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Abstract. We establish a central limit theorem for the central values of Dirichlet L-
functions with respect to a weighted measure on the set of primitive characters modulo
q as q →∞. Under the Generalized Riemann Hypothesis (GRH), we also prove a weighted
central limit theorem for the joint distribution of the central L-values corresponding to
twists of two distinct primitive Hecke eigenforms. As applications, we obtain (under GRH)
positive proportions of twists for which the central L-values simultaneously grow or shrink
with q as well as a positive proportion of twists for which linear combinations of the central
L-values are nonzero.

1. Introduction

Understanding the behavior of central L-values is an important topic of study in number
theory, with profound connections to problems in arithmetic as well as other areas of math-
ematics. Since central L-values are often difficult to study individually, a fruitful approach
is to embed the L-values within a wider family and examine their statistical properties. A
fundamental example of a family of L-functions is those attached to primitive Dirichlet char-
acters modulo q, and one may ask how the central values of these L-functions are distributed
when varying over such characters as q →∞.

Selberg’s central limit theorem [39, 40] for the Riemann zeta function states that
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as T → ∞ and is emblematic of what one might expect to be true for a family of L-
functions. Similarly, a folklore conjecture predicts that as χ ranges over primitive Dirichlet
characters modulo q, the value log |L(1

2
, χ)| has a Gaussian limiting distribution with mean

0 and variance 1
2

log log q as q → ∞ (see [28, 38] for related discussions). Proving such a
result remains completely out of reach, as it would imply 100% of these central L-values are
non-zero, which is a well-known open conjecture. The problem becomes even more difficult
when considering central values of higher degree L-functions such as L-functions associated
to twists of automorphic forms.

In this article we overcome the barrier of the vanishing of the central value by introducing
a weight which accounts for when this value is zero. Our main results establish central limit
theorems with respect to this weighted measure on the set of primitive characters modulo q
for the central values of Dirichlet L-functions as q →∞, as well as for the joint distribution
of the central L-values corresponding to twists of two distinct primitive Hecke eigenforms as
q →∞. The latter result is conditional on the assumption of GRH.
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1.1. Main Results. Let ϕ?(q) denote the number of primitive characters modulo q; we
always work with prime q for technical simplicity. Throughout, we write

∑∗
χ (mod q) to

indicate that the summation is restricted to primitive characters, χ 6= χ0. Given a complex-
valued function F on the set of primitive characters modulo q, we define

ϕ?F (q) =
∑∗

χ (mod q)

F (χ).

Let µF be the complex measure on the set of primitive characters modulo q given by

µF (S) =
1

ϕ?F (q)

∑∗

χ∈S

F (χ), S ⊂ {χ (mod q)}.

For example, if F = 1 then ϕ?F (q) = ϕ?(q) and µF is the usual counting measure. To account
for the vanishing of the central L-value we will choose our weight F so that F (χ) = 0
whenever the central value vanishes. Moreover, to capture the typical behavior of the L-
function we would like that F ≈ 1 as to not bias our measure. Our approach takes F to
be the central L-value multiplied by a mollifier, which dampens the extreme behavior of the
central L-values.

Let us now introduce our mollifier. The precise definition is technical, but mainly the
technicalities arise to ensure the mollifier behaves, on average, like an Euler product. Let
λ(n) = (−1)Ω(n) be the Liouville function, where Ω(n) =

∑
pa||n a and pa||n means that pa|n

and pa+1 - n. Define the multiplicative function ν(n) by ν(pa) = 1
a!

. Also, let η > 0 be a

sufficiently small constant. For each 0 ≤ j ≤ J let θj = η ej

(log log q)5 , `j = 2bθ−3/4
j c, where J is

chosen so that η ≤ θJ ≤ eη (so J � log log log q). Let y = qθ0 and x = qθJ . Set I0 = (c0, y],
where c0 is fixed and sufficiently large, and for 1 ≤ j ≤ J let Ij = (qθj−1 , qθj ]. We then define

Mj(χ) =
∑

p|n⇒p∈Ij
Ω(n)≤`j

λ(n)ν(n)χ(n)√
n

, M(χ) =
J∏
j=0

Mj(χ).

The Dirichlet polynomial M(χ) will be our mollifier.
We investigate the distribution of log |L(1

2
, χ)| as χ varies over primitive characters modulo

q with respect to µW , whereW(χ) = L(1
2
, χ)M(χ). The weight functionW(χ) can be inter-

preted as a truncated Hadamard product over the low-lying zeros of L(s, χ) with ordinates
≤ 1/ log x in magnitude times L(1, χ2)1/2, which we will justify later; so while the weight
knows about the central value its knowledge should typically be restricted to a bounded
number of low-lying zeros, such as a possible zero at the central point. Additionally, we
will see that ϕ?W(q) � q, and will also prove the following proposition, which shows that our
weight is typically not very large.

Proposition 1.1. Uniformly for α, β ∈ C with |α|, |β| � (log q)−1 we have that∑∗

χ (mod q)

L(1
2

+ α, χ)L(1
2

+ β, χ)|M(χ)|2 � q.

Our first main result establishes a central limit theorem for the logarithm of the central
values of Dirichlet L-functions with respect to µW .
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Theorem 1.2. Let a, b ∈ R with a < b. We have as q →∞ that

µW

({
χ (mod q), χ 6= χ0 :

log |L(1
2
, χ)|√

1
2

log log q
∈ (a, b)

})
=

1√
2π

∫ b

a

e−u
2/2 du+ o(1).

The proof we give yields an upper bound Oε((log log q)−1/4+ε) on the rate of convergence,
and it is possible to improve this to Oε((log log q)−1/2+ε). There is also some flexibility in
the choice of the weighted measure. For example, the analogue of Theorem 1.2 with W(χ)
replaced by L(1

2
, χ)M0(χ) holds (however the conclusion of the analogue of Proposition 1.1

no longer holds). Using results on the fourth moment of Dirichlet L-functions [45, 24, 46],
it would be possible to prove an analogue of this result with |W(χ)|2 in place of W(χ).

Our next result establishes a weighted central limit theorem for the joint distribution of
central L-values of twists of two distinct automorphic forms. Let f and g be fixed, distinct
weight κ newforms on Γ0(N) and write

L(s, f) =
∞∑
n=1

λf (n)

ns
=
∏
p

(
1− αf,1(p)

ps

)−1(
1− αf,2(p)

ps

)−1

, Re(s) > 1,

where λf (n) denotes the nth Hecke eigenvalue of f and αf,1(p), αf,2(p) are the Satake param-
eters of f ; that is, they are complex numbers which satisfy αf,1(p)αf,2(p) = 1 and αf,1(p) +
αf,2(p) = λf (p). Also define L∞(s, f) = (2π)−sΓ(s+ κ−1

2
) and Λ(s, f) = N s/2L∞(s, f)L(s, f).

The functional equation is

Λ(s, f) = ε(f)Λ(1− s, f),

where ε(f) ∈ {±1} is the root number.
As before, we choose our weight to be the product of the central L-values and a mollifier.

Define the completely multiplicative functions wj(n) and af,j(n) by

wj(p) =
1

p
1

θj log q

(
1− log p

θj log q

)
, af,j(p) = λf (p)wj(p). (1.1)

Let

Mf,j(χ) =
∑

p|n⇒p∈Ij
Ω(n)≤`j

af,J(n)λ(n)ν(n)χ(n)√
n

,Mf (χ) =
J∏
j=0

Mf,j(χ), and M(χ) = Mf (χ)Mg(χ),

(1.2)
where Mg is defined completely analogously to Mf . We take our weight to be W (χ) =
L(1

2
, f ⊗ χ)L(1

2
, g ⊗ χ)M(χ). We prove in Section 3 that ϕ?W (q) � q. Additionally, we can

bound the moments of W (χ) under GRH.

Proposition 1.3. Assume GRH. Let k > 0 and suppose ηdke is sufficiently small. Then we
have ∑∗

χ (mod q)

|W (χ)|2k �f,g,k q. (1.3)

Here we assume that GRH holds for L(s, f⊗χ), L(s, g⊗χ), L(s, Sym2 f⊗χ), L(s, Sym2 g⊗
χ) and L(s, χ) for all characters χ modulo q. We now state our second main result.
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Theorem 1.4. Assume GRH. Let ε > 0 and suppose that η = η(ε) is sufficiently small.
Then for any intervals I1, I2 ⊂ R we have that

µW

({
χ (mod q), χ 6= χ0 :

(
log |L(1

2
, f ⊗ χ)|√

1
2

log log q
,
log |L(1

2
, g ⊗ χ)|√

1
2

log log q

)
∈ I1 × I2

})

=
1

2π

∫
I1×I2

e−
1
2

(u2+v2) du dv +Oε,f,g

(
(log log q)−1/2+ε

)
.

In the proof of Theorem 1.4, the only place GRH is required is to bound the moments of
W (χ). If we instead assume the conclusion of Proposition 1.3 with k = 1 holds, then we can
obtain (with some additional work) the same conclusion as in Theorem 1.4, except with an

error term of size Of,g(
√

log log log q
(log log q)1/4 ).

1.2. Applications. Since our weight does not bias our measure to a great extent we can gain
insight into the typical behavior of the central L-values. Building on methods of Rohrlich
[37, 36], Chinta [10] has shown that L(1

2
, f ⊗ χ) 6= 0 for 100% of primitive characters χ

(mod q). Our first application goes beyond non-vanishing of twists, and shows that a positive
proportion of χ gives rise to simultaneous values that either grow or shrink with q.

Corollary 1.5. Assume GRH. Let c > 0 be fixed. There are �f,g,c q characters χ (mod q)
such that, for each such χ, we simultaneously have

|L(1
2
, f ⊗ χ)| > exp(c

√
log log q) and |L(1

2
, g ⊗ χ)| > exp(c

√
log log q).

Additionally, there are �f,g,c q characters χ (mod q) such that, for each such χ, we simul-
taneously have

0 < |L(1
2
, f ⊗ χ)| < exp(−c

√
log log q) and 0 < |L(1

2
, g ⊗ χ)| < exp(−c

√
log log q).

Corollary 1.5 follows from combining Proposition 1.3 and Theorem 1.4 and shows that
the twists |L(1

2
, f ⊗ χ)| and |L(1

2
, g ⊗ χ)| simultaneously obtain somewhat large values for a

positive proportion of twists, and it is best possible. It is possible to obtain larger central
values, but these large values do not appear for a positive proportion of twists. For instance,

there are values of |L(1
2
, f ⊗ χ)| as large as exp(c

√
log q

log log q
), which can be proved via the

resonance method (see [4, Theorem 1.11]), and it is even possible for the angle of the central
value to be constrained. Blomer et. al. also used the resonance method [4, Theorem 1.12]
to show that there exist non-trivial characters χ (mod q) such that

|L(1
2
, f ⊗ χ)L(1

2
, g ⊗ χ)| > exp

(
c

√
log q

log log q

)
,

but again these large values do not appear for a positive proportion of twists.
Famously, a conjecture of Lehmer predicts the Ramanujan τ -function never vanishes and

more generally one may wonder how often the Fourier coefficients of automorphic forms
vanish (for non co-compact spaces). For fundamental Fourier coefficients of half-integral
weight cusp forms this question is directly related to understanding nonvanishing of linear
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combinations of central L-values by Waldspurger’s Theorem1. Furthermore, fundamental
Fourier coefficients of Siegel cusp forms can also be expressed in terms of linear combinations
of central L-values by a classical construction of Eichler and Zagier in certain cases (see [27,
Lemma 5.1]) and more generally by the refined Gan–Gross–Prasad Conjecture, recently
proved by Furusawa and Morimoto [16] (see also [13, Theorem 1.13]). Motivated by these
relationships, it is natural to wonder how often linear combinations of central L-values vanish.

Since combining Theorem 1.4 and Proposition 1.3 yields a positive proportion of characters
for which one central L-value is large while the other is small, under GRH we obtain a positive
proportion of twists for which aL(1

2
, f ⊗ χ) + bL(1

2
, g ⊗ χ) 6= 0, for a, b ∈ C. Moreover, this

argument gives the following result.

Corollary 1.6. Assume GRH. Then there exist �f,g q characters χ (mod q) such that for
any {aχ}χ (mod q), {bχ}χ (mod q) ⊂ C with |aχ|, |bχ| � 1 and any fixed r1, r2 > 0 we have

aχ|L(1
2
, f ⊗ χ)|r1 + bχ|L(1

2
, g ⊗ χ)|r2 6= 0.

Our last application shows that there exists a sparse set of characters χ (mod q) for which
the central L-values are relatively close together in magnitude.

Corollary 1.7. Assume GRH. Let ε > 0. Then for (log log q)ε ≤ Λ ≤
√

log log q we have

#

{
χ (mod q), χ 6= χ0 : L(1

2
, g ⊗ χ) 6= 0, e−Λ ≤

∣∣∣∣L(1
2
, f ⊗ χ)

L(1
2
, g ⊗ χ)

∣∣∣∣ ≤ eΛ

}
�f,g,ε q

(
Λ

(log log q)1/2

)1+ε

.

We expect that the above bound should be optimal up to the factor of Λε(log log q)−ε/2.
It would be interesting to determine the smallest Λ for which the set above is nonempty and
by analogy with the conjecture that the set {ζ(1

2
+ it)}t∈R is dense in C one might wonder

whether this persists even for Λ = o(1), thereby balancing the size of the central L-values
and potentially allowing for linear combinations to vanish.

Finally let us mention that if in addition to GRH we also assume the Ramanujan-Petersson
Conjecture our arguments carry over with only a few modifications needed to the case of
GL(2) Maass cusp forms. Let φ1, φ2 be distinct Maass newforms of level N . Assuming GRH
for L(s, φ1⊗χ), L(s, φ2⊗χ), L(s, Sym2 φ1⊗χ), L(s, Sym2 φ2⊗χ), L(s, χ) for all characters χ
modulo q and |λφj(p)| ≤ 2 for j = 1, 2 we obtain analogues of all of the above corollaries for
central values of L-functions attached to twists of φ1, φ2. In particular, this shows that under
these hypotheses that L(1

2
, φ1 ⊗ χ) 6= 0 and L(1

2
, φ2 ⊗ χ) 6= 0 simultaneously for �φ1,φ2 q

characters χ (mod q).

1.3. Discussion of past work. Selberg’s [40] work extends in great generality. For in-
stance, he was able to prove a central limit theorem for the joint distribution of logL(1

2
+

it, χ1), . . . , logL(1
2

+ it, χN) with t ∈ [T, 2T ] and χ1, . . . , χN distinct primitive characters
(mod q), where the limit is taken as T →∞. Furthermore, Bombieri and Hejhal [5] showed
that this method extends to higher degree L-functions under plausible hypotheses, such as
a sufficiently strong zero density estimate.

Hough [23] adapted Selberg’s method to study the distribution of central values of families
of L-functions (see also [11]). For the family of quadratic Dirichlet characters, he established

1Here one expands the cusp form in terms of a Hecke basis and applies Waldspurger’s Theorem for each
Hecke eigenform. It is an open problem, even under GRH, to establish a positive proportion of nonvanishing
for fundamental Fourier coefficients of half-integral weight forms, whereas this is known under GRH for
Hecke eigenforms of level 4 (see [30]).



