

King’s Research Portal

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Cairoli, F., Bortolussi, L., & Paoletti, N. (in press). Learning-Based Approaches to Predictive Monitoring with
Conformal Statistical Guarantees. In 23rd International Conference on Runtime Verification Springer.

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 12. Jan. 2025

https://kclpure.kcl.ac.uk/portal/en/publications/70471f57-8481-43dd-8c20-424f1b880e24

Learning-Based Approaches to Predictive Monitoring
with Conformal Statistical Guarantees

Francesca Cairoli1 , Luca Bortolussi1 , and Nicola Paoletti2

1 University of Trieste, Italy
2 King’s College London, United Kingdom

Abstract. This tutorial focuses on efficient methods to predictive monitoring
(PM), the problem of detecting at runtime future violations of a given require-
ment from the current state of a system. While performing model checking
at runtime would offer a precise solution to the PM problem, it is generally
computationally expensive. To address this scalability issue, several lightweight
approaches based on machine learning have recently been proposed. These
approaches work by learning an approximate yet efficient surrogate (deep
learning) model of the expensive model checker. A key challenge remains to
ensure reliable predictions, especially in safety-critical applications.
We review our recent work on predictive monitoring, one of the first to
propose learning-based approximations for CPS verification of temporal logic
specifications and the first in this context to apply conformal prediction (CP)
for rigorous uncertainty quantification. These CP-based uncertainty estimators
offer statistical guarantees regarding the generalization error of the learning
model, and they can be used to determine unreliable predictions that should
be rejected. In this tutorial, we present a general and comprehensive framework
summarizing our approach to the predictive monitoring of CPSs, examining in
detail several variants determined by three main dimensions: system dynamics
(deterministic, non-deterministic, stochastic), state observability, and semantics
of requirements’ satisfaction (Boolean or quantitative).

1 Introduction

Verification of temporal properties for a cyber-physical systems (CPS) is of paramount
importance, especially with CPSs having become ubiquitous in safety-critical domains,
from autonomous vehicles to medical devices [1]. We focus on predictive monitoring
(PM), that is, the problem of predicting, at runtime, if a safety violation is imminent
from the current CPS state. In this context, PM has the advantage, compared to
traditional monitoring [9], of detecting potential safety violations before they occur, in
this way enabling preemptive countermeasures to steer the system back to safety (e.g.
switching to a failsafe mode as done in the Simplex architecture [37]). Thus, effective
PM must balance between prediction accuracy, to avoid errors that can jeopardize
safety, and computational efficiency, to support fast execution at runtime.

We focus on correctness specifications given in Signal Temporal Logic (STL) [42,29],
a popular language for formal reasoning about CPS. An advantage of STL is that
it admits two semantics, the usual Boolean semantics and a quantitative (robust)
semantics, which quantifies the degree of satisfaction of a property. When using the
latter, we speak of quantitative PM (QPM).

Performing model checking of STL requirements at run-time would provide a precise
solution to the PM problem (precise up to the accuracy of the system’s model), but such

https://orcid.org/0000-0002-6994-6553
https://orcid.org/0000-0001-8874-4001
https://orcid.org/0000-0002-4723-5363

2

a solution is computationally expensive in general, and thus infeasible for real-world
applications. For this reason, a number of approximate PM techniques based on machine
learning have been recently proposed (see e.g. [14,17,19,40,43]).

In this paper, we review our work on learning-based methods for PM, developed under
the name of Neural Predictive Monitoring [13]. The core idea is that when a satisfaction
(SAT) oracle is at our disposal, we can approximate it using deep learning models trained
using a set of oracle-labeled examples. The resulting learning-based model overcomes
the scalability issues faced by the original oracle: a forward pass of a (reasonably sized)
neural network is most often more efficient than computing satisfaction of an STL
property, especially if the underlying system is non-deterministic or stochastic. However,
such a solution is inherently approximate, and so it becomes essential – especially in
safety-critical domains – to offer assurances regarding the generalization performance
of our approximation. To this purpose, we rely on conformal prediction (CP) [61], a
technique that allows us to complement model predictions with uncertainty estimates
that enjoy (finite-sample, i.e., non-asymptotic) statistical guarantees on the model’s
generalization error. CP requires only very mild assumptions on the data3 and it
is flexible enough to be applied on top of most predictors. Furthermore, computing
CP-based uncertainty estimates is highly efficient, meaning that our approach can offer
statistical guarantees on the PM predictions without affecting performance and runtime
applicability.

In this tutorial, we present a general and comprehensive framework summarizing
several variants of the neural predictive monitoring approach, variants determined by
the following three dimensions:

1. Dynamics: The CPS dynamics can be either deterministic, non-deterministic, or
stochastic, depending on whether the future behavior of the system is uniquely
determined by its current state, is uncertain or exhibits randomness.

2. State Observability: The current CPS state can be fully observable, or we may
only have access to partial and noisy measurements of the state, making it more
challenging to obtain accurate predictions of the CPS evolution.

3. Satisfaction: The type of property satisfaction can be either Boolean or quantitative.
In the former case, the PM outcome is a “yes” or “no” answer (the CPS either
satisfies the property or does not). In the latter case, the outcome is a quantitative
degree of satisfaction, which quantifies the robustness of STL (Boolean) satisfaction
to perturbations (in space or time) of the CPS trajectories.

By considering the above dimensions, we can design accurate and reliable PM solutions
in a variety of scenarios accounting for a vast majority of CPS models.

Overview of the paper. This paper is structured as follows. We start by presenting the
background theory in Sect. 2. Sect. 3 states rigorous formalizations of the predictive
monitoring problems. Sect. 4 provides background on methods used to estimate
predictive uncertainty and obtain statistical guarantees. Sect. 5 defines the different
declinations of learning-based PM approaches. Related works are discussed in Sect. 6.
Conclusions are drawn in Sect. 7.
3 The only assumption is exchangeability, a weaker version of the independent and identically
distributed assumption. A collection of N values is exchangeable if the N ! different orderings
are equally likely, i.e. have the same joint probability.

3

2 Background

A cyber-physical system (CPS) is a system combining physical and digital components.
Hybrid systems (HS), whose dynamics exhibit both continuous and discrete dynamics,
can well capture the mixed continuous and discrete behaviour of a CPS. An HS has
both flows, described by differential equations, and jumps, described by a state machine
or an automaton. The continuous behaviour depends on the discrete state and discrete
jumps are similarly determined by the continuous state. The state of an HS is defined
by the values of the continuous variables and by a discrete mode. The continuous flow
is permitted as long as a so-called invariant holds, while discrete transitions can occur
as soon as given jump conditions are satisfied.

Remark 1. The approaches proposed in this paper are applicable to any black-box
system for which a satisfaction (SAT) oracle is available. That said, HS represent a very
useful and expressive class of models for which several SAT oracles (model checkers)
have been developed. Therefore, we will focus on this class of models for the rest of the
paper.

A hybrid automaton (HA) is a formal model that mathematically describes the
evolution in time of an HS.

Definition 1 (Hybrid automaton). A hybrid automaton (HA) is a tuple M=(Loc,
Var, Init,Flow,Trans,Inv), where Loc is a finite set of discrete locations (or modes);
Var={v1,...,vn} is a set of continuous variables, evaluated over a continuous domain
Var⊆Rn; Init⊆S(M) is the set of initial states, where S(M)=Loc×Var is the state
space of M; Flow :Loc→(Var→Var) is the flow function, defining the continuous
dynamics at each location; Trans is the transition relation, consisting of tuples of the
form (l,g,r,l′), where l,l′∈Loc are source and target locations, respectively, g⊆Var
is the guard, and r :Var→Var is the reset; Inv :Loc→2Var is the invariant at each
location.

In general, HA dynamics can be either deterministic, non-deterministic, or stochastic.
Deterministic HAs are a special case where the transition relation is a function of the
source location. On the other hand, when the continuous flow or the discrete transitions
happen according to a certain probability distribution, we have a stochastic HA. In
this case, the dynamics is represented as the combination of continuous stochastic
flows probability Flow : (Loc×Var)→ (Var → [0,1]) and discrete jump probability
Trans : (Loc× 2Var)→ ((Loc× (Var ×Var))→ [0,1]). In particular, Flow(v′ | l,v)
denotes the probability of a change rate of v′ when in state (l,v) and Trans(r,l′ |l,g) is
the probability of applying reset r and jumping into l′ through a transition starting
from l with guard g. We often prefer to avoid transitions with both non-determinism
and stochasticity and so, for each stochastic HA location, we define its invariant and
guards so that they form a partition of Var.

We define a signal as a function s⃗ :T→V, where T⊂R+ is the time domain, whereas
V determines the nature of the signal. If V=B :={true,false}, we have a Boolean
signal. If V=R, we have a real-valued signal. We consider signals that are solutions of
a given HA. Let τ={[ti,ti+1]|ti≤ti+1,i=1,2,...} be a hybrid time trajectory. If τ is
infinite the last interval may be open on the right. Let T denote the set of hybrid time

4

trajectories. Then, for a given τ ∈T, a hybrid signal s⃗ :τ→S(M) defined on τ with
values in a generic hybrid space S(M) is a sequence of functions

s⃗= {⃗si : [ti,ti+1]→S(M) | [ti,ti+1]∈τ}.
In practice, it can be seen as a pair of hybrid signals v⃗ :τ→Var and l⃗ :τ→Loc with

τ∈T, such that (⃗l1(t1),⃗v1(t1))∈Init, and for any [ti,ti+1]∈τ , l⃗i is constant and there
exist g and r such that (li,g,r,li+1)∈Trans, v⃗i(t

−
i+1)∈g, and v⃗i+1(ti+1)=r(⃗vi(t

−
i+1)).

