
Suffix-Prefix Queries on a Dictionary1

Grigorios Loukides #2

Department of Informatics, King’s College London, London, UK3

Solon P. Pissis #4

CWI, Amsterdam, The Netherlands5

Vrije Universiteit, Amsterdam, The Netherlands6

Sharma V. Thankachan #7

North Carolina State University, Raleigh, USA8

Wiktor Zuba #9

CWI, Amsterdam, The Netherlands10

Abstract11

In the all-pairs suffix-prefix (APSP) problem, we are given a dictionary R of k strings, S1, . . . , Sk,12

of total length n, and we are asked to find the length SPLi,j of the longest string that is both a13

suffix of Si and a prefix of Sj , for all i, j ∈ [1, k]. APSP is a classic problem in string algorithms14

with many applications in bioinformatics. When all strings of the dictionary are over an integer15

alphabet of size σ ≤ nO(1), APSP can be solved in the optimal O(n + k2) time with the use of the16

generalized suffix tree of the dictionary [Gusfield et al., Inf. Process. Lett. 1992].17

In many bioinformatics applications, such as in sequence assembly, the size k of dictionary R18

is very large. In particular, k2 usually dominates n, and thus the k2 factor is the bottleneck both19

in the time and in the space complexity of such applications. We thus initiate a holistic study on20

several data structure variants of APSP. In particular, we consider the following types of queries:21

One-to-One(i, j): output SPLi,j .22

One-to-All(i): output SPLi,j for every j ∈ [1, k].23

Report(i, ℓ): output all distinct j ∈ [1, k] such that SPLi,j ≥ ℓ, where ℓ ≥ 0 is an integer.24

Count(i, ℓ): output the number of distinct j ∈ [1, k] such that SPLi,j ≥ ℓ, where ℓ ≥ 0 is an25

integer.26

Top(i, K): output K distinct j ∈ [1, k] with the highest values of SPLi,j breaking ties arbitrarily.27

We assume the standard word RAM model of computation with word size w = Ω(log n) and an28

integer alphabet of size σ ≤ nO(1). We show the following upper bounds:29

Query Space (words) Query time Note
One-to-One(i, j) O(n) O(log log k) Theorem 11
One-to-All(i) O(n) O(k) Theorem 14
Report(i, ℓ) O(n) O(log n/ log log n + output) Theorem 19(i)
Count(i, ℓ) O(n) O(log n/ log log n) Theorem 19(ii)
Top(i, K) O(n) O(log2 n/ log log n + K) Theorem 22

30

We also present efficient algorithms for constructing these data structures.31

2012 ACM Subject Classification Theory of computation → Pattern matching32

Keywords and phrases all-pairs suffix-prefix, suffix-prefix queries, internal pattern matching33

Funding This work is supported in part by the Royal Society grant IES\R3\193209.34

Solon P. Pissis: Supported in part by the PANGAIA and ALPACA projects that have received35

funding from the European Union’s Horizon 2020 research and innovation programme under the36

Marie Skłodowska-Curie grant agreements No 872539 and 956229, respectively.37

Sharma V. Thankachan: Supported by the U.S. National Science Foundation (NSF) grant CCF-38

2146003.39

Wiktor Zuba: Supported by the Netherlands Organisation for Scientific Research (NWO) through40

Gravitation-grant NETWORKS-024.002.003.41

mailto:grigorios.loukides@kcl.ac.uk
https://orcid.org/0000-0003-0888-5061
mailto:solon.pissis@cwi.nl
https://orcid.org/0000-0002-1445-1932
mailto:svalliy@ncsu.edu
https://orcid.org/0000-0002-6852-1035
mailto:wiktor.zuba@cwi.nl
https://orcid.org/0000-0002-1988-3507

2 Suffix-Prefix Queries on a Dictionary

1 Introduction42

The all-pairs suffix-prefix problem (APSP, in short) is a classic problem in string algorithms.43

APSP finds numerous applications in bioinformatics because it is the first step in sequence44

assembly [26, 37, 46, 8, 11]. Given a dictionary R of k strings, S1, . . . , Sk, of total length n,45

the APSP problem asks us to find, for each string Si, i ∈ [1, k], its longest suffix that is a46

prefix of string Sj , for all j ≠ i, j ∈ [1, k]. Gusfield et al. [27] presented an algorithm running47

in the optimal O(n + k2) time for solving APSP, assuming all strings in R are over an integer48

alphabet of size σ ≤ nO(1). The algorithm is based on the generalized suffix tree [53] of R.49

Ohlebusch and Gog [39] gave another optimal algorithm which is based on the generalized50

suffix array [36] of R. Tustumi et al. [49] gave yet another optimal algorithm based on51

the generalized suffix array of R. Thus the common denominator of all existing optimal52

algorithms for APSP is that they rely on sorting the suffixes of all strings in R, and therefore53

they require space Ω(n) in any case and for any alphabet. In a very recent work, Loukides54

and Pissis [34] presented a different optimal algorithm, which is based on the Aho-Corasick55

automaton of R [1], and it thus requires space linear in the size of the automaton.56

Due to the practical relevance of APSP, there also exists a large body of works devoted57

to implementing algorithms for APSP that are suboptimal but practically fast on real-58

world datasets; see [25, 42, 33] and references therein for some of the state-of-the-art59

implementations. For a parallel implementation of the algorithm by Tustumi et al. see [35].60

For approximate variants of APSP, under the Hamming or edit distance, see [44, 52, 32, 5, 47].61

In many bioinformatics applications, such as in sequence assembly, the size k of dictionary62

R is very large. In particular, k2 usually dominates n, and thus the k2 factor is the bottleneck63

both in the time and the space complexity of such applications. For instance, in typical64

benchmark datasets1 for genome assembly using short DNA reads (fragments), k is in the65

order of 106 to 108 and n is in the order of 108 to 1010. Hence k2 dominates n significantly.66

We thus initiate a holistic study on several data structure variants of APSP. Let SPLi,j67

(short for suffix-prefix length), for any i, j ∈ [1, k], denote the length of the longest string,68

that is both a suffix of Si and a prefix of Sj . We consider the following types of queries:69

One-to-One(i, j): output SPLi,j .70

One-to-All(i): output SPLi,j for every j ∈ [1, k].71

Report(i, ℓ): output all distinct j ∈ [1, k] such that SPLi,j ≥ ℓ, where ℓ ≥ 0 is an integer.72

Count(i, ℓ): output the number of distinct j ∈ [1, k] such that SPLi,j ≥ ℓ, where ℓ ≥ 0 is73

an integer.74

Top(i, K): output K distinct j ∈ [1, k] with the highest values of SPLi,j breaking ties75

arbitrarily.76

By being able to answer different types of such queries efficiently, one may be able to77

design alternative algorithms, depending on the application in scope, which avoid the k2
78

factor in their time or space complexity. Indeed, we stress that most works studying APSP79

from a practical perspective (e.g., [25, 42, 33]), in fact considered the ℓ-APSP problem in80

their experimental part; namely, the problem in which we are asked to output only the SPLi,j81

values with SPLi,j ≥ ℓ, for some integer ℓ ≥ 0, which, however, is given a priori and is fixed82

for all pairs Si, Sj . This inflexibility would be surpassed should one have space-efficient (e.g.,83

linear-space) data structures for answering these different types of queries fast.84

1 For example, see http://gage.cbcb.umd.edu/data/index.html.

http://gage.cbcb.umd.edu/data/index.html

G. Loukides et al. 3

Our Results We assume the standard word RAM model of computation with word size85

w = Ω(log n) and an integer alphabet of size σ ≤ nO(1). We show the following upper86

bounds:87

Query Space (words) Query time Note
One-to-One(i, j) O(n) O(log log k) Theorem 11
One-to-All(i) O(n) O(k) Theorem 14
Report(i, ℓ) O(n) O(log n/ log log n + output) Theorem 19(i)
Count(i, ℓ) O(n) O(log n/ log log n) Theorem 19(ii)
Top(i, K) O(n) O(log2 n/ log log n + K) Theorem 22

88

We also provide efficient construction algorithms for Theorems 11 and 14: Theorem 1189

can be implemented in O(n log log k) time and Theorem 14 can be implemented in O(n)90

time. For Theorems 19 and 22, no guaranteed construction time is provided: the query91

times for Report, Count, and Top rely on the construction of a 2D rectangle stabbing data92

structure for reporting [45] and counting [28], but unfortunately the construction times for93

these data structures are not mentioned in [45] or [28]. However, by constructing the classic94

data structure for 2D rectangle stabbing [15], we obtain O(n log n) construction time, O(n)95

words of space, O(log n + output) query time for Report, O(log n) query time for Count, and96

