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Abstract

Analysis of magnetic resonance images (MRI) of the neonatal brain comes with
unique challenges. The rapid development results in changes in both shape and
appearance of the neonatal brain scanned at different post-menstrual weeks. These
changes affect outputs of image analysis tools, such as image registration or segmen-
tation, making interpretation of the results difficult.

The aim of this PhD project is to develop deep learning image segmentation and
registration tools to address challenges in analysing the developing neonatal brain
MRI. While accurate segmentation of neonatal brain MRI has been achieved by
existing classical segmentation techniques, these are sensitive to MRI acquisition
protocols, making volumetric comparisons between subjects from different studies
unreliable. I therefore propose harmonised deep learning-based segmentation for
neonatal MRI. At the same time, traditional medical image registration methods
can be misguided by the rapid MRI contrast changes due to ongoing brain tissue
maturation in the first weeks of life. To alleviate this problem, I propose a multi-
channel attention based deep learning registration approach that selects the most
salient features from multiple image modalities to improve alignment of individual
MR images to a common atlas space.

As a prerequisite for the contributions, the first chapter introduces the neonatal
brain, and describes the main MRI modalities, as well as two neonatal datasets,
which were utilised in this thesis. The second and third chapters lay the groundwork
for the methods used throughout this thesis, with a focus on classical and deep
learning image registration and segmentation algorithms. A survey of state-of-the-
art deep learning based medical image registration and segmentation techniques
follows, with the aim of presenting some of the baseline models used throughout this
thesis, as well as more advanced techniques, such as unsupervised domain adaptation
and visual attention.

The three novel chapters of the thesis describe my contributions. First, I inves-
tigated deep learning domain adaptation algorithms to suppress the domain shift
between a target and a source dataset, thus making it feasible to predict on unseen
data distributions. My proposed image-space domain adaptation model combined
with data augmentation achieved the best solution for harmonising tissue segmen-
tation maps of two neonatal datasets. I have shown that there were no significant
differences in tissue volumes and cortical thickness measures derived from the har-
monised segmentations on a subset of the datasets matched for gestational age at
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birth and postmenstrual age at scan. Second, I developed a novel attention-based
deep learning multi-channel registration model that learns spatially varying atten-
tion maps needed to fuse different modalities, thus taking advantage of their comple-
mentary nature. I applied the technique to align multi-channel datasets composed
of structural T2-weighted (T2w) MRI and fractional anisotropy (FA) maps derived
from diffusion MRI to the atlas space. The quantitative evaluation confirmed that
while cortical structures were better aligned using T2w data and white matter tracts
were better aligned using FA maps, the attention-based multi-channel registration
aligned both types of structures accurately. Finally, I expanded the registration
model from the previous chapter to align multi-channel data composed from struc-
tural T2w MRI and diffusion tensor maps into atlas space, which further improved
alignment of white matter tracts.

In my PhD thesis I proposed solutions to tackle some of the challenges in analysis of
the neonatal MRI, when the developing brain changes both shape and MRI tissue
contrast as it grows. The techniques will support accurate image segmentation
independent of the acquisition protocol and multi-channel registration to atlas space,
that can take advantage of different information content of various MRI modalities.
These techniques will help to improve reliability and interpretability of downstream
neuroimaging analyses.
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Chapter 1
Introduction

Medical image analysis is an important tool for understanding the anatomy and
function of the human body in a non-invasive way. This holds true especially for
neuroimaging studies performed using magnetic resonance imaging (MRI), such as
understanding neurodevelopment, or identifying causes of neurocognitive problems.
In this work, the focus is on both structural and microstructural MRI analysis of
the developing brain in the neonatal period.

1.1 The neonatal brain

A normal pregnancy lasts around 40 weeks (9.2 months), with delivery between
37 and 42 weeks gestational age (GA) at birth being considered normal [1], while
premature birth happens before the 37 weeks GA threshold. According to the World
Health Organisation (WHO), approximately 1 in 10 babies are born prematurely
every year, and it is one of the leading causes of neonatal mortality [1, 2]. In recent
years, advances in perinatal care have managed to increase the survival rate of
infants born before 30 weeks GA at birth, however, approximately 20% of these will
suffer from behavioural or developmental disabilities, while 10% will develop motor
deficits [3].

During early life, brain development is characterised by rapid changes such as
myelination, cortical folding and evolving microstructure (see Figure 1.1). After
the formation of the neural tube [5], which marks the beginning of development in
the vertebrate nervous system, the embryonic brain differentiates into three distinct
structures: the forebrain, the midbrain, and the hindbrain [4]. The forebrain will
eventually give rise to the telencephalon (cerebral cortex), and the diencephalon
(thalamus, hypothalamus, and other structures). This is then followed by a com-
plex series of neurodevelopmental events which are centered around neuronal pro-
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1.1 The neonatal brain

Figure 1.1: Brain development timeline. Image adapted from Tau et al. [4].

liferation, migration and differentiation [6]. Around 16 weeks GA, a process called
apoptosis, or programmed cell death, begins as a way of eliminating unwanted cells.
In fact, approximately half of the neurons created during neurogenesis are culled
by the end of adolescence [4]. The formation of synapses between neurons begins
around 20 weeks GA and it is an integral process in the overall architecture of brain
connectivity [6]. Synaptogenesis continues throughout development and into ado-
lescence. Around week 28 GA, the brain’s neuronal axons start to myelinate, a
process which involves the wrapping of neuronal axons with insulating layers made
up of protein and fatty substances known as the myelin sheath, a protective covering
which allows electrical impulses to transmit quickly and efficiently along the nerve
cells. By 2 years of age, most brain regions show adult level myelination, with a few
areas which continue to myelinate throughout adolescence and into adulthood [4].

These processes are an integral part of in utero brain development, and continue
in early postnatal life. Preterm birth can disrupt these developmental processes, re-
sulting in lifelong neurocognitive and neurobehavioural problems [7]. Furthermore,
studies have shown that premature-born neonates have reduced cortical folding [8],
as well as enlarged cerebrospinal fluid (CSF) volumes and white matter (WM) ab-
normalities when compared to full-term controls [9, 10]. Figure 1.2 shows example
axial, coronal and sagittal slices of two neonates scanned at term-equivalent age
(around 41 weeks post-menstrual age (PMA) at scan), with the first row showing
a preterm-born neonate (24.7 weeks GA at birth), while the second row shows an
infant born at term (41 weeks GA at birth) [11].

Magnetic resonance (MR) imaging is an excellent source for potential biomarkers
of neurodevelopmental outcomes [12, 13]. However, their predictive capability has so
far been limited by the rapid changes in shape and MR contrasts of the developing
brain, which can easily mask effects related to preterm birth or early signs of disease
[7]. This highlights the importance of understanding the differences between normal
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Figure 1.2: Comparison of T2-weighted (T2w) MRI mid-brain slices between a
term (41.0w GA at birth) and very preterm (24.7w GA at birth) neonates both
scanned at 41.1w PMA [11].

and abnormal brain development during early life, which can ultimately lead to
improved care for the infants and their families.

1.2 Imaging of the developing brain

MRI is a powerful and highly versatile imaging modality that uses the principles of
nuclear magnetic resonance first observed by Bloch and Purcell in 1946 [14, 15]. This
technique is able to produce images by spatially varying the phase and frequency
of the energy being absorbed and emitted by the imaged object, a method that
was proposed in 1973 in the seminal papers by Lauterbur and Mansfield [16, 17].
MRI relies on observing the way atomic nuclei respond and interact with an applied
magnetic field. In clinical MRI, the focus is entirely on the hydrogen proton, the
most abundant element in the human body.

In the field of biomedical sciences, MR imaging is widely used for studying
anatomy, pathology, and even function [18]. Compared to other imaging modalities,
MRI offers unique advantages including high resolution images, very good soft tissue
contrast, and, unlike computed tomography (CT) or positron emission tomography
(PET), it does not use ionizing radiation [19]. This makes it especially suitable for
imaging fetuses, neonates and children, as magnetic fields are not harmful to living
cells.
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1.2 Imaging of the developing brain

An alternative to MRI is cranial ultrasonography, a technique which is commonly
used in neonatal care due to its low cost, portability, and lack of ionizing radiation
[20]. However, ultrasound waves struggle to penetrate bone, which means that the
ultrasound probe needs to be used through acoustic windows, such as the fontanelles
(the gaps between the infant’s cranial bones), before they begin to close between 4–26
months of age [21]. Moreover, ultrasound is not sufficient to detect subtle changes in
the brain’s anatomy throughout development, as its resolution and contrast between
soft tissues is lower than that of MRI. For these reasons, MRI remains the gold
standard for imaging the brain, due to its unique advantages, as well as its ability
to image through the skull [22]. Furthermore, an MRI sequence can be sensitised to
a wide range of morphological and physiological parameters, such as flow, diffusion,
perfusion, blood oxygenation, and many others [23].

1.2.1 Structural MRI

Structural MRI is one of the most widely used imaging techniques for research and
clinical purposes alike, as it provides good anatomical detail and a strong soft tissue
contrast [19]. In neuroimaging studies, MRI can be used to non-invasively image
the anatomy of the brain, making it possible to distinguish between different types
of tissues, such as CSF, WM, and gray matter (GM).

In T1-weighted (T1w) images of the adult brain, WM appears bright, i.e., light
gray (see Figure 1.3 young adult, magenta arrows), while CSF is void of signal, i.e.,
black (Figure 1.3 young adult, cyan arrows), and GM has a medium intensity, i.e.,
dark gray (Figure 1.3 young adult, green arrows). In contrast, T2-weighted (T2w)
images are inverted, with CSF appearing lightest in intensity, while WM is darkest
(see Figure 1.3 bottom row).

Neonatal brains, however, differ significantly from the adult brain. For example,
brain volumes differ vastly, with the neonatal brain ranging between 100 mL to
600 mL, while an average adult brain can be bigger than 1 L in volume [24, 25].
Moreover, differences exist in terms of the neonatal brain’s appearance in structural
MRI when compared to the adult brain. For instance, even though cortical folding
is already complete, the smaller resolution compared to anatomy results in more
pronounced partial volume effects. Other changes, caused by brain maturation,
during which the myelin sheath forms around WM tracts, cause an inversion of
intensity distributions between WM and cortical gray matter (cGM) tissue types by
the time the brain reaches adulthood. This is visible in Figure 1.3 where a 41 weeks
PMA at scan neonate’s T1w image exhibits high intensities in the cGM region (green
arrows), and darker values in WM (magenta arrows). When the infant reaches 6
months of age, the cGM and WM intensities are close in value, while the adult
brain shows WM having the highest intensity (magenta arrows), and cGM having
a medium intensity (green arrows). This inversion of intensities is visible on the
T2w MR images as well, where the neonate’s cGM is darker than WM, while this
reverses in the adult brain. CSF is dark at all ages in T1w images, and bright in
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T2w MRI (cyan arrows).

Figure 1.3: Axial, coronal and sagittal T1w and T2w MRI slices of a neonate (41
weeks PMA at scan), an infant (6 months), and a young adult (26-30 years).
Green arrows point to regions of cortical gray matter (cGM), cyan arrows point
to the cerebrospinal fluid (CSF) found inside the ventricles, while magenta arrows
point to regions of white matter (WM).
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1.2.2 Microstructural MRI

Microstructural imaging can be achieved with diffusion weighted magnetic resonance
imaging (DW-MRI), an MRI modality which allows studying the diffusion charac-
teristics of water molecules within tissue. For example, the properties of diffusion
in brain WM fiber tracts can be described with the diffusion tensor (DT) model
[26]. Moreover, several useful measures, such as fractional anisotropy (FA) [27] or
orientation dependence of the diffusion, can be extracted from the DT model and
studied. Figure 1.4 shows the mid-brain axial slices of five example neonates scanned
at different ages (33.4 weeks, 37.1 weeks, 38.6 weeks, 41.1 and 43 weeks PMA at
scan, respectively) and their corresponding T2w, and diffusion tensor imaging (DTI)
modalities.

Figure 1.4: Axial slices of five neonates ranging from 33.4 weeks PMA at scan to
43 weeks PMA at scan, showing both the color-coded directionality map (DTI
data weighted by their respective FA maps) and the T2w images.

Diffusion Tensor. Free diffusion can be characterized by a single parameter D,
known as the diffusion coefficient. However, biological tissue is rather complex, and
water does not always diffuse freely as there are permeable and impermeable cellular
structures which restrict it. When the surrounding barriers form coherent structures
(such as WM axonal bundles), water will diffuse anisotropically, following patterns
which reflect the neighboring structures. This is shown schematically in Figure 1.5
where free, unrestricted diffusion is shown as an isotropic diffusion ellipsoid, while
restricted (but randomly organised) diffusion is shown as (also) an isotropic ellipsoid,
but reduced in size. The final column shows an example of organised barriers where
diffusion will be restricted perpendicular to the fiber bundle, and free parallel to
it. In order to model water diffusion within biological structures, Basser et al.
[26] introduced the diffusion tensor. This is a model of diffusion which can be
completely characterized by a 3-by-3 symmetric positive-definite (SPD) matrix D
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Figure 1.5: Example of diffusion trajectory, ellipsoids and tensors for isotropic un-
restricted, isotropic restricted and anisotropic restricted diffusion. Image adapted
from Mukherjee et al. [28].

with 6 independent components:

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (1.1)

where Dyx = Dxy, Dzx = Dxz, and Dzy = Dyz. The last row of Figure 1.5 shows
three examples of diffusion tensors for isotropic unrestricted (Dxx = Dyy = Dzz = D
and Dxz = Dxy = Dyz = 0), isotropic restricted (Dxx = Dyy = Dzz = Deff < D)
and anisotropic restricted diffusion.

The eigendecomposition of matrix D always exists, and because it is positive-
definite, its eigenvalues are positive. Let λ1 ≥ λ2 ≥ λ3 be the eigenvalues of D and
{ei}i=1,2,3 its corresponding eigenvectors, then:

D =

e1x e2x e3x
e1y e2y e3y
e1z e2z e3z


︸ ︷︷ ︸

E

λ1 0 0
0 λ2 0
0 0 λ3


︸ ︷︷ ︸

Λ

e1x e2x e3x
e1y e2y e3y
e1z e2z e3z

−1

︸ ︷︷ ︸
E−1

(1.2)

where ei = (eix, eiy, eiz). The eigenvector corresponding to the largest eigenvalue
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(i.e., e1) is assumed to be co-linear with the dominant fiber orientation within the
voxel [29]. Figure 1.6 shows a schematic representation of an example diffusion
tensor ellipsoid, together with the eigenvectors which define its orientation (i.e., the
principle axes of the ellipsoid), as well as the corresponding eigenvalues, which define
its shape.

Figure 1.6: Schematic representation of the diffusion tensor ellipsoid. The princi-
ple axes are the three unit eigenvectors (e1, e2 and e3), scaled by their correspond-
ing eigenvalues (λ1, λ2 and λ3). Image adapted from Johansen et al. [29].

The relationship between the diffusion tensor ellipsoid, its eigenvalues, eigenvec-
tors and its trace, is also exemplified in Figure 1.7, for different orientations of the
same DT. The DT matrices are defined under each example ellipsoid, together with
the corresponding eigenvalues (λ1, λ2 and λ3), eigenvectors (e1, e2 and e3) and trace.
Notice that, because the DT represents the orientation of diffusion in the laboratory
frame of reference, the values in D change as the ellipsoid is rotated (see Figure 1.7).
At the same time, the three eigenvalues, as well as its trace, remain the same, as
the shape of the tensor has not changed, while the eigenvectors change to reflect the
new orientation of the tensor [30, 31].

DTI Scalars. By combining and weighting these eigenvalues, which are orien-
tation invariant [32], one can derive different scalar-valued measures, and highlight
specific features of water diffusion. Most commonly used DTI measures [33] include
mean diffusivity (MD):

MD =
1

3
Tr(D) =

1

3

3∑
i=1

λi (1.3)

and FA [27, 34]:

FA =

√
3

2

∑3
i=1(λi − 1

3
Tr(D))2∑3

i=1 λ
2
i

(1.4)
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Figure 1.7: Schematic representation of the relationship between the diffusion ten-
sor ellipsoid, its eigenvalues, eigenvectors and its trace. This example DT has a
shape which can be described by its eigenvalues λ1 = 2.0, λ2 = 1.0 and λ3 = 0.5,
and it is being rotated about the z-axis (perpendicular to the plane) with 45o and
with 90o, respectively. In a) the DT has its longest axis aligned with the x-axis
and its middle axis aligned with the y-axis; in b) the ellipsoid has been rotated
about the z-axis with 45o; and in c) the ellipsoid is 90o rotated about the z-axis,
such that its longest axis is aligned with the y-axis and its middle axis with the x-
axis. Its eigenvalues (λ1, λ2 and λ3), eigenvectors (e1, e2 and e3) and correspond-
ing trace are shown underneath each example. Image adapted from Mori et al.
[30].

1.2.3 Acquisition and preprocessing of neonatal MRI

MR acquisition of the neonatal brain poses unique challenges. For example, scanning
times are often shorter than in adult MRI to limit the discomfort of the baby, but this
results in reduced spatial and temporal resolution of the images. Even the clinical
adult MR receiver head coil can pose problems in this cohort due to the smaller
head sizes. Moreover, it is preferred that neonates are scanned without sedation,
but MRI protocols, especially DW-MRI, are highly sensitive to head motion. At the
same time, existing adult image analysis tools do not translate well to the neonatal
cohort’s image intensity distributions, which are highly variable within different
weeks of development.
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A state-of-the-art neonatal MRI dataset is the developing Human Connectome
Project1 (dHCP). It has brought many advances in both structural and diffusion
MRI in order to achieve its aim of collecting high-quality imaging data of both
preterm and term-born neonates. In fact, scans were acquired with advanced, op-
timised and bespoke methods for structural and microstructural images, and this
dataset contains anatomical (T1w, T2w), resting state functional MRI (rsfMRI), and
DW-MRI data, in both their original and after applying the processing pipelines
described in Edwards et al. [11]. In addition, clinical, demographic and genetic
information is also present, however these were not utilised in this thesis.

A second dataset, the Evaluation of Preterm Imaging2 (ePrime) study [35], is an
older dataset which did not benefit from advanced processing techniques. Similar
to dHCP, the ePrime dataset also contains diffusion and functional MRI, clinical,
demographic and genetic information, however these data were not utilised in this
thesis. ePrime was focused on acquiring data from preterm-born neonates only, and
its images did not go through motion correction or super-resolution reconstruction.
This means that medical image analysis methods which were developed for the dHCP
dataset cannot guarantee high quality predictions when applied to the ePrime data,
as the source and target domains are dissimilar due to different acquisition protocols,
or biases in patient cohorts. However, combining imaging data from multiple studies
and sites is important to increase the sample size and thereby the statistical power
of neuroimaging studies. Therefore, there is a need for harmonising MRI datasets
in order to make sure that the differences arising from different image acquisition
protocols do not affect the analysis performed on the combined data.

Figure 1.8 shows the mid-brain sagittal, coronal and axial slices of two example
ePrime neonates scanned at 44.7 weeks PMA, and 43.6 weeks PMA, respectively,
and two example dHCP neonates scanned at 44.2w PMA and 43.1 weeks PMA,
respectively. The ePrime subjects showcase more motion corruption when compared
to the dHCP neonates (see green arrows in Figure 1.8). Moreover, due to differences
in acquisition, the ePrime data is generally more blurry, as can be seen by the
variance of the Laplacian histogram plot shown in Figure 1.9. This measure is used
to quantify the degree of blurriness in an image, as suggested by the survey paper
of Pertuz et al. [36], with higher values corresponding to sharper images, and lower
values corresponding to blurrier images [37].

The rest of this subsection is focused on describing the two neonatal datasets,
dHCP [11] and ePrime [35], in terms of their respective acquisition protocols, as
both these data are used throughout the thesis.

dHCP. Image acquisition of the dHCP dataset was undertaken at St. Thomas
Hospital, London, on a Phillips 3 Tesla Achieva system (Philips Medical Systems,
Best, The Netherlands), during natural sleep without sedation, and using a dedi-
cated neonatal 32-channel receive coil with a custom-made acoustic hood [38]. To ac-

1developingconnectome.org
2npeu.ox.ac.uk/prumhc/eprime-mr-imaging-177
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Figure 1.8: Example of two ePrime neonates scanned at 44.7 weeks PMA, and
43.6 weeks PMA, respectively, and two dHCP neonates scanned at 44.2w PMA
and 43.1 weeks PMA, respectively. Green arrows point to regions where the
ePrime data has visible motion artifacts.

quire T2w structural images while reducing the effects of motion, the dHCP pipeline
uses a turbo spin echo (TSE) sequence with parameters: repetition time TR = 12 s,
echo time TE = 156 ms, overlapping slices with 0.8× 0.8× 1.6 mm3 resolution, and
SENSE factors of 2.11 for the axial plane and 2.58 for the sagittal plane. All data
was motion corrected [39, 40] and resampled to an isotropic voxel size of 0.5 mm3.

For DW-MRI, the optimised imaging protocol uses a scattered slice multi-shell
high angular resolution diffusion imaging (HARDI) acquisition strategy, coupled
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Figure 1.9: Density plot of variance of the Laplacian computed on the normal-
ized intensities of T2w MRI volumes of both ePrime and dHCP neonatal datasets.
Higher values correspond to sharper images, while lower values correspond to blur-
rier images. The ePrime peak shown with the cyan arrow corresponds to ePrime
neonates with high degree of motion artifacts, such as the example infant whose
axial image is displayed on the right hand side of the figure.

with a monopolar spin echo echo-planar imaging (SE-EPI) Stejksal-Tanner sequence
(∆ = 42.5 ms and δ = 14 ms), to acquire 300 volumes in a short period of time (< 20
min) [41]. At the same time, the acquisition parameters of TR = 3.8 s, TE = 90 ms,
a multiband factor of 4, a SENSE factor of 1.2, and a partial Fourier factor of 0.855,
coupled with setting the slice thickness to 3 mm, the in-plane resolution to 1.5 mm,
and the slice spacing to 1.5 mm, achieves optimal brain coverage in the presence
of motion, while keeping a high signal-to-noise ratio (SNR) [41]. To acquire the
300 volumes, the diffusion gradients are sampled across 4 shells (b = 0, 400, 1000,
and 2600 s/mm2 respectively), each with a different number of samples (20, 64, 88,
and 128 samples respectively) [42]. Using thicker overlapping slices is essential to
preventing gaps in data caused by motion, but can lead to blurred images in the
through-plane direction. To solve this, a super-resolution reconstruction algorithm
is applied [40] to the data to recover a 1.5 mm isotropic voxel resolution. Data
preprocessing included image denoising [43], Gibbs-ringing artifact removal [44], and
correction of magnetic field distortions through FSL Topup [45] which estimates the
susceptibility and eddy currents-induced off-resonance maps. Finally, a slice-to-
volume reconstruction framework which uses a bespoke spherical harmonics and
radial decomposition (SHARD) method is applied to the data to correct subject
motion and EPI distortions [46].

ePrime. The images which are part of the ePrime dataset were acquired with
a Philips Intera 3T system and an 8-channel phased array head coil, using a T2w
TSE sequence with parameters: TR = 8.67 s, TE = 160 ms, and TSE factor 16. The
in-plane resolution was set to 0.86× 0.86 mm, and the slice thickness to 2 mm with
an overlap of 1 mm. For each volume, the acquisition ranged between 92 and 106
slices in the transverse plane. Diffusion data was also acquired, however, this was
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not utilised in the thesis.

1.3 Challenges in analysis of the neonatal brain
MRI

The changes that the brain undergoes during the developmental period make models
trained and tested on adult brain MRI not suitable for neonatal analysis. This,
coupled with MR image artifacts induced by the small head sizes of this cohort
which results in lower resolution images, as well as variable head sizes which can
modulate the overall SNR, and also the inevitable head motion, make automatic
segmentation or image registration of the neonatal brain a non-trivial problem.

Research into the developing brain has found links between MRI metrics and
prematurity, clinical factors, and neurodevelopmental outcomes [47, 48, 49]. Studies
have also shown that by combining structural and diffusion MR images one has the
potential to better understand how the brain matures [50, 47]. Such analyses rely on
accurate inter-subject or subject-to-template image registration methods. However,
there is a lack of tools for combined analysis of structural and diffusion MRI in the
same reference space [51], thus omitting to take into account the complementary
information provided by using both.

The advancements brought to the acquisition and reconstruction protocols [39]
have produced high-resolution T1w and T2w MR images. These modalities offer
high contrast between different brain tissues and can delineate the cGM region well,
but can suffer from varying intensities throughout development due to maturation
processes [51]. For example, transient WM compartments (e.g., periventricular re-
gions) are highly heterogeneous during early brain development, as they change and
evolve rapidly [52]. This results in intensity changes in the structural MR images
(see Figure 1.10 green circles) consisting of a gradual darkening of the periventricular
crossroads in the T2w images, and a lightening in the T1w images. These T2w hyper-
intensities are reportedly due to a higher water content which gradually decreases
with maturation causing the darkening [52].

Diffusion MRI is well suited to provide knowledge about the extent or location
of well-aligned cytoarchitectures, with FA values remaining stable in the major WM
tracts throughout neonatal development [53] (see Figure 1.10 magenta arrows). On
the other hand, DW-MRI is sensitive to the decrease of FA values in the cortex
[53] caused by the reduction of the radial orientation of the cortical architecture
during development. In addition, FA maps provide much poorer delineation and
lower contrast of cortex than structural MRI [51] (see Figure 1.10 cyan arrows).

It is therefore important to build tools that combine these complementary modal-
ities to drive the registration process, which, in turn, will help with downstream
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analysis. In fact, previous studies have shown that combining diffusion and struc-
tural data to drive the registration [54, 55, 56, 51, 57] improves the overall align-
ment. However, these approaches either weigh each channel similarly [54], or use
pre-calculated certainty maps to highlight important regions [57, 56, 51].

Figure 1.10: Axial slices of three neonatal atlases at 38 weeks, 41 weeks, and 44
weeks, respectively, showing both the structural data (T2w and T1w in the first
two columns) and the microstructural data (FA maps and DTI data weighted
by their respective FA maps in the last two columns). Green circles point to the
periventricular crossroads, cyan arrows point to the cortical gray matter ribbon,
and magenta arrows point to a region of a white matter tract known as the inter-
nal capsule. Image adapted from Uus et al. [51].
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1.4 Thesis contributions

The main aim of this PhD project is to design deep learning algorithms suited for
analysis of neonatal brain MRI. I aim to address the following challenges in neonatal
brain MRI analysis that are not well solved by available neonatal segmentation and
registration tools:

• Deep learning models rely on the assumption that the source and target do-
mains are drawn from the same distribution. The performance of deep learning
methods drops drastically when applied to images acquired with acquisition
protocols or patient cohorts different than the ones used to train the models.
At the same time, combining imaging data from multiple studies and sites
is necessary to increase the sample size and thereby the statistical power of
neuroimaging studies. Moreover, the lack of standardization in image acqui-
sition protocols, scanner hardware, and software, can lead to inter-scanner
variability, which has been demonstrated to affect measurements obtained for
downstream analysis such as voxel-based morphometry [58], and lesion vol-
umes [59]. Therefore, it is important to harmonize MRI datasets in order to
ensure that the differences arising from various image acquisition protocols do
not affect the analysis conducted on the combined data, where measures such
as volumetric and cortical thickness should reflect brain anatomy and remain
unaffected by the acquisition protocol or scanners utilized.

• Leveraging multi-modal MRI for accurate alignment of the neonatal brain. As
a prerequisite for downstream tasks, accurate alignment of neonatal MRI of
various modalities is needed. Structural and microstructural MRI modalities
offer complementary information about morhphology and tissue properties
of the developing brain, which can be leveraged to achieve more accurate
inter-subject alignment [54, 55, 56, 57]. This is particularly important during
early life when the brain undergoes a rapid maturation process. Currently,
the inter-subject alignment is most commonly driven by a single modality,
such as structural [60] or diffusion [61]. Nevertheless, multi-channel image
registration approaches that utilize multiple imaging modalities have been
attempted, but they are based on simple averaging of the deformation fields
from the individual channels [54], leading to solutions where both modalities
are treated equally, or through weighting the deformation fields with pre-
calculated spatial gradient maps [57, 56, 51], where the local weights are fixed
for the entire image domain.

For these reasons, I propose:

• To investigate domain adaptation (DA) methods with the aim of predicting
brain tissue segmentations of T2w MRI data of an unseen neonatal population.
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• To develop an attention-based deep learning registration model that learns a
spatially varying importance map for each individual channel (modality), thus
taking advantage of their complementary nature.

• To develop a deep-learning based multi-channel registration network that com-
bines intensity-based registration of structural data with metrics that align
white matter tracts in diffusion data.

1.5 Thesis outline

My thesis is composed of 7 chapters. Chapter 1 provides introduction to neonatal
brain MRI image analysis. Chapters 2 and 3 form the background and literature
review of this thesis, with a focus on medical image registration and segmentation.
The novel contributions of this thesis are described in Chapters 4–5–6. The thesis
conclusions and future work are detailed in Chapter 7.

Chapter 1, the current chapter, introduces the reader to the neonatal brain
and the particularities of the highly versatile MR imaging modality used to non-
invasively study it. Moreover, this first chapter describes two neonatal databases,
dHCP and ePrime, which are used throughout the thesis, introduces the main chal-
lenges in analysis of neonatal brain MRI, and proposes deep learning based solutions
as the main contributions of this research.

Chapter 2 starts by presenting the relevant theoretical background for classical
MR image registration of both structural and microstructural data, and discusses
the main methods used in the literature. More specifically, it lays the groundwork
for this thesis by introducing the relevant similarity measures or penalty terms used
to train our proposed registration networks, as well as the theoretical background
for understanding the particularities of registering higher order diffusion data. In
the second half of this chapter, registration-based and intensity-based medical image
segmentation approaches are presented, with a particular focus on segmentation of
brain MRI. Moreover, it presents the most common segmentation frameworks, in-
cluding the algorithm used to produce the neonatal brain tissue and structure labels
used for training and evaluation throughout this thesis. The chapter concludes with
a discussion of the most common evaluation metrics for validating image segmenta-
tion models, with a focus on spatial overlap and surface based metrics.

Chapter 3 focuses on deep learning techniques, starting from the main theoret-
ical building blocks of artificial neural networks. A survey of state-of-the-art deep
learning based medical image registration and segmentation techniques follows, with
the aim of both complementing the classic literature presented in the previous chap-
ter, as well as discussing some of the baseline models used throughout this thesis.
The chapter ends with a discussion of more advanced deep learning techniques, such
as visual attention, where the literature is surveyed in terms of channel, spatial,
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mixed, and non-local attention, and domain adaptation methods, grouped into su-
pervised, semi-supervised and unsupervised techniques. Methods related to deep
learning visual attention, as well as unsupervised domain adaptation, are used in
the results chapters.

Chapter 4 presents a study where unsupervised DA methods are investigated,
with the aim of harmonizing brain tissue segmentation maps of dHCP and ePrime
cohorts. Here, we find that adversarial domain adaptation in the image space per-
forms best for our target dataset. Moreover, as a proof-of-principle, we show the
importance of harmonising the cortical tissue maps by investigating the association
between neonatal cortical thickness and a language outcome measure.

Chapter 5 demonstrates a novel attention-based multi-channel deep learning
image registration framework which improves the alignment of datasets consisting
of neonatal T2w MRI and diffusion weighted imaging (DWI)-derived FA maps. We
compare the proposed method with models trained on single- or multi-channel data,
as well as introducing channel and spatial attention blocks throughout the regis-
tration network. Our main results show that combining the two complementary
modalities is best achieved with the use of a global weight which balances the two
channels, as well as the locally varying spatial attention map.

Chapter 6 extends the multi-channel deep learning registration network to work
with higher-order DTI data. For this, layers which account for the change in orien-
tation of diffusion tensors induced by the predicted deformation field are added to
the network. Moreover, an evaluation of the accuracy of the white matter alignment
shows improvements which cannot be achieved without the use of the higher order
DTI data.

Chapter 7 concludes with a summary of the thesis contributions, as well as
highlights limitations and discusses future avenues.
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Chapter 2
Medical image registration and
segmentation for neonatal brain MRI

This chapter offers an overview of medical image analysis techniques, starting with
the theory and applications of medical image registration in Section 2.1, and fol-
lowed by approaches for detecting and segmenting tissue structures in medical im-
ages in Section 2.2.

Section 2.1 focuses on presenting the main concepts important for understanding
medical image registration methods, with a focus on image similarity measures
(Section 2.1.1), regularisation penalties (Section 2.1.2), transformation models
(Section 2.1.3), and the particularities of registering higher order DT-MR data
(Section 2.1.4).

Section 2.2 focuses on presenting the main concepts important for understanding
medical image segmentation methods, with a focus on describing registration- and
intensity-based approaches (Sections 2.2.1 and 2.2.2), followed by an overview
of medical image segmentation frameworks (Section 2.2.3), and ends with a
description of evaluation metrics for medical image segmentation applications
(Section 2.2.4), respectively.
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2.1 Medical image registration

Image registration is the field of medical image analysis which focuses on establishing
anatomical correspondences between two or more images of tissues or organs. The
key terms used in medical image registration are:

• pairwise - registration of two images ; groupwise - registration of more than
two images

• mono-modal - registration of images acquired using the same image modal-
ity and acquisition parameters; multi-modal - registration of images acquired
through different modalities

• intra-subject - registration of images representing the anatomy of the same
subject ; inter-subject - registration of images representing the anatomy of
different subjects

• multi-channel - registration of multiple modality images of the same anatomy
for each subject

The purpose of an image registration algorithm is to find an alignment between
two or more images such that corresponding features can be related. Mathematically,
image registration is typically formulated as an optimization problem where the
applied transformation is iteratively optimized based on an energy function.

Let F : Rd → R, M : Rd → R represent two d-dimensional scalar-valued vol-
umes known as the fixed (target) and the moving (source) images, respectively, and
let ϕ(x) = x + u(x) denote the deformation field ϕ at the spatial coordinate (posi-
tion vector) x ∈ Rd, where u is the continuous displacement field [62]. Then, the
optimization problem becomes:

ϕ̂ = arg min
ϕ
L (F,M (ϕ)) (2.1)

where
L (F,M (ϕ)) = Ldsim(F,M (ϕ)) + λLsmooth (ϕ) (2.2)

is the energy (loss) function. L (F,M (ϕ)) is composed of a dissimilarity measure
Ldsim between the warped moving image M(ϕ) and the fixed image F and a smooth-
ness constraint Lsmooth imposed on the deformation field ϕ. Here, λ is the regular-
ization parameter.

The deformation field ϕ : ΩF → ΩM is a mapping between the spatial coordinates
which are part of the fixed image domain (ΩF) to the respective spatial coordinates
of the moving image domain (ΩM). This is visually represented in Figure 2.1, where
x ∈ ΩF, and ϕ(x) ∈ ΩM. This can be achieved for both intensity based images, as
well as surface-based, point-based or tensor-based applications. For images based
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2.1 Medical image registration

Figure 2.1: Example of a spatial mapping ϕ between fixed and moving images.
The location x ∈ ΩF in the fixed image F is mapped through the deformation ϕ to
its corresponding location in the moving image M, at position ϕ(x) ∈ ΩM.

on the latter type, an extra step is required to reorient the tensors in accordance
with the local deformation (see Section 2.1.4 for more details).

The dissimilarity measure Ldsim can be based on differences in intensity or tensor
values, on correlations, or on the amount of shared information between the two
images. Cross-correlation and mutual information metrics are often used when the
two volumes have varying intensity distributions; for example, when the two images
were acquired with different medical imaging modalities. Lastly, the smoothness
constraint Lsmooth can be used to regularize the transformation such that it favours
specific properties of the solution.

Thus, a generic registration algorithm is composed of the following steps:

1. Transformation model. First, the source image M is transformed to the
target image domain (ΩF) using a transformation model, which can be
either global or non-rigid. Some example global transformations can be seen
in Figure 2.2.

2. Interpolation/Resampling. After the transformation ϕ is applied to the
source image, the intensity values of the transformed image do not necessarily
map to the discrete locations of the target image domain (see Figure 2.3).
For this reason, different interpolation strategies can be used to retrieve
the values at the specific locations. Some popular strategies, such as nearest
neighbours, linear or cubic spline interpolation, are shown in Figure 2.4 for
the 1-dimensional case.