Moreover, for every t∈ [ti,ti+1], it must hold that v⃗i(t)∈Inv(li) and

v⃗i(t)= v⃗i(ti)+

∫ t

ti

Flow
(⃗
li(t

′),⃗vi(t
′)
)
dt′.

When the HA is stochastic, hybrid signals must have a non-zero probability, that
is, for every piece i of the signal, there exists g,r such that Trans(r,li+1 | li,g)> 0,
v⃗i(t

−
i+1)∈g, and v⃗i+1(ti+1)=r(⃗vi(t

−
i+1)). Moreover, for every t∈ [ti,ti+1), it must hold

that Flow(˙⃗vi(t) |li,⃗vi(t))>0, where ˙⃗vi(t)=limdt→0(⃗vi(t+dt)−v⃗i(t))/⃗vi(t).
Remark 2. We note that HA induces Markovian dynamics, that is, the evolution of
the HA depends only on the current state. We do not see this as a restriction as most
systems of interest are Markovian or can be made so by augmenting the state space.

2.1 Signal Temporal Logic (STL)

Signal temporal logic (STL) [42] was originally developed in order to specify and
monitor the behaviour of physical systems, including temporal constraints between
events. STL allows the specification of properties of dense-time, real-valued signals,
and the automatic generation of monitors for testing these properties on individual
simulation traces. The rationale of STL is to transform hybrid signals into Boolean
ones, using predicates built on the following STL syntax :

φ :=true | µℓ | µg | ¬φ | φ∧φ | φ U[a,b]φ, (1)
where [a,b]⊆T is a bounded temporal interval. For a hybrid signal s⃗[t], µg denotes
atomic predicates over continuous variables, with g :Var →R, whereas µℓ denotes
atomic predicates over discrete variables, with ℓ∈Loc. From this essential syntax, it
is easy to define other operators, used to abbreviate the syntax in a STL formula:
false :=¬true, φ∨ψ :=¬(¬φ∧¬ψ), ♢[a,b]φ :=true U[a,b]φ and □[a,b]φ :=¬♢[a,b]¬φ.

Boolean semantics. The satisfaction of a formula φ by a signal s⃗ at time t is defined as:

- (⃗s,t) |=µg ⇐⇒ g(⃗v[t])>0;

- (⃗s,t) |=µℓ ⇐⇒ l⃗[t]=ℓ;
- (⃗s,t) |=φ1∧φ2 ⇐⇒ (⃗s,t) |=φ1∧(⃗s,t) |=φ2;
- (⃗s,t) |=¬φ⇐⇒¬((⃗s,t) |=φ));
- (⃗s,t) |=φ1U[a,b]φ2 ⇐⇒∃t′∈ [t+a,t+b] s.t.
(⃗s,t′) |=φ2∧∀t′′∈ [t,t′),(⃗s,t′′) |=φ1.

- Eventually: (⃗s,t) |=♢[a,b]φ⇐⇒∃t′∈ [t+a,t+b] s.t. (⃗s,t′) |=φ;
- Always: (⃗s,t) |=□[a,b]φ⇐⇒∀t′∈ [t+a,t+b] (⃗s,t′) |=φ.

Given formula φ and a signal s⃗ over a bounded time interval, we can define the Boolean
satisfaction signal as χφ(⃗s,t)=1 if (⃗s,t) |=φ and χφ(⃗s,t)=0 otherwise. Monitoring the
satisfaction of a formula is done recursively, by computing χφi (⃗s,·) for each sub-formula
φi of φ. The recursion is performed by leveraging the tree structure of the STL formula,
where each node represents a sub-formula, in an incremental fashion, so that the
leaves are the atomic propositions and the root represents the whole formula. Thus the
procedure goes bottom-up from atomic predicated to the top formula.

5

safe

unsafe

s

safe

unsafe

safe

unsafe

risky

s

Fig. 1. Example of predictive monitoring of a safety property for a deterministic system (left)
and a stochastic system (right). Blue circles denote the obstacles to avoid. (middle) shows the
space robustness over the deterministic system.

Quantitative semantics. The main kind of quantitative STL semantics is space robustness,
which quantifies how much a signal can be perturbed with additive noise before changing
the truth value of a given property φ [29]. It is defined as a function Rφ such that:

- Rµg (⃗s,t)=g(⃗v[t]);
- R¬φ(⃗s,t)=−Rφ(⃗s,t);
- Rφ1∧φ2

(⃗s,t)=min(Rφ1
(⃗s,t),Rφ2

(⃗s,t));

- Rφ1U[a,b]φ2
(⃗s,t)= sup

t′∈[t+a,t+b]

(
min

(
Rφ2

(⃗s,t′), inf
t′′∈[t,t′]

Rφ1
(⃗s,t′′)

))
.

The sign of Rφ indicates the satisfaction status: Rφ(⃗s,t)>0⇒ (⃗s,t) |=φ and Rφ(⃗s,t)<
0⇒ (⃗s,t) |̸=φ. The definition of Rµℓ

, i.e., the robustness of discrete atoms, is arbitrary as
long as it returns a non-negative value when µℓ is true and non-positive when µℓ is false
(a common choice is returning +∞ and −∞, respectively). As for the Boolean semantics,
it is possible to automatically generate monitors for the quantitative semantics as well.
The algorithm follows a similar bottom-up approach over the syntax tree of the formula.

Similarly, time robustness capture the effect on the satisfaction of shifting events in
time. The left and right time robustness of an STL formula φ with respect to a trace s⃗
at time t are defined inductively by letting:

Q−
φ (⃗s,t)=χ

φ(⃗s,t)·max{d≥0 s.t. ∀t′∈ [t−dt], χφ(⃗s,t′)=χφ(⃗s,t)}
Q+

φ (⃗s,t)=χ
φ(⃗s,t)·max{d≥0 s.t. ∀t′∈ [t,t+d], χφ(⃗s,t′)=χφ(⃗s,t)}.

While space and robustness are most common, our PM approach can support
any other kind of STL quantitative semantics, e.g., based on a combined space-time
robustness [29] or resiliency [22]. Hereafter, we represent a generic STL monitor,
encompassing either Boolean or quantitative (spatial or temporal) satisfaction, as
Cφ∈{χφ,Rφ,Qφ}.

Running example. Let’s consider, as a running example, a point moving at a con-
stant velocity on a two-dimensional plane (see Fig. 1). Given the system’s current
state s, a controller regulates the yawn angle to avoid obstacles (D1 and D2 in
our example). The avoid property can be easily expressed as an STL formula:
φ := G((d(s,o1)>r1)∧(d(s,o2)>r2)), where oi, ri denote respectively the centre
and the radius of obstacle i∈{1,2}. Fig. 1 (left) shows the deterministic evolution for
three randomly chosen initial states. Fig. 1 (middle) shows, for the same deterministic

6

scenario, an intuition of the concept of spatial STL robustness, i.e. how much we can
perturb a trajectory with additive noise before changing its truth value. Fig. 1 (right)
shows the evolution of a stochastic dynamics for three randomly initial states. The
dashed lines denote the upper and lower quantiles of the distribution over the trajectory
space.

3 Predictive Monitoring

Predictive monitoring of an HA is concerned with establishing whether given an initial
state s and a desired property φ – e.g. always avoid a set of unsafe states D – the HA
admits a trajectory starting from s that violates φ. We express such properties by means
of time-bounded STL formulas, e.g. φD :=G[0,Hf] (s∉D). STL monitors automatically
check whether an HA signal satisfies an STL property φ over a bounded temporal
horizon (Boolean semantics) and possibly how robust is the satisfaction (quantitative
semantics).

SAT Oracles. Given an HA M with state space S(M), and an STL requirement φ
over a time bound Hf , SAT oracles decide whether a state s∈S(M) satisfies φ. This
means that, when the system is deterministic, the SAT oracle decides whether the
unique trajectory s⃗ starting from s∈S(M) satisfies φ, i.e. decide whether (⃗s,0) |=φ.
This information can be retrieved from STL monitors by checking whether χφ(⃗s,0)=
1 or equivalently whether Rφ(⃗s,0) > 0. On the other hand, when the system is
nondeterministic, a state s satisfies φ if all trajectories starting from s satisfy φ.
Similarly, a quantitative SAT oracle returns the minimal STL robustness value of all
trajectories starting from s. For non-stochastic systems, the SAT oracle can thus be
represented as a map Sat :S(M)→B, where the output space B is either B in the
Boolean scenario or R in the quantitative scenario. On the other hand, oracles for
stochastic systems require a different treatment and we define them later in this section.

