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Abstract: Multiplexed positron emission tomography (PET) imaging provides perfectly registered
simultaneous functional and molecular imaging of more than one biomarker. However, the separation
of the multiplexed PET signals within a single PET scan is challenging due to the fact that all PET
tracers emit positrons, which, after annihilating with a nearby electron, give rise to 511 keV photon
pairs that are detected in coincidence. Compartment modelling can separate single-tracer PET signals
from multiplexed signals based on the differences in bio-distribution kinetics and radioactive decay.
However, the compartment-modelling-based method requires staggered injections and assumes that
each tracer’s input function is known. In this paper, we propose a deep-learning-based method to
simultaneously separate dual-tracer PET signals without explicitly knowing the input functions.
We evaluate the proposed deep-learning-based separation method on dual-tracer [18F]FDG and
[11C]MET PET simulations and compare its separation performance to that of the compartment-
modelling-based method, assessing performance dependence on the time interval between tracer
injections as well as on the amount of training data. It is shown that the proposed method implicitly
denoises the separated images and offers reduced variance in the separated images compared to
compartment modelling.

Keywords: multiplexed PET imaging; dual-tracer separation; deep learning; convolutional
encoder–decoder; kinetic modelling; PET image reconstruction

1. Introduction

Positron emission tomography (PET) is a potent functional molecular imaging tech-
nology having applications to the imaging of the heart [1], brain [2] and cancer [3].
Conventional PET scans rely on imaging a single tracer to provide detailed functional
or molecular imaging information typically connected to disease, meaning that images
of different processes can only be acquired separately through multiple scans, e.g., a
18F-fluorodeoxyglucos ([18F]FDG) PET scan to examine glucose metabolism and a subse-
quent separate 11C-methionine ([11C]MET) scan to image protein synthesis to determine
the boundaries of a brain tumour [4,5].

With multiplexed PET imaging, multiple targets of interest for different tracers can be
observed simultaneously in a single scan, providing complementary information for clinical
decision making [6–9]. Additionally, using multi-tracers in a single PET scan was thought
to be beneficial for shortening the examination time and thereby improving diagnostic
efficiency [10]. Multiplexed PET involves injecting different tracers with an offset of several
minutes or even simultaneously and recovering the dynamic/static imaging measurements
of each individual tracer in a single PET scan. To the best of our knowledge, the initial proof-
of-principle of such an approach, has been applied to studies with phantom [11], simulated
brain imaging [12] and cardiac imaging [13]. The main challenge with simultaneous
multiplexed PET imaging, however, is that positrons from the PET radionuclides will emit
511 keV photon pairs when they annihilate with electrons, resulting in no unique energy
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information for identifying or differentiating the source of each photon pair. As a result,
the PET scanner measures the sum of the PET signals of all tracers [14].

Several dual-tracer separation methods based on staggered injection protocols and
dynamic imaging techniques have been proposed. Huang et al. [11] initially considered
separating dual-tracer signals based on the difference in physical decay rates of tracers. A
feasibility study of this method in small animals employing [18F]FDG and [13N]NH+

4 was
shown in [15]. Further investigations of this method were also conducted and presented in
[6,16]. However, this method requires significant differences between the half-lives of the
two tracers. Another widely studied method is based on a parallel multi-tracer compartment
model (CM), where the single-tracer signals are separated by fitting the superposed pharma-
cokinetic models of the corresponding tracers to the time activity curves (TACs) extracted
from the reconstructed dynamic dual-tracer PET images; see Section 3.3 for details. The
CM-based separation method was first introduced in [17] to estimate the kinetic parameters
of [11C]-labeled tracers. The feasibility of this method for separating different tracer pairs was
examined through simulation [18–22], animal studies [23,24] and a three-tracer ([18F]FDG,
[62Cu]ATSM and [62Cu]PTSM) separation task [25].

The CM-based method is susceptible to noise and is prone to fall into local minima,
leading to inaccurate separation results. Several methods have been proposed to improve
the separation quality based on the CM-based method, e.g., separating the linear from the
non-linear in the fitting process to reduce the parameter space [26,27], integrating the spatial
and temporal information for dual-tracer separation by incorporating model fitting into
the image reconstruction process [28] and simultaneous signal separation and reconstruc-
tions based on the dual-tracer kinetic model [29]. However, each of the aforementioned
approaches was built on the assumption that the arterial input function (AIF) of each tracer
is known, which restricts their practical feasibility. Verhaeghe and Reader [30,31] tackled
this problem by using a set of temporal basis functions to model the TACs of each tracer.
This temporal model is then incorporated into a global 4D PET reconstruction strategy [32].
However, the solution of the fitting problem was not unique in this method.

Although additional non-CM-based methods have also been suggested, including
reference-tissue model-based dual-tracer separation [21], principal component analysis
(PCA) [19], generalised factor analysis of dynamic sequences [33] and basis pursuit [34],
their accuracy is still insufficient, and a long time-delayed injection protocol is required.
A machine-learning-based dual-tracer separation method was conducted in [35], where a
recurrent extreme gradient boosting (rXGBoost) algorithm [36] was presented to separate
the dual-tracer TACs for a region of interest (ROI). It permits a shorter delay (5 min) between
the injection of two tracers than that described in the literature [19,20,22,25,34], while high
separation accuracy is still maintained. This method, however, only employs the temporal
information of the measured signals for separation and still requires the knowledge of the
AIFs of each tracer.