3. Similarity measure. The similarity between the transformed moving im-
age and the fixed image is then assessed. Different measures of similarity
have been used in the literature and, for scalar data, can be classified in two
categories: feature-based and intensity-based. Feature-based similarity mea-
sures require a pre-processing step in order to extract useful features (points,
lines, surfaces) which are then used to compute the similarity. Intensity-based
measures are computed from the voxel intensities directly. When aligning
non-scalar data, such as DTI or HARDI extracted microstructural orienta-
tion distribution functions (ODF) data, the similarity measures are derived
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Figure 2.2: 2D global transformations of a blue square initially centered around
(0, 0). First row shows rigid transformations, such as translations: in y (red
dashed), in x (green dashed), and in both x and y (cyan dotted), as well as rota-
tions: about z (red dashed), or rotated and translated (green dashed). The sec-
ond row shows affine transformations, such as scaling: along the y axis (green
dashed), or in both directions (red dashed), and shearing: along the y axis (red
dashed), along both x and y axis (green dashed), or sheared in both directions
and scaled in both x and y (cyan dotted). Note that affine transformations in-
clude both rotations and translations, on top of scaling and shearing.

from the higher-order data. Moreover, when dealing with multi-modal data,
statistics-based or information-based techniques can be used.

4. Regularisation. As registration is an ill-posed problem, it is often the case
that constraints are added to the transformation model to produce realistic de-
formations. This practice is referred to as regularisation and can be explicit
or implicit depending on where the regularisation is applied [63]. Explicit
regularisation is applied to the deformation model, where some algorithms
take advantage of physics-based properties [64, 65], others use composition
schemes to generate topology preserving deformation fields [66], or use sim-
pler methods such as smoothing [67]. Implicit regularisation takes the form
of a penalty term which is added to the loss function. This penalty can be
used to promote smooth and realistic deformation models [68, 69].

5. Optimiser. Finally, an optimiser is used in order to minimize the value of
the dissimilarity measure by changing the transformation model’s parameters.
The following subsections will provide an overview of the most commonly used
dissimilarity metrics and transformation models.
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Figure 2.3: Illustration of image resampling in the context of image registration,
showing how location x ∈ ΩF in the fixed image F is mapped through the de-
formation ϕ to its corresponding location in the moving image M, at position
ϕ(x) ∈ ΩM. During the resampling step, the warped image M(ϕ(x)) is created by
interpolating the intensities of the moving image M at the locations determined
by the space of the fixed image F.

Figure 2.4: Example of different 1D interpolation strategies used to connect the
sample points (shown in black). Nearest neighbours, linear and cubic spline inter-
polations are amongst the most popular types.

2.1.1 Image similarity measures

In this subsection, we summarize the most commonly used image similarity measures
for medical image registration applications. All of the metrics presented below are
written as a dissimilarity measure, meaning that an optimisation algorithm will
have to minimise the metrics to obtain a good alignment (Ldsim in equation 2.2).
Moreover, this section focuses on scalar data only, such as T1w, T2w, or diffusion-
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derived scalar-valued measures (e.g., FA or MD maps). For higher-order data, see
Section 2.1.4.

Intensity differences

First, when dealing with mono-modal data, some dissimilarity measures directly
compare image intensities. For example, the simplest measure that can be used in
a mono-modal image registration application is the sum of squared differences
(SSD). Also known as the mean squared error (MSE), the SSD is defined as:

DSSD(F,M(ϕ)) =
1

N

∑
x∈ΩF

|F(x)−M(ϕ(x))|2 (2.3)

where N is the number of voxels in the ΩF domain. In fact, SSD is an optimal
measure when the images differ by only Gaussian noise [70, 71]. In the literature,
the SSD has been widely used, with a few notable examples by Hajnal et al. [72, 73],
and Friston et al. [74, 75].

The SSD measure is, however, sensitive to outliers. To overcome this limitation,
the sum of absolute differences (SAD) measure can be used instead. Mathe-
matically, it is defined as:

DSAD(F,M(ϕ)) =
1

N

∑
x∈ΩF

|F(x)−M(ϕ(x))| (2.4)

As the SSD and SAD measures rely on the assumption of similar image intensity
distributions for the same structures, they are not suitable for multi-modal image
registration applications.

Correlation techniques

Correlation techniques relax this by assuming a linear relationship between the in-
tensity values in the images [63]. The cross correlation (CC), initially used by
Lewis et al. [76] for 2D image matching, is one such measure, and it is defined as:

DCC(F,M(ϕ)) = − 1

N

∑
x∈ΩF

F(x) ·M(ϕ(x)) (2.5)

A more broadly used measure, however, is the normalised cross correlation
(NCC) (also known as the correlation coefficient [77]), which first subtracts the
average intensity from the images and divides by the standard deviation. It is
defined as:

DNCC(F,M(ϕ)) = − 1

N

∑
x∈ΩF

(F(x)− F ) · (M(ϕ(x))−M)√∑
x∈ΩF

(F(x)− F )2 ·
∑

x∈ΩF
(M(ϕ(x))−M)2

(2.6)
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where F is the mean voxel value in the fixed image F within the ΩF domain, M is
the mean voxel value in the transformed moving image M(ϕ(x)) within the same
domain.

When locally varying intensities exist, a more robust measure is the local nor-
malised cross correlation (LNCC) [60, 78, 79], which computes local means over
smaller image regions. Mathematically it is defined as:

DLNCC(F,M(ϕ), ωF) = −
1

Nω

∑
x∈ωF

(F(x)− F ) · (M(ϕ(x))−M)√∑
x∈ωF

(F(x)− F )2 ·
∑

x∈ωF
(M(ϕ(x))−M)2

(2.7)

where ωF ⊂ ΩF is a small image region centred at x ∈ ΩF, and Nω is the number of
voxels contained in the sub-volume. Equation 2.7 is averaged over the whole image
domain ΩF.

Information theoretic techniques

For multi-modal applications, the intensities do not generally have a linear relation-
ship. In this case, the more suitable image dissimilarity techniques pertain to the
information theoretic class [70]. One such measure of information is the Shannon’s
formula for entropy [80]. The entropy for the fixed image F is defined as:

H(F) = −
∑

f∈F(x)

p(f) log(p(f)) (2.8)

where F(x) is the set of image intensity values at each location x ∈ ΩF. The entropy
is usually estimated from the histogram of the image, or through a Parzen window
approach [81, 82].

For image registration applications, the joint entropy (JE) of the two images
is minimized [83, 84]. Defined as:

DJE(F,M(ϕ)) = H(F,M(ϕ))

= −
∑

f∈F(x)

∑
m∈M(ϕ(x))

p(f,m) log(p(f,m)) (2.9)

where p(f,m) represents the probability of having intensity f in image F and inten-
sity m in image M at the same spatial location, the aim of the JE is to reduce the
dispersion of the joint probability distribution. Similarly to the entropy H, JE can
be computed from the joint histogram of the two images.

One drawback of the JE is that it is possible to optimize it by reducing the
content of either image [70], or when only the background regions overlap [85]. To
solve this, Viola et al. [71] and Maes et al. [86] introduced the mutual information
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(MI), which is computed based on the JE and the marginal entropies:

DMI(F,M(ϕ)) = −MI(F,M(ϕ))

= −
(

H(F) + H(M(ϕ))−H(F,M(ϕ))
) (2.10)

where the marginal entropy for the fixed image H(F) is defined in equation 2.8, and
the marginal entropy for the transformed moving image is:

H(M(ϕ)) = −
∑

m∈M(ϕ(x))

p(m) log(p(m))

As the marginal entropies H have to be maximised, the MI penalizes solutions where
only the background regions overlap [85].

Finally, the normalised version of MI was introduced by Studholme et al. [87].
Known as the normalised mutual information (NMI), it is defined as:

DNMI(F,M(ϕ)) = −NMI(F,M(ϕ))

= − H(F) + H(M(ϕ))

H(F,M(ϕ))

(2.11)

and was shown to be more robust to variations in image overlap [87].

2.1.2 Image registration regularisation through penalty terms

In this subsection, we summarize the most commonly used image registration reg-
ularisation penalties. These measures are added to the overall loss function to be
minimized in order to constrain the predicted transformation model to realistic de-
formations (see Lsmooth in equation 2.2).

One such penalty that can be added to the overall energy function is the dif-
fusion regulariser [88, 89], defined as sum of the norm of the gradients of the
transformation in each dimension:

Ldiff (u) =
∫
Ω

||∇u||22 dΩ (2.12)

where u is the continuous displacement field of the spatial mapping ϕ(x) = x+u(x).

Wahba et al. [90] (in 2D) and Rueckert et al. [68] (in 3D) introduce a regulari-
sation strategy based on a bending energy (BE) penalty term, which is defined
as:

LBE(ϕ) =
1

V

∫
Ω

(
∂2ϕ

∂x2

)2

+

(
∂2ϕ

∂y2

)2

+

(
∂2ϕ

∂z2

)2

+

2

(
∂2ϕ

∂xy

)2

+ 2

(
∂2ϕ

∂xz

)2

+ 2

(
∂2ϕ

∂yz

)2

dΩ

(2.13)
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where V is the volume of the image domain. In this thesis, we use the bending
energy penalty when training the proposed image registration neural networks.

Finally, a transformation model can also be constrained to be incompressible.
This was introduced by Rohlfing et al. [91] through a penalty term based on the
Jacobian of the transformation at every voxel. As the Jacobian determinant is
related to the local change in volume (with a value of 1 representing no change, a
value smaller than 1 representing shrinkage and a value larger than 1 representing
expansion), penalising it will regularise the transformation. The Jacobian matrix of
the deformation field ϕ at location x is defined as:

JAC(ϕ(x)) =


∂ϕx(x)

∂x
∂ϕx(x)

∂y
∂ϕx(x)

∂z
∂ϕy(x)

∂x

∂ϕy(x)
∂y

∂ϕy(x)
∂z

∂ϕz(x)
∂x

∂ϕz(x)
∂y

∂ϕz(x)
∂z

 (2.14)

Sdika et al. [92] introduced into their optimisation scheme a constraint on a
positive Jacobian determinant of the deformation field, while Rohlfing et al. [91]
and Modat et al. [69] propose to penalise the log-transformed Jacobian determi-
nant. Other regularisation penalties exist, such as the sum of the Laplacian of the
deformation model [89], but are out of scope for this thesis.

2.1.3 Transformation models

In this subsection we summarize the transformation models used in medical im-
age registration, starting from global transformations, and ending with non-rigid
transformations. At the end of the section, the focus will turn to the most com-
mon intensity-based non-rigid registration methods, grouped by the choice of the
transformation model (either parametric or non-parametric).

Global transformations

First, global transformations are mappings where all the voxels in the warped
image are transformed using a single transformation model [70]. These can be either
rigid or affine, with a few examples shown in Figure 2.2.

Rigid transformations are mappings that preserve length and are made up of
translations, rotations, and a combination of the two. In 3D space, rigid deforma-
tions can be represented with a single square matrix as the product of 3 rotation
matrices and 3 translation matrices:
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Mrig = R(θx, θy, θz)︸ ︷︷ ︸
Rx(θx)Ry(θy)Rz(θz)

Tr(tx, ty, tz)

where:

Rx(θx) =


1 0 0 0
0 cos θx − sin θx 0
0 sin θx cos θx 0
0 0 0 1

 , Ry(θy) =


cos θy 0 sin θy 0
0 1 0 0

− sin θy 0 cos θy 0
0 0 0 1



Rz(θz) =


cos θz − sin θz 0 0
sin θz cos θz 0 0
0 0 1 0
0 0 0 1

 , T r(tx, ty, tz) =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1


with θx, θy, θz and tx, ty, tz being the angles of rotation and the translations along
each axis, thus being parametrised by 6 degrees of freedom.

Affine transformations are global mappings that preserve collinearity and ratios
of distances. Besides translations and rotations, affine deformations can also scale
and shear the object [70]. In 3D space, affine deformations can be represented with
a single square matrix with 12 parameters (3 rotations, 3 translations, 3 scaling
factors and 3 shearing factors) and can be written as:

Maff = Sh(γxy, γxz, γyz) Sc(sx, sy, sz) Mrig

where:

Sh(γxy, γxz, γyz) =


1 tan γxy tan γxz 0
0 1 tan γyz 0
0 0 1 0
0 0 0 1

 , Sc(sx, sy, sz) =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1


with π

2
−γxy, π

2
−γxz and π

2
−γyz being the angles between the coordinate pairs after

the shearing transformation is applied, and sx, sy, sz the scaling factors along each
axis. Some example rigid and affine 2D transformations can be seen in Figure 2.2.

Non-rigid transformations

Non-rigid transformations are mappings where every voxel in the image can be
transformed independently. In most medical image registration applications, these
transformations have to be bijective, thus ensuring a one-to-one mapping between
the two images. Breaking this criteria is called ‘folding’ and it results in information
loss and broken topology. Non-rigid models can be non-parametric or parametric.
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2.1 Medical image registration

In non-parametric approaches, the deformation field is directly optimised
through the registration process. These models transform each voxel independently
and thus need regularisation to constrain the solution space to plausible deforma-
tions. In the following paragraphs a few different approaches on how this is achieved
are presented.

The optical flow method [89] optimises the SSD between a fixed and a moving
image by computing its first derivative. In order to constrain the deformation field,
the sum of the Laplacian of the deformation field is added as a penalty term [89].
This method is efficient, but not very robust and is dependent on finding a good
weighting factor between the smoothness regulariser and the dissimilarity measure.

The Demons method [93] has been introduced by Thirion et al. in 1998. In
this framework the deformation field is calculated through an iterative process which
updates the field with a normalised optical flow between the two images (see Fig-
ure 2.5).

Figure 2.5: Illustration of the Demons algorithm [93] showing the input images
(fixed and moving), and the warped image obtained after resampling with the cur-
rent iteration of the deformation field. When smoothing is applied to the deforma-
tion field update (δu) it is called fluid-like regularisation, while when smoothing is
applied after the update (ut + δu) it is called elastic-like regularisation.

Regularisation of the predicted deformation field is incorporated through Gaus-
sian smoothing, either before or after the deformation field update. When done
before, the approach is called fluid-like regularisation:

ut+1 = ut + G ∗ δu (2.15)

while when done after the update, it is called elastic-like regularisation:

ut+1 = G ∗ (ut + δu) (2.16)

where G is a Gaussian kernel, ∗ is the convolution operator, and t+1 is the current
iteration. When t = 0, ut = Id (the identity grid).
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2.1 Medical image registration

Beg et al. [94] introduced the non-stationary velocity field model, also known
as the large deformations diffeomorphic metric mapping (LDDMM) frame-
work, in which time-varying velocity fields are integrated over time to generate a
deformation field. Diffeomorphisms are one-to-one smooth and continuous mappings
which are also invertible (non-zero Jacobian determinant) [75], i.e., they preserve
topology. Composing two diffeomorphisms results in a diffeomorphism, meaning
that you can compose many deformations and still have an inverse.

In LDDMM, the deformation field is defined through the following ordinary
differential equation (ODE):

∂ϕ(x, t)
∂t

= v(ϕ(x, t), t) (2.17)

with initial condition ϕ(x, 0) = Id and where the solution at t = 1:

ϕ(x, 1) =
∫ 1

0

v(ϕ(x, τ), τ) dτ (2.18)

is diffeomorphic.

In their method, Beg et al. [94] discretised the time-varying field into a number
of steps which are then composed to generate the final deformation field.

The use of a single stationary velocity field (SVF) instead of the time-
varying one was simultaneously proposed by Ashburner et al. [62] and Hernandez
et al. [95, 96]. For SVFs, the ODE is defined as:

∂ϕ(x, t)
∂t

= v(ϕ(x, t)) (2.19)

with initial condition ϕ(x, 0) = Id and where the solution at t = 1 is given by:

ϕ(x, 1) =
∫ 1

0

v(ϕ(x, τ)) dτ ∆
= exp(v) (2.20)

The advantage of using stationary instead of time-varying velocity fields is brought
by the concept of scaling and squaring [66], a method which makes the integration
much faster. More specifically, the velocity field can be divided into n = 2i steps,
and the final deformation field ϕ can be calculated through Euler integration start-
ing from the identity grid in log2 n steps. For example, for n = 8, the deformation
field is computed in four steps:

ϕ1/8 = Id+ v/8
ϕ2/8 = ϕ1/8 ◦ ϕ1/8

ϕ4/8 = ϕ2/8 ◦ ϕ2/8

ϕ8/8 = ϕ4/8 ◦ ϕ4/8

(2.21)
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2.1 Medical image registration

Moreover, the inverse transformation ϕ−8/8 can be easily computed through back-
ward integration, by starting from ϕ−1/8 = Id− v/8.

Vercauteren et al. [97] introduced a diffeomorphic version of the Demons algo-
rithm [93]. Using properties of Lie group theory, their implementation ensures a
one-to-one mapping between the reference and floating images through composition
(instead of addition) of diffeomorphic transformations, starting from the identity
grid. Their method uses a scaling and squaring approach to compute the vector
field exponentials which allows for an efficient implementation when compared to
other approaches. Similar to the original Demons [93], Vercauteren et al. [97]
describe their proposed diffeomorphic algorithm for both fluid-like and elastic-like
regularisation strategies. In this case, equation 2.15 (fluid) becomes:

ϕt+1 = ϕt ◦ exp(G ∗ v) (2.22)

and 2.16 (elastic) becomes:

ϕt+1 = G ∗ (ϕt ◦ exp(v)) (2.23)

Christensen et al. [98] introduced an inverse consistent approach in order
to ensure a one-to-one mapping between the fixed and moving images. A forward
transformation ϕ0 : ΩF → ΩM is optimised at the same time as the backward
transformation ϕ1 : ΩM → ΩF , and the optimisation process takes into account two
similarity measures and a constraint on the inverse consistency:

L(F,M(ϕ)) = DSSD(F(ϕ1),M) +DSSD(F,M(ϕ0))

+
∑
||ϕ0(x)− ϕ−1

1 (x)||2 + ||ϕ1(x)− ϕ−1
0 (x)||2︸ ︷︷ ︸

inverse consistency constraint

(2.24)

This penalisation makes sure that the optimised fields (ϕ0, ϕ1) are as close as possible
to their respective approximated inverses (ϕ−1

1 , ϕ−1
0 ).

Beg et al. [99] introduce inverse consistency in their proposed LDDMM frame-
work in two ways: the consistent-integral-cost which evaluates the registration match
between the two images at all time points, and the consistent-midpoint-cost which
evaluates the match at t = 1

2
. Similarly, Avants et al. [60] proposed an approach

where they estimated transformations to a middle space between the two images.
In their case, the halfway forward transformation and the inverse of the halfway
backward transformation are composed in order to calculate the image similarity
between the deformed moving image and the fixed image.

Parametric approaches are a different class of non-rigid registration methods.
Unlike non-parametric approaches, they rely on a function to generate the deforma-
tion field. In this case, the number of model parameters is lower than the number
of voxels, but smoothness constraints are still used in order to favour continuous
transformations. In the following paragraphs, four image registration parametric
approaches are presented.
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2.1 Medical image registration

The spatial normalisation using basis functions approach was introduced
by Ashburner et al. [75] and it uses a linear combination of discrete cosine transform
basis functions to describe the spatial transform. This algorithm optimises the
parameters of a deformation field which minimises the SSD between a warped and
a fixed image. To penalise folding, the authors also introduce penalty terms to the
cost function.

Shen et al. [100] introduced the hierarchical attribute matching mecha-
nism for elastic registration algorithm where attribute vectors are used for
each voxel to drive the registration process. More specifically, these vectors include
information about the voxel’s underlying tissues and its neighbourhood. Such in-
formation is obtained through performing segmentation of the images. To make the
registration algorithm execute faster, not all voxels are used, but are mostly selected
from the tissue boundaries. One major drawback of this approach is the dependence
on the quality of the pre-processing steps and the existence of a large number of
parameters that need to be set to achieve good performance.

Rueckert et al. [68] introduced the free-form deformation (FFD) algorithm,
a method which is based on cubic B-Spline interpolation. In their approach, a mesh
of control points is used to parametrise the deformation. When a control point is
moved, the local neighbourhood moves as well. As the support of the basis functions
spans across 4 control points, the area of the moving neighbourhood becomes (4δx ·
4δy ·4δz) voxels around that respective control point, where δi represents the spacing
between 2 adjacent control points along the ith axis in the lattice. The choice of δ
and the number of control points is defined by the image size and the spacing along
each axis.

To compute the new coordinate of a point, the following formula is used:

T(~x) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)µi+l,j+m,k+n (2.25)

where:
u =

x
δx
− b x

δx
c

v =
y
δy
− b y

δy
c

w =
z
δz
− b z

δz
c

are the relative positions of the index point, i, j, k are the indices of the first con-
trol point to be taken into account, Bl, Bm, Bn are the approximated third-order
spline polynomials applied along each axis and µi, µj, µk are the first control point
positions. In this framework, Rueckert et al. [68] introduced the bending energy
penalty term to ensure smoothness of the deformation field. This, however, does not
guarantee a one-to-one mapping between the reference and the floating image, and
others [92, 91] constrained it further with the use of Jacobian determinant penalties
(see Section 2.1.2).
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Later, Ruckert et al. [101] introduced the parametric stationary velocity
field method, which is a diffeomorphic version of the FFD approach, through com-
position of control point grids. The interpolation scheme used, as well as the choice of
NMI as a similarity measure, made this algorithm computationally expensive. Mo-
dat et al. [102] introduced a SVF diffeomorphic and symmetric registration model,
where the velocity field was parameterised with cubic B-spline basis functions. The
proposed method used NMI as a similarity measure and introduced a regularisation
term based on the Jacobian determinant of the deformation field (see Section 2.1.2).

2.1.4 Diffusion tensor image registration

Image registration of DT-MRI can enable better alignment of WM tracts than what
is possible when using structural MRI data only [61, 103]. As an alternative, scalar-
valued data can be used instead of the higher-order tensors, and, in fact, FA maps
are a popular choice in many neuroimaging studies [104] as they highlight the main
WM tracts. In the scalar case, an image transformation guided by a deformation
field ϕ simply changes the location of each point x, mapping x to ϕ(x). When dealing
with higher-order data, however, further steps need to be applied. This subsection
summarizes the challenges of registering DT-MR images brought forward by the
orientational information contained by this data.

Tensor reorientation. For DTI images, interpolation is not as straightforward
as scalar-valued data, and Figure 2.6 illustrates this schematically. In panel A, an
anisotropic region of an axial slice of a DT image is shown, while the other two panels
showcase what happens when this region is rotated anti-clockwise around the z-axis
with 30o. In panel B, the tensor components are simply interpolated at the warped
locations, but this procedure does not preserve the original internal organisation of
the region. In panel C, the individual tensors are also rotated around the z-axis
with 30o, thus retaining the local anatomy.

Tensor reorientation was initially described by Alexander et al. [105]. One algo-
rithm for this procedure is called the finite strain strategy where the reorientation
matrix can be computed at each point in the deformation field ϕ through a polar
decomposition of the local Jacobian matrix. Through this factorisation J = RP ,
the non-singular matrix J is split into a unitary matrix R (representing the rota-
tion), and a positive-semidefinite Hermitian matrix P [106]. The resulting rotation
matrix R can then be used to reorient the diffusion tensors.

Image similarity measures based on tensor differences. As for every other
image registration algorithm, an appropriate image similarity needs to be designed.
The most popular DTI ‘dissimilarity’ measure is the euclidean distance squared
[61, 108]. Assuming M(ϕ(x)) is the deformed moving image with reoriented diffusion
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2.1 Medical image registration

Figure 2.6: DTI reorientation showing: an anisotropic region in A, the same re-
gion after rotating it anti-clockwise around the z-axis with 30o in B, and the cor-
rect tensor interpolation which preserves the original internal organisation of this
region in C. Image adapted from Zhang et al. [107].

tensors, the euclidean distance squared is defined as:

DEDS(F,M(ϕ)) =
∑
x∈ΩF

||F(x)−M(ϕ(x))||2C (2.26)

where the euclidean distance between two tensors D1 and D2 is:

||D1 −D2||C =

√
Tr
(
(D1 −D2)2

)
(2.27)

Zhang et al. [61] also propose the euclidean distance squared between
deviatoric tensors as a measure which is less sensitive to the isotropic components
of diffusion tensors. It is defined as:

DDDS(F,M(ϕ)) =
∑
x∈ΩF

||F(x)−M(ϕ(x))||2D (2.28)

where the deviatoric, D, of diffusion tensor D is equal to: D− 1
3
Tr(D)I and I is the

identity tensor [108]. Therefore, the euclidean distance between two deviatoric
tensors D1 and D2 is defined as:

||D1 −D2||D =

√
8π

15

(
||D1 −D2||2C −

1

3
Tr2(D1 −D2)

)
(2.29)

Image registration frameworks for diffusion MRI. Some of the original
registration methods [109, 110] did not take tensor reorientation into account, thus
introducing errors in matching the images. Zhang et al. [61] introduced a piecewise
affine algorithm known today as DTI-TK, where the novelty came from both the
explicit optimisation of the tensors reorientation and from their proposed derivative-
based formulation. Moreover, the piecewise affine transformations were merged
together to generate a smooth deformation field.
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Cao et al. [111] developed an LDDMM framework for registration of diffusion
tensors, by matching their corresponding principal eigenvectors. Later, Yeo et al.
[112] extended the diffeomorphic version of the Demons algorithm [97] to work with
tensor data. In DTI-Demons, they introduced a derivation of the exact finite strain
differential and showed that using the exact gradient led to better registration re-
sults. Modat et al. [113] extended Nifty-Reg to work with diffusion tensor data as
well. The short list presented here of tensor-based registration algorithms is not
exhaustive and a more complete review of DT-based image registration frameworks
can be found in [114, 115].

Besides the popular rank-2 diffusion tensor, other higher-order diffusion data
can be used in image registration applications. This is because DTI cannot model
crossing fibers [116, 117]. More advanced diffusion imaging methods, such as the
HARDI acquisition protocol [117], can be used to better characterise regions with
crossing fibre populations. For example, the spherical deconvolution technique al-
lows the direct estimation of the distribution of fiber orientations within each voxel
from diffusion weighted (DW)-MRI data [118]. Raffelt et al. [119] propose the use
of ODF data for image registration purposes and extend the ANTs symmetric dif-
feomorphic normalisation method [60] to work with them. Moreover, Uus et al. [56]
propose the use of a similarity metric based on angular correlation [120], instead of
the original SSD one.

2.2 Medical image segmentation

Segmentation is the process of delineating an image into regions of interest (ROIs)
based on their color, gray level, texture, or contrast. In medical imaging, this divi-
sion has the additional property of classifying these ROIs based on their anatomical
function, or in order to separate normal from abnormal tissue. For example, seg-
menting an MR image of the brain could consist of separating WM from cGM and
deep gray matter (dGM), or identifying the spread of a tumour from the surround-
ing healthy organ. The resulting segmentation maps can then be used in upstream
analysis, such as measuring the volume of different brain tissue types during the
neonatal developmental stages, or during neurodegenerative disease progression.

Automatic image segmentation is not a trivial task as more often than not med-
ical images contain artifacts, and can suffer from partial volume effects or intensity
inhomogeneities. Many algorithms have been proposed for medical image segmenta-
tion, but due to its complex and challenging nature it still remains an active area of
research [121, 122]. For the purpose of this thesis, the focus will be on medical image
segmentation of brain MRI, with a particular interest in neonatal data. The follow-
ing sections will present the most common medical image segmentation techniques,
grouped into: registration-based approaches and intensity-based approaches. Other
methods such as level sets and active shape/appearance models [123, 124, 125, 126]
are out of scope for this thesis.
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2.2.1 Registration-based approaches

Some of the most promising methods for segmenting brain MRI use image reg-
istration as one of their steps. These methods rely on the existence of an atlas
(prior knowledge of brain morphology), together with its corresponding label maps,
to produce segmentation maps of a subject’s brain image. More specifically, an
image registration algorithm determines how to warp the brain atlas into the to-
be-segmented image space, after which the atlas labels are propagated using the
predicted deformation. The following subsections will present different approaches
to this technique, grouped by whether they use a single atlas approach, a multiple
atlas approach, or a probabilistic atlas approach.

Single atlas approaches

The first atlas-based brain segmentation methods were using a single atlas to pre-
dict labels for unseen subjects [64, 127]. As illustrated in Figure 2.7, the manual
segmentation of a single brain was propagated onto a given subject in order to find
its corresponding tissue labels.

Figure 2.7: Illustration of medical image segmentation based on a single atlas reg-
istration approach. An image registration method is first used to align the tem-
plate and the subject. Then, the atlas labels are mapped to the coordinates of the
to-be-segmented image.

This technique is rarely used today due to its reliance on a single anatomical
instance without taking into account the variability found across human brains.
Moreover, it relies on accurate image registration between the two images in order
to propagate the reference labels. This is not always possible, as individual variabil-
ity in cortical folding prevents accurate inter-subject anatomical correspondences.
Moreover, in early development, there are additional time-dependent changes which
occur both in tissue microstructure (due to, for example, the ongoing myelination
which affects the MRI contrast) and anatomy (such as cortical folding).
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Multi-atlas approaches

The use of multiple atlases achieved better results than using a single anatomy
[91, 128, 129]. This is shown schematically in Figure 2.8 where multiple atlases are
registered to a subject, and the resulting deformation fields are used to propagate
the reference labels. As a final step, the segmentation maps are fused into one using
averaging, non-uniform weighting [130] or atlas selection [131]. In fact, besides the
accuracy of the registration method and the quality of the atlases themselves, the
performance of multi-atlas approaches also relies on the fusion process. For this
reason, besides majority voting, other label fusion methods have also been proposed
[132, 133, 134], but they are out of scope for this thesis.

Figure 2.8: Illustration of medical image segmentation based on the multi atlas
registration approach. In this case, multiple templates are registered with a sub-
ject, and the resulting deformation fields are used to propagate the atlas labels.
The resulting segmentation is achieved through label fusion, a method which ag-
gregates the multiple label maps into one.

Probabilistic atlas approaches

Probabilistic atlases are created by combining brain images of a representative co-
hort, and can show variation over populations and/or time. For this, a large enough
dataset of segmented brain images is needed to capture the anatomical variability of
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the studied population. Probabilistic atlas approaches for segmenting brain images
rely on a statistical model of image intensities together with a priori knowledge of
different brain tissues (i.e., the probabilistic atlas). This is shown schematically in
Figure 2.9 where tissue probability maps are warped onto the subject space to infer
this prior knowledge, which is then used in an expectation maximisation (EM)-type
scheme to produce the final result.

Figure 2.9: Illustration of medical image segmentation based on the probabilis-
tic atlas registration approach. In this case, a probabilistic atlas is registered with
a subject, and the resulting deformation fields are used to propagate the tissue
probability maps. The resulting probabilistic labels then become the a priori
knowledge used in medical image segmentation algorithms based on statistical
models of intensities, offering information about the spatial distribution of differ-
ent brain tissues.

The rapid development of the neonatal brain brings unique challenges to the
segmentation problem. For this reason, the use of a spatio-temporal probabilistic
atlas, which consists of multiple age-specific atlases, is often required in order to
capture the anatomical variability of this cohort [12]. Other methods have also
tried relaxing the prior label probabilities by iteratively adapting the atlas to the
subject’s anatomy [135, 136, 137].

Finally, one potential drawback of these approaches comes from the use of aver-
age brain templates which have blurrier boundaries when compared to an individual
atlas. This means that the image registration step can often generate less accurate
alignments between the probabilistic atlas and the to-be-segmented subject.
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2.2.2 Intensity-based approaches

Intensity-based image segmentation approaches are methods which classify each
voxel in an MR image based on its intensity, and are grounded in computer vision
standard classifiers such as Gaussian mixture models (GMM), K-Means or K-nearest
neighbours (K-NN). Automatic segmentation of brain MRI is not an easy task, and
most algorithms require the following preprocessing steps in order to achieve the
desired results:

• Brain extraction, also known as skull-stripping, is a procedure through
which the skull and non-brain tissues, such as neck and fat, are removed
from brain MRI scans. This is often a crucial step as these regions may have
overlapping intensity distributions with the to-be-segmented brain tissue.
In the medical image community, one of the most widely used algorithms is
the brain extraction tool, or BET, [138] which is also part of the FSL software
package [139]. BET is a physics-based model which uses a closed surface
that evolves to fit the brain. Alternatively, a multi-atlas-based skull stripping
approach [140] can be used, in which predefined templates with corresponding
brain masks are aligned with the to-be-segmented subject. Then, the labels are
propagated onto the subject space, and fused to create the final brain mask.
More recently, with the advent of medical image deep learning, neural networks
have been trained to perform skull stripping [141]. The main advantage is that,
once an algorithm has been trained, the inference time on a new and unseen
MR image is very fast. On the other hand, deep learning techniques are not
yet generalisable to all types of MR datasets, vendors and subject biases.

• Bias field correction is needed as spatial intensity inhomogeneities are often
observed in MR images. These non-uniformities exist as a result of magnetic
field variations and present themselves as a smooth low-frequency spatially
varying intensity change which affects the MR image [142].
Algorithms which try to solve this problem are often applied as a pre-processing
step (such as the N3 bias correction framework [143], or its improved variant,
N4 [144]). Alternatively, some image segmentation frameworks interleave the
segmentation process with bias field correction, achieving both at the same
time [145].

• Motion correction is also an important preprocessing step as motion is ubiq-
uitous in MRI because the time required for the majority of MR sequences
to collect the necessary data is much longer than most types of physiologi-
cal motion, including respiratory motion, vessel pulsation, CSF flow and even
involuntary patient motion. At best, bulk motion can lead to slice misalign-
ment which can be corrected for with registration algorithms [146]. However,
if motion happens during the acquisition part of the experiment, it can lead
to blurring of object edges, ghosting, loss of information or undesired strong
signals [146].
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In MRI acquisition of the neonatal brain there are 2 types of motion that
can typically happen: rigid motion, caused by head movements, or non-rigid
motion, caused by arterial pulsation or other internal sources [146]. Even
though neonatal brain MRI protocols are shorter than adult scans, infants
cannot be prevented to move and motion artefacts will still be present in the
acquired images [147]. One potential solution is to sedate the infants, which
is the case with some of the babies scanned for the ePrime dataset [35] for
which parents gave consent, but this is not the preferred procedure and the
goal is to image unsedated neonates [148]. In dHCP [11], for example, infants
were scanned during natural sleep without sedation, where there is a risk
of sporadic movement. For this reason, motion correction techniques of the
acquired MRI acquisition, such as those proposed by Cordero-Grande et al.
[149, 39] and validated on neonatal datasets, are therefore needed to obtain
motion-free images.

The remainder of this section will present K-NN clustering, K-Means clustering
and Gaussian Mixture models. Finally, we will describe the EM algorithm on which
the state-of-the-art brain segmentation frameworks usually rely.

K-nearest neighbours

K-NN is a non-parametric supervised method used for both classification and regres-
sion. As it is a supervised method, it requires training data, such as pairs of features
and their corresponding labels. In case of classification tasks, the algorithm outputs
a class membership for each queried data point. This is achieved through plurality
vote: an object is classified as class c if the majority of its closest K neighbours
(from the training data) are part of class c.

Figure 2.10 shows an example of the algorithm for K = 7, where the training
data is shown in panel (a) with their corresponding labels (red, green or blue),
together with 2 data points to be classified (the black diamonds). Panel (b) of the
figure shows, for each object, its 7 nearest neighbours based on the most widely used
distance measure (Euclidean distance). Finally, the last panel shows the resulting
class for each object.

This algorithm can be applied to image segmentation problems and, in fact,
it was adapted to work with adult and neonatal brain MR images by Warfield et
al. [150]. In their case, in addition to using the image intensities as features, they
enhance the classification process through using an anatomical template to moderate
the segmentation.
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Figure 2.10: K-nearest neighbours example for K = 7. In (a) the training data
consisting of 3 distinct classes (red, green and blue) is shown together with 2 ob-
jects which are to be classified (the black diamonds). K of their respective nearest
neighbours are highlighted in (b), while (c) shows the final classification result.

K-Means clustering

K-Means is an unsupervised clustering algorithm which, as the name suggests, aims
to divide an image into K clusters such that each observation (or voxel in the image)
belongs to the cluster with the nearest mean (center/centroid). More specifically,
K-Means clustering minimizes within-cluster variances. Mathematically, it aims to
optimize the objective function:

n∑
i=1

K∑
k=1

||yi − vk||2 (2.30)

where Y is the image to be segmented consisting of n voxels with intensities (y1, y2, ..., yn),
and vk is the centroid of the kth cluster.

The number of clusters K is a hyper-parameter which needs to be decided be-
forehand. A poor choice of K can often yield unwanted results and it is therefore
important to run a diagnostic check in order to choose the appropriate value. The
steps involved in the algorithm are:

1. Choose value for K

2. Randomly initialise centroids

3. Calculate cluster membership for each data point

4. Re-calculate centroids based on the assigned data points

5. Repeat steps 3 and 4 until no (or a small) change in the centroids is observed.

Figure 2.11 shows an example of the algorithm for K = 3, where the random
initialisation of the centroids and the initial datapoint assignment to each cluster are
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shown in Figure 2.11(a)–(b), while the iterative part of the above algorithm (steps
3–4) is shown in panels (c)–(e). Last panel (f) shows the final result.

