravity into a single conceptual framework,

described by the mathematics of differential geometry, revolutionised our understanding of universe. The

only conceivable rival in this regard would be Quantum Mechanics, the advent and development of which

Einstein also gave a significant contribution. However, the elegance of a theory is more of a preferred

subjective quality rather than an absolute necessity. The arbiter of all physical theories, including relativity,

is experiment. In this regard, relativity again proves itself exceptional; it’s predictive power has been

demonstrated by countless observations [12]. From the perihelion shift of Mercury to the expansion of the

universe itself, relativity has predicted a vast range of phenomena that have been validated by experiment

and observation to a remarkable degree of accuracy. It is clear that the elegance of the theory is matched

by its prowess as a description of truth. Nevertheless, despite this homage to the theory, we will address

its shortcomings as a depiction of reality.

There are a plethora of reasons to believe GR is not the final theory of gravity. Firstly, the demand for a

”theory of everything” necessitates a union between GR and quantum theory. Unfortunately, the success

of such a unification has eluded theorists for several decades. Roughly speaking, if one were to probe the

Planck scale in order to explore high-energy corrections to GR as a QFT, the high energies would result in

the formation of a Planck-sized BH. Thus, the nature of a quantum theory of gravity appears quite distinct

from its Standard Model counterparts. Furthermore, at the other end of the energy spectrum observations

have confirmed the accelerated expansion of the universe. The unidentified mechanism behind this accel-

eration - coined ”dark energy” - has been used as ammunition against the theory. Indeed, one can employ

”Einstein’s greatest blunder”, the cosmological constant, into the Friedmann-Lemâıtre-Robertson-Walker

(FLRW) metric used to model the universe’s expansion to achieve this acceleration. The phenomenology

of this constant can be identified with vacuum zero-point fluctuations, which can be calculated from stan-

dard quantum field theory. Unfortunately, such a calculation yields a value more than 120 magnitudes
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Figure 3.1: A roadmap of the suggested alternatives to general relativity, with their respective primary gravita-

tional wave constraints [3].

larger than that required by observation. Thus standard GR cosmology appears to fail at explaining this

phenomenon.

Ultimately, it is clear that there is apt motivation for a theory of gravity which appears as GR for scales

where it has been well tested, but diverges from Einstein’s theory in strong-field or large scale environments.

Broadly named ”Modified Gravity”, there have been a vast number of alternative suggestions over the last

several decades. A ”road-map” of such suggestions is illustrated in Fig. 3.1.

3.2 Scalar-tensor theories

Lovelock’s theorem states:

Einstein’s equations are the only second order field equations which can be derived from a local action

containing only the four-dimensional spacetime metric and its derivatives.

Thus we can use Lovelock’s theorem to generate possible alternatives to GR - one simply bypasses the

assumptions implicit in the theorem:

• Include additional fields in the gravitational action

• Allow higher than 2nd order field equations
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• Include more than 4 dimensions

• Abandon locality

For this work, we will focus on the inclusion of an additional field, namely a scalar-field. Theories of this

kind are called scalar-tensor theories. It is important to note that the addition of a scalar field (the only

confirmed case being the Higgs) is not somewhat ad-hoc. In fact, scalar fields often rise naturally via the

compactification of higher dimensional string theories, and so there is indeed theoretical backing for their

inclusion [13].

One finds that the general form of the Lagrangian for scalar-tensor theories can be written as [13]

L =
1

16π

√−g
[
ϕR− ω(ϕ)

ϕ
∇µϕ∇µϕ− V (ϕ)

]
+ Lm (Ψ, gµν) , (3.1)

where ω(ϕ) is some function of the scalar-field, V (ϕ) is the scalar-field potential and Lm is the Lagrangian

for the matter fields Ψ. One should note that the matter Lagrangian is of the usual form. That is, test

particles will follow the geodesics given by the metric gµν (the weak equivalence principle is obeyed) and

energy-momentum is conserved. Scalar-tensor theory Lagrangians that possess these qualities are in the

Jordan frame. One can always perform a conformal transformation of the metric such that these properties

no longer hold (but other convenient ones emerge). For example, one can transform the Lagrangian into

the Einstein frame in which the non-minimal coupling of the scalar-field to the Ricci tensor is no longer

present and one simply has Einstein’s theory with a minimally-coupled canonical scalar field. This is

achieved via the conformal transformation

gµν =
g̃µν
ϕ
, (3.2)

and scalar-field redefinition

ϕ̃ =

∫ √
3 + 2ω(ϕ)dϕ , (3.3)

to yield

L =
1

16π

√−g
[
R̃− ∇̃µϕ̃∇̃µϕ̃− U(ϕ̃)

]
+ Lm (Ψ, g̃µν/ϕ) , (3.4)

where U(ϕ̃) = V (ϕ)/ϕ2 and we have used tildes to indicate that the corresponding quantities are now

associated with the Einstein frame metric g̃µν . Although the Lagrangian is now in a more familiar form,

one should note that matter is now coupled directly to the scalar-field ϕ. Consequently, test particles

will not longer follow the geodesics of the metric g̃µν , so the weak equivalence principle is violated and

energy-momentum is no longer conserved.

Theoretical underpinnings aside, our motivation for the addition of a scalar field implicitly includes ob-

servational consequences. However, the verification of GR to an extraordinary precision in the weak-field

limit will naturally constrain any such deviations in this regime. Indeed, Brans-Dicke theory - for which

one sets ω = const. - has been highly constrained by solar system experiments (see [12]). Fortunately,

letting ω be ϕ-dependent allows the avoidance of weak-field constraints through the dynamical approach

to GR in the weak-field regime (the GR limit being ω −→ ∞). In fact, in the cosmological (FLRW) setting
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an attractor mechanism exists for these generalised scalar-tensor theories such that GR can be obtained

at late times [14]. This allows for modification of early universe phenomenology, a classic example being

scalar-tensor inflationary models [15,16]. Furthermore, the possibility of scalar-tensor theories being used

to explain late-time cosmology problems - namely dark energy - was also explored [17,18]. Unfortunately,

however, the binary neutron star merger GW170817 has imposed significant constraints on such theories

via the observed speed of GWs [19].

The Lagrangian (3.1) is not, strictly-speaking, the most generalised version of a scalar-tensor theory.

Rather, the introduction of a fundamental scalar-field allows for the inclusion of higher-curvature terms

that play a non-trivial role in the subsequent field equations. In the absence of the scalar-field such

higher-curvature terms can either be transformed into a topological (boundary) term that plays no role

in the field dynamics, or will lead to higher than second-order field equations. Though not entirely non-

rectifiable, such higher-order field equations can lead to solutions possessing Ostrogradsky instabilities -

the presence of negative energy states rendering the system unstable1 [20]. However, the combination

of these higher-curvature terms and an additional scalar-field can lead to the field equations remaining

second-order, thus avoiding this issue. This brings us to Horndeski’s theory: the most general second-order

scalar-tensor theory in four dimensions [21]. Horndeski’s theory encompasses a broad range of scalar-tensor

theories with (and without) higher-curvature terms through arbitrary functions of ϕ and X = ∇µ∇µ in

the Lagrangian which one can specify to give a particular theory. The Lagrangian itself is rather extensive

as the theory is so general, and has therefore been relegated to Appendix A.

Recently, one particular subset of Horndeski’s theory has been the focal point of much interest. This subset

is commonly known as scalar Gauss-Bonnet gravity (sGB). It is defined by the following Lagrangian

L =
1

16π

√−g
[
R− 1

2
(∇ϕ)2 + αf(ϕ)G

]
, (3.5)

where α is a coupling constant, f(ϕ) is a scalar-field coupling function and G is a particular combination

of curvature terms known as the Gauss-Bonnet invariant

G = R2 − 4RµνR
µν +RµνρσR

µνρσ . (3.6)

In the absence of the scalar-field, the Gauss-Bonnet invariant is a purely topological term and so does

not enter the field equations2. However, through a non-trivial coupling with the scalar-field f(ϕ) one

retains this term in both the metric and scalar-field equations of motion, with significant phenomenological

consequences.

1f(R) theory is an exception - though it contains higher-order Ricci scalar terms leading to fourth-order equations of

motion, the Ostrogradsky instability is avoided nonetheless. In fact, f(R) theory can be re-written as a scalar-tensor theory

via a conformal transformation [13].
2This is not true in higher dimensions. In fact, it is possible to recover the Gauss-Bonnet invariant in the 4D field

equations without a scalar-field. This is done by re-scaling the Gauss-Bonnet coupling in the higher dimensional theory and

then taking the limit D −→ 4, though this is non-trivial and beyond the purview of this work (see [22]).
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3.3 Scalarization

One consequence alluded to in the previous chapter is that of scalarization - the formation of a (stationary)

scalar-field profile surrounding BHs and neutron stars. In GR, the no-hair theorem3 states that all sta-

tionary, asymptotically flat BH solutions are determined by three parameters: mass, angular momentum

and electromagnetic charge (for the more general case of Einstein-Maxwell theory) [23]. In other words,

the solutions are of Kerr-Newman form. This result has been extended to Brans-Dicke theory [24] and

even the whole set of general scalar-tensor theories given by the Lagrangian (3.1) [25,26].

For the case of Horndeski’s theory, a no-hair theorem has been established [27], though it comes with a

range of caveats [28,29]. Firstly, the theorem assumes a static and spherically symmetric spacetime, rather

than the more relaxed assumptions of stationarity and axisymmetry usually invoked. Furthermore, it only

applies to the subset of Horndeski’s theory that exhibits shift-symmetry - the field equations must be

invariant under the transformation ϕ −→ ϕ+ c, where c is a constant. The Noether current generated from

this symmetry is the crux of the theorem, and with it lies further assumptions which one can easily bypass.

Indeed, sGB gravity (3.5) with a linear coupling function f(ϕ) = ϕ is both shift-symmetric (as an isolated

Gauss-Bonnet invariant in the action vanishes in the field equations) and only allows BHs with scalar

hair [30]. One can demonstrate this by considering the scalar-field equation of motion for shift-symmetric

sGB gravity

□ϕ = −αG . (3.7)

In order for a trivial scalar-field configuration to be allowed i.e. ϕ = const. (which we can set to zero using

the shift-symmetry), the RHS of (3.7) must be zero in that region of spacetime. However, this cannot be

the case for BH spacetimes as G reduces to the Kretschmann scalar (see (3.6)). Thus we are left with two

possibilities: such a theory does not possess BH solutions or the BH solutions are dressed with a non-trivial

scalar configuration i.e. scalar hair. In [30] scalarized BH solutions were constructed, thus confirming the

latter option.

Moreover, by considering the scalar equation for the general sGB theory

□ϕ = −αf ′(ϕ)G , (3.8)

it is clear from the above logic that BHs in any sGB theory will be scalarized as long as the derivative

of the coupling function f ′(ϕ) ̸= 0 for all ϕ. A well-known example is dilaton Gauss-Bonnet gravity, for

which f(ϕ) = eϕ. Arising from the low-energy limit of a higher-dimensional string theory, this effective

theory was known to possess scalarized BH solutions since ’95 [31].

Alternatively, one could have a coupling function such that f ′(ϕ0) = 0, where ϕ0 is some particular value

of the scalar-field. For instance, the simplest example is quadratic sGB gravity, given by f(ϕ) = ϕ2 and

for which ϕ0 = 0. Such theories allow the familiar hairless GR (i.e. Kerr-Newman) solutions. However,

these are not the only solutions - scalarized BHs also exist in these theories. The transition between GR

3Not to be confused with the no-hair conjecture, which makes the much more general statement that all BH solutions are

determined by mass, angular momentum and electromagnetic charge.
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and scalarized BHs is governed by a mechanism called spontaneous scalarization [32, 33]. A similar such

mechanism was first discovered in some scalar-tensor theories for neutron stars - a coupling between the

trace of the matter stress-energy tensor T and scalar-field ϕ leads to a non-trivial scalar configuration

being generated around neutron stars which have a particular range of masses [34]. For the spontaneous

scalarization mechanism we are considering, it is the scalar-Gauss-Bonnet coupling that generates the

scalar configuration with no need for matter content (although neutron stars do scalarize as well). This

mechanism can be identified by linearizing the scalar-field equation (3.8) about the trivial solution (ϕ = ϕ0),(
□+ αf ′′(ϕ0)G

)
δϕ = 0 , (3.9)

where δϕ is the linear perturbation of the scalar-field and f ′′(ϕ0) is the second derivative of the coupling

function at the trivial solution. Clearly (3.9) is of Klein-Gordon form, and so the second term acts as the

square of an effective mass:

m2
eff ≡ −αf ′′(ϕ0)G , (3.10)

which if sufficiently4 negative leads to a tachyonic instability. For example, consider a non-spinning BH in

quadratic sGB with a positive coupling constant. In this case, m2
eff is negative throughout the spacetime,

with a magnitude depending on the strength of the coupling α and the Gauss-Bonnet invariant which

reduces to the Schwarzschild Kretschmann scalar

Gschw =
48m2

r6
, (3.11)

for which m is the BH mass and r is the radial coordinate from its centre. As the dependence on the

radial distance goes by a much higher power than that of the mass, smaller BHs will exhibit larger Gauss-

Bonnet curvatures about their horizons than their larger counterparts. Thus, for a given coupling strength,

reducing the mass of a stable unscalarized BH will eventually trigger a tachyonic instability and subsequent

exponential scalar field growth. The endpoint of this instability is a scalarized BH solution as identified

in [32,33]. An important property of these scalarized BHs is that they contain finite-area singularities [30].

Therefore, under the assumption of a regular horizon, these BH solutions have a minimum mass. This

means that there is an upper and lower mass limit for these scalarized solutions - they form bands in the

mass-coupling parameter space (this is extended to include BH spin for rotating solutions).

Naturally, the fact that sGB theories allows for scalarized BHs begs the question of whether such phe-

nomenology is observable. A primary avenue of this possibility is via gravitational waves from a black hole

binary merger. How would the presence of this scalarized state alter the subsequent waveform? For the

case of shift-symmetric sGB, this questions was addressed in [35] by simulating binary black hole merger

using numerical relativity. Unfortunately, at that time a well-posed formulation of sGB had not been

discovered, and so the authors had to work perturbatively in the coupling constant i.e. with no backre-

action on the metric. Although approximate, these simulations were able to forecast a constraint on the

4An imaginary effective mass is a necessary but not sufficient condition for the instability, rather the associated effective

potential must be deep enough for an unstable mode to develop (see [32,33] for details).
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coupling α by calculating the dephasing of the gravitational waveform due to the emission of scalar dipole

radiation. We now pose the following question: in sGB theories that allow both GR and scalarized BH

states, what effect does this scalarization phenomenon have on the dynamics of binary black hole mergers

and the resulting gravitational waves?

3.4 Research work I: Dynamical Descalarization in Binary Black Hole

Mergers

This section contains the article ”Dynamical Descalarization in Binary Black Hole Mergers” which was

published in Physical Review Letters [5].

3.4.1 Abstract

Scalar fields coupled to the Gauss–Bonnet invariant can undergo a tachyonic instability, leading to spon-

taneous scalarization of black holes. Studies of this effect have so far been restricted to single black hole

spacetimes. We present the first results on dynamical scalarization in head-on collisions and quasicircular

inspirals of black hole binaries with numerical relativity simulations. We show that black hole binaries

can either form a scalarized remnant or dynamically descalarize by shedding off its initial scalar hair. The

observational implications of these findings are discussed.

3.4.2 Introduction

Despite the elegance of Einstein’s theory, it presents several shortcomings: explaining the late-time accel-

eration of the Universe and providing a consistent theory of quantum gravity or the presence of spacetime

singularities [e.g. in black holes (BHs) ]. Candidate theories (of quantum gravity) that remedy these short-

comings typically predict the coupling to additional fields or higher curvature corrections [36]. Binary

BHs, their gravitational wave (GW) emission, and the first GW detections by the LIGO-Virgo Collabora-

tion [37,38] offer unique insights into the nonlinear regime of gravity that unfolds during the BHs’ inspiral

and merger and enable new precision tests of gravity [39, 40]. So far, these tests have been parametrized

null tests against General Relativity (GR) [41,42] or used a mapping between these parameters and those

of specific theories [43–45]. To do the latter, however, requires GW predictions in specific theories.

One of the most compelling beyond-GR theories, scalar Gauss–Bonnet (sGB) gravity introduces a dy-

namical scalar field coupled to the Gauss–Bonnet invariant. sGB gravity emerges in the low-energy limit

of quantum gravity paradigms such as string theory [46], through a dimensional reduction of Lovelock

gravity [47] and is the simplest model that contains higher curvature operators. The most studied class of

sGB gravity with a dilatonic or linear coupling to the scalar field gives rise to hairy BHs [28,30,31,48–51].

This theory, however, has been strongly constrained with GW observations from binary BHs [44].
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We turn our attention to another interesting class of sGB gravity that is both unconstrained by GW ob-

servations and gives rise to (spontaneously) scalarized BHs [32,33]. Spontaneous scalarization is a familiar

concept in beyond-GR theories; e.g. it is well established for neutron stars in scalar-tensor theories [34,52].

In such theories, the neutron star matter itself can induce a tachyonic instability that spontaneously

scalarizes the star [53]. When placed in a binary system, initially unscalarized neutron stars can scalarize

dynamically near their merger or a scalarized neutron star can induce a scalar field in their unscalar-

ized companion [54–57]. In sGB gravity, it is the spacetime curvature itself that induces scalarization of

BHs [32, 33], although this has only been shown for isolated BHs so far. In this Letter we investigate, for

the first time, dynamical scalarization in binary BHs. We concentrate on head-on collisions of BHs, but

also present the first binary black hole (BH) inspiral study. Before doing so, it is convenient to first review

the basics of sGB gravity and spontaneous BH scalarization.