O(log2 n + K) query time for Top. We also make the following straightforward observation.97

▶ Observation 1. The symmetric versions of One-to-All, Report, Count and Top, where we98

are given string Sj as the query and we are asked to output information about SPLi,j, for99

all i ∈ [1, k], can be addressed by constructing the corresponding data structures for the100

dictionary Rr of k strings Sr
1 , . . . , Sr

k, where Sr = S[|S|] · · · S[2]S[1] denotes the reverse of101

string S = S[1]S[2] · · · S[|S|]. Hence, the same space/query-time trade-offs can be achieved.102

Related Work In addition to the data structure variants of APSP that are studied here,103

two other versions of APSP have been studied in the literature. The first version consists in104

enumerating all pairwise suffix-prefix matches (not necessarily the longest ones) in decreasing105

order of their lengths. This version of the problem was solved by Ukkonen [50], who used106

this solution as the crux of his classic linear-time implementation of the greedy algorithm for107

constructing approximate shortest common superstrings. The second APSP version studied108

consists in enumerating the set of longest suffix-prefix matches (not however their association109

with the corresponding pairs of strings) [12]. Since any suffix-prefix match in this set is a110

prefix of some input string, the size of this set is O(n). This version of the problem was111

solved in the optimal O(n) time, independently, by Park et al. [40] and by Khan [29].112

Although our work is inspired by real-world applications, the underlying data structure113

problems are also appealing from a theoretical perspective: (i) they are analogous to distance114

oracles for networks [48, 41, 17, 16, 13]; and (ii) they are special types of internal pattern115

matching (IPM) data structures [31, 30, 3, 14, 4]. For instance, an existing, more general,116

IPM data structure [30, 31] can be employed to answer One-to-One queries in O(log n) time117

using O(n) words of space; see Section 2.3 for more details. By designing a specialized data118

structure for One-to-One, we obtain O(log log k) query time using O(n) words of space.119

Paper Organization In Section 2, we provide basic definitions and notation on strings. We120

also describe basic data structures for representing a dictionary, some more advanced data121

structures that are necessary to obtain our upper bounds, and a few previous solutions to122

APSP (variants). In Section 3, we provide the solution to One-to-One queries. In Section 4,123

we provide the solution to One-to-All queries. In Section 5, we provide the solutions to Report124

and Count queries. Finally, in Section 6, we provide the solution to Top queries.125

4 Suffix-Prefix Queries on a Dictionary

2 Preliminaries126

An alphabet Σ is a finite nonempty set of σ = |Σ| elements called letters. By Σ∗ we denote127

the set of all strings over Σ including the empty string ε of length 0. A string S over Σ is a128

sequence of letters of Σ. For a string S = S[1] · · · S[n] over Σ, by n = |S| we denote its length.129

The fragment S[i . . j] of S is an occurrence of the underlying substring P = S[i] · · · S[j]. We130

also say that P occurs at (starting) position i in S. A prefix of S is a fragment of S of the131

form S[1 . . j] and a suffix of S is a fragment of S of the form S[i . . n].132

Let M be a finite nonempty set of strings over Σ of total length m. We call M a133

dictionary. We define the trie of M , denoted by TR(M), as a deterministic finite automaton134

that recognizes M . Its set of states (nodes) is the set of prefixes of the elements of M ; the135

initial state (root node) is ε; the set of terminal states is M ; and transitions (edges) are of the136

form δ(u, α) = uα, where u and uα are nodes and α ∈ Σ. The size of TR(M) is thus O(m).137

The compacted trie of M , denoted by CT(M), contains the root, the branching nodes, and138

the terminal nodes of TR(M). The term compacted refers to the fact that CT(M) reduces139

the number of nodes by replacing each maximal branchless path segment with a single edge,140

and that it uses a fragment of a string from M to represent the label of this edge in O(1)141

words of space. The nodes of TR(M) that are included in CT(M) are called explicit; all other142

nodes are called implicit. The size of CT(M) is thus O(|M |). The most well-known form of143

compacted trie is the suffix tree described next.144

2.1 Suffix Tree and Aho-Corasick Automaton145

We are given a dictionary R of k strings, S1, S2, . . . , Sk, whose total length is n = |S1|+ |S2|+146

· · · + |Sk|. Every string in R is over an integer alphabet Σ whose size σ is polynomial in n,147

i.e., Σ = {1, 2, . . . , nO(1)} and thus σ ≤ nO(1). For constructing specialized data structures148

and answering internal pattern matching queries, non-trivial representations of R (different149

than a simple set of strings) are usually more efficient.150

Let us set TR := S1$1S2$2 · · · Sk$k, where $1 < $2 < · · · < $k are letters that are strictly151

lexicographically smaller than any letter from Σ (and as such they do not belong to Σ).152

Let ST(S) denote the suffix tree of string S, that is the compacted trie of all the suffixes153

of S. For any node v of ST(S), by str(v) we denote the concatenation of the edge labels on154

the path from the root to v, and by d(v) = |str(v)| we denote the string depth of v. The suffix155

array SA(S) of S is the lexicographically sorted array of the set of suffixes of S, represented156

by their starting positions; see Figure 1 for an example.157

▶ Lemma 2 ([53, 22]). For any string S of length m over an integer alphabet of size158

σ ≤ mO(1), the suffix tree and the suffix array of S can be constructed in O(m) time.159

We also denote STi = ST(Si$i) and STR = ST(S1$1, . . . , Sk$k); that is STR is the160

generalized suffix tree [51] of the k strings from R. The generalized suffix tree can be built161

in linear time; here, however, this more complicated construction is not needed since this162

compacted trie is equivalent to ST(TR) as the letters $i occur uniquely in this string (and163

hence a compacted edge containing any label $i must end at a leaf node).164

Another useful representation of R is given by its Aho-Corasick (AC) automaton [1];165

the set of states of the AC automaton of R, denoted by AC(R), corresponds to the set166

of the prefixes of the strings in R. Let node(S) denote the node corresponding to string167

S. After reading an input string the automaton must be in a state corresponding to a168

suffix of this string (the longest one that is also a prefix of some string in R and has169

a corresponding state); such a state always exists as ε is always represented (recall ε is170

G. Loukides et al. 5

i SA(S)[i] Suffix

1 7 $
2 6 A$
3 4 AGA$
4 2 AGAGA$
5 1 CAGAGA$
6 5 GA$
7 3 GAGA$

$
GA

A$

$

GA$

GA

CAGAGA$

$

GA$

1

2

4

6

7

3

5

u

Figure 1 Suffix array SA(S) and suffix tree ST(S) of string S = CAGAGA$, where $ is a terminal
letter, which is the lexicographically smallest letter occurring in S. For node u in ST(S), str(u) = AGA
and d(u) = 3.

the string of length 0). As such, the automaton AC(R) is often represented by the trie171

TR(R) with transitions δ(node(S), α) = {node(Sα)} if Sα is a prefix of a string in R, and172

δ(node(S), ε) = {node(S′)}, where S′ is the longest suffix of S which is also a prefix of a string173

in R. The ε-transitions are called failure transitions. The existence of ε-transitions makes174

the automaton nondeterministic, and even though this nondeterminism can be avoided, we175

are going to actually employ those ε-transitions to construct the data structure for One-to-All176

queries.177

▶ Lemma 3 ([1, 20]). For any dictionary R of k strings of total length n over an integer178

alphabet of size σ ≤ nO(1), AC(R) can be constructed in O(n) time.179

By FT(R) we denote the so-called Failure Transition tree (FTtree) of R, introduced by180

Loukides and Pissis in [34] for solving the APSP problem: the FTtree nodes correspond to the181

states of the AC automaton (that is, to prefixes of strings in R), and the edges correspond to182

its ε-transitions with reversed direction. Notice that, since every state of AC(R) has exactly183

one outgoing failure transition, FT(R) is indeed a tree rooted at node(ε). We additionally184

decorate every node u of FT(R) by a labeled interval Iu = [i, j]d: Si, Si+1, . . . , Sj have as185

a common prefix the string of length d represented by node u; see [34]. We will generally186

assume that R is given lexicographically sorted at construction time; otherwise, the sorted187

version of R can be produced in linear time using, for example, Lemma 3 or Lemma 2.188