SAT Tools. Several tools have been developed for the automated verification of CPS
properties and can thus be used as SAT oracles. The choice of the best tool depends on
the problem at hand. STL monitors such as Breach [28] and RTAMT [44] allow to
automatically check whether realizations of the system satisfy an STL property. When
the system is nondeterministic we need tools that perform reachability analysis or
falsification. Due to the well-known undecidability of HA model checking problem [35,16],
none of existing tools are both sound and complete. Falsification tools like Breach [28],
S-Taliro [2], C2E2 [30], and HyLAA [6] search for counter-example trajectories, i.e.,
for violations to the property of interest. A failure in finding a counter-example does
not imply that the property is satisfied (i.e., the outcome is unknown). Conversely,
HA reachability tools like PHAVer [31], SpaceEx [32], Flow*, HyPro/HyDra [56],
Ariadne [10] and JuliaReach [11] rely on computing an over-approximation of the
reachable set, meaning that the outcome is unknown when the computed reachable set
intersects the target set. In order to be conservative, we treat unknown verdicts in a
pessimistic way.

On the other hand, stochastic systems require the use of probabilistic model checking
techniques implemented in tools like PRISM [39] or STORM [34]. Such tools provide
precise numerical/symbolic techniques to determine the satisfaction probability of a
formula, but only for a restricted class of systems and with significant scalability issues.
Statistical model checking (SMC) techniques overcomes these limitations by solving the

7

problem as one of hypothesis testing given a sample of system trajectories (at the cost
of admitting some a priori statistical errors).
The above list of tools is far from being exhaustive, and we refer the interested

reader to the ARCH-COMP competitions 4, where state-of-the-art verification tools are
compared on a set of well-known benchmarks.

In the following, we formulate the predictive monitoring problem for non-stochastic
systems (Problem 1), for partially observable systems (Problem 2), and for stochastic
systems (Problem 3). We conclude by characterizing the probabilistic guarantees sought
for our learning-based monitors (Problem 4).
We aim at deriving a predictive monitor for HA time-bounded satisfaction, i.e., a

function that can predict whether or not the property φ is satisfied by the future
evolutions of the system (bounded by time Hf) starting from the system’s current
state. In solving this problem, we assume a distribution S of HA states and seek the
monitor that predicts HA reachability with minimal error probability w.r.t. S. The
choice of S depends on the application at hand and can include a uniform distribution
on a bounded state space or a distribution reflecting the density of visited states in
some HA executions [48].

Problem 1 (Predictive monitoring for HA) Given an HA M with state space
S(M), a distribution S over S(M), a time bound Hf and STL property φ, inducing the
satisfaction function Sat, find a function h∗ :S(M)→B that minimizes the probability

Prs∼S(h
∗(s)≠Sat(s)).

A state s∈S(M) is called positive w.r.t. a predictor h :S(M)→B if h(s)>0. Otherwise,
s is called negative.

Any practical solution to the above PM problem must also assume a space of functions
within which to restrict the search for the optimal predictive monitor h∗, for instance,
one can consider functions described by deep neural networks (DNNs). Finding h∗, i.e.,
finding a function approximation with minimal error probability, is indeed a classical
supervised learning problem. In particular, in the Boolean scenario, h∗ is a classifier,
i.e., a function mapping HA state inputs s into one of two classes: 1 (x is positive,
property φ is satisfied) and 0 (s is negative, property φ is violated). On the other hand,
in the quantitative scenario, h∗ is a regressor aiming at reconstructing the robustness of
satisfaction for a state s.

Fig. 2. Generation of the dataset to learn a PM
(Boolean or quantitative) for deterministic HS.

Dataset generation. In supervised
learning, one minimizes a measure of
the empirical prediction error w.r.t. a
training set. In our case, the training
set Z′ is obtained from a finite sam-
ple S′ of S by labelling the training
inputs s ∈ S′ using some SAT ora-
cle, that is computing the true value
for Sat(s). Hence, given a sample S′

of S, the training set is defined by
Z′={(s, Sat(s)) |s∈S′} (see Fig. 2).

4 https://cps-vo.org/group/ARCH/FriendlyCompetition

https://cps-vo.org/group/ARCH/FriendlyCompetition

8

Partial Observability Problem 1
relies on the full observability (FO) assumption, i.e. the assumption of possessing full
knowledge about the system’s state. However, in most practical applications, state
information is partial and noisy. Consider a discrete-time deterministic HS5 modeled as
a HA M. The discrete-time deterministic dynamics of the system can be expressed by
vi+1=Flow(li)(vi), where si=(li,vi)=(l(ti),v(ti)) and ti=t0+i·∆t. The measurement
process can be modeled as

yi=π(si)+wi, (2)
which produces partial and noisy observations yi ∈ Y by means of an observation
function π :S(M)→Y and additive noise wi∼W. Under partial observability (PO), we
only have access to a sequence of past observations yt=(yt−Hp

,...,yt) of the unknown

state sequence st=(st−Hp
,...,st) (as per (2)). Let Y denote the distribution over Y Hp,

the space of sequences of observations yt induced by the sequence of states st∼SHp

and a sequence of i.i.d. noise vectors wt=(wt−Hp
,...,wt)∼WHp.

Problem 2 (PM for HS under noise and partial observability) Given the
HA and reachability specification of Problem 1, find a function h∗po : Y

Hp →B that
minimizes

Prst∼S,yt∼Y

(
h∗po

(
yt

)
≠Sat(st)

))
.

In other words, h∗po should predict the satisfaction values given in input only a sequence
of past observations, instead of the true HA state. In particular, we require a sequence of
observations (as opposed to one observation only) for the sake of identifiability. Indeed,
for general non-linear systems, a single observation does not contain enough information
to infer the HS state6. Problem 2 considers only deterministic systems. Dealing with
partial observability and noise in nondeterministic systems remains an open problem as
state identifiability is a non-trivial issue.
There are two natural learning-based approaches to tackle Problem 2 (Fig. 3):

1. an end-to-end solution that learns a direct mapping from the sequence of past
measurements yt to the satisfaction value in B.

2. a two-step solution that combines steps (a) and (b) below:
(a) learns a state estimator able to reconstruct the history of full states st =

(st−Hp,...,st) from the sequence of measurements yt=(yt−Hp,...,yt);
(b) learns a state classifier/regressor mapping the sequence of states st to the

satisfaction value in B;

Dataset generation. Given that we consider deterministic dynamics, we can use
simulation, rather than model checking, to label the states as safe (positive), if Sat(s)>0,
or unsafe (negative) otherwise. Because of the deterministic and Markovian (see
Remark 2) nature of the system, one could retrieve the future satisfaction of a property
at time t from the state of the system at time t alone. However, one can decide
to exploit more information and make a prediction based on the previous Hp states.
Formally, the generated dataset under FO can be expressed as Z′={(sit,Sat(sit))}Ni=1,

5 In case of partial observability we restrict our analysis to deterministic systems.
6 Feasibility of state reconstruction is affected by the time lag and the sequence length. Our
focus is to derive the best predictions for fixed lag and sequence length, not to fine-tune
these to improve identifiability.

9

where sit=(sit−Hp
,sit−Hp+1,...,s

i
t). Under PO, we use the (known) observation function

π :S(M)→Y to build a dataset Z′′ made of tuples (yt,st,lt), where yt is a sequence of
noisy observations for st, i.e., such that ∀j∈{t−Hp,...,t} yj=π(sj)+wj and wj∼W.

yt=(yt−Hp,...,yt) Sat(st)
(1) end-to-end

st=(st−Hp,...,st)

(2.b) state-classifier/regressor(2.a) state-estimator

Fig. 3. Diagram of the learning steps under noise
and partial observability.

The distribution of st and yt is de-
termined by the distribution S of the
initial state of the sequences, st−Hp

.
We consider two different distribu-
tions: independent, where the initial
states st−Hp

are sampled indepen-
dently, thus resulting in independent
state/observation sequences; and se-
quential, where states come from tem-
porally correlated trajectories in a sliding-window fashion. The latter is more suitable
for real-world runtime applications, where observations are received in a sequential
manner. On the other hand, temporal dependency violates the exchangeability property,
which affects the theoretical validity guarantees of CP, as we will soon discuss.

Stochastic dynamics If the system evolves stochastically, we have a distribution over
the trajectory space rather than a single trajectory that either satisfies of violates the
property. Some realizations will satisfy the property, some others will not. Therefore,
reasoning about satisfaction gets more complicated. Let T={0,1,...} denote a discrete
set of time instants and let M be a discrete-time stochastic HA over state space S(M)
and T. Given that the system is in state s∼S at time t∈T, the stochastic evolution
(bounded by horizon Hf) of the system starting at s can be described by the conditional
distribution p(⃗s | s⃗(t)=s), where s⃗=(⃗s(t),...,⃗s(t+Hf))∈SH is the random trajectory
of length Hf starting at time t. We thus introduce a satisfaction function SSat that
inherits the stochasticity of the system’s dynamics. For an STL property φ, we define
SSat as a function mapping a state s∈S(M) into a random variable SSat(s) denoting
the distribution of satisfaction values over B. In other words, the satisfaction function
transforms the distribution over trajectories into the distribution over satisfaction values.
The predictive monitoring problem under stochastic dynamics can be framed as

estimating one or more functionals of SSat(s) (e.g., mean, variance, quantiles). A formal
statement of the problem is given below.