Figure 2.11: K-Means clustering example for K = 3, where the dataset (black
circles) to be classified together with the random initialisation of the clusters’ cen-
troids (red, blue and green diamonds) are shown in (a). In (b) each data point has
been assigned to a cluster based on the distance to the centroids. (c), (d) and (e)
show the first three iterations of the algorithm as it re-calculates the centroids and
reassigns the datapoints to the 3 clusters. Finally, in (f), after a few iterations, the
algorithm has converged and the centroids do not change anymore.

Although K-Means has been successful in medical image segmentation applica-
tions [151], it is susceptible to noise and outliers, as well as the initial choice of
centroids. Fuzzy C-means clustering [152] is a soft version of K-Means, where
each data point has a probability of belonging to each cluster, instead of exclusively
belonging to one class only. In fact, fuzzy C-means is a generalised version of K-
Means which introduces membership values wik (the degree to which data point i
belongs to class k) with

∑K
k=1wik = 1. This is a helpful property for medical image

segmentation due to partial volume effects [153].

Gaussian mixture models

A GMM is a probabilistic model for representing normally distributed clusters within
a dataset. More specifically, it attempts to find a mixture of multi-dimensional
Gaussian probability distributions that best model the input data. A GMM with
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K components is parameterized by three variables: each kth component’s mean µk

and variance/covariance σk, and mixing coefficients ωk (where
∑K

k=1 ωk = 1). Such
a model can be used to perform image segmentation by describing the likelihood
of a brain MRI voxel as belonging to a tissue class. The probability of observing
intensity y is described by:

p(y) =
K∑
k=1

ωkN (y|µk, σk) (2.31)

where:
N (y|µk, σk) =

1

σk

√
2π

exp
(
−(y − µk)

2

2σ2
k

)
(2.32)

When K is known or set to a reasonable value, the most commonly used method
to solve the mixture of Gaussians is the EM algorithm [154].

Expectation-Maximization

EM is a technique for maximum likelihood estimation generally used when there
exists a closed form expression for updating the model parameters. Moreover, it is
an iterative algorithm which is guaranteed to approach a local maximum (or saddle
point). EM for mixture models starts with an initialization step which assigns model
parameters to reasonable values based on the data, and then alternates between two
steps until convergence:

• The first step, or the initialization step, consists of randomly (or based
on some initial estimated values) assigning values for the GMM components
means µ̂k, variances σ̂k, and mixing coefficients ω̂k.

• The E-step (expectation step) consists of calculating the expectation of
component k for each data point yi ∈ Y (the probability that yi is generated
by component Ck) given the estimated model parameters µ̂k, σ̂k, and ω̂k:

p̂ik =
ω̂kN (yi|µ̂k, σ̂k)∑K
j=1 ω̂j N (yi|µ̂j, σ̂j)

• The M-step (maximization step) will then update the current parameter
estimation by maximizing the expectations calculated in the E-step:

ω̂k =
1

n

n∑
i=1

p̂ik

µ̂k =

∑n
i=1 p̂ikyi∑n
i=1 p̂ik

σ̂2
k =

∑n
i=1 p̂ik(yi − µ̂k)

2∑n
i=1 p̂ik

where n is the number of data points / voxels.
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Figure 2.12: Expectation-Maximization clustering example for K = 3, where the
initialisation step of the Gaussians (red, blue and green) are shown in (a). In (b),
(c), (d) and (e) the first, second, fourth and sixth iterations of the algorithm are
shown as it alternates between the E-step and the M-step. Finally, in (f), the al-
gorithm has converged and the calculated parameters do not change anymore.

Figure 2.12 shows an example of the algorithm for K = 3, where the parameter
initialisation and subsequent datapoint assignment to each cluster (based on the
highest probability) is shown in Figure 2.12(a). The iterative part of the above
algorithm is shown in panels (b)–(e), while the last panel (f) shows the final result,
when the model has reached convergence.

The EM algorithm has been successfully applied to brain segmentation since
Wells et al. [155]. In this case, the E-step estimates the soft segmentation of
a brain MRI given the current estimate of the model parameters, while the M-
step estimates the parameters for the intensity distribution of each tissue class.
In addition, it can be extended to include partial volume estimation [156, 157],
bias field correction [158, 145], registration parameters [145], spatially constraining
anatomical priors for the tissue class probabilities, as well as neighbourhood statistics
by means of a Markov random field (MRF) [159, 160]. The latter was used by
Habas et al. [161] to segment the fetal brain into: skull, CSF, GM, WM, germinal
matrix and ventricles. Moreover, as strong anatomical priors could negatively bias
the segmentation, Cardoso et al. [135, 136, 137] introduced a relaxation of the
prior tissue probabilities for infant brain segmentation with structural abnormalities.
Melbourne et al. [162] extended this approach to contain outlier rejection of intensity
clusters which have large Mahalanobis distance from the predicted model.
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2.2.3 Medical image segmentation frameworks

This section presents the most common segmentation frameworks used in the med-
ical imaging community, with a focus on EM-based software packages as they are
one of the most widely used brain segmentation approaches today, while the deep
learning-based segmentation models will be presented in Section 3.2.2. A more com-
prehensive review on neonatal brain image segmentation methods can be found in
[163], as well as the 2012 MICCAI Grand Challenge on Neonatal Brain Segmentation
(NeoBrainS12) which has been summarised in [164].

Ashburner et al. [145] developed the popular image analysis software framework,
statistical parametric mapping (SPM), which contains, among others, tools
for adult brain image segmentation. More specifically, their approach is EM-based,
which includes segmentation and bias correction, as well as non-rigid registration of
a probabilistic atlas. The latter improves the accuracy of the predicted segmentation
maps and enhances the robustness of the bias correction step. Wang et al. [165]
used SPM for the NeoBrainS12 challenge [164] in conjunction with the probabilistic
atlas developed by Kuklisova-Murgasova et al. [12]. As a post-processing step, they
used connected component analysis to correct partial volume errors.

Another state-of-the-art medical image registration and segmentation method
is the advanced normalization tools (ANTs) software package [60, 166]. More
specifically, Atropos [166] performs image segmentation and uses the EM framework
with contextual information by means of MRF. In fact, ANTs was used by Wu et
al. [167] for the NeoBrainS12 challenge, together with N4 for bias correction [144],
and SyN [60] for atlas registration.

Cardoso et al. [137] introduce NiftySeg as an EM-based framework with a prior
relaxation strategy [168] which aims to iteratively adapt the probabilistic atlas to
the anatomy of the subject such that images with high anatomical variability can
also be segmented. For the NeoBrainS12 challenge, Melbourne et al. [162] extended
this approach with an outlier strategy which rejected intensity clusters that were
too far away from the predicted model.

Finally, Makropoulos et al. [169, 170] introduce the developing region anno-
tation with expectation maximisation (Draw-EM) algorithm for automatic
multi-atlas neonatal brain image segmentation. Similarly to others, their method
also includes bias field correction [144], partial volume correction and spatial regular-
isation [170]. More specifically, instead of parcellating the brain into different tissue
classes (such as WM, GM and CSF) based on intensities only, the authors use a pri-
ori information extracted from the ALBERTs [171] dataset to segment the neonatal
brain into 87 sub-cortical, cortical and cerebral structures. This prior knowledge
dataset consists of manually segmented 18 sub-cortical and 32 cerebral structures
in MR images of 5 healthy term-born neonates and 15 preterm-born babies, imaged
between 36.6 weeks and 44.9 weeks PMA [171].
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The algorithm starts by performing brain extraction [138] and N4 bias field
correction [144] on each to-be-segmeneted subject. Then, the ALBERTs images are
rigidly, affinely, and non-rigidly registered to the subject space, and the resulting
deformation fields are used to propagate their respective labels. A locally-weighted
label fusion scheme is then used to generate the atlas priors. Subject-specific tissue
prior probabilities are also created through K-Means [172] (with K = 4, for WM,
GM, CSF, and extra-cranial space) and an initial simple EM scheme. The tissue
and atlas priors are then used to subdivide the brain into 87 structures, as the
initial labelling of the ALBERTs dataset included clusters which contained both
WM and GM intensities into one label. One of the assumptions of the EM scheme
is that every region follows a Gaussian distribution, which, in the case of the initial
ALBERTs division, was not true. Moreover, as some of the structures will have
similar intensities (e.g., different cortical gray matter sub-structures), Draw-EM
introduces a hierarchical mixture model where the same Gaussian distribution is
shared amongst such regions. This EM scheme is run until convergence, and the final
output is made up of 87 structures or 9 tissue labels [148]. Figure 2.13 summarizes
the Draw-EM steps.

Figure 2.13: Draw-EM pipeline showing how the ALBERTs dataset [171] is used
to predict segmentation maps (structures and tissues) for an unseen neonatal sub-
ject. Image adapted from Makropoulos et al. [170].

This method was evaluated on a large cohort of 234 mainly preterm infants and
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showed good results. It is part of the MIRTK1 package and it was used in this
thesis as the main software toolbox to generate tissue labels for the dHCP and
ePrime cohorts used for the studies.

2.2.4 Medical image segmentation evaluation

An important step of any image segmentation algorithm is measuring its perfor-
mance against ground truth labels or other models. This section presents the most
common metrics for validating image segmentation models, with a focus on spatial
overlap and surface based metrics.

Let a medical image be represented by a set of points X = {x1, x2, ..., xn}, where
|X| = w × h × d = n represents the cardinality of the set X, and w, h, d are the
volume’s width, height and depth, respectively. Let the ground truth label map be
defined as Sg = {Sb

g, S
f
g }, and the predicted segmentation as Sp = {Sb

p, S
f
p }, such

that Sb
g(x) + Sf

g (x) = 1, Sb
p(x) + Sf

p (x) = 1, and S
b|f
g (x) ∈ [0, 1], Sb|f

p (x) ∈ [0, 1], for
∀x ∈ X. The b and f superscripts represent the background and the foreground
(anatomy of interest) classes, respectively. For the sake of simplicity, but without
loss of generality, the rest of this subsection will focus on binary segmentations only.

Spatial overlap metrics

There are 4 basic measures that reflect the overlap between the two volumes and
they are called: true positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN) [173]. Figure 2.14 shows an example ground truth and predicted
segmentations, together with the aforementioned measures. The TP is equal to the
number of correctly predicted foreground class voxels:

TP = |Sf
g ∩ Sf

p | (2.33)

The TN is the number of correctly predicted background class voxels:

TN = |Sb
g ∩ Sb

p| (2.34)

The FP is the number of predicted foreground voxels which should have been back-
ground:

FP = |Sb
g ∩ Sf

p | (2.35)
Finally, the FN is the number of predicted background voxels which should have
been foreground:

FN = |Sf
g ∩ Sb

p| (2.36)

1https://github.com/BioMedIA/MIRTK
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Figure 2.14: Schematic example of a ground truth binary segmentation (back-
ground class Sb

g and foreground class Sf
g ) and a predicted segmentation (back-

ground class Sb
p and foreground class Sf

p ), together with the four basic measures:
TP (the intersection between the foreground classes of both ground truth and pre-
dicted segmentations), TN (the intersection between the background classes of the
ground truth and predicted segmentations), FP (the incorrectly predicted fore-
ground class) and FN (the incorrectly predicted background class).

These four measures can be represented in a confusion matrix, as seen in Fig-
ure 2.15. Moreover, all spatial overlap metrics can be derived from these four basic
measures.

Figure 2.15: Confusion matrix showing the TP, TN, FP and FN measures, as well
as 6 commonly derived metrics: FNR, recall, fallout, specificity, precision and
FOR.

The two most important metrics are precision and recall [173]. The positive
predicted value (PPV), also known as precision, is the fraction of relevant
instances among the retrieved instances. It is defined as:

PPV = Precision =
TP

TP + FP (2.37)

and it is a good metric to quantify over-segmentation in the predicted labels.
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The true positive rate (TPR), also known as sensitivity or recall, is defined
as the fraction of correctly identified foreground class voxels in the ground truth:

TPR = Recall = TP
TP + FN (2.38)

and, as a complementary measure to precision, it is often used to quantify under-
segmentation.

There are other metrics that can be derived from the four basic measures, such
as the true negative rate (TNR), the false positive rate (FPR) and the false negative
rate (FNR) [173]. TNR, also known as specificity, calculates the fraction of correctly
classified background class voxels in the ground truth background segmentation:

TNR = Specificity =
TN

TN + FP (2.39)

The FPR, also called fallout, measures the fraction of incorrectly predicted voxels
in the ground truth background segmentation:

FPR = Fallout = FP
TN + FP = 1− TNR (2.40)

while the FNR is defined as:

FNR =
FN

TP + FN = 1− TPR (2.41)

Equations 2.38 and 2.41, as well as equations 2.39 and 2.40, are equivalent to each
other and for this reason it is not common to report both of them together for
validation purposes. For the sake of completion, the false omission rate (FOR)
was introduced in Figure 2.15, but in practice it is not used for validating image
segmentation models.

The most prevalent metric in the literature is the Dice score coefficient
(DSC), also known as the F1 score (or the harmonic mean of the precision and
recall), and, for the foreground class, it is defined as [174]:

DSC =
2|Sf

g ∩ Sf
p |

|Sf
g |+ |Sf

p |
=

2TP
2TP + FP + FN (2.42)

The Jaccard index (JAC) is also an overlap metric and it is defined as the
intersection between the predicted and ground truth class over their union:

JAC =
|Sf

g ∩ Sf
p |

|Sf
g ∪ Sf

p |
(2.43)

However, these two metrics are related:

JAC =
|Sf

g ∩ Sf
p |

|Sf
g ∪ Sf

p |
=

2|Sf
g ∩ Sf

p |

2
(
|Sf

g |+ |Sf
p | − |Sf

g ∪ Sf
p |
) =

DSC
2−DSC (2.44)

which means that, in practice, just one of them should be reported as a validation
metric.
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Surface-based metrics

Spatial distance metrics are used to evaluate image segmentation tasks especially
where the boundary (contour) is of importance. Let X and Y be two finite point
sets, then one can define the directed Hausdorff distance (HD) as:

~dH(X,Y ) = max
x∈X

min
y∈Y

d(x, y) (2.45)

where d(x, y) is a measure of distance between the two points, e.g. Euclidean dis-
tance. In practice, the undirected HD is used and this is the maximum between
the two directed HD distances:

dH = max{~dH(X,Y ), ~dH(Y,X)} (2.46)

This metric, however, can be sensitive to noise and outliers. It is therefore recom-
mended to use the qth quantile of distances instead of the maximum, where q is most
commonly chosen as 95 [175].

Figure 2.16: Schematic representation of the directed Hausdorff distance between
two sets of points X and Y.

Finally, the average surface distance (ASD), also known as the average
Hausdorff distance, is the HD averaged over all points:

dAH = max{~dAH(X,Y ), ~dAH(Y,X)} (2.47)

where ~dAH(X,Y ) is the directed ASD given by:

~dAH =
1

|X|
∑
x∈X

min
y∈Y

d(x, y) (2.48)

ASD is often used as an image segmentation validation measure as it is less sensitive
to outliers than HD. Other metrics exist, such as the Mahalanobis distance, but
they are out of scope for this thesis. A more detailed investigation of medical image
segmentation metrics can be found in the review paper by Taha et al. [173].
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Chapter 3
Deep learning for medical image analysis

This chapter offers an overview of deep learning medical image analysis methods,
starting with an introduction into the field in Section 3.1, and followed by state-
of-the-art techniques in Section 3.2.

Section 3.1 presents the main concepts important for understanding deep learn-
ing methods, with a focus on convolutional neural networks (Section 3.1.1),
training a neural network (Section 3.1.2), and an overview of neural network
architectures (Section 3.1.3) and training strategies (Section 3.1.4).

Section 3.2 delves into the more advanced techniques, focusing on deep learning
image registration and segmentation techniques (Sections 3.2.1 and 3.2.2), as
well as visual attention (Section 3.2.3) and domain adaptation (Section 3.2.4),
respectively.
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3.1 Deep learning theory

Deep learning is a subset of machine learning and artificial intelligence which uses
neural networks with multiple processing layers to learn hierarchical representations
of data [176]. There are three main types of deep learning methods: supervised,
unsupervised and deep reinforcement learning, although the latter is out of scope for
this thesis. Since its recent ground-breaking success in computer vision and speech
recognition, deep learning has become a dominant trend in medical image analysis
[177]. More specifically, deep learning has been successfully used for medical image
segmentation and classification [178, 179, 180], image registration [181, 182, 183],
image fusion [184], computer-aided diagnosis [185], and lesion detection [186], among
others.

This section focuses on the theory behind the artificial neural network (ANN),
and the convolutional neural network (CNN), describes best practices for training
these models, and presents the most common neural network architectures, with a
focus on the ones important for this thesis.

3.1.1 Artificial neural networks

The main building block for any deep learning framework is the perceptron (see
Figure 3.1a), introduced in 1958 by Frank Rosenblatt [187]. When stacking multiple
perceptrons together, as shown in Figure 3.1b, we arrive at the general architecture
for any artificial neural network, the multilayer perceptron (MLP).

MLPs are made of an input layer, one or more hidden layers and one output
layer. Connections between pairs of neurons from adjacent layers have a weight w
attached to them, signifying the strength of those connections. Information flows
from the input layer to the output layer, with the input neurons relaying the data
as is (without modifying it), while the hidden layers’ neurons apply an activation
function f to the weighted sum of incoming values:∑

i

wixi

. A network with full connectivity between any two adjacent layers is called a fully
connected network.
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(a) The structure of an artificial neuron is composed of the inputs xi (and the bias),
the weights wi, and the output f(

∑
i xiwi), where f is called an activation function.

(b) The structure of a multilayer perceptron with one input layer, 2 hidden layers and
one output layer.

Figure 3.1: Main building blocks of artificial neural networks showing in (a) the
perceptron and in (b) a multilayer perceptron.
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Convolutional neural networks

The most popular type of neural network for analysing images is the CNN. A CNN
is very similar to a fully connected network, with the added constraint that not all
of the pixels or voxels in the input image are connected to the neurons from the
convolutional layers. In fact, only the voxels that fall under the receptive field of a
certain neuron are connected to that neuron, as shown in Figure 3.2.

Input layer

Convolutional
layer 1

Convolutional
layer 2

Figure 3.2: Schematic representation of two CNN layers together with their local
receptive fields. Image adapted from Geron et al. [188].

Convolutional layer. Convolutional layers are the most important building
blocks of a CNN. A two-dimensional convolutional layer receives an input object of
dimensions Width1 × Height1 × Channels1, and outputs an object of dimensions
Width2 × Height2 × Channels2. The connection between the two sets of variables
determining the input size and the output size comes from the following equations:

Width2 = (Width1 − F + 2P )/S + 1

Height2 = (Height1 − F + 2P )/S + 1

Channels2 = K

where the four hyperparameters are: K - the number of filters, F - the spatial extent
of filters, S - the stride, and P - the amount of zero padding. A 2D convolutional
layer introduces F 2 · Channels1 weights for each filter k ∈ K. Figure 3.3 shows a
3×3 filter sliding over the input image which was zero-padded, with stride 1 in panel
a, and stride 2 in panel b. Figure 3.3 c shows a 3×3 filter with dilation rate 2 which
is also known as atrous convolution [189]. Dilation represents the spacing between
the values in a kernel, and it covers a wider field of view at the same computational
cost (i.e., a 3 × 3 filter with dilation rate 2 covers the same area as a 5 × 5 kernel
with dilation rate 1).

Convolutional layers are used to extract features from the input images. It is
generally thought that the first convolutional layer focuses on low level features
of the image, while the following layers assemble the previous layers’ features into
higher-order representations [188].
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Figure 3.3: Example of convolutional layers with filters of size 3 × 3 (F = 3), and
zero-padding of 1, with: a) stride S = 1, b) stride S = 2, and c) stride S = 1 and
dilation rate D = 2.

Pooling layer. Another common layer found in a CNN is the pooling layer.
The most widely used one is called max-pooling, followed closely by the average-
pooling layer. A two-dimensional pooling layer receives an input volume of Width1

× Height1 × Channels1, and outputs a volume of Width2 × Height2 × Channels2,
with the following properties:

Width2 = (Width1 − F )/S + 1

Height2 = (Height1 − F )/S + 1

Channels2 = Channels1

It introduces zero weights as it computes a fixed function of the input (either the
maximum value in the receptive field or the average value, respectively). Moreover,
it is uncommon to use padding in these layers. Figure 3.4 shows an example of a
max-pooling layer and an average-pooling layer.

Figure 3.4: Example of: a) max-pooling and b) an average-pooling layer with fil-
ters of size 2× 2, and stride 2.

3.1.2 Training a neural network

To train an ANN, Rumelhart et al. [190] introduced the backpropagation algorithm.
In short, this algorithm requires two stages: a forward pass and a backward pass. In
the forward pass, data samples are fed to the network which passes them through
each layer, computing the weighted sums and activations, and returns the output
values. Then, a loss function is calculated representing the error between the cur-
rent prediction of the model and the desired output. Working in reverse, the error
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gradient for all connections is then calculated until the input layer is reached. Fi-
nally, gradient descent is used to tweak the weights of the connections in order to
reduce the loss. For this algorithm to work, the activation functions used throughout
the network should be continuous, differentiable or well-defined [191] so that error
gradients can be computed.

Activation functions. Thus, the first activation function that became popular
is the sigmoid function:

σ(z) =
1

1 + exp(−z)
(3.1)

as it is continuous and differentiable at every point of its domain. Another popular
activation function is the hyperbolic tangent:

tanh(z) =
2

ez + e−z
(3.2)

which, unlike the sigmoid, can have negative output values (see Figure 3.5).

Figure 3.5: Example of six of the most popular activation functions (first row),
as well as their corresponding derivatives (second row). The first column shows
the sigmoid and the hyperbolic tangent, while the second column shows the ReLU
function and three of its variants: Leaky ReLU with a = 0.2, PReLU with α =
0.5, and ELU with a = 1.0.

Finally, the most widely used activation functions today are the Rectified Linear
Unit (ReLU) function:

ReLU(z) = max(0, z) (3.3)
and its different variants: LeakyReLU, Parametric Rectified Linear Unit (PReLU),
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and Exponential Linear Unit (ELU) [192]:

LeakyReLU(z) = max(0, z) + amin(0, z)
PReLU(z) = max(0, z) + αmin(0, z)

ELU(z) =

{
z, if z > 0

a(ez − 1), if z ≤ 0

(3.4)

Here, α is a parameter which is learnt during training, while a is a hyperparameter
to be chosen. These four activation functions are shown in Figure 3.5, together
with their derivatives. It is important to mention that, even though ReLU-based
functions are not differentiable when z = 0, sub-gradients can be used and optimised
with gradient descent [193, 194].

When a neural network is trained for a classification task, such as determining
whether an image represents a ‘cat’ or a ‘dog’ (exclusive classes), the output layer
will have a softmax activation function. This function transforms the predicted
values, also known as logits, into probabilities, such that the output of each neuron
in the final layer will correspond to the estimated probability of the class. For class
k ∈ K total number of classes, softmax is written as:

softmax(z)k =
exp
(
zk
)∑K

j=1 exp
(
zj
) (3.5)

where z is a vector containing the logits of the output layer the network, as seen
Figure 3.6.

Figure 3.6: Example of the softmax activation function applied on the logits of a
layer, thus transforming the values into exclusive probabilities for each of the K
classes.
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Vanishing/Exploding gradients. A common problem found in training deep
neural networks is called the vanishing gradients problem. This happens when the
gradients computed through backpropagation become small enough that the gra-
dient descent step does not change the weights significantly or at all, and so the
training cannot converge. In fact, networks using the sigmoid and the hyperbolic
tangent functions often suffer from this problem due to their derivative becoming
very small when σ(z) approaches 0 or 1, and when tanh(z) approaches -1 or 1. At
the opposing pole, the exploding gradients problem happens when very large error
gradients accumulate and the algorithm diverges. This problem happens mostly in
recurrent neural networks, which are out of scope for this thesis. Glorot and Bengio
[195] showed that by employing a certain initialisation strategy for the neural net-
work’s weights, the vanishing/exploding gradients problem can be alleviated. This
solution is called Xavier initialization when using the sigmoid activation function,
and He initialization when using the ReLU activation function.

Another proposed solution which makes the network more stable while training is
called batch normalisation [196]. As the name suggests, the operation is performed
on the batches axis (see Figure 3.7). Batch normalisation is often added before
applying the activation function of a layer. It zero-centres and normalises, then
scales and shifts the inputs to that layer. The scaling and shifting factors are two
per-layer parameters which are learnt by the network. As the concept of ‘batch’ is
not always present, especially in medical image applications where training is often
performed with a batch size of 1 or 2 [197] due to the large memory footprint of the
images, other normalisation layers can be adopted. For example, layer normalisation
[198] operates along the channels (features) dimension, while instance normalisation
[199] acts as a sample-wise batch normalisation (see Figure 3.7). Finally, group
normalisation [200] operates over a group of channels for each training examples,
and can be thought of as an operation in between layer and instance normalisation.

Figure 3.7: Normalisation layers where N is the number of batches, C is the num-
ber of channels and H, W are the spatial dimensions of the tensor. In each panel
the teal boxes represent the pixels which will be normalised by the same mean
and variance, computed from the values of these pixels. Image adapted from [200].

Optimisers. Training a neural network requires an optimiser to automatically
update the model’s parameters in response to the output of the loss function. The
simplest optimiser is a class gradient descent which updates the model’s weights θ by
directly subtracting the gradient of the loss function J with regards to the weights:

θ ← θ − η∇θJ(θ) (3.6)
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where η is called the learning rate. This can become quite slow in places where the
local neighbourhood is almost flat and thus the gradients are small.

For this reason, a few variants on the classic gradient descent algorithm have been
proposed in the literature. For example, in momentum optimisation, the gradients
from the past steps are taken into account on top of the local gradient. The equation
becomes:

m← βm + η∇θJ(θ)

θ ← θ −m
(3.7)

where β is introduced as a hyperparameter to prevent the momentum from growing
too large.

Another popular optimiser is RMSProp which calculates a moving average of
squared gradients to normalize the gradient itself. Thus, it manages to avoid ex-
ploding gradients by decreasing the step and vanishing gradients by increasing the
step. Mathematically, it is calculated as such:

s← βs + (1− β)∇θJ(θ)⊗∇θJ(θ)

θ ← θ − η∇θJ(θ)�
√

s + ε
(3.8)

where ⊗ is element-wise multiplication and � is the element-wise division.

Finally, the most popular optimiser used today, Adam (adaptive moment esti-
mation) [201], combines momentum with RMSProp by keeping track of the past
gradients and of the past squared gradients:

m← β1m + (1− β1)∇θJ(θ)

s← β2s + (1− β2)∇θJ(θ)⊗∇θJ(θ)

m← m
1− βt

1

s← s
1− βt

2

θ ← θ − ηm�
√

s + ε

(3.9)

where t represents the iteration number. Figure 3.8 shows a toy example of the op-
timisers’ behaviours, for a fixed η and default hyper-parameters. Gradient descent’s
steps become smaller and smaller as the loss function’s landscape becomes flatter,
while momentum gains speed and moves downwards much faster. In fact, momen-
tum can overshoot the minimum, which is why RMSprop and Adam are almost
always preferred over the former.
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Figure 3.8: Example of four optimizers: conventional gradient descent (red), mo-
mentum (black), RMSProp (purple) and Adam (blue). Note that each example
has a different starting point for visualisation purposes.

Learning rate scheduling. Choosing a good learning rate can be difficult as
a too high η can make the model overshoot the minimum and diverge, while a too
small η will take a long time to train. Using adaptive optimisers such as Adam or
RMSProp helps, but in many cases it is preferred to have a learning rate scheduler
to help the training settle down faster. For this, a few popular strategies can be
used.

First, the predetermined piecewise constant learning rate scheduling, starts with
η from a high learning rate, such as 0.1, and becomes smaller and smaller every n
epochs. Second, the exponential scheduling, changes η as a function of the iteration
number t and number of steps r. For example, η(t) = η010

−t/r will cause the
learning rate to drop by a factor of 10 every r steps. Finally, the cyclical learning
rate scheduling [202], which we also employ in our work, varies the learning rate
between 2 values. Variants of this exist, where, for example, the learning rate upper
threshold becomes smaller as training progresses.

Figure 3.9 shows five example learning rate schedulers. In the left figure we
used log scale to show how the η changes at each iteration, starting from η0 = 0.1.
In the piecewise constant case, the learning rate was divided by 10 after every
25 iterations, while on the exponential case, the learning rate was varied with:
η(t) = η010

−t/25. In the cyclical learning rate case, the figure on the right shows
three variants. First, the triangular learning rate scheduler shown in red varies η
from 0.1 to 0.0001 by steadily increasing or decreasing the value every 25 iterations.
Second, the triangular2 learning rate scheduler shown in blue varies η in a similar
fashion, but the learning rate difference is cut in half at the end of each cycle.
Finally, the exp_range policy shown in magenta varies η between the two values,
while decreasing the upper threshold by an exponential factor of: γt, where γ = 0.98
in our example figure and t is the iteration number.

Regularisation. Due to having a large number of parameters, neural networks
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Figure 3.9: Example of learning rate schedulers: a piecewise constant learning rate
scheduler (black line), exponential scheduling (green line) and three types of cycli-
cal learning rate scheduling (red, blue dotted and purple dashed).

can exhibit overfitting behaviour [203]. To counteract this, one can feed more train-
ing data to the model, or, if unavailable, apply regularisation techniques. Some
practical approaches are described in the following paragraphs.

First, early stopping is a technique through which both the training and the
validation losses are monitored during training and the learning is stopped before
the validation starts to diverge. Then, l1 and l2 regularisation can be applied to
constrain a neural network by introducing in the loss function a penalty term (Ω)
applied to the network’s weights W. In the case of l1 regularisation (also known as
Lasso regularisation) the penalty is the L1 norm on the weights: Ω(W) = ||W||1,
while the l2 regularisation (also known as Ridge regularisation) the penalty is the
L2 norm: Ω(W) = ||W||22. Another popular technique is dropout, which randomly
‘turns off’ neurons during training with some probability p. This results in a different
layer node-wise and connectivity-wise every time an update occurs during training.
Hinton et al. [204] introduced the concept of dropout in 2012 and showed improved
results on a range of different applications from computer vision (e.g., handwritten
digit recognition).

Finally, data augmentation is one of the most widely used techniques today for
regularisation. It consists of generating new instances by applying transformations
to the images in your training set, thus boosting the available data. General meth-
ods for data augmentation include: the addition of noise, changes in image intensity
(brightness, saturation and contrast), or random affine transformations (rotation,
translation, scaling, shearing). In fact, the seminal paper by Ronneberger et al. [205]
used random elastic deformations when training the proposed 3D medical image seg-
mentation U-Net. It is worth mentioning that processing medical images poses its
own difficulties which are not encountered in the computer vision world of natural
images. For example, MR data is often three dimensional (or even four dimensional
in higher order cases such as DTI), and includes metadata to describe the physical
properties of voxels. For this reason, Pérez-García et al. [206] introduced TorchIO,
a Python library for loading, pre-processing and medical image data augmentation.
On top of the aforementioned transforms such as random affine, flip, or elastic de-
formations, it also includes downsampling on a particular axis (random anisotropy)
[207], MRI k-space motion artifacts [208], as well as ghosting, MRI spikes, bias field
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[209], image blurring and noise. It has been successfully used in many deep learning
medical image tasks [210, 211] and continues to be developed and improved.

3.1.3 Network architectures

A typical network topology found in the computer vision literature is composed of
convolutional layers, activation functions, max- or average-pooling layers, and, for
classification tasks, fully-connected layers attached at the end to output the required
predictions. For the purpose of this thesis, this section introduces three types of neu-
ral network (NN) architectures: the autoencoder (AE) and its probabilistic variant,
the variational autoencoder (VAE), the U-Net and a state-of-the-art implementation
called no-new-Net (nnU-Net), and the generative adversarial network (GAN) and
its extension known as the Cycle-GAN. These are important components of many
deep learning based applications while also representing the basic structures for the
proposed models in this thesis. To date, many more neural network architectures
have been created, however, it is not the purpose of this thesis to review their ca-
pabilities and for this we refer the reader to a recent survey paper on the subject
[212].

AE. Autoencoders are an unsupervised learning technique which aim to effi-
ciently learn a representation of the input data x without supervision. They can
be seen as two networks: an encoder represented as a function z = f(x), and a
decoder represented as a function x̂ = g(z), where z is often called the latent space
(or bottleneck/codings). Intuitively, the bottleneck of the autoencoder is meant to
ensure that the input data is not simply copied to the output, but instead impose a
compressed knowledge representation of this data, thus capturing the most salient
features needed to reconstruct it.

Training an AE is framed as a supervised learning problem through minimizing
the error LAE = Lrec(x, x̂) = ||x − g(f(x))||2 between the original data and the
reconstruction. Figure 3.10a shows a schematic example of an AE architecture,
where both the encoder and decoder can have one or multiple hidden layers.

VAE. Variational autoencoders were introduced in 2014 by Kingma et al. [213].
Intuitively, VAEs can be thought of as an autoencoder whose training is regularised
to ensure the latent space behaves well enough to allow generative processes. More
specifically, VAEs encode the input data as a distribution over the latent space,
sample from this distribution and pass it through the decoder to reconstruct it.
From an architectural point of view, the encoder of a VAE produces a mean µ and
a standard deviation σ. The actual coding z is then sampled randomly from a
Gaussian distribution parameterised by µ and σ using the reparametrization trick:
z = µ+ σ � ε, where ε ∼ N (0, 1).

In practice, VAEs encode the log σ2 instead of σ, as the logarithm function
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Figure 3.10: Schematic example of a) an autoencoder and b) a variational autoen-
coder, showing both the encoder and decoder parts of the artchitecture, as well as
the bottleneck/codings z. Note that in the VAE case z is sampled from a Gaus-
sian distribution parameterised by µ and σ.

has the range of set of real numbers R, while the variance is constrained to be
positive (i.e. σ2 ∈ R+). In this case, the codings become: z = µ + e0.5 log σ2 � ε.
VAEs are trained with a loss function which aims to minimise the reconstruction
error (similar to AEs), as well as a ‘regularisation term’ (applied on the latent
layer) whose objective is to impose structure on the latent space by making its
underlying distribution close to a normal distribution. This is achieved through the
Kullback-Leibler (KL) divergence between the distribution returned by the encoder
and a standard multi-dimensional Gaussian (known as the latent prior). The general
formula for the KL divergence for two multivariante Gaussians of dimension n is
[214]:

DKL[p1||p2] =
1

2

[
log |Σ2|
|Σ1|
− n+ tr{Σ−1

2 Σ1}+ (µ2 − µ1)
TΣ−1

2 (µ2 − µ1)

]
(3.10)

For the VAE case, let the encoder distribution be denoted as q(z|x) = N (z|µ,Σ)
where Σ = diag(σ2

1, σ
2
2, ..., σ

2
n), and the latent prior as p(z) = N (0, I). Then,

p1 = q(z|x) and p2 = p(z), which means that µ1 = µ, Σ1 = Σ, µ2 = 0, Σ2 = I.
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Thus, equation 3.10 becomes:

DKL[q(z|x)||p(z)] =
1

2

[
log |I|
|Σ|
− n+ tr{I−1Σ}+ (0− µ)T I−1(0− µ)

]
=

1

2

[
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]
(3.11)

Training a VAE therefore consists of minimizing the sum of two losses: the
generative (reconstruction) loss which compares the model prediction with the orig-
inal input, and the latent loss which compares the encoder’s latent codings with
a zero mean, unit variance Gaussian prior: LVAE = Lrec(x, x̂) + DKL[q(z|x)||p(z)].
Figure 3.10b shows a schematic example of a VAE architecture.

U-Net. The U-Net is a network architecture developed in 2015 by Ronneberger
et al. [205] and has become one of the most popular methods for deep learning
(biomedical) image segmentation today. It is a type of encoder-decoder architecture
which gained its name due to its symmetric shape (see Figure 3.11).

The encoder part of the network, also known as the contracting path, generally
consists of convolutional layers (with increasing number of filters at each encoder
block), followed by ReLU activation functions (blue arrows in Figure 3.11a), and
a max pooling layer through which the spatial dimensions of the feature maps are
generally halved (red arrows in Figure 3.11a). The decoder, also known as the
expansive path, consists of transposed convolutions (green arrows in Figure 3.11a)
whose output is concatenated, through the use of skip connections (gray arrows
in Figure 3.11a), with the encoder feature maps at the corresponding level. The
skip connections provide additional information to the decoder which helps it yield
better features, as well as acting as a shortcut for an improved gradient flow. The
last decoder step is a convolutional layer which maps the feature vectors to the
desired number of classes.

Initially, the U-Net was developed for 2-D images and showcased on electron
microscopy stacks of neuronal structures, as well as light microscopy images of cells
[205]. In 2016, Çiçek et al. [215] introduced the 3-D version of U-Net, where all
the convolutional and max-pooling layers were replaced with their three dimensional
counterparts (see Figure 3.11b). The authors showed improved segmentation results
when compared to a pure 2-D implementation. Additionally, they introduced batch
normalisation between each convolutional layer and ReLU activation function (see
Figure 3.11b) which further improved its performance.
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(a) 2D U-Net architecture as proposed by Ronneberger et al. [205].