▶ Example 4. Let R = {S1, S2, S3, S4} = {ACAA, ACAG, ACGC, CACA} be a dictionary of k = 4189

strings. The AC automaton and the FTtree of R is shown in Figure 2. Consider the path190

from the root to leaf node S4 (shown in red) in the FTtree of R, where the non-root nodes191

have the following labeled intervals [i, j]d: [1, 3]1, [4, 4]2, [1, 2]3, [4, 4]4. By recording the192

largest string depth d of an interval containing j, for every j ∈ [1, k], along this path, we193

compute all SPL4,j : SPL4,1 = 3, SPL4,2 = 3, SPL4,3 = 1, and SPL4,4 = 4. Loukides and194

Pissis [34] showed how to compute this information, for all i, in O(n + k2) total time, thus195

solving the APSP problem optimally using only the FTtree of R.196

2.2 Advanced Data Structures197

Let T be a rooted tree. A lowest common ancestor (LCA) query on T for two given nodes198

u and v, denoted by w = LCAT (u, v), returns the last (i.e., the lowest) common node w on199

their paths from the root.200

6 Suffix-Prefix Queries on a Dictionary

A

A

C
A

A

A

G

G

C
C

C

s1

s4

s3

s2

(A,C)

start
node

s1

s4

s3

s2
start
node

[1,3]1 [1,3]2

[1,2]3

[3,3]3

[4,4]1 [4,4]2 [4,4]3 [4,4]4

[1,1]4

[2,2]4

[3,3]4

Figure 2 The AC automaton AC(R) (on the left) and FTtree FT(R) (on the right) of the dictionary
of strings R = {S1, S2, S3, S4} = {ACAA, ACAG, ACGC, CACA}. In AC(R), solid arrows correspond to
transitions and dashed arrows to failure transitions. To avoid cluttering the figure, failure transitions
to the start node in AC(R) have been omitted.

▶ Lemma 5 ([9]). For any rooted tree T with m nodes, after O(m)-time preprocessing, we201

can answer LCAT queries in O(1) time per query.202

A rank and select data structure (also known as succinct indexable dictionary [43]) is a203

classic data structure, constructed over an array A of length m over alphabet [1, σ], which204

supports two types of queries:205

rankA(i, x) = |{ℓ ∈ [1, x] : A[ℓ] = i}|, for i ∈ [1, σ] and x ∈ [1, m];206

selectA(i, x) = min{ℓ ∈ [1, m] : rankA(i, ℓ) = x}, for i ∈ [1, σ] and x ∈ [1, m].207

In other words, rankA(i, x) returns the number of elements with value equal to i occurring at208

positions in [1, x] of S, while selectA(i, x) returns the position of the xth element of A with209

value equal to i.210

▶ Lemma 6 ([7, 38, 18]). For any array A = A[1 . . m] over [1, σ], σ ≤ m, after O(m log log σ)-211

time preprocessing, we can construct a data structure of O(m) words of space that supports212

O(log log σ)-time rank and select queries on A.213

Let T be a rooted tree of m nodes with integer weights on nodes. Further assume that214

the weight of every node of T satisfies the min-heap property: the weight of each node is215

greater than or equal to the value of its parent (the smallest weight is hence at the root).216

A weighted ancestor (WA) query for a given node u of T and an integer d, denoted by217

w = WAT (u, d), returns its deepest ancestor w whose weight is at most d [23]. This problem218

is the generalization of the classic predecessor search problem on rooted trees. In the special219

case when T is a suffix tree and the nodes are weighted by string depth, the problem admits220

an optimal solution due to the recent result of Belazzougui et al. [6] (see also [24]).221

▶ Lemma 7 ([6]). For any suffix tree T with m nodes weighted by string depth, after222

O(m)-time preprocessing, we can answer WAT queries in O(1) time per query.223

In this special case, the ancestor at string depth exactly d may be an implicit node of T ,224

in which case the query outputs its closest explicit ancestor.225

2.3 Previous Solutions226

O(n + k2)-time Algorithm for APSP We describe the optimal solution to APSP given by227

Gusfield et al. in [27]. We set TR := S1$1S2$2 · · · Sk$k, where $1 < $2 < · · · < $k are letters228

that are strictly lexicographically smaller than any letter from Σ. We start by constructing229

the suffix tree STR = ST(TR). Using a DFS traversal on STR, we construct lists L(v) for230

all nodes v of STR: L(v) stores all i such that the suffix of length d(v) of string Si is str(v).231

G. Loukides et al. 7

Consider a string Sj from R and focus on the path Pj from the root of STR to the leaf node232

representing the longest suffix of Sj , i.e., the entire string Sj . Let v be a node on Pj . A233

suffix of string Si of length d(v) is a prefix of string Sj of the same length if and only if i is234

in L(v). However, for each index i, we want to record the deepest node v on Pj such that i is235

in L(v). It then follows that d(v) = SPLi,j . In order to achieve a linear-time complexity, we236

perform another DFS maintaining k stacks (one for each Si). Upon visiting v, we push it on237

stack i for every i ∈ L(v). When the leaf node representing the entire string Sj is reached,238

we scan the k stacks and record, for each index i, the current top of the ith stack. When v is239

reached in a backward edge traversal, we pop the top of any stack whose index is in L(v).240

We obtain the following result.241

▶ Lemma 8 ([27]). For any dictionary of k strings of total length n over an integer alphabet242

of size σ ≤ nO(1), APSP can be solved in the optimal O(n + k2) time.243

In what follows, we assume that k ≥
√

n; otherwise, when k <
√

n, Lemma 8 implies an244

optimal solution to our data structure problems (linear preprocessing time, linear size and245

time-optimal queries), which precomputes and stores all answers.246

Internal Prefix-Suffix Queries for One-to-One Kociumaka considered the following data247

structure problem in [30]: Given two fragments x and y of a string T and a positive integer248

d, report all suffixes of y of length between d and 2d − 1 that also occur as prefixes of x249

(represented as an arithmetic progression of their lengths). This is the Internal Prefix-Suffix250

Queries problem. Kociumaka showed the following result (see also [31]).251

▶ Lemma 9 (Theorem 1.1.3 in [30]). For any string T of length m over an integer alphabet of252

size σ ≤ mO(1), after O(m)-time preprocessing, we can answer Internal Prefix-Suffix Queries253

in O(1) time per query.254

By employing Lemma 9 on TR, after an O(n)-time preprocessing, we can answer255

One-to-One queries in O(log(min(|Si|, |Sj |))) = O(log n) time. In particular, we query256

for x = Sj , y = Si, and d = 2ℓ, for all integers 0 ≤ ℓ ≤ log min(|Si|, |Sj |), to compute a257

representation of all the suffixes of Si that are also prefixes of Sj and then return the length258

of the longest one as SPLi,j . We obtain the following result, which we improve in Section 3.259

▶ Corollary 10. For any dictionary of k strings of total length n over an integer alphabet260

of size σ ≤ nO(1), we can construct a data structure of O(n) words of space answering261

One-to-One queries in O(log n) time.262

3 Answering One-to-One Queries263

Main Idea Say we want to find the longest suffix of Si that is a prefix of Sj . We first264

find the maximal longest common prefix between Sj and any suffix of Si. Say this suffix265

is Si[q . . |Si|] and we have that Si[q . . q + r − 1] = Sj [1 . . r] is this longest common prefix.266

If this prefix is the whole Si[q . . |Si|], i.e., |Si| = q + r − 1, then r is clearly the answer. If267

this longest common prefix is not a suffix of Si, i.e., |Si| > q + r − 1, then the answer is the268

longest prefix of Si[q . . q + r − 1], that is also a suffix of Si.269

Recall that STi = ST(Si$i) and STR = ST(TR). Consider the path in STR obtained by270

reading Sj$j from its root (this path ends in a leaf node). When spelling any suffix of Si271

that is also a prefix of Sj in STR we use exactly the same path and end by going out of it272

when reading $i. This means, that SPLi,j is represented by the lowest node on this path that273

has an outgoing edge with label $i.274

8 Suffix-Prefix Queries on a Dictionary

In the following we focus on enhancing STR and STi, for all i ∈ [1, k], to obtain a data275

structure that allows finding the string depth of such a node (equal to SPLi,j) efficiently. We276

will prove the following result.277

▶ Theorem 11. For any dictionary of k strings of total length n over an integer alphabet of size278