Over the years, deep learning has provided powerful new tools for the separation
of dual-tracer PET signals. The DL-based method has two advantages over the afore-
mentioned ones: (i) the ability to separate dual-tracer signals without explicitly knowing
the input functions, (ii) use of spatiotemporal information for dual-tracer separation, and
(iii) fast separation and processing using a trained network. Two main (supervised) deep
learning strategies have been proposed for dual-tracer PET image separation in the litera-
ture. The indirect strategy employs a neural network to separate the dynamic dual-tracer
images reconstructed using traditional reconstruction algorithms into dynamic single-tracer
images [37–43]. Alternatively, the direct strategy incorporates the reconstruction task with
the separation task to perform an end-to-end learning from dual-tracer dynamic sinograms
to separated single-tracer dynamic images using a neural network [44–46]. In [47], an unsu-
pervised joint method based on a GAN (pix2pix [48]) is presented to separate simultaneous
dual-tracer PET signals and perform ROI segmentation. However, only a simultaneous
injection protocol was considered in all the aforementioned deep-learning-based dual-
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tracer separation methods, neglecting the investigation of the impact of the time interval
∆t between the injections of the two tracers.

In this work, we investigate the impact of the number of training pairs and ∆t for
indirect deep learning dual-tracer separation and conduct a comparative analysis between
the proposed method and the CM-based method, which has not thus far been reported
anywhere in the literature. In particular, we construct a customised 2D CED to separate
dynamic [18F]FDG and [11C]MET dual-tracer images into two static single-tracer images,
one for each tracer, in a single dynamic scan when two tracers are injected sequentially
with a specified short time interval ∆t. The proposed DL-based method and the CM-based
method are summarised in Figure 1. The reminder of the paper is organised as follows.
In Section 2, we outline our proposed methodology. Section 3 describes the design of the
simulated experiments. In Section 4, we demonstrate the separation performance of our
framework in the simulation study. Sections 5 and 6 provide outlook and conclusions.

Figure 1. Flowchart diagram of the DL-based method and the CM-based method for dual-tracer
[18F]FDG and [11C]MET separation.

2. Materials and Methods
2.1. Dual-Tracer Single-Acquisition PET Measurement

Dynamic PET scanning can capture the spatiotemporal distribution of a radiotracer
within a living organism. The activity concentration of a radiotracer of an image voxel at
time t (i.e., TAC) can be described by the following model [49]

Ct(k) = VBSwb
t + (1−VB)At ⊗ Rt(k), (1)

where k represents the kinetic parameters that determine the tracer uptake in the tissue,
Swb

t is the tracer concentration in whole blood (we assume that the tracer concentration in
whole blood Swb

t is known and is equal to At for simplicity) , At is the AIF representing
the whole blood activity concentration, Rt(k) is the impulse response function, specified
by a certain compartment model and corresponding kinetic parameters k, VB ∈ [0, 1]
is the fractional volume of blood in the tissue, and ⊗ denotes the convolution operator.
In our work, we consider a reversible two-tissue compartment model for both [18F]FDG
and [11C]MET.

Since in dual-tracer PET, the PET scanner measures the sum of the PET signals of
two tracers, the dual-tracer activity concentration can be modelled as the sum of the activity
concentrations of each tracer

CDual
t (k) = CFDG

t (kFDG)e
−λ

[18F]t + CMET
t (kMET)e

−λ
[11C]

t, (2)
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where λ[18F] is the rate of radioactive decay of 18F, λ[11C] is the rate of radioactive decay of
11C, and the vector k = [kFDG, kMET] contains the kinetic parameters of each tracer. The
single-tracer activity concentration Ct(k) is multiplied by the decreasing exponential term
e−λt in the right-hand side of (2), which models the radioactive decay of each tracer. A
dynamic PET scan measures the activity of both tracers at multiple consecutive time frames.
In each frame, the coincidence events were recorded from the start of the frame until the
end of the frame. The intensity of the dual-tracer image at pixel j in the mth frame can be
expressed as [50]

xm(kj) =
∫ tm,e

tm,s
CDual(τ, kj)dτ,

where tm,s and tm,e represent the start and end points of frame m, respectively. The expecta-
tion of the projection data ȳm in time frame m can be expressed as

ȳm(k) = Pxm(k) + rm,

where the (i, j)th element of the system matrix P ∈ RM×N is the probability of detecting an
event originating in voxel j by detector pair i, rm ∈ RN is the expectation of scattered and
random events in the mth frame, and M and N are the total number of detector pairs and
image voxels, respectively.

2.2. Deep Learning Dual-Tracer Separation

In deep learning for dual-tracer signal separation, the designed network is usually
trained to simultaneously infer the separated images of each tracer, which can be considered
as a multi-task learning problem [44–46]. Our proposed architecture is based on the hard
parameter sharing approach commonly employed in multi-task learning [51], where a
common space representation is shared for all tasks, with additional layers that are specific
to each task. Since all tasks are learned simultaneously, the hard parameter sharing helps
our model generalise better and reduce the risk of overfitting [52]. Specifically, our network
is based on a CED architecture, but it contains two decoders. The specifics of the tailored
CED architecture are shown in Figure 2. It consists of repeated applications of (1) double
3× 3 convolutional layers, (2) a batch normalisation (BN) layer, (3) a PReLU layer, (4) max-
pooling for down-sampling, (5) a 2D transposed convolution layer for up-sampling, (6) a
1× 1 convolutional layer, and (7) a ReLU layer. The number of trainable parameters for
this 2D CED is around 2.2 million.

The inputs to the CED are dynamic dual-tracer MLEM images reconstructed from
a sinogram sequence obtained during a single PET scan with a time-delayed interval
∆t between tracer injections. The dynamic dual-tracer MLEM images, i.e., dual-tracer
TACs of each voxel, are mapped to a latent representation via a series of 2D convolutions,
batch-normalisation, non-linearities, and down-sampling in the encoder of the CED. The
correlations between each frame of the dynamic dual-tracer images are encoded in this
latent representation during training and allow prediction of the separated static single-
tracer images. The two decoders of the CED separate and decode the latent representation
to output static images corresponding to each tracer (in blue for [18F]FDG and yellow
for [11C]MET). A ReLU layer was added prior to the output in order to introduce the
non-negative constraint on the separated images.