Problem 3 (PM for Stochastic HS) Given a discrete-time stochastic HA M over
a state space S(M), temporal horizon Hf , and an STL formula φ, we aim at approxi-
mating a functional q of the distributions induced by SSat. We thus aim at deriving a
monitoring function h∗q that maps any state s∼S into the functional q[SSat(s)] such
that

Prs∼S

(
h∗q(s)≠q

[
SSat(s)

])
. (3)

We will focus on the case where q is a quantile function, making Problem 3 equivalent
to a conditional quantile regression (QR) problem. This boils down to learning for a
generic state s a quantile of the random variable SSat(s).

Dataset generation. We perform Monte-Carlo simulations of the process in order to
obtain empirical approximations of SSat. In particular, we randomly sample N states

10

s1,...,sN ∼S. Then, for each state si, we simulateM trajectories of length Hf , s⃗
1
i ,...,⃗s

M
i

where s⃗ji is a realization of p(⃗s | s⃗(t)=si), and compute the satisfaction value Cφ(⃗s
j
i) of

each of these trajectories (Cφ∈{χφ,Rφ,Qφ}). Note how {Cφ(⃗s
j
i)}Mj=1 is an empirical

approximation of SSat(si). The dataset is thus defined as

Z′=
{(
si,

(
Cφ(⃗s

1
i),...,Cφ(⃗s

M
i)

))
,i=1,...,N

}
. (4)

Fig. 4. Generation of the dataset to learn a PM for
stochastic HS.

Fig. 4 shows an overview of the
steps needed to generate the
dataset. The generation of the
test set Z′

test is very similar to
that of Z′. The main difference is
in that the number of trajectories
that we simulate from each state
s is much larger than M . This
allows us to obtain a highly accu-
rate empirical approximation of
the distribution induced by SSat,
which we use as the ground-truth
baseline in our experimental eval-
uation7. Moreover, since func-
tionals of SSat(s) can not in general be computed exactly, for a choice of ϵ∈(0,1), we
derive the empirical quantile q̂siϵ from samples Cφ(⃗s

1
i),...,Cφ(⃗s

M
i) and use the generated

training set Z′ to train the QR hq that learns how to map states s into q̂sϵ .

The predictors, either h, hpo or hq, are approximate solutions and, as such, they can
commit safety-critical prediction errors. The general goal of Problems 1, 2 and 3 is to
minimize the risk of making mistakes in predicting the satisfaction of a property. We
are also interested in establishing probabilistic guarantees on the expected error rate of
an unseen (test) state, in the form of prediction regions guaranteed to include the true
satisfaction value with arbitrary probability. We now introduce some notation to capture
all three previously stated scenarios. Let f be the predictor (either h of Problem 1, hpo
of Problem 2 or hq of Problem 3) and let x∈X be the input of predictor f (either a
state s or a sequence of past measurements y). The distribution over the generic input
space X is denoted by X .

Problem 4 (Probabilistic guarantees) Given a system and property φ as in Prob-
lems 1, 2 and 3, find a function Γ ε :X→2B, mapping every input x into a prediction
region for the corresponding satisfaction value, i.e., a region that satisfies, for any error
probability level ε∈(0,1), the validity property below

Prx∼X

(
SAT(x)∈Γ ε(x)

)
≥1−ε,

where SAT(·) corresponds to Sat(·) in Problems 1 and 2, and to q[SSat(·)] in Problem 3.

Among the maps that satisfy validity, we seek the most efficient one, meaning the one
with the smallest, i.e. less conservative, prediction regions.
7 In the limit of infinite sample size, the empirical approximation approaches the true
distribution.

11

4 Uncertainty Estimation and Statistical Guarantees

The learning-based solutions of Problems 1, 2 and 3 are approximate and, even when
extremely high accuracies are reached, offer no guarantees over the reliability of the
learned predictor, and thus are not applicable in safety-critical scenarios. In this section,
we present techniques for uncertainty estimation, techniques that overcome the above
limitation by providing point-wise information about the reliability of the predictions.
In particular, we examine two uncertainty quantification techniques, based on conformal
prediction (CP) and Bayesian inference, respectively. We focus more on CP as, unlike
Bayesian inference, can provide the desired statistical guarantees stated in Problem 4.
To simplify the presentation, we illustrate the techniques by considering a generic

supervised learning model, as follows. Let X be the input space, T be the target
(output) space, and define Z=X×T . Let Z be the data-generating distribution, i.e.,
the distribution of the points (x,t)∈Z. We assume that the target t of a point (x,t)∈Z
is the result of the application of a function f∗ :X→T , typically unknown or very
expensive to evaluate. Using a finite set of observations, the goal of a supervised learning
algorithm is to find a function f :X→T that accurately approximates f∗ over the
entire input space. For a generic input x∈X, we denote with t the true target value of
x and with t̂ the prediction by f , i.e. t̂=f(x). Test inputs, whose unknown true target
values we aim to predict, are denoted by x∗.

4.1 Conformal Inference

Conformal Prediction (CP) associates measures of reliability to any traditional supervised
learning problem. It is a very general approach that can be applied across all existing
deterministic classifiers and regressors [8,61]. CP produces prediction regions with
guaranteed validity.

Definition 2 (Prediction region). For significance level ε∈(0,1) and test input x∗,
the ε-prediction region for x∗, Γ

ε
∗ ⊆T , is a set of target values s.t.

Pr
(x∗,t∗)∼Z

(t∗∈Γ ε
∗)=1−ε. (5)

The idea of CP is to construct the prediction region by “inverting” a suitable
hypothesis test: given a test point x∗ and a tentative target value t′, we exclude t′

from the prediction region only if it is unlikely that t′ is the true value for x∗. The
test statistic is given by a so-called nonconformity function (NCF) δ :Z→R, which,
given a predictor f and a point z=(x,t), measures the deviation between the true
value t and the corresponding prediction f(x). In this sense, δ can be viewed as a
generalized residual function. In other words, CP builds the prediction region Γ ε

∗ for a
test point x∗ by excluding all targets t′ whose NCF values are unlikely to follow the
NCF distribution of the true targets:

Γ ε
∗ =

{
t′∈T |Pr(x,t)∼Z(δ(x∗,t

′)≥δ(x,t))>ε
}
. (6)

The probability term in Eq. 6 is often called the p-value. From a practical viewpoint,
the NCF distribution Pr(x,t)∼Z(δ(x,t)) cannot be derived in an analytical form, and
thus we use an empirical approximation derived using a sample Zc of Z. This approach
is called inductive (or split) CP [45] and Zc is referred to as calibration set.

12

Validity and Efficiency. CP performance is measured via two quantities: 1) validity
(or coverage), i.e. the empirical error rate observed on a test sample, which should be
as close as possible to the significance level ε, and 2) efficiency, i.e. the size of the
prediction regions, which should be small. CP-based prediction regions are automatically
valid, whereas the efficiency depends on the size of the calibration set (leading to high
uncertainty when data is scarce), the quality of the underlying model and the chosen
nonconformity function.

Remark 3 (Assumptions and guarantees of inductive CP). Importantly, CP prediction
regions have finite-sample validity [8], i.e., they satisfy (5) for any sample of Z (of
reasonable size), and not just asymptotically. On the other hand, CP’s theoretical
guarantees hold under the exchangeability assumption (a “relaxed” version of iid) by
which the joint probability of any sample of Z is invariant to permutations of the
sampled points. Independent observations are exchangeable but sequential ones are not
(due to the temporal dependency). In such scenarios, some adaptations to conformal
inference (see [58,66]) are needed to recover and preserve validity guarantees.

CP for classification In classification, the target space is a discrete set of possible
labels (or classes) T ={t1,...,tc}. We represent the classification model as a function
fd :X→ [0,1]c mapping inputs into a vector of class likelihoods, such that the predicted
class is the one with the highest likelihood8.

The inductive CP algorithm for classification is divided into an offline phase, executed
only once, and an online phase, executed for every test point x∗. In the offline phase
(steps 1–3 below), we train the classifier f and construct the calibration distribution, i.e.,
the empirical approximation of the NCF distribution. In the online phase (steps 4–5),
we derive the prediction region for x∗ using the computed classifier and distribution.

1. Draw sample Z′ of Z. Split Z′ into training set Zt and calibration set Zc.
2. Train classifier f using Zt. Use fd to define an NCF δ.
3. Construct the calibration distribution by computing, for each zi∈Zc, the NCF

score αi=δ(zi).

4. For each label tj∈T , compute αj
∗=δ(x∗,t

j), i.e., the NCF score for x∗ and tj, and

the associated p-value pj∗:

pj∗=
|{zi∈Zc |αi>α

j
∗}|

|Zc|+1
+θ

|{zi∈Zc |αi=α
j
∗}|+1

|Zc|+1
, (7)

where θ∈U[0,1] is a tie-breaking random variable.
5. Return the prediction region

Γ ε
∗ ={tj∈T |pj∗>ε}. (8)

In defining the NCF δ, we should aim to obtain high δ values for wrong predictions
and low δ values for correct ones. Thus, a natural choice in classification is to define

δ(x,tj)=1−fjd(x), (9)

where fjd(x) is the likelihood predicted by fd for class tj. Indeed, if t
j is the true target

for x and f correctly predicts tj, then fjd(x) is high (the highest among all classes) and
δ(x,tj) is low; the opposite holds if f does not predict tj.