σ ≤ nO(1), we can construct a data structure of O(n) words of space answering One-to-One279

queries in O(log log k) time. The data structure can be constructed in O(n log log k) time.280

Let us start with a straightforward auxiliary lemma.281

▶ Lemma 12. For any dictionary of k strings S1, . . . , Sk of total length n over an integer282

alphabet of size σ ≤ nO(1), in O(n) time we can construct a data structure of O(k) words of283

space that answers queries of the type “Is Sj a suffix of Si?” in O(1) time.284

Proof. Let Xr denote the reverse of string X, i.e., Xr = X[|X|] · · · X[1]. We first sort285

Sr
1 , . . . , Sr

k lexicographically, and store for each j ∈ [1, k] a value rlex[j] ∈ [1, k] equal to the286

rank of Sr
j in this sorted list. Sj is a suffix of Si if and only if Sr

j is a prefix of Sr
i . The287

crucial property of this ordering is that all the strings such that Sr
j is their prefix form an288

interval from the position rlex[j] to a position rlex[j] + l[j] − 1, where l[j] is the total number289

of strings Sr
1 , . . . , Sr

k starting with Sr
j ; that is, rlex[j] + l[j] is the position of the first string290

having a longest common prefix with Sr
j shorter than |Sr

j |. The values rlex[j] and l[j], for all291

j ∈ [1, k], can be computed in O(n) time [19].292

As for the querying, for any i, j, we have that Sj is a suffix of Si if and only if rlex[j] ≤293

rlex[i] < rlex[j] + l[j], which is checked in O(1) time. The total size of arrays l and rlex is294

Θ(k). ◀295

Construction We start the construction of the data structure by constructing the data struc-296

ture underlying Lemma 12. We also construct STR and STi, for all i ∈ [1, k], using Lemma 2.297

We enhance STR with the data structure for LCA queries underlying Lemma 5, and link298

the leaf nodes originating from suffixes of Si$i with the corresponding leaf nodes of STi, for299

all i ∈ [1, k]. We construct an array A = A[1 . . |TR|] over [1, k] such that A[ℓ] = i if the ℓth300

leaf node (from the left) of STR originates from a suffix of Si$i; since the leaf nodes are301

ordered according to the lexicographic order of the suffixes they originate from, array A can302

be easily extracted from SA(TR) constructed by means of Lemma 2. We enhance array A303

with the rank and select data structure underlying Lemma 6. We link the leaf nodes of STR304

with the corresponding elements of A. For each STi, we construct the data structure for305

WA queries underlying Lemma 7. For every node w of STi, we store the string depth of306

its closest ancestor (including w itself) that has an outgoing edge with label $i and hence307

corresponds to a suffix of Si; since the root always has such an edge, this assignment is always308

well-defined. In order to efficiently compute and store all those values, we simply process the309

information through the tree in a top-down manner. This completes the construction.310

The part of the data structure that relies on Lemmas 2, 5, 7, and 12 is implemented in311

O(n) time and it occupies O(n) words of space. By Lemma 6, array A occupies O(n) words312

of space, and it can be implemented in O(n log log k) time as it stores k distinct values.313

Querying Consider a One-to-One(i, j) query; that is, we want to compute SPLi,j , the length314

of the longest suffix of Si that is a prefix of Sj . Let x be the position in array A that315

corresponds to the leaf node lj of STR reached after conceptually reading Sj$j . We first316

check if the entire Sj is a suffix of Si by means of Lemma 12. If this is the case then we return317

SPLi,j = |Sj |. If this is not the case (inspect Figure 3), we perform the following sequence318

G. Loukides et al. 9

A

STR

STi

i j

ri lj

$i

$i

$i

c

$j

$i

$i

$i

ri

vi,j
vi,j

xy

Figure 3 An illustration of the One-to-One(i, j) query algorithm. The node vi,j , which is explicit
in STR but implicit in STi, has an outgoing edge labeled with $i and hence the string depth d(vi,j)
of node vi,j is the answer to the query.

A

STR

STi

i j

ri lj

ii

$i

$i

b c

a
$j

$i

$i

$i
a

$i

b

ri

vi,j
vi,j

u

xy

Figure 4 An illustration of the One-to-One(i, j) query algorithm. The closest ancestor of node
vi,j , which is explicit in STR but implicit in STi, with an outgoing edge labeled with $i is node u

and hence the string depth d(u) of node u is the answer to the query.

of queries, selectA(i, rankA(i, x)), which finds the position y in array A that corresponds to319

the leaf node ri; this corresponds to the suffix of Si$i that is closest to the left of lj . We320

then compute the lowest common ancestor of ri and lj : vi,j = LCASTR
(ri, lj). If node vi,j321

has an outgoing edge labeled with $i, which ends at ri, then we return SPLi,j = d(vi,j) (this322

is the case in Figure 3). We check this by checking whether d(ri) = d(vi,j) + 1. If vi,j does323

not have such an outgoing edge (this is the case in Figure 4), we locate the explicit node324

corresponding to vi,j in STi (or its closest explicit ancestor if it is implicit) by asking a WA325

query: w = WASTi
(ri, d(vi,j)). Finally, we return the string depth of the closest ancestor326

of w with an outgoing edge labeled $i as SPLi,j ; recall that every node of STi stores this327

information.328

The time complexity of the query is O(log log k); the bottleneck is the complexity of the329

rank and select queries on A – all other operations take constant time. Let us now explain330

why the faster O(1)-time select and O(1 + log log k
log w)-time rank queries presented in [7], where331

w is the machine word, cannot improve our query time further. The size of the problem332

is Θ(n), hence the size of the machine word in the word-RAM model is Θ(log n), thus the333

query time equals O(1 + log log k
log log n). However, we have assumed that k ≥

√
n (otherwise334

the structure of Lemma 8 implies an optimal solution – linear size and constant time queries335

– for the One-to-One queries), hence this is equal to O(1 + log log k) = O(log log k) as stated.336

10 Suffix-Prefix Queries on a Dictionary

Correctness Recall that the answer to One-to-One(i, j) equals to the string depth of the337

closest ancestor of lj in STR that has an outgoing edge labeled with $i. By construction,338

this ancestor ends on the right of lj only if the entire Sj is a suffix of Si, which we check339

separately. Otherwise, this ancestor is also an ancestor of ri (which is on the left of li) as $i340

goes out of the path from the root to lj to the left (by construction, it is lexicographically341

smaller than the next letter on this path), and hence this edge labeled with $i must end342

either in ri or further to the left (by the definition of ri). As an ancestor of lj and ri, it is also343

the closest ancestor of vi,j with such an outgoing edge; the latter actually exists (possibly as344

an implicit node) in STi (unlike lj). The final steps of the query algorithm find the string345

depth of the node corresponding to the searched ancestor in STi (string depth is a shared346

property of the corresponding nodes).347

We have arrived at Theorem 11. Note that the construction time for our data structure348

is O(n log log k). The bottleneck for the construction time is the construction time for the349

rank and select data structure (Lemma 6).350

4 Answering One-to-All Queries351

The spine of the data structure described in this section is FT(R), the FTtree of R (see Sec-352

tion 2). Recall that for each node in FT(R) (representing each prefix of a string Si), we store353

information about which strings from R it is a prefix of (see Figure 2).354

Main Idea The Aho-Corasick lemma [1] states that for any two nodes, node(U) and node(V),355

in AC(R), we have a failure transition from node(U) to node(V) if and only if V is the longest356

suffix of U that is also a prefix of some string in R. As a consequence, in FT(R), node(S)357

is an ancestor of node(S′) if and only if S is a suffix of S′ (and both are prefixes of some358

strings from R as nodes of FT(R)). Thus the path from node(ε) (the root) to node(Si) in359

FT(R) contains exactly the nodes node(S) such that S is a suffix of Si and a prefix of some360

string in R. Those nodes are ordered according to the string length, hence the nodes closer361

to node(Si) on this path will correspond to longer suffix-prefix matches.362

A One-to-All(i) query can thus be answered by simply reading the path from the root to363

node(Si) recording, for each j ∈ [1, k], the last node on the path corresponding to a prefix of364