(b) 3D U-Net architecture as proposed by Çiçek et al. [215].

Figure 3.11: U-Net architectures for both 2D and 3D applications.

nnU-Net. A state-of-the-art implementation of the U-Net is called nnU-Net and
it aims to be an out-of-the-box method for any biomedical imaging segmentation
tasks. In a nutshell, the nnU-Net is a framework which automatically configures
itself in terms of pre- and post-processing, as well as training parameters [216], in
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three main steps.

First, the authors define a series of fixed parameters (see blue box in Figure 3.12)
that will not change between different applications and which do not require adap-
tation. One example of such a design decision is the network architecture they use,
and which consists of both a 2D and a 3D U-Net [205, 215], with a few changes
brought to the original implementation, such as instance normalisation (instead of
batch normalisation) and LeakyReLU activations. In addition to the classic U-Net,
they introduce a cascaded U-Net architecture which is a 2-step model. In the first
stage, a 3D U-Net is trained on downsampled images. Then, its predictions are
upsampled to the original resolution and concatenated (as one-hot encodings) with
the full resolution images. A second 3D U-Net is then trained on patches of this
data with the aim of further improving the predictions.

Figure 3.12: The nnU-Net pipeline showing the overall recipe for configuring a
deep learning medical image segmentation solution for task-agnostic applications.
While the fixed parameters (blue box) are not changed during training, the data
fingerprint (red box) and their respective inferred rule-based parameters (green
box) are dynamically changed based on the application at hand. These determine
the design choices for training U-Net type architectures (both 2D, 3D and cas-
caded 3D U-Nets). Through cross-validation, the best performing model or ensem-
ble of models is chosen, and, together with connected-component post-processing,
deployed to make predictions on unseen test images. Image adapted from Isensee
et al. [216].
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In all cases, the loss function is kept as a combination of cross-entropy and Dice,
all of the networks are trained for 1000 epochs with stochastic gradient descent,
while the learning rate (initially set to 0.01) is decayed with a ‘poly’ learning rate
policy [189]. Data augmentation (in the form of random affine transformations,
random elastic deformations and gamma correction, among others) is also applied
on the fly during training [216].

Second, the authors define a set of heuristic rules (more details about these can
be found in both the paper and its supplementary material [216]) to operate on
the training data properties and infer the training parameters. More specifically,
the data fingerprint (red box of Figure 3.12) contains information on the type of
imaging modality, the image spacing (voxel size) or the image size (number of voxels),
while the rule-based parameters (green box of Figure 3.12) are inferred from the data
fingerprint using the pre-defined guiding principles. These rules determine the data-
dependent parameters which need adaptation for each new application, and are in
place to make decisions about: the image intensity normalisation scheme (different
for CT when compared to other modalities), resampling of all images into an inferred
target space, adapting the patch and batch sizes to the hardware constraints (e.g.,
the available graphics processing unit (GPU) memory). These rule-based parameters,
together with the fixed parameters, generate the pipeline fingerprints, which are
defined as all of the choices being made during method design [216].

Finally, a 2D U-Net, a 3D U-Net and a 3D cascaded U-Net are trained in a
5-fold cross-validation using the hyper-parameters determined so far. Then, the
nnU-Net framework chooses which model or combination of models to use based on
the foreground Dice coefficient during the cross-validation performed on the training
data. One or an ensemble of two models (through averaging of softmax probabilities)
is used for inference, while ‘non-largest component suppression’ is used as post-
processing if needed.

The self-configuring nnU-Net framework has demonstrated leading performance
on more than 20 public medical imaging datasets [216], with a broad set of modalities
such as MRI, CT or electron microscopy scans, and with organs or tissues of interest
ranging from brain, liver or heart, to microscopic cells. Moreover, it delivers on the
promise of being an out-of-the-box tool, as it does not require manual intervention
in designing task- or modality-specific configurations, and can be applied easily to
new and unseen medical datasets.

3.1.4 Network training strategies

GAN. Introduced by Goodfellow et al. [217] in 2014, GANs have recently become
popular deep learning training strategies throughout the computer vision commu-
nity due to their ability to generate new data, as well as their usefulness in reducing
domain shift [218]. The vanilla GAN [217] is a framework which consists of two
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networks, a generator G and a discriminator D, where the generator aims to pro-
duce realistic looking images, while the discriminator tries to differentiate between
real and fake (generated) samples. During training, the gradients are backpropa-
gated from D to G, such that the generator learns to produce examples which will
eventually fool D.

Figure 3.13 shows the overall architecture of the basic (vanilla) GAN [217]. The
generator G takes as input a random noise vector z ∼ pz (sampled from a uniform
or a Gaussian distribution), and outputs a fake sample xg. This image is expected
to be similar to a real sample xr which is drawn from the data distribution pr.
The generated samples form a distribution pg which, through appropriate training,
should be an approximation of the real data distribution. The discriminator, on the
other hand, associates a probability of either being real or fake to the samples given
as input. The loss functions for training the discriminator and the generator can be
defined as:

LGAN
D = max

D
Exr∼pr [logD(xr)] + Exg∼pg [log(1−D(xg))]

LGAN
G = min

G
Ez∼pz [log(1−D(G(z)))]

(3.12)

Figure 3.13: Vanilla GAN [217] where the generator G outputs a fake image (xg ∼
pg) given a random vector z as input (z ∼ pz), while the discriminator D aims to
classify the input samples (xr ∼ pr, or xg ∼ pg) as either real or fake.

During training, the 2 networks evolve together, while also competing against
each other. One potential problem with this training objective is when one of the
networks overpowers the other one. Most often, the discriminator becomes too good
at distinguishing between real and generated images, thus reaching a stage where
there is no gradient flow coming from it to guide training G. A second issue, which is
of high importance to the medical imaging domain, is that of hallucinating features
and introducing geometrical distortions in the generated images [219].

pix2pix. In the original setup, the GAN transformed noise z into sample xg.
When adding auxiliary information as input, the GAN can be extended to produce
images with specific properties. In fact, Isola et al. [220] was the first to introduce
a general purpose image-to-image translation framework called pix2pix. Figure 3.14
shows the overall architecture where images from domain A are translated into
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domain B. This setup requires aligned paired images to ensure fidelity of generated
data.

Figure 3.14: Image-to-image translation (pix2pix) [220] where the generator G
outputs a fake image (XB

fake) given a real image (XA
real) as input. The main aim

of the generator is to translate the real image from the source domain (A) to the
target domain (B), while the discriminator D aims to classify the samples from
domain B (XB

real or XB
fake) as either real or fake.

Cycle-GAN. To relax this constraint and allow for training with unpaired
datasets, Zhu et al. [221] and Kim et al. [222] introduced the Cycle-GAN, where two
generators are used to translate from one domain to another and back, while two
discriminators are responsible for each domain’s samples. The overall architecture
is shown in Figure 3.15, where the cycle consistency loss enforces the two mappings
(A → B, and B → A) to be reverses of each other.

In the medical imaging field, pix2pix-type frameworks are generally used when
paired data is available, while Cycle-GAN-type models are used for more general
applications. This is because the latter can more easily constrain the generated data
to be anatomically correct, and, in fact, Wolterink et al. [223] found that training
a Cycle-GAN model with unpaired images was better than with paired data at
synthesising MR to CT images. On the other hand, Zhang et al. [224] found
that cycle consistency was not sufficient to ensure the lack of geometric distortions,
and so they introduced segmentation networks to provide shape constraints to the
translated anatomies.

In pix2pix-type frameworks, constraints have been added through regularisa-
tion terms in order to preserve anatomy between fake and real images, while also
using unpaired datasets. For example, Mahmood et al. [225] introduced a self-
regularisation loss when generating synthetic representations of real endoscopy im-
ages. This term was added to the overall generator loss and was defined as the
l1 norm between the original and the synthesized images. Finally, BenTaieb et al.
[226] introduced an edge-weighted regularisation term to help the generator preserve
edge features between the input and the synthesized images.
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Figure 3.15: Cycle-GAN [221] where two generators GAB and GBA are used to
translate images from domain A to domain B, and from domain B to domain A,
respectively. For this, 2 discriminators (DA and DB) are used as classifiers for each
of the 2 domains.

3.2 Deep learning for medical image analysis

3.2.1 Deep learning-based medical image registration

This section focuses on reviewing the deep learning based registration algo-
rithms literature. The methods covered here are grouped into three categories, a
taxonomy based on the survey paper by Haskins et al. [227].

Deep iterative registration algorithms

The class of deep learning algorithms that fall under the deep iterative registra-
tion umbrella use networks as a means to augment the performance of an iterative,
intensity based classic registration framework. This is shown schematically in Fig-
ure 3.16, where solid lines represent information flow during training and inference,
while dashed lines are for training only. These methods, labelled as deep similar-
ity based registration by Haskins et al. [227], use deep learning to estimate a
similarity metric, which is then introduced in a classic registration framework. In
the remainder of this section, some notable papers from the field are presented.
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Figure 3.16: Overall schematic representation of deep similarity based regis-
tration methods where a neural network (shown in the figure as the black-box
NN) is used to estimate a similarity metric, which is then introduced in a classic
registration framework. Note that both the optimisation algorithm (Optimiser),
and the transformation model (Transform Parameters) are part of a classical
intensity-based registration framework. Image adapted from Haskins et al. [227].

First, Wu et al. [228] constructed a convolutional autoencoder (CAE) network
to extract data-adaptive features from 3D MRI image patches. Pairs of hierarchical
features are then used in a classical registration framework where gradient descent
optimizes the NCC between them. Their method outperformed HAMMER [229] and
Demons [97]. Eppenhof et al. [230] used a CNN to estimate the registration error
between pairs of 3D thoracic CT scans. Their network was trained on synthetically
deformed image patches and evaluated on deformable registrations of inhale-exhale
pairs of thoracic CT scans [230]. Similarly, Simonovsky et al. [231] constructed a
network to estimate the image similarity for multimodal registration. More specifi-
cally, they used a CNN to compute the dissimilarity between 3D T1w and T2w brain
MRI volumes. Using this, a classical registration framework was able to find the
parameters of a deformation field that registered the two modalities better than
using MI as a similarity metric. Finally, Wright et al. [232] used a long short-term
memory (LSTM) spatial transformer network to register MRI and ultrasound (US)
volumes. Their method dealt with global affine registrations and it outperformed a
previous multimodal image-registration algorithm [233].

Supervised transformation estimation

As the previously described methods were slow, deep learning registration research
started to focus its attention towards developing faster methods. For this, supervised
and semi-supervised networks were created where ground truth deformation fields
or tissue segmentations were used to drive the learning process.

Initially, networks were trained using a full supervision approach. Figure 3.17
shows the general architecture of these methods, where the neural network predicts
the transformation parameters needed to align the images. As the name suggests,
ground truth deformation fields are needed during training.

Yang et al. [234] created a U-Net like architecture to predict the initial momenta
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Figure 3.17: Overall schematic representation of fully supervised deep learn-
ing registration methods methods where ground truth transformation param-
eters are needed to drive the learning process. Image adapted from Haskins et al.
[227].

needed to generate a deformation field through LDDMM shooting. Their network
was trained on pairs of 2D or 3D MRI patches and ground truth initial momenta were
computed through numerical optimization of the LDDMM shooting formulation.
This method sped up computational time to only a fraction of the time required
by classic optimisation-based techniques. Similarly, Rohe et al. [235] used pairs
of 3D cardiac MR images to predict a SVF. Ground truth data was generated by
computing deformation fields from mesh segmentations of image pairs.

Cao et al. [236] used a CNN to regress a displacement vector for given input
3D image patches. The patch-wise displacements were then aggregated into a dense
deformation field by thin-plate spline (TPS) interpolation. Some of their contri-
butions also included the sampling strategy of the patches (equalized active-points
guided sampling strategy) which ensured that patches with higher gradient mag-
nitudes and displacement values were sampled more frequently. The ground truth
deformation fields used to train the network were generated by first registering the
images using Syn [60] and diffeomorphic Demons [97]. Finally, Uzunova et al. [237]
used a FlowNet [238] architecture on 2D brain and cardiac MR images. Unlike the
previous methods, the ground truth deformations were estimated using statistical
appearance models (SAM).

Dual supervision models train the networks on both ground truth deformation
fields and a similarity measure (i.e., SSD, NCC, NMI) which compares the fixed and
the warped moving images. For example, Fan et al. [239] used a hierarchical dual-
supervised fully convolutional neural network (FCNN) to predict the deformation
field needed to register pairs of 3D MR images. For training, the authors used
both the similarity between predicted and ground truth deformations, as well as the
similarity between the moved and fixed images.

Finally, weakly supervised deep learning methods use tissue segmentations
to drive the registration. A notable example is by Hu et al. [183, 240] where
label similarity is employed to train a network on pairs of MRI and transrectal
ultrasound (TRUS) data. In this work, the authors develop two networks: a Global-
net for estimating an affine transformation and a Local-net for predicting the dense
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Figure 3.18: Overall schematic representation of dual supervised deep learn-
ing registration methods where, on top of using ground truth deformation fields
to drive the learning process, an image similarity metric is employed to measure
the error between the warped moving and the fixed images. Image adapted from
Haskins et al. [227].

displacement field. The inputs to the combined (Global/Local-net) network are
pairs of MR-TRUS 3D volumes and their respective organ segmentation maps, while
training is done by minimizing the Dice loss between the moved and fixed labels.
Figure 3.19 shows the proposed architecture during training and inference, which
highlights one of the novelties of this work: labels are not needed at test time, only
during training.

Later, Hu et al. [241] developed an adversarial network to perform the MR-TRUS
registration while simultaneously maximizing label similarity and minimizing an
adversarial loss on the deformation field. This regularisation strategy outperformed
standard bending energy based regularisation. Hering et al. [242] proposed a U-
Net like architecture to register pairs of 2D cine-MR images. In their work, the
authors introduced a loss function that took into account both the similarity between
the fixed and moved MR images (as edge-based normalized gradient fields distance
measure) and their respective labels (as SSD).

Unsupervised transformation estimation

Although the previous methods performed well and provided high quality registra-
tions, the need for ground truth data meant that pre-processing was needed for
training the networks. For this reason, research moved towards unsupervised meth-
ods, which bypassed the need for collecting or simulating data.

Unlike dual supervised models (see Figure 3.18), similarity metric based un-
supervised methods do not employ ground truth transformation parameters, and
train their models on a well-defined similarity measure only (see Figure 3.20). Li et
al. [243, 244] were one of the first to create and train a CNN model for deformable
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Figure 3.19: Weakly supervised deep learning for multi-modal deformable regis-
tration during training and inference. The inputs to the network are pairs of T2w
MR and TRUS images, while label data is used to compute the loss between the
warped and the fixed labels. Bending energy [68] is added to the overall loss to
regularise the predicted output dense displacement field. At inference time, the la-
bels are no longer needed, as the network predicts the dense displacement field us-
ing pairs of image data only. Figure adapted from Hu et al. [183]. For simplicity,
the Global-/Local-Net architectures are not explicitly shown in the figure, how-
ever, the reader can consult [240, 183] for their detailed description.

registration of 3D brain MRI volumes. Their loss function was composed of an NCC
similarity measure between the fixed and the warped images, and a smoothing con-
straint on the predicted deformation field. Their work outperformed ANTs [245].
Similarly, de Vos et al. [246] trained a CNN using an NCC similarity metric on
4D cardiac cine MR volumes. The following year, they improved their method by
constructing a multi-stage, multi-scale registration network [247] to perform an ini-
tial affine and a subsequent B-spline non-linear registration between images of the
same modality. Their method outperformed a classic registration technique called
Elastix [248]. Stergios et al. [249] used a CNN to jointly predict a linear (affine)
and a non-linear transformation capable of registering inhale-exhale pairs of lung
MR volumes. The loss function was made up of a MSE metric and regularization
terms, and it outperformed ANTs-based [60] registration.
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Figure 3.20: Overall schematic representation of unsupervised deep learning
registration methods where no ground truth data is used and an image similar-
ity metric is employed to measure the error between the warped moving and the
fixed images. Image adapted from Haskins et al. [227].

Balakrishnan et al. [250, 182] introduced Voxelmorph as a general unsupervised
image registration framework. In their work, they employed a U-Net like architecture
trained to generate a dense deformation field (see Figure 3.21). The loss function was
made up of an image similarity metric (LNCC) and a regularisation term. Following

Figure 3.21: Voxelmorph unsupervised image registration framework as proposed
by Balakrishnan et al. [250, 182]. A pair of moving (M) and fixed (F) images
form the input to a U-Net-like architecture trained to generated a dense displace-
ment field ϕ. A spatial transformer layer resamples the moving image into the
warped image M(ϕ). The loss function is made up of an image similarity metric
between the fixed and warped images, and a diffusion regularizer on the predicted
displacement field to encourage smooth deformations. For simplicity, the U-Net
architecture is not explicitly shown in the figure, however, the reader can consult
[250, 182] for a detailed description.

this work, Dalca et al. [181, 251] extended Voxelmorph to predict the deformation
field through variational inference (see Figure 3.22). Moreover, it introduced scaling
and squaring layers to ensure a diffeomorphic deformation. Their work outperformed
ANTs-based registration [60].

Krebs et al. [252] had a different approach to a variational framework, and
introduced a conditional variational autoencoder (CVAE) network to learn a prob-
abilistic model for image registration. Similar to Dalca et al. [181], their proposed
network outputs a velocity field v which is then integrated to produce a deforma-
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Figure 3.22: Diffeomorphic Voxelmorph unsupervised image registration frame-
work as proposed by Dalca et al. [181]. The network outputs the approximate
posterior probability parameters, i.e., velocity field mean µ and variance Σ, from
which the velocity field z is sampled. Through scaling and squaring layers z is
then transformed into a topology-preserving deformation field ϕ. The loss func-
tion is made up of an image similarity term (Lrec) which encourages the warped
moving M(ϕ) to be similar to the fixed image F, and the KL divergence (LKLD)
which encourages the posterior to be close to a multivariate normal prior. For
simplicity, the U-Net architecture is not explicitly shown in the figure, however,
the reader can consult [181] for a detailed description.

tion field ϕ. In their work, the moving image acts as the conditioning data and is
warped to match the fixed image. The loss function is therefore comprised of the
reconstruction loss between the warped moving and the fixed images (as LNCC) and
the KL divergence between the encoded latent distribution and a prior probability
distribution which acts as a regularisation term. Later, the authors introduced a
multi-scale approach [253] where estimations of velocity fields, deformation fields
and deformed moving images were generated at three different scales: the original
size (full scale), half of the original size (middle scale) and a quarter of the original
size (coarse scale). Their experiments showed that the multi-scale approach led to
improved registration results when compared to their previous network.

A different multi-scale approach was brought forward by Kuang et al. [254]. The
authors introduced inception modules (see Section 3.2.2 for a description of incep-
tion modules) into their CNN architecture for the purpose of capturing information
at different spatial scales. Their network was trained using the NCC similarity
metric and a regularization term, and it outperformed Voxelmorph [182]. Later,
Zhang et al. [255] introduced inverse-consistency in their proposed CNN network.
More specifically, they generate both the deformation from the moving image to
the fixed image and the deformation from the fixed image to the moving image,
and then employ a constraint which ensures that the predicted flows are consistent.
Their work outperformed ANTs-based registration [60]. Fan et al. [256] introduced
a GAN-based approach to assess the similarity between the fixed and the moved
images. Unlike other approaches where a similarity metric is explicitly introduced
for the application at hand, in this work the discriminator is trained to assess the
quality of the alignment. This approach outperformed diffeomorphic Demons [78]
and ANTs-based [60] registration approaches.
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Figure 3.23: Diffeomorphic unsupervised probabilistic registration network frame-
work as proposed by Krebs et al. [252]. The network outputs a velocity field v
which is smoothed through a Gaussian smoothing layer, and then transformed
into a topology-preserving deformation field ϕ through the exponentiation (scal-
ing and squaring) layer. The decoder part of the network is conditioned on the
moving image M at three different scales (the original size and 2 downsampled
versions). The loss function is made up of an image similarity term (Lrec) which
encourages the warped moving M(ϕ) to be similar to the fixed image F, and the
KL divergence (LKLD) which encourages the vector z to follow a prior distribution
p(z), defined as a multivariate unit Gaussian p(z) = N (0; I) (where I is the iden-
tity matrix). For simplicity, the CVAE architecture is not explicitly shown in the
figure, however, the reader can consult [252] for a detailed description.

In 2020, Mok et al. [257] introduced the Laplacian pyramid image registration
network (LapIRN), which utilizes a multi-resolution strategy for large deformation
image registration tasks. The authors trained their framework through a coarse-to-
fine scheme, by first training the network at the coarsest level alone, and then adding
the next levels into training until the finest resolution is reached. Their proposed
model won the 2020 MICCAI Learn2Reg1 challenge.

So far, the focus was on pairwise registrations only. For groupwise registration,
van der Ouderaa et al. [258] introduced GroupMorph, an extension to Voxelmorph
[181], to register multiple images simultaneously. The authors stacked a series of
input images along the channel axis, and trained the network to generate multiple
velocity fields. Thereafter, the velocity fields are transformed into deformation fields
through scaling and squaring layers. Finally, the authors train the network in two
ways: all-to-one, by considering one of the inputs as the fixed and the rest of the
inputs as moving, and all-moving by registering all of the input images to their
geodesic average. The experiments they conduct show that their proposed strategy
was able to simultaneously register multiple scans while preserving the performance
of the original Voxelmorph [181]. Similarly, Gu et al. [259] proposed the symmetric

1learn2reg.grand-challenge.org/Learn2Reg2020
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cycle consistency network, where both inverse- and cycle-consistency is introduced.
The inverse-consistency ensures pair-wise registrations are bidirectional, while the
cycle-consistency is an extension for multiple images. More specifically, the group-
wise consistency is a penalty introduced in the loss function for groups of more than
three images. It ensures that for n ordered images, the composition of all the pair-
wise deformations (ϕ1→2, ..., ϕn−1→n) is equal to directly registering the first and
the last images.

One common denominator to the unsupervised deep learning medical image
registration methods presented so far is the use of image-based similarity metrics. A
different approach, known as the feature based unsupervised transformation
estimation method, aims to use learnt features to align images. For example, Yoo et
al. [260] train an AE to reconstruct electron microscopy images. Then, the authors
employ a spatial transformer network to align pairs of images, by minimizing the
L2 norm between the encoded features of the fixed and the warped images. In this
way, the authors do not use similarity metrics in image space, but align the images
based on their encoded representations.

Similarly, Lee et al. [261] introduce the image-and-spatial transformer network
where the moving and the fixed images are inputs to an image transformer neural
network which aims to produce image representations optimised for downstream
tasks. These intermediate representations are then fed into the spatial transformer
network. The authors also use segmentation maps to guide the registration, and
show that their proposed method outperforms the unsupervised (no labels) and
supervised (with labels) transformer-only network.

3.2.2 Deep learning-based medical image segmentation

This section focuses on reviewing state-of-the-art deep learning segmentation
models, using a taxonomy proposed by Wang et al. [262] which groups different
works based on: the backbone network architecture, the selection of network blocks,
improvements brought to the training loss function, as well as the use of data aug-
mentation.

Network architectures

One way of grouping deep learning image segmentation models is by the improve-
ments they bring on the network architectures. This section presents a review of
some of the most popular architectures found in the state-of-the-art medical image
analysis literature.

U-Net. The encoder-decoder structure of the U-Net [205, 215] (see also Sec-
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tion 3.1.3 U-Net) is one of the most widely used network architectures today. In
fact, the U-Net is often regarded as a benchmark for many medical imaging segmen-
tation tasks, as well as an important starting point for many network architectures
[216, 263, 264, 265, 266, 267, 268].

A notable improvement to medical image segmentation applications is the cas-
caded model. In a nutshell, this strategy aims to increase segmentation accuracy
by training two or more networks. In fact, the nnU-Net presented in Section 3.1.3
sometimes makes use of this scheme to further refine its predictions. In their case, a
2-step process is employed: first, a 3D U-Net is trained on downsampled biomedical
images to predict segmentation maps, then, a second network (also a 3D U-Net) is
trained on patches of the full resolution images concatenated with the first stage
predictions with the aim of improving the predictions. Christ et al. [263] has a
similar approach where they propose a liver and tumour segmentation cascading
model as seen in Figure 3.24. One U-Net is trained to localise an organ of interest
(the liver in their case), while a second U-Net is trained on images masked with the
stage 1 predictions to segment smaller structures (tumours).

Figure 3.24: An example of an image segmentation cascading model as proposed
by Christ et al. [263], where in the first stage a U-Net is used to segment the liver
in a CT slice, while in the second stage the network takes the cropped and masked
liver image as input with the aim of segmenting tumour lesions. Image adapted
from [263].

HighResNet. A different approach to the U-Net was studied by Li et al. [269]
where the goal was to design a high-resolution network capable of segmenting small
structures in 3D medical images. HighResNet uses dilated convolutional layers and
residual connections, and keeps the original resolution of the input volume through-
out the network (see Figure 3.25).

The authors apply their proposed solution for segmenting 3D T1w MR brain
images of healthy volunteers from the ADNI2 dataset into 155 structures and 5 non-
brain tissues. They show improved results over U-Net and other state-of-the-art
3D biomedical image segmentation networks [197, 270], while using fewer network
parameters. However, the drawback of this architecture is that, because it does
not downsample the input data at any of its layers, its GPU memory footprint can
become large.

DeepMedic. Driven by the need for better and more accurate medical image
2https://adni.loni.usc.edu/
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Figure 3.25: Architecture of HighResNet [269]. The first convolutional layer uses
16 filters of kernel size 33, followed by batch normalisation and ReLU activation
functions. Then, blocks with residual connections between their inputs and their
respective outputs made up of batch normalisation, ReLU activations and (di-
lated) convolutions of increasing number of filters are repeated 3 times each. Fi-
nally, a 13 convolution followed by a Softmax activation outputs the 160-channels
prediction. Image adapted from [269].

segmentation models, different approaches to improving the network architecture
have been developed [271]. For example, Kamnitsas et al. [270] introduced a dual
pathway 3D CNN architecture named DeepMedic. The main aim of this approach
was to incorporate both normal and lower resolution patches in order to increase
the contextual information of the model.

Their work was intended for segmenting abnormalities, application in which con-
text is generally considered important [271]. As feeding large patches to a network
can become memory expensive, their proposed solution was therefore to add a down-
scaled representation of a larger context around the normal resolution patch. This
is shown in Figure 3.26 where the independent streams are based on the two input
patches. These are fed through different convolutional layers, while the low reso-
lution stream is upsampled to match the normal resolution feature maps prior to
becoming input to the fully connected 13 convolutional layers.

Dolz et al. [272] introduced a 3D fully convolutional network with the aim of
predicting segmentation maps of subcortical brain structures in 3D MRI. Similar to
DeepMedic [270], the authors modelled both local and global context, but increased
the depth of the model by using smaller kernel sizes, and removed the dual pathway
in favor of injecting intermediate-layer feature maps in the final prediction. They
evaluated their method on the ABIDE3 dataset [273] and showed its robustness to

3The Autism Brain Imaging Data Exchange
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Figure 3.26: The overall architecture of the DeepMedic image segmentation model
as proposed by Kamnitsas et al. [270], where both local (normal resolution) and
larger (lower resolution) contextual information are processed simultaneously
through the two convolutional pathways. For the sake of simplicity, the number
of feature maps and their size has been omitted in the figure, but the reader can
refer to the original paper for more details [270]. Image adapted from [270].

different ages, acquisition sites and diagnosis groups.

Network blocks

Another approach to biomedical image segmentation tasks using deep learning meth-
ods is to introduce novel network blocks. In this subsection the focus is on three
types of modules which have brought improvement to segmentation networks.

Residual connections. First, residual connections have become very popular
since their introduction in the computer vision field through the ResNet architecture
[274] where He et al. showed that they are a simple, yet very effective way of easing
training of deep neural networks. The problem that was explored by the authors was
that of increasing the depth of a neural network, which showed that training accuracy
becomes saturated and starts to degrade [274]. Introducing residual connections
helped overcome this problem and the rationale for this has been explored by Veit
et al. [275] where they showed that such networks behave like an ensemble of
shallower models.

In a nutshell, a residual connection provides a way for data to skip layers and
reach deeper parts of the neural network. Figure 3.27 schematically shows an ex-
ample of how this can be achieved. In fact, Milletari et al. [197] proposed the
V-Net as a 3D medical image segmentation network which incorporates residual
connections, and applied it to predict segmentation maps of the prostate in MRI
volumes. Residual connections were also introduced in Voxresnet for 3D MR im-
age brain segmentation [276], 2D Res-UNet for retina vessel segmentation [277], or
SEGANet where, on top of the residual units, the authors introduced instance layer-
normalization and PReLU activation functions in a standard 3D U-Net and applied
to segment the left atrium in short-axis dynamic cardiac MRI volumes [278].

95



3.2 Deep learning for medical image analysis

Figure 3.27: Residual connection as proposed by He et al. [274] is a simple and ef-
fective way of easing training of deep NNs. On the left, two layers are represented
through the mapping F (·) which takes as input x and produces F (x) as its out-
put. On the right, the residual connection is portrayed as a bypass of these layers
such that the output becomes F (x) + x. Image adapted from [274].

Dense connections. A similar approach to residual units was introduced by
Huang et al. [279], where the input from each layer comes from the output of all
previous layers. As each layer has access to the loss function’s gradients, networks
which employ dense connections have enhanced information flow which makes them
more compact while achieving better performance [279, 280]. A schematic represen-
tation of a 4-layer dense connection is shown in Figure 3.28, where the output of
the lth layer is concatenated to the input of the (l + 1)th layer. Consequently, each
layer receives as input the feature maps of all previous layers.

Figure 3.28: A 4-layer dense connection example showing how each layer’s output
is concatenated to the next layer’s input. The input of the first block is also an
input to each subsequent layers. The output is the aggregation of all previous lay-
ers’ outputs together with the original input. Image adapted from [280].

In fact, Guan et al. [280] proposed an improved 2D U-Net which used dense con-
nections at each block. Moreover, Zhou et al. introduce U-Net++ [264, 281] where
the encoder and the decoder layers are linked through a series of dense connections.
They apply their proposed method on 2D and 3D datasets with the aim of segment-
ing the liver and lung nodules, respectively. Additionally, they test their model on
2D microscopy images and RGB videos of colon polyps. In all cases they achieve
better results than the simple U-Net. Dolz et al. [282] introduced HyperDenseNet,
a 3D multi-modal fully convolutional neural network that uses dense connections,
and showed state-of-the-art results on segmenting isointense T1w and T2w brain MR
images of 6-months old infants [283]. This model was later applied on the dHCP
dataset and showed improved results over other segmentation models [284]. It is
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worth mentioning, however, that although dense connections can be helpful, they
can also increase the number of parameters of a network which would require more
computational power.

Inception. The inception module was introduced by Szegedy et al. [285] as a
means of allowing multiple filter sizes to co-exist in a single block. The outputs of
each layer of different sized filters is then concatenated and passed to the next layer
in the network. Figure 3.29 shows this schematically in its so-called ‘naive’ form
(a), as well as a more complex version (b).

Figure 3.29: Inception module examples showing both a ‘naive’ version [285]
(in a), as well as a more complex version [286] (in b). The input layer is passed
through different convolutions (with different filter sizes, as well as a max-pooling
operation in the ‘naive’ case, or with different dilation rates in the more complex
case), and the output of each of these layers is concatenated and passed to the
next layer in the network. Image adapted from [285, 286].

Qamar et al. [287] propose a 3D U-Net in which they adopt the inception
module, as well as dense and residual connections for isointense MRI infant brain
tissue segmentation [283]. Gu et al. [286] introduce a modified inception module
(Figure 3.29 b) into their proposed medical image segmentation architecture, which
included atrous (dilated) convolutions with the aim of widening the receptive field.
The authors applied their model on multiple tasks including CT lung segmentation,
retinal vessel detection, as well as cell contour segmentation, and achieved supe-
rior results to other state-of-the-art models. However, their work was focus on 2D
images only, and it is also worth mentioning that the inception structure is gener-
ally quite complex and leads to increased efforts when trying to change the model’s
architecture.
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Loss functions

Besides developing new and improved network architectures or blocks, designing loss
functions has also been of particular interest in the literature [262]. This section
therefore focuses on the most prevalent loss functions designed for medical image
segmentation tasks.

Cross entropy. One of the most popular loss functions is the cross entropy
(CE) loss, which measures how well the estimated class probabilities match the
target values. Let K ∈ N≥2 be the number of classes, yk the value for the target
class k, and p̂k be the prediction for class k, then the CE for instance (voxel) i is
defined as:

CE(i) = −
K∑
k=1

y
(i)
k log

(
p̂
(i)
k

)
(3.13)

where y
(i)
k represents the target (ground truth) probability values for each class k

such that
∑

k y
(i)
k = 1. In practice, y(i) is often a one-hot encoded vector. Moreover,

during neural network training, the loss is often calculated as an average4 across all
N voxels:
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When K = 2, CE becomes the binary cross entropy (BCE):

BCE(i) = −
(
y(i) log

(
p̂(i)
)
+ (1− y(i)) log

(
1− p̂(i)

))
(3.15)

where y = y1 and p̂ = p̂1, and as the two classes are mutually exclusive we can also
write: y2 = 1 − y and p̂2 = 1 − p̂. Figure 3.30 shows how the BCE behaves across
different predicted p̂ values for the two target classes (when y = 1 or when y = 0).

Moreover, when data imbalance is an issue, one can use the weighted cross
entropy (WCE) introduced by Long et al. [288]:

WCE(i) = −
K∑
k=1

wk y
(i)
k log

(
p̂
(i)
k

)
(3.16)

where wk is a per-class weight.

In the medical imaging field, Zhang et al. [178] used the CE loss to train their
proposed 2D CNN solution for brain tissue segmentation of 6–8 month old infants.
More specifically, using patches of multi-modality information (T1w, T2w and FA
maps) as input, their network was trained to predict the label for each individual

4Machine learning software frameworks such as PyTorch allow the user to choose between
different reduction schemes: sum or average over all voxels.
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Figure 3.30: Binary cross entropy for the two target classes: y = 1 (left panel) and
y = 0 (right panel). BCE becomes −log (p̂) when y = 1, and −log (1− p̂) when
y = 0, respectively. The loss penalizes the predictions more when they are further
away from the target value.

voxel. Moeskops et al. [289] built an improved 2D CNN architecture using multi-
scale information: for each voxel to be predicted, their network used patches of
different sizes, as well as different sized convolution kernels. Similar to Zhang et
al. [178], the authors trained their model with CE loss, but applied it to multiple
datasets: T2w coronal and axial slices of preterm infants (acquired at 30 and 40
weeks PMA), as well as T1w images of an adult cohort. Moreover, they evaluated
their technique on the NeoBrainS12 challenge data [164] and obtained accurate
segmentations in terms of Dice scores for all tissue classes.

Ronneberger et al. [205] notably introduced a version of the WCE loss where
the weight was only attributed to the foreground class. More specifically, w was a
pixel-wise weight map, pre-calculated for each ground truth segmentation with the
aim of improving predictions in areas where the separation border between two or
more foreground classes was very small.

Dice loss. The DSC (see equation 2.42) is a highly regarded evaluation metric
for medical imaging segmentation tasks. Milletari et al. [197] introduced it as the
Dice loss (DL) function, where its multi-class variant is defined as:

LDL = 1− 2
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Here, the ε term is added to ensure the stability of the loss during training and avoid
division by 0 when the ground truth and predicted segmentations are empty.

Sudre et al. [290] introduced the generalised Dice loss (GDL) as a means of
counteracting inter-class imbalance. The aim is to correct the contribution of each
label by weighting it with the squared inverse of its volume, thus ensuring that
smaller sized objects are contributing to the overall loss and are not overpowered by
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larger entities. Mathematically, the GDL is defined as:

LGDL = 1− 2
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where
wk =

1(∑N
i=1 y
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)2
Loss improvements. In current state-of-the-art biomedical image segmenta-

tion literature many authors adopt the use of both CE and DL in their final loss
function [266, 268, 291]. Salehi et al. [292] introduced the Tversky loss, based on
the Tversky index [293]:

Tversky =
|Sf

g ∩ Sf
p |

|Sf
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p |+ α|Sf
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g |+ β|Sf
g \ Sf

p |
(3.19)

which is a generalisation of the DSC (it becomes DSC when α = β = 0.5). The
2 parameters, α and β, control the amount of penalising FPs and FNs in the loss
function. The authors applied their method on T1w, T2w and fluid attenuated inver-
sion recovery (FLAIR) MRI volumes with the aim of segmenting multiple sclerosis
lesions, and showed that they outperformed networks trained using classic Dice.
Other works include the Wasserstein [294] or the focal loss [295] for imbalanced
segmentation tasks, introduce penalties in the loss function through distance maps
[296], or anatomically constrain predicted segmentations through a convolutional
AE trained with ground truth labels [297].