8 Ties can be resolved by imposing an ordering over the classes.

13

Prediction uncertainty. A CP-based prediction region provides a set of plausible
predictions with statistical guarantees, and as such, also captures the uncertainty about
the prediction. Indeed, if CP produces a region Γ ε

∗ with more than one class, then
the prediction for x∗ is ambiguous (i.e., multiple predictions are plausible), and thus,
potentially erroneous. Similarly, if Γ ε

∗ is empty, then there are no plausible predictions
at all, and thus, none can be trusted. The only reliable prediction is the one where
Γ ε
∗ contains only one class. In this case, Γ ε

∗ = {̂t∗}, i.e., the region only contains the
predicted class, as stated in the following proposition.

Proposition 1. For the NCF function (9), if Γ ε
∗ ={tj1}, then tj1 =f(x∗).

The size of the prediction region is determined by the chosen significance level ε and
by the p-values derived via CP. Specifically, from Equation (8) we can see that, for
levels ε1≥ε2, the corresponding prediction regions are such that Γ ε1 ⊆Γ ε2. It follows
that, given a test input x∗, if ε is lower than all its p-values, i.e. if ε<minj=1,...,c p

j
∗,

then the region Γ ε
∗ contains all the classes, and Γ ε

∗ shrinks as ε increases. In particular,

Γ ε
∗ is empty when ε≥maxj=1,...,c p

j
∗.

In the classification scenario, CP introduces two additional point-wise measures
of uncertainty, called confidence and credibility, defined in terms of two p-values,
independently of the significance level ε. The intuition is that these two p-values identify
the range of ε values for which the prediction is reliable, i.e., |Γ ε

∗ |=1.

Definition 3 (Confidence and credibility). Given a predictor F , the confidence
of a point x∗∈X, denoted by 1−γ∗, is defined as 1−γ∗=sup{1−ε : |Γ ε

∗ |=1}, and
the credibility of x∗, denoted by κ∗, is defined as κ∗=inf{ε : |Γ ε

∗ |=0}. The so-called
confidence-credibility interval [γ∗,κ∗) contains all the values of ε such that |Γ ε

∗ |=1.

The confidence 1 − γ∗ is the highest probability value for which the corre-
sponding prediction region contains only t̂∗, and thus it measures how likely (ac-
cording to the calibration set) our prediction for x∗ is. In particular, γ∗ corre-
sponds to the second largest p-value. The credibility κ∗ is the smallest level for
which the prediction region is empty, i.e., no plausible prediction is found by
CP. It corresponds to the highest p-value, i.e., the p-value of the predicted class.

0 1𝑝∗
%&'

> 1 𝟏 0|Γ∗,|

P-values
𝜖

𝑐

𝑝∗
%&/𝑝∗

%&0

𝛾∗ 𝑐∗

Fig. 5. CP p-values and correspond-
ing sizes of prediction interval. ỹi

is the class with the i-th largest p-

value, so pℓ̃
1

∗ =κ∗ and pℓ̃
2

∗ =γ∗.

Fig. 5 illustrates CP p-values and corresponding pre-
diction region sizes. In binary classification problems,
each point x∗ has only two p-values: κ∗ (p-value
of the predicted class) and γ∗ (p-value of the other
class). It follows that the higher 1−γ∗ and κ∗ are,
the more reliable the prediction t̂∗ is, because we
have an expanded range [γ∗,κ∗) of ε values by which
|Γ ε

∗ |=1. Indeed, in the degenerate case where κ∗=1
and γ∗=0, then |Γ ε

∗ |=1 for any value of ε<1. This
is why, as we will explain in the next section, we do not trust predictions with low
values of 1−γ∗ and κ∗. Hence, our CP-based uncertainty measure associates with each
input its confidence and credibility values.

Label-conditional approach. The validity property, as stated above, guarantees an error
rate over all possible labels, not on a per-label basis. The latter can be achieved with a

14

CP variant, called label-conditional CP [33,57,60]. In this variant, the p-value associated
with class tj on a test point x∗ is defined in a conditional manner as follows:

pj∗=
|{zi∈Zc :ti=t

j,αi>α
j
∗}|

|{zi∈Zc :ti=tj}|+1
+θ

|{zi∈Zc :ti=t
j,αi=α

j
∗}|+1

|{zi∈Zc :ti=tj}|+1
. (10)

In other words, we consider only the αi corresponding to examples with the same label
tj as the hypothetical label that we are assigning at the test point.
Label-conditional validity is very important when CP is applied to an unbalanced

dataset, whereby CP regions tend to have larger error rates with the minority class
than with the majority one. The label-conditional approach ensures that, even for the
minority class, the expected error rate will tend to the chosen significance level ε.

CP for Regression In regression, we have a continuous target space T⊆Rn. The CP
algorithm for regression is similar to the classification one. In particular, the offline
phase of steps 1–3, i.e., training of regression model f and definition of NCF δ, is the
same (with obviously a different kind of f and δ).
The online phase changes though, because T is a continuous space and thus, it is

not possible to enumerate the target values and compute for each a p-value. Instead,
we proceed in an equivalent manner, that is, identify the critical value α(ε) of the
calibration distribution, i.e., the NCF score corresponding to a p-value of ε. The resulting
ε-prediction region is given by Γ ε

∗ =f(x∗)±α(ε), where α(ε) is the (1−ε)-quantile of
the calibration distribution, i.e., the ⌊ε·(|Zc|+1)⌋-th largest calibration score. A natural
NCF in regression, and the one used in our experiments, is the norm of the difference
between the real and the predicted target value, i.e., δ(x,t)= ||t−f(x)||.

Normalized CP. The main limitation of CP for regression, presented above, is that
the size of prediction intervals is identical (2α(ε)) for all test inputs, making CP non-
informative to check how the uncertainty distributes over X. Normalized Conformal
Predictions (NCP) [46,47] tackle this limitation. In order to get individual, input-
conditional bounds for each point xi, we can define normalized nonconformity scores as
follows

α̃c=

{
δ(xi,ti)

u(xi)

∣∣∣ (xi,ti)∈Zc

}
, (11)

where u(xi) estimates the difficulty of predicting f(xi). The rationale is that if two
points have the same nonconformity scores using δ, the one expected to be more
accurate, should be stranger (more nonconforming) than the other one. Hence, we
aim at error bounds that are tighter for inputs x that are deemed easy to predict and
vice-versa. Even for locally-weighted residuals, as in (11), the validity of the conformal
methods carries over. As before we compute α̃(ε) as the (1−ε)-quantile of the scores α̃c

and the coverage guarantees over the error become:

Pr(x,t)∼Z

(
δ
(
x,t

)
≤α̃(ε)·u(x)

)
≥1−ε. (12)

Conformalized Quantile Regression. The goal of conformalized quantile regression
(CQR) [53] is to adjust the QR prediction interval (i.e. the interval obtained by the
prediction of two quantiles as in Problem 3) so that it is guaranteed to contain the
(1−ε) mass of probability. As for CP, we divide the dataset Z′ in a training set Zt

and a calibration set Zc. We train the QR f over Zt and on Zc we compute the
nonconformity scores as

αc :=max{q̂εlo(xi)−ti,ti−q̂εhi
(xi) |(xi,ti)∈Zc}. (13)

15

In our notation, q̂εlo(x) and q̂εhi
(x) denotes the two outputs of the pretrained predictor

f evaluated over x9. The conformalized prediction interval is thus defined as

CPI(x∗)=[q̂εlo(x∗)−α(ε),q̂εhi
(x∗)+α(ε)],

where α(ε) is the ⌊(1−ε)(1+1/|Zc|)⌋-th empirical quantile of αc. In the following, we
will abbreviate with PI a (non-calibrated) QR prediction interval and with CPI a
(calibrated) conformalized prediction interval.

Similarly to normalized CP, the above-defined CPI provides individual uncertainty
estimates as the size of the interval changes according to the (input-conditional) quantile
predictions.

Remark 4. This nonconformity function, and thus α(ε), can be negative and thus the
conformalized prediction interval can be tighter than the original prediction interval.
This means that the CPI can be more efficient than the PI, where the efficiency is
the average width of the prediction intervals over a test set. The CPI has guaranteed
coverage (the PI does not), i.e. P(x∗,t∗)∼Z(t∗∈CPI(x∗))≥1−ε.

CP under Covariate Shift. CP guarantees hold under the assumption that training,
calibration and test data come from the same data distribution Z. However, there
exist CP extensions [59,20] that provide statistical guarantees even in the presence of
covariate shift at test time, meaning that the distribution X over inputs changes. The
core concept is to reweight the nonconformity scores of the calibration set to account
for the distribution shift. Such weights are defined using the density ratio between the
shifted and original distribution, to quantify the probability of observing a particular
calibration input relative to the shifted distribution.

4.2 Bayesian Inference

In general, a Bayesian inference problem aims at inferring an accurate probabilistic
estimate of the unknown function from X to T (as before). In the following, let
f :X→T . The main ingredients of a Bayesian approach are the following:

1. Choose a prior distribution, p(f), over a suitable function space, encapsulating the
beliefs about function f prior to any observations being taken.

2. Determine the functional form of the observation process by defining a suitable
likelihood function p(Z′|f) that effectively models how the observations depend on
the input.