Sj . The space occupied by FT(R) is in O(n); and such a query algorithm can take Θ(|Si|),365

that is even Θ(n) time. Hence, by such an algorithm, we would not really gain anything from366

constructing FT(R) in the preprocessing. On the other extreme, by running this algorithm367

not for a single path, but for the whole FT(R) using a DFS traversal, we can precompute the368

answers for all the values of i ∈ [1, k] in O(n + k2) total time (and space), and then answer a369

query in O(k) time by simply outputting the k stored values; this would not be faster than370

using the algorithm by Gusfield et al. [27] or the one by Loukides and Pissis [34]. We will371

augment FT(R) to obtain a more efficient solution combining the space efficiency of the first372

approach with the low query time of the second one.373

A τ -micro-macro decomposition, introduced for rooted binary trees in [2], and then374

generalized for rooted general trees in [10] (after an appropriate mapping), is a partition of a375

rooted tree T of N nodes into O(N/τ) connected subtrees, called micro trees. In the case of376

binary trees each micro tree is of size at most τ and at most two of its nodes are adjacent to377

nodes in other micro trees. These nodes are referred to as top and bottom boundary nodes378

of the micro tree. The top boundary node is chosen as the root of the micro tree. The379

macro tree is a rooted tree of size O(N/τ) whose nodes correspond to micro trees as follows380

(inspect Figure 5): The top boundary node t(C) of a micro tree C is connected to a boundary381

G. Loukides et al. 11

`(C)
r(C)

child(C)

C

t(C)

b(C)

parent(C)

Figure 5 The structure of a micro-macro decomposition of a rooted binary tree.

node parent(C) in the parent micro tree (apart from the root). The boundary node t(C)382

might also be connected to a top boundary node of a child micro tree, which we denote by383

child(C). Such a τ -micro-macro decomposition can be computed in O(N) time for binary [2]384

and general [10] rooted trees. We summarize the above discussion in the lemma below.385

▶ Lemma 13 ([2, 10]). For any rooted tree T with N nodes and for any integer τ ∈ [1, N],386

the τ -micro-macro decomposition of T can be computed in O(N) time.387

We will prove the following result.388

▶ Theorem 14. For any dictionary of k strings of total length n over an integer alphabet389

of size σ ≤ nO(1), we can construct a data structure of O(n) words of space answering390

One-to-All(i) queries in O(k) time. The data structure can be constructed in O(n) time.391

Construction We start the construction of the data structure by constructing FT(R) from392

AC(R) using Lemma 3. We compute the τ -micro-macro decomposition of FT(R), for a393

parameter τ defined later, using Lemma 13. For each node u of the FT(R), corresponding to394

a prefix S of some string Si in R, we store the labeled interval Iu. For each boundary node395

in the τ -micro-macro decomposition of FT(R), we store an array of k integers, which for each396

i ∈ [1, k], stores the string depth of its lowest ancestor node(S) such that S is a prefix of Si.397

The additional size for storing this information in all the boundary nodes is O(k · n/τ). We398

compute these arrays by performing a DFS over FT(R) with a set of k stacks, one for every399

string in R, storing the string depths of ancestors of the visited node of each type (which Si400

they originate from). As there are only 2n updates of the stacks (each prefix of a string Si is401

stored and removed once from the ith stack) and the information is stored by simply reading402

the top values of the k stacks, the total computation time is bounded by O(n + k · n/τ).403

Querying Let us start with the following observation from [34] (inspect also Figure 2).404

▶ Observation 15 ([34]). Let u and v be two non-root nodes of FT(R) with labeled intervals405

Iu = [iu, ju]d(u) and Iv = [iv, jv]d(v), respectively, and such that u is an ancestor of v. Then406

d(u) < d(v) and either [iu, ju] contains [iv, jv] or [iu, ju] and [iv, jv] do not intersect.407

12 Suffix-Prefix Queries on a Dictionary

Consider a One-to-All(i) query; that is, we want to compute an array of length k, which408

stores SPLi,j , for all j ∈ [1, k]. We start by finding the closest boundary node on the path409

from the root to node(Si); that is, the top boundary node of the micro tree containing410

node(Si). On the path between this top boundary node and node(Si), there are at most τ411

nodes. We compute the information coming from just those nodes in O(k + τ) time with a412

sweep line approach: there are O(τ) (labeled) intervals from [1, k], the intervals are labeled413

by different values (string depth), but, by Observation 15, two intervals are either disjoint414

or the one with the larger string depth is contained in the one with the smaller one. Thus,415

it is enough to hold the active intervals on a stack to keep track of the longest possible416

suffix-prefix match: the interval on the top of the stack has the highest value and will end417

the soonest. The solution is then obtained as the position-wise maximum of the computed418

array and the array stored in the top boundary node, which we compute in O(k) time.419

Correctness The correctness of the algorithm follows by the Aho-Corasick lemma (see also420

the discussion of the “main idea” paragraph above).421

The data structure occupies O(n+k ·n/τ) words of space and supports One-to-All queries422

in O(k + τ) time. By setting τ to k (or to ck, for some positive constant c that balances the423

operation costs more efficiently) we obtain the complexities claimed in Theorem 14. Note424

that the data structure is constructed in O(n + k · n/τ) time, which is O(n) for τ = Θ(k).425

Thus the presented data structure for One-to-All queries is optimal.426

5 Answering Report and Count Queries427

In this section we are going to use STR again. This time, however, instead of augmenting428

STR with an LCA data structure and linking its nodes with the rank and select array, we429

are going to link the nodes with rectangles and employ classic results from computational430

geometry for reporting (see Lemma 16) and counting (see Lemma 17).431

Let [x1, x2] × [y1, y2] denote a rectangle in a 2D space with edges parallel to the axes,432

where the intervals [x1, x2] and [y1, y2] are the projections of this rectangle to the x-axis and433

y-axis, respectively. In the reporting version of the 2D rectangle stabbing problem [15], we are434

given a set S of n rectangles to preprocess, so that when we are given a query point q = (x, y),435

we report the subset Q ⊆ S of rectangles [x1, x2] × [y1, y2] that contain q: x1 ≤ x ≤ x2 and436

y1 ≤ y ≤ y2. In the counting version of 2D rectangle stabbing, we are asked to return |Q|.437

▶ Lemma 16 ([45]). For any set S of n rectangles, we can construct a data structure of O(n)438

words of space answering 2D rectangle stabbing reporting queries in O(log n/ log log n + f)439

time, where f is the output size |Q|.440

2D rectangle stabbing counting is known to be reducible to 2D orthogonal range count-441

ing [21], and such a data structure for 2D orthogonal range counting can be found in [28].442

▶ Lemma 17 ([21, 28]). For any set S of n rectangles, we can construct a data structure of443

O(n) words of space answering 2D rectangle stabbing counting queries in O(log n/ log log n)444

time.445

Main Idea For every suffix S of a string in R that is represented by a node in STR, we446

define a rectangle in 2D space: the x dimension corresponds to the lexicographically sorted447

list of all suffixes of strings in R whose prefix is S; and the y dimension corresponds to448

interval [0, |S|]. A Report (resp. a Count) query is defined by two parameters, which form a449

point in the 2D space: i corresponds to string Si in the same sorted list (x dimension) and ℓ450

G. Loukides et al. 13

corresponds to the smallest length of interest (y dimension). By reporting (resp. counting)451

all rectangles enclosing this point (Lemmas 16 and 17), we locate all suffix-prefix matches.452

Extra care, however, needs to be taken in order to avoid double reporting (resp. counting).453

Construction We start the construction of the data structure by constructing STR us-454

ing Lemma 2. Let u be an explicit or implicit node of STR that is the parent of a leaf node455

reached with $i: the labels of the path from root to u form a suffix of Si. For every such node456

u and every i, we create a tuple (L(u), R(u), d(u), i), where L(u) and R(u) are the (pre-order457

rank of) the leftmost and the rightmost leaf node under u, respectively.2 Note that such a458

node may correspond to multiple tuples for different i values – this occurs when distinct459

elements of R share the same suffix. There are exactly n such tuples (one for every suffix)460

coming from STR and we can compute them in O(n) total time using a DFS traversal.461

Recall that if we spell Sj$j in STR and the obtained leaf node v has an ancestor of string462

depth ℓ which has an outgoing edge with label $i, then SPLi,j ≥ ℓ. The same property463

(SPLi,j ≥ ℓ) can be expressed by L(v) ∈ [L(u), R(u)] (namely, u is an ancestor of v), and464