6 HUNG M. BUI, NATALIE EVANS, STEPHEN LESTER AND KYLE PRATT

a one-sided central limit theorem; that is, he bounded the proportion of fundamental dis-
criminants, in magnitude < X, for which the logarithm of the normalized central L-value is
larger than a given V > 0 by ≤ (1 + o(1)) 1√

2π

∫∞
V
e−u

2/2 du as X →∞. Similar to Selberg’s

work, a major ingredient in Hough’s argument is an analogous zero density estimate. Ac-
counting for the possible vanishing of the central L-value remains, however, a major obstacle.
Hough was able to prove a central limit theorem for these central L-values under a certain
spacing hypothesis on the distribution of the low-lying zeros of the L-functions, which fol-
lows from GRH and the Density Conjecture (see [25]). Further progress towards proving a
central limit theorem for central L-values using Selberg’s approach appears dependent upon
improving our knowledge on the low-lying zeros of the family. For example, even though
Chinta’s result [10] shows that L(1

2
, f ⊗ χ) 6= 0 for 100% of characters χ modulo q it does

not provide sufficient bounds to control the effect of possible extremely low-lying zeros on
the distribution of the central L-values.

In breakthrough work, Radziwi l l and Soundararajan [34] found a new method to study
central L-values of families. They constructed a mollifier which has roughly the shape of an
Euler product, yet still controls the extreme values at the central point. Using this approach,
they proved a one-sided central limit theorem for central L-values for the family of quadratic
twists of an elliptic curve. In comparison to Hough’s work, Radziwi l l and Soundararajan
required only a first moment, whereas Hough used a second moment. Their work has sparked
many recent innovations such as a new proof of Selberg’s central limit theorem [35], bounds
for moments of L-functions [21, 22, 6] with applications to non-vanishing at the central point
[12, 30], and progress towards the Fyodorov-Hiary-Keating Conjecture [17, 18, 32, 1, 20, 2].
Radziwi l l and Soundararajan [33] have also made further progress towards establishing a
central limit theorem for central L-values. For quadratic Dirichlet characters, they showed
that the proportion of fundamental discriminants < X in absolute values for which the loga-
rithm of the normalized central L-values lies in an interval I is ≥ 7

8
(1 +o(1)) 1√

2π

∫
I
e−u

2/2 du.

A remarkable feature of their work is that the leading constant in the lower bound matches
the best known proportion of non-vanishing [41]. Recently, Fazzari [14, 15] has proved sev-
eral weighted central limit theorems for the Riemann zeta function. Under RH, he proved
central limit theorems for log |ζ(1

2
+ it)| with respect to the measures on [T, 2T ] given by

|ζ(1
2

+ it)|2k dt for k = 1, 2, and for k ≥ 3 under RH and an additional assumption on mo-
ments of the zeta function. In contrast to the prior work of Soundararajan and Radziwi l l
[33], the main objective in this paper is establishing an asymptotic for the weighted distri-
bution of the central values whereas they focus on removing the weight and optimizing the
constant in the lower bound by using a more refined mollifier. One additional difference in
our work is that by assuming GRH we only require a first moment, however this is at the
cost of obtaining a rather small constant in the lower bound.

1.4. Outline of the proof. We discuss the proof of Theorem 1.4, since the proof of Theorem
1.2 is easier. In both cases the main inputs into our argument are estimates for twisted first
moment and upper bound for a mollified second moment. The proof of Theorem 1.4 also
uses some well-known analytic properties of Rankin-Selberg L-functions to handle the joint
distribution.
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Recall that for intervals I1, I2 we wish to prove an asymptotic formula for∑∗

χ (mod q)

W (χ)1I1×I2

(
log |L(1

2
, f ⊗ χ)|√

1
2

log log q
,
log |L(1

2
, g ⊗ χ)|√

1
2

log log q

)
,

where 1S denotes the indicator function of the set S. The primary complications arise from
the presence of log |L(1

2
, f ⊗ χ)| and log |L(1

2
, g ⊗ χ)|; these are difficult to control due to

the possible existence of very low-lying zeros, which we cannot rule out. We would like to
replace the logarithms of the L-functions by more tractable expressions. The basic strategy
we follow is due to Radziwi l l and Soundararajan [35], who were the first to use this kind of
Euler product-like mollifier at the central point. Since M(χ) = Mf (χ)Mg(χ) is a mollifier
we expect

L(1
2
, f ⊗ χ)Mf (χ) ≈ 1 and W (χ) = L(1

2
, f ⊗ χ)L(1

2
, g ⊗ χ)M(χ) ≈ 1

for most characters χ. The mollifier is constructed so that

Mf (χ) ≈
∏
p≤x

(
1− λf (p)χ(p)

p1/2

)
,

for most characters χ, where x is a small power of q. Taking these two approximations
together implies

log |L(1
2
, f ⊗ χ)| ≈ Re

(∑
p≤x

λf (p)

p1/2
χ(p)

)
,

and similarly for log |L(1
2
, g⊗χ)|, so that the logarithms of the L-functions may be approxi-

mated by finite sums over primes. Using the structure of the mollifier in this way, we reduce
the proof of Theorem 1.4 to computing

∑∗

χ (mod q)

W (χ)1I1×I2

(
Re
(∑

p≤x
λf (p)

p1/2 χ(p)
)√

1
2

log log q
,
Re
(∑

p≤x
λg(p)

p1/2 χ(p)
)√

1
2

log log q

)
.

This in turn leads to expressions that are in terms of a twisted first moment of L(1
2
, f ⊗

χ)L(1
2
, g⊗χ). Such a twisted first moment has been computed in work of Blomer et. al. [4]

and we apply this result.
There are a number of difficulties involved in making the above strategy rigorous and

quantitatively strong. There are two principal issues.
First, after applying the formula for the twisted first moment we are left with an unwieldy

expression for the main term. To evaluate this expression we introduce a random L-function
in which the Dirichlet characters χ(n) are modelled by random variables X(n), and then
match our expression with the random analogue. Here X(n) =

∏
pa||nX(p)a, and {X(p)}p is

a sequence of i.i.d. uniformly distributed random variables on the unit circle. Comparison
with a random model allows us to sidestep a number of technical points that would otherwise
require involved effort to resolve. In particular, using the independence of the random
variables {X(p)}p reduces many of the computations to “local” ones evaluated at each prime.

Second, we need to restrict ourselves to “typical” sets S of characters modulo q, where
the complement Sc has size O(q/ log log q), say. One such set, for example, is the set of
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characters with |W (χ)| ≤ log log q. In order to control the error involved in restricting to
such sets we require an estimate for ∑

χ∈Sc
|W (χ)|.

Using Cauchy-Schwarz’s inequality we obtain∑
χ∈Sc
|W (χ)| ≤ (#Sc)1/2

( ∑∗

χ (mod q)

|W (χ)|2
)1/2

.

The saving comes from the small size of Sc, so it suffices to show that∑∗

χ (mod q)

|W (χ)|2 � q.

Establishing this result is roughly on the level of difficulty of proving an upper bound of the
correct order of magnitude for a mollified eighth moment of Dirichlet L-functions. Such a
feat is well beyond the range of unconditional techniques, and it is here that we require GRH
in order to make progress. Our arguments follow along the lines of [30], which builds on the
key works of Soundararajan [42], Radziwi l l and Soundararajan [34], and Harper [20].

It is desirable to prove weighted central limit theorems with nonnegative weights instead
of our complex-valued weights W (χ). For instance, if W (χ) were nonnegative, then the
measure µW (S) would be a genuine probability measure. As mentioned above, it would be
possible to carry out such a program in the case of Dirichlet L-functions, in which case one
has access to unconditional results on the twisted fourth moment. Assuming GRH, it is
also possible to achieve this for twists of holomorphic newforms, where GRH is required to
obtain an upper bound for the mollified fourth moment of L(1

2
, f ⊗χ). But we do not know

how to do this for the twists L(1
2
, f ⊗ χ)L(1

2
, g ⊗ χ), since this seems to require asymptotic

evaluation of a second moment, which is well beyond what is currently possible.
If we were working with a nonnegative weight W (χ) ≥ 0 we could control µW (Sc) in

many places using Chebyshev’s inequality and a twisted first moment, and one could prove
a weighted central limit theorem for the approximating Dirichlet polynomial. However, to
pass to the L-function we need to bound the weighted measure of the set of characters with
W (χ) ≥ log log q, and this requires input beyond a first moment of W (χ). This is because
if the bulk of the contribution to the first moment of W (χ) were to come from the set of
characters with W (χ) ≥ log log q (which cannot be ruled out by a first moment alone) then
the weighted measure of this set would be � ϕ?W (q).

1.5. The structure of W(χ). As we mentioned earlier our mollifier is constructed so that
it mimics an Euler product and it is not too hard to prove that for all primitive characters
χ (mod q) outside a set of size � qe−1/(3η) that

M(χ) = exp

(
−
∑

c0<p≤x

χ(p)
√
p

)
(1 +O(e−(3η)−3/4

)).

By the explicit formula, we can transform the sum over primes into a sum over zeros of
L(s, χ). Using the formula above along with the hybrid Euler-Hadamard product for L(s, χ)
[7, Theorem 1] it is not hard to see that outside a set of� qe−1/(3η) non-principal characters
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χ (mod q) with χ2 6= χ0 we have

|W(χ)| � |L(1, χ2)|1/2 exp

(
− Re

∑
ρχ

U((1
2
− ρχ) log x)

)
,

where the sum is over the nontrivial zeros of L(s, χ), U(z) =
∫∞

0
u(t)E1(z log t) dt, E1(z) =∫∞

z
e−w dw

w
and u(t) is an arbitrary nonnegative Schwartz function with compact support

on [e1−1/x, e] with unit mass. Here the term L(1, χ2)1/2 arises from the contribution of the
squares of primes in [7, Theorem 1]. Following the discussion in [19] one can interpret the
second factor on the right hand side as a truncated Hadamard product over zeros with
ordinates ≤ 1/ log x in magnitude. Additionally, since x is a power of q, in view of the
Density Conjecture and the rapid decay of U we expect that typically the sum above will
be effectively restricted to a bounded number of zeros none of which is exceptionally close
to the central point, so that for most χ we expect that |W(χ)| � |L(1, χ2)|.

1.6. Organization of the paper. In Section 2 we match the characteristic function of(
Re
(∑

p≤x
λf (p)χ(p)

p1/2

)
,Re

(∑
p≤x

λg(p)χ(p)

p1/2

))
with that of a random model, the latter of which

is evaluated in Section 3. The proofs of Theorem 1.4 and Corollary 1.7 are given in Section 4.
Proposition 1.3 is proved in Section 5. We prove Theorem 1.2 in Section 6 and Proposition
1.1 in Section 7.

2. Joint distribution - Reduction to a random model

We first recall the twisted first moment of the product of twists of automorphic L-functions
[4, Theorem 5.1]. Write

Lf (χ) = L(1
2
, f ⊗ χ), L(χ) = Lf (χ)Lg(χ).

Lemma 2.1. Suppose 1 ≤ n1, n2 ≤ L and (n1n2/(n1, n2)2, N) = 1. Then

1

ϕ?(q)

∑∗

χ (mod q)

L(χ)χ(n1)χ(n2) =
1

2

∑
m1n1=m2n2

λf (m1)λg(m2)
√
m1m2

V

(
m1m2

q2N2

)

+
ε(f)ε(g)

2

∑
m1n2=m2n1

λf (m1)λg(m2)
√
m1m2

V

(
m1m2

q2N2

)
+Oε

(
L3/2q−1/144+ε

)
,

where

V (ξ) =
1

2πi

∫
(2)

L∞(s+ 1
2
, f)L∞(s+ 1

2
, g)

L∞(1
2
, f)L∞(1

2
, g)

(cos(πs
12

))−48

s
ξ−s ds.

Remark 2.2. The function V (ξ) is approximately 1 for small values of ξ, and decays like
ξ−3 as ξ →∞ (see [4, Lemma 2.19]).

2.1. The random model. Let {X(p)}p be i.i.d. uniformly distributed random variables
on the unit circle. Define

X(n) =
∏
pa||n

X(p)a.

Observe that if m,n ≤ q then by orthogonality of characters

1

ϕ(q)

∑
χ (mod q)

χ(m)χ(n) = E
(
X(m)X(n)

)
. (2.1)
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Let

L(X) =
1

2

(
Lf,g(X) + ε(f)ε(g)Lg,f (X)

)
,

where

Lf,g(X) =
∑

m1,m2≥1

λf (m1)λg(m2)
√
m1m2

X(m1)X(m2)V

(
m1m2

q2N2

)
.

Then by Lemma 2.1, (2.1), and bounding the contribution from χ = χ0 trivially, we get

1

ϕ?(q)

∑∗

χ (mod q)

L(χ)χ(n1)χ(n2) = E
(
L(X)X(n1)X(n2)

)
+Oε

(
L3/2q−1/144+ε

)
. (2.2)

Let

Pf (χ) = Re

( ∑
c0<p≤y

λf (p)wJ(p)
√
p

χ(p)

)
and Pf (X) = Re

( ∑
c0<p≤y

λf (p)wJ(p)
√
p

X(p)

)
.

We also define

Mf,j(X) =
∑

p|n⇒p∈Ij
Ω(n)≤`j

af,J(n)λ(n)ν(n)X(n)√
n

, Mf (X) =
J∏
j=0

Mf,j(X), M(X) = Mf (X)Mg(X)

and W (X) = L(X)M(X).

Lemma 2.3. Let j, k be nonnegative integers. Suppose yj, yk ≤ q1/1000. Then there exists
δ > 0 such that

1

ϕ?(q)

∑∗

χ (mod q)

W (χ)Pf (χ)jPg(χ)k = E
(
W (X)Pf (X)jPg(X)k

)
+O

(
q−δ
)
. (2.3)

Additionally, for yk ≤ q1/3 we have

1

ϕ(q)

∑
χ (mod q)

Pf (χ)2k = E
(
Pf (X)2k

)
≤ k!

( ∑
c0<p≤y

λf (p)
2

p

)k
. (2.4)

Proof. Each of Pf (χ), Pg(χ) is a Dirichlet polynomial of length y having coefficients ≤ 1 in
magnitude (since c0 is sufficiently large). Therefore, we derive the bounds |Pf (χ)j| ≤ yj and
|Pg(χ)k| ≤ yk. Similarly, since η > 0 is sufficiently small, M(χ) is a Dirichlet polynomial of
length q1/1000 with bounded coefficients. Using (2.1) and (2.2) we obtain (2.3) with an error
term of size � q−δ.

For (2.4), first observe that since yk ≤ q1/3 we have by (2.1) that

1

ϕ(q)

∑
χ (mod q)

Pf (χ)2k = E
(
Pf (X)2k

)
.

Let a(p) = λf (p)wJ(p) and a(n) =
∏

pr||n a(p)r. Using the fact that |Re(z)| ≤ |z| it follows
that

E
(
Pf (X)2k

)
≤

∑
c0<p1,...,pk≤y
c0<q1,...,qk≤y

a(p1) · · · a(pk)a(q1) · · · a(qk)√
p1 · · · pkq1 · · · qk

E
(
X(p1) · · ·X(pk)X(q1) · · ·X(qk)

)
.



WEIGHTED CENTRAL LIMIT THEOREMS FOR CENTRAL VALUES OF L-FUNCTIONS 11

Observe for n with Ω(n) = k we have that
∑

p1···pk=n 1 = k!ν(n). Consequently, the sum on
the right hand side above equals

(k!)2
∑

p|n⇒c0<p≤y
Ω(n)=k

a(n)2ν(n)2

n
≤ (k!)2

∑
p|n⇒c0<p≤y

Ω(n)=k

a(n)2ν(n)

n
≤ k!

( ∑
c0<p≤y

λf (p)
2

p

)k
.

Combining the two estimates above completes the proof of (2.4). �

Before proceeding to the next lemma let us introduce some further notation. Recall that
ν(n) denotes the multiplicative function with ν(pa) = 1

a!
. We write νj(n) = (ν ∗· · ·∗ν)(n) for

the j-fold convolution of ν. Observe that νj(p
a) = ja

a!
, which follows from a simple induction

argument. Also, for a positive integer ` let

νj;`(n) =
∑

n1···nj=n
Ω(n1),...,Ω(nj)≤`

ν(n1) · · · ν(nj). (2.5)

Lemma 2.4. Let k ∈ N be fixed. We have for each 0 ≤ j ≤ J that

E
(
|Mf,j(X)|2k

)
=
∏
p∈Ij

(
1 +O

(
1

p

))
.