3. Leverage Bayes’ theorem to define the posterior distribution over functions given
the observations p(f|Z′)=p(Z′|f)p(f)/p(Z′). Computing p(Z′)=

∫
p(Z′|f)p(f)df

is almost always computationally intractable as we have non-conjugate prior-
likelihood distributions. Therefore, we need algorithms to accurately approximate
such posterior distribution.

4. Evaluate such posterior at points x∗, resulting in a predictive distribution
p(f∗|x∗,Z′), whose statistics are used to obtain the desired estimate of the satisfac-
tion probability together with the respective credible interval.

9 If f outputs more than two quantiles, q̂εlo(x) and q̂εhi(x) denote the predicted quantiles
associated respectively with the lowest and highest associated significance level.

16

Predictive uncertainty. Once the empirical approximation of the predictive distribution
p(f∗|x∗,Z′) is derived, one can extract statistics from it to characterize predictive
uncertainty. We stress that the predictive distribution, and hence its statistics, effectively
capture prediction uncertainty. For instance, the empirical mean and variance of the
predictive distribution can be used as measures for Bayesian predictive uncertainty.

Remark 5. The Bayesian quantification of uncertainty, despite being based on statis-
tically sound operations, offers no guarantees per se as it strongly depends on the
chosen prior and typically relies on approximate inference. However, we can make
predictions based on a functional of the predictive distribution and exploit the provided
quantification of uncertainty as the normalizing function of an NCP approach, that in
turn will provide us with point-specific statistical guarantees over the error coverage.

In a Bayesian framework two main ingredients are essential to define the solution
strategy to a Bayesian inference problem define above: (i) the probabilistic model
chosen to describe the distribution over functions f and (ii) the approximate inference
strategy. We refer to Appendix A of [12] for details on the possible approaches to
Bayesian inference. In particular, we present Gaussian Processes and Bayesian Neural
Nets, as alternatives for ingredient (i), and Variational Inference (VI) and Hamilton
Monte Carlo (HMC), as alternatives for ingredient (ii).

5 Learning-based PM with Statistical Guarantees

5.1 Monitoring under Full Observability

Given a fully observable Markovian system with a known SAT oracle, the system’s
current state st at time t is sufficient information to predict the future satisfaction of a
requirement φ. The input space of the Sat function is thus S(M).
When the system evolves deterministically each state s∈S(M) is associated with

a unique satisfaction value (as in Problem 1). If we are interested in the Boolean
satisfaction the output space B of the Sat function is {0,1} and the learning problem is
a classical binary classification problem, i.e. inferring a function h :S(M)→{0,1} that
classify a state as positive (if it satisfies the requirement) or negative (if it violates the
requirement). Analogously, if we want to better quantify how robust is the satisfaction
we can leverage the quantitative STL semantics, either spatial or temporal. In this
scenario, the output space B of the Sat function is R and the learning problem becomes
a regression task, i.e. inferring a function h :S(M)→R that estimates the level of
satisfaction of φ for each state in S(M).

The function h, introduced in its general form in Problem 1, can be inferred either
using a deterministic neural network or one of the proposed Bayesian approaches. CP
can be used on top of both approaches to meet the validity guarantees of Problem 4.
In the CP-based version, we apply either CP for classification or CP for regression to
obtain prediction regions with guaranteed coverage over the entire state space (see [13]
for details). On the other, we can design either a Bayesian classifier (with Bernoulli
likelihood for the Boolean semantics) or a Bayesian regressor (Gaussian likelihood for
quantitative semantics). See [14] for details. In order to meet the desired statistical
guarantees we could use CP. Since Bayesian predictions are probabilistic, whereas CP is
defined for deterministic predictors, we apply CP to the expectation over the predictive
distribution. Nonetheless, the variance of the latter can be exploited as normalizing

17

constant in a NCP framework so to obtain state-specific prediction intervals while
preserving the statistical guarantees. Similar reasoning is applied to nondeterministic
systems.

Otherwise, when the system evolves stochastically, each state s∈S(M) is associated
with a distribution over the satisfaction values SSat(s) (as discussed in Problem 3 in
Section 3). We are not able to extract an analytic expression for this distribution but
we can empirically approximate it via sampling. If we consider the Boolean semantics,
SSat(s) is a Binomial distribution centred around the satisfaction probability in the
interval [0,1]. In such a scenario, we could either train a deterministic neural regressor
that infers the satisfaction probability in [0,1] or design a Bayesian framework with
Binomial likelihood (see [12] for details). In order to meet the desired statistical
guarantees we could use CP for regression. Once again, in the Bayesian scenario, CP
is applied to the expectation over the predictive distribution. However, the variance
of the latter can be used as normalizing constant in a NCP framework so to obtain
state-specific prediction intervals. On the other hand, the quantitative STL semantics,
either spatial or temporal, results in a distribution over R. We can train neural quantile
regression (QR) that, given a desired confidence level ε, infers some quantiles of this
distribution (e.g. qε

2
, q0.5 and qε

2
). A typical loss for the regression of a quantile qα

is the pinball loss Lα(t,q̂α) =α ·max(t− q̂α,0)+(1−α) ·max(q̂α− t,0), where q̂α is
the predicted quantile and t∈R denotes an observed output. Once the QR is trained
we can resort to CQR (see Fig. 6) to meet the probabilistic guarantees, in that the
conformal intervals cover with probability at least 1−ε the STL robustness values
relative to the stochastic evolution of the system. The rationale is to evaluate the

nonconformity scores of the interval
[
q̂ε
2
(s),q̂

1−ε
2
(s)

]
over the calibration set and extract

τ , the ⌊(1−ε)(1+1/|Zc|)⌋-th empirical quantile of αc, to recalibrate the prediction
interval (see [19] for details).

5.2 Monitoring under Partial Observability

For ease of discussion, in the PO scenario (outlined in Problem 2), we discuss only
the CP-based setting and not the Bayesian one (see [17] for details). The end-to-end
approach is very similar to the FO deterministic one. The main difference is that instead
of the state at time t we map the history of past measurements yt to the satisfaction
value in B, i.e. we infer a function hpo :Y

Hp →B. As before, the output can be either
Boolean B={0,1} (binary classification task), or quantitative B=R (regression task).
The sequence of past observations is mapped to a unique satisfaction value in B and CP
can be used to enrich the predictions with guaranteed validity. On the other hand, if
we consider a two-step approach we first estimate the sequence of states st (regression
task) and then we estimate the satisfaction value associated with each sequence which
is either a classification or a regression task (as in the end-to-end approach). The two

Fig. 6. Overview of conformalized quantile regression.

18

steps can be fine-tuned together and conformal inference can be applied to both steps
to obtain statistical guarantees.

5.3 Uncertainty-aware Error Detection and Active Learning

It is well known that neural networks are universal approximators. However, such
methods cannot completely avoid prediction errors (no supervised learning method
can). Therefore, we have to deal with predictive monitors f that are prone to prediction
errors: when, for a state s∈S(M), f(x)≠Sat(x). These errors are respectively denoted
by predicates pe(s).

Problem 5 (Uncertainty-based error detection) Given a reachability predictor
f, a distribution X over HA states X, a predictive uncertainty measure uf :X→U
over some uncertainty domain U, and a kind of error pe find an optimal error detection
rule G∗

f,pe :U→{0,1}, i.e., a function that minimizes the probability

Prx∼X
(
pe(x)≠G∗

f ,pe(uf (x))
)
.

In the above problem, we consider all kinds of prediction errors, but the definition and
approach could be easily adapted to focus on the detection of only e.g., false positives
(the most problematic errors from a safety-critical viewpoint).

In the CP-based setting, a meaningful measure of predictive uncertainty is given by
confidence and credibility. In the Bayesian framework, we can consider the mean and
the variance of the predictive distribution.

As for Problem 1, 2 and 3, we can obtain a sub-optimal solution Gf,pe to Problem 5
by expressing the latter as a supervised learning problem, where the inputs are, once
again, sampled according to X and labelled using a SAT oracle. We call validation
set the set of labelled observations used to learn Gf,pe. These observation need to be
independent from the above introduced training set Z′, i.e., those used to learn the
reachability predictor f . The final rejection rule Rejf,pe for detecting HA states where
the satisfaction prediction (given by f) should not be trusted, and thus rejected, is
readily obtained by the composition of the uncertainty measure and the error detection
rule Rejf,pe=Gf,e◦uf :X→{0,1}, where Rejf,pe(x)=1 if the prediction on x is rejected
and Rejf,pe(x)=0 otherwise.

This error-detection criterion can be also used as a query strategy in an uncertainty-
aware active learning setting. Active learning should reduce the overall number of
erroneous predictions because it improves the predictor on the inputs where it is most
uncertain.