As the network outputs contain the static images of two individual tracers, the mean
squared error (MSE) loss function is applied to both the static single-tracer images and can
be written as

L =
1

NS

NS

∑
s=1
||yFDG

s − yFDG
s,Label||

2 +
1

NS

NS

∑
s=1
||yMET

s − yMET
s,Label||

2, (3)

where NS denotes the total number of training pairs, yFDG
s and yMET

s are the network’s
outputs, and yFDG

s,Label and yMET
s,Label are the label static single-tracer images.
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Figure 2. The proposed 2D CED structure. The input is the dynamic dual-tracer images with L
consecutive frames. The numbers shown in the plot are based on the simulation study described
in Section 3.1.

3. 2D Simulation Study
3.1. 2D Dataset Simulation

The proposed DL-based dual-tracer separation method was validated through 2D
numerical simulations. A total of 5 non-contiguous slices were selected from each of the
20 3D BrainWeb phantoms (the BrainWeb dataset is available from https://brainweb.bic.
mni.mcgill.ca/, accessed on 1 July 2021) to generate the simulated dataset of 2D brain
phantoms [53]. The simulated dataset consists of 100 brain images. Each image is of
resolution 128× 128, assuming a uniform voxel size 0.78 mm, and contains gray matter
(GM) and white matter (WM). Randomised structures were introduced, and a tumour
region with random radii of 2.5–4 mm and random locations was added to each phantom
(the BrainWeb-based image processing toolbox is available from https://github.com/
casperdcl/brainweb, accessed on 1 July 2021).

The combination of two tracers of different isotopes, [18F]FDG and [11C]MET, with
radioactive decay rates of λ[18F] = log(2)/109.7 min−1 and λ[11C] = log(2)/20.4 min−1,
respectively, was considered in our simulation study. Following the simulation process
in [46,54,55], each kinetic parameter was modelled as a Gaussian variable with the coeffi-
cient of variation equal to 0.1 to simulate the population variation in the dataset [54,55]. The
mean values of the kinetic parameters were taken from [28] and are presented in Table 1.
Feng’s input function model [56] was used to generate the [18F]FDG and [11C]MET AIFs.
The parameters for Feng’s model were selected to match the shapes of the AIFs presented
in [28]; see Table A1 for the details.

Table 1. Mean values of the ground-truth kinetic parameters of [18F]FDG and [11C]MET for different
tissue ROIs.

ROIs K1 k2 k3 k4 VB

[18F]FDG
GM 0.10 0.14 0.17 0.013 0.103
WM 0.05 0.11 0.05 0.006 0.026

Tumour 0.11 0.10 0.15 0.015 0.173

[11C]MET
GM 0.08 0.08 0.10 0.017 0.103
WM 0.04 0.06 0.04 0.028 0.026

Tumour 0.13 0.03 0.06 0.012 0.173

Units: K1: cc/min/g; k2–k4: min−1; VB: unitless.

https://brainweb.bic.mni.mcgill.ca/
https://brainweb.bic.mni.mcgill.ca/
https://github.com/casperdcl/brainweb
https://github.com/casperdcl/brainweb
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Figure 3 depicts the dynamic dual-tracer PET scanning protocols for different ∆t, as
well as the static PET scanning protocols for each tracer in our simulation. We consider
a 50 min dual-tracer PET scan: the [11C]MET injection was followed by the injection of
[18F]FDG with a time delay ∆t. To explore the impact of the time-delayed interval, different
∆t were taken into account in our experiments, e.g., 0 min, 5 min, 10 min, 15 min and
2 days. The reversible two-tissue compartment model was used to simulate the 50 min
dual-tracer TACs. The AIFs and a simulation of a dual-tracer TAC for ∆t = 15 min without
decay correction are shown in Figure 4. We note that the dual-tracer signals were entirely
separated in time by ∆t = 2 days since [18F]FDG was metabolised and cleared from brain
tissues prior to the injection of [11C]MET. In this instance, two separate dynamic PET scans
were performed, one for each tracer.

For the single-tracer PET scan, a static PET scan was taken for 20 min starting 30 min
after the injection of [18F]FDG to ensure that the radioactive compound was sufficiently
trapped. Following the protocol outlined in [57], a static [11C]MET PET scan was conducted
separately for 20 min, starting 10 min after injection. The single-tracer TACs were simulated
for [18F]FDG (50 min) and [11C]MET (30 min) based on the proposed protocols for a static
PET scan of each tracer. However, only the last 20 min activity concentration was assessed
in the static PET scan for each tracer. For a fair comparison, we determined the total
acquisition time for the dynamic single-tracer PET scans to be 50 min for [18F]FDG and
30 min for [11C]MET for ∆t = 2 days based on the aforementioned dynamic and static
scan protocols.

Figure 3. Diagrams of the proposed protocols for dynamic dual-tracer [18F]FDG and [11C]MET PET
scans for ∆t = 0 min, 5 min, 10 min, 15 min and 2 days, along with the static PET scanning protocols
of each tracer.
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Figure 4. A simulated example of dual-tracer ([18F]FDG and [11C]MET) TACs with ∆t = 15 min.