Proof. We have

Mf,j(X)k =
∑

p|n⇒p∈Ij

af,J(n)λ(n)νk,`j(n)X(n)
√
n

.

Consequently, since νk,`j(n) ≤ νk(n), using the fact that νk(p
a) = ka/a! we obtain

E
(
|Mf,j(X)|2k

)
=

∑
p|n⇒p∈Ij

|af,J(n)νk,`j(n)|2

n
≤
∏
p∈Ij

(∑
a≥0

λf (p)
2awJ(p)2ak2a

(a!)2pa

)
, (2.6)

and the lemma follows. �

Lemma 2.5. We have

E
(
|L(X)|4

)
� (log q)O(1).

Remark 2.6. By applying Cauchy-Schwarz’s inequality twice, Lemmas 2.4 and 2.5 give
that E(|L(X)M(X)|2)� (log q)O(1).

Proof. Define V †(m1, . . . ,m8) =
∏4

i=1 V
(
m2i−1m2i

q2N2

)
. Then, expanding the power, we have

that

E
(
|L(X)|4

)
�

∑
m1,...,m8≥1

8∏
i=1

τ(mi)√
mi

∣∣∣E(X(m1m3m5m7)X(m2m4m6m8)
)
V †(m1, . . . ,m8)

∣∣∣
�

∑
n≤q4+ε

τ8(n)2

n
� (log q)O(1),

where τ`(n) denotes the `-fold divisor function. �
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Lemma 2.7. Let V ≥ 1. Suppose yV
2/9 ≤ q1/3. Then

#

{
χ (mod q) : |Pf (χ)| ≥ V

√
1
2

log log y

}
� qe−V

2/9.

Remark 2.8. By a similar argument that we will omit, we obtain for any V ≥ 1 that

P
(
|Pf (X)| ≥ V

√
1
2

log log y

)
� e−V

2/9.

Proof. For yk ≤ q1/3, using Lemma 2.3 and Chebyshev’s inequality we have that

#

{
χ (mod q) : |Pf (χ)| ≥ V

√
1
2

log log y

}
≤ 1

V 2k(1
2

log log y)k

∑
χ (mod q)

Pf (χ)2k

� q
8kk!

V 2k
� q

(
9k

eV 2

)k
,

by Stirling’s formula. Now take k = bV 2/9c. �

Let C > 0 be fixed and sufficiently large. Given Z ≥ 1 let

S = {χ (mod q) : |Pf (χ)|, |Pg(χ)| ≤ CZ log log y}. (2.7)

Lemma 2.9. Assume GRH. Suppose y
4C2Z2

9
log log y ≤ q1/3. For u, v ∈ R with |u|, |v| ≤ Z we

have that
1

ϕ?(q)

∑∗

χ∈S

L(χ)M(χ) exp
(
iuPf (χ) + ivPg(χ)

)
= E

(
L(X)M(X) exp

(
iuPf (X) + ivPg(X)

))
+O

(
(log q)−10

)
.

Remark 2.10. We assume GRH so that we may apply Proposition 1.3 with k = 1.

Proof. For s ∈ C with |s| ≤ S/e2 we have that

es =
∑

0≤j≤S

sj

j!
+O

(
e−S
)
. (2.8)

Take S = 15CZ2 log log y. Then for χ ∈ S we get

exp
(
iuPf (χ) + ivPg(χ)

)
=
∑

0≤j≤S

ij

j!

j∑
k=0

(
j

k

)
ukvj−kPf (χ)kPg(χ)j−k +O

(
e−S
)
. (2.9)

Also, for k ≤ j ≤ S, we have∑∗

χ∈Sc
L(χ)M(χ)Pf (χ)kPg(χ)j−k

�
( ∑∗

χ (mod q)

|L(χ)M(χ)|2
)1/2( ∑∗

χ∈Sc
|Pf (χ)kPg(χ)j−k|2

)1/2

�q1/2(#Sc)1/4

( ∑∗

χ (mod q)

|Pf (χ)|8k
)1/8( ∑∗

χ (mod q)

|Pg(χ)|8(j−k)

)1/8

,
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where we have applied Cauchy-Schwarz’s inequality and Proposition 1.3. Therefore, by
Lemma 2.3 and Stirling’s formula∑∗

χ∈Sc
L(χ)M(χ)Pf (χ)kPg(χ)j−k � q3/4(#Sc)1/4(4 log log y)j/2

(
(4k)!(4(j − k))!

)1/8

� q3/4(#Sc)1/4(16 log log y)j/2
√
k!(j − k)!.

Hence, for k ≤ j ≤ S we obtain that∑∗

χ∈S

L(χ)M(χ)Pf (χ)kPg(χ)j−k =
∑∗

χ (mod q)

L(χ)M(χ)Pf (χ)kPg(χ)j−k (2.10)

+O
(
q3/4(#Sc)1/4(16 log log y)j/2

√
k!(j − k)!

)
.

It follows from (2.9) and (2.10) that∑∗

χ∈S

L(χ)M(χ) exp
(
iuPf (χ) + ivPg(χ)

)

=
∑

0≤j≤S

ij

j!

j∑
k=0

(
j

k

)
ukvj−k

∑∗

χ (mod q)

L(χ)M(χ)Pf (χ)kPg(χ)j−k

+O

(
qe−S + q3/4(#Sc)1/4

∑
0≤j≤S

(4Z
√

log log y)j
j∑

k=0

1√
k!(j − k)!

)
.

(2.11)

Using Lemma 2.7 with V = CZ
√

2 log log y we have that

#Sc � qe−
2C2Z2

9
log log y.

Observe that by Cauchy-Schwarz’s inequality
∑j

k=0

√(
j
k

)
≤ 2j/2

√
j + 1, where

(
j
k

)
denotes

the binomial coefficient. Using this estimate, along with Stirling’s formula we see that the
sum in the error term in (2.11) is

�
∑

0≤j≤S

(4Z
√

log log y)j√
j!

2j/2
√
j � exp

(
17Z2 log log y

)
.

Hence using the two above estimates in (2.11) and applying Lemma 2.3 leads to

1

ϕ?(q)

∑
χ∈S

L(χ)M(χ) exp
(
iuPf (χ) + ivPg(χ)

)

=
∑

0≤j≤S

ij

j!

j∑
k=0

(
j

k

)
ukvj−kE

(
L(X)M(X)Pf (X)kPg(X)j−k

)
+O

(
(log q)−10

)
.

(2.12)

Let S(X) denote the event corresponding to

|Pf (X)|, |Pg(X)| ≤ CZ log log y
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and let Sc(X) denote its complement. By Remark 2.8 with V = CZ
√

2 log log y we obtain

P (Sc(X))� e−
2C2Z2

9
log log y. Also, analogously to (2.10), applying Lemma 2.3 we get

∑
0≤j≤S

ij

j!

j∑
k=0

(
j

k

)
ukvj−kE

(
L(X)M(X)Pf (X)kPg(X)j−k

)

=
∑

0≤j≤S

ij

j!

j∑
k=0

(
j

k

)
ukvj−kE

(
1S(X)L(X)M(X)Pf (X)kPg(X)j−k

)

+O

(
(log q)O(1)P (Sc(X))1/4

∑
0≤j≤S

(4Z
√

log log y)j
j∑

k=0

1√
k!(j − k)!

)

=
∑

0≤j≤S

ij

j!

j∑
k=0

(
j

k

)
ukvj−kE

(
1S(X)L(X)M(X)Pf (X)kPg(X)j−k

)
+O

(
(log q)−10

)
.

In all outcomes in S(X), the analogue of (2.9) holds,

exp
(
iuPf (X) + ivPg(X)

)
=
∑

0≤j≤S

ij

j!

j∑
k=0

(
j

k

)
ukvj−kPf (X)kPg(X)j−k +O

(
e−S
)
,

and therefore

∑
0≤j≤S

ij

j!

j∑
k=0

(
j

k

)
ukvj−kE

(
1S(X)L(X)M(X)Pf (X)kPg(X)j−k

)
= E

(
1S(X)L(X)M(X) exp

(
iuPf (X) + ivPg(X)

))
+O

(
(log q)−10

)
.

By Cauchy-Schwarz’s inequality and Remark 2.6 we have that

E
(
1Sc(X)L(X)M(X) exp

(
iuPf (X) + ivPg(X)

))
� E

(
|L(X)M(X)|2

)1/2

P
(
Sc(X)

)1/4

� (log q)−10.

Combining the estimates above we have that

∑
0≤j≤S

ij

j!

j∑
k=0

(
j

k

)
ukvj−kE

(
L(X)M(X)Pf (X)kPg(X)j−k

)
= E

(
L(X)M(X) exp

(
iuPf (X) + ivPg(X)

))
+O((log q)−10).

Using this in (2.12) completes the proof. �
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3. A random computation

For Re(s) > 1 let

Lf,g(s,X) =
∑

m1,m2≥1

λf (m1)λg(m2)

(m1m2)s
X(m1)X(m2) =

∏
p

∑
k1,k2≥0

λf (p
k1)λg(p

k2)

p(k1+k2)s
X(p)k1X(p)k2

=
∏
p

∏
j=1,2

(
1− αf,j(p)X(p)

ps

)−1(
1− αg,j(p)X(p)

ps

)−1

=
∏
p

Lf,gp (s,X).

Also, define

L(s,X) =
1

2

(
Lf,g(s,X) + ε(f)ε(g)Lg,f (s,X)

)
.

Our main results of this section are the following propositions.

Proposition 3.1. The function E(L(s,X)M(X)) can be analytically continued to Re(s) > 0.
Moreover, for |u|, |v| � 1 we have that

E
(
L(X)M(X) exp

(
iuPf (X) + ivPg(X)

))
= E

(
L(1

2
, X)M(X)

)
exp

(
−(u2 + v2)

4
log log y

)(
1 +O(|u|+ |v|)

)
+O

(
(log q)−10

)
.

Proposition 3.2. We have that

E
(
L(1

2
, X)M(X)

)
� 1.

Remark 3.3. As a consequence of Lemma 2.3 with j = k = 0, Proposition 3.1 with
u = v = 0 and Proposition 3.2 we have that

ϕ?W (q) =
∑∗

χ (mod q)

W (χ) = ϕ?(q)E
(
L(1

2
, X)M(X)

)
+O(q(log q)−10) � q. (3.1)

Before proceeding to the proofs let us define the Rankin-Selberg L-function

L(s, f ⊗ g) = ζN(2s)
∑
n≥1

λf (n)λg(n)

ns
, Re(s) > 1,

where ζN(s) =
∏

p(1−
ψ0(p)
ps

)−1 and ψ0 denotes the principal character modulo N . We write

L(s, f ⊗ g) =
∏

p Lp(s, f ⊗ g). Let

C = N2(|s+ κ|+ 1)2(|s|+ 1)2

denote the analytic conductor of f ⊗ g.

3.1. Estimates for primes p > x. The primes p > x do not interact with our mollifier and
their contribution is easy to understand. Estimating these terms precisely allows us to an-
alytically continue E(L(s,X)M(X)), since M(X) is a Dirichlet polynomial with coefficients
supported on integers with prime factors ≤ x.

Lemma 3.4. For Re(s) > −1
2

and (f1, f2) = (f, g) or (f1, f2) = (g, f) we have that

E
(
Lf1,f2
p (s+ 1

2
, X)

)
=

(
1− ψ0(p)

p4s+2

)
Lp(2s+ 1, f ⊗ g).
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Remark 3.5. Using the dominated convergence theorem, we have for Re(s) > 1
2

and any
z ≥ 2 that

E
(∏
p>z

Lf,gp (s+ 1
2
, X)

)
=
∏
p>z

E
(
Lf,gp (s+ 1

2
, X)

)
.

In particular, for Re(s) > 1
2

Lemma 3.4 gives that

E
(∏
p>z

Lf,gp (s+ 1
2
, X)

)
=
L(2s+ 1, f ⊗ g)

ζN(4s+ 2)

∏
p≤z

(
1− ψ0(p)

p4s+2

)−1

Lp(2s+ 1, f ⊗ g)−1. (3.2)

This provides an analytic continuation of the left hand side to Re(s) > −1
2
. Clearly, the

same applies to
∏

p>zE(Lg,fp (s + 1
2
, X)). Therefore, by choosing z = x we can analytically

continue the function

F (s;u, v) := E
(
L(s+ 1

2
, X)M(X) exp

(
iuPf (X) + ivPg(X)

))
to the half-plane Re(s) > −1

2
.

Proof of Lemma 3.4. We will only give the proof in the case (f1, f2) = (f, g) since the argu-
ment in the other case is similar. For Re(s) > −1

2
we have that

E
(
Lf,gp (s+ 1

2
, X)

)
=
∑
j,k≥0

λf (p
j)λg(p

k)

p(s+ 1
2

)(j+k)
E
(
X(p)jX(p)k

)
=
∑
j≥0

λf (p
j)λg(p

j)

p(2s+1)j
.

The right hand side equals (1− ψ0(p)
p4s+2 )Lp(2s+ 1, f ⊗ g). �

In the next two lemmas we accomplish the main goal of this subsection and precisely
estimate the contribution of the large primes p > x. The first result is a fairly standard
lemma, which uses the zero-free region of Rankin-Selberg L-functions. We use the notation
Λf⊗g(n) to denote the nth coefficient of the Dirichlet series of −L′/L(s, f ⊗ g), that is,

Λf⊗g(p
m) =

(
αf,1(p)m + αf,2(p)m

)(
αg,1(p)m + αg,2(p)m

)
log p. (3.3)

Lemma 3.6. There exists 0 < c1 <
1
5

such that for Re(s) > 1 − c1
log C

and log z ≥ log logC

we have that

logL(s, f ⊗ g) =
∑
n≤z

Λf⊗g(n)

ns log n
+O

(
zc1/ log C−1 log z + z1−2c1/ log C−Re(s)(log z)2

)
.

Proof. By Perron’s formula (see [43, Lemma 3.12]) we have that∑
n≤z

Λf⊗g(n)

ns log n
=

1

2πi

∫ σ1+iz

σ1−iz
logL(s+ w, f ⊗ g)zw

dw

w
+O

(
zc1/ log C−1 log z

)
,

where we define σ1 := c1/ logC + 1/ log z > 0 and using the standard zero free region (see
[4, Proposition 2.11]) we choose c1 so that L(s, f ⊗ g) 6= 0 for Re(s) ≥ 1− 3c1/ logC. Shift
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the contour to Re(w) = 1− 2c1/ logC− Re(s) < 0. We have a simple pole at w = 0, which
contributes logL(s, f ⊗ g) so that∑

n≤z

Λf⊗g(n)

ns log n
= logL(s, f ⊗ g) +O

(
zc1/ log C−1 log z + z1−2c1/ log C−Re(s) log z log logC

)
.

In the error term we have used the fact that for Re(s) ≥ 1− 2c1/ logC we have

| logL(s, f ⊗ g)| � log logC, (3.4)

which is proved by standard methods following the argument given in [31, Theorem 11.4],
which uses the zero-free region of L(s, f⊗g) and the Ramanujan bound, which by (3.3) gives
|Λf⊗g(n)| ≤ 4Λ(n). �

Lemma 3.7. There exists c2 > 0 such that for − c2
log C
≤ Re(s) ≤ 2 and z ≥ exp(logC log logC)

we have for (f1, f2) = (f, g) or (f1, f2) = (g, f) that

E
(∏
p>z

Lf1,f2
p (s+ 1

2
, X)

)
= 1 +O

(
z−c2/ log C(log z)2

)
.