3.4.3 Scalar Gauss-Bonnet gravity and scalarization

sGB gravity is described by the action

S =
1

16π

∫
d4x

√−g
[
R− 1

2
(∇Φ)2 +

αGB

4
f(Φ)G

]
, (3.12)

where a real scalar field Φ is coupled to the Gauss–Bonnet invariant G = R2 − 4RµνR
µν + RµνρσR

µνρσ,

through the function f(Φ) and a dimensionful coupling constant αGB. We use geometrical units, c = 1 = G,

in which αGB has units of [length]2. The action (3.12) gives rise to the scalar field equation of motion

□Φ = −(αGB/4)f
′(Φ)G , (3.13)

where we defined (·)′ = d(·)/dΦ. The function f(Φ) selects different “flavors” of sGB gravity [58, 59].

One subset of these theories has f ′ ̸= 0 everywhere. It includes variants of sGB gravity with dilatonic

f(Φ) ∝ exp(Φ) [31, 48, 49] or shift-symmetric f(Φ) ∝ Φ [28, 30, 60] couplings, in which BHs always have

scalar hair [51, 61]. Another interesting class of sGB theories admits an extremum f ′(Φ0) = 0 for a

constant Φ0. They give rise to an effective space-dependent mass term m2
eff = −f ′′(Φ0)G . This class

includes quadratic f(Φ) ∝ Φ2 [32,62] and Gaussian f(Φ) ∝ exp(Φ2) [33] models.

The latter class still admits all vacuum (BH) solutions of GR together with Φ = Φ0 = const. In fact,

if f ′′(Φ0)G < 0 these solutions are unique due to a no-hair theorem [32]. A linear stability study of

these Φ0 = const. solutions around a Schwarzschild BH reveals that this condition is a requirement for

the absence of a tachyonic instability (m2
eff > 0) for the scalar field perturbations [32]. If the effective

mass m2
eff < 0, a tachyonic instability is triggered and the sGB scalar field is excited and spontaneously

scalarizes the BH. This linear instability [63] is quenched at the nonlinear level, resulting in a scalarized BH

as end-state [64]. The simplest theory that admits scalarized BHs is described by the quadratic coupling

f(Φ) = β̄2Φ
2 , where β̄2 = const. The relevant parameter in this theory is the dimensionless constant

β2 = (αGB/m
2)β̄2, where m is the characteristic mass of the system.
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The onset of scalarization is fully determined by the scalar’s linear dynamics on a given GR background.

For a Schwarzschild BH of mass m, for which G ⩾ 0 everywhere, scalarization first occurs for a spherically

symmetric scalar field if β2 = βc ∼ 1.45123, a result in agreement with nonlinear calculations [32,33]. For

values below βc the scalar perturbation decays monotonically at late times (we call them “subcritical”),

precisely at βc the scalar field forms a bound state around the BH (“critical”), and above it the scalar field

grows exponentially with time (“supercritical”). This result was recently generalized to Kerr BHs, where

spin-induced scalarization can take place for β2 < 0, for dimensionless spin parameters χ ⩾ 0.5 [65–68].

Nonlinear rotating scalarized BH solutions in sGB gravity were found for both positive [69,70] and negative

values of β2 [4,71]. So far studies of scalarization in sGB gravity focused on single BHs. We advance these

studies to BH binaries, and expand upon [35], focusing on the quadratic theory f(Φ) = β̄2Φ
2, as discussed

next.

3.4.4 Numerical methods and simulations

We investigate BH scalarization in the decoupling limit, i.e., we numerically evolve the scalar field on a time-

dependent background in vacuum GR that represents binary BH spacetimes. Unless stated otherwise, we

follow the approach of [35] and refer to it for details. We foliate the spacetime into spatial hypersurfaces

with 3-metric γij and extrinsic curvature Kij = −(2α)−1 dtγij, where dt = ∂t − Lβ, Lβ being the Lie

derivative along the shift vector βi, and α is the lapse function. We write Einstein’s equations as a Cauchy

problem and adopt the Baumgarte-Shapiro-Shibata-Nakamura formulation [9, 10] of the time evolution

equations complemented with the moving-puncture gauge conditions [72, 73]. We prepare Brill-Lindquist

initial data [74,75] for head-on collisions or Bowen-York initial data [76,77] for a quasicircular BH binary.

To evolve the scalar field, we introduce its momentum KΦ = −α−1 dtΦ, and write its field equation (3.13)

as

dtΦ = −αKΦ , (3.14)

dtKΦ = −DiαDiΦ− α
(
DiDiΦ−KKΦ +

αGB

4
f ′G

)
,

whereDi is the covariant derivative associated with γij,K = γijKij, f
′ = 2β̄2Φ, and G is the Gauss–Bonnet

invariant of the background spacetime. We set the system’s total mass to unit, i.e., M = m1 +m2 = 1,

where m = m1,2 is the component’s mass. The scalar field is initialized either as a spherically symmetric

Gaussian shell (G) located at r0 = 12M and with width σ = 1M as in [35] or as a bound state (B) around

each binary component,

Φ|t=0 = 0 , KΦ|t=0 =
1√
4π

exp

[
(r − r0)

2

σ2

]
, (3.15)

Φ|t=0 =
mr

ϱ2

[
c1 +

c2mr

ϱ2
+
c3(mr)

2

ϱ4

]
, KΦ|t=0 = 0 .

Here, ϱ = m+ 2r, and c1 = 3.68375, c2 = 4.972416, c3 = 4.972416 · 102 are fitting constants to reproduce

the numerical results in [32].
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We perform our numerical simulations with Canuda [35, 78–80], coupled to the open-source Einstein

Toolkit [81,82]. We extended the implementation of [35,79,80] to general coupling functions f , including

the quadratic coupling. We employ the method of lines with fourth-order finite difference stencils to realize

spatial derivatives and a fourth-order Runge-Kutta time integrator. We use box-in-box mesh refinement

provided by Carpet [83]. The numerical grid contains seven refinement levels, with the outer boundary

located at 256M and a grid spacing of dx = 1.0M on the outer mesh. To assess the numerical accuracy

of our simulations we evolved case (b) in Fig. 3.2 with additional resolutions dx = 0.9M and dx = 0.8M .

We find second-order convergence and a relative discretization error of ∆Φ00/Φ00 ≲ 0.5%, where Φ00 is

the ℓ = m = 0 multipole of the scalar field. We present the corresponding convergence plot for the scalar

monopole and for the gravitational wave ℓ = 2, m = 0 mode in Fig. B.1 of the Supplemental Material.

3.4.5 Results

We performed a large set of BH head-on collisions with varying mass ratio q = m1/m2 ⩽ 1, total mass

M = 1 and initial separation d = 25M , considering both initial data in (3.15). The BHs merge at

tM ∼ 179.5M , as estimated from the peak of the ℓ = 2,m = 0 multipole of the gravitational waveform. To

guide our choices of β2, we recall that the critical coupling for the fundamental mode is β2,c = βc (m/M)2

with βc ∼ 1.45123, and m denotes either the individual BHs’ mass m1,2 or the total mass M . For

example, for an equal-mass binary with m1 = m2 = M/2, the critical coupling for the individual holes is

β
(1)
2,c = β

(2)
2,c = βc/4 = 0.36275 and that of the final hole is approximately βf

2,c = βc where we neglected the

small mass loss in the form of GWs during the collision [84,85].

Here we present a selection of our results, illustrated in Fig. 3.2, to highlight our most important findings.

We vary the initial state by setting the coupling parameter β2 such that (a) none of the BHs are initially

scalarized, (b) the smaller-mass BH initially carries a bound-state scalar field, both BHs carry initially a

bound-state scalar that leads either to a nonscalarized final BH [case (c)] or a scalarized final BH [case

(d)].

In Fig. 3.3 we show the ℓ = m = 0 scalar field multipole extracted on a sphere of fixed radius rex = 50M ,

as a function of time, and we present snapshots of the scalar’s profile in the Supplemental Material. In case

(a), the scalar perturbation is not supported at all (since meff = 0) and, indeed, after a brief interaction

at early times it decays already before the BHs collide. In cases (b) and (c) we find a constant scalar field

before the BHs collide, that is consistent with a bound state around the individual (q = 1) or smaller-mass

BH (q = 1/2). After the merger the scalar field decays since the curvature (and thus meff) decreases and

the system no longer supports a bound state – the final BH dynamically descalarizes . In case (d), the

scalar field grows exponentially before the merger because it is supercritical for the individual BHs and

settles to a constant in time that is consistent with a bound state around the final BH.

In Fig. 3.4 we show two-dimensional snapshots of the scalar field and spacetime curvature for case (b) which

illustrates the dynamical descalarization phenomenon. The color map is shared among all panels and shows

the amplitude of log10 |Φ|, while the curves are isocurvature levels of GM4 = {1, 10−1, 10−2, 10−3}. Initially,
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(a) – {G, 1, 0} (b) – {B, 1/2, 0.16125} (c) – {B, 1, 0.36281} (d) – {B, 1, 1.45123}

Figure 3.2: Summary of simulations of BH head-on collisions, where s̄ and s stand for initial or final states that

are either nonscalarized or scalarized respectively. Each diagram is labeled by the initial data (Gaussian shell

“G” or bound state “B”), the mass ratio q = m1/m2 (1 or 1/2) and the coupling parameter β2. In case (a) (first

diagram) two nonscalarized BHs produce a nonscalarized remnant. In case (b) (second diagram) a scalarized and

a nonscalarized BH produce a nonscalarized remnant. This initial configuration is possible when q is different

from one. In case (c) (third diagram) two scalarized BHs produce a nonscalarized remnant. Finally, in case (d)

(fourth diagram) two scalarized BHs produce a scalarized remnant.

at t = 1M , both BHs (whose locations are revealed by the isocurvature levels) are surrounded by nontrivial

scalar field profiles given by (3.15). At t = 50M , the smaller BH hosts a bound state scalar that is dragged

along the hole’s motion, inducing scalar dipole radiation that would impact the GWs emitted. In contrast,

the scalar field around the larger BH disperses because its curvature is too small to sustain a bound state

for a coupling of β2 = 0.16125. The system thus evolves as a s+ s̄ process in the notation of Fig. 3.2. At

1021
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Figure 3.3: Time evolution of the scalar field ℓ = m = 0 multipole in the background of a BH head-on collision

with initial separation d = 25M . It is rescaled by the extraction radius rex = 50M and shifted in time such that

(t− rex − tM)/M = 0 corresponds to the BHs’ merger. The labels refer to the four cases summarized in Fig. 3.2.

t = 160M , the BHs are about to merge, as indicated by the two lobes in the isocurvature contours, the

curvature of the combined system decreases and the scalar field starts dissipating. At t = 182M , which is

shortly after the collision, the system has descalarized since for the final BH βf
2,c > β2.
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We also simulated the inspiral of an equal-mass, nonspinning BH binary with initial separation of d = 10M ,

β2 = 0.36281, and bound state scalar field initial data. This corresponds to an initial configuration in which

both BHs are scalarized, and then, after merger, the remnant is not scalarized, which is analogous to case

(c) of Fig. 3.2 in the head-on case. In Fig. 3.5, we show the gravitational quadrupole waveform (bottom

panel), as characterized by the ℓ = m = 2 mode of the Newman-Penrose scalar Ψ4, together with the

scalar field’s monopole (top) and quadrupole (middle). The scalar’s monopole Φ00 exhibits the distinctive

signature of descalarization: the increase in the field’s amplitude during the inspiral of scalarized BHs is

followed by a complete dissipation of the scalar field after the merger (tM ∼ 917M) as the curvature of

the remnant BH no longer supports a bound state. In addition, the dynamics of the BH binary sources

scalar quadrupole radiation (of the initially spherically symmetric scalar). The field’s amplitude grows

exponentially during the inspiral and decays after the BHs have merged. The origin of this excitation

is not direct scalarization of the ℓ = 2 scalar bound state, but due to the inspiral of two scalarized (or

“hairy”) BHs. This interpretation is further supported by the observation that the phase of the ℓ = m = 2

scalar mode is driven by the binary’s orbital frequency. We also observed this for the ℓ = m = 4 mode

and expect it to happen for all even ℓ = m modes. For q = 1, the odd ℓ = m modes are suppressed due to

symmetry, whereas they would be excited in the general case q ̸= 1. The descalarization during the merger

is reminiscent of the decrease in scalar charge observed in the shift-symmetric theory [35], however, with

the striking difference that here the remnant BH is a rotating GR solution.
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Figure 3.4: Scalar field and Gauss–Bonnet dynamics on the xy–plane for case (b). We show the amplitude

of log10 |Φ| (color map) together with the Gauss–Bonnet invariant (isocurvature levels) at the beginning of the

evolution (top left), during the BHs’ approach (top right), shortly before the collision (bottom left) and shortly

after the merger (bottom right). The isocurvature levels correspond to 1M−4 (solid line), 10−1M−4 (dashed line),

10−2M−4 (dot-dashed line) and 10−3M−4 (dotted line).

3.4.6 Discussion

We presented the first numerical relativity simulations of the scalar field dynamics in binary BH spacetimes

in quadratic sGB gravity [32]. We found that the interplay between mass ratio q and β2 can result in

different scenarios for the scalar field dynamics. Most notably, it can lead to a dynamical descalarization
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Figure 3.5: Scalar and gravitational waveforms, rescaled by the extraction radius rex = 50M , sourced by an

equal-mass BH binary with bound state initial data on each BH. This system is the inspiral counterpart of case

(c) and shows dynamical descalarization in action.

of the binary, which we observed in both head-on and quasicircular inspiral simulations. Here we focused

on β2 ⩾ 0, but the case β2 < 0 would be particularly interesting to study in inspiral simulations. More

specifically, the spinning remnant of a binary BH merger typically has a dimensionless spin χ ∼ 0.7 [86],

sufficient to trigger a spin-induced tachyonic instability of the scalar field [65]. It would be interesting to

frame this effect within the effective field theory (EFT) of [87] or in a post-Newtonian framework [88–90],

although the latter may not be suitable for the modeling of a nonlinear dynamical scalarization process.

The scalar excitations we have discovered during binary BH coalescence in this class of sGB theories have

important implications to GW observations and tests of GR. In particular, the scalar excitations will drain

the binary of energy as they propagate away from the system, the monopole scalar piece inducing dipole

losses, and the quadrupole piece correcting the quadrupole GW losses of GR, which, based on [91], are

expected to only have the same “plus” and “cross” polarizations. This enhanced dissipation of energy and

angular momentum, in turn, will force the binary to inspiral faster than in GR, and therefore, leave an

imprint in the GWs emitted through corrections to the rate at which the GW frequency increases during

the inspiral. This GW phase shift will enable us to project bounds on sGB gravity that are similar in

spirit but complementary to the analysis of [35]. In fact, because the merger leaves behind a “bald” Kerr

black hole due to dynamical descalarization, the (scalar) energy flux is, in general, larger as compared to

shift-symmetric sGB, where the remnant black hole always retains some of its hair. This suggests that

strong observational bounds might be placed on this theory.

Having worked in the decoupling limit, a question naturally arises: what would we expect in the fully

nonlinear regime of sGB gravity? It is known that nonlinear effects set an upper bound on the scalar

field magnitude at the BH horizon [58], so that the domain of existence of scalarized BHs exhibits a very
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narrow bandlike structure in the phase space spanned by BH mass and coupling β2; see Fig. 2 of [32]. This

means that case (d) would only occur for sufficiently small mass ratios such that both the initial binary

and its final state remain in band. In general, however, comparable mass BH binaries could undergo an

s̄+ s̄→ s process, in which two unscalarized BHs would merge, forming BH within the scalarization band,

i.e., a dynamical BH scalarization. The descalarization of the BH remnant would also impact the GW

emission during the ringdown. Specifically, the waveforms in Fig. 3.5 show that the ringdown time scales

of scalar and tensorial modes are comparable. This suggests that one should expect to see the imprint

of the descalarization onto the quasinormal mode spectra of the Kerr black hole in the nonlinear case.

Performing these studies in practice would require a general, well-posed formulation of the time evolution

equations outside the EFT approach [35, 92], small values of the coupling parameter [93, 94], or spherical

symmetry [64, 95–97]. Finding such a formulation has proven challenging [98–101], although first results

in this direction were presented in [102]. Our work motivates and paves the way for future studies of

nonperturbative, beyond-GR effects in BH binaries, with potential implications to tests of GR with GW

astronomy.

3.5 Research work II: Spin-induced dynamical scalarization, descalar-

ization, and stealthness in scalar-Gauss-Bonnet gravity during a

black hole coalescence

This section contains the article ”Spin-induced dynamical scalarization, descalarization, and stealthness

in scalar-Gauss-Bonnet gravity during a black hole coalescence” which was published in Physical Review

D [6].

3.5.1 Abstract

Particular couplings between a scalar field and the Gauss-Bonnet invariant lead to spontaneous scalariza-

tion of black holes. Here we continue our work on simulating this phenomenon in the context of binary

black hole systems. We consider a negative coupling for which the black-hole spin plays a major role in

the scalarization process. We find two main phenomena: (i) dynamical descalarization, in which initially

scalarized black holes form an unscalarized remnant, and (ii) dynamical scalarization, whereby the late

merger of initially unscalarized black holes can cause scalar hair to grow. An important consequence for

the latter case is that modifications to the gravitational waveform due to the scalar field may only occur

post-merger, as its presence is hidden during the entirety of the inspiral. However, with a sufficiently

strong coupling, we find that scalarization can occur before the remnant has even formed. We close with

a discussion of observational implications for gravitational-wave tests of general relativity.
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3.5.2 Introduction

The detection of GW produced by coalescing compact binaries by the LIGO-Virgo-Kagra Collaboration [37,

38, 103] have opened a new avenue to test GR in its strong-field, nonlinear regime [43, 104, 105]. In fact,

the first three catalogs of observations have already been used to perform several null tests of GR [41–

43,106–112], as well as theory-specific tests [44,113–120]. The latter have placed constraints on quadratic

gravity theories [44,116–119].