Dynamic and static PET scans were simulated for a GE DST PET scanner with system
sensitivity ∼2 cps/kBq in 2D mode (specifications of the GE Discovery ST scanner are
available from https://www.amberusa.com/equipment/pet-ct/pet-ct/ge-discovery-st-8-
slice, accessed on 1 July 2021). The simulated single-tracer TACs (the last 20 min for both
tracers) were integrated, assigned to different brain tissues and then forward projected to
produce the noise-free static sinograms of each tracer. To generate the noise-free dynamic
sinograms, the simulated dual-tracer TACs (50 min) were integrated and assigned to
different brain tissues for each time frame, then forward projected to the sinogram domain.
The forward projection model included object self-attenuation, which was simulated using
the DIRECT package (the MATLAB toolbox DIRECT developed for dynamic PET image
reconstruction is available from https://wanglab.faculty.ucdavis.edu/code, accessed
on 1 July 2021). A total of 20% scattered and 20% random events were included in
this simulation. Poisson noise was then introduced. We followed the same framing
scheme as presented in [28] for [18F]FDG and [11C]MET dual-tracer TACs simulation with
∆t = 15 min and further addressed the frame widths according to the measurement points
for different ∆t (see Table 2 for details). A simulation of the total number of counts of the
static single-tracer PET scans (20 min) and dynamic dual-tracer scans (50 min) for different
∆t are shown in Figure 5.

Table 2. Framing scheme of dynamic dual-tracer PET scans for different ∆t.

∆t Tracers Framing Scheme # of
Frames

Total
Acquisition Time

0 min [18F]FDG + [11C]MET
4 × 0.25 min, 2 × 0.5 min, 3 × 1 min, 1 × 2 min, 1 × 3 min,
8 × 5 min 19 50 min

5 min [18F]FDG + [11C]MET
4 × 0.25 min, 2 × 0.5 min, 3 × 1 min, 4 × 0.25 min, 2 × 0.5 min,
3 × 1 min, 1 × 2 min, 1 × 3 min, 7 × 5 min 27 50 min

10 min [18F]FDG + [11C]MET
4 × 0.25 min, 2 × 0.5 min, 3 × 1 min, 1 × 2 min, 1 × 3 min,
4 × 0.25 min, 2 × 0.5 min, 3 × 1 min, 1 × 2 min, 1 × 3 min,
6 × 5 min

28 50 min

15 min [18F]FDG + [11C]MET
4 × 0.25 min, 2 × 0.5 min, 3 × 1 min, 1 × 2 min, 1 × 3 min,
1 × 5 min, 4 × 0.25 min, 2 × 0.5 min, 3 × 1 min, 1 × 2 min,
1 × 3 min, 5 × 5 min

28 50 min

2 days
[18F]FDG

4 × 0.25 min, 2 × 0.5 min, 3 × 1 min, 1 × 2 min, 1 × 3 min,
8 × 5 min 19 50 min

[11C]MET
4 × 0.25 min, 2 × 0.5 min, 3 × 1 min, 1 × 2 min, 1 × 3 min,
4 × 5 min 15 30 min

https://www.amberusa.com/equipment/pet-ct/pet-ct/ge-discovery-st-8-slice
https://www.amberusa.com/equipment/pet-ct/pet-ct/ge-discovery-st-8-slice
https://wanglab.faculty.ucdavis.edu/code
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Figure 5. A simulated example of the total number of counts of the static single-tracer PET scans
(20 min) and dynamic dual-tracer scans (50 min) for different ∆t.

3.2. Implementation of Deep-Learning-Based Dual-Tracer Separation Method

The simulated brain phantoms were reconstructed using the classic maximum-likelihood
expectation maximization (MLEM) algorithm [58]. A total of 128 iterations were used for
EM reconstruction to maintain the balance between bias and noise as suggested in [28,59].
Given that the PET scanner measures average activity concentration over time, the re-
constructed dynamic dual-tracer images were further normalised by frame widths, e.g.,
Tm = tm,s − tm,e for the mth frame, to obtain the (non-decay corrected) dual-tracer TACs
of each voxel. The reconstructed single-tracer images were also normalised by 20 min
static acquisition time to obtain the activity distributions. The reconstructed dynamic
dual-tracer images and the reconstructed static single-tracer images were used as network
inputs and training labels, respectively. Examples of reconstructed static single-tracer noisy
MLEM images are shown in Figure 6c,f, together with the corresponding noise-free MLEM
reconstructions (NF) (b,e) and the ground truths (a,d). When ∆t = 2 days, the dual-tracer
signals were entirely separated (reasons for which are discussed in Section 3.1), and thus
two reconstructed dynamic single-tracer images were obtained, one for each tracer. In this
case, the reconstructed dynamic single-tracer images (either [18F]FDG or [11C]MET) were
employed as the network input. In this special case, the MSE loss is only applied to either
[18F]FDG or [11C]MET, depending on the choice of the tracer considered in the network
input. Notice that the decay correction cannot be performed in dual-tracer PET prior to
separation because the proportion of each tracer (and hence its decay correction factor) is
unknown prior to separation. While we do model decay, we do not seek to include decay
correction in this present work.

In our experiments, an individual 2D CED was trained for each ∆t to investigate the
impact of the time delay interval between the injections of the two tracers. We used 80 simu-
lated 2D brain phantoms to generate the training pairs (dynamic dual-tracer reconstructed
images and static single-tracer reconstructed images), 10 for validation and 10 for testing.
We also retrained each CED using a different sample size (1, 4, 8 and 40 training pairs) to
assess the impact of the number of training pairs. All network training was performed
in the same manner. We chose Adam [60] as the optimizer with Xavier initialization [61]
and a learning rate of 0.005. Different batch sizes were chosen based on the number of
training pairs; see Table A2 for additional information. To prevent overfitting, all networks
were trained for 1000 epochs, with early stopping when the validation metrics no longer
improved along with the training metrics. The training and evaluation of each network
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were implemented with PyTorch 1.11.0. All computations were conducted on a Quadro
P6000 GPU with 24 GB memory.