Proof. Using Lemma 3.6, setting c2 = 2c1/3, and applying Deligne’s bound in (3.3) we have
that∑
p≤z

logLp(2s+ 1, f ⊗ g) =
∑
n≤z

Λf⊗g(n)

n2s+1 log n
+O

(∑
p≤z

∑
j>log z/ log p

1

p(2 Re(s)+1)j

)
= logL(2s+ 1, f ⊗ g) +O

(
z−1/2−2 Re(s)

)
+O

(
z−c2/ log C(log z)2

)
,

where we have estimated the first error term above by separately considering the contribution
of the primes

√
z < p ≤ z (so j ≥ 2) and p ≤

√
z. Hence, using (3.2), (3.4) and the

elementary estimate
∏

p>z(1−
ψ0(p)
p2+4s ) = 1 +O(z−1−4 Re(s)) we obtain the lemma. �

3.2. Estimates for primes y < p ≤ x. We now analyze the case y < p ≤ x. For primes
in this range we need to understand the interaction between the random L-series L(s,X)
and the mollifier M(X). In this section we bound the contribution of these primes, which is
needed when shifting contours in the proof of Proposition 3.1.

Lemma 3.8. Let c1 be as in Lemma 3.6. For − c1
log C
≤ Re(s) ≤ 2 and | Im(s)| ≤ e

√
log q we

have that

E
( ∏
y<p≤x

Lf,gp (s+ 1
2
, X)

J∏
j=1

Mj(X)

)
� (log log q)O(1). (3.5)

Proof. Let βf (n) = λf (n)n−s and γf (n) = λ(n)af ;J(n)ν(n). Clearly, βf , γf are multiplicative
functions. Also, a direct calculation gives for each 0 ≤ j ≤ J that

E
(
Mj(X)

∏
p∈Ij

Lf,gp (s+ 1
2
, X)

)

= E
( ∑

p|n1n2⇒p∈Ij
Ω(n1),Ω(n2)≤`j

γf (n1)γg(n2)X(n1)X(n2)
√
n1n2

∑
p|m1m2⇒p∈Ij

βf (m1)βg(m2)X(m1)X(m2)
√
m1m2

)
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=
∑

m1,m2,n1,n2

p|m1n1⇒p∈Ij
m1n1=m2n2

Ω(n1),Ω(n2)≤`j

βf (m1)βg(m2)γf (n1)γg(n2)

m1n1

. (3.6)

For any r > 0 and n, ` ∈ N,

1Ω(n)=` =
1

2πi

∫
|z|=r

zΩ(n)−`dz

z
,

so that for r 6= 1

1Ω(n)≤`j =
1

2πi

∫
|z|=r

zΩ(n) 1− z−`j−1

1− z−1

dz

z
.

Therefore, for 1 < r ≤ 2 the right hand side of (3.6) equals

1

(2πi)2

∫
|z|=r

∫
|w|=r

1− z−`j−1

1− z−1

1− w−`j−1

1− w−1
Σ(z, w)

dzdw

zw
, (3.7)

where

Σ(z, w) =
∑

m1,m2,n1,n2

p|m1n1⇒p∈Ij
m1n1=m2n2

zΩ(n1)wΩ(n2)βf (m1)βg(m2)γf (n1)γg(n2)

m1n1

,

which can be seen to be absolutely convergent from the analysis below.
Write γz,f (n) = zΩ(n)γf (n) and m = m1n1 to see that

Σ(z, w) =
∑

p|m⇒p∈Ij

(βf ∗ γz,f )(m)(βg ∗ γw,g)(m)

m

=
∏
p∈Ij

∑
k≥0

(βf ∗ γz,f )(pk)(βg ∗ γw,g)(pk)
pk

=
∏
p∈Ij

(
1 +

(p−s − wJ(p)z)(p−s − wJ(p)w)λf (p)λg(p)

p
+O

(
1 + p−4 Re(s)

p2

))
.

By Lemma 3.6 we have for−c1/ logC ≤ Re(s) ≤ 2 and | Im(s)| ≤ e
√

log q that
∑

p∈Ij
λf (p)λg(p)

p2s+1 =

O(1), and arguing similarly, using partial summation, we have that
∑

p∈Ij
wJ (p)λf (p)λg(p)

ps+1 =

O(1) and
∑

p∈Ij
wJ (p)2λf (p)λg(p)

p
= O(1). Consequently, we have that |Σ(z, w)| � 1 uniformly

for |z|, |w| ≤ 2. Applying this bound in (3.7) we have that the left hand side of (3.6) is
O(1), so the result follows upon applying this bound for each 1 ≤ j ≤ J and noting that
J � log log log q. �

Bounding the contribution of primes y < p ≤ x to E(Lg,f (s,X)M(X)) requires a more
subtle argument. Before proceeding to the proof let us recall from the definition of our
mollifier that η > 0 is sufficiently small and η ≤ θJ ≤ eη.
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Lemma 3.9. Let σ0 = max{−Re(s), 1
log q
} and c1 be as in Lemma 3.6. For −c1

log C
≤ Re(s) ≤ 2

and | Im(s)| ≤ e
√

log q we have that

E
( ∏
y<p≤x

Lg,fp (s+ 1
2
, X)

J∏
j=1

Mj(X)

)
� (log log q)O(1)q21η1/4σ0 . (3.8)

Proof. We argue as in the previous proof and as before write βf (n) = λf (n)n−s, γf (n) =
λ(n)af ;J(n)ν(n) and γz,f (n) = zΩ(n)γf (n). Repeating the argument leading up through (3.7)
we get for each j = 1, . . . , J that

E
(
Mj(X)

∏
p∈Ij

Lg,fp (s+ 1
2
, X)

)
=

1

(2πi)2

∫
|z|=2

∫
|w|=2

1− z−`j−1

1− z−1

1− w−`j−1

1− w−1
Σ̃(z, w)

dzdw

zw
,

(3.9)
where

Σ̃(z, w) =
∑

m1,m2,n1,n2

p|m1n1⇒p∈Ij
m1n1=m2n2

zΩ(n1)wΩ(n2)βg(m1)βf (m2)γf (n1)γg(n2)

m1n1

=
∏
p∈Ij

∑
k≥0

(βg ∗ γz,f )(pk)(βf ∗ γw,g)(pk)
pk

=
∏
p∈Ij

(
1 +

(p−sλg(p)− wJ(p)zλf (p))(p
−sλf (p)− wJ(p)wλg(p))

p
+O

(
1 + p−4 Re(s)

p2

))
.

Again, arguing as in the proof of Lemma 3.8, using Lemma 3.6 we can write

Σ̃(z, w) = exp

(
− z

∑
p∈Ij

λf (p)
2wJ(p)

p1+s
− w

∑
p∈Ij

λg(p)
2wJ(p)

p1+s

)
H(z, w)

where H(z, w) is an analytic function for |z|, |w| ≤ 2 with |H(z, w)| � 1 uniformly for s
satisfying the hypotheses of the lemma.

We now split the proof into two cases. First consider the case, θj <
1

σ0 log q
. Then we have

by Deligne’s bound that ∑
p∈Ij

λf (p)
2wJ(p)

p1+s
� eσ0θj log q

∑
p∈Ij

1

p
� 1, (3.10)

so that Σ̃(z, w)� 1 in this case and the left hand side of (3.9) is � 1.

It remains to consider the case that θj ≥ 1
σ0 log q

. Using that Σ̃(z, w) is analytic in each

variable, expanding (1− z−`j−1)/(1− z), (1−w−`j−1)/(1−w) as geometric series and using
Cauchy’s integral formula we get that the left hand side of (3.9) equals∑

0≤k1,k2≤`j

1

k1!k2!

∂k1+k2

∂zk1∂wk2
Σ̃(z, w)

∣∣∣∣
(z,w)=(0,0)

.
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Using Cauchy’s integral formula once again we see that ∂k1+k2

∂zk1∂wk2
H(z, w)|(z,w)=(0,0) � k1!k2!2−k1−k2 ,

hence we can bound the above expression by

� 22`j

(∑
p∈Ij

λg(p)
2wJ(p)

p1−σ0

)`j(∑
p∈Ij

λf (p)
2wJ(p)

p1−σ0

)`j
,

where the term 22`j comes from applying the product rule. Using Deligne’s bound and that

`j ≤ 2θ
−3/4
j we conclude that the left hand side of (3.9) is

�
(

8
∑
p∈Ij

1

p1−σ0

)2`j

≤ 34`je4θ
1/4
j σ0 log q. (3.11)

Write J1 for the smallest j = 1, . . . , J such that θj <
1

σ0 log q
. Using (3.10), (3.11) and that

in this case `j ≤ 2(σ0 log q)3/4 we have that the left hand side of (3.8) is

(log log q)O(1)
∏

J1≤j≤J

34`je4θ
1/4
j σ0 log q � (log log q)O(1)eO((σ0 log q)3/4) e20η1/4σ0 log q.

�

3.3. The contribution of the small primes. It remains to understand the contribution
of the primes with p ≤ y. This involves understanding the interaction between Lf,g(s,X),
M0(X) and eiuPf (X)+ivPg(X). A key point is that since M0(X) consists of relatively small
primes we can express it in terms of an Euler product with negligible loss since `0 is large.
This allows us to simplify our later analysis by reducing the problem to understanding the
contribution from each prime p ∈ I0 individually. Let

M̃0(X) =
∑

p|n⇒p∈I0

λ(n)√
n

(Xaf,Jν ∗Xag,Jν)(n) =
∏
p∈I0

M̃p(X),

where

M̃p(X) = M̃p,f (X)M̃p,g(X), M̃p,f (X) =
∑
k≥0

(−1)kaf,J(p)k

k!pk/2
X(p)k.

Lemma 3.10. For Re(s) ≥ − (log log q)2

log q
, uniformly for u, v ∈ R we have for (f1, f2) = (f, g)

or (f1, f2) = (g, f) that

E
(
M0(X) exp

(
iuPf (X) + ivPg(X)

)∏
p∈I0

Lf1,f2
p (s+ 1

2
, X)

)
= E

(
M̃0(X) exp

(
iuPf (X) + ivPg(X)

)∏
p∈I0

Lf1,f2
p (s+ 1

2
, X)

)
+O

(
(log q)−10

)
.

Proof. We will only give the proof in the case (f1, f2) = (f, g) since the arguments in both
cases are similar. Recall that βf (n) = λf (n)n−s, γf (n) = λ(n)af,J(n)ν(n) and define

R(X) := M̃0(X)−M0(X) =
∑

p|mn⇒p∈I0
max{Ω(m),Ω(n)}>`0

γf (m)γg(n)√
mn

X(m)X(n).
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Also, write Lf,g0 (s,X) =
∏

p∈I0 L
f,g
p (s,X). Since Lf,g0 (s,X) is a finite product this function

is analytic for Re(s) > 0. Applying Cauchy-Schwarz’s inequality we have

E
( ∣∣∣Lf,g0 (s+ 1

2
, X)R(X)

∣∣∣ )2

≤ E
(
|Lf,g0 (s+ 1

2
, X)|2

)
E
(
|R(X)|2

)
.

Let us first analyze E(|Lf,g0 (s+ 1
2
, X)|2). Write (βfX)(n) := βf (n)X(n). We have that

E
(
|Lf,g0 (s+ 1

2
, X)|2

)
=
∏
p∈I0

E

(∣∣∣∣∑
a≥0

λf (p
a)

pa(s+1/2)
X(pa)

∣∣∣∣2∣∣∣∣∑
a≥0

λg(p
a)

pa(s+1/2)
X(pa)

∣∣∣∣2
)

=
∏
p∈I0

E

(∑
a≥0

(βfX ∗ βgX ∗ βfX ∗ βgX)(pa)

pa/2

)
.

(3.12)

Let %(X; pa) = (βfX ∗ βgX ∗ βfX ∗ βgX)(pa) and observe that

E(%(X; p)) = 0 and E(%(X; p2)) = O(p−2 Re(s)).

We conclude that the left hand side of (3.12) equals

=
∏
p∈I0

(
1 +O

(
1

p1+2 Re(s)

))
. (3.13)

Using that Re(s) ≥ − (log log q)2

log q
we have 1

p1+2 Re(s) � 1
p

for p ∈ I0, so that the right hand side

is � (log q)O(1).
We next estimate E(|R(X)|2), which equals∑

p|m1m2n1n2⇒p∈I0
max{Ω(m1),Ω(n1)}>`0
max{Ω(m2),Ω(n2)}>`0

γf (m1)γf (m2)γg(n1)γg(n2)
√
m1m2n1n2

E(X(m1n1)X(m2n2))

Therefore, using that max{Ω(m1),Ω(n1)} > `0 implies 2Ω(m1n1)−`0 ≥ 1, writing r = m1n1 =
m2n2, we get upon applying Deligne’s bound |af,J(n)| ≤ 2Ω(n) that there exists C > 0 such
that

E
(
|R(X)|2

)
≤ 1

2`0

∑
p|r⇒p∈I0

2Ω(r)(2Ω ∗ 2Ω)(r)2

r
≤ 1

2`0

∑
p|r⇒p∈I0

CΩ(r)

r
� (log q)O(1)

2`0
, (3.14)

where we have used that c0 is sufficiently large so that the sum converges. Combining the
two estimates above completes the proof. �

Now that we have replaced M0(X) with the Euler product M̃0(X) our analysis reduces to
estimates for each prime p ∈ I0. Before continuing further let us introduce some notation.
Let

Gf,gp (s) = E
(
Lf,gp (s+ 1

2
, X)M̃p(X)

)
and

Ff,gp (s) = E
(
Lf,gp (s+ 1

2
, X)M̃p(X) Re(X(p))

)
.

Lemma 3.11. Let a ∈ Z. Suppose that p−Re(s) ≤ 2. Then the following statements hold:
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(1) Gf,gp (s) = 1 +
(p−s − wJ(p))2λf (p)λg(p)

p
+O

(
1

p2

)
;

(2) Gg,fp (s) = 1 +
(p−sλf (p)− wJ(p)λg(p))(p

−sλg(p)− wJ(p)λf (p))

p
+O

(
1

p2

)
.

Additionally, for (f1, f2) = (f, g) or (f1, f2) = (g, f) we have each of the following:

(3) Ff1,f2
p (s) =

(p−s − wJ(p))(λf (p) + λg(p))

2
√
p

+O

(
1

p

)
;

(4) E
(
Lf1,f2
p (s+ 1

2
, X)M̃p(X)X(p)a

)
� 5|a|

p|a|/2
.

Proof. Let h1, h2 be level N newforms (not necessarily distinct). For Re(s) > 0 and k an
integer let

nh1,h2
p (s, k) =

∑
k1+k2=k
k1,k2≥0

λh1(pk1)ah2,J(p)k2(−1)k2

pk1s+k2/2k2!
.

Observe that nh1,h2
p (s, k) = 0 if k < 0 and(∑

k≥0

λh1(pk)X(p)k

pks

)
M̃p,h2(X) =

∑
k≥0

nh1,h2
p (s, k)X(p)k.

For any integer a we have that

E
(
Lf,gp (s+ 1

2
, X)M̃p(X)X(p)a

)
=
∑

k1,k2≥0

nf,fp (s+ 1
2
, k1)ng,gp (s+ 1

2
, k2)E

(
X(p)k1+aX(p)k2

)
=
∑
k≥0

nf,fp (s+ 1
2
, k)ng,gp (s+ 1

2
, k + a). (3.15)

Additionally,

E
(
Lg,fp (s+ 1

2
, X)M̃p(X)X(p)a

)
=
∑

k1,k2≥0

ng,fp (s+ 1
2
, k1)nf,gp (s+ 1

2
, k2)E

(
X(p)k1+aX(p)k2

)
=
∑
k≥0

ng,fp (s+ 1
2
, k)nf,gp (s+ 1

2
, k + a). (3.16)

Clearly, nh1,h2
p (s+ 1

2
, 0) = 1 and

nh1,h2
p (s+ 1

2
, 1) =

(p−sλh1(p)− wJ(p)λh2(p))
√
p

.