In these theories, a scalar field couples to a curvature scalar, which is quadratic in the Riemann tensor (see

e.g. Ref. [61] for an overview). Well-known examples include coupling to the Pontryagin density or the

Gauss-Bonnet (GB) invariant. The latter theories are often named sGB gravity. They can emerge in the

low-energy limit of string theory (see, for instance, Refs. [46, 121, 122]), as well as through a dimensional

reduction of Lovelock gravity [47], and belong to the wider class of Horndeski gravity theories [123,124].

BH solutions in this theory have long been known to have a nontrivial scalar field (i.e., a “hair”), to which

we can associate a monopole scalar charge that depends on the BH’s mass and spin. When the BHs are

found in a binary, their motion can lead to the emission of scalar dipole radiation, which in turn modifies

the system’s orbital dynamics and the GW signal with respect to GR’s prediction. Such phenomenology

has been explored with both post-Newtonian (PN) [88–90,125–128] and numerical relativity [5,35,92,102,

129, 130] techniques. The scalar field can also affect the post-merger signal, modifying the remnant BH’s

ringdown [131–136]. In sGB gravity, the presence of scalar hair depends on the functional form of the

coupling between scalar field and the GB invariant.

More specifically, if the functional form of the coupling always has a non-vanishing first derivative, such as

for a linear or exponential coupling, BHs are known to invariably have scalar hair [28–31,49–51,58,59,79,

80, 137–140]. Hence, the observation of GWs from BH binaries and mixed neutron star (NS)-BH binaries

have allowed us to constrain the length scale at which the scalar-field-GB interaction becomes relevant to

less than approximately one kilometer [44,117–119].

In contrast, if the first derivative of the coupling function vanishes for some constant background scalar

field, both scalarized and unscalarized BH solutions can exist [32, 33]. Depending on the length scale

associated with the scalar-field-GB interaction, and the BH’s mass [32, 33, 62] and spin [4, 65–67, 69–71,

141], the BH solutions of GR become unstable to scalar field perturbations, and the end-state of this

instability is a scalarized BH [64]. This process is similar to spontaneous scalarization of NSs in scalar-

tensor gravity [34, 52]. The difference lies in the fact that for NSs the scalar field is sourced by matter,

while for BHs the scalar is sourced by the spacetime curvature alone. Thus, one could envision that

the aforementioned GW constraints (such as e.g. [116]) can be avoided if scalarization occurs right before

merger, or possibly only after merger.

Can such a scenario happen? Here we continue our previous work [5] and explore how the onset of

scalarization plays out during binary BH mergers. As in our previous paper, we work in the decoupling

approximation, i.e., we evolve the scalar field on a time-depenedent GR background. In Ref. [5], we studied

a variety of possible processes for head-on BH collisions, as well as a quasi-circular inspiral-merger of equal

mass non-spinning binaries using a positive sign of the scalar-field-GB coupling. We demonstrated the
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existence of a process we coined dynamical descalarization, whereby initially scalarized BHs merged to

form a larger remnant that descalarized because its GB curvature was too small to sustain the scalar

hair. The alternative, the dynamical scalarization of the remnant, was not possible because its larger mass

(compared to the initial BHs’ masses) inevitably leads to a smaller GB curvature near the horizon.

However, for a negative sign of the coupling, the scalar field instability happens only for sufficiently rapidly-

spinning BHs (“spin-induced scalarization”) [4, 65–67, 71]. This leads to the following questions: (1) Does

the formation of a highly spinning remnant cause spin-induced dynamical scalarization? If so, at what

stage in the binary’s evolution is the scalar hair excited? (2) Can the process of dynamical descalarization

found in Ref. [5] be generalized to the negative coupling case? Here we address these questions with a new

suite of binary BH simulations and negative sign of the coupling constant.

We find that indeed spin-induced descalarization and scalarization of the BH remnant are both possible.

The spin-induced descalarization of initially scalarized, spinning BHs, extends and completes the work

in Ref. [5]. The spin-induced scalarization of the remnant is a new result. For values of the coupling

constant close to the scalarization threshold, the growth of the scalar field has a large instability time-

scale. Therefore, scalarization only becomes significant significantly after the remnant BH’s ringdown

begins. We therefore now coin the term stealth dynamical scalarization, whereby the scalar field remains

hidden throughout the full inspiral, merger and early ringdown evolution of the BH binary and is thus

unconstrainable with GW observations.

In the remainder of this work we explain how we arrived at these conclusions. In Sec. 3.5.3 we review

both scalarization and descalarization of BHs in sGB gravity. Next, in Sec. 3.5.4 we discuss our numerical

methods and our numerical relativity simulations designed to answer our previously stated questions. In

Sec. 3.5.5 we present our findings and we finish by discussing some of their observational implications in

Sec. 3.5.6. We work with geometric units G = 1 = c.

3.5.3 Scalar Gauss–Bonnet gravity

Action and field equations

sGB gravity modifies GR via a nonminimal coupling between a real scalar field Φ and the GB invariant

G , as described by the action

S =
1

16π

∫
d4x

√−g
[
R− 1

2
(∇Φ)2 +

αGB

4
f(Φ)G

]
, (3.16)

where R is the Ricci scalar, g = det(gµν) the metric determinant, (∇Φ)2 = gµν∇µΦ∇νΦ the scalar field

kinetic term, and

G = R2 − 4RµνR
µν +RµνρσR

µνρσ , (3.17)

is the GB invariant, where Rµνρσ and Rµν are the Riemann and Ricci tensor respectively. The particular

form of the theory is parametrized by the coupling function f(Φ) and the coupling constant αGB with

units of [Length]2.
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As in our previous study [5], we work in the decoupling limit. That is, we neglect the backreaction of

the scalar field onto the spacetime metric: the scalar field evolves on a dynamical, vacuum background

spacetime of GR. The action (3.16) gives rise to the field equation for Φ

□Φ = −1
4
αGBf

′(Φ)G , (3.18)

where a prime denotes a derivative with respect to Φ. Since we work in the decoupling limit, the

d’Alembertian and the GB invariant are those of the time-dependent GR background.

The choice of the coupling function f(Φ) determines specific sGB models. As we already alluded to in

Sec. 3.5.2, the models can be classified into two types depending on the properties of their BH solutions.

We label models as type I if the derivative of the coupling function f ′(Φ) ̸= 0. In this case, BH solutions

always have scalar hair [28–31,49–51,58,59,79,80,137–140]. Examples of type I models include the dilatonic

f(Φ) ∝ exp(Φ) [31, 48, 49, 138] and shift-symmetric f(Φ) ∝ Φ [28–30, 50] coupling functions. We label

models as type II if the derivative of the coupling function f ′(Φ0) = 0, for some constant Φ0. In this case,

the theory admits the stationary vacuum BH solutions of GR, as proved by the no-hair theorem of [32],

but also admits, when the theorem is violated, scalarized BHs. Examples include quadratic f(Φ) ∝ Φ2 [32]

and Gaussian f(Φ) ∝ exp(Φ2) [33] coupling functions. Here we consider type II models only.

Scalarization of isolated black holes

In the second type of sGB model the onset of scalarization is found by linearizing (3.18) around the

background BH spacetime, i.e., Φ = Φ0 + δΦ, where Φ0 is a constant. This results in the scalar-field

evolution equation (
□−m2

eff

)
δΦ = 0 , (3.19)

with an effective mass squared

m2
eff := −1

4
αGBf

′′(Φ0)G , (3.20)

which can become tachyonically unstable; in other words, the BH can scalarize if m2
eff < 0 [32, 33]. This,

however, is a necessary, but not sufficient condition for scalarization. The scalarization threshold can be

calculated by finding a bound state solution, i.e, a time independent solution of (3.19) which is regular at

the BH horizon and that vanishes at spatial infinity. By imposing these boundary conditions on δΦ, the

calculation of the scalarization threshold is reduced to a boundary value problem, with the dimensionless

ratio between αGB and the BH’s mass squared playing the role of the eigenvalue. The smallest eigenvalue

provides the scalarization threshold for the “fundamental” (i.e., the nodeless solution) family of scalarized

BHs, while the other eigenvalues determine the threshold for the formation of“excited states”(i.e., solutions

with one or more nodes). We focus on the latter here. See Fig. 1 in Ref. [32] or Sec. 4.3 of Ref. [142] for

further details. To be more concrete, here we consider a quadratic coupling function,

f(Φ) = Φ2 . (3.21)
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The coupling strength is determined by the dimensionless constant5

β = αGB/M
2 , (3.22)

where M is the characteristic mass of the system. The effective mass then becomes

m2
eff = −1

2
βM 2 G . (3.23)

If G is positive-definite in the BH exterior, then the instability can only happen for positive β. However,

if G is negative, at least in some regions outside the horizon, then the instability can also be triggered

with a negative β. For example, consider the Kerr metric, for which the GB invariant in Boyer-Lindquist

coordinates (t, r̄, θ, φ) is given by

GKerr =
48m2

(r̄2 + σ2)6
(
r̄6 − 15r̄4σ2 + 15r̄2σ4 − σ6

)
, (3.24)

where σ = a cos θ and a = J/m is the angular momentum per unit mass of the BH. When the dimensionless

spin χ = a/m < 0.5, G is positive everywhere outside the event horizon and so scalarization can only take

place if β is positive. This also holds true in the limiting case of a Schwarzschild BH. However, for

sufficiently rapidly rotating BHs (i.e., those with χ = a/m ⩾ 0.5), the GB invariant can become negative

in the exterior of the outer BH horizon in regions along the rotation axis [143]. Hence, spin can induce

scalarization of BHs if β is negative and χ ⩾ 0.5 [4, 65–67,71,141] and suppress it if β is positive [69,70].

One may note that scalarized solutions in quadratic sGB gravity with a positive coupling constant, β > 0,

are unstable to radial perturbations [144]. Although this is true, such BHs can be stabilized by including

higher-order scalar terms in the coupling f(Φ) [145,146], through the addition of scalar field self-interactions

while retaining the quadratic form of f(Φ) [62], or through the addition of a coupling of scalar field to the

Ricci scalar [147, 148]. Since we are investigating the onset of scalarization, it is unnecessary to include

such terms and so we focus only on the quadratic coupling case here.

Scalarization and Descalarization in black hole binaries

What could be the consequences of scalarization in BH binaries? To answer this question, in Ref. [5] we

performed the first numerical relativity simulations of both head-on collisions and quasi-circular inspirals

of BHs in quadratic sGB gravity with a positive coupling β. We identified a new effect, that we named

dynamical descalarization, in which initially non-spinning scalarized BHs shed-off completely their scalar

hair after the merger. This is a result of the comparatively weaker curvature generated near the horizon

of the resulting larger remnant BH. Consequently, several possible dynamical processes were discovered

for particular combinations of mass ratio and coupling strength, as illustrated in Fig. 1 of Ref. [5]. We

can contrast this with similar simulations in type I theories in which the remnant BH always retains some

scalar hair [35].

5With respect to the notation of Ref. [5], we are omitting the subscript “2” and fixing β̄ = 1.
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Here we extend our previous work by considering negative coupling β < 0 values. For this case the spins

of the initial and/or remnant BHs play a crucial role in the development of the scalar field of the system

due the possibility of spin-induced scalarization. Specifically, the formation of negative GB regions close

to merger causes the remnant to scalarize, a process that we call spin-induced dynamical scalarization.

Additionally, we also demonstrate spin-induced dynamical descalarization – the spin analogue of the afore-

mentioned dynamical descalarization mechanism – as high-spinning binary components merge to produce

a lower spin remnant that cannot support the instability.

3.5.4 Simulating binary black holes in sGB gravity – Methods and setup

Time evolution formulation

We investigate the dynamics of the sGB scalar field, determined by its equation of motion (3.18), and

sourced by a binary BH background spacetime. We perform a series of time evolution simulations in 3+ 1

dimensions by adopting standard numerical relativity techniques; see e.g. Ref. [8]. That is, we foliate

the four-dimensional spacetime into three-dimensional spatial hypersurfaces Σt, parametrized by a time

parameter t, with an induced spatial metric γij. We introduce the timelike vector nµ that is orthonormal

to the hypersurface. Then, the spacetime metric gµν can be decomposed as

ds2 = gµνdx
µdxν (3.25)

= −
(
α2 − βkβk

)
dt2 + 2γijβ

idtdxj + γijdx
idxj ,

where α is the lapse function (not to be confused with the dimensional coupling constant αGB) and β
i is

the shift vector (not to be confused with the dimensionless coupling constant β). Finally, we introduce

the extrinsic curvature Kij = − 1
2α

(∂t − Lβ) γij, where Lβ is the Lie-derivative along the shift vector βi.

To simulate the background BH binary we write Einstein’s equations as a Cauchy problem and adopt

the Baumgarte-Shapiro-Shibata-Nakamura formulation [9, 10] together with the moving puncture gauge

conditions [72, 73]. We prepare initial data describing a quasi-circular binary of two spinning BHs with

the Bowen-York approach [76,77].

To evolve the scalar field Φ in this time-dependent GR background, we write its field equation (3.18) as a

set of time evolution equations. Therefore, we introduce the scalar field’s momentum KΦ = − 1
α
(∂t − Lβ) Φ

and we apply the spacetime decomposition to (3.18). This procedure gives the equations

(∂t − Lβ) Φ = −αKΦ , (3.26a)

(∂t − Lβ)KΦ = −DiαDiΦ (3.26b)

− α
(
DiDiΦ−KKΦ + 1

4
αGBf

′ G
)
,

where Di, G and K = γijKij are the covariant derivative with respect to the induced metric, the four-

dimensional GB invariant and the trace of the extrinsic curvature of the background spacetime.

We initialize the scalar field to represent multiple scalarized BHs. For simplicity, we neglect the scalar

field’s initial linear and angular momentum, because it relaxes to its equilibrium configuration within about
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100M from the start of the evolution, i.e., within approximately one orbit [35, 101]. Since the scalar field

equation (3.18) is linear, we can superpose the static bound-state solution anchored around an isolated

BH. For N BHs, we then have

Φ|t=0 =
N∑
a=1

Φ(a) , KΦ|t=0 = 0 , (3.27)

where the subscript (a) labels the a-th BH. The bound state of the sGB scalar field around an isolated,

non-spinning BH with a coupling of the form (3.21) was obtained numerically in Ref. [32]. We approximate

this solution with the fit

Φ(a)

∣∣
t=0

=
m(a)r(a)
ϱ2(a)

[
c1 + c2

m(a)r(a)
ϱ2(a)

+ c3
(m(a)r(a))

2

ϱ4(a)

]
,

(3.28)

where ϱ(a) = m(a) + 2 r(a), r(a) is field point distance from the location of the a-th BH in quasi-isotropic

radial coordinates of the background spacetime, m(a) is the mass of the a-th BH, and c1 = 3.68375,

c2 = 4.97242, c3 = 2.29938× 102 are fitting constants, where we corrected a misprint in c3 in Ref. [5].

Code description

We performed the simulations with Canuda [149], our open-source numerical relativity code for funda-

mental physics [5, 35, 150, 151]. Canuda is fully compatible with the Einstein Toolkit [82, 152, 153],

a public numerical relativity software for computational astrophysics. The Einstein Toolkit is based

on the Cactus computational toolkit [154, 155] and uses the Carpet driver [83, 156] to provide boxes-

in-boxes adaptive mesh refinement (AMR) as well as MPI parallelization. To evolve the field equations

we employ the method-of-lines. Spatial derivatives are typically realized by fourth-order finite differences

(with sixth order also being available) and for the time integration we use a fourth-order Runge-Kutta

scheme.

The background spacetime, consisting of two spinning BHs in a quasi-circular orbit, is initialized with

the TwoPunctures spectral code [157] that solves the constraint equations of GR with the Bowen-York

approach [76,77]. We evolve Einstein’s equations using Canuda’s modern version of the Lean thorn [158]

that implements the Baumgarte-Shapiro-Shibata-Nakamura equations with the moving puncture gauge.

The sGB scalar field evolution equations (3.26) and its initial data (3.28) are implemented in Canuda’s

arrangement Canuda EdGB dec. Details of the implementation are described in Refs. [5, 35, 80]. To

analyse the numerical data, we compute the Newman-Penrose scalar Ψ4 as a measure for gravitational

radiation and we extract the gravitational and scalar field multipoles on spheres of constant extraction

radius rex using theQuasiLocalMeasures thorn [159]. We find the BHs’ apparent horizons and compute

their properties with the AHFinderDirect thorn [160,161].
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Setup of simulations

To investigate spin-induced dynamical scalarization or descalarization in binary BH mergers, we have

performed a series of simulations of equal-mass, quasi-circular inspirals for the negative coupling case,

β < 0. The initial BHs have either zero spin or a spin (anti-)aligned with the orbital angular momentum.

To choose the values of the coupling constant β in our simulations, we used the numerical data found

in Ref. [4] (cf. Supplemental Material, Table I) to obtain a fitting formula that returns the value of β

at the threshold for spin-induced scalarization as a function of the dimensionless spin χ; we will refer to

this threshold value as the critical value of the dimensionless coupling constant. The critical value for the

coupling constant satisfies the scaling

βc(m/M,χ) = (m/M)2 βc(1, χ) , (3.29)

where m is a place-holder for either the individual masses of the binary m(a) or the final remnant mass

mf , while M = m1 +m2 is the initial total mass of the binary. The quantity βc(1, χ) is the critical value

of the coupling that leads to scalarization for a BH of mass 1M and dimensionless spin χ, namely

βc(1, χ) = − 0.422

(|χ| − 1/2)2
+ 1.487 |χ|7.551 , (3.30)

where βc(1, χ) diverges as |χ| tends to 0.5, in agreement with Ref. [66]. For instance, if we wish to

scalarize the initial components of the binary, and if the mass ratio is unity, then m(a) = M/2, and

βc, (a)(1/2, χ(a)) = (1/4) βc(1, χ(a)). In Fig. 3.6, we show (3.30) and compare it against the numerical

results of Ref. [4]. We obtain relative errors smaller than 15% in the range 0.5 ⩽ χ < 1 and less than 5%

for χ ≲ 0.74. We use (3.29) as reference to choose the values of β to probe scalarization of either one (or

both) of the initial binary components or of the remnant BH.