(a) yFDG
GT (b) yFDG

NF (c) yFDG
Noisy

(d) yMET
GT (e) yMET

NF (f) yMET
Noisy

Figure 6. Brain phantom: an example of the simulated static single-tracer images (tracer activity
distributions) for [18F]FDG and [11C]MET: (a,d) ground-truth static images; (b,e) noise-free MLEM
reconstructions; (c,f) noisy MLEM reconstructions.

3.3. Implementation of Compartment Model-Based Dual-Tracer Separation Method

We compared the performance of the proposed DL-based method with the (voxel-
wise) CM-based method for dual-tracer separation (a flowchart diagram can be found in
Figure 1). In the CM-based method, dual-tracer TACs of each voxel (denoted with ĈDual

t )
were first extracted from the reconstructed dynamic dual-tracer MLEM images. The kinetic
parameters were estimated for each tracer by fitting the dual-tracer kinetic model (2) to the
measured dual-tracer TACs

k̃ = arg min
k

L

∑
m=1

wm(CDual
tm (k)− ĈDual

tm )2, (4)

where L is the total number of frames, wm is the weight factor of the mth frame, and
tm is the mid-time of the mth frame. We chose wm = Tm/ĈDual

m in accordance with the
recommendation made in [30], where ĈDual

m denotes the TAC value for a given voxel at
frame m, and Tm denotes the frame width for the mth frame. The trust-region-reflective
algorithm [62,63] (implemented in the Matlab function lsqnonlin) was used to performed a
voxel-wise weighted non-linear least squares (WNLS) fitting to solve (4). The initial values of
each of the kinetic parameters contained in k were set at 0.05 for all voxels, and the lower and
upper bounds of each parameter were set to 0 and 1, respectively. Stopping criteria were set
such that the optimization procedure terminated when the change of the objective function
was less than 1× 10−6 or after 2000 iterations.

Given the estimated kinetic parameter vector k̃ =
[
k̃FDG, k̃MET

]
and the AIFs of each

tracer, the single-tracer TACs of each voxel can be calculated using Equation (1) (physical
decay of each radioactive tracer was considered). According to the static single-tracer PET
protocol described in Section 3.1, the recovered single-tracer TACs (the last 20 min for both
tracers) were integrated and assigned to each voxel to recover the static single-tracer images,
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which were then normalised by the entire static acquisition time of 20 min to represent
the mean activity distributions. Although, for ∆t = 2 days, dynamic dual-tracer signals
have been entirely separated due to a sufficiently long ∆t (see the discussion in Section 3.1),
the CM-based method is still valid by assuming either the [18F]FDG activity concentration
or [11C]MET activity concentration to be zero in Equation (2). In this case, the CM-based
method estimates the kinetic parameters of each tracer by fitting the single-tracer kinetic
model (1) to the measured single-tracer TACs extracted from the reconstructed dynamic
single-tracer MLEM images.

3.4. Image Evaluation

The separated static [18F]FDG and [11C]MET images were evaluated at the pixel level
using the normalised root mean square error (NRMSE) over a masked region of the images
(denoted with Ω)

NRMSE =
√

Bias2 + SD2 (5)

with the bias given by

Bias =

√√√√∑j∈Ω(ȳj − yRef
j )2

∑j∈Ω(yRef
j )2

(6)

and the standard deviation (SD) given by

SD =

√√√√ 1
R

∑R
r=1 ∑j∈Ω(ȳj − ỹr

j )
2

∑j∈Ω(yRef
j )2

, (7)

where ȳj is the mean value for voxel j in the separated image ỹ, obtained by averaging
R = 10 noise realisations, and yRef is a reference image for error calculation.

The ROI level metrics were also computed for evaluating the separation performance,
with the ROI bias given by

BiasROI =

√
(ROIRec − ROIRef)2

(ROIRef)2 , (8)

and the ROI standard deviation given by

SDROI =

√
1
S

∑j∈Ω(ȳj − ROIRec)2

(ROIRec)2 , (9)

where ROIRec and ROIRef are the mean values obtained by averaging S voxels within the
ROI in the separated image ỹ and the reference image yRef, respectively.

4. Results
4.1. DL-Based Dual-Tracer Separation Results

The whole brain region Ωbrain, where the activity concentration is non-zero in the
ground-truth images of each tracer, was assessed for testing the separation quality at the
pixel level. Figure 7 shows the NRMSE averaged over the entire test set (10 test datasets)
as a function of the number of training pairs for the DL-based method. More specifically,
the figure shows the NRMSE with respect to three different reference images: the static
single-tracer ground-truth images y∗GT, the reconstructed static single-tracer noisy MLEM
images y∗Noisy and the reconstructed static single-tracer noise-free MLEM images y∗NF, where
∗ denotes either [18F]FDG or [11C]MET; see Figure 6 for an illustration of the reference
images. For each ∆t, the separation error of the DL-based method in terms of the average
NRMSE with respect to y∗GT was higher than when y∗Noisy and y∗NF were used as reference
images. This is due to the fact that noise-free or noisy MLEM will not give perfect results
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with respect to the ground truths. Comparing our DL-based separation results to MLEM is
therefore helpful as the perfectly separated MLEM images are not achieving the ground
truths. While the proposed network was trained with noisy labels y∗Noisy, the separation
results achieved better average NRMSE values across all ∆t when noise-free images y∗NF
were used as references. This is a consequence of using MSE as a loss function in our task.
We note that the arithmetic mean of the observations z, i.e., y = Ez{z}, is found to be the
minimum of the L2 loss L(y, z) = (y− z)2 in MSE. This indicates that a neural network
learns to output the average of all plausible explanations when trained with MSE loss.
Therefore, our proposed network can be trained using noisy labels y∗Noisy with MSE loss to
learn to separate the dual-tracer signals and output the estimation of the mean images of
each tracer, and as a result, the separated images are closer to y∗NF. For the remainder of
the paper, we use the reconstructed static single-tracer noise-free MLEM images y∗NF as the
reference images to calculate the error metrics in all cases.