6 Related Work

A number of methods have been proposed for online reachability analysis that rely
on separating the reachability computation into distinct offline and online phases.
However, these methods are limited to restricted classes of models [23,63], or require
handcrafted optimization of the HA’s derivatives [7], or are efficient only for low-
dimensional systems and simple dynamics [55]. In contrast, the approaches presented in
this paper are based on learning DNN-based predictors, are fully automated and have
negligible computational cost at runtime. In [26,54], similar techniques are introduced
for neural approximation of Hamilton-Jacobi (HJ) reachability. However, our methods
for prediction rejection and active learning are independent of the class of systems and

19

the machine-learning approximation of reachability, and thus can also be applied to
neural approximations of HJ reachability. In [62], Yel and others present a runtime
monitoring framework that has similarities with our approach, in that they also learn
neural network-based reachability monitors (for UAV planning applications), but instead
of using, like we do, uncertainty measures to pin down potentially erroneous predictions,
they apply NN verification techniques [36] to identify input regions that might produce
false negatives. Thus, their approach is complementary to our uncertainty-based error
detection, but, due to the limitations of the underlying verification algorithms, they can
only support deterministic neural networks with sigmoid activations. On the contrary,
our techniques support any kind of ML-based monitors, including probabilistic ones.
The work of [4,3] addresses the predictive monitoring problem for stochastic black-box
systems, where a Markov model is inferred offline from observed traces and used
to construct a predictive runtime monitor for probabilistic reachability checking. In
contrast to our method, this method focuses on discrete-space models, which allows
the predictor to be represented as a look-up table, as opposed to a neural network.
In [49], a method is presented for predictive monitoring of STL specifications with
probabilistic guarantees. These guarantees derive from computing prediction intervals of
ARMA/ARIMA models learned from observed traces. Similarly, we use CP which also
can derive prediction intervals with probabilistic guarantees, with the difference that
CP supports any class of prediction models (including auto-regressive ones). In [27],
model predictions are used to forecast future robustness values of MTL specifications for
runtime monitoring. However, no guarantee, statistical or otherwise, is provided for the
predicted robustness. Deshmukh and others [25] have proposed an interval semantics
for STL over partial traces, where such intervals are guaranteed to include the true
STL robustness value for any bounded continuation of the trace. This approach can be
used in the context of predictive monitoring but tends to produce over-conservative
intervals. Another related approach is smoothed model checking [15], where Gaussian
processes [51] are used to approximate the satisfaction function of stochastic models, i.e.,
mapping model parameters into the satisfaction probability of a specification. Smoothed
model checking leverages Bayesian statistics to quantify prediction uncertainty, but
faces scalability issues as the dimension of the system increases. These scalability issues
are alleviated in [12] using stochastic variational inference. In contrast, computing
our conformal measure of prediction reliability is very efficient, because it is nearly
equivalent to executing the underlying predictor.

This tutorial builds on the methods presented in [48,13,14,17,18,19,12]. In
NPM [13,14], neural networks are used to infer the Boolean satisfaction of a reachability
property and conformal prediction (CP) are used to provide statistical guarantees.
NPM has been extended to support some source of stochasticity in the system: in [17]
they allow partial observability and noisy observations, in [18] the system dynamics are
stochastic but the monitor only evaluates the Boolean satisfaction of some quantile
trajectories, providing a limited understanding of the safety level of the current state.
Finally in [19] a conformal quantitative predictive monitor to reliably check the satisfac-
tion of STL requirements over evolutions of a stochastic system at runtime is presented.
Predictive monitoring under partial observability is also analysed in [24], where the
authors combine Bayesian state estimation with pre-computed reach sets to reduce
the runtime overhead. While their reachability bounds are certified, no correctness
guarantees can be established for the estimation step.

20

Various learning-based PM approaches for temporal logic proper-
ties [50,41,64,65,52,43] have been recently proposed. In particular, Ma et al. [41] use
uncertainty quantification with Bayesian RNNs to provide confidence guarantees.
However, these models are, by nature, not well-calibrated (i.e., the model uncertainty
does not reflect the observed one [38]), making the resulting guarantees not theoretically
valid. In [5] the parameter space of a parametric CTMC is explicitly explored, while [21]
assumes a probability distribution over the parameters and proposes a sampling-based
approach. In [40] conformal predictions are used over the expected value of the
stochastic process rather than its distribution.

We contribute to the state of the art by presenting a wide variety of learning-based
predictive monitors that offer good scalability, provide statistical guarantees, and support
partial observability, stochasticity and rich STL-based requirements.

7 Conclusions

We have presented an overview of various learning-based approaches to reliably monitor
the evolution of a CPS at runtime. The proposed methods complement predictions
over the satisfaction of an STL specification with principled estimates of the prediction
uncertainty. These estimates can be used to derive optimal rejection criteria that identify
potentially erroneous predictions without knowing the true satisfaction values. The
latter can be exploited as an active learning strategy increasing the accuracy of the
satisfaction predictor. The strength is given by high-reliability and high computational
efficiency of our predicitons. The efficiency is not directly affected by the complexity
of the system under analysis but only by the complexity of the learned predictor.
Our approach overcomes the computational footprint of model checking (infeasible at
runtime) while improving on traditional runtime verification by being able to detect
future violations in a preemptive way. We have devised two alternative solution methods:
a frequentist and a Bayesian approach. Conformal predictions are used on top of both
methods to obtain statistical guarantees.

In future work, we will investigate dynamics-aware approaches to inference. The aim
is to improve the performances by limiting inference only to an estimate of the system
manifold, i.e. the region of the state space that is likely to be visited by the evolving
stochastic process.

Acknowledgments. This work has been partially supported by the PRIN project
“SEDUCE” n. 2017TWRCNB, by the “REXASI-PRO” H-EU project, call HORIZON-
CL4-2021-HUMAN-01-01, Grant agreement ID: 101070028 and by the PNRR project
iNEST (Interconnected North-Est Innovation Ecosystem) funded by the European
Union Next-GenerationEU (Piano Nazionale di Ripresa e Resilienza (PNRR) – Missione
4 Componente 2, Investimento 1.5 – D.D. 1058 23/06/2022, ECS 00000043).

References

1. Alur, R.: Principles of cyber-physical systems. MIT Press (2015)
2. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-taliro: A tool for temporal

logic falsification for hybrid systems. In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. pp. 254–257. Springer (2011)

21

3. Babaee, R., Ganesh, V., Sedwards, S.: Accelerated learning of predictive runtime monitors
for rare failure. In: International Conference on Runtime Verification. pp. 111–128. Springer
(2019)

4. Babaee, R., Gurfinkel, A., Fischmeister, S.: Predictive run-time verification of discrete-time
reachability properties in black-box systems using trace-level abstraction and statistical
learning. In: International Conference on Runtime Verification. pp. 187–204. Springer
(2018)

5. Badings, T.S., Jansen, N., Junges, S., Stoelinga, M., Volk, M.: Sampling-based verification
of ctmcs with uncertain rates. In: Computer Aided Verification: 34th International
Conference, CAV 2022, Haifa, Israel, August 7–10, 2022, Proceedings, Part II. pp. 26–47.
Springer (2022)

6. Bak, S., Duggirala, P.S.: Hylaa: A tool for computing simulation-equivalent reachability for
linear systems. In: Proceedings of the 20th International Conference on Hybrid Systems:
Computation and Control. pp. 173–178 (2017)

7. Bak, S., Johnson, T.T., Caccamo, M., Sha, L.: Real-time reachability for verified simplex
design. In: Real-Time Systems Symposium (RTSS), 2014 IEEE. pp. 138–148. IEEE (2014)

8. Balasubramanian, V., Ho, S.S., Vovk, V.: Conformal prediction for reliable machine
learning: theory, adaptations and applications. Newnes (2014)

9. Bartocci, E., Deshmukh, J., Donzé, A., Fainekos, G., Maler, O., Nǐckovíc, D., Sankara-
narayanan, S.: Specification-based monitoring of cyber-physical systems: a survey on
theory, tools and applications. In: Lectures on Runtime Verification, pp. 135–175. Springer
(2018)

10. Benvenuti, L., Bresolin, D., Casagrande, A., Collins, P., Ferrari, A., Mazzi, E., Sangiovanni-
Vincentelli, A., Villa, T.: Reachability computation for hybrid systems with ariadne. IFAC
Proceedings Volumes 41(2), 8960–8965 (2008)

11. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: JuliaReach: a toolbox
for set-based reachability. In: Proceedings of the 22nd ACM International Conference on
Hybrid Systems: Computation and Control. pp. 39–44 (2019)

12. Bortolussi, L., Cairoli, F., Carbone, G., Pulcini, P.: Stochastic variational smoothed model
checking. arXiv preprint arXiv:2205.05398 (2022)

13. Bortolussi, L., Cairoli, F., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural predictive
monitoring. In: Runtime Verification: 19th International Conference, RV 2019, Porto,
Portugal, October 8–11, 2019, Proceedings 19. pp. 129–147. Springer (2019)

14. Bortolussi, L., Cairoli, F., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural predictive
monitoring and a comparison of frequentist and bayesian approaches. International Journal
on Software Tools for Technology Transfer 23(4), 615–640 (2021)

15. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous-time Markov chains. Information and Computation 247, 235–253 (2016)

16. Brihaye, T., Doyen, L., Geeraerts, G., Ouaknine, J., Raskin, J.F., Worrell, J.: On reachability
for hybrid automata over bounded time. In: International Colloquium on Automata,
Languages, and Programming. pp. 416–427. Springer (2011)

17. Cairoli, F., Bortolussi, L., Paoletti, N.: Neural predictive monitoring under partial observ-
ability. In: Runtime Verification: 21st International Conference, RV 2021, Virtual Event,
October 11–14, 2021, Proceedings 21. pp. 121–141. Springer (2021)