ℓ ∈ [0, d(u)] (namely, the string depth of u is at least ℓ) for a tuple (L(u), R(u), d(u), i).465

Now note that (L(u), R(u), d(u), i) forms a rectangle, whose identifier is i. In particular,466

(L(u), R(u), d(u), i) can be viewed as rectangle [L(u), R(u)] × [0, d(u)] with satellite data i.467

Now consider constructing the 2D rectangle stabbing data structure for reporting468

(resp. counting) for these n rectangles, and then ask the query for a point (L(v), ℓ), where v469

is the leaf node reached from the root by conceptually reading Sj$j . The data structure will470

report (resp. count) all of the suffixes of Si, for i ∈ [1, k], of length at least ℓ that are also471

prefixes of Sj . Unfortunately, such a solution differs from the expected results of Report(i, ℓ)472

and Count(i, ℓ) in the following two ways:473

1. Instead of finding all j ∈ [1, k] such that SPLi,j ≥ ℓ for a given i, we find all such i ∈ [1, k]474

for a given j. This issue is addressed by Observation 1, which states that Report(i, ℓ)475

and Count(i, ℓ) reduce trivially to the problems considered here, denoted by Reportr(i, ℓ)476

and Countr(i, ℓ), respectively (recall that the r superscript refers to reversing the input477

strings);478

2. If there are multiple prefixes of Sj of length at least ℓ that are also suffixes of Si, then479

we will report (resp. count) each of them leading to double reporting (resp. counting).480

Although one may actually be interested in reporting or counting those multiple suffix-481

prefixes, in this paper, we are only interested in the longest ones. We address this issue482

by modifying the rectangles before the construction.483

As mentioned earlier the first issue is resolved by Observation 1. To solve the second484

issue, we have to make the set of rectangles, for a single i ∈ [1, k], pairwise disjoint while485

leaving their union unchanged. Notice that two such non-disjoint rectangles must come from486

a pair of nodes u and w in an ancestor-descendant relationship. An easy solution is to take,487

for every node w which has an outgoing edge with label $i, its closest ancestor u which488

also has an outgoing edge with label $i, and change the [L(w), R(w)] × [0, d(w)] rectangle489

into [L(w), R(w)] × [d(u) + 1, d(w)]; inspect Figure 6. Since the part [L(w), R(w)] × [0, d(u)]490

is already contained in [L(u), R(u)] × [0, d(u)] the union remains unchanged, and since491

u is the closest such ancestor, the other rectangles (for this i) cannot have a nonempty492

intersection with the newly obtained one (the intersection with the ones coming from the493

descendants of w is empty after the modification of those rectangles). We can perform these494

2 [L(u), R(u)] is also known as the suffix array interval of node u.

14 Suffix-Prefix Queries on a Dictionary

v

w

u

L(u) L(w) R(w) R(u)

d(u)

d(w)

d(u)

d(w)

vL(u) L(w) R(w) R(u)

`

(a) Two intersecting rectangles implied by STR.

0

d(u)

d(w)

L(u) L(w) R(w) R(u)

(b) Two ways to make the rectangles disjoint.

Figure 6 On the bottom left part, the rectangles obtained from two nodes u and w of STR (top
left), both having an outgoing edge with label $i, forming a suffix-prefix match of Si and Sj for
node v reached by reading Sj$j from the root. The rectangles have a nonempty intersection. To
avoid double reporting (or double counting), we make the rectangles disjoint while leaving their
union unchanged. We can do this (by taking the intersection once) in two ways (on the right): a
simple one (top) or a more complicated one (bottom), which allows us to efficiently output SPLi,j .

modifications with a single DFS traversal with k stacks of nodes on the path from the root495

to the currently processed node, which has an outgoing edge with label $i, i ∈ [1, k]. A more496

complicated solution is obtained by replacing the two rectangles [L(u), R(u)] × [0, d(u)] and497

[L(w), R(w)] × [0, d(w)] with three rectangles: [L(u), L(w) − 1] × [0, d(u)], [L(w), R(w)] ×498

[0, d(w)] and [R(w)+1, R(u)]× [0, d(u)]; inspect Figure 6. Unlike the previous construction, a499

single rectangle can be spliced into smaller ones many times (a node can be a direct ancestor500

of many other nodes); at the same time a single rectangle can splice only its direct ancestor,501

hence the number of rectangles obtained this way is bounded from above by 2n. This set of502

modified intervals can be obtained similarly: in a DFS traversal, when a node which has503

an outgoing edge with label $i is reached, we access its closest ancestor, which also has an504

outgoing edge with label $i, and splice its rectangle. As such descendants of a node are505

visited from left to right, we always know which part of the rectangle will be spliced next,506

hence each such splice takes O(1) time leading to computing O(n) such modified rectangles507

in O(n) total time.508

In order to finalize the construction of our data structure, we compute the set of modified509

rectangles of one of the two types described above, and construct for them the 2D rectangle510

stabbing data structures for reporting (Lemma 16) and counting (Lemma 17).511

Querying To answer a Reportr(j, ℓ) or a Countr(j, ℓ) query, we simply ask the corresponding512

2D rectangle stabbing data structure for the point (L(v), ℓ) = (R(v), ℓ), where v is the node513

reached in STR from the root by conceptually reading Sj$j . In case of a reporting query,514

the data structure returns a set of rectangles [x, y] × [ℓ1, ℓ2] labeled with distinct values515

i ∈ [1, k]. We can simply report the set of these i values. In case of a counting query, the516

G. Loukides et al. 15

result is simply an integer which we output. The two constructions of modified rectangles517

have additional nice properties however – each value i is associated with a value ℓ2. In case518

of the first construction, this ℓ2 is the length of the shortest suffix of Si which is also a prefix519

of Sj of length at least ℓ; in case of the second construction, ℓ2 is the length of the longest520

such suffix, that is ℓ2 = SPLi,j .521

Correctness The correctness of the algorithm follows by the fact that point (L(v), ℓ) =522

(R(v), ℓ) is enclosed by a rectangle [L(u), R(u)] × [0, d(u)] if and only if Sj$j has a prefix523

of length at least ℓ that is also a suffix of Si; and by the fact that the set of rectangles524

originating from a single i are made pairwise disjoint while their union remains unchanged.525

We have thus arrived at the following lemma.526

▶ Lemma 18. For any dictionary of k strings of total length n over an integer alphabet of527

size σ ≤ nO(1), we can construct a data structure of O(n) words of space answering: (i)528

Reportr(j, ℓ) queries in O(log n/log log n + f) time, where f is the size of the output; and529

(ii) Countr(j, ℓ) queries in O(log n/log log n) time.530

By combining Lemma 18 with Observation 1 we obtain the main result of this section.531

▶ Theorem 19. For any dictionary of k strings of total length n over an integer alphabet532

of size σ ≤ nO(1), we can construct a data structure of O(n) words of space answering:533

(i) Report(i, ℓ) queries in O(log n/log log n + f) time, where f is the output size; and (ii)534

Count(i, ℓ) queries in O(log n/log log n) time.535

Let us remark that the construction time for our data structures, excluding the imple-536

mentation of the data structures underlying Lemmas 16 and 17, is O(n). Unfortunately,537

the construction time of the latter data structures (Lemmas 16 and 17) is not mentioned538

in [28, 45]. However, by using the construction from [15], we obtain O(n log n) construction539

time, O(n) words of space, O(log n + f) time for reporting, and O(log n) time for counting.540

▶ Theorem 20. For any dictionary of k strings of total length n over an integer alphabet541

of size σ ≤ nO(1), we can construct a data structure of O(n) words of space answering: (i)542

Report(i, ℓ) queries in O(log n + f) time, where f is the output size; and (ii) Count(i, ℓ)543

queries in O(log n) time. The data structure construction time is O(n log n).544

Let us also remark that Report(i, 0) (with the second construction of disjoint rectangles)545

actually answers any One-to-All(i) query within the same asymptotic time: O(log n + f) =546

O(log n + k) = O(k) as k ≥
√

n. While the data structure for answering Report queries547

occupies O(n) words of space, like the data structure for One-to-All queries, the construction548

time for the former is more expensive – and it is likely much slower in practice.549

6 Answering Top Queries550

Recall that a Top(i, K) query returns exactly K elements j for which SPLi,j is the largest,551

breaking ties arbitrarily. In case we are given an additional bound K ′ ≤ k such that K ≤ K ′
552