Figure 7 shows for each ∆t that the average NRMSE decreases and that a smaller SD
is obtained in the test set as the number of training pairs increases from 1 to 80. This is
consistent with the visual impression of the separations obtained by the DL-based method,
as shown in Figures 8 and 9. The first to fifth columns display the separated static single-
tracer images (activity distributions) based on different numbers of training pairs (for
plotting only, we limit the colour scale of the figures to fall within the same range as
the reference images in Figure 6b for [18F]FDG and Figure 6e for [11C]MET, respectively).
Although all cases successfully recover the separated images, using more training pairs
results in higher separation performance in terms of recovering the tumour regions, shapes
and low contrast of the white and grey matter for [11C]MET. Figure 10a,c also suggest
that the more training pairs used, the better the average NRMSE, which is in line with the
results shown in Figure 7. With 80 training pairs, the DL-based method achieved average
NRMSE values for [18F]FDG and [11C]MET of ∼15% and ∼12%, respectively, for the test
set across all ∆t (see the magenta lines in Figure 10a,c).

The impact of ∆t for the DL-based method using the same number of training pairs is
shown in Figure 10a,c. The average NRMSE values of the DL-based separation results are
at a similar level for all ∆t, which indicates that the separation performance of simultaneous
injection is comparable to ∆t ≥ 5 min using the DL-based method. This is because the
DL-based method uses both temporal and spatial information for dual-tracer separation,
which effectively improves the separation performance even when simultaneous injection
(∆t = 0 min) is considered.

4.2. CM-Based Dual-Tracer Separation Results

A test example of the separated images using the CM-based method is shown in the
last column of Figure 8 ([18F]FDG) and Figure 9 ([11C]MET) for different ∆t. Compared to
the results obtained from the DL-based method, the separated images using the CM-based
method are much noisier because the model fitting (4) may fall into local minima even
when the noise level is low. Although several strategies, such as using differing initial
values or an exhaustive search algorithm [22], have been suggested to reduce local minima,
their use in clinical practice is challenging because of their high computational cost.
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Figure 7. Brain phantom (whole brain region): NRMSE (over 10 test datasets) of separated static
[18F]FDG images (a–e) and [11C]MET images (f–j) using the DL-based method for the whole brain
region ΩBrain.
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Figure 8. Brain phantom (whole brain region): the static [18F]FDG images recovered using the
DL-based method (Columns 1 to 5) and the CM-based method (Column 6).

Figure 9. Brain phantom (whole brain region): the static [11C]MET images recovered using the
DL-based method (Columns 1 to 5) and the CM-based method (Column 6).

(a) (b)

(c) (d)

Figure 10. Average NRMSE (over 10 test datasets) for the whole brain region: Ωbrain (a,c) DL-based
method, (b,d) CM-based method and frame integrated (FI) method.
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We now investigate the impact of ∆t on the CM-based separation for dynamic dual-
tracer noisy MLEM images. Figure 10b,d (solid lines) show longer ∆t results in more
accurate separation using the CM-based method. High average NRMSE values were
obtained (∼45% for [18F]FDG and ∼55% for [11C]MET) when a simultaneous injection
protocol is used. The average NRMSE values improve rapidly (by ∼7% for [18F]FDG and
and ∼20% [11C]MET) from simultaneous to 5 min delay and then gradually decrease for
longer ∆t (10 and 15 min). This is because only the [18F]FDG signal was measured in the first
5 min, providing temporal prior information of a single tracer to aid in the disentangling
of dual-tracer signals, whereas no prior information is given for simultaneous injection,
which makes the dual-tracer separation problem more challenging. Longer ∆t means more
temporal prior information of [18F]FDG is available before the [11C]MET injection, and
thus the average NRMSE values steadily improve for the cases of ∆t = 10 and 15 min.
For ∆t = 2 days, much lower average NRMSE values were obtained (∼10% for [18F]FDG
and ∼12% for [11C]MET) as dual-tracer signals have been entirely separated by a large
∆t (see Section 3.1 for details). We also integrated the last 4 frames of the reconstructed
dynamic single-tracer noisy MLEM images (we refer to herein as the frame integrated (FI)
method) for ∆t = 2 days to estimate the target images (20 min static images of each tracer),
and obtained a level of average NRMSE comparable to that of the CM-based method
(see the pentagram markers in Figure 10b,d). This result indicates that the CM-based
method is equivalent to the FI method for recovering the static single-tracer images from
the dynamic single-tracer images when dual-tracer signals were separated by a sufficiently
long time delay.

We then applied the CM-based method to the reconstructed dynamic dual-tracer
noise-free MLEM images to examine the impact of the noise. Again, longer ∆t results
in more accurate separation as illustrated in Figure 10b,d (dashed lines). The average
NMRSE values of noise-free dual-tracer separations are substantially lower than those of
noisy dual-tracer separations for all ∆t, indicating that noise has a massive effect on the
separation performance when using the CM-based method. However, for both [18F]FDG
and [11C]MET in the noise-free case, ∼20% average NRMSE values were obtained when
∆t = 0 min. The main reason is that the trust-region-reflective algorithm, which is used in
the CM-based method to solve (4), may fall into local minima, leading to poor separation
quality. When ∆t = 2 days, the dual-tracer signals have already been completely separated
by a sufficiently long ∆t without the interference of noise, and thus the CM-based method
exhibits almost perfect separation, which is equivalent to the results of using the FI method
as highlighted in asterisk markers in Figure 10b,d.