18. Cairoli, F., Paoletti, N., Bortolussi, L.: Neural predictive monitoring for collective adaptive
systems. In: International Symposium on Leveraging Applications of Formal Methods. pp.
30–46. Springer (2022)

19. Cairoli, F., Paoletti, N., Bortolussi, L.: Conformal quantitative predictive monitoring of
stl requirements for stochastic processes. In: Proceedings of the 26th ACM International
Conference on Hybrid Systems: Computation and Control. pp. 1–11 (2023)

20. Cauchois, M., Gupta, S., Ali, A., Duchi, J.C.: Robust validation: Confident predictions
even when distributions shift. arXiv preprint arXiv:2008.04267 (2020)

22

21. Čěska, M., Dannenberg, F., Paoletti, N., Kwiatkowska, M., Brim, L.: Precise parameter
synthesis for stochastic biochemical systems. Acta Informatica 54, 589–623 (2017)

22. Chen, H., Lin, S., Smolka, S.A., Paoletti, N.: An STL-based formulation of resilience in
cyber-physical systems. In: International Conference on Formal Modeling and Analysis of
Timed Systems. pp. 117–135. Springer (2022)

23. Chen, X., Sankaranarayanan, S.: Model predictive real-time monitoring of linear systems.
In: Real-Time Systems Symposium (RTSS), 2017 IEEE. pp. 297–306. IEEE (2017)

24. Chou, Y., Yoon, H., Sankaranarayanan, S.: Predictive runtime monitoring of vehicle models
using bayesian estimation and reachability analysis. In: Intl. Conference on Intelligent
Robots and Systems (IROS) (2020)

25. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust online
monitoring of signal temporal logic. Formal Methods in System Design 51(1), 5–30 (2017)

26. Djeridane, B., Lygeros, J.: Neural approximation of PDE solutions: An application to
reachability computations. In: Proceedings of the 45th IEEE Conference on Decision and
Control. pp. 3034–3039. IEEE (2006)

27. Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic robustness.
In: International Conference on Runtime Verification. pp. 231–246. Springer (2014)

28. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In:
International Conference on Computer Aided Verification. pp. 167–170. Springer (2010)

29. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In:
International Conference on Formal Modeling and Analysis of Timed Systems. pp. 92–106.
Springer (2010)

30. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2e2: A verification tool for
stateflow models. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. pp. 68–82. Springer (2015)

31. Frehse, G.: Phaver: Algorithmic verification of hybrid systems past hytech. In: International
workshop on hybrid systems: computation and control. pp. 258–273. Springer (2005)

32. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: Spaceex: Scalable verification of hybrid systems. In:
International Conference on Computer Aided Verification. pp. 379–395. Springer (2011)

33. Gammerman, A., Vovk, V.: Hedging predictions in machine learning. The Computer
Journal 50(2), 151–163 (2007)

34. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic model
checker storm. International Journal on Software Tools for Technology Transfer pp. 1–22
(2021)

35. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? In: Proceedings of the twenty-seventh annual ACM symposium on Theory of
computing. pp. 373–382 (1995)

36. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety properties
of hybrid systems with neural network controllers. In: Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control. pp. 169–178
(2019)

37. Johnson, T.T., Bak, S., Caccamo, M., Sha, L.: Real-time reachability for verified simplex
design. ACM Transactions on Embedded Computing Systems (TECS) 15(2), 1–27 (2016)

38. Kuleshov, V., Fenner, N., Ermon, S.: Accurate uncertainties for deep learning using
calibrated regression. In: International Conference on Machine Learning. pp. 2796–2804.
PMLR (2018)

39. Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic real-time
systems. In: Computer Aided Verification: 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings 23. pp. 585–591. Springer (2011)

40. Lindemann, L., Qin, X., Deshmukh, J.V., Pappas, G.J.: Conformal prediction for stl
runtime verification. In: Proceedings of the ACM/IEEE 14th International Conference on
Cyber-Physical Systems (with CPS-IoT Week 2023). pp. 142–153 (2023)

23

41. Ma, M., Stankovic, J., Bartocci, E., Feng, L.: Predictive monitoring with logic-calibrated
uncertainty for cyber-physical systems. ACM Transactions on Embedded Computing
Systems (TECS) 20(5s), 1–25 (2021)

42. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Formal
Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pp. 152–166.
Springer (2004)

43. Muthali, A., Shen, H., Deglurkar, S., Lim, M.H., Roelofs, R., Faust, A., Tomlin, C.: Multi-
agent reachability calibration with conformal prediction. arXiv preprint arXiv:2304.00432
(2023)

44. Nǐckovíc, D., Yamaguchi, T.: Rtamt: Online robustness monitors from stl. In: International
Symposium on Automated Technology for Verification and Analysis. pp. 564–571. Springer
(2020)

45. Papadopoulos, H.: Inductive conformal prediction: Theory and application to neural
networks. In: Tools in artificial intelligence. InTech (2008)

46. Papadopoulos, H., Haralambous, H.: Reliable prediction intervals with regression neural
networks. Neural networks : the official journal of the International Neural Network Society
24 8, 842–51 (2011)

47. Papadopoulos, H., Vovk, V., Gammerman, A.: Regression conformal prediction with
nearest neighbours. J. Artif. Intell. Res. 40, 815–840 (2014)

48. Phan, D., Paoletti, N., Zhang, T., Grosu, R., Smolka, S.A., Stoller, S.D.: Neural state
classification for hybrid systems. In: International Symposium on Automated Technology
for Verification and Analysis. pp. 422–440. Springer (2018)

49. Qin, X., Deshmukh, J.V.: Predictive monitoring for signal temporal logic with probabilistic
guarantees. In: Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control. pp. 266–267. ACM (2019)

50. Qin, X., Deshmukh, J.V.: Clairvoyant monitoring for signal temporal logic. In: International
Conference on Formal Modeling and Analysis of Timed Systems. pp. 178–195. Springer
(2020)

51. Rasmussen, C.E., Williams, C.K.: Gaussian processes for machine learning, vol. 1. MIT
press Cambridge (2006)

52. Rodionova, A., Lindemann, L., Morari, M., Pappas, G.J.: Time-robust control for STL
specifications. In: 2021 60th IEEE Conference on Decision and Control (CDC). pp. 572–579.
IEEE (2021)

53. Romano, Y., Patterson, E., Candes, E.: Conformalized quantile regression. Advances in
neural information processing systems 32 (2019)

54. Royo, V.R., Fridovich-Keil, D., Herbert, S., Tomlin, C.J.: Classification-based approx-
imate reachability with guarantees applied to safe trajectory tracking. arXiv preprint
arXiv:1803.03237 (2018)

55. Sauter, G., Dierks, H., Fränzle, M., Hansen, M.R.: Lightweight hybrid model checking
facilitating online prediction of temporal properties. In: Proceedings of the 21st Nordic
Workshop on Programming Theory. pp. 20–22 (2009)

56. Schupp, S., Abraham, E., Makhlouf, I.B., Kowalewski, S.: H y p ro: A c++ library of state
set representations for hybrid systems reachability analysis. In: NASA Formal Methods
Symposium. pp. 288–294. Springer (2017)

57. Shafer, G., Vovk, V.: A tutorial on conformal prediction. Journal of Machine Learning
Research 9(Mar), 371–421 (2008)

58. Stankeviciute, K., M Alaa, A., van der Schaar, M.: Conformal time-series forecasting.
Advances in neural information processing systems 34, 6216–6228 (2021)

59. Tibshirani, R.J., Foygel Barber, R., Candes, E., Ramdas, A.: Conformal prediction under
covariate shift. Advances in neural information processing systems 32 (2019)

60. Toccaceli, P., Gammerman, A.: Combination of inductive mondrian conformal predictors.
Machine Learning 108(3), 489–510 (2019)

24

61. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic learning in a random world. Springer
Science & Business Media (2005)

62. Yel, E., Carpenter, T.J., Di Franco, C., Ivanov, R., Kantaros, Y., Lee, I., Weimer, J., Bezzo,
N.: Assured runtime monitoring and planning: Toward verification of neural networks for
safe autonomous operations. IEEE Robotics & Automation Magazine 27(2), 102–116
(2020)

63. Yoon, H., Chou, Y., Chen, X., Frew, E., Sankaranarayanan, S.: Predictive runtime
monitoring for linear stochastic systems and applications to geofence enforcement for uavs.
In: International Conference on Runtime Verification. pp. 349–367. Springer (2019)

64. Yoon, H., Sankaranarayanan, S.: Predictive runtime monitoring for mobile robots using
logic-based bayesian intent inference. In: 2021 IEEE International Conference on Robotics
and Automation (ICRA). pp. 8565–8571. IEEE (2021)

65. Yu, X., Dong, W., Yin, X., Li, S.: Model predictive monitoring of dynamic systems for
signal temporal logic specifications. arXiv preprint arXiv:2209.12493 (2022)

66. Zaffran, M., Féron, O., Goude, Y., Josse, J., Dieuleveut, A.: Adaptive conformal predictions
for time series. In: International Conference on Machine Learning. pp. 25834–25866. PMLR
(2022)

	Learning-Based Approaches to Predictive Monitoring with Conformal Statistical Guarantees