3.2.3 Visual attention

Attention in the context of deep learning has become an important area of research in
recent years as it can be easily incorporated in current neural network architectures,
while also improving their performance [298, 299]. Attention has reached many
areas of deep learning, and it is used with pixels in an image, words in a sentence
[300], nodes in a graph [301], or even points in a 3D point cloud [302]. Attention
was born in the area of sequence to sequence modeling [303], where networks are
trained to translate sentences of arbitrary length from one language (i.e., English)
to another (i.e., French). In this case, attention helps with figuring out the most
important elements in the input sequence to predicting an accurate output sentence
[304]. This dependency is also important in computer vision tasks, where attention
can be used along the spatial or channel domain.

In the medical image analysis field, attention has become an important area
of research as models which incorporate it attain state-of-the-art results, as well
as explainability [305]. The latter is especially desirable when applied to medical
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diagnosis [305, 306] where the reliance of the networks on the correct features must
be guaranteed [306, 307]. For the purpose of this thesis, the focus is on image-based
methods only, where attention is predominantly built as a mask used to identify
key features in the input data or the feature maps of the neural network. In this
respect, attention methods can be divided in two categories, soft attention and
hard attention, depending on how the mask is constructed. In the hard case, the
model is restricted to use only a subset of the input data (e.g., train a network to
localise an organ of interest and mask the original image using the prediction [308]),
while in the soft case, the model pays higher or lower importance over different areas
of the input. The remainder of this section will focus on discussing soft attention
models in more depth and introduce typical examples, while hard attention is out
of scope for this thesis.

Soft attention methods rely on building a probability map over input data,
features or channels. They often add computational complexity to an existing deep
learning model, but have a differentiable objective and are easily trainable with
gradient descent. Soft attention can be further divided into: channel attention,
spatial attention, mixed attention, and non-local attention.

Channel attention. In a typical CNN the convolutional layer weighs each of its
channels equally when creating the output feature maps. Given an input tensor X′

with dimensions H ′×W ′×C ′ (height, width and number of channels, respectively),
the output of applying a convolutional layer is a feature map of dimensions H ×
W ×C. Internally, this layer applies C filters of dimension k×k×C ′, where k is the
chosen kernel size. The purpose of channel attention is therefore to assign weights
to each of the C filters in order to emphasize useful features.

One of the most popular channel attention blocks, known as the squeeze-and-
excitation block, was introduced by Hu et al. [309]. Figure 3.31 shows a schematic
representation of this module. For the sake of completion, the first step in this
diagram shows a generic convolutional layer (Ftr) transforming the input tensor
X′ into a feature map U with dimensions H ×W × C. This feature map is then
put through a squeeze function (Fsq), which is defined as a global average pooling
operation [310]. For each channel c ∈ [1, C] this can be written as:

Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (3.20)

where uc is the cth element of U. Its output z is then passed to an excitation function
(Fex) defined as a sigmoid function applied to an MLP g with weights W:

Fex(z,W) = σ(g(z,W)) = σ(W2 δ(W1z)) (3.21)

Here, δ is the ReLU function, σ is the sigmoid activation function, while W1 ∈
RC/2×C and W2 ∈ RC×C/2 are 2 fully connected layers. This operation generates
a feature weight map of values constrained between [0, 1] which is used to scale
the input U channel-wise to become the refined output X. In short, the channel
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attention is computed as:

αSE = σ (W2 δ (W1 GlobalAvgPool(U))) (3.22)

Figure 3.31: Squeeze-and-excitation [309] block showing: Ftr - a generic convolu-
tional layer which transforms the input tensor X′ into a feature map U, Fsq - the
squeeze function applied to U which produces a tensor of dimension 1 × 1 × C;
Fex - the excitation function applied to the output of the previous layer which is a
MLP with a sigmoid activation function; and Fscale - a scaling function which per-
forms elementwise multiplication (along the channel dimension) between the input
U and the previous layer. The output of the squeeze-and-excitation module is a
refined tensor X of the same dimensions as its input U. Image adapted from [309].

Hu et al. [309] introduced the squeeze-and-excitation block throughout inception
networks [285] and ResNet [311], and showed improved classification performance on
the ImageNet dataset [312]. In the medical imaging field, Chen et al. [313] proposed
a modified U-Net [205] with ResNet blocks [311] in the encoder, and squeeze-and-
excitation blocks to achieve feature channel attention when fusing the encoder with
the decoder features. The authors used the proposed method for liver lesion segmen-
tation in CT slices, and achieved state-of-the-art results when compared to previous
methods.

Woo et al. [314] introduced global max pooling on top of the global average
pooling layer to generate two C-dimensional descriptors (see Figure 3.32). These
feature vectors are summed and then put through a sigmoid activation function
which generates the final channel attention map αC. The map is then used to scale
the input U to become the refined output X. In short, the channel attention is
computed as:

αC = σ (W2 δ (W1 GlobalAvgPool(U)) + W2 δ (W1 GlobalMaxPool(U))) (3.23)

where δ, σ, W1 and W2 have the same definitions as the squeeze-and-excitation
block [309].

Spatial attention. The spatial attention is an alternative approach to soft
attention which aims to extract important information in the image domain, or
across the spatial domain of a feature map. In Woo et al. [314], the spatial attention
block first performs an average and a max pooling operations across the channels
on the input U, generating two feature maps which are concatenated. A 7 × 7
convolutional layer [314] is then applied to produce a 1-channel spatial map which,
after passing through a sigmoid activation function, becomes the attention map.
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Figure 3.32: Channel attention block [314] showing: Ftr - a generic convolutional
layer which transforms the input tensor X′ into a feature map U, followed by
global average and max pooling layers. The two feature descriptors are forwarded
to a shared network (an MLP with one hidden layer) to produce refined feature
maps. These two vectors are merged using element-wise summation and put
through a sigmoid activation function to create the final channel attention map.
The output X is generated by multiplying the attention map by the original input
U. Image adapted from [314].

The input U is then scaled by the attention map becoming the refined feature map
X. In short, the spatial attention is computed as:

αS = σ
(
f 7×7 ([AvgPool(U);MaxPool(U)])

)
(3.24)

where [·; ·] represents the channel-wise concatenation of the two feature maps and
f 7×7 is the convolutional layer. Figure 3.33 shows a schematic representation of this
module.

Figure 3.33: Spatial attention block [314] showing: Ftr - a generic convolutional
layer which transforms the input tensor X′ into a feature map U, followed by av-
erage and max pooling layers. Then, a 7 × 7 convolutional layer is applied on the
concatenated maps, while the sigmoid activation function creates the attention
map. The output X is generated by multiplying the attention map by the original
input U. Image adapted from [314].

In the medical imaging field, Guo et al. [315] introduced the spatial attention
block [314] in the bottleneck of a 2D U-Net [205] and showed that their proposed
method outperformed the classic U-Net in terms of segmenting fine structures (blood
vessels) in retinal fundus image data. Similarly, Oktay et al. [265] introduce the
Attention U-Net, where attention gates are added to every decoding layer. Unlike
the spatial attention block [314] shown in Figure 3.33 where the average and max
pooling layers are applied to the same input feature map, the attention gates apply
convolutions to both features from the encoder and the corresponding decoder and
fuse them together before creating the attention map. Moreover, instead of simply
concatenating the encoder feature maps through the use of skip connections, the
authors first scale them with the generated spatial attention. The proposed Atten-
tion U-Net was evaluated on 3D multi-class abdominal CT segmentation where it
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showed improved results against standard U-Net, especially in organs with variable
small size.

Mixed attention. Woo et al. [314] also introduced an aggregated atten-
tion with the aim of combining the advantages of both spatial and channel atten-
tion mechanisms. The authors proposed the convolutional block attention module
(CBAM), where the channel attention block (Figure 3.32) is followed by the spatial
attention block (Figure 3.33) as shown in Figure 3.34.

Figure 3.34: Mixed channel and spatial attention block (CBAM) [314] where the
feature map U is first refined using channel attention (Figure 3.32) and then us-
ing spatial attention (Figure 3.33), to produce the final output X. Image adapted
from [314].

In the medical imaging field, CBAM [314] has proven to be a popular option
for integrating attention into existing CNN architectures. For example, Zhao et al.
[316] introduced the CBAM U-Net++ medical image segmentation network, which,
as the name suggests, combines U-Net++ [264, 281] with mixed channel and spatial
attention. The authors showed improved performance on nuclei segmentation of bi-
ological images when compared to both classic U-Net [205] and U-Net++. Similarly,
CBAM was addded to the respective neural network architecture for segmenting the
sclera in 2D images [317], the hippocampus in 3D MR images [318], or polyps in 2D
colonoscopy videos [319], among others.

Non-local attention. Despite their ability to improve the final segmentation
performance, channel and spatial attention mechanisms focus mainly on local in-
formation. In both cases, the operation of max or average pooling leads to loss of
spatial information, while convolutional layers process neighbourhood information.
To overcome such limitations, Wang et al. [320] proposed non-local attention, which
aims to capture long-range dependencies by computing interactions between any two
positions in an image or feature map, with a better awareness of the entire context.
Their strategy follows closely the ideas brought forward by the self-attention mech-
anism [300] introduced for natural language processing.

The overall architecture of the non-local attention block is shown in Figure 3.35,
where the authors chose to embed it in a neural network model through the use of
residual connections (i.e., through addition). As an initial step, Wang et al. [320]
proposed three parallel 12 convolutional operations (θ, ϕ and g) to be applied on
the input U, obtaining three compressed feature maps. Introduced by Lin et al.
[310], the 1 × 1 (×1) convolutions (also known as projection layers) are often used

104



3.2 Deep learning for medical image analysis

for dimensionality reduction (in this case the feature maps go from C to C/2), and
act as a channel-wise pooling operator.

Figure 3.35: Non-local attention [320] where the feature map U is first trans-
formed by a series of parallel 12 convolutional layers (θ, ϕ, g). β1 is generated
through matrix multiplication between θ(U) and ϕ(U), while β2 is generated by
multiplying β1 with g(U). The outputs of several steps are reshaped accordingly
to allow for matrix multiplications. Note that ⊗ represents the matrix multiplica-
tion operator, while ⊕ is the element-wise addition. Image adapted from [320].

The individual maps are then reshaped into 2D matrices (HW × C/2), and an
initial feature map is calculated:

β1 = reshape (θ(U))⊗ reshape (ϕ(U))T (3.25)

where reshape (·) changes the tensor to be in the HW×C/2 configuration, T is the
matrix transpose operation and ⊗ is the matrix multiplication operator.

The next step is achieved through a second matrix multiplication between β1

and the output of the convolutional layer g:

β2 = σ (β1)⊗ reshape (g(U)) (3.26)

The last step is to reshape the matrix back into a tensor of dimensions H×W×C/2,
apply a final 12 convolutional layer with C output channels:

~X = f (reshape (β2)) (3.27)

and generate the output through element-wise addition: X = U + ~X.

In the medical imaging field, Wang et al. [321] proposed a 3D non-local U-Net
and showed that through the use of attention blocks they were able to improve seg-
mentation accuracy of tissue maps in isointense infant brain MR volumes. Similarly,
Gu et al. [322] introduced the non-local attention block in a modified U-Net, but
also added channel and spatial attention blocks throughout the decoder layers of
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the network. The authors applied it to skin lesion segmentation and multi-class seg-
mentation of fetal MRI, and showed that for the latter their proposed architecture
achieves higher accuracy when compared to previous state-of-the-art segmentation
models.

3.2.4 Domain adaptation

Deep learning models suffer from the domain shift [323] problem, which refers to
the difference in data distributions between training and testing datasets. This is
prevalent in the medical community where heterogeneity in the data arises from
multi-center studies, different acquisition protocols, patient biases, and imaging
modalities. DA aims to tackle this issue by minimizing the gap between the two (or
more) domains, as long as they share the same learning tasks. This is exemplified
in Figure 3.36 where a classifier has been trained on the source domain (A), but
performs poorly on the target domain (B). After performing DA, the classifier can
now successfully be used on both datasets.

Figure 3.36: Domain adaptation aims to solve the domain shift problem com-
monly found in many machine learning algorithms where a model trained on do-
main A cannot be reliably used on a second domain, B, as exemplified in the top
half of the figure. Through domain adaptation (bottom half of the image) the do-
main shift has been corrected and the classifier can be used on both datasets.

In medical imaging, this issue is prevalent especially in MRI acquisitions, as the
images are not quantitative [324]. In fact, both inter- and intra-scanner variabil-
ity exists [325, 326], which makes DA especially important for downstream MRI
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analysis. Figure 3.37 illustrates the domain shift issue in terms of intensity distri-
butions of structural T2w MR images from 2 datasets: dHCP [11] and ePrime [35].
Conventional machine learning techniques generally ignore these problems, which
consequently degrades their performance [327]. To solve this, DA has recently be-
come an important topic of medical imaging research [328, 329, 330].

Figure 3.37: Intensity distribution of T2w MR images from the dHCP and ePrime
datasets. Intensity is normalized between 0 and 1.

In this section, the focus is on reviewing DA techniques applied to medical imag-
ing data. For this purpose, the different methods presented here are categorised by
label availability. More specifically, DA methods can be grouped into: supervised,
semi-supervised and unsupervised techniques, where in the first two cases a small
number of labelled data is available when training the models. Due to their scarcity
in the medical imaging field, a more useful approach is the unsupervised category
which assumes unlabelled target data. For a more in-depth survey, the reader can
consult Guan et al. [331].

Supervised domain adaptation

One approach to supervised DA is to directly transfer a pre-trained model to the
target domain. For example, Ghafoorian et al. [329] first trained a segmentation
network for brain white matter hyperintensities on a source domain of MRI scans
and then performed fine-tuning on the target domain. More specifically, they in-
vestigated the impact of freezing different number of layers in the architecture and
training the remaining ones on a target domain dataset. Moreover, the authors
evaluated the influence the number of target labels has on the performance of the
segmentation network. The authors showed that the domain adapted network fine-
tuned on only 2 target images outperformed the same NN architecture trained on
the same examples from scratch.
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Gu et al. [332] introduce a multi-step DA approach where they first train a
CNN on the ImageNet dataset [333]. Then, they fine-tune the network on a large
(intermediate) medical image dataset for skin cancer, and finally, train it on the
target domain which is a relatively small skin medical image dataset. Their exper-
iments show that the multi-step approach achieves better performance than single
step transfer learning.

Although popular, the aforementioned methods rely on pre-training the networs
on 2D datasets (such as ImageNet [333]). This approach is not sufficient when
exploring the rich information provided by the 3D datasets available in the medical
imaging community. For this reason, Hosseini-Asl et al. [334] propose a 3D CNN
for Alzheimers disease classification based on brain MR volumes. The authors first
train a convolutional AE to reconstruct the source domain 3D images. Then, they
freeze the network weights and attach fully-connected layers which are fine-tuned
with samples from the target data. A similar approach is proposed by Valverde et al.
[335] for multiple sclerosis brain MR image segmentation, where they investigated
the number of fully-connected layers to be fine-tuned using the target data and
evaluated their proposed framework on the ISBI2015 dataset [336].

Semi-supervised domain adaptation

In semi-supervised DA, a small number of target labelled data as well as target
unlabelled data are used to fine-tune the model. For example, Roels et al. [337]
propose a segmentation network called Y-Net with one encoder and two decoders.
The authors train one of the branches in an unsupervised way, i.e., one of the
decoders is trained to reconstruct both source and target images. Then, this decoder
is discarded and the network is fine-tuned with labelled target data.

Liu et al. [338] propose a semi-supervised domain adaptation model which aims
to effectively balance the larger volume of source domain labels with the much
smaller amount of labelled target data, by developing an asymmetric co-training
strategy. More specifically, the authors propose the co-training of 2 segmentation
networks: one with labelled source domain data and unlabelled target domain data,
and the other with labelled and unlabelled target domain data only. Moreover,
they show that their proposed method outperforms two other state-of-the-art un-
supervised DA models. However, it is important to note that both supervised and
semi-supervised DA approaches require labelled target data. As labeling is a time-
consuming and potentially variable effort, especially in medical imaging where there
is a need for highly specialised experts, unsupervised DA methods, where the target
domain does not have labels, has recently attracted more attention.
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Unsupervised domain adaptation

This section introduces different unsupervised DA techniques grouped by their spe-
cific knowledge transfer strategies.

Feature alignment (adversarial domain adaptation in the latent space).
Most unsupervised DA techniques which employ the feature alignment strategy rely
on the work of Ganin et al. [339]. Their proposed method is schematically shown in
Figure 3.38. The main idea is to attach a classifier to the main network to force it to
learn domain-invariant features through adversarial training. Kamnitsas et al. [330]
introduce this method for domain adaptation of brain lesion segmentation in 3D
MR volumes. More specifically, they extend their proposed DeepMedic [270] image
segmentation network with a domain classifier attached to different layers of the
segmentor. Through experiments they show the efficiency of their unsupervised DA
framework, while also investigating which layers should be connected to the domain
classifier.

Figure 3.38: Schematic illustration of adversarial domain adaptation in the la-
tent space. The feature extractor (yellow layers) is trained to predict a class label
(blue layers), while the domain classifier (purple layers) force it to learn domain-
invariant features through adversarial training. Image adapted from [339].

Dou et al. [340] propose an MR to CT (cross-modality) unsupervised DA model
for cardiac segmentation. The authors adapt only the early encoder layers, while
keeping the higher layers fixed between the two domains. Moreover, they introduce
two discriminators, one for feature discrimination, and one for the predicted seg-
mentation masks, and validate their framework on the multi-modality whole heart
segmentation (MM-WHS) dataset [341].

A similar approach was proposed by Yan et al. [342] for cross-vendor 2D MR
image segmentation. The novelty the authors bring is in introducing Canny edge
[343] maps as input and at the last two layers of the segmentation network. The
authors showcase their method’s performance on data from 3 independent vendors
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(Philips, Siemens and GE). Bateson et al. [344] propose the use of a constrained
prediction when performing unsupervised DA. More specifically, they introduce a
network module which predicts the size of the target domain region as a regularizer
to the overall architecture.

Image alignment (adversarial domain adaptation in the image space).
Besides feature alignment, image alignment is also a popular approach to unsuper-
vised DA [331]. The key idea is to train the main predictor (e.g., a segmentation
network) on images synthesized from the source to the target domain. As labels are
available in the source domain, the predictor can be trained in a supervised fashion.
This is schematically shown in Figure 3.39 where fS→T transforms the input X from
the source domain S to the target domain T. The predictor will be trained with fake
images for which source domain labels exist. At inference, fS→T can be discarded
and the main predictor can then be used directly on target data.

Figure 3.39: Adversarial domain adaptation in the image space where the source
domain image (XS) is first transformed with the fS→T to look like a target do-
main image (XT ). The main predictor (e.g., a segmentation network) is trained
on the fake images with source domain labels (Y S). The discriminator is trained
in a GAN-like setup [217, 220, 221] to enforce the synthesized images to look real-
istic.

Gholami et al. [345] propose the use of a Cycle-GAN [221] to generate MR
images in order to augment their training dataset. As their main aim is to perform
brain tumor segmentation, the authors first simulate tumor-ridden images and use
the Cycle-GAN framework to make them look more realistic. Zhang et al. [346]
introduce a noise style transfer unsupervised DA method using an image-to-image
translation [220] framework, but with two discriminators. Their goal is to preserve
the underlying content of the images, while transferring the noise style. Therefore,
they use one of the discriminators to enforce content preservation in the generated
images, and the second discriminator to enforce the same noise patterns between
source and target domains. Experiments on optical coherence tomography blood
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vessel segmentation showcase their method’s effectiveness.

Mahmood et al. [225] reverse the problem by training a GAN-like architecture
to generate synthetic images from real ones. Their aim was to remove patient
specific texture and details, while preserving useful diagnostic information, for depth
estimation applications. The authors show that their proposed unsupervised image
space DA method which transfers images from the real domain to the synthetic-like
domain, managed to improve the task of endoscopy depth estimation applied to real
colon data.

Li et al. [347] introduce a 2D neonatal brain MR image segmentation framework.
Their method is trained in three stages: first, the segmentation network is trained
on source data only; second, the generator is trained to perform image-level domain
transfer while the segmentation network acts as a pre-trained controller to provide
shape constraints; and third, the segmentation network is further trained with the
synthesized images only. The authors mention that stages 2 and 3 can be repeated
to further improve results. Experiments on both NeoBrainS12 [164] and dHCP [11]
show improved average Dice scores compared with other state-of-the-art models.
Finally, Chen et al. [348] propose a similar approach for neonatal brain MR image
segmentation, but applied to 3D data. More specifically, their framework consists
of 2 steps: first, a segmentation network is trained on source domain data only,
and second, a Cycle-GAN [221] architecture is trained to perform image-to-image
translation of each target data into the source domain. The authors train the two
networks separately and then apply the segmentation network on synthesized target
data. Through experiments they show that when compared to 2D unsupervised DA
methods their proposed framework achieves improved results.

Image and feature alignment Chen et al. [349] use both image and feature
alignment for cross-modality (MR and CT) 2D medical image segmentation. Their
setup includes a Cycle-GAN [221] which transfers source domain images into the
target domain, as well as a feature alignment module. The latter consists of a CNN
trained on both real and synthesized images through a domain discriminator which
aims to further reduce the domain shift. The authors validate their proposed method
on both cardiac [341] and abdominal [350] datasets. Yan et al. [351] propose a similar
approach for segmentation of 2D cardiac cine MR images. The authors train a U-
Net [205] for image segmentation on fake, Cycle-GAN [221] generated, target domain
data. Moreover, they introduce a penalty between the U-Net encoder’s feature maps
of the original and the translated images with the aim of enforcing feature-level
adaptation. Their experiments include data from three vendors, Philips, Siemens
and GE, and the authors show that the segmentation network trained on one vendor
can generalize well to the other ones without using labels.
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Chapter 4
Harmonised segmentation of neonatal
brain MRI

Motivation
The performance of deep learning methods drops when applied to images acquired with
acquisition protocols or patient cohorts different than the ones used to train the models.

Contribution
Investigated unsupervised DA methods and proposed the use of NCC loss to enforce
image similarity between real and synthesised images, with the aim of predicting brain
tissue segmentations of T2w MRI data of an unseen neonatal population.

Publications
• Grigorescu, I. et al. (2021). Harmonized Segmentation of Neonatal Brain MRI.

Frontiers in Neuroscience
LINK doi.org/10.3389/fnins.2021.662005

• Grigorescu, I. et al. (2020). Harmonized Segmentation of Neonatal Brain MRI: A
Domain Adaptation Approach. PIPPI 2020. LNCS (Springer)
LINK doi.org/10.1007/978-3-030-60334-2_25

Code available at:
LINK github.com/irinagrigorescu/udaneonatalmri
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4.1 Introduction

4.1 Introduction

Medical image deep learning has made incredible advances in solving a wide range
of scientific problems, including tissue segmentation or image classification [352].
However, one major drawback of these methods is their applicability in a clinical
setting, as many models rely on the assumption that the source and target domains
are drawn from the same distribution. As a result, the efficiency of these models
may drop drastically when applied to images which were acquired with acquisition
protocols different than the ones used to train the models [330, 353].

At the same time, combining imaging data from multiple studies and sites is nec-
essary to increase the sample size and thereby the statistical power of neuroimaging
studies. However, one major challenge is the lack of standardization in image ac-
quisition protocols, scanner hardware, and software. Inter-scanner variability has
been demonstrated to affect measurements obtained for downstream analysis such
as voxel-based morphometry [58], and lesion volumes [59]. Therefore, the purpose of
harmonising MRI datasets is to make sure that the differences arising from different
image acquisition protocols do not affect the analysis performed on the combined
data. For example, volumetric and cortical thickness measures should only be af-
fected by brain anatomy and not the acquisition protocol or scanners.

A class of deep learning methods called DA techniques aims to address this issue
by suppressing the domain shift between the training and test distributions. In
general, DA approaches are either semi-supervised, which assume the existence of
labels in the target dataset, or unsupervised, which assume the target dataset has no
labels. For example, a common approach is to train a model on source domain images
and fine-tune it on target domain data [354, 329]. Although these methods can give
good results, they can become impractical as more often than not the existence
of labels in the target dataset is limited or of poor quality. Unsupervised domain
adaptation techniques [355, 356] offer a solution to this problem by minimizing the
disparity between a source and a target domain, without requiring the use of labelled
data in the target domain.

In this work, we investigate two unsupervised domain adaptation methods with
the aim of predicting brain tissue segmentations on T2w 3D MRI volumes of an
unseen preterm-born neonatal population. Our models are trained on a dataset
with majority of term-born neonates and applied to a preterm-only population.
Our key contributions are:

• We study the application and viability of unsupervised domain adaptation
methods in terms of harmonising segmentations of two neonatal datasets.

• We propose an additional loss term in one of the methods, in order to constrain
the network to more realistic reconstructions.

• We compare the two unsupervised domain adaptation methods with a fully-
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supervised baseline and report our results in terms of Dice scores obtained on
the test dataset.

• We validate the models by comparing tissue volumes and CT measures of
harmonised data on two neonatal datasets acquired with different protocols
and matched for GA at birth and PMA at scan.

• Finally, we perform an analysis comparing term and preterm-born neonates
on the harmonised cortical gray matter maps and we show the importance of
harmonising the data by a proof-of-principle investigation of the association
between cortical thickness and a language outcome measure.

4.2 Methods

4.2.1 Data acquisition and preprocessing

The T2w MRI data used in this study was collected as part of two independent
projects: the developing Human Connectome Project (dHCP1, approved by the
National Research Ethics Committee REC: 14/Lo/1169), and the Evaluation of
Preterm Imaging (ePrime2, REC: 09/H0707/98) study. The dHCP neonates were
scanned during natural unsedated sleep at the Evelina London Childrens Hospital
between 2015 and 2019. The ePrime neonates were scanned after being sedated, and
no motion correction was applied [35]. Infants with major congenital malformations
were excluded from both cohorts. Details about the data acquisition can be found
in Section 1.2.3.

Our two datasets comprise of 403 MRI scans of infants (184 females and 219
males) born between 23−42 weeks GA at birth and scanned at term-equivalent age
(after 37 weeks PMA) as part of the dHCP pipeline, and a dataset of 486 MRI scans
of infants (245 females and 241 males) born between 23−33 weeks GA and scanned
at term-equivalent age as part of the ePrime project. Figure 4.1 shows their age
distribution.

Both datasets were pre-processed prior to being used by the deep learning al-
gorithms. The ePrime volumes were linearly upsampled to 0.5 mm isotropic res-
olution to match the resolution of our source (dHCP) dataset. Both dHCP and
ePrime datasets were rigidly aligned to a common 40 weeks gestational age atlas
space [357] using the MIRTK [68] software toolbox. Then, skull-stripping was per-
formed on all of our data using the brain masks obtained with the Draw-EM pipeline
for automatic brain MRI segmentation of the developing neonatal brain [148]. Tis-
sue segmentation maps were obtained using the same pipeline (Draw-EM) for both

1http://www.developingconnectome.org/
2https://www.npeu.ox.ac.uk/prumhc/eprime-mr-imaging-177
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Figure 4.1: Age distribution of subjects in our dHCP and ePrime datasets, show-
ing both their GA at birth, as well as their PMA at scan.

Dataset #Subjects GA [weeks] PMA [weeks]
Train dHCP 340 (160� + 180�) 39.1 (±2.7) 40.7 (±1.7)

Validate dHCP 32 (12� + 20�) 39.3 (±1.6) 40.7 (±1.8)
Test dHCP 30 (12� + 19�) 30 (±2.4) 41.4 (±1.7)

Train ePrime 417 (214� + 203�) 29.6 (±2.3) 42.9 (±2.6)
Validate ePrime 38 (18� + 20�) 29.8 (±2.3) 43 (±2.6)

Test ePrime 30 (13� + 18�) 30 (±2.4) 41.4 (±1.7)

Table 4.1: Number of scans in different datasets used for training, validation and
testing the models, together with their mean GA at birth and PMA at scan.

(dHCP and ePrime) cohorts, and in this study we call them: ‘original dHCP’ and
‘original ePrime’. It is worth noting here that the Draw-EM pipeline does not pro-
duce quality results on the ePrime dataset, and for this reason we do not use the
predicted segmentation maps for training purposes.

In order to allow for a fair comparison between the dHCP and ePrime datasets,
we first looked for a subset of neonates whose ages at birth and at scan matched. We
found and selected 30 dHCP and 30 ePrime subjects with a 1-to-1 correspondence
of ages at birth and at scan, and these became our test dataset (see Table 4.1). It is
worth pointing out that although dHCP contains both term and preterm neonates,
in the test dataset we only used preterm infants in order to match the ePrime
data. To train our networks, we split the remaining data into 90% training and
10% validation (see Table 4.1), keeping both the distribution of ages at scan and
the male-to-female ratio as close to the original as possible. We used the validation
sets to keep track of our models’ performance during training, and the test sets to
report our final models’ results and showcase their capability to generalize.
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4.2.2 Unsupervised domain adaptation models

To investigate the best solution for segmenting our target dataset (ePrime), we
compared three independently trained deep learning models:

• Baseline. A 3D U-Net [215] trained on the source dataset (dHCP) only and
used as a baseline segmentation network (see Figure 4.2).

• Adversarial domain adaptation in the latent space. A 3D U-Net seg-
mentation network trained on source (dHCP) volumes, coupled with a dis-
criminator trained on both source (dHCP) and target (ePrime) datasets (see
Figure 4.3). This solution is similar to the one proposed by [330] where the
aim was to train the segmentation network such that it becomes agnostic to
the data domain.

• Adversarial domain adaptation in the image space. Two 3D U-Nets,
one acting as a generator, and a second one acting as a segmentation network,
coupled with a discriminator trained on both real and synthesised ePrime
volumes. The segmentation network is trained to produce tissue maps of the
synthesised ePrime volumes created by the generator (see Figure 4.4). The
NCC loss is added to the generator network to enforce image similarity between
real and synthesised images, a solution which we previously proposed in [358].

To further validate the harmonised tissue maps, we trained an additional network
(a 3D U-Net) to segment binary cortical tissue maps into 11 cortical substructures
(see Tables 1 and 2 in Appendix A) based on anatomical groupings of cortical
regions derived from the Draw-EM pipeline. The key reasons for training an extra
network are: first, we avoid the time consuming task of label propagation between
our available dHCP Draw-EM output segmentations and predicted ePrime maps,
and second, we can train this network using Draw-EM cortical segmentations, and
apply it on any brain cortical gray matter maps as in this case there will be no
intensity shift between target and source distributions.

4.2.3 Network architectures

The segmentation networks in all three setups and the generator used in the image
space adversarial domain adaptation model have the same architecture, consisting
of 5 encoding branches with 16, 32, 64, 128 and 256 channels, respectively, and
5 decoding branches with 128, 64, 32, 16, and the number of output channels,
respectively. The encoder blocks use 33 convolutions (with a stride of 1), instance
normalisation [199] and LeakyReLU activations. A 23 average pooling layer is used
after the first down-sampling block, while the others use 23 max pooling layers. The
decoder blocks consist of 33 convolutions (with a stride of 1), instance normalisation
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[199], LeakyReLU activations, and, additionally, 33 transposed convolutions. The
number of encoding-decoding blocks, as well as the use of LeakyReLU activations
and instance normalisation layers, were chosen based on the best practices described
in [216]. At the same time, the network configurations that we have chosen allowed
us to work with the hardware we have at hand (Titan XP 12 GB). The segmentation
network outputs a 7-channel 3D volume (of the same size as the input image),
corresponding to our 7 classes: background, CSF, cGM, WM, dGM, cerebellum and
brainstem. The generator network’s last convolutional layer is followed by a Tanh
activation and outputs a single channel image.

Figure 4.2: The baseline model consists of a 3D U-Net trained to segment source
(dHCP) volumes. The input T2w MRI images, the predicted segmentation and
the Draw-EM output segmentations are marked with S as they all belong to the
source (dHCP) dataset.

Figure 4.3: The latent space domain adaptation setup consists of a 3D U-Net
trained to segment the source (dHCP) T2w MRI volumes, coupled with a discrim-
inator network which forces the segmentation network to learn domain-invariant
features. Both source (dHCP) and target (ePrime) images are fed to the segmen-
tation network, but only source (dHCP) Draw-EM output labels are used to com-
pute the segmentation loss. Source domain images are marked with S, while tar-
get domain images are marked with T, respectively.

For our unsupervised domain adaptation models (Figures 4.3 and 4.4) we used a
PatchGAN discriminator as proposed in [220]. Its architecture consists of 5 blocks
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Figure 4.4: The image space domain adaptation setup uses a generator network
to produce ePrime-like T2w MRI images (marked with T̃), which are then used as
input into the segmentation network. The discriminator is trained to distinguish
between real (ePrime) and synthesised (ePrime-like) volumes, while the generator
is trained to produce realistic images in order to fool the discriminator. The NCC
loss enforces image similarity between real and synthesised volumes.

of 43 convolutions (with a stride of 2) with 64, 128, 256, 512 and 1 channels, respec-
tively), instance normalisation and LeakyReLU activations.

The cortical parcellation network has the same architecture as the tissue segmen-
tation network, but outputs a 12-channel 3D volume corresponding to the following
cortical substructures: frontal left, frontal right, cingulate, temporal left, temporal
right, insula left, insula right, parietal left, parietal right, occipital left, and occipital
right, respectively. The last class represents the background.

4.2.4 Training

The baseline segmentation network (Figure 4.2) was trained by minimizing the gen-
eralised Dice loss [290] between the predicted and the Draw-EM segmentation maps
(Equation 4.1).

Lmethod1 = Lseg = 1− 2

∑M
l=1 wl

∑
n plntln∑M

l=1 wl

∑
n pln + tln

(4.1)

where wl = 1/(
∑

n tln)
2 is the weight of the lth tissue type, pln is the predicted

probabilistic map of the lth tissue type at voxel n, tln is the target label map of the
lth tissue type at voxel n, and M is the number of tissue classes. While training, we
used the Adam optimizer [201] with its default parameters and a decaying cyclical
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learning rate scheduler [202] with a base learning rate of 2 · 10−6 and a maximum
learning rate of 2 ·10−3. The choice of optimizer was based on knowledge of previous
image translation literature [220, 221, 359, 360] where it yielded good results. At
the same time, a varying learning rate during training was shown to improve results
in fewer iterations when compared to using a fixed value [202].

The segmentation network from the adversarial domain adaptation in the latent
space model was trained to produce tissue maps on the source (dHCP) volumes. In
addition, both target (ePrime) and source (dHCP) volumes were fed to the segmen-
tation network, while the feature maps obtained from every level of its decoder arm
were passed to the discriminator network which acted as a domain classifier. This
was done after either up-sampling or down-sampling the feature maps to match the
volume size of the second deepest layer. The final loss function for our second model
was therefore made up of the generalised Dice loss and an adversarial loss:

Lmethod2 = Lseg − αLadv2 (4.2)

where α is a hyperparameter increased linearly from 0 to 0.05 starting at epoch 20,
and which remains equal to 0.05 from epoch 50 onward. In equation 4.2, Ladv2 is
the domain discriminator’s classification loss defined as the CE loss (equation 3.14
from Section 3.2.2) between predicted and assigned target labels representing the
two domains:

Ladv2 = − log
(
D(get_feature_maps(Seg(xT )))

)
− log

(
1 − D(get_feature_maps(Seg(xS)))

) (4.3)

Here, get_feature_maps(Seg(·)) retrieves the feature maps of the decoder arm of
the segmentation network Seg after either having a target sample as input (xT ), or
a source sample as input (xS).

Similar to Kamnitsas et al. [330] we looked at the behaviour of our discrimi-
nator and segmentation network when training with different values of α ∈ [0.02,
0.05, 0.1, 0.2, 0.5]. We found the discriminator’s accuracy during training stable for
all investigated values, while the segmentation network achieved the lowest loss when
α = 0.05. The segmentation network was trained similarly to the baseline model,
while the discriminator network was trained using the Adam optimiser with β1 = 0.5
and β2 = 0.999, and a linearly decaying learning rate scheduler starting from 2·10−3.

The generator network used in the image space domain adaptation approach
was trained to produce synthesised ePrime volumes, while the segmentation network
was trained using the same loss function, optimizer and learning rate scheduler as
in the other two methods. In the previous model (adversarial domain adaptation
in the latent space) we fed both dHCP and ePrime volumes to the segmentation
network to obtain data agnostic feature maps. For this reason, and to allow for
a fair comparison between the two unsupervised domain adaptation models, we
trained the segmentation network from the image space model on both real dHCP
and synthesised ePrime volumes. For both the discriminator and the generator
networks the Adam optimizer with β1 = 0.5 and β2 = 0.999 was used, together
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with a linearly decaying learning rate scheduler starting from 2 · 10−3. The loss
function of the discriminator was similar to that of the Least Squares GAN [361]:
LD = Ex∼T [(D(x) − b)2] + Ex∼S[(D(G(x)) − a)2] where a signified the label for
synthesised volumes and b was the label for real volumes. The generator and the
segmentation network were trained together using the following loss:

Lmethod3 = Lseg + Ladv3 + LNCC(G(x), x) (4.4)

where Ladv3 = Ex∼S[(D(G(x)) − b)2]. The additional NCC loss was used between
the real and the generated volumes in order to constrain the generator to produce
realistic looking ePrime-like images. Without the additional NCC loss, the generator
tends to produce images with an enlarged CSF boundary in order to match the
preterm-only distribution found in the ePrime dataset, as we have previously shown
in [358].