4.3. DL-Based Method and CM-Based Method Comparison

The separation results between the DL-based method and CM-based method applied
to the reconstructed dynamic dual-tracer noisy MLEM images were compared. For ∆t = 0,
5, 10 and 15 min, Figures 8 and 9 show that in terms of visual assessment the CM-based
method produces much nosier separated images than the DL-based method. This observa-
tion is consistent with better average NRMSE values of the DL-based separation results as
illustrated in Figure 10. When using only 1 training pair, the DL-based method achieved
high average NRMSE values across all ∆t (∼25% for [18F]FDG and ∼22% for [11C]MET).
However, it nevertheless produces better average NRMSE values for ∆t = 0, 5, 10 and
15 min when compared to the separation results using the CM-based method. In fact,
there are 1282 = 16,384 TACs contained in 1 training pair, one for each voxel; hence, in this
instance, the proposed network was trained using 16,384 TACs. Note that the DL-based
method utilises both spatial and temporal information of the TACs from all voxels, but the
CM-based method was implemented voxel by voxel, meaning only temporal information of
one TAC was considered at each time. Therefore, for ∆t = 0, 5, 10 and 15 min, the DL-based
method with 1 training pair yields better separation performance. When ∆t = 2 days, the
CM-based method, in contrast to the DL-based method with 80 training pairs, achieved
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lower average NRMSE values for both [18F]FDG and [11C]MET. We believe this is the result
of not enough training data which includes the case of ∆t = 2 days.

4.4. Bias and Standard Deviation Analysis (Pixel-Level)

To capture the variation of the separation caused by the random initialisation of the
network parameters in network training, we retrained the proposed network for each
scenario. Specifically, for each ∆t, the proposed network was independently retrained
three times on the same dataset (with same number of training pairs) using different
randomised weight initialization and random shuffling of the data per epoch during
training. Armed with the retraining process, we can now compute the uncertainty of
the separated image values of the retraining outcomes. The bias and standard deviation
averaged from the three training reruns were used for analysis.

The bias and SD of the separation results for the whole brain region Ωbrain of one of
the test data cases are shown in Figure 11. The scatter plots show that using more training
pairs results in lower bias of the DL-based separation, which is referred to as the reducible
epistemic uncertainty. However, their SD values are at a similar level for each ∆t, indicating
that this uncertainty is irreducible by introducing more training data. We refer to this
uncertainty as the irreducible aleatoric uncertainty, which is caused by the inherent noise
of the dynamic input image data. We also evaluated the performance of the DL-based
method (with 80 training pairs) applied to the reconstructed dynamic dual-tracer noise-free
MLEM images, i.e., we trained the proposed networks (with 3 training reruns and 80 noisy
training pairs), but the reconstructed dynamic dual-tracer noise-free MLEM images were
used as the network inputs in the prediction stage. The separation results for the noise-free
case reached ∼14% bias for [18F]FDG and ∼11% bias for [11C]MET, which are higher than
the bias for the noisy case using the same trained networks. The reason for this is that the
reconstructed dynamic dual-tracer noise-free MLEM images are out-of-domain data that
were not observed during training, and hence the trained networks do not perform as well
for out-of-domain predictions.

(a) (b)

Figure 11. Brain phantom (whole brain region): bias and SD of separated static [18F]FDG im-
ages (a) and [11C]MET images (b) using DL-based and CM-based methods for the whole brain
region ΩBrain.

For the CM-based method, a longer ∆t helps to decrease bias and SD in the separation
results for both tracers when the reconstructed dynamic dual-tracer noisy MLEM images
separation was considered. The bias decreases gradually for ∆t = 5, 10 and 15 min after a
sharp decline simultaneous to a 5 min delay; see the grey diamonds in Figure 11. When
∆t = 2 days, the CM-based method achieved ∼5% bias of the separated images for both
tracers. High SD of the separation results (above 30% for both [18F]FDG and [11C]MET)
were found using the CM-based method for ∆t = 0, 5, 10 and 15 min. The SD drastically
decreased to ∼8% for both [18F]FDG and [11C]MET when the dual-tracer signals were
entirely separated by ∆t = 2 days. The separation of the reconstructed dynamic dual-
tracer noise-free MLEM images achieved a reduced bias for each ∆t when compared to
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the separation of noisy MLEM images using the CM-based method. In the noise-free case,
the bias changed rapidly from 0 min (simultaneous) to 5 min, decreased gradually for
∆t = 5, 10 and 15 min and attained zero when ∆t = 2 days. The aforementioned results are
consistent with the findings in Section 4.2, suggesting longer ∆t results in better separation
using the CM-based method.

We now compare the bias and SD of the separation results between the DL-based
method and the CM-based method on the reconstructed dynamic dual-tracer noisy MLEM
images. The DL-based method achieved much smaller SD over all ∆t, even using a small
number of training pairs. This is a consequence of training the proposed network with the
MSE loss which implicitly learns to denoise the output images. The bias of the separation
results using the CM-based method and the DL-based method (with 80 training pairs)
reached a similar level when ∆t = 10 min for [18F]FDG and ∆t = 15 min for [11C]MET; see
Figure 11). However, when ∆t = 2 days, the CM-based method surpassed the DL-based
method (with 80 training pairs) in terms of bias. Note that as the number of training pairs
increases, the bias of the separation results using the DL-based method decreases. We can
reasonably anticipate that the DL-based method will achieve lower bias than the CM-based
method for all ∆t if there are more data available.