Additionally, for each k ≥ 1 using Deligne’s bound we get that

nh1,h2
p (s+ 1

2
, k)� (k + 1)22k

pk/2
max{1, p−Re(s)k}.

Using the above two estimates in (3.15) and (3.16) all the claims follow (here we have also
used that for a complex number w with ww = 1 that wa = w−a). �
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Lemma 3.12. Let u, v ∈ R with |u|, |v| � 1. For Re(s) ≥ − (log log q)2

log q
and p ∈ I0 we have

for (f1, f2) = (f, g) or (f1, f2) = (g, f) that

E
(
Lf1,f2
p (s+ 1

2
, X)M̃p(X) exp

(
iu
λf (p)wJ(p)
√
p

Re(X(p)) + iv
λg(p)wJ(p)
√
p

Re(X(p))

))
(3.17)

= Gf1,f2
p (s)

(
1− (uλf (p) + vλg(p))

2wJ(p)2

4p

)
+ iFf1,f2

p (s)
(uλf (p) + vλg(p))wJ(p)

√
p

+O

(
|u|3 + |v|3

p3/2

)
.

Remark 3.13. Combining Lemmas 3.11 and 3.12 we get for Re(s) ≥ − (log log q)2

log q
and p ∈ I0

for |u|, |v| � 1 that the left hand side of (3.17) is = 1 + O(1
p
), for (f1, f2) = (f, g) or

(f1, f2) = (g, f). Hence, combining this with Lemma 3.10 we have for (f1, f2) = (f, g) or
(f1, f2) = (g, f) that

E
(
M0(X) exp

(
iuPf (X) + ivPg(X)

)∏
p∈I0

Lf1,f2
p (s+ 1

2
, X)

)
� (log q)O(1),

for Re(s) ≥ − (log log q)2

log q
. Hence, for − (log log q)2

log q
≤ Re(s) ≤ 2 using this estimate with Lemmas

3.7, 3.8, 3.9 gives

E
(
L(s+ 1

2
, X)M(X) exp

(
iuPf (X) + ivPg(X)

))
� (log q)O(1) + (log q)O(1)e21η1/4(log log q)2

.

(3.18)

Proof of Lemma 3.12. Taylor expanding gives that the exponential on the left hand side of
(3.17) equals

=
∑
k≥0

ik(uλf (p) + vλg(p))
kwJ(p)k

k!pk/2
Re(X(p))k.

The terms with k = 0, 1, 2 account for the main terms upon noting that Lemma 3.11 implies

E
(
Lf1,f2
p (s+ 1

2
, X)M̃p(X) Re(X(p))2

)
=
Gf1,f2
p (s)

2
+O

(
1

p

)
,

for p ∈ I0. To complete the proof, use Lemma 3.11 to bound the contribution to the left
hand side of (3.17) from the terms with k ≥ 3 in the Taylor expansion above, since c0 is
sufficiently large.

�

3.4. Proof of Proposition 3.1. We are now ready to complete the proof of Proposition
3.1.

Proof of Proposition 3.1. For u, v ∈ R and Re(s) > 1
2

define

F (s;u, v) = E
(
L(s+ 1

2
, X)M(X) exp

(
iuPf (X) + ivPg(X)

))
.

Recall that in Remark 3.5 we saw that F (s;u, v) admits an analytic continuation to Re(s) >
−1

2
. Moreover, by (3.18) we have that

|F (s;u, v)| � e22η1/4(log log q)2

(3.19)
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uniformly for |u|, |v| � 1, − (log log q)2

log q
≤ Re(s) ≤ 2, | Im(s)| ≤ B log q for any fixed B > 0.

Additionally, in (3.13) we showed that E(|Lf,gp (s,X)|2) = 1 + O(p−2 Re(s)) hence it is not

hard to see that for Re(s) ≥ 1
2

+ ε we have E
(
|Lf,g(s,X)|2

)
= Oε(1) and by repeating this

argument we also have that E
(
|Lg,f (s,X)|2

)
= Oε(1) in the same range. Also, by Lemma 2.4

we have E(|M(X)|2) � (log q)O(1). Applying these estimates along with Cauchy-Schwarz’s
inequality we have that

|F (s;u, v)| � (log q)O(1) (3.20)

in the region Re(s) ≥ 1
2

+ ε.
Applying Mellin inversion we see that

E
(
L(X)M(X) exp

(
iuPf (X) + ivPg(X)

))
=

1

2πi

∫
(2)

L∞(s+ 1
2
, f)L∞(s+ 1

2
, g)

L∞(1
2
, f)L∞(1

2
, g)

(
q2N2

)s
F (s;u, v)

(cos(πs
12

))−48

s
ds.

(3.21)

Since for fixed σ > 0 Stirling’s formula gives that |Γ(σ + it)| � (|t| + 1)σ−
1
2 e−π|t|, by (3.20)

we may truncate the integral in (3.21) to | Im(s)| ≤ B log q at the cost of an error term
of size O(q−1) where B is a sufficiently large absolute constant. We now shift contours to

Re(s) = − (log log q)2

log q
, pick up a simple pole at s = 0, estimate the horizontal and left contours

using the bound (3.19) to get that

E
(
L(X)M(X) exp

(
iuPf (X) + ivPg(X)

))
= E

(
L(1

2
, X)M(X) exp

(
iuPf (X) + ivPg(X)

))
+O

(
(log q)−10

)
,

since η > 0 is sufficiently small.
For (f1, f2) = (f, g) or (f1, f2) = (g, f) by Lemma 3.11, |Ff1,f2

p (0)| � log p√
p log x

+ 1
p

and

Gf1,f2
p (0) = 1 +O(1/p). Hence, using Lemmas 3.7, 3.10, and 3.12 we have that

E
(
Lf1,f2(1

2
, X)M(X) exp

(
iuPf (X) + ivPg(X)

))
=
∏
p∈I0

(
Gf1,f2
p (0)

(
1− (uλf (p) + vλg(p))

2wJ(p)2

4p

)
+O

(
(|u|+ |v|)

( log p

p log x
+

1

p3/2

)))

×
J∏
j=1

E
(
Mj(X)

∏
p∈Ij

Lf1,f2
p (1

2
, X)

) ∏
p≤c0

E
(
Lf1,f2
p (1

2
, X)

)
+O

(
(log q)−10

)
= E

(
Lf1,f2(1

2
, X)M(X)

)
exp

(
−
∑
p∈I0

(uλf (p) + vλg(p))
2wJ(p)2

4p

)(
1 +O(|u|+ |v|)

)
+O

(
(log q)−10

)
,
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where we also used Lemmas 3.8 and 3.9 to estimate the error terms. By the Prime Number
Theorem for Rankin-Selberg L-functions (see [4, Corollary 2.15])∑

p∈I0

(uλf (p) + vλg(p))
2wJ(p)2

4p
=
u2 + v2

4
log log y +O(|u|2 + |v|2), (3.22)

which completes the proof. �

3.5. Proof of Proposition 3.2. We are now ready to prove Proposition 3.2.

Proof of Proposition 3.2. Using (3.6) with s = 0 and recalling γf (n) = λ(n)af,J(n)ν(n), we
have for each 0 ≤ j ≤ J that

E
(
Mj(X)

∏
p∈Ij

Lf,gp (1
2
, X)

)
=

∑
m1,m2,n1,n2

p|m1n1⇒p∈Ij
m1n1=m2n2

Ω(n1),Ω(n2)≤`j

λf (m1)λg(m2)γf (n1)γg(n2)

m1n1

.

We now wish to remove the condition Ω(n1),Ω(n2) ≤ `j so that we can express the sum as
an Euler product. Arguing as in (3.14) we see that there exists C > 0 such that the sum on
the right hand side is

=
∑

p|m⇒p∈Ij

(λf ∗ γf )(m)(λg ∗ γg)(m)

m
+O

(
1

2`j

∑
p|m⇒p∈Ij

CΩ(m)

m

)

=
∏
p∈Ij

(
1 +

(1− wJ(p))2λf (p)λg(p)

p
+O

(
1

p2

))
+O

(
1j=0(log q)O(1) + 1

2`j

)
.

(3.23)

Since the product on the right hand side above is � 1, the product over 1 ≤ j ≤ J is

=

(
1 +O

(
y−1
)

+O

( J∑
j=1

1

2`j

)) J∏
j=1

∏
p∈Ij

(
1 +

(1− wJ(p))2λf (p)λg(p)

p

)
. (3.24)

Using that 2−`j � 1/`j � θ
3/4
j , and summing the geometric sum the error term is � θ

3/4
J �

η3/4. Hence, combining (3.23), (3.24), and Lemmas 3.4, 3.7 we get that

E
(
Lf,g(1

2
, X)M(X)

)
=

(
1 +O

(
1

c0

)
+O(η3/4)

) ∏
p≤c0

(
1− ψ0(p)

p2

)
Lp(1, f ⊗ g)

×
∏

c0<p≤x

(
1 +

(1− wJ(p))2λf (p)λg(p)

p

)
.

Since wJ(p) = 1 + O(log p/ log x), using Mertens’ Theorem and the bound |λf (p)λg(p)| ≤ 4
the product over c0 < p ≤ x is � 1, hence the right hand side above is � 1. To get a lower
bound, note that by using Deligne’s bound we have |Lp(1, f ⊗g)| ≥ |1 + 1

p
|−4, so the product

over p ≤ c0 is � (log c0)−4, by Mertens’ Theorem, which shows that the right hand side
above is � 1 by choosing η to be sufficiently small in terms of c0.
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Using Lemma 3.7 to estimate the contribution of the primes p > x and Lemmas 3.10 and
3.11 to estimate that of the primes c0 < p ≤ y gives

E
(
Lg,f (1

2
, X)M(X)

)
= (1 + o(1))

∏
p≤c0

E
(
Lg,fp (1

2
, X)

)
×
∏

y<p≤x

E
(
Lg,fp (1

2
, X)

J∏
j=1

Mj(X)

)
×
( ∏
c0<p≤y

(
1 +

(λf (p)− wJ(p)λg(p))(λg(p)− wJ(p)λf (p))

p
+O

(
1

p2

))
+O((log q)−10)

)
.

The product over p ≤ c0 on the right hand side above is � 1 by Lemma 3.4. Using Lemma
3.9 the product over y < p ≤ x is � (log log q)O(1). To estimate the product over c0 < p ≤ y
we again use the Prime Number Theorem for Rankin-Selberg L-functions, which implies∑

c0<p≤y

λf (p)λg(p)

p
= O(1) and

∑
c0<p≤y

λf (p)
2

p
= log log y +O(1),

to see that this product is � (log y)−2. Hence, we have that

E
(
Lg,f (1

2
, X)M(X)

)
= Oε((log q)−2+ε)

for any ε > 0. Combining the above result along with our previous estimate that E(Lf,g(1
2
, X)M(X)) �

1 completes the proof. �

4. Proof of Theorem 1.4 and Corollary 1.7

We will first prove Theorem 1.4. Let

Φq(u, v) =
1

ϕ?W (q)

∑∗

χ (mod q)

W (χ)e

(
− iu Pf (χ)√

1
2

log log q
− iv Pg(χ)√

1
2

log log q

)
.

Using the main results from the previous sections, Lemma 2.9 and Proposition 3.1, we get
that by rescaling (u, v)→

( −2πu√
1
2

log log q
, −2πv√

1
2

log log q

)
that

Φq(u, v) = e−2π2(u2+v2)

(
1 +O

(
(|u|+ |v|)(log log log q)1/2

(log log q)1/2

))
+O

(
(log q)−10

)
(4.1)

for u, v ∈ R with |u|, |v| �
√

log log q
log log log q

. The expression above for the characteristic function

is the key input into the proof of Theorem 1.4. Before proceeding to the proof we require
some additional results.

Lemma 4.1. Assume GRH. Let Λ ≥ 1. Also, let B > 0 be sufficiently large. Then for
all primitive characters χ modulo q outside an exceptional set of size � q

Λ2 + q
(log log q)10 the

following statements hold:

(1) |Lf (χ)Mf (χ)| ≤ Λ;

(2)
J∏
j=1

|Mf,j(χ)| ≤ (log log q)B;

(3)
1√

1
2

log log q

∣∣∣∣ ∑
c0<p≤y

λf (p)wJ(p)χ(p)
√
p

∣∣∣∣ ≤ log log log q.
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Remark 4.2. In the proof we use GRH when applying Proposition 5.1 to bound∑∗

χ (mod q)

|Lf (χ)Mf (χ)|2.

Using work of Blomer et. al. [4] such an estimate can be proved unconditionally so the
assumption of GRH can be removed at the cost of a longer argument.

Proof of Lemma 4.1. By Chebyshev’s inequality and Proposition 5.1∑∗

χ (mod q)
|Lf (χ)Mf (χ)|>Λ

1 ≤ 1

Λ2

∑∗

χ (mod q)

|Lf (χ)Mf (χ)|2 � q

Λ2
.

Similarly, ∑∗

χ (mod q)∏J
j=1 |Mf,j(χ)|>(log log q)B

1 ≤ 1

(log log q)2B

∑∗

χ (mod q)

J∏
j=1

|Mf,j(χ)|2

� q

(log log q)2B

∏
y<p≤x

(
1 +O

(
1

p

))
� q

(log log q)10
,

where the second step follows by using (2.1) and Lemma 2.4 since B is sufficiently large.
Finally, we note that the argument given in the proofs of Lemmas 2.3 and 2.7 shows that

the conclusion of Lemma 2.7 holds with Pf (χ) replaced by
∑

c0<p≤y
λf (p)wJ (p)χ(p)√

p
(this follows

immediately since in the proof of Lemma 2.3 we used that |Re(z)| ≤ |z|), so that using this
result with V = log log log q( log log q

log log y
)1/2 gives that

#

{
χ (mod q) :

∣∣∣∣ ∑
c0<p≤y

λf (p)wJ(p)χ(p)
√
p

∣∣∣∣ ≥ log log log q

√
1

2
log log q

}
� q

(log log q)10
.

�

For f ∈ L1(R) we denote by f̂ the Fourier transform of f ,

f̂(ξ) =

∫
R
f(x)e(−ξx) dx.

Let us quote the following result due independently to Beurling and Selberg (see [29, Section
7] and Vaaler [44]).

Lemma 4.3. Let ∆ > 0 and I = [a, b] ⊂ R be an interval. Then there exists an entire
function FI,∆(z) such that each of the following holds:

(1) 0 ≤ 1I(x)− FI,∆(x) ≤
(

sin(π∆(x− a))

π∆(x− a)

)2

+

(
sin(π∆(b− x))

π∆(b− x)

)2

, ∀x ∈ R;

(2) F̂I,∆(ξ) =

{
1̂I(ξ) +O

(
1
∆

)
if |ξ| < ∆, ξ ∈ R,

0 if |ξ| ≥ ∆, ξ ∈ R.

We also need to establish an unweighted analogue of (4.1), which is much easier to prove.
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Lemma 4.4. For u, v ∈ R with |u|, |v| �
√

log log q
log log log q

we have that

Ψq(u, v) :=
1

ϕ?(q)

∑∗

χ (mod q)

exp

(
− 2πiu

Pf (χ)√
1
2

log log q
− 2πiv

Pg(χ)√
1
2

log log q

)

= e−2π2(u2+v2)

(
1 +O

(
(|u|+ |v|)(log log log q)1/2

(log log q)1/2

))
+O

(
(log q)−10

)
.