These three methods were trained with and without data augmentation for 100
epochs, during which we used the validation sets to inform us about our models’
performance and to decide on the best performing models. For data augmentation
we applied: random affine transformations (with rotation angles θi ∼ U(−10o, 10o)
and/or scaling values si ∼ U(0.8, 1.2)), random motion artefacts (corresponding
to rotations of θi ∼ U(−2o, 2o) and translations of ti ∼ U(−2 mm, 2 mm)), and
random MRI spike and bias field artifacts [206]. The cortical parcellation network
was trained in a similar fashion as the baseline tissue segmentation network, with
data augmentation in the form of random affine transformations (with the same
parameters as above).

4.3 Results

We use the test set to report our final models’ results and to also investigate their
capability to generalize on the source domain. Finally, we produce tissue segmen-
tation maps for all the subjects in our datasets, and use them as input into ANT’s
DiReCT algorithm [362] to compute cortical thickness measures. To validate our
results, we compare cortical thickness measures between subsets of the two cohorts
matched for GA and PMA, for which we expect no significant difference in corti-
cal thickness if the harmonisation was successful. We also assess the association
between PMA and cortical thickness in the two cohorts.

4.3.1 dHCP test dataset

Baseline and domain adaptation models. In our first experiment we looked
at the performance of the six trained models when applied to data from the source
(dHCP) test dataset. The aim was to assess whether our trained models were able
to generalise to unseen data from the source domain (dHCP) for which we have
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reliable Draw-EM outputs. Figure 4.5 summarizes the results of our trained mod-
els, showing mean Dice scores, mean Hausdorff distance calculated using SimpleITK
[363, 364], precision and recall. These metrics were computed between the predicted
tissue segmentation maps and the Draw-EM output labels for each of the six trained
models. The model that obtained the best score is highlighted with the yellow dia-
mond for each metric and tissue type. In terms of Dice scores, out of the six models,
the baseline with augmentation and image with augmentation methods performed
best on the source domain test dataset for CSF, dGM, cerebellum and brainstem,
with no significant difference between them. For cGM and WM, the best perfor-
mance was obtained by the baseline with augmentation model, while the domain
adaptation methods showed a slight decrease in performance. The three models
trained without augmentation always performed significantly worse than their aug-
mented counterparts. In terms of average Hausdorff distance, both the baseline with

Figure 4.5: The results on our dHCP test dataset for all six methods. The yel-
low diamond highlights the model which obtained the best mean score for its re-
spective tissue type and metric. Models which obtained non-significant differences
when compared to the best performing method are shown above each pair.

augmentation and image with augmentation models performed well, while the latent
without augmentation model performed worse than all the other models for all tis-
sue types. Highest precision scores were obtained by the baseline with augmentation
model for both CSF and WM, the image without augmentation method for both
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cGM and brainstem, the baseline without augmentation for dGM, and the latent
with augmentation model for cerebellum. Highest recall scores were obtained by the
baseline with augmentation model for cGM and cerebellum, the latent with augmen-
tation model for WM, dGM and brainstem, and the latent without augmentation
model for CSF. These results show that our trained models were able to generalise
to unseen data from the source domain, and that the performance on the dHCP
dataset was not compromised by using domain adaption techniques.

Cortical parcellation network. To assess the performance of our trained
cortical parcellation network, we applied it on the source (dHCP) test dataset,
where the inputs were binary Draw-EM cortical gray matter tissue maps. For each
subject in our test dataset, the network produced a 12-channel output, consisting of:
frontal left, frontal right, cingulate, temporal left, temporal right, insula left, insula
right, parietal left, parietal right, occipital left, occipital right, and background,
respectively. Table 4.2 summarizes these results in terms of minimum, maximum
and mean Dice scores for each of the 11 cortical substructures. When compared
with the Draw-EM outputs [148], the network obtained an overall mean Dice score
of 0.97.

Tissue min max mean Tissue min max mean
Frontal (left) 0.98 0.99 0.99 Frontal (right) 0.98 0.99 0.99
Temporal (left) 0.96 0.99 0.98 Temporal (right) 0.97 0.98 0.98
Insula (left) 0.95 0.97 0.96 Insula (right) 0.95 0.97 0.96
Parietal (left) 0.96 0.98 0.97 Parietal (right) 0.96 0.98 0.97
Occipital (left) 0.94 0.98 0.97 Occipital (right) 0.95 0.98 0.97
Cingulate 0.93 0.97 0.96

Table 4.2: Dice Scores obtained on the dHCP test set for the trained cortical par-
cellation network.

4.3.2 Validation of data harmonisation

In order to evaluate the extent to which each of the trained models managed to
harmonise the segmentation maps of the two cohorts, we looked at tissue volumes
and mean cortical thickness measures between subsamples of the dHCP (N = 30;
median GA = 30.50 weeks; median PMA = 41.29 weeks) and ePrime (N = 30;
median GA = 30.64 weeks; median PMA = 41.29 weeks) cohort which showed com-
parable GA at birth and PMA at time of scan (see Table 4.1). A direct comparison
between the two cohort subsets shows that the dHCP and ePrime neonates did not
differ significantly in terms of sex (χ2(1) < 0.001, p > 0.05), or maternal ethnicity
(χ2(4) = 4.32, p > 0.05), coded as “white or white British”, “black or black British”,
“asian or asian British”, “mixed race”, and “other”. As a proxy for socio-economic
status, we derived an Index of Multiple Deprivation (IMD) score based on parental
postcode at the time of infant birth (Department for Communities and Local Gov-
ernment, 20113). This measure is based on seven domains of deprivation within

3https://tools.npeu.ox.ac.uk/imd/
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each neighbourhood compared to all others in the country: income, employment,
education, skills and training, health and disability, barriers to housing and services,
living environment and crime. Higher IMD values therefore indicate higher depriva-
tion. IMD score did not differ significantly between dHCP (M = 21.4, SD = 10.7)
and ePrime (M = 18.0, SD = 11.6) subsets, suggesting that these two groups are
comparable in terms of environmental background.

For these two cohort subsamples with similar GA and PMA, we expected both
volumes and cortical thickness measures not to differ after applying the harmonisa-
tion procedures. We also investigated the relationship between PMA and volumes
and cortical thickness respectively, before and after applying the harmonisation.
Linear regressions were performed in the comparable data subsets testing the effects
of PMA and cohort on volumes (or cortical thickness), controlling for GA and sex.

Volumes. Figure 4.6 shows the tissue volumes for both the original and the
predicted segmentations. Significant volume differences between the two subsam-
ples (i.e., significant effect of cohort in the regression model) are reported above
each tested model. To summarise, the image with augmentation model performed
best, by showing no significant differences in the two cohorts for cortical gray mat-
ter, white matter, deep gray matter, cerebellum and brainstem. The cerebrospinal
fluid volumes were significantly different between the two cohorts for all our trained
models, as well as for the original ePrime segmentation masks.
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Figure 4.6: Comparison of volume measures for our 6 tissue types (CSF, cGM,
WM, dGM, cerebellum and brainstem) between original Draw-EM dHCP segmen-
tations and original Draw-EM ePrime segmentations (first column), or between
original Draw-EM dHCP segmentations and ePrime segmentations obtained with
the 6 trained models (columns 2 - 7). Linear regressions were performed in the
comparable data subsets testing the effects of cohort on volumes, controlling for
PMA, GA, and sex (volume ∼ cohort + PMA + GA + sex). The asterisks indi-
cate a statistically significant effect of cohort in the linear regression.

124



4.3 Results

Cortical thickness. Figure 4.7 summarizes the results of applying the cortical
thickness algorithm on the predicted segmentation maps for all six methods. Before
harmonisation, the matched subsets from the dHCP and ePrime cohorts showed
a significant difference in mean cortical thickness (dHCP: M = 1.73, SD = 0.12;
ePrime: M = 1.93, SD = 0.13; t(58) = 6.33, p < .001). After applying the
harmonisation to the ePrime sample, mean cortical thickness no longer differed
between the two subsamples for four of our methods. These results are summarised
in panel H from Figure 4.7, where the models which obtained harmonised values in
terms of mean cortical thickness measures are shown in bold.

Figure 4.7: The association between PMA and mean cortical thickness before (A)
and after (B-G) applying the data harmonisation models on the matched dHCP
and ePrime subsets. A linear model regressing mean cortical thickness measures
on PMA, GA, sex, and cohort revealed a significant effect of cohort for the orig-
inal segmentations (A), and the predicted maps (B - baseline without augmen-
tation and D - latent without augmentation). The effect of cohort was rendered
non-significant for four of the methods (C - baseline with augmentation, E - latent
with augmentation, F - image without augmentation and G - image with augmen-
tation). Panel H summarizes cortical thickness measures before and after applying
the models.
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Figure 4.7 also shows the association between PMA and mean cortical thickness
before (panel A) and after applying the models (panels B-G) on the matched dHCP
and ePrime subsets. A linear model regressing unharmonised mean cortical thickness
on PMA, GA, sex, and cohort revealed a significant effect of cohort (β = 0.20;
p < .001), consistent with a group difference in mean cortical thickness reported
above, as well as a significant effect of PMA (β = 0.04; p < .001), consistent with an
increase in cortical thickness with increasing PMA. After applying the methods, the
effect of cohort was rendered non-significant for four of the methods (see highlighted
panels C, E, F, G from Figure 4.7), while the effect of PMA remained stable across
all six methods.

We performed a similar analysis on thickness measures of the cortical substruc-
tures. To obtain these measures, we used the original and the predicted cortical gray
matter segmentation maps (obtained by applying each of our six methods) as input
to the trained cortical parcellation network to predict cortical substructure masks.
We then used these masks to calculate local cortical thickness measures. Our results
are summarised in Figure 4.8.
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Figure 4.8: Comparison of local mean cortical thickness measures between origi-
nal Draw-EM dHCP segmentations and original Draw-EM ePrime segmentations
(first column), or between original Draw-EM dHCP segmentations and ePrime
segmentations obtained with the 6 trained models (columns 2 - 7). Linear regres-
sions were performed in the comparable data subsets testing the effects of cohort
on local cortical thickness measures, controlling for PMA, GA, and sex (CT ∼ co-
hort + PMA + GA + sex). The asterisks indicate a statistically significant effect
of cohort in the linear regression.
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Qualitative assessment of predicted segmentation maps. To further nar-
row down which of the four remaining methods was best at harmonising our ePrime
neonatal dataset, we looked at the predicted segmentations. Figure 4.9 shows two
example neonates from the ePrime dataset with GA = 32.9w, PMA = 43.6w, and
with GA = 28.7w, PMA = 44.7w, respecitvely. The first column shows T2w sag-
gittal and axial slices, respectively, while the following four columns show example
tissue prediction maps produced by the four models: baseline with augmentation,
latent with augmentation, image and image with augmentation, respectively. On
the first row we show an example neonate for which three of the models (baseline
with augmentation, latent with augmentation and image) misclassified a part of the
cortex as being deep gray matter. This is more pronounced in the baseline with
augmentation model, while the latent with augmentation and image show a slight
improvement. The image with augmentation model corrected the problem entirely.
On the second row the yellow arrow points to an area of CSF where the baseline
with augmentation model misclassified it as dGM, while the other three models did
not have this problem. The red arrow on the other hand points to an area where
the latent with augmentation model misclassified cGM as deep gray matter. This
problem does not appear in the other models.

Figure 4.9: Example predicted segmentation maps for the best performing models.

Figure 4.10 shows the axial, sagittal and coronal slices of an ePrime neonate
(GA = 32.86w and PMA = 39.86w). The first line shows the T2w MR image, while
the second and third lines show the CSF boundary of both the Draw-EM algorithm
and the image with augmentation method. The green arrows point to a WM region
where the Draw-EM algorithm performed worse (classified the area as CSF) than
our proposed model. This problem was corrected by the image with augmentation
method.

Although all four methods performed well in terms of harmonising tissue seg-
mentation volumes and global mean cortical thickness values for the two subsamples
with similar GA and PMA, previously presented quantitative results as well as the
example above suggest that the image with augmentation method was more robust.

128



4.3 Results

Figure 4.10: Example of a neonate from the ePrime dataset with 32.86 weeks GA
at birth and 39.86 weeks PMA at scan. The green arrow points to a region which
was segmented as CSF by Draw-EM, but then corrected by our model.

4.3.3 Analysis of harmonised cortical substructures

In this section we analyze the harmonised cortical gray matter segmentation maps
using the image with augmentation model. We produce tissue segmentation maps for
the entire ePrime dataset and calculate cortical thickness measures on the predicted
and Draw-EM cortical gray matter tissue maps of both cohorts. In addition, we use
the trained cortical parcellation network to produce cortical substructure masks.
We perform a term vs preterm analysis on the harmonised cortical gray matter
maps and we show the importance of harmonising the data with a proof-of-principle
application setting where we investigate the association between cortical thickness
and a language outcome measure.

Comparison of term and preterm cortical maps. Associations between
cortical thickness and GA or PMA in the full dHCP and ePrime datasets (excluding
subjects with PMA > 45 weeks) for the whole cortex are depicted in Figure 4.11,
where we show individual regression lines for preterm-born and term-born neonates.
The first column consists of dHCP-only subjects, while the following two columns
showcase both cohorts together, before and after harmonising the cortical gray mat-
ter tissue maps.
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Figure 4.11: Mean cortical thickness measures in our dHCP dataset (first column),
and in both cohorts before (second column) and after (third column) harmonising
the tissue segmentation maps. The first row plots the cortical thickness measures
against GA, while the second row plots the cortical thickness measures against
PMA, with individual regression lines on top.

A linear model regressing dHCP-only mean cortical thickness on PMA, GA, sex,
birth weight and the interaction between PMA and GA revealed a significant effect
of PMA (β = 0.19; p < 0.001), a significant effect of GA (β = 0.16; p = 0.002), and a
significant effect of the interaction between PMA and GA (β = −0.004; p = 0.002),
indicating that infants born at a lower GA showed a stronger relationship between
PMA and CT. When performing the same analysis in the pooled ePrime and dHCP
data before harmonising the maps, the effect of GA and the effect of the interaction
were rendered not significant (GA: β = 0.009; p = 0.7 and PMA∗GA: β = −0.0006;
p = 0.5, respectively). This is corrected after harmonising the tissue maps, where
the effects of GA (β = 0.06; p = 0.02) and the effects of the GA and PMA interaction
(β = −0.001; p = 0.02) are, again, significant.

The second and third columns of Figure 4.11 show that after harmonising the tis-
sue segmentation maps, the ePrime preterm-born neonates (green dots) are brought
downwards into a comparable range of values to the dHCP preterms (red dots).
Moreover, when plotting the cortical thickness measures against PMA, after har-
monising the tissue maps, the intersection between the two individual regression
lines (term and preterm-born neonates) happens at roughly the same age (PMA
= 38.5 weeks) as in the dHCP-only dataset.

We extended the term vs preterm analysis on cortical thickness substructures.
Figure 4.12 shows the results of applying a linear model regressing mean cortical
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thickness measures on PMA, GA, sex, birth weight and prematurity, where sig-
nificant differences (p < 0.05) between the two cohorts (term and preterm-born
neonates) are highlighted in the image.

Figure 4.12: Comparison of cortical thickness measures for the whole cortex and
for each of the 11 cortical subregions between term and preterm-born neonates.
The results of the linear regression are reported in the table in terms of differences
between term and preterm-born neonates.

Behavioural outcome association. As a final proof-of-principle, we demon-
strate the importance of data harmonisation in an application setting investigating
the association between neonatal cortical thickness and a behavioural outcome mea-
sure (see Figure 4.13). For this, we consider language abilities as assessed between
18 and 24 months in both dHCP and ePrime cohorts using the Bayley Scales of In-
fant and Toddler Development [365]. Age-normed composite language scores were
available for 203 toddlers from the dHCP cohort (M = 96.43; SD = 14.89) and 136
toddlers from the ePrime cohort (M = 91.25; SD = 17.37). For the neonatal cortical
thickness measure, we focus on the left and right frontal cortex for illustration.

Figure 4.13: Language composite score against predicted left and right frontal
cortical thickness measures before and after harmonising the tissue segmentation
maps. Without harmonisation (columns 1 and 3) there appears to be a significant
association between left or right frontal cortical thickness and language abilities,
but after harmonisation (columns 2 and 4) the effect of cortical thickness on lan-
guage ability is rendered non-significant in both left and right frontal cortex. This
demonstrates the importance of data harmonisation without which pooling images
from separate datasets can lead to spurious findings that are driven by differences
in acquisitions rather than by true underlying effects.

Regressing composite language score against left or right frontal cortical thick-
ness in each cohort separately, controlling for PMA, GA, sex and intracranial volume
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showed that there was no significant association between neonatal left/right frontal
cortical thickness and language abilities at toddler age in either of the cohorts. How-
ever, when pooling data from both cohorts together and rerunning the same analysis
(using un-harmonised cortical thickness measures), a significant association between
left/right frontal cortical thickness and language abilities is seen (left: β = −17.56,
p < 0.05, right: β = −18.76, p < 0.05), suggesting that greater frontal cortical
thickness at term-equivalent age is associated with reduced language abilities at
toddler age.

However, as can be seen in Figure 4.13, this is likely a spurious effect due to
(artefactually) heightened cortical thickness values in un-harmonised ePrime data
combined with lower language composite scores in the ePrime cohort (consistent
with effects typically observed in preterm cohorts). Indeed, when rerunning the
same analysis on harmonised data pooled across both cohorts, the effect of cortical
thickness on language ability is rendered non-significant in both left (β = −13.99,
p = 0.15) and right (β = −16.69, p = 0.068) frontal cortex, consistent with the
ground-truth findings in each individual cohort.

4.4 Discussion and future work

In this work we studied the application and viability of unsupervised domain adap-
tation methods for harmonising tissue segmentation maps of two neonatal datasets
(dHCP and ePrime). Our aim was to obtain volumetric and cortical thickness mea-
sures that are only affected by brain anatomy and not by the acquisition protocol
or scanner, in order to improve the statistical power of imaging or imaging-genetic
studies. We proposed an image-based domain adaptation model where a tissue seg-
mentation network was trained with real dHCP and synthesised ePrime T2w 3D
MRI volumes. The generator network was trained to produce realistic images in or-
der to fool a domain discriminator, while also minimizing an NCC loss which aimed
to enforce image similarity between real and synthesised images [358]. We trained
this model using dHCP Draw-EM segmentation maps, and we compared it with a
baseline 3D U-Net [215], and a latent space domain adaptation method [330]. The
three methods were trained with and without data augmentation [206].

First, we looked at the performance of each of the six trained models on the
source (dHCP) test dataset, by comparing predicted tissue segmentation maps with
the Draw-EM output labels, with the aim of measuring fidelity of our trained seg-
mentation methods for the original dHCP domain. Our results on the source (dHCP)
test dataset suggest that our trained models were able to generalise to unseen data
from the source domain. At the same time, Dice score results on the test set for the
proposed image with augmentation model are high and are similar in performance
when compared with the baseline with augmentation method. This suggests that
adding the contrast transfer step does not diminish the quality of the segmentations.
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We then analysed the extent to which each of the 6 trained models managed
to harmonise the tissue segmentation maps of our two cohorts, by looking at tissue
volumes and mean cortical thickness measures between subsamples of the dHCP
and ePrime cohorts which showed comparable GA at birth and PMA at time of
scan, as well as similar gender and maternal ethnicity. Our results showed that our
proposed model (image with augmentation) harmonised the predicted tissue seg-
mentation maps in terms of cortical gray matter, white matter, deep gray matter,
cerebellum and brainstem volumes (Figure 4.6). In terms of mean global cortical
thickness measures, four of the trained methods (baseline with augmentation, latent
with augmentation, image and image with augmentation) achieved comparable val-
ues when compared to the dHCP subset. In fact, we hypothesize that these four
methods provided the best overall results because either they were trained using
data augmentation or they acted as a deep learning-based augmentation technique
[366], which made the segmentation network more robust to the different contrast,
population bias and acquisition protocol of the ePrime dataset.

Using the cortical parcellation network, we also produced cortical thickness mea-
sures for the 11 cortical subregions (see Tables 1 and 2). Again, the models trained
with augmentation performed better than their no augmentation counterparts (see
Figure 4.8). However, our proposed image with augmentation model performed best,
whereby ePrime values, tending towards higher values before harmonisation, were
brought downwards into a comparable range of values to dHCP, for 10 out of 11
cortical subregions (see Figure 4.8 last column). For the right parietal lobe, our pro-
posed method outperformed the original segmentations and the other 5 models, but
did not manage to bring the values down to a non-significant range. One potential
reason for this is that, on a visual insepction, the ePrime cohort appears to suffer
from more partial volume artifacts than its dHCP counterpart, which can confuse
the segmentation network and can lead to overestimation of the cortical gray matter
/ cerebrospinal fluid boundary.

A close inspection of the predicted tissue segmentation maps (see Figure 4.9)
also showed that our proposed model (image with augmentation) corrected mis-
classified voxels which were prevalent in the other 3 methods. At the same time,
the proposed image with augmentation method outperformed the original Draw-
EM segmentation by correcting a region of WM which was wrongly classified as
CSF (see Figure 4.10). Our results suggest that, in terms of consistency of volumes
and regional cortical thickness measures derived from dHCP and ePrime neonates
(Figure 4.6 and Figure 4.8), as well as the qualitative examples (Figure 4.9 and Fig-
ure 4.10), our proposed image with augmentation model resulted in more consistent
outputs than the other methods.

We used the harmonised cortical segmentation maps to look at differences in
both global and local cortical thickness measures between term and preterm-born
neonates. We showed in Figure 4.12 that our harmonised cortical gray matter maps
resulted in global thickness measures which were comparable with the dHCP-only
neonates, while also revealing a significant effect of GA and the interaction between
age at scan and at birth. We performed a similar analysis on the local cortical
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thickness measures and highlighted three regions of interest (frontal left, frontal
right, and parietal left) which showed significant differences between the two cohorts
(see Figure 4.12). These regions are consistent with previous studies [367] where
cortical thickness measures were shown to differ in preterm-born neonates when
compared to term-born neonates in an adolescent cohort.

Finally, we showed the importance of harmonising the cortical tissue maps by
investigating the association between neonatal cortical thickness and a language
outcome measure. After harmonisation, regressing language composite score against
predicted left or right frontal cortical thickness in the two pooled datasets, showed no
significant effect of cortical thickness (second column of Figure 4.13), consistent with
the ground-truth results seen in each cohort individually. This analysis demonstrates
that without data harmonisation, pooling images from separate datasets can lead
to spurious findings that are driven by systematic differences in acquisitions rather
than by true underlying effects. Our harmonisation allows for our two datasets
to be combined into joint analyses while preserving the underlying structure of
associations with real-world outcomes.

Recently, it has become increasingly commonplace to share imaging data amongst
research communities to form large and diverse datasets [368]. As a result of this
collective endeavour, data harmonisation becomes a critical component for enabling
the development of novel biomarkers that are invariant to different imaging equip-
ment or patient demographics. This is also an essential step towards translating
neuroimaging research into the clinics. Our model, however, lacks a number of
important criteria to be fully deployed into clinical practice. First, the data used
in this project was preprocessed (alignment to a common template, skull-stripping
using already available Draw-EM brain masks, and linear upsampling to a 0.5 mm
isotropic resolution), which means that in a clinical setting it would need to be part
of a more complex framework, in order to become a fully automated pipeline, and
be robust to the variability present in neonatal brain MRI. Second, validating our
model’s performance is crucial before deploying it in a clinical environment. More
specifically, ground truth labels obtained with the help of clinical experts would be
required in order to assess whether the harmonized images are able to accurately
represent the underlying anatomical structures and tissue properties. Finally, de-
ploying our proposed data harmonization model in a clinical setting requires further
training with a larger cohort of representative neonatal MR images, of different
scanner manufacturers, acquisition parameters, imaging protocols, and patient de-
mographics.

Our study suffers from several limitations. First, one particular issue is our
reliance on accurate dHCP labels. More specifically, we assume that the dHCP seg-
mentation maps which were obtained through an automated process (Draw-EM),
and therefore the computed cortical thickness measures, are the baseline standard
that the predicted ePrime labels use as reference. Moreover, the ePrime dataset had
no available tissue maps obtained through other means, such as manual segmenta-
tions, as the same automated method (Draw-EM) did not yield good results when
applied to ePrime (see example in Figure 4.10). Second, this study was focused on
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single-source unsupervised domain adaptation approaches, which might limit appli-
cation in terms of applying the method to a different neonatal dataset. However,
by utilising reliable tissue segmentation maps from multiple neonatal databases,
the proposed model can be extended to a multi-source domain adaptation pipeline
[369, 370].

Moreover, recent literature [371, 338] suggests that unsupervised models can
reach undesirable results when the two domains are highly disparate, and propose
the use of a small amount of labelled target domain data during training. Also,
Zhang et al. [372] demonstrated that semi-supervised learning can outperform un-
supervised domain adaptation models on classification benchmarks. In future, we
would like to investigate semi-supervised approaches by including reliable segmen-
tations of the ePrime cohort, and evaluate their performance when compared to our
proposed unsupervised DA model. Additionally, the latent based domain adapta-
tion method was trained using the features at every layer of the decoding branch,
without analysing different combinations of the encoding-decoding layers. Future
work will therefore aim to systematically evaluate our design choices via ablation
studies. Finally, we focused our work on investigating structural (T2w) datasets
only, and in future we aim to extend this study to harmonise diffusion data as well.
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Chapter 5
Attention-driven multi-channel deformable
registration of structural and
microstructural neonatal data

Motivation
Accurate alignment of neonatal MRI in presence of rapid development is needed for
downstream tasks.

Contribution
A novel multi-channel deep learning image registration framework that aims to combine
information from T2w neonatal scans with DWI-derived FA maps.

Publications
• Grigorescu, I. et al. (2021). Uncertainty-Aware Deep Learning Based Deformable

Registration. UNSURE 2021. LNCS (Springer)
LINK doi.org/10.1007/978-3-030-87735-4_6

• Grigorescu, I. et al. (2022). Attention-Driven Multi-channel Deformable Reg-
istration of Structural and Microstructural Neonatal Data. PIPPI 2022. LNCS
(Springer)
LINK doi.org/10.1007/978-3-031-17117-8_7

Code available at:
LINK github.com/irinagrigorescu/attentionneonatalmriregistration
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5.1 Introduction

5.1 Introduction

The neonatal brain undergoes dramatic changes during early life, such as cortical
folding and myelination. Non-invasive MRI offers snapshots of the evolving mor-
phology and tissue properties in developing brain across multiple subjects and time-
points. As a prerequisite of further analysis, MRI of various modalities needs to be
aligned. Structural and microstructural MRI modalities offer complementary infor-
mation about morhphology and tissue properties of the developing brain, however
inter-subject alignment is most commonly driven by a single modality (structural
[60] or diffusion [61]). Studies have shown that combining diffusion and structural
data to drive the registration [54, 57, 56, 55] improves the overall alignment. Classic
approaches for fusing these channels are based on simple averaging of the defor-
mation fields from the individual channels [54], or weighting the deformation fields
based on certainty maps calculated from normalised gradients correlated to struc-
tural content [57, 56, 51].

In order to establish accurate correspondences between MR images acquired dur-
ing the neonatal period, I propose an attention-driven multi-channel deep learning
image registration framework that aims to combine information from T2w neonatal
scans with DWI-derived FA maps. The proposed solution is based on a diffeomorphic
framework for non-rigid registration through stationary velocity field representation
[252]. This is of interest when registering images of the developing brain [357] as
diffeomorphisms lead to one-to-one transformations which are topology preserving
and inverse consistent [69]. Moreover, these properties are important for the con-
struction of brain atlases [373], as well as enabling plausible downstream analysis
of brain volume, shape, and change over time [69]. On top of this, the proposed
model also takes advantage of learnt spatial attention maps to select the most salient
features from both T2w and FA maps.

More specifically, a CVAE image registration network is trained to align either
structural or microstructural data to a 36 weeks neonatal atlas [51] of the same
modality. As a second step, a CNN, which learns attention maps for weighted
combination of the predicted modality-specific velocity fields, is trained to achieve
an optimal multi-channel alignment. Throughout this work, 3D MRI brain scans
[11] acquired as part of the dHCP1 are used as the moving images, while 36 weeks
neonatal multi-modal atlas2 [51] is used as the fixed image.

To evaluate the proposed framework, a test set of 30 neonates scanned around
40 weeks PMA is used. Moreover, a comparison study is performed to evaluate
the results against registration networks trained on T2w-only, FA-only, and both
modalities at the same time, either with or without attention. We also explored
the use of visual attention network blocks [309, 314] and our previously proposed
uncertainty-aware mechanism [374]. The quantitative evaluation confirmed that
while cortical structures were better aligned using T2w data and white matter tracts

1developingconnectome.org
2gin.g-node.org/alenaullauus/4d_multi-channel_neonatal_brain_mri_atlas

137

http://www.developingconnectome.org/
https://gin.g-node.org/alenaullauus/4d_multi-channel_neonatal_brain_mri_atlas


5.2 Methods

were better aligned using FA maps, the attention-based multi-channel registration
aligned both types of structures accurately.

5.2 Methods

5.2.1 Data acquisition and preprocessing

The MRI data used in this study was collected as part of the dHCP project [11] and
details about the data acquisition can be found in Section 1.2.3. In total, we use
414 3D T2w volumes and FA maps of neonates born between 23− 42 weeks GA and
scanned at term-equivalent age (37−45 weeks PMA). As preprocessing steps, we first
affinely pre-registered the data to a common 36 weeks gestational age atlas space
[51] using the MIRTK software toolbox [68], and then we resampled both structural
and microstructural volumes to be 1 mm3 isotropic resolution. To obtain the FA
maps, we used the MRtrix3 toolbox [375], and we performed skull-stripping using
the available dHCP brain masks [148]. Finally, we cropped the resulting images to
a 128× 128× 128 size.

To train our models, we first performed an 80 − 10 − 10% split of our dataset,
resulting in 350 subjects for training, 34 for validation and the remaining 30 subjects
for test, as described in Table 5.1. This was achieved through stratified splitting
in order to keep the distribution of ages at scan and the male-to-female ratio close
to the original distribution (of the entire dataset of 414 subjects). We used the
validation set to inform us about our models’ performance during training, and we
report all of our results on the test set.

Dataset #Subjects GA [weeks] PMA [weeks]
Train 350 (164� + 186�) 38.0 (3.8) 40.6 (1.9)

Validate 34 (14� + 20�) 39.7 (1.4) 40.7 (1.7)
Test 30 (12� + 18�) 39.8 (1.5) 40.6 (1.9)

Table 5.1: Number of scans in different datasets used for training, validation and
testing the models, together with their mean GA at birth (standard deviation)
and mean PMA at scan (standard deviation)

5.2.2 Network architectures

Multi-channel image registration (baseline). In this study, we employ a CVAE
[376] to model the registration probabilistically as proposed by [252]. Figure 5.1
shows the network architecture, where, a pair of 3D MRI volumes MT2w and FT2w
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(or MFA and FFA) are passed through the network to learn a velocity field vT2w (or
vFA). The exponentiation layers (with 4 scaling and squaring [182] steps) transform
it into a topology-preserving deformation field ϕT2w (or ϕFA). A Spatial Transformer
layer [181] is then used to warp (linearly resample) the moving images MT2w (or
MFA) and obtain the moved image MT2w(ϕT2w) (or MFA(ϕFA)).

Throughout this work, we use a 36 weeks old neonatal structural (T2w) and
microstructural (FA maps) atlas [51] as the fixed images. We have chosen this age
for the templates due to the lower degree of gyrification which facilitates a more
accurate registration of the cortex across the cohort.

Figure 5.1: Multi-channel image registration network based on the work proposed
by Krebs et al. [252]. The network takes as input the concatenated moving (M)
and fixed (F) volumes and produces a velocity field v which is transformed into a
deformation field ϕ through scaling and squaring layers. The spatial transformer
layer warps the moving image into the moved M(ϕ). Note that after the concate-
nation of the moving image(s) in the decoder layers, the number of features be-
comes 32 + 1 in the single-channel case, and 32 + 2 in the multi-channel case.

The network architecture is similar to the original paper [252], but uses a latent
code size of 32 and a Gaussian smoothing layer with σ = 1 mm (kernel size 33).
More specifically, the encoder branch is made up of four 3D convolutional layers
of 16, 32, 32, and 4 filters, respectively, with a kernel size of 33, followed by Leaky
ReLU (α = 0.2) activations [377]. The bottleneck (µ, σ, z) is fully-connected. The
decoder branch is composed of three 3D deconvolutional (transpose convolutions)
layers of 32 filters and a kernel size of 33 each, followed by Leaky ReLU (α = 0.2)
activations. The feature maps of the deconvolutional layers are concatenated with
the original-sized or downsampled versions of the moving input volumes. Two more
convolutional layers (with 16 and 3 filters, respectively) are added, followed by a
Gaussian smoothing layer which outputs the velocity field v.

At inference time, the trained networks are used to generate multiple deformation
fields ϕi, as shown in Figure 5.2. More specifically, for each subject in the test
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dataset, we first use the trained encoders to yield the µ and σ outputs. Then, we
generate n latent vector z = µ + ε · σ samples (here, ε ∼ N (0, 1)) and pass them
through the trained decoder networks to generate n dense deformation fields ϕi.
Throughout this work we set n = 50. From these, we obtain a mean deformation
field ϕ and a standard deviation deformation field σϕ.

Figure 5.2: At inference time the trained network generates multiple deformation
fields ϕi, from which a voxel-wise mean deformation field (ϕ) and a standard devi-
ation deformation field (σϕ) can be produced.

Uncertainty-aware registration. To investigate uncertainty-aware image
registration, we use our trained models to generate uncertainty maps. This is
achieved by combining the pretrained T2w-only and FA-only models in a three-
step process described in Figure 5.3. First, we generate n dense deformation fields
ϕi, and create the modality-specific mean deformation fields ϕT2w and ϕFA, and
uncertainty maps σϕT2w

and σϕFA
. Second, we calculate the certainty maps (αϕT2w

,
αϕFA

) using the following equations:

αϕT2w
=

1/σϕT2w

1/σϕT2w
+ 1/σϕFA

; αϕFA
=

1/σϕFA

1/σϕT2w
+ 1/σϕFA

(5.1)

Note that αϕT2w
+ αϕFA

= 1 (a tensor of the same size as αϕT2w
or αϕFA

, with 1
at every voxel location). Finally, the uncertainty-aware model’s deformation field
is constructed by locally weighting the contributions from each modality with the
certainty maps:

ϕ = αϕT2w
� ϕT2w + αϕFA

� ϕFA (5.2)
where � represents element-wise multiplication.

Attention-driven registration. For the attention-driven registration task,
we construct a CNN which uses pairs of modality-specific velocity fields as input,
and outputs a combined velocity field which aims to align both structural and mi-
crostructural data simultaneously. The network learns the attention maps αT2w

and αFA, for which αT2w + αFA = 1 at every voxel. The input velocity fields are
weighted with the attention maps and combined to create a final velocity field v.
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Figure 5.3: The construction of uncertainty-aware deformation field: 1 Create
modality-specific mean deformation fields ϕT2w and ϕFA, and uncertainty maps
σϕT2w

and σϕFA
. 2 Create modality specific certainty maps αϕT2w

and αϕFA
using

equation 5.1. 3 Create the final deformation field by locally weighting the contri-
butions from each modality with the certainty maps.

The architecture of our proposed attention image registration network is presented
in Figure 5.4.

For each subject in our dataset, we employ the previously trained registration-
only networks on either pairs of T2w images (MT2w and FT2w) or FA maps (MFA and
FFA) to output modality-specific velocity fields vT2w and vFA. These two fields are
concatenated and put through three 3D convolutional layers (stride 2) of 16, 32, and
64 filters, respectively, with a kernel size of 33, followed by Leaky ReLU (α = 0.2)
activations [377]. The activation maps of the final layer are concatenated with the
subject’s moving images MT2w and MFA downsampled to size 163. This is followed
by three 3D convolutional layers (stride 1) of 32, 16, and 16 filters, respectively, with
a kernel size of 33, Leaky ReLU (α = 0.2) activations and upsampling. The final
two layers are: one 3D convolutional layer (with stride 1, 8 filters, and Leaky ReLU
activation), and one 3D convolutional layer (with stride 1, and 2 filters), followed
by a Softmax activation function which outputs the two modality-specific attention
maps αT2w and αFA.