(e.g., we are only interested in finding O(1) many such top elements), the obvious data553

structure would be to store, for each i ∈ [1, k], the sorted list of size K ′ of the best answers.554

Such a data structure allows answering Top(i, K) queries, for K ≤ K ′, in the optimal O(K)555

time, but it requires O(kK ′) space, which for small K ′ may be O(n), but in general (i.e.,556

when K ′ = k) leads back to the O(n + k2)-time APSP algorithm. We show how to use our557

results from Section 5 to answer Top(i, K) queries using O(n) space without this K ′ bound.558

Clearly, we can assume that K < k. We start by making the following crucial observation.559

16 Suffix-Prefix Queries on a Dictionary

▶ Observation 21. For any Top(i, K) query, with K < k, there exists an integer ℓ ∈ [0, n−1]560

such that Count(i, ℓ + 1) ≤ K < Count(i, ℓ).561

Using the results from Section 5, we can find such an ℓ in O(log2 n/ log log n) time using562

binary search on ℓ ∈ [0, n − 1] and the data structure for Count queries. Next we can simply563

compute Report(i, ℓ + 1) to be left with only choosing the remaining (K − Count(i, ℓ + 1))564

elements out of all j ∈ [1, k] such that SPLi,j = ℓ. Unfortunately, there can be many such565

elements (even k), and we do not want this to influence the query time. We have to report566

the remaining elements out of the ones such that SPLi,j = ℓ without computing or explicitly567

accessing all of them. Recall that, in STR, a list of elements i such that Si has a suffix of568

length exactly ℓ which is also a prefix of Sj can be accessed in O(1) time after O(n)-time569

preprocessing by finding the ancestor of the node reached by conceptually reading Sj$j at570

string depth ℓ (using a WA query) and reading the first letters of its outgoing edges from left571

to right; since $1 < · · · < $k are smaller than any element of Σ those values form a sorted572

list. Analogously, to access the list of elements j such that Si has a suffix of length exactly ℓ573

which is also a prefix of Sj , we simply use the symmetric data structure by Observation 1.574

Unfortunately, this list may contain elements j such that SPLi,j > ℓ, and we do not575

want to report them again. This, however, can be fixed by maintaining a bitvector of size k576

as an integral part of our data structure; for each element j ∈ Report(i, ℓ + 1), we set the577

jth element of the bitvector to 1 in O(Count(i, ℓ + 1)) = O(K) time. When accessing the578

elements of the sorted list one-by-one, we simply check if the element was already outputted579

using the bitvector in O(1) time. In total, we can check up to K such elements, hence the580

total time of merging those two parts of the output is O(K) (including the bitvector reset).581

We summarize the solution in Theorem 22, which is the main result of this section.582

▶ Theorem 22. For any dictionary of k strings of total length n over an integer alphabet of583

size σ ≤ nO(1), we can construct a data structure of O(n) words of space answering Top(i, K)584

queries in O(log2 n/ log log n + K) time.585

Proof. We start the construction of the data structure by constructing the data structures586

for Report(i, ℓ) and Count(i, ℓ) using Theorem 19. We also construct a data structure to587

find the list of elements j such that Si has a suffix-prefix match of length ℓ with Sj in O(1)588

time using Lemmas 2 and 7 and Observation 1. Finally, we also maintain a bitvector of size589

k = O(n). The space required by our data structure is O(n) words.590

Consider a Top(i, K) query. We ask O(log n) Count queries and a single Report query in591

O(log2 n/ log log n + K) total time, as the output is bounded by K. We index the Report592

result in the bitvector. We find the list (without reading its content) of elements j such that593

Si has a suffix of length exactly ℓ which is also a prefix of Sj in O(1) time. Finally, we access594

and check at most K elements from the list in O(K) total time.595

The correctness of the algorithm follows by Observation 21 and Theorem 19. ◀596

Similar to Section 5, the construction time for our data structure, excluding the imple-597

mentation of Theorem 19, is O(n). If instead of Theorem 19, we employ Theorem 20, we598

obtain O(n log n) construction time, O(n) words of space, and O(log2 n + K) query time.599

▶ Theorem 23. For any dictionary of k strings of total length n over an integer alphabet of600

size σ ≤ nO(1), we can construct a data structure of O(n) words of space answering Top(i, K)601

queries in O(log2 n + K) time. The data structure construction time is O(n log n).602

G. Loukides et al. 17

References603

1 Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to bibliographic604

search. Commun. ACM, 18(6):333–340, 1975.605

2 Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Minimizing606

diameters of dynamic trees. In Pierpaolo Degano, Roberto Gorrieri, and Alberto Marchetti-607

Spaccamela, editors, Automata, Languages and Programming, 24th International Colloquium,608

ICALP’97, Bologna, Italy, 7-11 July 1997, Proceedings, volume 1256 of Lecture Notes in609

Computer Science, pages 270–280. Springer, 1997.610

3 Amihood Amir, Panagiotis Charalampopoulos, Solon P. Pissis, and Jakub Radoszewski.611

Dynamic and internal longest common substring. Algorithmica, 82(12):3707–3743, 2020.612

4 Golnaz Badkobeh, Panagiotis Charalampopoulos, Dmitry Kosolobov, and Solon P. Pissis.613

Internal shortest absent word queries in constant time and linear space. Theor. Comput. Sci.,614

922:271–282, 2022.615

5 Carl Barton, Costas S. Iliopoulos, Solon P. Pissis, and William F. Smyth. Fast and simple616

computations using prefix tables under hamming and edit distance. In Jan Kratochvíl, Mirka617

Miller, and Dalibor Froncek, editors, Combinatorial Algorithms - 25th International Workshop,618

IWOCA 2014, Duluth, MN, USA, October 15-17, 2014, Revised Selected Papers, volume 8986619

of Lecture Notes in Computer Science, pages 49–61. Springer, 2014.620

6 Djamal Belazzougui, Dmitry Kosolobov, Simon J. Puglisi, and Rajeev Raman. Weighted621

ancestors in suffix trees revisited. In Pawel Gawrychowski and Tatiana Starikovskaya, editors,622

32nd Annual Symposium on Combinatorial Pattern Matching, CPM 2021, July 5-7, 2021,623

Wrocław, Poland, volume 191 of LIPIcs, pages 8:1–8:15. Schloss Dagstuhl - Leibniz-Zentrum624

für Informatik, 2021.625

7 Djamal Belazzougui and Gonzalo Navarro. Optimal lower and upper bounds for representing626

sequences. ACM Trans. Algorithms, 11(4):31:1–31:21, 2015.627

8 Ilan Ben-Bassat and Benny Chor. String graph construction using incremental hashing.628

Bioinform., 30(24):3515–3523, 2014.629

9 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Gaston H.630

Gonnet, Daniel Panario, and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics, 4th631

Latin American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings, volume632

1776 of Lecture Notes in Computer Science, pages 88–94. Springer, 2000.633

10 Philip Bille and Inge Li Gørtz. The tree inclusion problem: In linear space and faster. ACM634

Trans. Algorithms, 7(3):38:1–38:47, 2011.635

11 Paola Bonizzoni, Gianluca Della Vedova, Yuri Pirola, Marco Previtali, and Raffaella Rizzi.636

FSG: fast string graph construction for de novo assembly. J. Comput. Biol., 24(10):953–968,637

2017.638

12 Bastien Cazaux and Eric Rivals. Hierarchical overlap graph. Inf. Process. Lett., 155, 2020.639

13 Panagiotis Charalampopoulos, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Almost640

optimal distance oracles for planar graphs. In Moses Charikar and Edith Cohen, editors,641

Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC642

2019, Phoenix, AZ, USA, June 23-26, 2019, pages 138–151. ACM, 2019.643

14 Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski,644

Wojciech Rytter, and Tomasz Walen. Internal dictionary matching. Algorithmica, 83(7):2142–645

2169, 2021.646

15 Bernard Chazelle. A functional approach to data structures and its use in multidimensional647

searching. SIAM J. Comput., 17(3):427–462, 1988.648

16 Shiri Chechik. Approximate distance oracles with constant query time. In David B. Shmoys,649

editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 -650

June 03, 2014, pages 654–663. ACM, 2014.651

17 Shiri Chechik. Approximate distance oracles with improved bounds. In Rocco A. Servedio652

and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium653

18 Suffix-Prefix Queries on a Dictionary

on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 1–10.654

ACM, 2015.655

18 Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, and Nicola Prezza. Co-656

lexicographically ordering automata and regular languages. part I. CoRR, abs/2208.04931,657