Proof. A straightforward line-by-line modification of the proof of Lemma 2.9 gives that

1

ϕ?(q)

∑∗

χ (mod q)

exp
(
iuPf (χ) + ivPg(χ)

)
= E

(
exp

(
iuPf (X) + ivPg(X)

))
+O

(
(log q)−10

)
,

for |u|, |v| � 1. Taylor expanding and using (3.22), the main term equals∏
p≤y

E
(

exp

(
iu
λf (p)wJ(p) Re(X(p))

√
p

+ iv
λg(p)wJ(p) Re(X(p))

√
p

))
=
∏
p≤y

(
1− (uλf (p) + vλg(p))

2wJ(p)2

4p
+O

(
|u|3 + |v|3

p3/2

))
= (log y)−

(u2+v2)
4

(
1 +O (|u|+ |v|)

)
,

and the lemma follows upon rescaling as in (4.1). �

Proof of Theorem 1.4. Let Sf denote the set of primitive characters χ modulo q satisfying
the properties in Lemma 4.1 as well as

|Lf (χ)Mf (χ)| ≥ 1

Λ
with Λ = log log q. Then for χ ∈ Sf we have that

log |Lf (χ)| =− log |Mf (χ)|+O(log Λ)

=− log |Mf,0(χ)|+O(log log log q).

Also, for any complex number |s| ≤ S/e2 we have from (2.8) that

S∑
j=0

sj

j!
= es

(
1 +O

(
e−S/2

) )
,

which implies for χ ∈ Sf that

Mf,0(χ) = exp

(
−
∑

c0<p≤y

λf (p)wJ(p)
√
p

χ(p)

)(
1 +O

(
(log log q)−10

))
.

We conclude that for χ ∈ Sf ,
Pf (χ) = log |Lf (χ)|+O(log log log q). (4.2)

In particular, this implies that for χ ∈ Sf ,
| log |Lf (χ)||√

1
2

log log q
� log log log q. (4.3)
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Let Lf (χ) =
log |Lf (χ)|√

1
2

log log q
, Pf (χ) =

Pf (χ)√
1
2

log log q
, and I1, I2 ⊂ R be intervals. Let us first

consider the case I1, I2 are closed. By (4.3), for χ ∈ Sf we have that Lf (χ) ∈ I1 if and only if
Lf (χ) ∈ I1 where I1 = I1∩ [−A log log log q, A log log log q], where A > 0 is sufficiently large.
Write I1 = [a1, b1]. Using (4.2) we have for all χ ∈ Sf that there exists C > 0 sufficiently

large such that for δ = C log log log q√
log log q

|1I1(Lf (χ))− 1I1(Pf (χ))| ≤ 1[a1−δ,a1+δ](Pf (χ)) + 1[b1−δ,b1+δ](Pf (χ)).

For χ ∈ Sg we arrive at a similar inequality and can replace I2 with I2, which is defined
analogously to I1, with I2 = [a2, b2] and |b2 − a2| � log log log q. Write Iδ,j = [aj − δ, aj +
δ]∪ [bj−δ, bj +δ] for j = 1, 2. Consequently, using the above inequality for f and g, Hölder’s
inequality with exponents 1

e1
+ 1

e2
= 1 where e1 = 1+ε, so e2 � 1/ε, and applying Proposition

1.3 we have that

1

ϕ?W (q)

∑∗

χ∈Sf∩Sg

W (χ)1I1(Lf (χ))1I2(Lg(χ)) =
1

ϕ?W (q)

∑∗

χ∈Sf∩Sg

W (χ)1I1(Pf (χ))1I2(Pg(χ))

+Oε

(
q1/e2−1

( ∑∗

χ (mod q)

(
1Iδ,1(Pf (χ)) + 1Iδ,2(Pg(χ))

))1/e1)
,

(4.4)

where we have also used that (1Iδ,1(Pf (χ)) +1Iδ,2(Pg(χ)))e1 ≤ 2ε(1Iδ,1(Pf (χ)) +1Iδ,2(Pg(χ)))
and 1[a1−δ,a1+δ](Pf (χ)) + 1[b1−δ,b1+δ](Pf (χ)) ≤ 21Iδ,1(Pf (χ)). Using Cauchy-Schwarz’s in-
equality, the sum on the left hand side as well as the sum in the main term on the right hand
side above can be extended to all primitive characters modulo q at the cost of an error term
of size O(1/ log log q).

Let K(x) = ( sinπx
πx

)2 and note that K̂(u) = max{0, 1− |u|}. By Lemma 4.3, for I = [a, b]
and ∆ > 0 we have |1I(x)−FI,∆(x)| ≤ 2, so |1I(x)−FI,∆(x)|e1 ≤ 2ε(K(∆(x−a))+K(∆(b−
x))). We now take ∆ =

√
log log q

log log log q
. By Hölder’s inequality and Proposition 1.3 we get that

∑∗

χ (mod q)

|W (χ)|
∣∣∣1I1(Pf (χ))− FI1,∆(Pf (χ))

∣∣∣
�ε q

1/e2

( ∑∗

χ (mod q)

(
K(∆(Pf (χ)− a1)) +K(∆(b1 − Pf (χ)))

))1/e1

. (4.5)

By Fourier inversion and Lemma 4.4 we find uniformly for any α ∈ R that

1

ϕ?(q)

∑∗

χ (mod q)

K(∆(Pf (χ)− α)) =
1

∆

∫ ∆

−∆

(
1− |u|

∆

)
e(−αu)Ψq(u, 0) du� 1

∆
. (4.6)

Hence, using (3.1), (4.5), and (4.6) we can replace 1I1(Pf (χ)) by FI1,∆(Pf (χ)) in the main
term in (4.4) at the cost of an error term of sizeOε((log log q)−1/2+ε). Similarly, we can replace
1I2(Pg(χ)) with FI2,∆(Pg(χ)) at the cost of an error term of the same size. Using Fourier
inversion, (4.1) and Lemma 4.3 we get that up to an error term of size Oε((log log q)−1/2+ε)
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the main term on the right hand side of (4.4) equals

1

ϕ?W (q)

∑∗

χ (mod q)

W (χ)FI1,∆(Pf (χ))FI2,∆(Pg(χ)) =

∫
R2

F̂I1,∆(u)F̂I2,∆(v)Φq(u, v) du dv

=

∫
R2

F̂I1,∆(u)F̂I2,∆(v)e−2π2(u2+v2) du dv +Oε

(
|I1||I2|((log log q)−1/2+ε + ∆2(log q)−10)

)
.

Applying Plancherel and then using Lemma 4.3 the main term above equals

1

2π

∫
R2

FI1,∆(x)FI2,∆(y)e−(x2+y2)/2 dx dy =
1

2π

∫
I1×I2

e−(x2+y2)/2 dx dy +Oε

(
(log log q)−1/2+ε

)
,

(4.7)

where we have also used the rapid decay of the Gaussian to bound the portion of the integral
with (I1 × I2) \ (I1 × I2) by � (log log q)−10.

To estimate the error term in (4.4), we see that by arguing as above we have

1

ϕ?(q)

∑∗

χ (mod q)

1Iδ,1(Pf (χ)) =
1√
2π

∫
Iδ,1

e−x
2/2 dx+Oε

(
(log log q)−1/2+ε

)
�ε (log log q)−1/2+ε.

Applying this with (4.7) in (4.4) completes the proof in the case I1, I2 are closed. The other
cases follow in the exact same way since the conclusions of Lemma 4.3 hold for any finite
interval, since FI,∆ is continuous. �

Proof of Corollary 1.7. Let ω = Λ√
log log q)

. By a similar yet slightly easier argument to the

one given in the proof of Theorem 1.4, which we will omit, we have that

1

ϕ?W (q)

∑∗

χ (mod q)

W (χ)1[−ω,ω]

(
log |L(1

2
, f ⊗ χ)|√

1
2

log log q
−

log |L(1
2
, g ⊗ χ)|√

1
2

log log q

)

=
1

2
√
π

∫ ω

−ω
e−u

2/4 du+Oε((log log q)−1/2+ε)

with the main difference in the proof being that after applying Fourier inversion in place
of Φq(u, v) = e−2π2(u2+v2) + o(1) we will have Φq(u,−u) = e−4π2u2

+ o(1) and the Fourier

transform of the Gaussian g(u) = e−4π2u2
is ĝ(u) = 1

2
√
π
e−u

2/4. Hence, by Hölder’s inequality

with exponents 1
e1

+ 1
e2

= 1 the formula above yields

qω �
( ∑∗

χ (mod q)

|W (χ)|e1
)1/e1(

#

{
χ 6= χ0 : L(1

2
, g⊗χ) 6= 0, e−Λ ≤

∣∣∣∣L(1
2
, f ⊗ χ)

L(1
2
, g ⊗ χ)

∣∣∣∣ ≤ eΛ

})1/e2

,

where for brevity we wrote χ 6= χ0 to mean that χ is a nonprincipal character modulo q.
Applying Proposition 1.3 gives that

#

{
χ 6= χ0 : L(1

2
, g ⊗ χ) 6= 0, e−Λ ≤

∣∣∣∣L(1
2
, f ⊗ χ)

L(1
2
, g ⊗ χ)

∣∣∣∣ ≤ eΛ

}
� ωe2q

taking e2 = 1 + ε gives the claim.
�
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5. Upper bounds for mollified moments

In this section we prove Proposition 1.3, which follows immediately from the following
proposition and an application of Cauchy-Schwarz’s inequality.

Proposition 5.1. Assume GRH. Let k > 0 and suppose that ηdke is sufficiently small.
Then ∑∗

χ (mod q)

|L(1
2
, f ⊗ χ)Mf (χ)|2k �f,k q.

We assume GRH for L(s, f⊗χ), L(s, Sym2 f⊗χ2) and L(s, χ2) for all characters χ (mod q).

5.1. Preliminaries. Note that by using the inequality t2k ≤ 1 + t2dke, which holds for t ≥ 0
and k > 0, it suffices to prove the result for k ∈ N. For an interval I and a completely
multiplicative function a(n) we define

PI(χ; a) =
∑
p∈I

a(p)χ(p)
√
p

.

Recalling that
∑

p1···p` 1 = `!ν(n) we have

PI(χ; a)` =
∑

p1,...,p`∈I

a(p1 · · · p`)χ(p1 · · · p`)√
p1 · · · p`

=
∑

p|n⇒p∈I
Ω(n)=`

a(n)χ(n)√
n

∑
p1···p`=n

1

=`!
∑

p|n⇒p∈I
Ω(n)=`

a(n)ν(n)χ(n)√
n

.

(5.1)

For ` a positive even integer and t ∈ R, let

E`(t) =
∑
j≤`

tj

j!
.

By [34, Lemma 1] we see that E`(t) > 0 for any t ∈ R if ` is even and for t ≤ `/e2 that

et ≤ (1 + e−`)E`(t). (5.2)

For any real number k 6= 0 we have

E`
(
2kRe(PI(χ; a))

)
=
∑
j≤`

kj

j!

(
PI(χ; a) + PI(χ; a)

)j
=
∑
j≤`

kj
j∑
r=0

∑
p|m⇒p∈I
Ω(m)=r

a(m)ν(m)χ(m)√
m

∑
p|n⇒p∈I
Ω(n)=j−r

a(n)ν(n)χ(n)√
n

=
∑

p|n⇒p∈I
Ω(n)≤`

kΩ(n)a(n)√
n

(νχ ∗ νχ)(n).

(5.3)

Additionally, for each 0 ≤ j ≤ J let

Dj(χ; k) =

j∏
r=0

(1 + e−`r)E`r
(
2kRe(PIr(χ; af,j))

)
(5.4)
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and note that Dj(χ; k) > 0.

5.2. The random model. As in Subsection 2.1, let {X(p)}p be i.i.d. random variables
that are uniformly distributed on the unit circle and let X(n) =

∏
pa||nX(p)a. Define

PI(X; a) =
∑
p∈I

a(p)
√
p
X(p)

and just as in (5.3) we have that

E`
(
2kRe(PI(X; a))

)
=

∑
p|n⇒p∈I
Ω(n)≤`

kΩ(n)a(n)√
n

(νX ∗ νX)(n). (5.5)

We also let

Dj(X; k) =

j∏
r=0

(1 + e−`r)E`r
(
2kRe(PIr(X; af,j))

)
.

5.3. Preliminary lemmas. We use the conventions that D−1 = 1 and PIJ+1
= 1, θJ+1 = 1.

Lemma 5.2. Let 0 ≤ j ≤ J + 1 and let b(n) be a completely multiplicative function. For
t ∈ Z with 0 ≤ t ≤ 2

5θj+1
we have that

1

ϕ(q)

∑∗

χ (mod q)

Dj−1(χ; k)
(

Re(PIj(χ; b))
)2t|Mf (χ)|2k

= E
(
Dj−1(X; k)

(
Re(PIj(X, b))

)2t|Mf (X)|2k
)

+O(q−1/10).

Remark 5.3. Since {X(p)}p are independent random variables and the intervals Ij are
disjoint, we have that

E
(
DJ(X; k)|Mf (X)|2k

)
=
∏

0≤j≤J

(1 + e−`j)E
(
E`j
(
2kRe(PIj(X; af,J))

)
|Mf,j(X)|2k

)
.

Proof. The error term arises from pointwise bounding the principal character contribution
(this is why the formula is not an identity). By (2.1) the two expressions are equal when
the sum is over all χ modulo q. The contribution from the term with χ = χ0 is bounded by

� q−1q1/10(qθj)
4

5θj � q−1/10. �

Lemma 5.4. Let 0 ≤ j ≤ J and let b(n) be a completely multiplicative function with
b(p)� 1. Then

E
(
E`j
(
2kRe(PIj(X; b))

)
|Mf,j(X)|2k

)
=

(
1 +O

(
1j=0(log q)O(1) + 1

2`j

))∏
p∈Ij

(
1 +

k2(af,J(p)− b(p))2

p
+O

(
1

p2

))
(5.6)

and for t ∈ Z with t ≥ 4k`j we have that

E
((

Re(PIj(X; b))
)2t|Mf,j(X)|2k

)
�
(
1j=0(log q)O(1) + 1

) (2t)!

22tb3
4
tc!

(∑
p∈Ij

b(p)2

p

)t
.
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Proof. Using (5.5) we have that

E
(
E`j
(
2kRe(PIj(X; b))

∣∣Mf,j(X)|2k
)

=
∑

p|mn⇒p∈Ij
Ω(m)≤`j ,Ω(n)≤2k`j

kΩ(m)b(m)λ(n)af,J(n)√
mn

E
(

(νX ∗ νX)(m)
(
νk;`jX ∗ νk;`jX

)
(n)
)

=
∑

p|mn⇒p∈Ij
Ω(m)≤`j ,Ω(n)≤2k`j

kΩ(m)b(m)λ(n)af,J(n)√
mn

∑
c1d1=m
c2d2=n

c1c2=d1d2

ν(c1)ν(d1)νk;`j(c2)νk;`j(d2).

(5.7)

Since max{Ω(m),Ω(n)} > `j implies 2Ω(mn)/2`j > 1, there exists fixed C > 0 sufficiently
large such that

E
(
E`j
(
2kRe(PIj(X; b))

)
|Mf,j(X)|2k

)
=

∑
p|mn⇒p∈Ij

kΩ(m)b(m)λ(n)af,J(n)√
mn

∑
c1d1=m
c2d2=n

c1c2=d1d2

ν(c1)ν(d1)νk(c2)νk(d2)

+O

(
1

2`j

∑
p|r1r2⇒p∈Ij

CΩ(r1r2)

r1r2

)
.