The final velocity field is created as

v = vT2w � αT2w + vFA � αFA (5.3)

where � represents the element-wise multiplication. Similar to the registration
network, the velocity field v is put through an exponentiation layer to create the
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Figure 5.4: The proposed attention-based image registration network architecture,
which uses as input subject- and modality-specific velocity fields (vT2w and vFA).
The attention network outputs two 1-channel maps αT2w and αFA which are used
to create a combined velocity field v. The velocity field v is transformed into a
dense deformation field ϕ which warps the subject’s moving images (MT2w and
MFA) into MT2w(ϕ) and MFA(ϕ). The network is trained to achieve good align-
ment between the warped images and the fixed atlas (FT2w and FFA). Note that
the T2w-only (Reg1) and FA-only (Reg2) networks are pretrained.

combined deformation field ϕ, which is then used to warp the moving volumes MT2w

and MFA.

Channel and spatial attention. To compare our proposed attention-driven
image registration network with other attention techniques, we add channel and
spatial attention modules throughout the image registration network. More specif-
ically, after every convolutional layer of the network, we add a channel attention
module (squeeze-and-excitation block [309]), followed by a spatial attention module
[314]. In total, we add 4 channel and spatial attention modules in the encoder part
of the CVAE, and 5 modules in the decoder.

5.2.3 Training the networks

Training the baseline image registration networks. For each input pair, the
encoder qω (with trainable network parameters ω) outputs the mean µ ∈ Rd and
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diagonal covariance σ ∈ Rd, from which we sample the latent vector z = µ + ε · σ,
with ε ∼ N (0, I). The decoder network pγ (with trainable network parameters γ)
uses the z-sample to generate a deformation field ϕ which, together with the moving
image M, produces the warped image M(ϕ). During training, the optimizer aims
to minimize both the KL divergence (equation 3.10), the BE regularisation penalty
[68] (equation 2.13), and the reconstruction loss:

Lreg =KL[qω(z|F, M) || p(z)]︸ ︷︷ ︸
DKL

+λBE LBE(ϕ)+

λ
(
λT2wDNCC(FT2w(ϕ− 1

2 ),MT2w(ϕ
1
2 )) + λFADNCC(FFA(ϕ− 1

2 ),MFA(ϕ
1
2 ))
)

︸ ︷︷ ︸
Lrec

(5.4)

where λ, λBE, λT2w and λFA are hyperparameters. Throughout this work, λBE =
0.01 and λ = 5000, as proposed in [252]. LBE [68] was defined in equation 2.13, but
we include it here for the sake of completion:

LBE(ϕ) =
∑
x∈Ω

[(∂2ϕ(x)
∂x2

)2
+
(∂2ϕ(x)

∂y2

)2
+
(∂2ϕ(x)

∂z2

)2
+

2
(∂2ϕ(x)

∂xy

)2
+ 2
(∂2ϕ(x)

∂xz

)2
+ 2
(∂2ϕ(x)

∂yz

)2] (5.5)

Finally, DNCC is the symmetric NCC dissimilarity measure defined as:

DNCC(F(ϕ− 1
2 ),M(ϕ

1
2 )) = −

∑
x∈Ω(F(ϕ− 1

2 )− F ) · (M(ϕ
1
2 )−M)√∑

x∈Ω(F(ϕ− 1
2 )− F )2 ·

∑
x∈Ω(M(ϕ

1
2 )−M)2

(5.6)

where F is the mean voxel value in the warped fixed image F(ϕ− 1
2 ) and M is the

mean voxel value in the warped moving image M(ϕ
1
2 ).

In equation 5.4, DKL aims to reduce the gap between the prior p(z), defined as a
multivariate unit Gaussian distribution p(z) ∼ N (0, I), and the encoded distribution
qω(z| F, M). LBE regularizes the transformation ϕ by penalizing high bending
energy, and Lrec aims to reduce the reconstruction loss between the fixed image F
and warped image M(ϕ).

Using this setup, we train 2 single-modality baseline models on either pairs of
T2w-only data (λT2w = 1.0, λFA = 0.0) or FA-only data (λT2w = 0.0, λFA = 1.0).
Then, we train multi-channel baseline models using the following sets of hyperpa-
rameters: (λT2w, λFA) = {(1.0, 0.1), (1.0, 0.175), (1.0, 0.25), (1.0, 0.5), (1.0, 0.75),
(1.0, 1.0)}. In total, we have 8 baseline networks trained from scratch, until conver-
gence (see the first row in Table 5.2).

Uncertainty-aware registration. The uncertainty-aware registration is achieved
at inference-time, using the pre-trained baseline T2w-only (λT2w = 1.0, λFA = 0.0)
and FA-only (λT2w = 0.0, λFA = 1.0) networks. More specifically, equation 5.1
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shows how the certainty maps (αϕT2w
, αϕFA

) are created from the modality-specific
deformation fields. Note that in this case both channels have equal weights (λT2w =
λFA = 1.0). To allow for different weightings of the T2w and FA channels, we apply
the following equations:

α′
ϕT2w

=
λT2wαϕT2w

λT2wαϕT2w
+ λFAαϕFA

; α′
ϕFA

=
λFAαϕFA

λT2wαϕT2w
+ λFAαϕFA

(5.7)

As αϕT2w
+ αϕFA

= 1, when λT2w = λFA = 1.0, equation 5.7 reduces to: α′
ϕT2w

=
αϕT2w

and α′
ϕFA

= αϕFA
.

To summarize, for the uncertainty-aware multi-channel registration, we use the
pre-trained T2w-only and FA-only baseline networks to create modality-specific cer-
tainty maps, and we build the uncertainty-aware deformation fields by locally weight-
ing the contributions from each modality with the certainty maps. We do this for
the following sets of hyperparameters: (λT2w, λFA) = {(1.0, 0.1), (1.0, 0.175), (1.0,
0.25), (1.0, 0.5), (1.0, 0.75), (1.0, 1.0)}. This is summarized in the second row of
Table 5.2.

Training the channel + spatial attention registration networks. The
channel + spatial attention networks are trained similarly to the baseline networks,
using the same loss function (equation 5.4), and the same hyperparameters: λBE =
0.01, λ = 5000, and (λT2w, λFA) = {(1.0, 0.1), (1.0, 0.175), (1.0, 0.25), (1.0, 0.5),
(1.0, 0.75), (1.0, 1.0)}. This is summarized in the third row of Table 5.2.

Training the attention-driven registration networks. The attention-
driven registration networks use as input the subject- and modality-specific veloc-
ity fields (vT2w and vFA) produced by the pre-trained baseline T2w-only (λT2w =
1.0, λFA = 0.0) and FA-only (λT2w = 0.0, λFA = 1.0) networks (see Figure 5.4).
During training, the optimizer aims to minimize the following loss function:

Lattn = λT2wDNCC(FT2w(ϕ− 1
2 ),MT2w(ϕ

1
2 )) + λFADNCC(FFA(ϕ− 1

2 ),MFA(ϕ
1
2 ))
(5.8)

where DNCC is the symmetric NCC dissimilarity measure, and ϕ is the obtained
through scaling and squaring layers applied to the velocity field obtained through
equation 5.3. Similarly to before, we train the attention-driven registration networks
with the following set of hyperparameters: (λT2w, λFA) = {(1.0, 0.1), (1.0, 0.175),
(1.0, 0.25), (1.0, 0.5), (1.0, 0.75), (1.0, 1.0)}. This is summarized in the final row of
Table 5.2.

To summarize, we train 8 baseline image registration networks (2 single-channel
and 6 multi-channel), 6 channel+spatial attention networks, and 6 proposed attention-
based networks. The 6 uncertainty-aware experiments are obtained from the single-
channel baseline networks at inference time. We train all of the models until conver-
gence (150 epochs, or 52500 iterations), using the Adam optimizer with its default
parameters (β1=.9 and β2=.999), a decaying cyclical learning rate scheduler [378]
with a base learning rate of 10−6 and a maximum learning rate of 10−3, and an
L2 weight decay (L2 penalty) factor of 10−5. All networks were implemented in
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Model T2w-only T2w+FA FA-only
λFA 0 .1 .175 .25 .5 .75 1 1
λT2w 1 1 1 1 1 1 1 0

baseline X X X X X X X X
uncertainty X X X X X X
ch+sp X X X X X X
attention X X X X X X

Table 5.2: Single- and multi-channel experiment setups used in this study, for dif-
ferent values of hyperparameters λFA and λT2w.

PyTorch (v1.10.2), with TorchIO (v0.18.73) [206] for data preprocessing (intensity
normalisation) and loading, and training was performed on a 12 GB Titan XP. Aver-
age inference times were: 0.16s/sample for the baseline networks, 0.31s/sample for
the proposed attention-based networks, and 0.63s/sample for the channel+spatial
attention networks.

5.3 Results

5.3.1 Quantitative evaluation

To validate which of the 26 models performs best, we carry out a quantitative
evaluation on our test dataset of 30 subjects. Each subject and the atlas had the
following tissue label segmentations obtained from T2w images using the Draw-EM
pipeline [170]: cGM, WM, ventricles, hippocampi and amygdala. Additionaly, a
WM structure called the internal capsule (IC) was manually segmented on the FA
maps of all test subjects. These labels were propagated from each subject into the
atlas space using the predicted deformation fields. To evaluate performance of the
registration, Dice scores and average surface distances (SimpleITK v2.1.1 [364]) were
calculated between the warped labels and the atlas labels.

Cortical gray matter vs. internal capsule. First, we looked at how the
models performed based on two tissue types (the cGM and the IC). We chose these
two structures because the cGM delineation is poor on the FA maps, while the IC is
a white matter structure which is very prominent in the microstructure data. Dice
scores are summarised in Figure 5.5, while average surface distances are summarised
in Figure 5.6. In both figures, the first column (shaded in light pink) shows the values
for the initial affine alignment, while the second and last columns show the T2w-
only and the FA-only baseline registration networks. Columns 3–8 show different
multi-channel models for increasing values of the λFA hyperparameter, while λT2w

is kept the same. For visualisation purposes, each figure consists of 4 plots: the
first three compare the baseline networks with the: a) channel+spatial attention, b)
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uncertainty-aware, and c) our proposed attention, respectively. The last plot shows
all models together (baseline vs. all).

Figure 5.5: Line plots showing median Dice scores for cGM and IC structures,
with the first column showing their initial affine alignment. The first three plots
compare the baseline networks with the: a) channel+spatial attention, b)
uncertainty-aware, and c) our proposed attention, respectively. The last plot
(d) aggregates all of these results into one figure.

The best overall performance in terms of Dice scores and average surface dis-

146



5.3 Results

Figure 5.6: Line plots showing median average surface distances for cGM and IC
structures, with the first column showing their initial affine alignment. The first
three plots compare the baseline networks with the: a) channel+spatial atten-
tion, b) uncertainty-aware, and c) our proposed attention, respectively. The
last plot (d) aggregates all of these results into one figure.

tances is obtained by our proposed attention model for λT2w = 1.0 and λFA = 0.1
(third column, Figures 5.5 and 5.6), where the cGM is aligned as well as the T2w-
only model, and the IC structure as good as the FA-only model (the differences are
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not statistically significant). Using channel+spatial attention with the same hyper-
parameter setup (λT2w = 1.0 and λFA = 0.1) achieves good results for the cGM
structure, but cannot align the IC structure as well as the FA-only model, or the
proposed attention model. Similarly, the uncertainty-aware model yields good results
when compared to our proposed attention for the cGM structure, but cannot align
the IC well, obtaining results significantly lower than all of the other models.

For the T2w-only model (second column) the IC is poorly aligned, obtaining
scores which are worse than the initial affine alignment, while the cGM label ob-
tains the best alignment. On the other hand, for the FA-only model (last column)
the IC is well aligned, while the cGM obtains lower scores. In the baseline regis-
tration networks (dark blue and orange) we see a steady worsening of cGM scores
as λFA increases, while the IC structure varies across the different λFA values. For
the attention-driven networks (light blue and red), the scores in cGM degrade more
gently, while the IC structures remain steady. Finally, the proposed attention net-
works always outperforms the multi-channel baseline registration networks, and this
improvement is statistically significant for all values of λFA.

Multiple structural labels. Table 5.3 shows the results of 7 of our models for
all available tissue types (cGM, WM, ventricles, hippocampi and amygdala, and IC),
with Dice scores showing in the top half of the table (marked by the DS label on the
last column), and average surface distances in the second half of the table (marked
by the ASD label on the last column). A two-sample, two-sided paired t-test with a
significance level of 5% was used to compare pairs of the trained models. Statistically
significant differences (p-value < 0.05 ) are reported in Table 5.3 in terms of best
overall score (highlighted in bold), and best/worst amongst the multi-channel models
(highlighted in green/red, respectively). The initial affine alignment is shown in the
first row of each type of score (DS or ASD). The table also contains the results for
four baseline networks: T2w-only, FA-only, T2w+FA when they are both weighed
the same: λT2w = λFA = 1.0, and T2w+FA when λT2w = 1.0 and λFA = 0.1. The
other multi-channel models, channel+spatial attention, uncertainty-aware, and our
proposed attention, are shown in the last three rows of the DS and ASD scores,
respectively. All models marked with the T2w+wFA label on the first column of the
table are trained with the lowest weight on the FA maps (λT2w = 1.0 and λFA = 0.1).
The λFA = 0.1 was chosen here because it showcases the best overall results in the
previous section.

Our proposed attention model has the best overall performance. For structures
which were delineated in T2w images, the proposed attention model performed better
(hippocampi and amygdala), equally well (cGM), or very close (WM, ventricles) to
the T2w-only model, showing that thanks to attention we are able to keep advantages
of structural-only registration. For the IC, which was derived from FA maps, the
proposed attention model performed equally well to the FA-only model, showing
that the attention also allows us to keep the advantages of the microstructural-only
registration model.

148



5.3 Results

Model cGM WM Ventricles Amygdala IC

initial affine .567±.02 .700±.03 .631±.05 .746±.05 .642±.07

D
Sba

se
lin

e T2w-only .763±.01 .844±.02 .797±.02 .803±.02 .614±.04
FA-only .621±.02 .756±.02 .676±.04 .769±.03 .686±.03
T2w+FA .653±.01 .766±.01 .742±.03 .782±.02 .655±.03

T
2w

+
w

FA baseline .747±.01 .826±.02 .775±.02 .808±.02 .669±.03
ch+sp .761±.01 .841±.01 .791±.01 .814±.02 .656±.03
uncert .763±.01 .842±.01 .792±.01 .809±.02 .638±.04
attention .763±.01 .842±.01 .793±.02 .816±.02 .683±.03

initial affine .582±.04 .409±.04 .508±.1 .310±.08 .479±.1

A
SDba

se
lin

e T2w-only .259±.02 .193±.02 .242±.05 .233±.04 .498±.09
FA-only .477±.04 .319±.02 .433±.09 .276±.05 .374±.05
T2w+FA .419±.02 .317±.02 .324±.06 .266±.04 .417±.06

T
2w

+
w

FA baseline .279±.01 .218±.02 .264±.04 .223±.04 .383±.05
ch+sp .262±.01 .198±.01 .248±.04 .209±.03 .390±.05
uncert .261±.02 .197±.01 .246±.05 .224±.04 .456±.08
attention .260±.02 .197±.01 .248±.04 .212±.03 .370±.05

Table 5.3: Mean (±standard deviation) Dice scores (DS) in the first half of the
table and average surface distances (ASD) in the second half of the table. All re-
sults are on the test set, with the initial affine alignment shown on the first rows
of each score. First, the single channel baseline networks (T2w-only and FA-only)
are shown, followed by the multi-channel λT2w = λFA = 1.0 baseline network. The
following 4 rows showcase the multi-channel, λT2w = 1.0 and λFA = 0.1, for the
baseline, the channel+spatial attention, the uncertainty-aware attention and
our proposed attention model, respectively. Overall best scores are highlighted in
bold (p-value < 0.05 ). The green shading highlights the model which performed
best amongst the multi-channel models (p-value < 0.05 ), while the red shading
points to the multi-channel models which performed worst.
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Using channel+spatial attention helped with the alignment of the structural
labels (cGM, WM, ventricles, hippocampi and amygdala), but had significantly
lower performance for IC (lower than the baseline T2w+wFA model). Similarly, the
uncertainty-aware models performed well for the structural labels (cGM, WM and
ventricles), but had the poorest scores for the IC (lowest amongst all the multi-
channel models, and compared to the initial affine alignment).

The T2w-only model performed slightly worse for the hippocampi and amygdala,
while the scores for the IC structure were worse than the initial affine alignment.
The FA-only model obtains poor scores in all structures except the IC. Finally, the
multi-channel baseline models always performed worse than the attention-driven
models. In fact, the T2w+FA network, where λT2w = λFA = 1.0, obtained the lowest
performance amongst the multi-channel models, showing that besides attention,
the global weighting (λFA = 0.1) was an important factor towards the network’s
performance.

5.3.2 Qualitative results

Visualisation of attention maps. Figure 5.7 shows average attention maps from
10 neonatal subjects scanned around 40 weeks PMA for two of our attention-driven
models (when λFA = λT2w = 1.0 and when λT2w = 1.0, λFA = 0.1). The first two
columns of Figure 5.7 show the middle axial and coronal slices of the T2w and FA
atlases which were used for training, together with segmentation of the investigated
brain structures. The last two columns show the average αT2w attention maps (in
atlas space) for the 2 models. Specifically, for each subject j ∈ [1, 10] and model
m ∈ {attention with λFA = λT2w = 1.0, attention with λFA = 0.1, λT2w = 1.0},
we obtained attention maps αjm

T2w and αjm
FA, and averaged them across the subjects:

αm
T2w = 1

10

∑10
j=1 α

mj
T2w and αm

FA = 1
10

∑10
j=1 α

mj
FA. Figure 5.7 shows the αm

T2w maps
only, as their FA counterparts are αm

FA = 1 − αm
FA. We can observe that the αT2w

attention maps cover the cGM region, and this is more pronounced when λFA is
decreased from 1.0 to 0.1. On the other hand, αT2w is close to zero in the area of
the main white matter tracts in both cases, suggesting that the FA channel is used
in this area for the registration task. Moreover, this qualitative finding explains the
overall steadiness of the IC results across different λFA values shown in Figures 5.5
and 5.6.

In fact, this is quite evident in Figure 5.8, where both αT2w and αFA maps are
shown for all pairs of hyperparameters: (λT2w, λFA) = {(1.0, 0.1), (1.0, 0.175), (1.0,
0.25), (1.0, 0.5), (1.0, 0.75), (1.0, 1.0)}, in both mid-brain axial and coronal slices.
As λFA increases from 0.1 to 1.0, the αT2w maps become less pronounced in the cGM
regions. This is shown in Figure 5.8 through the green arrow which points at a cGM
region in both axial and coronal slices. When λFA = 0.1, these regions are close to
1, but they become less reliant on the T2w channel with increasing the FA global
weight. On the other hand, the FA channel remains stable for the IC structure, and
this is shown on the αFA maps in Figure 5.8 with the cyan arrows and ovals. The
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Figure 5.7: Mid-brain axial and coronal slices of both T2w and FA fixed images
(first two columns), together with average αT2w attention maps for the proposed
attention multi-channel registration network with λFA = λT2w = 1.0, and with
λT2w = 1.0, λFA = 0.1, respectively. Contour lines of the boundaries between cGM
(dark blue), WM (cyan), ventricles (yellow) and hippocampi and amygdala (red)
are overlaid on top, while the pink arrow points to the IC structure.

αFA map values remain close to 1 inside the IC for all λFA hyperparameters.

Comparison with uncertainty-aware maps. Figure 5.9 compares the aver-
age attention maps produced by our proposed attention model with the uncertainty-
aware model, for λFA = λT2w = 1.0. The uncertainty-aware maps are much noisier
than our proposed model, and this is especially pronounced in the IC region (see
cyan arrows in the αFA maps of Figure 5.9). We hypothesize that this is the rea-
son why the IC is poorly aligned for the uncertainty-aware model. For the sake of
completion, we add in the first column the attention maps produced by networks
trained with higher Gaussian smoothing (with σ = 5 mm instead of σ = 1 mm).
Indeed, the maps are smoother, but at this resolution the cGM is poorly aligned
(with Dice scores below 0.65 and average surface distances above 0.45). Similarly,
the IC is not as well aligned as when σ = 1 mm, with values significantly poorer
than our proposed attention network (Dice scores below 0.7 and average surface
distances above 0.4).
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Figure 5.8: Mid-brain axial and coronal slices of average αT2w and αFA attention
maps for λFA = {0.1, 0.175, 0.25, 0.5, 0.75, 1.0}. Contour lines of the boundaries
between cGM, WM, ventricles and hippocampi and amygdala are overlaid on top.
The green arrows point to regions of cGM (in both axial and coronal slices) of the
αT2w maps which becomes less dependent on the T2w channel as λFA increases.
The cyan arrows and ovals point to regions of the IC (in both axial and coro-
nal slices) of the αFA maps which remain dependent on the FA channel as λFA

changes value.
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Figure 5.9: Mid-brain axial and coronal slices of average αT2w and αFA attention
maps for λFA = λT2w = 1.0. The first two columns show the attention maps
derived with the uncertainty-aware model, while the last column shows the pro-
posed attention maps. The first column shows the attention maps when using an
increased kernel size for the Gaussian smoothing layer (σ = 5 mm), while the last
two columns show the default parameter chosen for this study (σ = 1 mm). Con-
tour lines of the boundaries between cGM, WM, ventricles and hippocampi and
amygdala are overlaid on top. The green arrows point to regions of cGM (in both
axial and coronal slices) of the αT2w maps, while the cyan arrows and ovals point
to regions of the IC (in both axial and coronal slices) of the αFA maps.
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5.4 Discussion and future work

In this work we presented a novel solution for multi-channel registration, which com-
bines structural and microstructural MRI data based on learned spatially varying
attention maps that optimise the multi-channel alignment. Our quantitative evalua-
tion showed that the proposed attention-driven image registration network improves
overall alignment when compared to models trained on multi-channel data, while
maintaining the performance of the single-channel registration for the structures de-
lineated on that channel. Moreover, using attention helps drive the registration to
better alignment of tissue structures, but only our proposed model obtains results
on par to using microstructural data only in terms of aligning white matter labels.

The development of reliable methods for neonatal brain MR image registra-
tion holds significant clinical relevance. For example, accurate image registration
is an important step in building age-dependent templates and spatiotemporal at-
lases [379, 373] which are used as reference for identifying normal and abnormal
brain structures, or establishing normative developmental ranges. Moreover, stud-
ies involving brain morphometry, which have shown promising results in infants at
risk of developing cognitive or sensorimotor impairments [380, 379], require accurate
registration and spatial normalisation of the subjects in a common space. For in-
stance, our proposed attention model has the potential to become a key component
in studying neurodevelopmental outcomes using tensor-based morphometry [381],
as this requires accurate alignment of each subject to a common template space.

Deploying such MR image registration models in a clinical setting is not without
challenges, and there are several potential gaps that need to be addressed. In par-
ticular, to develop accurate image registration models it is important to have access
to diverse datasets of neonatal brain MR images. However, there is often a scarcity
of annotated neonatal imaging data, particularly with reliable registration informa-
tion as the ground truth. At the same time, the current implementation relies on a
well-curated dataset in which the training data has undergone specific preprocessing
steps, such as resizing, adjusting spatial orientation, and applying affine registration
to a common template space. Our work can potentially serve as a step within a
more complex pipeline where all these prerequisites must be fulfilled beforehand.

Our study has several limitations. First, our experiments lack a comparison with
more classical image registration methods, such as ANTs [60] or NiftyReg [113],
where the fusion of different channels could be performed either with or without
certainty maps calculated from normalized gradients correlated to structural content
[51]. Second, the available segmentation maps used to quantify the accuracy of the
label propagation through the predicted deformation fields were obtained through
an automated process (i.e., Draw-EM). More specifically, our quantitative evaluation
relies on the assumption that the available tissue maps are correct, without being
able to compare against inter-observer measures performed by medical raters. At
the same time, this study was focused on combining information from T2w neonatal
scans with DWI-derived FA maps, restricting its applicability to higher-order data,
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such as DTI. Moreover, the CVAE employed in this study was trained using a latent
space size of 32, based on the original paper by Krebs et al. [253], without analysing
how different values (higher or lower) might affect the results. At the same time, we
kept the same latent space size for both single- and multi-channel data, which might
have an impact on the capacity of the networks. In terms of our proposed attention
network, in this study we only analysed the scenario in which the attention maps are
single-channel, i.e., they yield a scalar value per-voxel, thus weighting each spatial
dimension of the velocity field equally. In future work, we aim to investigate if a
3-channel attention map (1 channel for each dimension of the velocity field) further
improves our results. Finally, we used only one white matter label, namely the IC,
for showcasing the importance of using microstructural data. In the future, we aim
to explore multiple white matter structures, such as the external capsule and the
corpus callosum.
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Chapter 6
Diffusion tensor driven deep learning
image registration

Motivation
Registration of DT images has the potential to better align WM structures than using
structural MRI only. Moreover, unlike the scalar-valued FA maps, DTI enables the in-
clusion of fiber orientation at each voxel.

Contribution
An extension of the previously proposed attention-based multi-channel deep learning
image registration framework to deal with higher-order DT image data, by accounting
for the change in orientation of diffusion tensors induced by the predicted deformation
field.

Publications
• Grigorescu, I. et al. (2020). Diffusion Tensor Driven Image Registration: A Deep

Learning Approach. WBIR 2020. LNCS (Springer)
LINK https://doi.org/10.1007/978-3-030-50120-4_13

Code available at:
LINK github.com/irinagrigorescu/attentionneonatalmriregistration
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6.1 Introduction

Medical image registration is a vital component of a large number of clinical appli-
cations. For example, image registration is used to track longitudinal changes occur-
ring in the brain. However, most applications in this field rely on a single modality,
without taking into account the rich information provided by other modalities. Al-
though T2w MRI scans provide good contrast between different brain tissues, they
do not have knowledge of the extent or location of white matter tracts. Moreover,
during early life, the brain undergoes dramatic changes, such as cortical folding and
myelination, processes which affect not only the brain’s shape, but also the MRI
tissue contrast.

In order to establish correspondences between images acquired during the neona-
tal period, we propose a deep learning image registration framework which combines
T2w and DW MRI scans. More specifically, this study extends the previously pro-
posed multi-channel image registration network (see Section 5) with layers capable
of dealing with higher-order DT data. As the fixed images, we use the same 36
weeks old neonatal structural (T2w) atlas as described in Section 5, and instead of
FA maps, we use the corresponding microstructural DTI atlas [51] of the same age.
Throughout this work we use MRI brain scans acquired as part of the dHCP project
[11] for the moving images.

6.2 Methods

6.2.1 Data acquisition and preprocessing

The MRI data used in this study was collected as part of the dHCP project [11] and
details about the data acquisition can be found in Section 1.2.3. More specifically,
we used 414 3D T2w and DTI volumes of neonates born between 23 − 42 weeks
GA and scanned at term-equivalent age (37 − 45 weeks PMA). As preprocessing
steps, we first affinely pre-registered the data to a common 36 weeks gestational
age atlas space [51] using the MIRTK software toolbox [68], and then we resampled
both structural and microstructural volumes to be 1 mm isotropic resolution. To
obtain the DT maps, we used the dwi2tensor [382] command available in the
MRtrix31 toolbox [375], and we performed skull-stripping using the available dHCP
brain masks [148]. Finally, we cropped the resulting images to a 128 × 128 × 128
size.

The dataset partition for training, validating and testing our networks is de-
scribed in Table 6.1, and was kept similar to the study shown in Chapter 5. We

1https://mrtrix.readthedocs.io/

157

https://mrtrix.readthedocs.io/
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used the validation set to inform us about our models’ performance during training,
and we report all of our results on the test set.

Dataset #Subjects GA [weeks] PMA [weeks]
Train 350 (164� + 186�) 38.0 (3.8) 40.6 (1.9)

Validate 34 (14� + 20�) 39.7 (1.4) 40.7 (1.7)
Test 30 (12� + 18�) 39.8 (1.5) 40.6 (1.9)

Table 6.1: Number of scans in different datasets used for training, validation and
testing the models, together with their mean GA at birth (standard deviation)
and mean PMA at scan (standard deviation).

6.2.2 Network architectures

Baseline image registration network. Let F, M represent the fixed (target)
and the moving (source) MR volumes, respectively, and let ϕ be the deformation
field. In this work, the focus is on T2w MRI volumes (F T2w and MT2w) which are
single channel data, and DTI volumes (FDTI and MDTI) which are 6 channel data.
The moving images MT2w and MDTI are acquired from the same subjects, while the
fixed images F T2w and FDTI are the 36 weeks old neonatal atlas [51].

The overall architecture of the proposed network, which is similar to the base-
line network described in Section 5 (see Figure 5.1), is shown in Figure 6.1. During
training, our model uses pairs of T2w and/or DT images to learn a velocity field v,
which is transformed into a topology-preserving deformation field ϕ through scal-
ing and squaring layers. The Spatial Transformer layer [181] receives as input the
predicted field ϕ and the moving scalar-valued T2w image, and outputs the warped
and resampled image. A similar process is necessary to warp the moving DT image,
with a few extra steps which are explained in the next subsection.

Attention-based image registration network. For our attention-based
multi-channel image registration network, we employ the previously proposed CNN
(see Chapter 5, Figure 5.4) which uses pairs of modality-specific velocity fields as
input, and outputs a combined velocity field which aims to align both structural
(T2w) and microstructural (DTI) data simultaneously. The network learns the 1-
channel attention maps αT2w and αDTI , for which αT2w + αDTI = 1 at every voxel.
The input velocity fields (vT2w and vDTI) are weighted with the attention maps and
combined to create a final velocity field:

v = vT2w � αT2w + vDTI � αDTI (6.1)

The architecture of our proposed attention image registration network is presented
in Figure 6.2.
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Figure 6.1: The diffusion tensor driven multi-channel image registration network
at training time. Jacobian matrices J are calculated at each spatial location for
the currently predicted deformation field ϕ and then used to calculate the rotation
matrices R through polar decomposition. The final DT moved image is obtained
after tensor reorientation. The reconstruction loss (Lrec) is computed between the
fixed atlases F T2w and FDTI and the warped structural MT2w(ϕ) and the warped
microstructural image with reoriented tensors MDTI(ϕ). Note that the 9 value
shown above the J and R matrices represents the 9-channel data, as both the Ja-
cobian matrices J and the rotation matrices R are calculated for each voxel. Thus,
for a deformation field ϕ of shape NB × 3× 128× 128× 128, the J and R matrices
will be NB × 9× 128× 128× 128 (NB is the number of batches).

6.2.3 Tensor reorientation

Registration of DT images is not as straightforward to perform as scalar-valued
data. When transforming the latter, the intensities in the moving image are inter-
polated at the new locations determined by the deformation field ϕ and copied to
the corresponding location in the target image space. However, after interpolating
DT images, the diffusion tensors need to be reoriented to remain anatomically cor-
rect [105]. This is done by applying a rotation matrix R to each resampled diffusion
tensor D, such that: D′ = RDRT .

When the transformation is non-linear, such as in our case, the reorientation
matrix can be computed at each point in the deformation field ϕ through a po-
lar decomposition of the local Jacobian matrix. This factorisation transforms the
non-singular matrix J into a unitary matrix R (the pure rotation) and a positive-
semidefinite Hermitian matrix P , such that J = RP [106]. The rotation matrices
R are then used to reorient the tensors without changing the local microstructure.
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Figure 6.2: The proposed diffusion tensor driven multi-channel attention image
registration network at training time. The overall architecture is kept similar to
the study presented in Chapter 5 (Figure 5.4), with the added components neces-
sary for DT reorientation. The loss (Lattn) is computed between the fixed atlases
F T2w and FDTI and the warped structural MT2w(ϕ) and the warped microstruc-
tural image with reoriented tensors MDTI(ϕ).

This is known as the finite strain strategy [105].

In our proposed framework, a Jacobian matrix J is calculated from the predicted
deformation field ϕ at each spatial location x (see Figures 6.1 and 6.2), using
equation 2.14. For the sake of completion, we include the equation here:

JAC(ϕ(x)) =


∂ϕx(x)

∂x
∂ϕx(x)

∂y
∂ϕx(x)

∂z
∂ϕy(x)

∂x

∂ϕy(x)
∂y

∂ϕy(x)
∂z

∂ϕz(x)
∂x

∂ϕz(x)
∂y

∂ϕz(x)
∂z

 (6.2)

6.2.4 Training the networks

Training the baseline image registration network. We train our baseline
networks using a combination of the KL divergence (equation 3.10), the BE regu-
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larisation penalty [68] (equation 2.13), and the reconstruction loss:

Lreg =DKL + λBE LBE(ϕ)+

λ
(
λT2wDNCC(FT2w(ϕ− 1

2 ),MT2w(ϕ
1
2 )) + λDTI DEDS(FDTI(ϕ− 1

2 ),MDTI(ϕ
1
2 ))
)

︸ ︷︷ ︸
Lrec

(6.3)

In the equation 6.3 shown above, DKL aims to reduce the gap between the prior p(z),
defined as a multivariate unit Gaussian distribution p(z) ∼ N (0, I), and the encoded
distribution qω(z| F, M). LBE regularizes the transformation ϕ by penalizing high
bending energy, and Lrec aims to reduce the reconstruction loss between the fixed
image F and warped image M(ϕ).

In short, we use the same reconstruction loss for the structural data as we did in
the study presented in Chapter 5 (equation 5.6). For the microstructural data, in
order to encourage a good alignment between the DT images, we employ one of the
most commonly used diffusion tensor similarity measures, known as the Euclidean
distance squared [61] which was previously presented in equation 2.26. For the sake
of completion, we include it here:

DEDS(F(ϕ− 1
2 ),M(ϕ

1
2 )) =

∑
x∈Ω

||F(ϕ− 1
2 )−M(ϕ

1
2 )||2C (6.4)

where the euclidean distance between two tensors D1 and D2 is:

||D1 −D2||C =

√
Tr
(
(D1 −D2)2

)
(6.5)

Training the attention-driven registration network. Similar to the FA
study presented in Chapter 5, the attention-driven registration networks use as
input the subject- and modality-specific velocity fields (vT2w and vDTI) produced
by the pre-trained baseline T2w-only and DTI-only networks. During training, the
optimizer aims to minimize the following loss function:

Lattn =λT2wDNCC(FT2w(ϕ− 1
2 ),MT2w(ϕ

1
2 ))+

λDTI DEDS(FDTI(ϕ− 1
2 ),MDTI(ϕ

1
2 ))

(6.6)

where ϕ is the field obtained through scaling and squaring layers applied to the
velocity field defined in equation 6.1.

Particularities of training with DTI data. One major drawback of training
with DTI data is the use of a voxel-wise singular value decomposition (SVD) for
calculating the reorientation matrices. This has proven to be time consuming, with
a computation time of ∼3 s/sample. Moreover, unlike the previous T2w+FA study
where we were able to use the global symmetric NCC dissimilarity measure for both
structural and microstructural data, the Euclidean distance squared [61] is one or-
der of magnitude smaller than the values obtained with NCC. We empirically found
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that multiplying the DEDS by 10 brings the values closer in range. At the same time,
to better understand the right balance between the two losses without spending the
time consuming task of training multiple 3D models, we have performed hyperpa-
rameter tuning on 2D mid-brain axial slices of the dataset. These experiments are
summarised in Table 6.2 for both the baseline and the proposed attention models.
More specifically, we trained the 2D networks for a range of hyperparameter values:
(λT2w, λDTI) = {(1.0, 0.1), (1.0, 0.5), (1.0, 1.0), (1.0, 1.5), (1.0, 2.0), (1.0, 3.0)}, as
well as DTI-only (λT2w = 0.0, λDTI = 1.0).

Model DTI-only T2w+DTI
λDTI 1 .1 .5 1 1.5 2 3
λT2w 0 1 1 1 1 1 1

2D baseline X X X X X X X
2D attention X X X X X X
3D baseline X X X X
3D attention X X X

Table 6.2: Single- and multi-channel 2D and 3D experiment setups used in this
study, for different values of hyperparameters λDTI and λT2w.

To summarize, we train 7 baseline 2D image registration networks (1 model for
DTI-only and 6 multi-channel models), and 6 attention-based multi-channel net-
works (see the 2D baseline and 2D attention rows in Table 6.2). For the 3D
networks, we train 4 baseline 3D image registration networks (1 model for DTI-only
and 3 multi-channel), and 3 proposed attention-based network with the hyperparam-
eters that we found to perform well in the 2D experiments (see the 3D baseline
and 3D attention rows in Table 6.2).