Run d/M χ1 χ2 χf β βc,1 βc,f process

Setup A 10 0 0 0.68 −14.30 – −12.96 s̄+ s̄→ s↑

Setup B 10 −0.6 −0.6 0.48 −11.00 −10.55 – s↓ + s↓ → s̄↑

Table 3.1: Setup of the simulations of equal-mass, quasi-circular BH binaries. We show the initial separation d/M ,

the initial dimensionless spins χ1 and χ2 of each binary component, the dimensionless spin χf of the remnant,

and the dimensionless coupling constant β used in the simulations. For reference, we also show the critical

values to scalarize the initial (βc,1 = βc,2) or final (βc,f ) BHs, calculated using Eqs. (3.29) and (3.30). The last

column summarizes the process that unfolds during the simulation. We use s̄ and s to denote unscalarized and

scalarized states, respectively, and the subscript ↑ (↓) indicates spin aligned (anti-aligned) with the orbital angular

momentum, which is assumed to be ↑. See Fig. 3.7 for additional details.

Here, we present two key simulations, listed in Table 3.1 and illustrated in Fig. 3.7, with the following

setups:
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Figure 3.6: Absolute value of the critical coupling, βc, for spin-induced scalarization of a single BH as a function of

the dimensionless spin χ. We show the numerical data of Ref. [4] and the fitting formula (3.30). The inset shows

the relative error between the fit and the data. We see that the error is less than 15% in the range 0.5 ⩽ χ < 1

and less than 5% for χ ≲ 0.74.

Setup A in Table 3.1 is designed to address our first question: does the formation of a highly spinning

remnant cause spin-induced dynamical scalarization? Here, we consider a binary of initially non-spinning,

unscalarized BHs that merges into a spinning, scalarized remnant as illustrated in Fig. 3.7. The BHs

complete 10 orbits prior to their merger at tM = 927M , as estimated from the peak in the gravitational

(quadrupole) waveform; see the bottom panel of Fig. 3.8. When the coupling β is negative, the squared

effective mass (3.20) of the initial BHs (with χ = 0) is positive definite everywhere outside their horizons,

and so they are initially not scalarized. The final BH has a dimensionless spin of χf = 0.68 and mass

mf ∼M . For a BH with these parameters, the critical coupling is βc,f ≈ βc(1, 0.68) ≈ −12.96; cf. (3.29).

In our simulation we chose |β| > |βc,f | such that the remnant BH is indeed scalarized. In this simulation,

we initialize the scalar field according to (3.28) around each binary component. The scalar field disperses

early in the simulation, leaving each BH unscalarized and a negligible, but nonvanishing ambient scalar

field in the numerical grid. Notice that if we had set Φ|t=0 = 0, there would be no scalar field dynamics

[see (3.18)].

Setup B in Table 3.1 is designed to address our second question: is the dynamical descalarization found

in Ref. [5] a general phenomenon? Is there a spin-induced dynamical descalarization? Here we consider

a binary of initially rotating, scalarized BHs with spins χ1 = χ2 = −0.6, anti-aligned with the orbital

angular momentum as illustrated in the RHS of Fig. 3.7. Each of the components of the binary has a mass

m1 = m2 = M/2. Inserting these parameters in ((3.29)), we find βc,1 = βc,2 = βc(1/2,−0.6) ≈ −10.55.

In our simulations, we set |β| ≳ |βc(1/2,−0.6)| such that the initial BHs are scalarized. The initial BHs

merge into a final rotating BH that has a spin aligned with the orbital angular momentum of the previously

inspiralling system, with a spin magnitude χf = 0.48. This value is below the threshold for spin-induced
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scalarization, and so the remnant BH does not support scalar hair.

s̄

s̄

s↑

s↓

s↓

s̄↑

Setup A Setup B

Figure 3.7: Binary BH simulations, where s (s̄) stands for initial or final BH states that are scalarized (unscalarized)

and with spin along the positive (↑) or negative (↓) z-direction (i.e., aligned or anti-aligned with the orbital angular

momentum, assuming the latter is ↑). BH states without an arrow are non-spinning. The LHS of Fig. 3.7 illustrates

a process of spin-induced dynamical scalarization: two initially unscalarized BHs produce a spinning, scalarized

remnant. The RHS of Fig. 3.7 illustrates a process of dynamical descalarization: two initially rotating, scalarized

BHs whose spin is anti-aligned with the orbital angular momentum merge into a rotating BH with a smaller spin

magnitude. Consequently, the remnant descalarizes.

To show that our qualitative results are robust for a large variety of BH spin parameters, we have performed

a series of additional simulations listed in Table C.1 of Appendix C. All simulations presented in Tables 3.1

and C.1 have the same grid setup: the numerical domain was composed of a Cartesian box-in-box AMR

grid structure with seven refinement levels. The outer boundary was located at 255.5M . We use a grid

spacing of dx = 0.7M on the outermost refinement level to ensure a sufficiently high resolution in the

wave zone. The region around the BHs has a resolution of dx = 0.011M . To validate our code and

estimate the numerical error of our simulations, we performed convergence tests for our most demanding

simulation with χ1,2 = −0.6, corresponding to Setup B in Table 3.1. The relative error in the gravitational

quadrupole waveform is ∆Ψ4,22/Ψ4,22 ⩽ 0.8%, while the relative error of the scalar charge accumulates

to ∆Φ00/Φ00 ⩽ 30% in the last orbits before merger; the latter is ∆Φ00/Φ00 ⩽ 15% in the merger and

ringdown phase. The large error in the scalar field, close to the BHs merger, is a consequence of the

exponential growth of the scalar field during inspiral. As our investigation is of a qualitative nature, this

cumulative error is not a cause of concern for our results. However, a future quantitative analysis would

have to address this issue. See Appendix C.1 for details.
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3.5.5 Results

Spin-induced dynamical scalarization

Here we present key results obtained with simulation Setup A (see Sec. 3.5.4), corresponding to the LHS of

Fig. 3.7. In particular, we show that an initially unscalarized BH binary can indeed form a hairy, rotating

remnant.

This process is illustrated in the top panel of Fig. 3.8, where we present the time evolution of the scalar

field’s monopole charge, rexΦ00, measured at rex = 100M , and shifted in time such that (t−rex−tM)/M = 0

indicates the time of merger. The scalar field perturbation that is initially present in our simulations

remains small during the entire inspiral. See, for instance, the amplitudes rexΦℓm at (t− rex − tM)/M < 0

which are of O(10−4) or O(10−6). Yet, we see an exponential growth of the scalar charge, rexΦ00 ∼ eωI,00t,

that exceeds the background fluctuations, approximately 100M after the merger. We estimate the growth

rate (for our choice of β) to be MωI,00 ∼ 0.062 by fitting to the numerical data. We show this with the

dotted red line in the top and middle panels.

We find a similar behavior in the scalar field quadrupole, as shown in the middle panel of Fig. 3.8. That is,

both the axisymmetric (ℓ,m) = (2, 0) and the (ℓ,m) = (2, 2) multipoles are excited and grow exponentially

with a rate of MωI ∼ 0.062. For the form of the coupling function considered here, the rate appears to be

independent of the (ℓ,m) multipole and is determined by the coupling constant β, as we further discuss

later. The quadrupole scalar field is absent in the initial data because we initialized the scalar field with a

spherically symmetric distribution around each of the BHs. Hence, the scalar field quadrupole we observe

is caused by the “stirring” of the ambient scalar field due to the dynamical binary BH spacetime, which has

a quadrupole moment. These Φ2m multipoles also become unstable eventually, but at a later time relative

to the monopole, as is evident by comparing the top and middle panels of Fig. 3.8. The exponential growth

of the Φ2m multipoles is consistent with the findings in Refs. [65, 67], showing that higher-ℓ and m ̸= 0

scalar field multipoles can also become unstable.

All of these results beg for the following questions: at what stage in the binary’s evolution is the scalar

field instability induced? Is it due to the orbital angular momentum at the late inspiral or is it due to

the angular momentum of the remnant BH? As we discussed in Sec. 3.5.3, a necessary (but not sufficient)

condition for the tachyonic instability to occur is for the GB invariant to become negative outside the

BH horizon in the β < 0 case; see (3.23). To address these questions, we inspect the behavior of the GB

invariant at different stages throughout the evolution.

In Fig. 3.9 we show a close-up of the GB invariant’s (top panel) and the scalar field’s (bottom panel)

profiles along the z-axis, parallel to the orbital angular momentum, at different time snapshots throughout

the evolution. In Fig. 3.10 we show the GB invariant G together with snapshots of the scalar field Φ in

the xz-plane, perpendicular to the orbital plane of the binary. The snapshots correspond to time instants

during the inspiral (top left), half an orbit before merger (top right), at the formation of the common

apparent horizon (CAH) (bottom left) and about 200M after the merger (bottom right). The color map

represents the scalar field amplitude and is shared among all panels, while the contours are isocurvature
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Figure 3.8: Evolution of the scalar field monopole (top panel), scalar field ℓ = 2 multipoles (middle panel) and

the gravitational waveform of the background spacetime (bottom panel) for Setup A in Table 3.1. We rescale the

multipoles by the extraction radius rex = 100M , and shift them in time such that (t− rex − tM)/M = 0 indicates

the time of merger, determined by the peak of the gravitational waveform.

levels |GM4| = {1, 10−1, 10−2, 10−3}, with positive (negative) values of G in black (red). We also show

the location of the individual BHs using their apparent horizons, represented as ellipses with center, semi-

major and semi-minor axes given by the centroid, maximum and minimum radial directions as obtained

with the AHFinderDirect thorn [160,161]. We do not show the evolution of G in the equatorial plane

because we did not observe negative regions forming on this plane throughout the entire simulation.

During the early inspiral, the GB invariant is positive around the individual, non-spinning BHs, and the

scalar field remains small across the numerical grid as can be seen in the top left panel of Fig. 3.10.

However, about half an orbit before merger, we see the formation of regions between the two BHs where

the GB invariant is negative; see top right panel of Fig. 3.10 and top panel of Fig. 3.9, t = 904M curve.

By the time t = 904M , the effective mass squared defined in (3.23) has become negative and this, we

re-emphasize, is a necessary, but not sufficient condition for the tachyonic instability to occur.

As the BHs merge and the system settles to a final, rotating BH, the GB invariant remains negative along

the z-axis, which now coincides with the remnant BH’s rotation axis. This is illustrated in the bottom

panels of Fig. 3.10, which correspond to the instant of the formation of the CAH (bottom left) and to

about 200M after the merger (bottom right). In response, the scalar field grows exponentially as can be

seen in its profiles shown in the bottom panel of Fig. 3.9 for different times after the CAH has formed. The

scalar field assumes a predominantly dipolar spatial distribution along the BH’s spin axis, a consequence

of the regions where the GB invariant is negative. We note that the scalar field continues to grow instead
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Figure 3.9: Profiles of the GB invariant (top panel) and of the scalar field (bottom panel), corresponding to Setup

A in Table 3.1, along the z-axis in a close-up region near the CAH. The curves correspond to different times

throughout the evolution. The shaded region indicates the CAH, shown t = 100M after its formation when the

final BH has relaxed to its stationary state. The GB invariant becomes negative during the BHs’ last orbit before

merger, and settles to its profile around the final rotating BH with dimensionless spin χf = 0.68. In response, the

scalar field becomes unstable.

of settling to a stationary bound state because the magnitude of the coupling is larger than the critical

value for spin-induced scalarization for the final BH with spin χf = 0.68; see Table 3.1.

To verify that the regions of negative GB curvature before the merger can induce the instability, we

repeated the simulation of Setup A with a smaller initial BH separation of d = 6M and a large-in-

magnitude coupling constant β = −103; see Setup A1 in Table C.1. Although this choice of coupling, with

|β| ≫ |βc,f | = |βc(1, 0.68)|, may appear unphysical6 it has the desired effect of being able to cause the

instability before the merger and with a short time-scale; both effects are controlled by |β|.
This can be seen in Fig. 3.11, where we show the evolution of the scalar field multipoles, and in Fig. 3.12,

where we show the field’s profile along the rotation axis. Indeed, shortly after the GB invariant becomes

negative, the scalar field grows exponentially and exceeds the magnitude of its background fluctuations at

about t = 20M before the CAH is first found.

In summary, if |β| is large enough, the BHs’ late inspiral and merger may be affected by the sGB scalar field.

However, for |β|-values near the scalarization threshold, the inspiral and merger of initially unscalarized

6Such a large value of |β|may be unphysical because the phase space of nonlinear BH solutions (i.e., including backreaction)

has a band structure [32]: given a fixed value of M there is a maximum value of |β| for which scalarized BHs exist.

The domain of existence of scalarized BHs depends on f(Φ), the BH mass, and its spin. Thus, if this β is physical requires

a careful, nonlinear analysis. Here we focus only on the scalarization threshold.
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Figure 3.10: Snapshots of the scalar field, Φ, and the GB invariant in the xz-plane corresponding to Setup A

in Table 3.1. The color map indicates the amplitude of the scalar field. The isocurvature contours of the GB

invariant correspond to |GM4| = 1 (solid line), |GM4| = 10−1 (dashed line), |GM4| = 10−2 (dot-dashed line),

|GM4| = 10−3 (dotted line), Black (red) lines correspond to positive (negative) values of G . We show the inspiral

(top left), half an orbit before merger (top right), formation of the first CAH (bottom left) and about 200M after

the merger.

BH binaries, and their GW emission, are identical to that of GR and imprints of the sGB scalar field only

appear during the late ringdown. Such effects may be very difficult (if not impossible) to detect, and this

is what we refer to as stealth scalarization.

Spin-induced dynamical descalarization

In this section we present our key results obtained with simulation Setup B in Table C.1 (see Sec. 3.5.4),

illustrated in Fig. 3.7. The setup corresponds to two initially rotating, scalarized BHs (whose spin is anti-

aligned with the orbital angular momentum) that produce a unscalarized remnant with a spin magnitude

below the scalarization threshold for any choice of the coupling constant.

In Fig. 3.13 we show snapshots of the scalar field and the GB invariant in the xz-plane, perpendicular to

the binary’s orbital plane, during the inspiral (top left), half an orbit before the merger (top right), at the

merger (bottom left) and about t = 100M after the merger (bottom right). We illustrate the location of

the BHs by their apparent horizons. The color-coding represents the amplitude of the scalar field and is

shared among all panels. The contours represent the isocurvature lines |GM4| = {1, 10−1, 10−2, 10−3},
with positive (negative) values shown in black (red). The spin magnitude of the two inspiraling BHs is

sufficiently large to yield a GB invariant that has negative regions outside the BHs’ horizon. Combined
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Figure 3.11: Evolution of the ℓ = m = 0 (solid line), ℓ = 2, m = 0 (dashed line) and ℓ = m = 2 (dot-dashed

line) scalar field multipoles for the coupling β = −103; cf. Setup A1 in Table C.1. We rescale the multipoles by

the extraction radius rex = 50M and shift them such that (t − rex − tM)/M = 0 indicates the time of merger

determined by the peak in the gravitational waveform. For comparison we also show the formation of the CAH

(dotted line). We observe that the scalar field grows exponentially about 20M prior to the merger.
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Figure 3.12: Same as Fig. 3.9, but for Setup A1 in Table C.1. We see that the GB invariant (top panel) becomes

negative and triggers the excitation of the scalar field (bottom panel) before the formation of the CAH, indicated

by the gray region.

with our choice of |β|, the BHs sustain a scalar field bound state, as shown in the top left panel of Fig. 3.13

and the BHs carry a scalar “charge” during the inspiral. As the BHs merge, they form a single, rotating



3.5 Research work II: Spin-induced dynamical scalarization, descalarization, and
stealthness in scalar-Gauss-Bonnet gravity during a black hole coalescence 58

−2.5 0.0 2.5
−4

−2

0

2

4

z
/
M

t = 536M

−2.5 0.0 2.5
−4

−2

0

2

4

t = 616M

−2.5 0.0 2.5
x /M

−4

−2

0

2

4

z
/
M

t = 630M

−2.5 0.0 2.5
x /M

−4

−2

0

2

4

t = 738M

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

Φ

Figure 3.13: Snapshots of the scalar field, Φ, and the GB invariant, G , in the xz-plane, corresponding to Setup

B in Table C.1. The color map represents the amplitude of the scalar field. The isocurvature contours indicate

the magnitude of the GB invariant with |GM4| = 1 (solid line), |GM4| = 10−1 (dashed line), |GM4| = 10−2

(dot-dashed line), |GM4| = 10−3 (dotted line), with positive (negative) values shown in black (red). We show the

inspiral (top left), half an orbit before merger (top right), 10M after the CAH formation (bottom left) and about

100M after the merger (bottom right).

BH which has a spin aligned with the orbital angular momentum and a magnitude of χf = 0.48. For this

spin magnitude, the GB invariant is positive everywhere outside the BH’s horizon, as shown in the bottom

row of Fig. 3.13. As a consequence, the effective mass-squared becomes positive everywhere in the BH’s

exterior and the scalar field bound states are no longer supported. That is, the scalar field dissipates, and

the BH dynamically descalarizes, in agreement with the no-hair theorem of Ref. [32]7.

These phenomena can also be seen in Fig. 3.14, where we show the profiles of the GB invariant (top panel)

and of the scalar field (bottom panel) along the z-axis (parallel to orbital angular momentum) for several

instants during the evolution. The shaded region indicates the apparent horizon of the final BH. The GB

invariant remains negative outside the individual BHs during their (late) inspiral. Only when the CAH

first forms, does the GB invariant become positive everywhere outside the remnant BH’s horizon. At this

point, the effective mass-squared becomes positive, the tachyonic instability that kept each BH scalarized

switches off, and the scalar field dissipates as shown in the bottom panel of Fig. 3.14.