(5.8)

Here we also used that νk;`(n) = νk(n) if Ω(n) ≤ `. The error term in (5.8) is

� 1j=0(log q)O(1) + 1

2`j
, (5.9)

where we have used that c0 is sufficiently large. Define the multiplicative functions h1, h2

and h by

h1(n) = kΩ(n)b(n)ν(n), h2(n) = λ(n)af,J(n)νk(n), and h(n) = (h1 ∗ h2)(n),

and note that

h(p) = b(p)k − af,J(p)νk(p) = k(b(p)− af,J(p)),

|h(pa)| ≤ (Ck)a

a!

for some constant C > 0. Therefore, writing mn = r, c1c2 = r1, d1d2 = r2, grouping terms
appropriately and using that af,J(n), kΩ(n), b(n), λ(n) are completely multiplicative the main
term in (5.8) is∑
p|r⇒p∈Ij

1√
r

∑
r1r2=r
r1=r2

h(r1)h(r2) =
∑

p|n⇒p∈Ij

h(n)2

n
=
∏
p∈Ij

(
1 +

k2(b(p)− af,J(p))2

p
+O

(
1

p2

))
.

(5.10)
Hence, using (5.9) and (5.10) in (5.8) completes the proof of (5.6).
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For the second statement, we note that by using (5.1) we have that

(
Re(PIj(X; b))

)2t
= 2−2t

2t∑
s=0

(
2t

s

)
PIj(X; b)sPIj(X; b)2t−s

= 2−2t(2t)!
2t∑
s=0

∑
p|m⇒p∈Ij
Ω(m)=s

b(m)ν(m)√
m

X(m)
∑

p|n⇒p∈Ij
Ω(n)=2t−s

b(n)ν(n)√
n

X(n)

= 2−2t(2t)!
∑

p|n⇒p∈Ij
Ω(n)=2t

b(n)√
n

(νX ∗ νX)(n).

Therefore, similarly to (5.7) we have that

22t

(2t)!
E
((

Re(PIj(X; b))
)2t|Mf,j(X)|2k

)
=

∑
p|mn⇒p∈Ij

Ω(m)=2t,Ω(n)≤2k`j

b(m)λ(n)af,J(n)√
mn

∑
c1d1=m
c2d2=n

c1c2=d1d2

ν(c1)ν(d1)νk;`j(c2)νk;`j(d2).

Taking absolute values inside the sum and recalling that νk;`(n) ≤ νk(n), we have the bound

�
∑

p|c1c2d1d2⇒p∈Ij
Ω(c1d1)=2t,Ω(c2d2)≤2k`j

c1c2=d1d2

|b(c1d1)af,J(c2d2)|√
c1c2d1d2

ν(c1)ν(d1)νk(c2)νk(d2).

We now write ci = gic
′
i and di = gid

′
i with gi := (ci, di) and (c′i, d

′
i) = 1 for i = 1, 2. Then,

since c1c2 = d1d2, we have that c′1c
′
2 = d′1d

′
2 and therefore c′1 = d′2 and d′1 = c′2. Relabelling

c′i as ci and writing γk(n) := af,J(n)νk(n), the above is bounded by

∑
p|g1g2c1c2⇒p∈Ij

Ω(c1c2g2
1)=2t,Ω(c1c2)≤2k`j

b(g1)2γ2
k(g2)|b(c1c2)γk(c1)γk(c2)|

g1g2c1c2

ν(g1)2, (5.11)

where we have used that ν(n) ≤ 1 and νk(mn) ≤ νk(m)νk(n).
We now bound the sum over g2. Using that |λf (p)| ≤ 2, we have

∑
p|g2⇒p∈Ij

γ2
k(g2)

g2

�
∏
p∈Ij

(
1 +

λf (p)
2νk(p)

2

p

)
�

{( θj
θj−1

)4k2

�k 1, if j 6= 0,

(log q)Ok(1), if j = 0.
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Hence we may bound (5.11) by

�
(
1j=0(log q)O(1) + 1

) ∑
p|c1c2⇒p∈Ij
Ω(c1c2)≤2k`j

2|Ω(c1c2)

|b(c1c2)γk(c1)γk(c2)|
c1c2

∑
p|g⇒p∈Ij

Ω(g)=t−Ω(c1c2)/2

b(g)2ν(g)2

g

�
(
1j=0(log q)O(1) + 1

) ∑
p|c1c2⇒p∈Ij
Ω(c1c2)≤2k`j

2|Ω(c1c2)

|b(c1c2)γk(c1)γk(c2)|
c1c2

(
1(

t− Ω(c1c2)
2

)
!

(∑
p∈Ij

b(p)2

p

)t−Ω(c1c2)
2
)
.

Since by assumption t ≥ 4k`j and Ω(c1c2) ≤ 2k`j, we have that 3
4
t ≤ t − Ω(c1c2)/2. Thus

the final bracketed term above is bounded by

1

b3
4
tc!

(∑
p∈Ij

b(p)2

p

)t
.

For the remaining sum over c1, c2, there exists some C > 0 such that this sum is bounded

by
∑

p|n⇒p∈Ij
CΩ(n)

n
� 1j=0(log q)O(1) + 1. Therefore, we have that

E
((

Re(PIj(X; b))
)2t|Mf,j(X)|2k

)
�
(
1j=0(log q)O(1) + 1

) (2t)!

22tb3
4
tc!

(∑
p∈Ij

b(p)2

p

)t
,

as claimed. �

Lemma 5.5. Assume GRH. Suppose Y ≥ (log q)3. Then the following statements hold:

(1) logL(1, Sym2 f ⊗ χ2) =
∑
p≤Y

λf (p
2)χ(p)2

p
+O(1);

(2) logL(1, χ2) =
∑
p≤Y

χ(p)2

p
+O(1), for χ2 6= χ0;

(3)
1

ϕ?(q)

∑∗

χ (mod q)
χ2 6=χ0

∣∣∣∣L(1, Sym2 f ⊗ χ2)

L(1, χ2)

∣∣∣∣2k � 1.

Proof. Applying [3, Lemma 5] gives (1) and (2). The last claim can be shown to follow
unconditionally, however it is easy to prove using GRH and we give a sketch below. Using
(1) and (2) we have∣∣∣∣L(1, Sym2 f ⊗ χ2)

L(1, χ2)

∣∣∣∣2k � exp

(
2kRe

∑
p≤(log q)3

(λf (p
2)− 1)χ2(p)

p

)
.

Since
∑

p≤(log q)3

(λf (p2)−1)χ2(p)

p
� log log log q, we can apply (5.2) to the right hand side above

with ` = 2b(log log log q)2c. Using the non-negativity of E`(·) we extend the sum to all χ
modulo q to bound the left hand side of (3) by

�
∑̀
j=0

(2k)j

j!

1

ϕ?(q)

∑
χ (mod q)

(
Re

( ∑
p≤(log q)3

(λf (p
2)− 1)χ2(p)

p

))j
.
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Arguing as in the proof of (2.4) the sum over χ(mod q) can be seen to be� q(Cj)j for each
1 ≤ j ≤ ` and C > 0 sufficiently large. This gives that the right hand side above is

�
∑̀
j=1

(
C

j

)j/2
� 1,

where C = C(k) > 0 is sufficiently large. �

Lemma 5.6. Assume GRH. Suppose χ2 6= χ0. Then either

Re(PI0(χ; af,j)) ≥
`0

ke2

for some 0 ≤ j ≤ J or

|L(1
2
, f ⊗ χ)|2kL(1, Sym2 f ⊗ χ2)−kL(1, χ2)k

� DJ(χ; k) +
∑

0≤j≤J−1
j+1≤u≤J

exp

(
6k

θj

)
Dj(χ; k)

(
e2kRe(PIj+1

(χ; af,u))

`j+1

)tj+1

for any sequence of nonnegative integers (tj).

Proof. By [9, Theorem 2.1] we have that for Y ≥ 8

|L(1
2
, f ⊗ χ)|2k ≤ exp

(
2kRe

∑
pn≤Y

(αf,1(p)n + αf,2(p)n)χ(pn)

npn( 1
2

+ 1
log Y

)

log Y/pn

log Y
+ 6k

log q

log Y
+O(1)

)
.

(5.12)
In the sum over prime powers, the contribution of the powers n ≥ 3 is O(1). For the prime
squares, we note that αf,1(p)2 + αf,2(p)2 = λf (p

2)− 1 and therefore the contribution is

k
∑
p≤
√
Y

(λf (p
2)− 1)χ(p)2

p

log Y/p2

p2/ log Y log Y
= k

∑
p≤
√
Y

(λf (p
2)− 1)χ(p)2

p
+O(1), (5.13)

where in the error term we used that
∑

p≤
√
Y

log p
p log Y

� 1. Applying Lemma 5.5, (1) and (2)

we see that (5.13) equals

k logL(1, Sym2 f ⊗ χ2)− k logL(1, χ2) +O(1), (5.14)

provided Y ≥ (log q)6.
For 0 ≤ j ≤ J let Sj be the set of characters χ modulo q such that χ2 6= χ0 and

max
j≤r≤J

RePIj(χ; af,r) <
`j
ke2

.

For each such χ we must have either (i) χ /∈ S0; (ii) χ ∈ Sj for all 0 ≤ j ≤ J ; (iii) there
exists 0 ≤ j ≤ J − 1 such that χ ∈ Sr for 0 ≤ r ≤ j and χ /∈ Sj+1. In particular, for each
χ2 6= χ0 we have either

max
0≤r≤J

RePI0(χ; af,r) ≥
`0

ke2
; (5.15)

max
j≤r≤J

RePIj(χ; af,r) <
`j
ke2

for each 0 ≤ j ≤ J ; (5.16)
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or for some 0 ≤ j ≤ J − 1

max
r≤u≤J

RePIr(χ; af,u) <
`r
ke2

for each 0 ≤ r ≤ j

and max
j+1≤u≤J

RePIj+1
(χ; af,u) ≥

`j+1

ke2
,

(5.17)

with (5.15) corresponding to (i), (5.16) to (ii) and (5.17) to (iii).
If we have (5.15), then we can conclude. If (5.16) holds, then we set Y = qθJ in (5.12) so

that log q
log Y
� 1. Also applying (5.14) to handle the contribution of the squares of primes, we

have that

|L(1
2
, f ⊗ χ)|2kL(1, Sym2 f ⊗ χ2)−kL(1, χ2)k � exp

(
2k
∑
p≤qθJ

af,J(p)χ(p)
√
p

)

≤
J∏
j=0

(1 + e−`j)E`j
(
2kRe(PIj(χ; af,J))

)
= DJ(χ; k),

by the definition (5.4). Lastly, if we are in the case (5.17), then we take Y = qθj in (5.12) so
that log q

log Y
= 1

θj
. For 0 ≤ r ≤ j we argue as in the previous case to bound the contribution of

the primes by Dj(χ; k) and use (5.14) to estimate the contribution from the prime squares.
Therefore we have

|L(1
2
, f ⊗ χ)|2kL(1, Sym2 f ⊗ χ2)−kL(1, χ2)k

� exp

(
6k

θj

)
Dj(χ; k)

� exp

(
6k

θj

)
Dj(χ; k) max

j+1≤u≤J

(
e2kRe(PIj+1

(χ; af,u))

`j+1

)tj+1

,

where in the last step we have trivially applied

max
j+1≤u≤J

(
e2kRe(PIj+1

(χ; af,u))

`j+1

)tj+1

≥ 1.

�

Lemma 5.7. For 0 ≤ j ≤ J let tj ∈ Z such that 4k`j ≤ tj ≤ 2
5θj

. Let b(n) be a completely

multiplicative function with b(p)� 1. Then∑∗

χ (mod q)

Dj(χ; k)
(

Re(PIj+1
(χ; b))

)2tj+1 |Mf (χ)|2k � qe4k2(J−j) (2tj+1)!

22tj+1b3
4
tj+1c!

( ∑
p∈Ij+1

b(p)2

p

)tj+1

for each 0 ≤ j ≤ J − 1 and∑∗

χ (mod q)

(
Re(PI0(χ; b))

)2t0 |Mf (χ)|2k � q(log q)O(1) (2t0)!

22t0b3
4
t0c!

(∑
p∈I0

b(p)2

p

)t0
.



38 HUNG M. BUI, NATALIE EVANS, STEPHEN LESTER AND KYLE PRATT

Proof. First, by Lemma 5.2 and arguing as in Remark 5.3, we have that

1

ϕ(q)

∑∗

χ (mod q)

Dj(χ; k)
(

Re(PIj+1
(χ; b))

)2tj+1|Mf (χ)|2k

=
∏

0≤r1≤j

(1 + e−`r1/2)E
(
E`r1

(
2kRe(PIr1 (X; af,j))

)
|Mf,r1(X)|2k

)
×

∏
j+1≤r2≤J

E
((

Re(PIj+1
(X, b))

)2tj+1|Mf,r2(X)|2k
)

+O
(
q−1/10

)
.

(5.18)

For the product over 0 ≤ r1 ≤ j, we apply Lemma 5.4 to get the bound

�
∏

0≤r1≤j

(
1 +O

(
1r1=0(log q)O(1) + 1

2`r1

)) ∏
c0<p≤qθj

(
1 +

k2(af,J(p)− af,j(p))2

p
+O

(
1

p2

))
.

We have that ∑
c0<p≤qθj

(af,J(p)− af,j(p))2

p
�

∑
c0<p≤qθj

log p

θjp log q
� 1, (5.19)

hence the product above is bounded by � 1.
In the case r2 = j + 1, we apply Lemma 5.4 to obtain the bound

� (2tj+1)!

22tj+1b3
4
tj+1c!

( ∑
p∈Ij+1

b(p)2

p

)tj+1

.

It remains to bound the product over j + 1 < r2 ≤ J in (5.18). Using (2.6) we have∏
j+1<r2≤J

E
(
|Mf,r2(X)|2k

)
�

∏
qθj<p≤qθJ

(
1 +

k2λf (p)
2

p

)
� e4k2(J−j), (5.20)

where we have used that |λf (p)| ≤ 2. Combining these estimates, we obtain the first state-
ment.

For the second statement, by Lemma 5.2 we need to bound∏
0≤j≤J

E
((

Re(PI0(X; b))
)2t0|Mf,j(X)|2k

)
.

For the j = 0 term, by Lemma 5.4 we have the bound

� (log q)O(1) (2t0)!

22t0b3
4
t0c!

(∑
p∈I0

b(p)2

p

)t0
.

For the remaining terms 1 ≤ j ≤ J , by (5.20) we have the bound e4k2J � (log log q)O(1) �
(log q)O(1), completing the proof. �

5.4. The Proof of Proposition 5.1. First, note that∑∗

χ (mod q)

|L(1
2
, f ⊗ χ)Mf (χ)|2k =

∑∗

χ (mod q)
χ2 6=χ0

|L(1
2
, f ⊗ χ)Mf (χ)|2k + |L(1

2
, f ⊗ χ1)Mf (χ1)|2k,
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where χ1 is the non-principal character mod q satisfying χ2
1 = χ0. The χ1 term is negligible

using bounds on GRH for the L-functions and a pointwise bound for the mollifier. Defining

A(χ) =
L(1, χ2)

L(1, Sym2 f ⊗ χ2)
.

It suffices to show that ∑′

χ (mod q)

|L(1
2
, f ⊗ χ)Mf (χ)|2k|A(χ)|k � q, (5.21)

where
∑′

denotes a sum over primitive characters χ2 6= χ0. Applying Cauchy-Schwarz’s

inequality followed by (5.21) and Lemma 5.5 establishes Proposition 5.1.
We now prove (5.21). We split the sum over χ modulo q according to whether or not

Re(PI0(χ; af,j)) ≥
`0

ke2
(5.22)

for some 0 ≤ j ≤ J . In the case that (5.22) holds, we apply Chebyshev’s inequality and
Cauchy-Schwarz’s inequality to see that∑′

χ (mod q)

Re(PI0 (χ;af,j))≥
`0
ke2

|L(1
2
, f ⊗ χ)Mf (χ)|2k|A(χ)|k

�
∑′

χ (mod q)

|L(1
2
, f ⊗ χ)Mf (χ)|2k|A(χ)|k

(
ke2 Re(PI0(χ; af,j))

`0

)2t0

≤
( ∑′

χ (mod q)

|L(1
2
, f ⊗ χ)|4k|A(χ)|2k

)1/2(
(ke2)4t0

`4t0
0

∑′

χ (mod q)

(
Re(PI0(χ; af,j))

)4t0 |Mf (χ)|4k
)1/2

.