2022.658

19 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings. Cam-659

bridge University Press, 2007.660

20 Shiri Dori and Gad M. Landau. Construction of aho corasick automaton in linear time for661

integer alphabets. Inf. Process. Lett., 98(2):66–72, 2006.662

21 Herbert Edelsbrunner and Mark H. Overmars. On the equivalence of some rectangle problems.663

Inf. Process. Lett., 14(3):124–127, 1982.664

22 Martin Farach. Optimal suffix tree construction with large alphabets. In 38th Annual665

Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA,666

October 19-22, 1997, pages 137–143. IEEE Computer Society, 1997.667

23 Martin Farach and S. Muthukrishnan. Perfect hashing for strings: Formalization and algorithms.668

In Daniel S. Hirschberg and Eugene W. Myers, editors, Combinatorial Pattern Matching, 7th669

Annual Symposium, CPM 96, Laguna Beach, California, USA, June 10-12, 1996, Proceedings,670

volume 1075 of Lecture Notes in Computer Science, pages 130–140. Springer, 1996.671

24 Pawel Gawrychowski, Moshe Lewenstein, and Patrick K. Nicholson. Weighted ancestors in672

suffix trees. In Andreas S. Schulz and Dorothea Wagner, editors, Algorithms - ESA 2014673

- 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings,674

volume 8737 of Lecture Notes in Computer Science, pages 455–466. Springer, 2014.675

25 Giorgio Gonnella and Stefan Kurtz. Readjoiner: a fast and memory efficient string graph-based676

sequence assembler. BMC Bioinform., 13:82, 2012.677

26 Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-678

tional Biology. Cambridge University Press, 1997.679

27 Dan Gusfield, Gad M. Landau, and Baruch Schieber. An efficient algorithm for the all pairs680

suffix-prefix problem. Inf. Process. Lett., 41(4):181–185, 1992.681

28 Joseph F. JáJá, Christian Worm Mortensen, and Qingmin Shi. Space-efficient and fast682

algorithms for multidimensional dominance reporting and counting. In Rudolf Fleischer683

and Gerhard Trippen, editors, Algorithms and Computation, 15th International Symposium,684

ISAAC 2004, Hong Kong, China, December 20-22, 2004, Proceedings, volume 3341 of Lecture685

Notes in Computer Science, pages 558–568. Springer, 2004.686

29 Shahbaz Khan. Optimal construction of hierarchical overlap graphs. In Pawel Gawrychowski687

and Tatiana Starikovskaya, editors, 32nd Annual Symposium on Combinatorial Pattern688

Matching, CPM 2021, July 5-7, 2021, Wrocław, Poland, volume 191 of LIPIcs, pages 17:1–689

17:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.690

30 Tomasz Kociumaka. Efficient data structures for internal queries in texts. PhD thesis,691

University of Warsaw, October 2018., 2018.692

31 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Internal693

pattern matching queries in a text and applications. In Piotr Indyk, editor, Proceedings of694

the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San695

Diego, CA, USA, January 4-6, 2015, pages 532–551. SIAM, 2015.696

32 Gregory Kucherov and Dekel Tsur. Improved filters for the approximate suffix-prefix overlap697

problem. In Edleno Silva de Moura and Maxime Crochemore, editors, String Processing698

and Information Retrieval - 21st International Symposium, SPIRE 2014, Ouro Preto, Brazil,699

October 20-22, 2014. Proceedings, volume 8799 of Lecture Notes in Computer Science, pages700

139–148. Springer, 2014.701

33 Jihyuk Lim and Kunsoo Park. A fast algorithm for the all-pairs suffix-prefix problem. Theor.702

Comput. Sci., 698:14–24, 2017.703

34 Grigorios Loukides and Solon P. Pissis. All-pairs suffix/prefix in optimal time using Aho-704

Corasick space. Inf. Process. Lett., 178:106275, 2022.705

G. Loukides et al. 19

35 Felipe A. Louza, Simon Gog, Leandro Zanotto, Guido Araujo, and Guilherme P. Telles. Parallel706

computation for the all-pairs suffix-prefix problem. In Shunsuke Inenaga, Kunihiko Sadakane,707

and Tetsuya Sakai, editors, String Processing and Information Retrieval - 23rd International708

Symposium, SPIRE 2016, Beppu, Japan, October 18-20, 2016, Proceedings, volume 9954 of709

Lecture Notes in Computer Science, pages 122–132, 2016.710

36 Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches.711

SIAM J. Comput., 22(5):935–948, 1993.712

37 Eugene W. Myers. The fragment assembly string graph. Bioinformatics, 21(suppl_2):ii79–ii85,713

09 2005.714

38 Gonzalo Navarro. Compact Data Structures - A Practical Approach. Cambridge University715

Press, 2016.716

39 Enno Ohlebusch and Simon Gog. Efficient algorithms for the all-pairs suffix-prefix problem717

and the all-pairs substring-prefix problem. Inf. Process. Lett., 110(3):123–128, 2010.718

40 Sangsoo Park, Sung Gwan Park, Bastien Cazaux, Kunsoo Park, and Eric Rivals. A linear719

time algorithm for constructing hierarchical overlap graphs. In Pawel Gawrychowski and720

Tatiana Starikovskaya, editors, 32nd Annual Symposium on Combinatorial Pattern Matching,721

CPM 2021, July 5-7, 2021, Wrocław, Poland, volume 191 of LIPIcs, pages 22:1–22:9. Schloss722

Dagstuhl - Leibniz-Zentrum für Informatik, 2021.723

41 Mihai Patrascu and Liam Roditty. Distance oracles beyond the thorup-zwick bound. SIAM J.724

Comput., 43(1):300–311, 2014.725

42 Maan Haj Rachid and Qutaibah Malluhi. A practical and scalable tool to find overlaps between726

sequences. BioMed Res. Int., 2015(905261), 2015.727

43 Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct indexable dictionaries with728

applications to encoding k-ary trees and multisets. In David Eppstein, editor, Proceedings of729

the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 6-8, 2002,730

San Francisco, CA, USA, pages 233–242. ACM/SIAM, 2002.731

44 Kim R. Rasmussen, Jens Stoye, and Eugene W. Myers. Efficient q-gram filters for finding all732

epsilon-matches over a given length. J. Comput. Biol., 13(2):296–308, 2006.733

45 Qingmin Shi and Joseph F. JáJá. Novel transformation techniques using q-heaps with734

applications to computational geometry. SIAM J. Comput., 34(6):1474–1492, 2005.735

46 Jared T. Simpson and Richard Durbin. Efficient construction of an assembly string graph736

using the fm-index. Bioinform., 26(12):367–373, 2010.737

47 Sharma V. Thankachan, Chaitanya Aluru, Sriram P. Chockalingam, and Srinivas Aluru.738

Algorithmic framework for approximate matching under bounded edits with applications to739

sequence analysis. In Benjamin J. Raphael, editor, Research in Computational Molecular740

Biology - 22nd Annual International Conference, RECOMB 2018, Paris, France, April 21-741

24, 2018, Proceedings, volume 10812 of Lecture Notes in Computer Science, pages 211–224.742

Springer, 2018.743

48 Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, 2005.744

49 William H. A. Tustumi, Simon Gog, Guilherme P. Telles, and Felipe A. Louza. An improved745

algorithm for the all-pairs suffix-prefix problem. J. Discrete Algorithms, 37:34–43, 2016.746

50 Esko Ukkonen. A linear-time algorithm for finding approximate shortest common superstrings.747

Algorithmica, 5(3):313–323, 1990.748

51 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.749

52 Niko Välimäki, Susana Ladra, and Veli Mäkinen. Approximate all-pairs suffix/prefix overlaps.750

Inf. Comput., 213:49–58, 2012.751

53 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching and752

Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11. IEEE Computer753

Society, 1973.754

	1 Introduction
	2 Preliminaries
	2.1 Suffix Tree and Aho-Corasick Automaton
	2.2 Advanced Data Structures
	2.3 Previous Solutions

	3 Answering One-to-One Queries
	4 Answering One-to-All Queries
	5 Answering Report and Count Queries
	6 Answering Top Queries