7One might wonder if the final rotating BH may become superradiantly unstable due to the presence of an effective mass

for the scalar field Φ. While the necessary conditions are satisfied [162–164], the instability for a BH of χf ≲ 0.5 would evolve

on e-folding timescales much longer than those studied here [165, 166]; see Ref. [65] for a comparison against spin-induced

scalarization. Moreover, if backreaction of Φ onto the metric was included, the BH mass and spin would decrease until the

superradiance condition is saturated and the instability is turned off. Then, the scalar decays and the end-state is a BH with

no scalar field.
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Figure 3.14: Profiles of the GB invariant (top panel) and of the scalar field (bottom panel) for Setup B in Table C.1

along the z-axis. The lines correspond to different times during the evolution. The shaded region indicates the

CAH, shown 100M after its formation. The GB invariant becomes positive outside the horizon when the CAH is

first formed. Consequently, the scalar field magnitude decreases and the remnant BH descalarizes.

Does the presence of scalar charges during the inspiral produce scalar radiation? The answer is affirmative

as can be seen in Fig. 3.15 where we show the time evolution of the scalar field monopole (top panel)

and quadrupole (middle panel). For comparison, we also display the gravitational quadrupole waveform

of the background spacetime (bottom panel). The scalar field monopole quantifies the development of the

combined scalar charge of the BH binary measured on spheres of radius rex = 100M , i.e., enclosing the

entire binary.

The total scalar charge remains approximately constant during the inspiral as the coupling is close to its

critical value. Its magnitude increases about 10M before the merger which coincides with the formation

of a joined region in which the GB invariant is negative due to the proximity of the two BHs. As the BHs

merge into a single rotating remnant with a spin below the threshold for the spin-induced scalarization,

the scalar charge decays as illustrated in the inset of Fig. 3.15 (top panel). Because the scalar charges

anchored around each BH follow the holes’ orbital motion, they generate scalar radiation. In general,

one would expect the scalar dipole to dominate the signal, as is also the case for shift-symmetric sGB

gravity [35, 90, 127]. In the simulations shown here, however, the scalar dipole is suppressed due to the

symmetry of the system (equal mass and spin of the companions), and the ℓ = m = 2 multipole dominates.

The scalar waveform is displayed in the middle panel of Fig. 3.15 and shows the familiar chirp pattern:

its amplitude and frequency increase as the scalar charges inspiral (following the inspiraling BHs in the

background), and culminates in a peak as the BHs merge. The phase of the scalar field quadrupole clearly
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Figure 3.15: Evolution of the scalar field monopole (top panel) and quadrupole (middle panel) and gravitational

quadrupole (bottom panel) for Setup B in Table 3.1. The waveforms are rescaled by the extractions radius

rex = 100M and shifted in time such that (t− rex − tM)/M = 0 at the merger. In the insets we show the absolute

values of the multipoles, in logarithmic scale, during the merger and ringdown.

tracks its gravitational counterpart. Therefore, we deduce that the morphology (phase evolution) of the

observed scalar quadrupole radiation is a result of the orbital dynamics of the system. A sufficiently large

magnitude of the coupling constant may lead to an additional scalarization of the ℓ = 2 mode, which

would become manifest as an exponential growth of the signal superposed with the chirp. This situation

is analogous to the evolutions with positive coupling shown in our previous work [5].

After the merger, the scalar quadrupole exhibits a quasi-normal ringdown pattern, i.e., an exponentially

damped sinusoid, shown in the inset of Fig. 3.15 (middle panel). Here, in contrast to Ref. [5], descalarization

occurs due to the vanishing of negative GB regions outside the remnant BH (because its final spin is

|χf | < 0.5), rather than due to a reduction of positive curvature (because of an increase in mass). We

note that the scalar field rings down on similar timescales as the GW signal shown in the bottom panel of

Fig. 3.15 for comparison. Therefore, one might expect a modification to the GW ringdown if backreaction

onto the spacetime is included.

3.5.6 Discussion

In this paper, we continued our study of dynamical scalarization and descalarization in binary BH mergers

in sGB gravity by extending our previous work [5]. The latter focused on a positive coupling constant

between the scalar field and the GB invariant, yielding dynamical descalarization in binary BH mergers.

As a natural continuation, here we studied a negative coupling for which the BHs’ spins play a major role
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in determining the onset of scalarization. In particular, we have shown that the merger remnant can either

dynamically scalarize or dynamically descalarize depending on its spin and mass.

Spin-induced dynamical scalarization occurs when the merger remnant grows a scalar charge during co-

alescence due to the large spin of the remnant. In cases like this, the initial binary components lack a

charge because their spins are not large enough to support one [4,65–67,71,141]. However, after the objects

merge, the remnant BH spins faster than either component, allowing for a charge to grow. We found that

it is possible for the scalar charge to grow as early as 1–2 orbits before a CAH has formed if the coupling

|β| is extremely large. This occurs because there are spacetime regions before merger (and near the poles

of the future remnant) with a negative GB invariant, and a sufficient large value of |β| allows bound states

to form fast enough. We also found that if the coupling |β| is close to the threshold, then scalarization

occurs only in the late ringdown, because of the timescale required for the bound states to form.

Is such spin-induced scalarization detectable with current or future GW observatories? For values of |β|
near the scalarization threshold the instability timescale is large and the effects of the scalar field growth

would only appear at times much later than the merger and, more importantly, after the start of the

ringdown. Hence, the inspiral-merger-ringdown of such a binary would be indistinguishable from one in

GR, and scalarization would be a hidden or “stealth” effect, i.e., the remnant BH would acquire a charge,

but its formation would not lead to an easily measurable effect. For instance, during the GW ringdown,

which is dominated by the fundamental (ℓ,m) = (2, 2) quasinormal mode (QNM) frequency, we know that

at a spin of χ ≈ 0.68, the decay time is approximately τ ≈ 12.3M [167]. Hence, after 100M from the peak

in the waveform, the dominant mode has decayed by roughly exp(−t/τ) ≈ exp(−100/12.3) ≈ 10−4. If

the dominant QNM frequency begins to be modified only after 100M , the GW has decayed so much that

detecting this change or constraining it would be essentially impossible.

Is there no hope to detect such late times scalarization? Not necessarily. If we were to include the scalar

field backreaction onto the spacetime, one could entertain the possibility that the late time growth of

the scalar field (in particular of Φ22) and the subsequent readjustment of the spinning remnant BH to its

scalarized counterpart could result in a second GW signal. Confirming this possibility and, if confirmed,

characterizing such a GW signal is left for future work.

Spin-induced dynamical descalarization occurs when the merger remnant loses its scalar charge during

coalescence due to the low spin of the remnant. In cases like this, the initial binary components are

spinning fast enough that each of them has a scalar charge and the remnant descalarizes if it has spin

χf ⩽ 0.5. Here we demonstrated this effect in a example in which the initial binary components have their

spin angular momenta anti-aligned with the orbital angular momentum. The merger produces a remnant

BH with χf = 0.48, for which no scalar field bound states are supported and the field is radiated away

shortly (∼ 10M) after the CAH formation.

Is such spin-induced descalarization detectable with current or future GW observatories? For such descalar-

ization to be detectable, one must first detect that the binary components were scalarized during the

inspiral. Our simulations showed that the scalar charges lead to scalar quadrupole radiation because

of the highly symmetric configurations (equal mass, equal spin magnitude) we chose to evolve. More
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realistic astrophysical configurations (with unequal masses and unequal spin magnitudes) forces the bi-

nary to emit scalar dipole radiation. Such emission of dipole or quadrupole radiation accelerates the

inspiral, and thus affect the GW phase at −1PN and 0PN respectively, as shown in shift-symmetric theo-

ries [88–90,125–127]. These effects in the inspiral are observable and can thus be constrained with current

ground-based [43, 44, 117–119] and future detectors [168, 169] within the parameterized post-Einsteinian

framework [170–173], provided the binary is of sufficiently low mass such that enough of the inspiral is

observed [169]. In fact, a constraint of this type was recently obtained using the GW190814 event [174]

in [116].

Let us then assume, for the sake of argument, that some future event reveals a scalar charge in the

inspiraling binary components. Our results then indicate that descalarization may be detectable, if there

is enough signal-to-noise ratio in the merger and ringdown [35, 92]. This is because this process occurs

at the same time and with the same timescales as the GW merger and ringdown, see Fig. 3.15. Future

work could study the backreaction of the scalar field onto the metric to determine the magnitude of these

modifications in the transient phase, without which one cannot assess detectability confidently. Our results

indicate that descalarization might be best probed with a full inspiral-merger-ringdown analysis of the GW

signal.
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Chapter 4

Inflation

4.1 Background

The large-scale, homogeneous universe is well-approximated by the FLRW metric

ds2 = −dt2 + a2(t)
[ dr2

1− kr2
+ r2dΩ2

]
, (4.1)

where a is the scale factor and k is a parameter characterising the overall curvature. Using Einstein’s

equations, one obtains the Friedmann equations that govern the universe’s evolution

H2 =
8πGρ

3
− k

a2
, (4.2)

ä

a
= −4πG

3

(
ρ+ 3p

)
, (4.3)

for which H ≡ ȧ/a is the Hubble parameter, ρ is the (total) energy density of matter/radiation/vacuum

energy and p is the associated pressure. During the mid 20th century, it was believed that the evolution of

the universe evolved according to the Friedmann equations regular matter or radiation. However, during

the second-half of the 20th century, the standard Hot Big Bang model of the early universe became

fraught with observational inconsistencies. Firstly, it was realised that if the expansion of the universe was

dominated by matter/radiation throughout its history, then any regions of the CMB that are separated

by more than 2◦ would be causally disconnected [175]. This is in stark contradiction to the observed

homogeneity at such scales, which suggests a causally connected history. Put in a more formal framework,

consider the comoving distance between times t0 and t given by

dh =

∫ t

t0

dt

a(t)
, (4.4)

which is equivalent to the comoving particle horizon if one sets t0 = 0 as the beginning of time. The particle

horizon determines whether events are in causal contact. For the standard matter/radiation dominated

universe, one finds that this is approximately the comoving Hubble distance

dh ∼ (aH)−1 , (4.5)
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which grows under these conditions. Consequently, the comoving horizon between now and the time of

photon decoupling is larger than the particle horizon at that time, and so we should observe a plethora of

causally disconnected regions in the CMB. This is called the horizon problem.

A related problem concerns the overall curvature of the universe. The critical density of the universe ρcrit

is the energy density required for the universe to be flat. It is obtained by substituting k = 0 into (4.2)

and rearranging:

ρcrit =
3H2

8πG
. (4.6)

Defining the density parameter

Ω =
ρ

ρcrit
, (4.7)

and curvature density parameter

Ωk = − k

a2H2
, (4.8)

one can use (4.2) to obtain the relation

Ω = 1− (aH)−2

(a0H0)−2
Ωk,0 , (4.9)

where the Ωk,0 is the curvature density parameter today, which is bounded by observations to be |Ωk,0| <
0.005 [175]. This means that the universe today is very nearly flat (as Ω is close to unity) and given that

the comoving Hubble radius (aH)−1 grows with time, it was therefore extraordinarily flat at early times.

This apparent fine-tuning of curvature to unity is known as the flatness problem.

Perhaps the most significant issue however, is that of superhorizon correlations. That is, there are density

correlations in the CMB that exist over acausal distances. One may be justified in explaining the horizon

and flatness problems purely as a consequence of symmetries in an unknown theory that dictates the initial

conditions of the universe. On the other hand, it is not so feasible to relegate the mysterious origin of

such correlations to ”peculiar” initial conditions, and thus a more conventional explanation within current

theory is required. This is the role played by inflation.

Given the crucial role played by the (growing) comoving Hubble horizon in the problems above, a possible

solution to these problems would be the introduction of a decreasing comoving Hubble horizon

d

dt
(aH)−1 < 0 , (4.10)

during some stage of the universe’s history. Given the definition of the Hubble parameter, we see that

(4.10) is simply a phase of accelerated expansion ä > 0 i.e. inflation. If this phase of accelerated expansion

lasts sufficiently long, then the particle horizon becomes much larger than the Hubble radius, and thus

ostensibly disconnected regions on the CMB were in fact causally connected. To quantify the necessary

requirements, we expand (4.10)

d

dt
(aH)−1 = − ȧH + aḢ

(aH)2
, (4.11)

=
ϵH − 1

a
, (4.12)
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where

ϵH ≡ − Ḣ

H2
= −d lnH

dN
, (4.13)

is the first Hubble slow-roll parameter and ϵH < 1 is required for inflation to occur. To ensure that inflation

lasts for a sufficient amount of time, we also define a second Hubble slow-roll parameter

ηH ≡ d ln ϵH
dN

=
ϵ̇H
ϵHH

, (4.14)

for which one requires |ηH | < 1.

Ever since the concept of inflation was suggested as a solution to fix the aforementioned issues, a variety

of mechanisms to generate the necessary accelerated expansion were proposed (see [176] for a summary of

the history). The simplest - and arguably most effective - is that of a scalar-field ϕ, called the inflaton,

slowly rolling down its potential V (ϕ). Originally coined ”chaotic inflation” [176], this is now commonly

regarded as the standard inflationary scenario. Consider the scalar-field action

S =

∫
d4x

√−g
[
− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
, (4.15)

from which in an FLRW background, one obtains the Klein-Gordon equation

ϕ̈+ 3Hϕ̇ = −dV

dϕ
. (4.16)

In the presence of the inflaton, the Friedmann equation becomes

H2 =
1

3M2
P1

(1
2
ϕ̇2 + V

)
, (4.17)

where we have introduced the reduced Planck mass MP1 = (8πG)−1/2 and ignored the curvature term

(which will flatten out regardless). Substituting (4.17) into the equations for the Hubble slow-roll param-

eters (4.13) and (4.14) yields

ϵH =
3
2
ϕ̇2

1
2
ϕ̇2 + V

, (4.18)

ηH = 2
(
ϵH +

ϕ̈

Hϕ̇

)
, (4.19)

from which we see that the conditions {ϵH ≪ 1, |ηH | ≪ 1} imply {ϕ̇2 ≪ V , |ϕ̈| ≪ |3Hϕ̇|}. Consequently,
from the Friedmann equation (4.17) one now has

H2 ≈ V

3M2
P1

, (4.20)

meaning that we achieve exponential expansion governed by an approximately constant potential. Fur-

thermore, using the inflaton field equation (4.16) we also obtain

3Hϕ̇ ≈ −dV

dϕ
, (4.21)
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which states that the Hubble friction (LHS) roughly balances the pull from the potential gradient (RHS),

maintaining a very small, approximately constant inflaton velocity. It is useful to express the slow-roll con-

ditions as statements about the potential. For the first slow-roll condition, this is achieved by substituting

the approximations (4.20) and (4.21) into the equation for ϵH (4.13) to give the first potential slow-roll

parameter

ϵV ≡ M2
P1

2

(V ′

V

)2

. (4.22)

The second potential slow-roll parameter ηV is obtained by taking the time-derivative of (4.21)

3(Ḣϕ̇+Hϕ̈) = −d2V

dϕ2
ϕ̇ ,

Ḣ

H2
+

ϕ̈

Hϕ̇
= −M2

P1

V ′′

V
,

−ϵH +
ϕ̈

Hϕ̇
= −M2

P1

V ′′

V
(4.23)

in which we divided by H2ϕ̇ and employed (4.20) in the second line. Hence we have

ηV ≡M2
P1

V ′′

V
. (4.24)

Thus, with an appropriate potential one can define inflation as the period in which {ϵV ≪ 1, |ηV | ≪ 1}.
Defining the total number of e-folds of accelerated expansion

Ntot ≡
∫ af

a0

d ln a =

∫ tf

t0

Hdt , (4.25)

one requires Ntot ≥ 60 in order to resolve the issues discussed earlier [175].

Inflation offered a (somewhat) natural and simple solution of all three aforementioned problems which

riddled the standard Hot Big Bang cosmology. Moreover, quantum fluctuations of the inflaton field provides

a mechanism to seed density perturbations which aggregate to form large-scale structure. Inflation predicts

an almost scale-invariant spectrum of these perturbations, consistent with CMB observations. Thus, it

has proven to be apt on both the conceptual and observational fronts. Unfortunately, however, inflation

is not without its own problems (and criticisms). Putting the origin of the inflaton itself to the side, we

summarise the major difficulties below:

1. Eta problem - describing the inflationary mechanism in terms of an effective field theory one finds that

higher energy corrections will naturally alter the potential. Although small, they can be significant

enough to cause ηV > 1, thus ending the slow-roll phase. A variety of solutions have been proposed,

for example via a non-minimal coupling between the inflaton and gravity [177].

2. Trans-Planckian problem - if inflation lasts greater than 60 e-folds, it is possible for inflaton fluctu-

ations of wavelengths shorter than the Planck scale to be magnified to that of large-scale structure.
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This puts serious doubts on the validity of the semi-classical calculations of the power spectrum for

these modes [178,179]. Even more damning, it was conjectured that such a problem can never occur

in a valid string theory framework, thus imposing a significant constraint on the energy-scale of such

inflationary models [180].

3. Measure problem - for some inflationary models, quantum fluctuations can keep the inflaton in the

slow-roll region of the potential perpetually (at least in some parts of the spacetime). Known as

eternal inflation, one is left with a multiverse of ”pocket universes”, each of which being governed by

its own laws of physics (if string theory is accurate). Though this may solve a variety of fine-tuning

problems through the anthropic principle, it renders the predictive capability of eternal inflation

rather uncertain. This is because one must base predictions on relative probabilities that involve

infinities, the regulation of which are determined by what measure one uses. However, this choice is

plagued with ambiguity, making it unclear how useful eternal inflation is as a (presumably falsifiable)

scientific theory.

4. Initial conditions - the primary goal of inflation was to provide a natural mechanism to generate

the homogeneous, flat universe we observe today. One then presumes that the power of inflation

lies in its ability to transform a generic initial state to the unique one described. However, this

means that inflation should survive despite inhomogeneities in the inflaton field itself. Arriving

at such a conclusion is not a trivial matter, given the complexity of the possible interactions of a

highly inhomogeneous field with itself and the surrounding spacetime. It is entirely possible that the

presence of large gradients or high velocities in the inflaton field ruins its inflationary capability.