We train all of the models until convergence, with a maximum of 150 epochs
for 2D training and a maximum of 300 epochs for 3D training. We also employ
the Adam optimizer with its default parameters (β1=.9 and β2=.999), and use the
models which performed best on the validation set. Similar to Chapter 5, we employ
a decaying cyclical learning rate scheduler [378], but with a smaller base learning
rate of 5 · 10−8 and a maximum learning rate of 5 · 10−4, and a larger L2 weight
decay (L2 penalty) factor of 10−4. This is because we observed that training with
the original parameters caused an accumulation of large derivatives which resulted
in the model being unstable and incapable of learning or producing viable predic-
tions. All networks were implemented in PyTorch (v1.10.2), with TorchIO (v0.18.73)
[206] for data preprocessing (intensity normalisation) and loading, and training was
performed on a 12 GB Titan XP.
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6.3 Results

6.3.1 Quantitative evaluation

The quantitative evaluation is carried out on our test dataset of 30 subjects. Each
subject and the atlas had the following tissue label segmentations obtained from T2w
images using the Draw-EM pipeline [170]: cGM, WM, ventricles, and hippocampi
and amygdala. Additionaly, a WM structure called the IC was manually segmented
on the FA maps of all test subjects. These labels were propagated from each subject
into the atlas space using the predicted deformation fields. To evaluate performance
of the registration, Dice scores and average surface distances (SimpleITK v2.1.1
[364]) were calculated between the warped labels and the atlas labels.

Hyperparameter tuning on 2D mid-brain axial slices. For the 2D ex-
periments described in Table 6.2, we calculated Dice scores and average surface
distances of 4 out of the 5 available labels (we excluded hippocampi and amygdala
as it was not present in the mid-brain axial slices used). A two-sample, two-sided
paired t-test with a significance level of 5% was used to compare the models, and
statistically significant differences (p-value < 0.05 ) are summarised in Table 6.3.
Similar to our previous 3D experiments from Chapter 5, the T2w-only model per-
forms best on cGM and WM structures, with the microstructural data (DTI-only
in this case) performing best for the IC. This is visible in Table 6.3 for both Dice
scores and average surface distances (the best overall values are in bold).

For the multi-channel models, as λDTI increases from 0.1 to 3.0, the overall
tendency is a decrease in performance for the cGM or WM tissue types, with the
opposite happening for the IC and ventricles (better scores for higher λDTI). In fact,
the ventricles are aligned best with either the T2w+DTI or the proposed attention-
based T2w+DTI models, outperforming the T2w-only network. We also find that
the multi-channel attention models always outperform the multi-channel baseline
models, or perform similarly well for the ventricles, for the same λDTI .

As these networks are trained with 2D mid-brain axial slices, some brain features
may not be present to guide the alignment. However, the overall trend shows that
higher values of λDTI will cause a decrease in the alignment of cGM and WM, while
increasing the alignment of ventricles and IC. For this reason, we choose to train
the 3D models with λDTI ∈ [1.0, 1.5, 2.0], and the next section will focus on our 3D
experiments.
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Model (λDTI) cGM WM Ventricles IC

affine .611±.02 .678±.03 .697±.07 .578±.08

D
S

T2w .786±.01 .821±.01 .816±.03 .577±.07
DTI .715±.01 .762±.02 .822±.03 .675±.03

T
2w

+
D

T
I 0.1 .779±.01 .811±.01 .815±.03 .600±.05

0.5 .780±.01 .806±.01 .825±.03 .616±.05
1.0 .782±.01 .812±.01 .824±.03 .630±.05
1.5 .778±.01 .803±.02 .828±.03 .643±.04
2.0 .774±.01 .805±.02 .828±.03 .651±.04
3.0 .774±.01 .801±.02 .834±.03 .658±.04

at
te

nt
io

n

0.1 .786±.01 .820±.01 .817±.03 .600±.06
0.5 .785±.01 .819±.01 .826±.03 .650±.04
1.0 .785±.01 .818±.01 .829±.02 .660±.03
1.5 .785±.01 .817±.01 .829±.03 .664±.03
2.0 .784±.01 .814±.01 .830±.03 .667±.03
3.0 .779±.01 .811±.02 .831±.03 .670±.04

affine .579±.06 .537±.06 .471±.16 .549±.18

A
SD

T2w .258±.02 .281±.03 .208±.04 .542±.17
DTI .365±.03 .377±.05 .234±.07 .374±.06

T
2w

+
D

T
I 0.1 .268±.02 .295±.03 .208±.05 .492±.12

0.5 .266±.02 .302±.04 .201±.04 .469±.11
1.0 .262±.02 .295±.03 .201±.04 .452±.11
1.5 .268±.02 .309±.04 .191±.04 .425±.09
2.0 .273±.02 .304±.04 .188±.04 .417±.08
3.0 .274±.02 .313±.04 .187±.04 .393±.08

at
te

nt
io

n

0.1 .258±.02 .281±.03 .201±.04 .500±.15
0.5 .258±.02 .284±.03 .201±.04 .415±.08
1.0 .259±.02 .284±.03 .192±.04 .398±.08
1.5 .259±.02 .287±.03 .19±.05 .390±.07
2.0 .259±.02 .291±.03 .189±.04 .386±.07
3.0 .260±.02 .294±.03 .189±.04 .380±.06

Table 6.3: Mean (±standard deviation) Dice scores (DS) and average surface dis-
tances (ASD) of the 2D T2w and DTI experiments. The initial affine alignment
is shown first, followed by the single channel baseline networks (T2w-only and
DTI-only), the multi-channel T2w+DTI baseline networks, and ending with the
proposed multi-channel attention models. Overall best scores are highlighted in
bold (p-value < 0.05 ). The green shading highlights the model which performed
best amongst the multi-channel models (p-value < 0.05 ), while the red shading
points to the multi-channel models which performed worst.
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Quantitative evaluation of our 3D models. For our 3D experiments, we
looked at the performance of 7 DTI-based registration models: 4 baseline models
(1 DTI-only and 3 T2w+DTI models with different λDTI values), and 3 proposed
T2w+DTI attention-based networks (see Table 6.2 for reference). We compared the
performance of these models to the T2w-only, FA-only and attention-based T2w+FA
model scores obtained in Chapter 5. Both multi-channel experiments, i.e., baseline
T2w+DTI and attention-based T2w+DTI, were trained with λDTI ∈ [1.0, 1.5, 2.0].
Similar to the 2D experiments, a two-sample, two-sided paired t-test with a signif-
icance level of 5% was used to compare pairs of the trained 3D models. Table 6.4
summarizes these results, where the T2w-only, FA-only and attention-based T2w+FA
(with λFA = 0.1) models are highlighted in gray to show that the values are obtained
from the previously trained networks.

The proposed attention-based network (see A T2w+DTI rows in Table 6.4)
outperforms the baseline T2w+DTI models for all λDTI ∈ [1.0, 1.5, 2.0]. In fact,
for λDTI = 1.0, the latter obtains both Dice scores and average surface distances
significantly worse (p-value < 0.05 ) than all of the other multi-channel models, as
highlighted by the red shading. In terms of the IC, the proposed attention-based
T2w+DTI models, as well as the DTI-only model, perform similarly well (p-value >
0.05 ) to the FA-only and the previously proposed attention-based T2w+FA (with
λFA = 0.1) network, in terms of both Dice scores and average surface distances, and
regardless of the λDTI used.

Our proposed attention T2w+DTI model experienced a drop in performance in
terms of aligning the cGM and the WM structures. More specifically, for λDTI = 2.0,
the model obtained a decrease in Dice scores of 0.014 for cGM and 0.019 for WM,
respectively, as well as an increase in average surface distances of 0.019 for cGM
and 0.027 for WM, respectively. Lowering the λDTI from 2.0 to 1.0 increased the
performance of the attention models in terms of aligning cGM and WM structures,
while the scores obtained for the IC decreased, but not significantly. We hypothesize
that, for the T2w+FA model, the attention maps will prioritize using the T2w channel
in the cGM ribbon as the FA maps have little information in this area. On the other
hand, DT images are rich in information across the entire brain, and in this case
the T2w+DTI model is more likely to choose from both channels when aligning this
structure (see also Figure 6.5).
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Model (λDTI) cGM WM Ventricles Amygdala IC

affine .567±.02 .700±.03 .631±.05 .746±.05 .642±.07

D
S

T2w-only .763±.01 .844±.02 .797±.02 .803±.02 .614±.04
FA-only .621±.02 .756±.02 .676±.04 .769±.03 .686±.03
DTI-only .679±.02 .767±.02 .757±.03 .786±.02 .682±.03

T2w+DTI 1.0 .706±.01 .746±.03 .755±.03 .739±.02 .648±.03
T2w+DTI 1.5 .711±.01 .776±.02 .773±.03 .746±.02 .650±.03
T2w+DTI 2.0 .713±.01 .766±.03 .766±.03 .752±.02 .660±.04

A T2w+FA .763±.01 .842±.01 .793±.02 .816±.02 .683±.03
A T2w+DTI 1.0 .758±.01 .834±.02 .799±.02 .809±.02 .677±.03
A T2w+DTI 1.5 .752±.01 .829±.02 .798±.02 .809±.02 .681±.03
A T2w+DTI 2.0 .749±.01 .825±.02 .796±.02 .810±.02 .681±.03

affine .582±.04 .409±.04 .508±.1 .310±.08 .479±.1

A
SD

T2w-only .259±.02 .193±.02 .242±.05 .233±.04 .498±.09
FA-only .477±.04 .319±.02 .433±.09 .276±.05 .374±.05
DTI-only .375±.02 .307±.03 .296±.05 .250±.04 .376±.05

T2w+DTI 1.0 .340±.02 .355±.04 .290±.05 .371±.04 .443±.07
T2w+DTI 1.5 .334±.02 .316±.03 .276±.05 .359±.04 .431±.06
T2w+DTI 2.0 .330±.02 .331±.04 .280±.05 .341±.04 .424±.07

A T2w+FA .260±.02 .197±.01 .248±.04 .212±.03 .37±.05
A T2w+DTI 1.0 .266±.02 .206±.02 .238±.04 .221±.04 .388±.06
A T2w+DTI 1.5 .274±.02 .215±.02 .241±.04 .221±.04 .382±.05
A T2w+DTI 2.0 .278±.02 .220±.02 .242±.04 .219±.04 .382±.05

Table 6.4: Mean (±standard deviation) Dice scores (DS) and average surface
distances (ASD) of the 3D T2w and DTI experiments. The initial affine align-
ment is shown first, followed by the single channel baseline networks (T2w-only,
FA-only and DTI-only), the multi-channel T2w+DTI baseline networks (with
λDTI ∈ [1.0, 1.5, 2.0]), and ending with the proposed multi-channel attention
models (T2w+FA with λFA = 0.1, and T2w+DTI with λDTI ∈ [1.0, 1.5, 2.0]).
Overall best scores are highlighted in bold (p-value < 0.05 ). The green shading
highlights the model which performed best amongst the multi-channel models (p-
value < 0.05 ), while the red shading points to the multi-channel models which
performed worst. A was used as shorthand notation for “attention”.
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Evaluation of white matter alignment. To better understand how our pro-
posed attention-based T2w+DTI networks perform compared to the other models,
we carried out an evaluation of the accuracy of WM alignment, using two metrics
proposed in Adluru et al. [383]. First, the cross correlation (CC) between two
scalar-valued maps is defined as [383]:

CC =

∑
v FDTI

trace(v)WDTI
trace(v)√∑

v FDTI
trace(v)FDTI

trace(v)
∑

v WDTI
trace(v)WDTI

trace(v)
(6.7)

where v is the index over all voxels, FDTI
trace and WDTI

trace are the maps corresponding
to the fixed DTI atlas and the warped DTI test subject, with each spatial location
containing the trace of the tensors. The higher the values obtained, the higher the
similarity between the two maps in terms of the overall diffusivity in the tissue.

The second metric, known as the overlap of eigenvalue-eigenvector pairs (OVL),
is able to investigate the alignment of diffusion tensors, with higher values repre-
senting better alignment. The OVL between two tensors is defined as [383, 384]:

OVL =

∑3
i=1 λ

F
i λ

W
i

(
εF
i · εW

i

)2∑3
i=1 λ

F
i λ

W
i

(6.8)

where λF, εF are the eigenvalues and eigenvectors of the fixed DTI atlas volume
(FDTI), while the λW, εW are the eigenvalues and eigenvectors of the warped mi-
crostructural image with reoriented tensors MDTI(ϕ). In equation 6.8, ‘·’ is the dot
product, and as the eigenvectors have unit norm, εF

i · εW
i represents a measure of the

angle between the two corresponding vectors.

This evaluation is carried out on the same test dataset of 30 subjects, for 10 of our
models: 7 multi-channel models (the baseline and the attention T2w+DTI with
λDTI ∈ [1.0, 1.5, 2.0], and the attention T2w+FA with λFA = 0.1 models), and 3
single-channel models (the baseline T2w-only, FA-only and DTI-only models). For
each model and each subject in our test dataset, we compute both the CC and the
average OVL scores between the warped DT image with reoriented tensors and the
fixed DTI atlas. More specifically, the predicted deformation fields for each type of
model are used to warp and reorient the subject-specific DT images. The results are
summarised in Figure 6.3, where on the left we show values computed across WM
voxels (using the atlas WM label map), while on the right we show values calculated
across voxels within the IC (using the atlas IC label map).

The results are plotted as violin plots for each of the 10 models, as well as
the initial affine alignment. A two-sample, Wilcoxon signed rank test with 5%
significance level was performed to test the null hypothesis of same distribution for
different pairs of the trained models-derived CC and OVL scores. In terms of the
CC scores, shown in Figure 6.3 a, the proposed attention T2w+DTI model with
λDTI = 2.0 performs best, obtaining significantly better (p-value < 0.05 ) values
than all the other models, in terms of WM voxels. For the IC voxels, all attention
T2w+DTI models performed similarly well, obtaining significantly better results
than all the other models. This suggests that using the T2w and DTI modalities
together helps with aligning the overall diffusivity in the tissue.
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6.3 Results

(a) Cross correlation scores of the WM voxels (left) and the IC voxels (right) between
the warped 30 test subjects and the fixed atlas using the trace of the tensors.

(b) Average overlap of eigenvalue-eigenvector scores of the WM voxels (left) and the IC
voxels (right) between the warped 30 test subjects and the fixed atlas.

Figure 6.3: CC scores (a) and average OVL values (b) of WM and IC voxels
shown as violin plots for the initial affine alignment and 10 of our models: 3
single-channel models (T2w-only, FA-only and DTI-only) and 7 multi-channel
models (T2w+DTI with λDTI ∈ [1.0, 1.5, 2.0] with and without attention, as well
as the previously proposed attention T2w+FA with λFA = 0.1 model).
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The average OVL values, which look at the directional components of the diffu-
sion tensor, are shown in Figure 6.3 b. For both the WM and IC voxels, the best
overall scores are obtained by the DTI-only model (see Figure 6.3 b). Interestingly,
the FA-only model obtains lower OVL scores than the initial affine alignment for
both WM and IC structures. Similarly, but only for the voxels within the IC, the
T2w-only and the attention T2w+FA models obtain lower OVL scores than the
initial affine alignment.

Using DTI helps with aligning the underlying WM structures and this is backed
by the results shown in Figure 6.3 b, where all of the models which use DTI data
have significantly higher OVL values (p-value < 0.05 ) when compared with the other
models or the initial affine alignment. Moreover, this experiment shows that using
attention when combining the T2w and DTI data is better than not using attention,
as the average OVL values in both the WM and IC voxels are significantly higher (p-
value < 0.05 ) when compared to the baseline T2w+DTI for the same λDTI . Finally,
the attention T2w+DTI model with λDTI = 2.0 obtains the closest average OVL
values to the DTI-only model.

6.3.2 Qualitative results

Visualisation of 2D attention maps. Figure 6.4 shows mid-brain axial average
attention maps from 10 neonatal subjects scanned around 40 weeks PMA for the
attention-driven model trained with increasing values of λDTI , ranging from 0.1 to
3.0. We can observe that for the lowest λDTI = 0.1, the αT2w is covering the brain
almost entirely, with the DTI map having little to no effect in training. As λDTI

increases, the DTI modality has increasing importance (with values above 0.5 in
the αDTI maps) in WM regions. Moreover, this qualitative finding explains the
increasing Dice scores and decreasing average surface distances for the IC structure
as λDTI increases in value (see Table 6.3).

Figure 6.4: Average αT2w and αDTI attention maps for the 2D attention multi-
channel registration network for increasing values of λDTI , ranging from 0.1 to 3.0.
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Visualisation of 3D attention maps. Using the same 10 neonatal subjects
scanned around 40 weeks PMA, we computed average attention maps for the pro-
posed 3D attention-driven model trained with λDTI ∈ [1.0, 1.5, 2.0]. These are shown
in Figure 6.5, together with the maps produced by the previously proposed atten-
tion T2w+FA with λFA = 0.1. Rows 1 and 3 show the structural αT2w mid-brain
axial and coronal slices, while rows 2 and 4 show the microstructural αDTI and αFA

axial and coronal maps, respectively.

Figure 6.5: Average αT2w and αDTI attention maps for the 3D attention multi-
channel registration network for λDTI ∈ [1.0, 1.5, 2.0], as well as average αT2w and
αFA attention maps for the 3D attention multi-channel registration network for
λFA = 0.1. The green arrows point to regions in the cGM.

Unlike the 2D experiments, the αT2w maps are less pronounced in the cGM
regions (see Figure 6.4 vs. Figure 6.5). In fact, a similar conclusion can be drawn
when comparing the attention T2w+DTI maps with the attention T2w+FA maps in
Figure 6.5. More specifically, the αT2w attention maps for the proposed attention
T2w+DTI model show that the cGM region is not as well delineated as in the
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T2w+FA case (i.e., showcasing high values for the T2w channel and low for the FA
maps in the cGM areas), with the maps (in both axial and coronal views) spilling
over onto the cortical ribbon. We hypothesize that this is due to FA images having
very little contrast in the cGM regions, whereas DTI contains information across
the entire brain.

Visualising average DTI maps. Finally, using the same 10 neonates, we
looked at average DT maps. Figure 6.6 shows both mid-brain axial and coronal
slices of the average DTI maps, as well as their corresponding FA maps (generated
with the tensor2metric MRtrix3 [375] command). The last column shows the
DTI atlas and its respective FA map. In both the axial and coronal views, the white
arrows point to the corpus callosum, an area which is strikingly different in DT
orientations in the T2w-only models when compared to the other models. Similarly,
the yellow arrows point to regions of the IC, which, again, are more disorderly on
the T2w-only model. This is also highlighted in the generated FA maps, where the
highlighted regions are evidently less coherent for the T2w-only model.

In general, all the models using DTI as a single or an extra channel show an
overall more consistent DT orientations in the average maps. The most striking
visual difference between the average maps which were produced with the help of
DT images and the ones which used FA (or only T2w) is in the IC, as pointed out by
the yellow arrows in the axial view (Figure 6.6 a). This is backed by our results from
Figure 6.3 b, where average OVL values of IC voxels for models which use FA are
significantly lower than any of the models which employ DTI, and even significantly
lower than the initial affine alignment.
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(a) Mid-brain axial slices of average DTI maps for 5 of our trained models (we used
λDTI = 2.0, and λFA = 0.1 for the attention models), together with the fixed DTI
atlas and FA map. Yellow arrows point to the IC, while the white arrows point to the
corpus callosum.

(b) Mid-brain coronal slices of average DTI maps for 5 of our trained models (we used
λDTI = 2.0, and λFA = 0.1 for the attention models), together with the fixed DTI atlas
and FA map. Yellow arrows point to the IC, while the white arrows point to the corpus
callosum.

Figure 6.6: Average DT images from 10 subjects scanned around 40 weeks PMA.
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6.4 Discussion and future work

In this study, we extended the previously proposed multi-channel image registration
network from Chapter 5 with layers capable of dealing with higher-order DT data.
More specifically, two types of experiments were conducted. First, 2D mid-brain
axial slices were used as a preliminary analysis to better understand the influence
of the global weight which balances the two modalities. Here, it was found that
increasing the weight in favor of the DTI channel leads to a decrease in Dice scores
and an increase in average surface distances for the cGM and WM structures, while
the opposite happens for the ventricles and IC. A qualitative analysis of average
attention maps (see Figure 6.4) showed that a low value of the global weight (λDTI <
1.0) leads to very little influence from the microstructural channel, whereas a higher
weight (λDTI ≥ 1.0) leads to increasingly more pronounced DTI influence.

Weights of λDTI ∈ [1.0, 1.5, 2.0] were chosen to train the 3D networks, as it
was hypothesized that, given the small drop in Dice scores (∼0.002 for cGM and
∼0.005 for WM) and the small increase in average surface distances (∼0.001 for cGM
and ∼0.006 for WM), it would benefit the alignment of the IC and the underlying
microstructure. The 3D experiments found that for λDTI ∈ [1.0, 1.5, 2.0] the IC
was indeed aligned as well as the FA-only, the DTI-only, or the previously proposed
attention-based T2w+FA models (see Table 6.4). However, the drop in performance
per sisted in terms of cGM and WM.

On the other hand, the evaluation of white matter alignment showed that using
DTI helps with aligning the underlying WM structures. This was backed by the
results shown in Figure 6.3 b, where all of the models which used DTI data had
significantly higher OVL values (two-sample, Wilcoxon signed rank test with 5%
significance level, p-value < 0.05 ) when compared with the other models or the
initial affine alignment. Moreover, the experiment showed that using attention
when combining the T2w and DTI data is better than not using attention, as the
average OVL values in both WM and IC voxels were significantly higher (p-value
< 0.05 ) when compared to the baseline T2w+DTI. Finally, a qualitative analysis
of average DTI maps obtained with 5 of the trained models also showed that using
DTI data helps with achieving more coherent orientations of the diffusion tensors
(see Figure 6.6).

The development of accurate methods for neonatal MR image registration, specif-
ically for DTI, carries significant clinical importance. For example, DTI provides
valuable insights into the microstructural properties and connectivity of white mat-
ter in the neonatal brain. Accurate image registration facilitates the alignment of
DTI data across different subjects or time points, enabling the evaluation of white
matter maturation and tracking developmental changes. It aids in studying the
formation of white matter tracts, detecting abnormalities, and understanding the
impact of early-life events or interventions on brain connectivity [379].
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However, deploying models that perform neonatal MR multi-channel T2w and
DTI registration in a clinical setting has its challenges. For example, our current
framework faces practical challenges due to the limited availability of diffusion data
compared to structural MRI data. Nevertheless, we can consider a potential solution
inspired by the work of Hu et al. [240] and explored by us in [55]. In this approach,
instead of incorporating DTI data as input to the network, it is only used in the
loss function. As a result, during inference, the trained network can successfully
register pairs of T2w images without the need to provide the extra microstructural
information. This is particularly useful when higher-order data is absent in the test
dataset. Furthermore, diffusion weighted MR protocols generally have a long ac-
quisition time, during which subject motion becomes unavoidable, especially among
pediatric populations. Moreover, it is frequently plagued with physiological noise,
and has limited signal-to-noise ratio [385]. These challenges can adversely affect the
accuracy of registration algorithms, resulting in erroneous or suboptimal outcomes.

Our study was focused on extending the previous model with higher-order DTI
data, without further exploring other avenues in terms of network architecture.
For example, we limited ourselves to the use of the same sized networks and the
same latent space size of 32, which could potentially have a detrimental effect in our
network’s capacity, as the DT data is introducing more input information. Moreover,
we chose our hyperparameters based on a 2D study, which might not have a direct
transfer to the more complex 3D case. This, however, can be explored in future work
by looking at how different weights in the 3D models will have an effect on the output
predictions. Furthermore, as described in Chapter 2.1.4, an alternative loss function
for aligning DTI data is the euclidean distance squared between deviatoric tensors.
Using DDDS (equation 2.28) instead of DEDS (equation 2.26) has the potential to
further improve alignment, as DDDS is less sensitive to the isotropic components of
diffusion tensors [386].

Similar to Chapter 5, this study did not include a comparison against more
classical image registration methods, such as DTI-TK [61], and it has also relied
on the assumption that the available Draw-EM tissue maps are accurate, with no
opportunity to compare these results against medical raters. Finally, other higher-
order diffusion data can be used in image registration applications, besides the rank-2
diffusion tensor. For example, diffusion ODF data are able to alleviate some of the
limitations of the DTI model [116, 117], such as its inability to resolve crossing
fibers, and have been shown to produce accurate alignment of diffusion MRI data
[51]. This could be explored in future work.
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Chapter 7
Conclusions

This PhD thesis has presented the investigation and development of deep learning
tools suited for analysis of multi-modal neonatal brain MRI. As a prerequisite for the
contributions, the first chapter introduces the neonatal brain, and describes the
two main MR imaging modalities utilised throughout this thesis, i.e., structural T2w
MRI, and microstructural DTI, with the aim of highlighting the challenges in analy-
sis of neonatal MRI. Moreover, this chapter includes information on two neonatal
datasets, i.e., dHCP [11] and ePrime [35], and describes their differences in terms
of the cohorts, the acquisition protocols and preprocessing pipelines. The second
and third chapters lay the groundwork for the methods used throughout this the-
sis, with a focus on classical and deep learning image registration and segmentation
algorithms.

In Chapter 4 (Harmonised segmentation of neonatal brain MRI) the aim was
to predict tissue segmentation maps on T2w MRI data of an unseen preterm-born
neonatal population. This was achieved through investigating two unsupervised DA
techniques with the objective of finding the best solution for harmonising tissue
segmentation maps. Validation of data harmonisation was performed between sub-
samples of the dHCP and ePrime cohorts which showed comparable GA at birth
and PMA at time of scan, as well as similar gender and maternal ethnicity. The
evaluation found that four of the trained methods (baseline with augmentation, la-
tent with augmentation, image and image with augmentation) achieved compara-
ble values when compared to the dHCP subset, in terms of tissue volumes, mean
global cortical thickness measures, and mean local cortical thickness measures In
fact, one hypothesis is that these four methods provided the best overall results
because either they were trained using data augmentation or, in case of the im-
age space DA method, the generator acted as a deep learning-based augmentation
technique [366], which made the segmentation network more robust to the different
contrast, population bias and acquisition protocol of the ePrime dataset. Nev-
ertheless, the proposed image with augmentation model performed best, whereby
ePrime values, tending towards higher values before harmonisation, were brought
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downwards into a comparable range of values to dHCP, for 10 out of 11 cortical
subregions (see Figure 4.8 last column). Moreover, a qualitative assessment showed
that the proposed model corrected misclassified voxels which were prevalent in the
other 3 methods (see Figure 4.9), while also outperforming the original Draw-EM
segmentation by correcting a region of WM which was wrongly classified as CSF
(see Figure 4.10). Finally, the harmonised cortical segmentation maps were utilised
to look at differences in both global and local cortical thickness measures between
term and preterm-born neonates. This analysis showed that the harmonised cortical
gray matter maps resulted in global thickness measures which were comparable with
the dHCP-only neonates, which was not the case before harmonisation. Moreover,
significant differences between term and preterm-born neonates were found in terms
of local cortical thickness measures, consistent with previous studies [367] in an
adolescent cohort. Lastly, the importance of harmonising the cortical tissue maps
is shown through investigating the association between neonatal cortical thickness
and a language outcome measure. This analysis demonstrated that without data
harmonisation, pooling images from separate datasets could lead to spurious find-
ings that are driven by systematic differences in acquisitions rather than by true
underlying effects.

In Chapter 5 (Attention-driven multi-channel deformable registration of struc-
tural and microstructural neonatal data), the aim was to develop a multi-channel
deep learning image registration framework capable of combining information from
T2w neonatal scans with DWI-derived FA maps. This was achieved through an
attention-driven multi-channel deep learning image registration framework which
selects the most salient features from the two image modalities to improve align-
ment of individual MR images to a common atlas space. A comparison study was
performed to evaluate the results against registration networks trained on T2w-only,
FA-only, or both modalities at the same time, either with or without attention.
Visual attention network blocks, such as those proposed in [309, 314], were also
explored, as well as an uncertainty-aware mechanism [374] which we previously pro-
posed. This quantitative evaluation confirmed that while cortical structures were
better aligned using T2w data and white matter tracts were better aligned using FA
maps, the attention-based multi-channel registration aligned both types of struc-
tures accurately.

In Chapter 6 (Diffusion tensor driven deep learning image registration) the aim
was to extend the previously proposed attention-based multi-channel deep learning
image registration framework to deal with higher-order DT image data. The motiva-
tion for this was that registration of DT images has the potential to better align WM
structures than using structural MRI only. Moreover, unlike the scalar-valued FA
maps, DTI enables the inclusion of fiber orientation at each voxel. To achieve this,
the networks were extended with layers which account for the change in orientation
of diffusion tensors induced by the predicted deformation fields. More specifically,
the finite strain strategy [105] was employed to reorient the tensors without chang-
ing the local microstructure. This study found that a good balance between the two
modalities is harder to achieve with DTI when compared to FA maps. This could
be due to the FA data having little to no contrast in the cGM ribbon, whereas DT
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images are rich in information across the entire brain, making the attention net-
work more likely to choose from both channels when aligning this structure (see also
Figure 6.5). Nevertheless, the results show the importance of including fiber orienta-
tion at each voxel through the use of DTI, as the underlying microstructure is more
coherent (see Figure 6.6) and better aligned with the fixed atlas (see Figure 6.3).

7.1 Limitations and future work

Each results chapter presented a summary of the main contributions, limitations
and possible future directions. In this section, the aim is to highlight key limitations
which can become future avenues of research.

7.1.1 Inclusion of multiple imaging modalities and labels

One possible future research avenue is to further explore the rich information present
in both the dHCP and ePrime datasets. More specifically, as described in Chap-
ter 1.2.3, these databases contain diffusion and functional MRI, both of which have
not been explored in terms of data harmonisation.

For the deep learning image registration networks, the available Draw-EM dHCP
segmentation maps could act as a guide to improve alignment of cGM and WM tissue
types. Moreover, as previously proposed by [183] and explored by us in [55], the
labels need not become input to the networks, but could be used only when training
(in the loss function), thus not making them invaluable to prediction tasks. In fact,
the inclusion of masks to help guide the registration has been previously explored by
our group in Uus et al. [51], as well as in [148, 387], where the cortex label was used
as an extra channel in order to improve the accuracy of cortical alignment which
was otherwise decreased by the use of microstructural data.

7.1.2 Further exploring the image synthesis avenue

There are two potential improvements which can be brought to the proposed data
harmonisation and multi-channel registration solutions. First, one improvement to
the data harmonisation pipeline is the use of a Cycle-GAN architecture instead of
the more simple image translation approach. In fact, in our preliminary experiments
which were conducted on 2D data for prototyping the solution, we did explore this
approach, but due to high memory consumption we were not able to translate it
to 3D. However, as was described in the literature review (Chapter 3.2.4), Li et
al. [347] or Chen et al. [348] proposed methods for image-level domain transfer
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in multiple stages, instead of training the framework end-to-end. This could be a
potential avenue to explore when extending the data harmonisation framework to
diffusion MRI, or even to different cohorts, such as 6 months old infants. This way
we could separately train more advanced segmentation networks, such as Attention
U-Net [265], as well as use the more stable Cycle-GAN for image-to-image synthesis.

Second, the image registration network could benefit from a joint intensity and
geometrical changes framework, more specifically through the use of contrast trans-
fer, in order to separate the impact of tissue maturation on the morphological
changes that happen in neonates. This is because medical image registration meth-
ods can be misguided by changes in MR contrast related to development, which
reduces their sensitivity to effects related to preterm birth and early signs of dis-
ease. For this reason, one potential avenue for future work would be to account for
both changes in geometry, as well as the MR intensities which locally vary through-
out development due to maturation processes [51].

7.1.3 Identifying abnormal developmental patterns

Finally, the multi-modal framework developed in this thesis should be used in an
application context for identifying abnormalities in the neonatal brain. For example,
volumetric changes, using tensor-based morphometry (TBM), could be explored in a
comparison study between term and preterm-born neonates. Moreover, as previously
shown in Modat et al. [103], using both structural and microstructural data in a joint
image registration framework can have a significant effect on the areas identified by
TBM studies. It would be interesting to explore if the proposed attention-based
multi-modality registration framework would have an impact in the volume change
differences obtained when compared to the single-modality networks.
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Appendices

A Grouping of cortical substructures 1/2

Tissue name Cortical subregion

Insula left Insula (left)

Insula right Insula (right)

Occipital lobe left Occipital (left)

Occipital lobe right Occipital (right)

Cingulate gyrus (anterior part right)

C
in

gu
la

te

Cingulate gyrus (anterior part left)
Cingulate gyrus (posterior part right)
Cingulate gyrus (posterior part left)

Frontal lobe left Frontal (left)

Frontal lobe right Frontal (right)

Parietal lobe left Parietal (left)

Parietal lobe right Parietal (right)

Table 1: Grouping of cortical substructures showing their original tissue name ob-
tained from Draw-EM [148] on the first column and their corresponding cortical
subregion on the second column.
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Appendices

B Grouping of cortical substructures 2/2

Tissue name Cortical subregion

Anterior temporal lobe (medial part left)

Te
m

po
ra

l(
le

ft)

Anterior temporal lobe (lateral part left)
Gyri parahippocampalis et ambiens
(anterior part left)
Superior temporal gyrus (middle part left)
Medial and inferior temporal gyri
(anterior part left)
Lateral occipitotemporal gyrus,
gyrus fusiformis (anterior part left)
Gyri parahippocampalis et ambiens
(posterior part left)
Lateral occipitotemporal gyrus,
gyrus fusiformis (posterior part left)
Medial and inferior temporal gyri
(posterior part left)
Superior temporal gyrus (posterior part left)
Anterior temporal lobe (medial part right)

Te
m

po
ra

l(
rig

ht
)

Anterior temporal lobe (lateral part right)
Gyri parahippocampalis et ambiens
(anterior part right)
Superior temporal gyrus (middle part right)
Medial and inferior temporal gyri
(anterior part right)
Lateral occipitotemporal gyrus,
gyrus fusiformis (anterior part right)
Gyri parahippocampalis et ambiens
(posterior part right)
Lateral occipitotemporal gyrus,
gyrus fusiformis (posterior part right)
Medial and inferior temporal gyri
(posterior part right)
Superior temporal gyrus, posterior part right

Table 2: Grouping of cortical substructures showing their original tissue name ob-
tained from Draw-EM [148] on the first column and their corresponding cortical
subregion on the second column. This table continues from the table above.
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List of Abbreviations

T1w T1-weighted

T2w T2-weighted

AE autoencoder

ANN artificial neural network

ANTs advanced normalization tools

ASD average surface distance

BCE binary cross entropy

BE bending energy

CAE convolutional autoencoder

CBAM convolutional block attention module

CC cross correlation

CE cross entropy

cGM cortical gray matter

CNN convolutional neural network

CSF cerebrospinal fluid

CT computed tomography

CVAE conditional variational autoencoder

DA domain adaptation

dGM deep gray matter

DL Dice loss

Draw-EM developing region annotation with expectation maximisation
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List of Abbreviations

DSC Dice score coefficient

DT diffusion tensor

DTI diffusion tensor imaging

DW diffusion weighted

DW-MRI diffusion weighted magnetic resonance imaging

DWI diffusion weighted imaging

ELU Exponential Linear Unit

EM expectation maximisation

FA fractional anisotropy

FCNN fully convolutional neural network

FFD free-form deformation

FLAIR fluid attenuated inversion recovery

FN false negatives

FNR false negative rate

FOR false omission rate

FP false positives

FPR false positive rate

GA gestational age

GAN generative adversarial network

GDL generalised Dice loss

GM gray matter

GMM Gaussian mixture models

GPU graphics processing unit

HARDI high angular resolution diffusion imaging

HD Hausdorff distance

IC internal capsule

JE joint entropy

K-NN K-nearest neighbours

KL Kullback-Leibler
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List of Abbreviations

LDDMM large deformations diffeomorphic metric mapping

LNCC local normalised cross correlation

LSTM long short-term memory

MD mean diffusivity

MI mutual information

MLP multilayer perceptron

MR magnetic resonance

MRI magnetic resonance imaging

MSE mean squared error

NCC normalised cross correlation

NMI normalised mutual information

NN neural network

nnU-Net no-new-Net

ODE ordinary differential equation

ODF orientation distribution functions

OVL overlap of eigenvalue-eigenvector pairs

PET positron emission tomography

PMA post-menstrual age

PPV positive predicted value

PReLU Parametric Rectified Linear Unit

ReLU Rectified Linear Unit

ROIs regions of interest

rsfMRI resting state functional MRI

SAD sum of absolute differences

SAM statistical appearance models

SE-EPI spin echo echo-planar imaging

SHARD spherical harmonics and radial decomposition

SNR signal-to-noise ratio

SPD symmetric positive-definite
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List of Abbreviations

SPM statistical parametric mapping

SSD sum of squared differences

SVD singular value decomposition

SVF stationary velocity field

TN true negatives

TNR true negative rate

TP true positives

TPR true positive rate

TPS thin-plate spline

TRUS transrectal ultrasound

TSE turbo spin echo

US ultrasound

VAE variational autoencoder

WCE weighted cross entropy

WHO World Health Organisation

WM white matter
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