(5.23)

The argument given by Soundararajan [42] carries over to give that∑∗

χ (mod q)

|L(1
2
, f ⊗ χ)|2k � q(log q)k

2+ε

for any k > 0. Using Cauchy-Schwarz’s inequality, this estimate and Lemma 5.5 the first
sum on the right hand side of (5.23) is � q(log q)O(1). Applying Lemma 5.7 with t0 = b 1

5θ0
c

followed by Stirling’s formula, the second sum on the right hand side of (5.23) is bounded
by

� q(log q)O(1)

(
k2e4

`2
0

)2t0 (4t0)!

24t0b3
2
t0c!

(
5 log log q

)2t0

� q(log q)O(1) exp
(
− (log log q)4

)
,

noting we can extend the summation to all primitive χ modulo q using non-negativity.
Combining these estimates, the contribution of the χ modulo q satisfying (5.22) to (5.21) is
� qJ(log q)−10.
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For the remaining characters χ modulo q, we apply Lemma 5.6 to see that these characters
contribute

�
∑∗

χ (mod q)

DJ(χ; k)|Mf (χ)|2k

+
∑

0≤j≤J−1
j+1≤r≤J

exp

(
6k

θj

) ∑∗

χ (mod q)

Dj(χ; k)

(
e2kRe(PIj+1

(χ; af,r))

`j+1

)2tj+1

|Mf (χ)|2k.
(5.24)

Again we have extended the sum to all primitive characters using non-negativity. By Lemma
5.2 and Lemma 5.4 we have that

1

ϕ(q)

∑∗

χ (mod q)

DJ(χ; k)|Mf (χ)|2k � E
(
DJ(X; k)|Mf (X)|2k

)
�

∏
0≤j≤J

(
1 +O

(
1j=0(log q)O(1) + 1

2`j

))∏
p∈Ij

(
1 +

k2(af,J(p)− af,J(p))2

p
+O

(
1

p2

))
� 1,

where the last bound follows by (5.19). It remains to show that the second term of (5.24) is
� q. By Lemma 5.7 with tj = b 2

5θj
c, the second term is bounded by

� q
∑

0≤j≤J−1
j+1≤r≤J

exp

(
6k

θj

)
e4k2(J−j)

(
ke2

`j+1

)2tj+1 (2tj+1)!

22tj+1b3
4
tj+1c!

( ∑
p∈Ij+1

af,r(p)
2

p

)tj+1

.

We estimate the inner sum over primes trivially as ≤ 5 log(
θj+1

θj
) = 5. The sum over r then

trivially contributes J − j, so that the above is bounded by

� q
∑

0≤j≤J−1

(J − j) exp

(
6k

θj

)
e4k2(J−j)

(
3ke2

`j+1

)2tj+1 (2tj+1)!

22tj+1b3
4
tj+1c!

.

We now apply Stirling’s formula and use that t
5/8
j+1/`j+1 � θ

1/8
j+1 to get the bound

� q
∑

0≤j≤J−1

(J − j)e4k2(J−j) exp

(
− c

θj
log

1

θj
+O

(
1

θj

))
for some c > 0. Noting that θj = ej−JθJ and relabelling, this is

� q
∑

1≤j≤J

je4k2j exp

(
−cje

j

2θJ

)
� q,

as claimed. As both terms of (5.24) are � q this completes the proof. �

6. Weighted central limit theorem for Dirichlet L-functions

In this section we sketch a proof of Theorem 1.2. Recall that

Mj(χ) =
∑

p|n⇒p∈Ij
Ω(n)≤`j

λ(n)ν(n)χ(n)√
n
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and

M(χ) =
J∏
j=0

Mj(χ). (6.1)

We can write

M(χ) =
∑
n≤qϑ

γ(n)χ(n)√
n

with ϑ = 1/1000, γ(1) = 1 and |γ(n)| ≤ 1 otherwise. It is not difficult to check that

ϕ?W(q) =
∑∗

χ (mod q)

W(χ) = ϕ(q)(1 +O(q−δ))

for some absolute constant δ > 0. Additionally, let

P (χ) =
∑

c0<p≤y

χ(p)
√
p
.

The proof is similar in many respects to the proof of Theorem 1.4. As in the proof of
Theorem 1.4, we consider a set S of characters χ such that

(1) Λ−1 ≤ |L(1
2
, χ)M(χ)| ≤ Λ;

(2)
J∏
j=1

|Mj(χ)| ≤ (log log q)B;

(3)
|P (χ)|√
1
2

log log q
≤ log log log q,

where Λ = log log q. Like (4.2) we obtain

Re(P (χ)) = log |L(1
2
, χ)|+O(log log log q)

for χ ∈ S.

Write L(χ) =
log |L( 1

2
,χ)|√

1
2

log log q
and P(χ) = Re(P (χ))√

1
2

log log q
. Taking δ = C log log log q√

log log q
for C sufficiently

large it follows for χ ∈ S and I = [a, b] that

|1I(L(χ))− 1I(P(χ))| ≤ 1[a−δ,a+δ](P(χ)) + 1[b−δ,b+δ](P(χ)).

Setting Iδ = [a− δ, a+ δ] ∪ [b− δ, b+ δ], an application of Cauchy-Schwarz’s inequality and
Proposition 1.1 gives

1

ϕ(q)

∑∗

χ∈S

W(χ)1I(L(χ)) =
1

ϕ(q)

∑∗

χ∈S

W(χ)1I(P(χ)) +O

(
1
√
q

( ∑∗

χ (mod q)

1Iδ(P(χ))

)1/2)
.

(6.2)
By another application of Cauchy-Schwarz’s inequality and Proposition 1.1 the sums can
be extended to all primitive characters modulo q at the cost of an error term of size
O((log log q)−1). Following the proof of Theorem 1.4, an analogous argument shows that

the error term is � (log log log q)1/2

(log log q)1/4 .

It remains to estimate
1

ϕ?W(q)

∑∗

χ (mod q)

W(χ)1I(P(χ)).
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Following the argument from the proof of Theorem 1.4, using Proposition 1.1 in place of
Proposition 1.3, we see that Theorem 1.2 follows once we have shown that

1

ϕ?W(q)

∑∗

χ (mod q)

W(χ)eiuRe(P (χ)) = e
−u2

4
log log y(1 +O(u2)) +O((log q)−10), (6.3)

which is analogous to (4.1). Now we want to relate everything to a random setup. It is
helpful to normalize by ϕ?W(q). Recalling that ϕ?W(q) = ϕ?(q)(1 +O(q−δ)), we see that

1

ϕ?W(q)

∑∗

χ (mod q)

W(χ)eiuRe(P (χ)) =
1

ϕ?(q)

∑∗

χ (mod q)

W(χ)eiuRe(P (χ)) +O

(
q−1−δ

∑∗

χ (mod q)

|W(χ)|
)
.

We bound the error term using Cauchy-Schwarz’s inequality and Proposition 1.1, and see
that it is acceptably small.

We argue as in Lemma 2.9 to get

1

ϕ?(q)

∑∗

χ (mod q)

W(χ)eiuRe(P (χ)) =
∑

0≤j≤J

(iu/2)j

j!

j∑
k=0

(
j

k

)
1

ϕ(q)

∑∗

χ (mod q)

W(χ)P (χ)kP (χ)j−k

+O((log q)−10),

where we have used the binomial theorem and the fact that Re(z) = 1
2
(z + z). We open

everything up to see the sum over χ is equal to∑
n≤qϑ

γ(n)√
n

∑
c0<p1,...,pk≤y
c0<q1,...,qj−k≤y

1
√
p1 · · · pkq1 · · · qj−k

1

ϕ(q)

∑∗

χ (mod q)

L(1
2
, χ)χ(np1 · · · pk)χ(q1 · · · qj−k).

Since np1 · · · pk, q1 · · · qj−k are small we may show that

1

ϕ?(q)

∑∗

χ (mod q)

L(1
2
, χ)χ(np1 · · · pk)χ(q1 · · · qj−k) =

1mnp1···pk=q1···qj−k√
m

+O(q−δ),

for some absolute δ > 0. Since qi ≤ y we note that m,n can only be composed of primes
≤ y, i.e. only M0(χ) contributes anything here in the mollifier. It follows that, by rewinding
everything as in the proof of Lemma 2.9, we have

1

ϕ?(q)

∑∗

χ (mod q)

W(χ)eiuRe(P (χ)) = E
(
L(X)M0(X) exp

(
iuRe(P (X))

))
+O((log q)−10),

where

L(X) =
∑

p|m⇒p≤y

1√
m
X(m),

M0(X) =
∑

p|n⇒c0<p≤y
Ω(n)≤`0

λ(n)ν(n)√
n

X(n),

P (X) =
∑

c0<p≤y

1
√
p
X(p).
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We can replace M0(X) by

M̃0(X) =
∑

p|n⇒c0<p≤y

λ(n)ν(n)√
n

X(n)

via Cauchy-Schwarz’s inequality and trivial estimations as in Lemma 3.10. We then wish to
compute

E
(
L(X)M̃0(X) exp

(
iuRe(P (X))

))
,

and by independence this is equal to∏
c0<p≤y

E

((∑
a≥0

X(p)a

pa/2

)(∑
b≥0

(−1)bX(p)b

b!pb/2

)
exp

(
iu

Re(X(p))

p1/2

))
. (6.4)

We work with each local factor individually. We write

Re(X(p)) =
1

2

(
X(p) +X(p)

)
and then use Taylor expansion and the binomial theorem to see that(∑

a≥0

X(p)a

pa/2

)(∑
b≥0

(−1)bX(p)b

b!pb/2

)
exp

(
iu

Re(X(p))

p1/2

)

=
∑
a,b,c≥0
0≤d≤c

(−1)b(iu/2)c

b!c!p(a+b+c)/2

(
c

d

)
X(p)a+b+dX(p)c−d.

Taking expectations, we see we have no contribution unless a+ b+ d = c− d. We add c+ d
to both sides to get a+ b+ c+ 2d = 2c. Writing 2k = a+ b+ c so that c = k + d, and then
a = k − b− d. After some simplification we see that

E

((∑
a≥0

X(p)a

pa/2

)(∑
b≥0

(−1)bX(p)b

b!pb/2

)
exp

(
iu

Re(X(p))

p1/2

))

=
∑
k≥0

(iu/2)k

pk

∑
b,d≥0
b+d≤k

(−1)b(iu/2)d

b!(k + d)!

(
k + d

d

)
.

The contribution from k = 0 is obviously 1. The contribution from k = 1 is, after some
work, seen to be

(iu/2)2

p
= −u

2

4p
.

The contribution from k ≥ 2 is O(u2/p2). Therefore (6.4) is equal to∏
c0<p≤y

(
1− u2

4p
+O

(
u2

p2

))
=

∏
c0<p≤y

(
1− u2

4p

)(
1 +O

(
u2

p2

))
= exp

(
−u

2

4
log log y

)
(1 +O(u2)),
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where in the last step we have used Taylor series expansions and Mertens’ theorem. Collecting
everything together establishes (6.3). Hence, following the argument of Theorem 1.4 we get
that

1

ϕ?W(q)

∑∗

χ (mod q)

W(χ)1I

(
log |L(1

2
, χ)|√

1
2

log log q

)
=

1√
2π

∫
I

e−u
2/2 du+O

(
(log log log q)1/2

(log log q)1/4

)
,

which finishes the proof. �

7. Upper bound for the mollified second moment

In this section we prove Proposition 1.1 for the family of even characters. The estimate for
the odd characters follows from a similar argument. We quote the following twisted second
moment of Dirichlet L-functions (see [26] and [8, Theorem 1.1]).

Lemma 7.1. Let (xn) be a sequence of real numbers supported on 1 ≤ n ≤ L such that
xn � nε. Then we have

1

ϕ+(q)

∑
m,n≤L

xmxn√
mn

∑+

χ (mod q)

L(1
2

+ α, χ)L(1
2

+ β, χ)χ(m)χ(n)

= ζ(1 + α + β)
∑

hm,hn≤L
(m,n)=1

xhmxhn
hm1+αn1+β

+
( q
π

)−(α+β) Γ(
1
2
−α
2

)Γ(
1
2
−β
2

)

Γ(
1
2

+α

2
)Γ(

1
2

+β

2
)
ζ(1− α− β)

∑
hm,hn≤L
(m,n)=1

xhmxhn
hm1−βn1−α +Oε(q

−1/2+εL)

uniformly for |α|, |β| � (log q)−1, where ϕ+(q) is the number of even primitive characters
modulo q.

Proof of Proposition 1.1. Since the expression in Proposition 1.1 is holomorphic in α and β,
it suffices by the maximum modulus principle to prove the proposition uniformly over any
fixed annuli such that |α|, |β| � (log q)−1, |α + β| � (log q)−1. Applying Lemma 7.1 we get

1

ϕ+(q)

∑+

χ (mod q)

L(1
2

+ α, χ)L(1
2

+ β, χ)|M(χ)|2 = ζ(1 + α + β)M(α, β) (7.1)

+
( q
π

)−(α+β) Γ(
1
2
−α
2

)Γ(
1
2
−β
2

)

Γ(
1
2

+α

2
)Γ(

1
2

+β

2
)
ζ(1− α− β)M(−β,−α) +Oε(q

−1/2+ϑ+ε),

where

M(α, β) =
∑

hm,hn≤qϑ
(m,n)=1

γ(hm)γ(hn)

hm1+αn1+β
=

∑
hdm,hdn≤qϑ

µ(d)γ(hdm)γ(hdn)

hd2+α+βm1+αn1+β
.

By multiplicativity and the definition of the mollifier in (6.1) we have

M(α, β) =
∏

0≤j≤J

∑
p|hdmn⇒p∈Ij

Ω(hdm),Ω(hdn)≤`j

µ(d)λ(mn)ν(hdm)ν(hdn)

hd2+α+βm1+αn1+β
. (7.2)
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We now estimate the inner sum on the right hand side of (7.2). This is∑
p|hdmn⇒p∈Ij

µ(d)λ(mn)ν(hdm)ν(hdn)

hd2+α+βm1+αn1+β
+O

(
1

2`j

∑
p|hdmn⇒p∈Ij

ν(hdm)ν(hdn)

hd2mn

)
.

The error term is

� 1

2`j

∏
p∈Ij

(
1 +O

(
1

p

))
� 1j=0(log q)O(1) + 1

2`j
. (7.3)

For the main term we write it as an Euler product∏
p∈Ij

∞∑
h,d,m,n=0

µ(pd)λ(pm+n)ν(ph+d+m)ν(ph+d+n)

ph+(2+α+β)d+(1+α)m+(1+β)n
=
∏
p∈Ij

(
1 +

1

p
− 1

p1+α
− 1

p1+β
+O

(
1

p2

))

=
∏
p∈Ij

(
1− 1

p
+O

(
log p

p log q

)
+O

(
1

p2

))
.

As ∏
p∈Ij

(
1− 1

p
+O

(
log p

p log q

)
+O

(
1

p2

))−1

� 1j=0(log q)O(1) + 1,

combining with (7.3) we obtain that

M(α, β) =
∏

c0<p≤x

(
1− 1

p
+O

(
log p

p log q

)
+O

(
1

p2

)) ∏
0≤j≤J

(
1 +O

(
1j=0(log q)O(1) + 1

2`j

))
.

Note that the first product is � (log q)−1 and the second product is � 1, and hence

M(α, β) � (log q)−1.

In view of (7.1) we obtain the proposition. �
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