It is this last problem - the sensitivity of inflation to initial conditions - that we will now address. In

particular, we use the power of numerical relativity to investigate how the combination of an inhomogeneous

initial scalar-field with a non-uniform initial velocity affects the robustness of a (small-field) inflationary

model.

4.2 Research work III: the effect of non-uniform scalar-field momenta

on inhomogeneous small-field inflation

In this section we present a draft version of our work on the effect of non-uniform scalar-field momenta on

inhomogeneous small-field inflation. Collaborators include: Matthew Elley, Josu Aurrekoetxea, Eugene

Lim, Katy Clough and Panagiotis Giannadakis.

4.2.1 Abstract

We study the robustness of single-field inflation against initial inhomogeneities in both the field and

its momentum for a small-field α-attractor model. We find that the introduction of a relatively small
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inhomogeneous momentum profile results in the failure of inflation for this model, though only in certain

regions of the spacetime. Furthermore, we investigate how varying the wavelength and phase of the

momentum profile affects the sensitivity to inflationary failure. We conclude that higher modes are less

effective at inducing failure, and that the larger the relative phase difference between the field and its

momentum profile the less likely failure will occur.

4.2.2 Introduction

The theory of cosmological inflation [181–185] is regarded as the conventional explanation of several prob-

lems which once plagued the hot Big Bang model. Briefly put, the accelerated expansion of the early

universe resolves the stark contradiction between the observations of a flat, homogeneous universe with

super-horizon correlations and the expected inhomogeneous, causally disconnected universe likely to arise

from a steady expansion since the beginning of time. Furthermore, it even provides a natural mechanism to

seed structure formation, with one of its most remarkable successes being the observation of the predicted

nearly scale-invariant and Gaussian spectrum of primordial perturbations [186].

The standard mechanism driving inflation is a scalar field slowly rolling down its potential. For this to

occur, two conditions must be satisfied. Firstly, the potential must possess a region which obey certain

slow-roll criteria. This is dependent on what one uses as an overarching physical theory of the early

universe, usually a low-energy limit of a quantum theory of gravity. The validity of theories containing

such a potential is a source of contention, however we will simply assume certain models without addressing

these issues. Secondly, there must exist trajectories in phase space which lead to a slow-rolling scalar field

- that is, dominated by an approximately constant (positive) potential energy. Moreover, one expects the

initial configuration that leads to these trajectories to be quite general i.e. not fine-tuned to generate

inflation. This second condition is the subject of our investigation.

A major factor in determining the initial state of inflation is the associated energy scale. One can split this

into two regimes: high-scale inflation, in which the energy density of the scalar field potential V (ϕ) ∼M4
Pl

and low-scale inflation, where V (ϕ) ≪M4
Pl. Examples of the former include power-law models, such as the

classic quadratic potential V (ϕ) = m2ϕ2, whereas both hilltop and plateau models are members of the low-

scale family. For the high-scale case, one can readily see how inflation can naturally occur [185, 187–189].

The universe would consist of a plethora of Planck-sized causally disconnected regions. Within these

regions, all components of energy - such as the potential, gradient and kinetic - would roughly be of the

same (Planck) scale. Thus, in some of these regions one would expect the inflaton take values within

the slow-roll regime of the potential, and that the potential will quickly begin to dominate as the other

components dilute away with expansion. Recent simulations of high-scale inflation models have confirmed

their robustness to these inhomogeneous initial conditions [190–193], though one should note that they are

currently disfavoured over low-scale scale inflation from CMB observations [194,195].

On the other hand, the robustness of the favoured low-scale scale inflationary models to inhomogeneous

initial conditions is less clear-cut. As the characteristic inflationary scale is smaller, the size of the causally
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disconnected patches is larger, and the potential energy will likely be magnitudes smaller than other

components. Consequently, it is possible that large inhomogeneities could spoil inflation before it even

begins. This has motivated a wealth of studies on the effects of initial conditions on low-scale inflation,

many of which involve simulating the inflating spacetime with numerical relativity in full 3+1D [190–

193, 196, 197]. A significant conclusion from these investigations is that it is the distance δϕ that the

inflaton must travel in field space in order to generate the requisite number of e-folds which determines its

sensitivity to inhomogeneous initial conditions. In particular, small-field inflation is defined as δϕ < MPl.

The slow-roll region is so limited in these models that even minimal excursions of the field can end up in

the potential minimum. Moreover, the highly concave nature of the potential can prevent such excursions

from being pulled back up the potential by gradient pressure. The field stuck in the minimum can then

pull the rest down, quickly ending inflation. On the other hand, large-field inflationary models - for which

δϕ ∼ MPl - have potentials that are significantly less concave and possess a long (Planck-sized) slow-

roll region. They are therefore resistant to the aforementioned effects which spoil inflation in small-field

models [190,192].

Here we extend the work of [190–192] in investigating the effect of inhomogeneous initial conditions to the

case of a non-uniform initial inflaton momentum. We consider a small-field member of the (plateau-type)

α-attractor family [198,199]. For our simulations we use GRChombo, a multipurpose numerical relativity

code [200]. We briefly summarise our results below:

• The introduction of uniform/inhomogeneous initial momentum profiles generally reduces the robust-

ness of our inflationary model (i.e causes some regions to fall into the potential minimum)

• Smaller wavelength fluctuations in the initial momentum profiles are less effective in ending inflation

(require greater energies)

• The closer the maxima of the momentum profile is to the maxima of the initial field profile, the more

likely inflation will end (but not everywhere)

• For non-uniform initial momentum, inflation ends in some regions but appears to continue (high up

the plateau) in others, separated by a sharp field gradient. Thus it is possible inflation survives in

these ”bubbles”, though more work is required to verify this statement

4.2.3 Theory and Methodology

Model

Considering single-field inflation with scalar-field Lagrangian

Lϕ = −1

2
gµν∂µϕ∂νϕ− V (ϕ) , (4.26)

inflation is achieved in a homogeneous spacetime when the slow-roll parameters satisfy

ϵ =
M2

P1

16π

(
V ′

V

)2

≪ 1, η =
M2

P1

8π

(
V ′′

V

)
≪ 1 , (4.27)
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where M2
Pl = ℏc/G. We use the α-attractor potential given by

V (ϕ) = Λ4
(
1− eϕ/µ

)2
, (4.28)

in which case the potential approaches the plateau exponentially, governed by the parameter µ (see

Fig. 2.2). Thus it is µ that determines if a model is large or small field, whereas Λ determines the

energy-scale.

One should note that the property of being either a large or small field model is tied with the associated

scale of inflation via the scalar power spectrum

∆2
R =

H2

πM2
Plϵ

≈ 2× 10−9 , (4.29)

where H is the Hubble constant and ϵ is the first slow-roll parameter given in (4.27). Since H2 ∝ V ,

a lower energy of inflation requires a smaller ϵ in order to be consistent with the observed value of the

scalar power spectrum. Consequently, the field velocity is slower and so the inflaton must travel a shorter

distance in field space in order to generate the expected number of e-folds N , which can be approximated

by

δϕ ≈ N
2

H

MPl

105MP1 , (4.30)

assuming a constant H and ϵ. Hence viable small-field models have a characteristic energy lower than that

of their large-field counterparts.

To understand the evolution of an inhomogeneous inflaton field, consider the scalar-field evolution equation

- from the Lagrangian (4.26) - on an FLRW background

ϕ̈ = ∇2ϕ− 3Hϕ̇− dV (ϕ)

dϕ
, (4.31)

each term on the RHS representing a mechanism that govern the dynamics of an inhomogeneous scalar-

field:

1. Scalar-field gradient pressure - spatial inhomogeneities in the field result in gradients which act to

homogenize the it, dilutes with expansion

2. Hubble friction - expansion of spacetime decreases the velocity of the field

3. Potential gradient - accelerates the field to its minimum, ending inflation

The form and magnitude of the initial scalar-field momentum will influence which of the above mechanisms

dominate the evolution throughout the spacetime, and ultimately its inflationary fate.
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Set-up

We investigate the effects of inhomogeneities in the scalar-field initial data by superposing sinusoidal

perturbations of the scalar-field and its momentum in the three spatial directions:

ϕinit(x) = ϕ0 +
∆ϕ

3

3∑
i=1

cos (kϕxi) , (4.32)

Πinit(x) = Π0 +
∆Π

3

3∑
i=1

cos (kΠxi + θ) . (4.33)

Here ϕ0 (Π0) is the initial background value for the scalar field (momentum) and ∆ϕ (∆Π) is the amplitude

of the scalar field (momentum) perturbation. Additionally, we include a phase θ in the Π perturbation.

The size of the perturbations are determined by wavenumber kϕ = 2πNϕ/L, where N is a natural number

and L is set as the initial Hubble length H−1
0 in the absence of inhomogeneities

L =
3MPl√

24πV (ϕ0)
. (4.34)

We use subscripts on k and subsequently N to identify if the quantity refers to the ϕ or Π perturbation.

For all our simulations we set Nϕ = 1.

One should note that we do not superpose a series of modes. This is such that the given (gradient/kinetic)

energy density is focused in the amplitude of the singular mode rather than shared amongst many modes.

This is in accordance with the findings of [190,191,196] which demonstrated the importance of inflationary

success on the local dynamics of the scalar field, this being dependent on the amplitude of the perturbations.

We set our computational domain to be a cube of length Lcom = 32M , with a grid size of 1283. Here M

is the geometrized mass unit, which is a fraction of the Planck mass MPl as determined by setting Lcom

equal to the Hubble length L given by (4.34). Periodic boundary conditions are enforced.

We consider a small-field α-attractor model given by the potential (4.28) with parameters µ = 0.005MPl

and Λ4 = 1.18× 10−18M4
Pl. Setting ϕ0 = −6.33× 10−2, this would yield 100 e-folds for the standard case

of homogeneous inflation and generate the observed scalar power given by (4.30). We fix the perturbation

of the scalar-field for all runs, setting ∆ϕ = 4.50 × 10−2 so that in the absence of Πinit the scalar-field

homogenises into a slow-roll inflating state i.e. it does not fall into the potential minimum for at least the

first several e-folds (see the first plot of Fig. 4.2).

Initial data

In the Arnowitt-Deser-Misner (ADM) formulation, one foliates spacetime into a stack of spatial hypersur-

faces such that the metric can be written as

ds2 = −
(
α2 − βiβi

)
dt2 + 2βidx

idt+ γijdx
idxj , (4.35)

where γij is the spatial metric on the hypersurfaces, α is the lapse function and βi is the shift vector.

These quantities must be specified on the initial hypersurface, along with the extrinsic curvature which is
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Figure 4.1: Our small-field α-attractor potential with µ = 0.005MPl and Λ4 = 1.18 × 10−18M4
Pl. The solid blue

line represents the region of the potential initially spanned by the scalar-field. The vertical dashed line is the

background scalar-field value (ϕ0 = −6.33 × 10−2MPl) and the vertical dotted line shows where the slow-roll

parameter ϵ = 1 (ϕf = −2.03× 10−2MPl).

the Lie derivative of the spatial metric along the vector normal to the hypersurfaces

Kij = −1

2
Lnγij . (4.36)

For the gauge functions, we simply choose α = 1 and βi = 0. On the other hand, γij and Kij must satisfy

the Hamiltonian and momentum constraint equations

H ≡ (3)R +K2 −KijK
ij − 16πρ = 0 , (4.37)

Mi ≡ Dj

(
Kij − γijK

)
− 8πSi = 0 , (4.38)

where (3)R is the spatial Ricci scalar, K is the trace of the extrinsic curvature and Dj is the spatial

covariant derivative. The energy and momentum densities are obtained from the stress-energy tensor T µν

via normal and spatial projections:

ρ = nµnνT
µν , (4.39)

Si = −nµ
(
γνi + nνni

)
Tµν . (4.40)

Following the Conformal Transverse Traceless (CTT) method for solving the initial data problem, we

perform a conformal re-scaling of the spatial metric and decompose the extrinsic curvature such that

γij = ψ4γ̄ij , (4.41)

Kij = ψ−2Āij +
1

3
γijK , (4.42)
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in which ψ is the conformal factor, γ̄ij is the conformal spatial metric and Āij is the conformal traceless

extrinsic curvature. Assuming conformal flatness (γ̄ij = δij) one can then write the Hamiltonian (4.37)

and momentum (4.38) constraints as

8D̄2ψ − ψR̄− 2

3
ψ5K2 + ψ−7ĀijĀ

ij = −16πψ5ρ , (4.43)(
∆̄LW

)i − 2

3
ψ6γ̄ijD̄jK = 8πψ10Si , (4.44)

D̄jĀ
ij
TT = 0 , (4.45)

where ∆̄L is the conformal vector Laplacian, R̄ is the conformal Ricci scalar, D̄ is the conformal covariant

derivative and Āij has been split into its transverse (Āij
TT ) and longitudinal (given by vector potential W i)

components

Āij = Āij
TT + D̄iW j + D̄jW i − 2

3
γ̄ijD̄kW

k . (4.46)

In the CTT method, one specifies γ̄ij and K as free data - which decouples the momentum constraint from

the Hamiltonian constraint - and then solves the constraints for ψ and W i. However, as we are simulating

an inflationary spacetime we invoke periodic boundary conditions - one can think of the simulation domain

as one of many identical cells filling the universe. This BC, along with the ψ-dependent form of the energy

density for a scalar field

ρ =
1

2
ψ−4 (∂iϕ)

2 +
1

2
Π2 + V (ϕ) , (4.47)

can render the possibility of converging on a unique solution for ψ extremely difficult. Instead we employ

the CTTK method, as introduced in [201]. Here one specifies an initial profile for ψ and solves (4.43)

algebraically for K. For an FLRW spacetime with scale factor a we have ψ = a2, and so we can set

ψ = 1. One must also solve the momentum constraints (4.44) sourced by gradients in K and the scalar

field momentum density

Si = −Π∂iϕ . (4.48)

For a detailed look at the CTTK method, see [201].

Evolution

We evolve the spacetime using the BSSN [9, 10, 202] formulation of Einstein’s equations. Under this

formalism we conformally re-scale the spatial metric using the (evolved) conformal factor χ

γij =
1

χ
γ̃ij , (4.49)

with

χ = (detγij)
− 1

3 , (4.50)

such that the determinant of the conformal spatial metric is unity. Consequently, in an FLRW spacetime

with scale factor a one has

χ = a−2 . (4.51)
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For our inhomogeneous spacetime we can define an average number of efolds as

⟨N⟩ = −1

2
ln⟨χ⟩ , (4.52)

where we have used physical volume averaging

⟨κ⟩ = 1

V

∫
κdV , (4.53)

over the entire physical volume V for an arbitrary spacetime function κ (here κ = χ).

To evolve the lapse and shift, we use a modified form of the moving puncture gauge [72,73]

∂tα = −µα(K − ⟨K⟩) + βi∂iα , (4.54)

∂tβ
i = Bi , (4.55)

∂tB
i =

3

4
∂tΓ

i − ηBi , (4.56)

with µ = η = 1.0. The modification K −→ K − ⟨K⟩ is a useful adaptation given that K measures the

local expansion rate. Thus, if the standard moving puncture gauge is employed one finds that the lapse

grows rapidly in areas of expansion (i.e. negative K) ruining the time resolution and developing significant

gradients. Allowing the lapse to grow (or shrink) as a result of the local difference from the average

expansion rate resolves this issue, as long as the variations in K are not too large. However, this change is

not without its disadvantages. A major issue results from the fact that the lapse now continually shrinks

in regions that are expanding at a lower rate than the average. Moreover, collapsing regions will essentially

become frozen, even if they do not form BHs. To remedy this problem, we set a minimum value for the

lapse αmin = 0.4. One may be concerned that this will allow the spacetime to evolve too close to the

punctures (no ”collapse of the lapse”), causing significant error growth and likely crash the simulation. We

did not find this to be the case - collapsing regions would simply diminish below the grid resolution as a

result of the expanding neighbourhood.

Using (4.26), one obtains the evolution equation for the scalar-field

−∇µ∇µϕ+
dV (ϕ)

dϕ
= 0 , (4.57)

which decomposes into 3+1 form to yield

∂tϕ = αΠ+ βi∂iϕ , (4.58)

∂tΠ = βi∂iΠ+ α∂i∂
iϕ+ ∂iϕ∂

iα + α

(
KΠ− γijΓk

ij∂kϕ− dV

dϕ

)
. (4.59)

4.2.4 Results I

Uniform initial scalar-field momentum

We first investigate how the scalar-field dynamics - and subsequently inflationary growth - is affected

by a spatially constant initial scalar-field momentum Πinit = Π0 (towards the potential minimum). In
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particular, we see how the scalar-field evolves with ⟨N⟩ for increasing Πinit. These runs are characterised

by the ratio of their average kinetic and potential energies

rkin = ⟨ρkin⟩/⟨ρpot⟩ , (4.60)

at t = 0. In Fig. 4.2, we illustrate the evolution of the scalar-field at the corner (red line) and centre

(blue line) of our numerical domain. These correspond to the global minimum and maximum of the field

initially (and remain so throughout the evolution, though they may swap with each other).

Figure 4.2: The evolution of the scalar-field with average number of e-folds at the corner (red) and centre (blue)

of our numerical domain, corresponding to the initial minimum and maximum values respectively. The black

dash-dotted line shows ϕf i.e. the value of the field for which the slow-roll parameter of the potential ϵ = 1.

The first and second plots show runs with constant initial scalar-field momentum Πinit = Π0 such that the initial

kinetic-to-potential energy ratio rkin(t = 0) = 0 and 0.005 respectively.

The left plot shows the trivial rkin(t = 0) = 0 case. Here we see the field homogenise to ∼ ϕ0 as a result

of gradient pressure, as discussed in previous work [190,192,196]. Crucially, the minimum of the field gets

pulled up the potential, away from the slow-roll violating (ϵ > 1) regions of the potential (the boundary

being the black dashed line). In the right plot - with rkin(t = 0) = 0.005 - we see that very little kinetic

energy is necessary to send part of the field into the potential minimum. Perhaps surprisingly, its the

initial minimum of the field that ends up at the bottom of the potential. The reason for this is two-fold.

Firstly, the initial gradient pressure at the maximum is far too strong to be undermined by the initial

boost. Consider the ratio of the average gradient and potential energies

rgrad = ⟨ρgrad⟩/⟨ρpot⟩ , (4.61)

which for our ∆ϕ is initially rgrad(t = 0) ≈ 0.06 ≫ rkin(t = 0) for all runs considered. Thus it is not

surprising that initially the spatial gradients dominate the dynamics

Secondly, the minimum is disadvantaged by the boost and the gradient pressure, both of which are directed

towards the bottom of the potential. One may observe that this is still not enough to directly send the

field into the potential minimum. Rather, the field is pulled back up the minimum at ⟨N⟩ = 1, and then

rolls back down in a few e-folds. Subsequently, the field oscillates about the potential minimum.
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Figure 4.3: Profiles of the scalar-field across the largest diagonal of our numerical domain (corner to far-corner) for

several e-folds. The first and second plots show runs with initial kinetic-to-potential energy ratio rkin(t = 0) = 0

and 0.005 respectively. Here dH0 is the fraction of the co-moving distance to the initial Hubble scale.

In Fig. 4.3, we further illustrate the evolution of the scalar-field profile across the main diagonal of our grid

for all three runs. Here one can see the gradient pressure in effect, with the first plot showing the initial

perturbed profile rapidly flattening out. In the second plot, one observes the ”wings” of the profile being

drawn past the ϵ = 1 boundary and into the potential minimum. As we have a cubic grid, we therefore

see eight non-inflating corner regions surrounding an inflating centre. Once part of the field has fallen into

the potential minimum, one can see from the right plot that the subsequent development of significant

gradients begins to pull-down the rest of the field. Unfortunately, as the gradients are so sharp we could

not resolve them fully (many levels of AMR would be required). The lack of resolution results in constraint

violation in these regions, which spreads out to the rest of our domain. Thus, we only evolve a couple

of e-folds after they develop, and check the convergence of the minimum and maximum of the field (see

Appendix D for details of the constraint evolution and convergence). One is then left to speculate about

the fate of the field (and the spacetime) as a whole in the second case. It is clear that one will expect less

than 100 e-folds of inflation given that the (late-time) minimum of the field has already fallen below ϕ0 in

only a few e-folds(comparing the blue dashed-dotted lines of Fig. 4.2). Furthermore, the drag-down effect

due to the gradient pressure of the field in the potential minimum will remain substantial until several

more e-folds dilute it significantly. Therefore we predict that the maximum number of e-folds in this case

- corresponding to the central region of the domain - will still be ≪ 100 and thus designate as a ”failure”.

Inhomogeneous initial scalar-field momentum

We will now consider cases for which the scalar-field momentum has a non-trivial initial profile given by

(4.33). Setting the background value Π0 = 0, we vary ∆Π, NΠ and θ. As a consequence of our periodic

boundary conditions, certain integrability conditions are placed on the initial data such that for NΠ = Nϕ
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Figure 4.4: The evolution of the scalar-field with average number of e-folds at the corner (solid red) and centre

(blue) of our numerical domain, corresponding to the initial minimum and maximum values respectively. The

dashed red line in the second plot shows the global minimum value, which becomes distinct from the corner

value at roughly 0.5 e-folds. The left and right plots show runs with initial kinetic-to-potential energy ratio

rkin(t = 0) = 0.005 and 0.0075 respectively.

we can only set θ = 0 or π [201].

NΠ = 1, θ = 0

Here we consider the case of the initial ϕ and Π profiles being in-phase. As illustrated in Fig 4.4, it’s now

the initial maximum of the field that falls into the potential minimum. Despite this, one observes that for

at least rkin(t = 0) ≤ 0.005 the field does not fail in this region, as it is quickly pulled back up the potential

by the gradient pressure (left plot). One may be surprised that the maximum even falls into the bottom

of the potential, given that this does not occur for the same energy in the Πinit = Π0 case. However, we

must bear in mind that it is the average kinetic energy being considered, and so it is concentrated at the

maximum (the momentum will be greater there than Π0 of the constant case for the same energy). On

the other hand, it is also this concentration of the kinetic energy that prevents failure - the neighbouring

regions will have lower initial momenta, causing the field to stretch at the maximum, leading to a pinching

effect that will subsequently sling-shot the field back up the potential. This is illustrated in the first plot

of Fig. 4.5 showing the evolution of the (diagonal) field profiles.

The second plot of Fig 4.4 demonstrates that this pinching effect is nullified for a higher rkin(t = 0), with

the field in the central region remaining in the potential minimum. One can see from the right plot of

Fig. 4.5 that this is due to a critical amount of the neighbouring field being boosted into the potential

minimum. Consequently, not enough of the field gets pulled back before the gradient pressure is diluted

by the expansion and the potential gradient begins to dominate. On the other hand, from the red lines of

Fig 4.4 we see that trajectory of the corner field (the initial minimum) remains essentially unchanged by

the energy increase. Until ⟨N⟩ = 0.5 it seems that the field here will also fall into the potential minimum.

However, this is prevented by the field in the region between the corner and centre for which Πinit ≈ 0
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Figure 4.5: Profiles of the scalar-field across the largest diagonal of our numerical domain (corner to far-corner) for

several e-folds. The left and right plots show runs with initial kinetic-to-potential energy ratio rkin(t = 0) = 0.005

and 0.0075 respectively.

Figure 4.6: The variation of the mean curvature K on the y = 0.5H0 slice at ⟨N⟩ = 0 (left) and ⟨N⟩ = 1.5

(right) for the case with initial kinetic-to-potential energy ratio rkin(t = 0) = 0.0075. Yellow and magenta regions

indicate (negative) mean curvatures of low and high magnitudes, respectively. The 3D depth of the images are

included to help visualise the relative magnitudes of the expansion.

(around dH0 = 0.5 and 1.25 in Fig. 4.5). The field in this region becomes the global maximum (as indicated

by the dashed red line of Fig 4.4) and pulls the neighbouring field back up the plateau.

We are therefore left with a domain that consists of a non-inflating central bubble surrounded by an

inflating spacetime for which the scalar-field is high up the plateau (though slightly lower than ϕ0). These

two regions are separated by a sharp field gradient that is very difficult to resolve. This is seen in 4.6,
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Figure 4.7: The evolution of the scalar-field with average number of e-folds at the corner (solid red) and centre

(blue) of our numerical domain, corresponding to the initial minimum and maximum values respectively. Here

NΠ = 1 and θ = π so that Πinit is in anti-phase with ϕinit. The left and right plots show runs with initial kinetic-

to-potential energy ratio rkin(t = 0) = 0.075 and 0.0775 respectively.

which illustrates the variation of the mean curvature K on the y = 0.5H0 (central) slice at ⟨N⟩ = 0 and

1.5. We observe the undulating initial K profile on the left, a consequence of CCTK (though the variations

are minimal given the low energy densities involved). The right image shows our late-time non-inflating

(less-negative K) bubble surrounded by inflating space. Under the assumption that they are essentially

”separate universes”, one can conclude that inflation survives, though the maximum number of e-folds will

likely be somewhat less than 100.

NΠ = 1, θ = π

For the case in which Πinit is in anti-phase with ϕinit, significantly higher kinetic energy is necessary to

induce failure in a region of the spacetime. We see in the evolution plots Fig. 4.7 that one requires

rkin(t = 0) > 0.075, now higher than the initial gradient energy rgrad(t = 0) ≈ 0.06. In the left plot, the

trajectory of the initial minimum (red line) - which was the cause of failure for the constant momentum

case - is deflected away from the potential minimum by gradients arising from neighbouring regions with

opposite field momenta. Curiously, for ⟨N⟩ ≤ 0.5 the trajectories shown in Fig. 4.7 and profiles illustrated

in Fig. 4.8 almost remain the same as rkin(t = 0) is increased. This suggests that we have identified the

borderline case before failure occurs. One can see that the resulting spacetime for the rkin(t = 0) = 0.0775

scenario is the direct opposite of the in-phase rkin(t = 0) = 0.0075 case addressed previously: we now have

an inflating central bubble surrounded by non-inflating spacetime. Thus the ’survival’ of ≈ 100 e-folds of

inflation is possible in this central region, given they are sufficiently disconnected (which is to be expected

given the exponential expansion of the intervening spacetime).

NΠ = 2, θ = (0, π/2, π)

For our final three cases we set NΠ = 2 and vary the phase. We illustrate the initial field and momentum
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Figure 4.8: Profiles of the scalar-field across the largest diagonal of our numerical domain (corner to far-corner)

for several e-folds. We have set NΠ = 1 and θ = π so that Πinit is in anti-phase with ϕinit. The left and right plots

show runs with initial kinetic-to-potential energy ratio rkin(t = 0) = 0.075 and 0.0775 respectively.

Figure 4.9: Initial profiles of the scalar-field (red) and its momentum (blue) along the x-axis for the cases with

NΠ = 2 and varying phase θ.

profiles in Fig. 4.9 for visual assistance of the initial set-up. For each case, we increased the initial kinetic

energy until failure (in some region) is induced. All three evolution plots for the initial minima/maxima

are shown in Fig. 4.10, and the corresponding profile evolutions are illustrated in Fig. 4.11.

For the θ = 0 case, we observe similar results as for the NΠ = 1, θ = 0 study - the initial maximum falls

to the bottom of the potential, but the initial minimum is pulled away from a failure trajectory by the

surrounding field. However, slightly more kinetic energy is required (about an order of magnitude) and

we observe that the size of the non-inflating bubble at ⟨N⟩ = 3 is larger (dotted red line in the left plot of

Fig. 4.11). This is because one must also boost the field around the maximum sufficiently (as the velocity

fluctuation falls off much faster for shorter wavelengths) such that a larger region falls into the potential

minimum rather than pull the field-maximum back up.
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Figure 4.10: The evolution of the scalar-field with average number of e-folds at the corner (solid red) and centre

(solid blue) of our numerical domain, corresponding to the initial minimum and maximum values respectively.

The dashed red and dotted blue lines show the global minimum and maximum field values, if these differ from

their initial positions. The left, centre and right plots are for the cases with initial phase θ = 0, π/2, π and initial

kinetic energies rkin(t = 0) = 0.0775, 0.25, 0.3 which result in failure at some location in the domain.

Figure 4.11: Profiles of the scalar-field across the largest diagonal of our numerical domain (corner to far-corner)

for several e-folds. The left, centre and right plots are for the cases with initial phase θ = 0, π/2, π and initial

kinetic energies rkin(t = 0) = 0.0775, 0.25, 0.3 which result in failure at some location in the domain.

One obtains a significantly different evolution for the θ = π/2 boost. This clearly spoils the symmetry

of the simulation, and is arguably a more realistic configuration than our previous considerations i.e.

alignment of the two profiles. Failure occurs in regions displaced from the initial maximum, where the

peaks of the initial momentum profile are located. This quickly drags the rest of the field down (including

the maximum), resulting in a lopsided non-inflating bubble. However, a substantial initial kinetic energy

is necessary to induce such a failure (now only an order of magnitude smaller than the potential), again a

consequence of how smaller wavelength momentum stretch the field, creating large gradients that prevent

further inhomogeneity developing.

Symmetry is restored for the final θ = π scenario. Curiously, we observe that failure occurs at the initial
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minimum, despite the fact that it is initially boosted up the potential plateau. We see that regions where

the initial momentum takes its highest value - coinciding with the regions of greatest gradient energy (see

Fig. 4.9) - are prevented from falling into the minimum by the gradient pressure, even with such high

initial velocity. As seen in the third plot of Fig. 4.11, the field in the central, inflating regions then begins

large oscillations before dying down to a final value of roughly ϕ0.

4.2.5 Discussion

We have used numerical relativity to simulate the early stages of small-field inflation with inhomogeneities

in both the initial scalar-field and its velocity profile. This required the implementation of the new initial

data solver CCTK [201], as well as a modified form of the moving puncture gauge. Specifically, we

considered an α-attractor model (4.28) with a fixed initial sinusoidal field profile (4.32) and a varying

initial sinusoidal momentum profile (4.33). We find that the necessary average kinetic energy to end

inflation in at least some regions of the spacetime (or the entire spacetime, in the case of a uniform boost)

is less than that of the potential for all cases considered. It should be pointed out that this model would

naturally be more robust against field momenta if one were to shift the field further up along the plateau

(though the size of the plateau is rather limited in small-field cases) as Hubble friction would play a more

significant role. We performed this investigation not to test all the possible initial states, but rather to

identify the main causes of inflationary failure as a result of the presence of the initial momentum.

To summarise, it is clear that the introduction of a low-energy initial field momentum generally reduces

the robustness of small-field inflation (unless it is directed up the plateau only, which is likely quite a

unique configuration subset). As in the case of ϕ perturbations [190], decreasing the wavelength of the

momentum modes reduces their impact, requiring more energy to cause failure. This a consequence of

the fact that shorter-wavelength Π modes act to inhomogenise the field, causing large gradients that slow

the peaks down (and even reverse their trajectories). Moreover, the relative phase of the initial ϕ and Π

profiles greatly impact the likeliness of failure, with maxima-aligned modes needing less energy to induce

failure than initial Π modes that have maxima aligned with the minima of ϕ. This should not be too

obvious, given that gradient pressure helps to shoot the initial minima down the potential. Nevertheless,

such regions on failure trajectories are rescued by the gradients of the surrounding field, a phenomenon

we find ubiquitous in our set-ups.

Indeed, with the exception of a uniform momentum, we find that only certain regions of the spacetime fall

to the potential minimum. The location of these regions depend on the relative phase of the initial ϕ and Π

profiles, leading either to a non-inflating bubble surrounded by inflating spacetime, or an inflating bubble

surrounded by a non-inflating spacetime. Unfortunately, the gradients between these regions are too sharp

to simulate accurately. However, if the inflating bubble/surroundings are of sufficiently large physical

volume that they can be considered their own (effectively seperate) quadi-de Sitter spacetime, then one

concludes that inflation has succeeded despite certain regions falling into the minimum. Otherwise, the

field in the inflating regions will inevitably be dragged down into the minimum by the gradient pressure and



4.2 Research work III: the effect of non-uniform scalar-field momenta on
inhomogeneous small-field inflation 83

inflation ends with ⟨N⟩ ≪ 100 (or even ≪ 60) e-folds. This leads us to potential avenues for future work.

Modifications of the evolution code are required in order for us to run simulations for the entire inflationary

period, which would allow us to observe the fate of the aforementioned bubbles. Morever, we also aim

to repeat the investigation for large-field models, though preliminary tests suggest they are remarkably

robust to large momentum perturbations (succeeding despite kinetic energies of many orders of magnitude

larger than the potential). Lastly, recent work [203] has used novel gauge-independent diagnostics to claim

that inflation does not truly occur under (physically valid) inhomogeneous initial conditions. This is a

statement that we soon aim to address.
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Chapter 5

Summary and future work

We have explored how the tools of NR can be used to investigate two rather distinct phenomena - one

astrophysical and the other cosmological. We will now summarise our conclusions, and offer ideas for

possible future projects.

Modified gravity

Our first topic centered on using NR in modified gravity. Specifically, it involved simulating binary black

holes within quadratic scalar Gauss-Bonnet gravity. In this theory, it is possible for BHs to develop

scalar hair. Whether this occurs depends on the mass and spin of the BH in question, as well as the

(scalar-curvature) coupling strength. Consequently, one can obtain a variety of unscalarized/scalarized

configurations of binary black hole evolutions. For a positive coupling, only one type transition is likely to

occur - the formation of a descalarized remnant from scalarized progenitors (either or both can be scalar-

ized). This is because for a positive coupling, it is the BH mass which generates positive (Gauss-bonnet)

curvature, which triggers the (tachyonic) transition between states. Since the remnant will naturally have

a large mass than its components, then only this dynamical descalarization process will occur. Demon-

strating this process was the main result of our paper [5].

On the other hand, when the coupling is negative, the BH spin becomes the dominant factor. Through

the generation of negative curvature, large spins (dimensionless spin χ > 0.5) can trigger the tachyonic

instability. Thus, given the variability in magnitude of BH spin during a binary merger, both (spin-induced)

dynamical descalarization and scalarization are feasible.

The possibility of detecting one of these transitions is another question entirely. For descalarization cases,

the presence of dipole or quadrupole scalar radiation during the inspiral and merger causes the inspiral to

accelerate, culminating in a dephasing of the gravitational waveform. This is the most significant effect

in regards to observation, and has been used for the shift-symmetric sGB to forecast constraints on the

coupling [35]. Unfortunately, the possibility of observing the descalarization effect itself is less clear, given

that it occurs on the same timescale as the merger/ringdown and thus a significant signal-to-noise ratio

is necessary to identify the imprint it has on the waveform. Regarding spin-induced scalarization, the
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prospect of observing the transition is even more remote (at least from work so far). This is because there

is a prolonged delay between the merger and the generation of a consequential field magnitude. Thus, it

is likely that the field growth will have no impact on the ringdown waveform.

This however, brings us to considering avenues of future work. Our projects involved simulating the scalar

dynamics on a GR background, without any backreaction. If one were to include backreaction, so that the

field stabilises to a stationary state, it is possible for a second - possibly observable - gravitational wave

to be emitted via the relaxation process. Thus we see the importance of evolving these system within the

full theory, to fully grasp the potential consequences. We therefore arrive at possibly the most important

direction for future work - constructing well-posed formulations of modified gravity theories. Without such

reconstructions, one cannot successfully evolve systems within the theory reliably (if at all). Fortunately,

great strides have been made on this front. For example, there have been successful simulations of binary

black hole mergers in sGB gravity using recently developed well-posed formulations [102, 204], though

these have been restricted to the small-coupling regime. Ultimately though, we are a long way off from

generating gravitational template banks in the vast plethora of modified gravity theories currently on offer.

So, on the bright side, there is plenty more work to be done.

Inflation

The status of inflation is a somewhat contentious issues. It provides a simple and elegant solution to many

problems that seized earlier models of the young universe. It also provides a natural mechanism for seeding

structure formation. Nevertheless, it also subject to much criticism. Some of this criticism is caused by

the ambiguous nature of inflation’s initial state. Given the unknown form of quantum gravity, one should

assume that inflation occurs from a generic initial state. As part of a growing collection of NR work on

this subject, we attempted to help verify this assumption. Fixing an inhomogeneous inflaton field, we used

a novel initial conditions solver [201] to simulate how a non-uniform initial momentum profile impacts the

beginning of small-field inflation.

Overall, the inclusion of field momentum tended to stymie inflation in some regions of our domain, re-

gardless of the shape of the profile. However, the energy required to end inflation in these regions varied

greatly on the wavelength of the mode and its relative phase with the initial field fluctuation. Namely,

shorter-wavelength modes needed more energy than their long-wavelength counterparts, and the necessary

energy was minimised when the peaks of the field and its momentum were aligned. When the maxima of

the momentum was aligned with minimum of the field, significant energies were required for inflationary

failure (almost the energy of the potential itself for the second mode) despite the ”sling-shot” effect of the

gradient pressure. We attribute this to the combined effect of nearby, lower-velocity fields deflecting the

trajectory as well as Hubble friction slowing the field down as it traverses the plateau.

However, the fate of inflation is not necessarily sealed once a regions fall into the potential minimum.

In fact, rather than seeing the gradual pulling down of the rest of the field, we observe the formation of

two distinct regions separated by a sharp gradient. These regions consist of either a non-inflating bubble

surrounded by inflating spacetime, or the exact opposite (depending on the initial momentum profile).
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Thus we speculate that such regions are causally disconnected, and so inflation may succeed in a restricted

region of the domain.

Simulating the evolution of the aforementioned inflating regions throughout until the maximum number

of e-folds has be attained is definitely a prospect for a future project. In fact there are many possibilities:

investigating the effects of non-uniform momentum profiles on other models of inflation (such as large-field

models); abandoning assumptions such as conformal flatness in the initial data for greater generality and

simulating inflation in modified gravity theories. Most of these, however, will likely require significant (and

novel) changes to the initial data solvers and evolution codes we employ. This is not entirely unexpected:

for NR to fully grasp its potential in a wider (i.e. cosmological) setting, such developments are an absolute

necessity and are certain to push the boundaries of possibility within the field.
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Appendix A

Horndeski’s theory

Horndeski’s theory is the most general second-order, four dimensional scalar-tensor theory [21]. It’s given

by the Lagrangian [13]

LH =δαβγµνσ

[
κ1∇µ∇αϕRβγ

νσ − 4

3
∂Xκ1∇µ∇αϕ∇ν∇βϕ∇σ∇γϕ

+ κ3∇αϕ∇µϕRβγ
νσ − 4∂Xκ3∇αϕ∇µϕ∇ν∇βϕ∇σ∇γϕ

]
+ δαβµν

[
(F + 2W )Rαβ

µν − 4∂XF∇µ∇αϕ∇ν∇βϕ+ 2κ8∇αϕ∇µϕ∇ν∇βϕ
]

− 3
[
2∂ϕ(F + 2W ) +Xκ8

]
∇µ∇µϕ+ κ9 , (A.1)

where the arbitrary functions κi and F are both dependent on the scalar-field ϕ and X = ∇µ∇µϕ, the

latter being constrained by ∂XF = ∂ϕκ1 − κ3 − 2X∂Xκ3.
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Appendix B

Research work I

We assess the discretization error of our simulations by exemplarily running the head-on collision of equal-

mass black holes that initially carry a bound-state scalar field with coupling parameter β2 = 0.36281 at

three different resolutions dxc = 1.0M , dxm = 0.9M and dxf = 0.8M . Here M is the system’s total mass,

which we set to unit. This setup corresponds to case (c) in Fig. 3.2 of the main text. Focusing on the

scalar field monopole (Φ00) and the gravitational quadrupole (Ψ4,20) we compute the differences between the

course and medium, and medium and high resolution runs. For Φ00, we rescaled the latter difference by the

convergence factor Q2 = 1.12, as shown in the left panel in Fig. B.1, indicating second-order convergence.

For Ψ4,20, we rescaled the latter difference by Q4 = 1.39, as shown in the right panel, indicating fourth-order

convergence. Computing the relative difference ∆Φ00/Φ00 between the coarsest resolution simulation with

dxc = 1.0M and the second-order Richardson extrapolation, we find a numerical error of ∆Φ00/Φ00 ≲ 0.5%

as stated in the main text.
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Figure B.1: Convergence plot for case (b) in Fig. 3.2 of the main text. We show the scalar field monopole

(left panel) and the gravitational quadrupole (right panel) extracted at rex = 100M and shifted in time such

that (t− rex − tM)/M = 0 corresponds to the BHs’ merger. We calculate the differences between the coarse and

medium resolutions, dxc = 1.0M and dxm = 0.9M (solid line), and medium and high resolutions, dxm = 0.9M

and dxf = 0.8M . For the scalar field monopole we rescale the latter by Q2 = 1.12 (dashed line), indicating

second-order convergence. For the gravitational quadrupole we rescale by Q4 = 1.39 (dashed line), indicating

fourth-order convergence, as stated in the main text.



89

10−5

10−3

10−1

101

|Φ
|

(a)t = 1M
t = 50M

t = 100M
t = 150M

t = 200M

10−5

10−3

10−1

101

(b)

−40 −20 0 20 40

x /M

10−5

10−3

10−1

101

|Φ
|

(c)

−40 −20 0 20 40

x /M

10−1

107

1015

1023

1031

(d)

Figure B.2: Scalar field’s profile along the collision axis x/M at different instances in time before, during and

after the BH head-on collision for cases (a)–(d) defined in Fig. 3.2. The merger happens at tM ∼ 179.5M .

Figure B.2 presents the scalar field profile along the collision axis x/M at different instances throughout

the evolution before, near and after the merger of the BHs. In case (a), the scalar field is below the critical

value to form any bound state configurations and, indeed, after a brief interaction at early times it decays

already before the BHs collide. In cases (b) and (c), the scalar field forms a bound state that is anchored

around the individual (q = 1) or smaller-mass BH (q = 1/2). As the BHs approach each other, the scalar

field follows their dynamics and moves along the collision course with only small adjustments to its spatial

configuration. After the BHs merge, the critical value β2,c to form a bound state increases, i.e., the BH

can no longer support a scalar bound state. Consequently, the configuration becomes subcritical and the

scalar field is depleted, indicating dynamical descalarization of the BH binary. Finally, case (d) is set up

such that the final configuration is near critical to form a bound state, always leading to a supercritical

setup before merger. Indeed, we observe that the scalar field grows (exponentially), before settling to a

constant-in-time radial profile after the merger. This rapid growth is due to the fact that β2 ∼ 1.45123 is

four times larger than the critical scalarization value for the initial BHs.
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Appendix C

Research work II

Setup d/M χ1 χ2 χf β βi
c βf

c process

A 10 0 0 0.68 −14.30 – −12.96 s̄+ s̄→ s↑

A1 6 0 0 0.68 −1000 – −12.96 s̄+ s̄→ s↑

A2 10 0.6 0.6 0.85 −2.9 −10.55 −3.01 s̄↑ + s̄↑ → s↑

A3 10 0.6 0.6 0.85 −12.0 −10.55 −3.01 s↑ + s↑ → s↑

A4 10 0.0 0.6 0.77 −12.0 −10.55 −5.59 s̄+ s↑ → s↑

B 10 −0.6 −0.6 0.48 −11.50 −10.55 – s↓ + s↓ → s̄↑

B2 10 0.4 −0.6 0.64 −12.0 −10.55 −21.50 s̄↑ + s↓ → s̄↑

Table C.1: List of our complete series of simulations. We denote the initial separation d/M with M being the

total mass, χi,1 and χi,2 are the initial dimensionless spin parameters of each BH, and χf is the final dimensionless

spin parameter of the remnant. We use s̄ and s to denote unscalarized and scalarized states, respectively, and the

subscript ↑ (↓) indicates spin aligned (anti-aligned) with the orbital angular momentum. The coupling chosen for

each simulation is given by β, whereas βic and βfc denote the critical couplings for the component/remnant BHs

respectively.

We ran a larger series of simulations, listed in Table C.1, of equal-mass BH binaries with varying initial

spin that show a qualitatively same behaviour as the runs presented in the main text. In particular, we

simulated a series of initially spinning, unscalarized black holes that formed a scalarized remnant with

larger spin. We also list example simulations in which one or both initial BHs are scalarized and they

merge into an unscalarized remnant.

C.1 Validation tests

To validate our code, we performed a suite of convergence tests. We ran Setup B, our numerically most

demanding setup, at a lower resolution of dxlow = 0.8M and a higher resolution of dxhigh = 0.625M . The
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runs in the main text use a medium resolution of dxmed = 0.7M . The grid setup is the same across all

simulations. We estimated the order of convergence n and its associated convergence factor Qn,

Qn =
(dxlow)

n − (dxmed)
n

(dxmed)
n − (dxhigh)

n . (C.1)
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Figure C.1: Convergence plots for the ℓ = m = 0 mode of the scalar field. We show the difference between the low

and medium resolution run (solid line) and the medium and high resolution run (dashed line). The latter is rescaled

by Q4 = 1.94, indicating fourth order convergence. The lines are shifted in time such that (t− rex − tM)/M = 0

indicates the time of merger and they are rescaled by the extraction radius rex = 100M .
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Figure C.2: Convergence plots for the ℓ = m = 2 mode of the gravitational waveform. We show the difference

between the low and medium resolution run (solid line) and the medium and high resolution run (dashed line).

The latter is rescaled by Q4 = 1.94, indicating fourth order convergence. The lines are shifted in time such that

(t− rex − tM)/M = 0 indicates the time of merger and they are rescaled by the extraction radius rex = 100M .

We computed the n and Qn for the gravitational waveform, Ψ4,22, of the background spacetime and for the

scalar charge. We show the corresponding convergence plots in Fig. C.1. For Ψ4,22 we find fourth order

convergence, and we estimate the numerical (truncation) error to be Ψ4,22/Ψ4,22 ⩽ 0.8%. For the scalar
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Figure C.3: Hamiltonian constraint along the z-axis during the late-inspiral (solid black), half an orbit before

merger (dashed red), at the time of merger from the peak of the gravitational waveform (dash-dot blue) and

100M after merger (dotted green). The shaded region indicates the CAH, shown 100M after merger.

field charge, Φ00, we also find fourth order convergence. performed a convergence test on its ℓ = m = 0

multipole. We show our result in the right panel of Fig. C.1.

We find a cumulative error ∆Φ00/Φ00 ⩽ 30% in the late inspiral. The numerical error in the merger and

ringdown is ∆Φ00/Φ00 ⩽ 15%. As we restrict this work to a qualitative analysis, this error does not affect

the main results of the paper. Further quantitative work, such as forecasting constraints on the theory

would require this issue to be addressed.

Finally, in Fig. C.3, we show the Hamiltonian constraint H along the z-axis for Setup B at different time

instants. The constraint violation remains below 10−5 outside the BH horizon through the simulation.
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Appendix D

Research work III

To verify the validity of our results, we illustrate the evolution of the Hamiltonian and momentum con-

straints (Fig. D.1) for the rkin(t = 0) = 0.005 constant-momentum case. For the former, we calculate the

average of the absolute value of the constraints over the entire numerical domain (black line), as well on

specific spatial slices (red lines). We see a sharp increase in the violation of both constraints at ⟨N⟩ = 5

on the face slice (x = 0.0H0). This is a consequence of the field at the corners falling into the potential

minimum, resulting in sharp poorly-resolved field gradients. As the constraint-violating models spread

across the domain, we see that the central slice (x = 0.5H0) begins to become contaminated at around

⟨N⟩ = 7.

Figure D.1: Change in the absolute value of the Hamiltonian (left) and Momentum (right) constraints with the

average number of e-folds for the rkin(t = 0) = 0.005 constant-momentum case. The black line illustrates the

constraints averaged over the entire numerical domain, whereas the red lines show the constraints averaged on

specific slices of x = const.

However, we also perform convergence tests on the scalar-field minimum and maximum , as shown in

Fig. D.2. We observe exact second-order convergence at the minimum until ⟨N⟩ = 5. More importantly,
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Figure D.2: Convergence plots of the scalar-field minimum (left) and maximum (right) for the rkin(t = 0) = 0.005

constant-momentum case. The black line shows the absolute difference between field of the low (dx = 0.5) and

medium (dx = 0.33) resolution runs. The red dashed and blue dash-dotted lines shows the absolute difference

between field of the medium (dx = 0.5) and high (dx = 0.25) resolution runs, re-scaled by the 1st and 2nd order

convergence factors respectively.

we also see excellent second-order convergence at the maximum until the end of the simulation. Thus, the

evolution of the maximum remains trustworthy despite the constraint violations on that slice (which likely

have not reached the very centre of the domain where the maximum field lies). We expect the minimum to

simply oscillate about the potential, thus we are not too concerned about its behaviour once it has fallen

down the potential.



BIBLIOGRAPHY 95

Bibliography

[1] Thomas W. Baumgarte and Stuart L. Shapiro. Numerical Relativity: Solving Einstein’s Equations

on the Computer. Cambridge University Press, 2010.

[2] Miguel Alcubierre. Introduction to 3+1 numerical relativity. International series of monographs on

physics. Oxford Univ. Press, Oxford, 2008.
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scalarization induced by the spin: 2+1 time evolution. Phys. Rev. D, 102(10):104027, 2020.

[68] Daniela D. Doneva and Stoytcho S. Yazadjiev. On the dynamics of the nonrotating and rotating

black hole scalarization. 1 2021.

[69] Pedro V.P. Cunha, Carlos A.R. Herdeiro, and Eugen Radu. Spontaneously Scalarized Kerr Black

Holes in Extended Scalar-Tensor–Gauss-Bonnet Gravity. Phys. Rev. Lett., 123(1):011101, 2019.

[70] Lucas G. Collodel, Burkhard Kleihaus, Jutta Kunz, and Emanuele Berti. Spinning and excited black

holes in Einstein-scalar-Gauss–Bonnet theory. Class. Quant. Grav., 37(7):075018, 2020.

[71] Emanuele Berti, Lucas G. Collodel, Burkhard Kleihaus, and Jutta Kunz. Spin-induced black-hole

scalarization in Einstein-scalar-Gauss-Bonnet theory. Phys. Rev. Lett., 126(1):011104, 2021.

[72] Manuela Campanelli, C.O. Lousto, P. Marronetti, and Y. Zlochower. Accurate evolutions of orbiting

black-hole binaries without excision. Phys. Rev. Lett., 96:111101, 2006.



BIBLIOGRAPHY 100

[73] John G. Baker, Joan Centrella, Dae-Il Choi, Michael Koppitz, and James van Meter. Gravitational

wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett., 96:111102,

2006.

[74] Dieter R. Brill and Richard W. Lindquist. Interaction energy in geometrostatics. Phys. Rev., 131:471–

476, 1963.

[75] Richard W. Lindquist. Initial-Value Problem on Einstein-Rosen Manifolds. Journal of Mathematical

Physics, 4(7):938–950, 1963.

[76] Jeffrey M. Bowen and Jr. York, James W. Time asymmetric initial data for black holes and black

hole collisions. Phys. Rev. D, 21:2047–2056, 1980.

[77] Steven Brandt and Bernd Bruegmann. A Simple construction of initial data for multiple black holes.

Phys. Rev. Lett., 78:3606–3609, 1997.

[78] Helvi Witek, Miguel Zilhão, Giuseppe Ficarra, and Matthew Elley. Canuda: a public numerical

relativity library to probe fundamental physics, May 2020.

[79] Robert Benkel, Thomas P. Sotiriou, and Helvi Witek. Dynamical scalar hair formation around a

Schwarzschild black hole. Phys. Rev. D, 94(12):121503, 2016.

[80] Robert Benkel, Thomas P. Sotiriou, and Helvi Witek. Black hole hair formation in shift-symmetric

generalised scalar-tensor gravity. Class. Quant. Grav., 34(6):064001, 2017.

[81] Steven R. Brandt et al. The Einstein Toolkit, May 2020. To find out more, visit

http://einsteintoolkit.org.

[82] Frank Löffler et al. The Einstein Toolkit: A Community Computational Infrastructure for Relativistic

Astrophysics. Class. Quant. Grav., 29:115001, 2012.

[83] Erik Schnetter, Scott H. Hawley, and Ian Hawke. Evolutions in 3-D numerical relativity using fixed

mesh refinement. Class. Quant. Grav., 21:1465–1488, 2004.

[84] C.O. Lousto and Richard H. Price. Radiation content of conformally flat initial data. Phys. Rev. D,

69:087503, 2004.

[85] Ulrich Sperhake, Vitor Cardoso, Christian D. Ott, Erik Schnetter, and Helvi Witek. Extreme black

hole simulations: collisions of unequal mass black holes and the point particle limit. Phys. Rev. D,

84:084038, 2011.

[86] Alessandra Buonanno, Gregory B. Cook, and Frans Pretorius. Inspiral, merger and ring-down of

equal-mass black-hole binaries. Phys. Rev. D, 75:124018, 2007.



BIBLIOGRAPHY 101

[87] Mohammed Khalil, Noah Sennett, Jan Steinhoff, and Alessandra Buonanno. Theory-agnostic frame-

work for dynamical scalarization of compact binaries. Phys. Rev. D, 100(12):124013, 2019.

[88] Kent Yagi, Leo C. Stein, Nicolás Yunes, and Takahiro Tanaka. Post-Newtonian, Quasi-Circular Bi-

nary Inspirals in Quadratic Modified Gravity. Phys. Rev. D, 85:064022, 2012. [Erratum: Phys.Rev.D

93, 029902 (2016)].
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