Next, we consider the bias and SD of the separation errors for a 10 pixel ROI within
the tumour region (denoted with ΩTM) in the brain phantom. In general, using more
training data yields lower mean values of the NRMSE for ΩTM over all ∆t; see Figure A1
in Appendix A for details. However, in some instances, the DL-based method with fewer
training pairs was able to achieve superior mean values of the NRMSE as shown in
Figure A1a,e,f,i. The reason for this is the fact that the proposed network was trained using
a global loss function. The evaluation here focuses on a tiny local region at the pixel level,
which is highly impacted by the stochastic network optimisation algorithm (Adam) and
the random initialization of the learnable parameters. Figure 12 shows that, for each ∆t,
using more training pairs gives lower bias for the DL-based separation for ΩTM , while
the SD values remain at a similar level due to the aleatoric uncertainty. A longer ∆t yields
lower bias and SD of the separation results for ΩTM using the CM-based method for both
noisy and noise-free cases. Compared to the CM-based method, the DL-based method
using 80 training pairs obtained lower bias and SD for ∆t ≤ 15 min. However, when
∆t = 2 days, the CM-based method achieved even lower bias than the DL-based methods
(with 80 training pairs), which again indicates that more training data which includes the
case of ∆t = 2 days would likely be required to further enhance the separation performance
for the tumour ROI.

(a) (b)

Figure 12. Brain phantom (tumour ROI): bias and SD of separated static [18F]FDG images (a) and
[11C]MET images (b) using DL-based and CM-based methods for the whole brain region ΩTM.
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4.5. Bias and Standard Deviation Analysis (ROI-Level)

Finally, a comparison between the proposed DL-based method (with 3 training reruns,
80 training pairs) and the CM-based method (10 reruns with different random initial values
of the kinetic parameters) was conducted for ΩTM at the ROI level. To investigate the
impact of the noise for the CM-based method at the ROI level, a full width at half maximum
(FWHM) Gaussian kernel was used to denoise the separated images as a post-processing
step. Figure 13 shows that the average SDROI of the CM-based separation results were
sufficiently reduced by introducing an FWHM kernel after separation, and lower average
bias was obtained for longer ∆t for the CM-based method with post-denoising. However,
using a large FWHM kernel (8 mm) leads to higher average bias. The average SDROI of the
DL-based method stays at a similar level for all ∆t, showing as the aleatoric uncertainty. For
both [18F]FDG and [11C]MET, the average biasROI of the DL-based method is comparable
to the CM-based method with a 4 mm FWHM kernel for different ∆t, which again indicates
the DL-based method implicitly denoises the separated images as discussed in Section 4.1.
For simultaneous injection (∆t = 0 min), the DL-based method overall delivers better
separations at the ROI level than the CM-based method (with and without post-denoising)
in terms of lower average biasROI and average SDROI. However, the CM-based method can
still potentially surpass the DL-based method for ΩTM at the ROI level by introducing an
FWHM kernel (2–4 mm) as post-denoising for ∆t ≥ 5 min.

(a) (b)

Figure 13. Brain phantom (tumour ROI): average biasROI and average SDROI at the ROI level of
separated static [18F]FDG images (a) and [11C]MET images (b) using DL-based and CM-based
methods for the tumour ROI ΩTM.

5. Discussion

Multiplexed PET imaging can reveal different aspects of physiology in a single dynamic
scan, providing complementary information for diagnosis. The present study explored
the feasibility of using an indirect deep learning method for dual-tracer [18F]FDG and
[11C]MET imaging with 2D simulated brain data. A tailored 2D CED was designed to learn
to separate the dynamic dual-tracer images into two static single-tracer images without
explicitly knowing the input functions. The results showed that the proposed DL-based
separation method implicitly denoised the separated images when noisy MLEM images
were used for the training labels. We also investigated the impact of the number of training
pairs and time delay interval ∆t on our proposed method and conducted a comparative
analysis with the well-known compartment-modelling-based method. The performance
of the proposed DL-based method was improved with more training pairs and achieved
comparable results for different ∆t (0, 5, 10 and 15 min and 2 days) at the pixel level for the
whole brain region. With a small number of training pairs, the proposed DL-based method
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still outperformed the CM-based method for a short time delay ∆t (0, 5, 10 and 15 min)
in terms of NRMSE. However, for ∆t = 2 days, i.e., when the dual-tracer TACs were
entirely separated by a sufficiently long ∆t, the CM-based method achieved lower NRMSE
(similar observations were obtained in the pixel-level bias and standard analysis), indicating
more training data would be required for the DL-based method with inclusion of data for
∆t = 2 days. We also performed a bias and standard deviation analysis for a tumour ROI.
At the pixel level, much lower SD was obtained by the DL-based method compared to
the CM-based method, and the SD stayed at a similar level for all ∆t due to the aleatoric
uncertainty. Using more training data helped to reduce the bias for the DL-based method.
For ∆t ≤ 15 min, the DL-based method using 80 training pairs achieved lower bias than
the CM-based method. However, lower bias was found using the CM-based method
when ∆t = 2 days. This is consistent with the aforementioned argument that the DL-based
method needs more training pairs in order to surpass the CM-based method (as well as
inclusion of ∆t = 2 days in its training data). For the DL-based method, the situation is
accentuated at the ROI level for the tumour ROI. For simultaneous injection (∆t = 0 min),
the DL-based method overall delivers lower average bias and SD at the ROI level than the
CM-based method (with and without post-denoising). However, the CM-based method can
surpass the DL-based method by introducing a 2–4 mm FWHM kernel as post-denoising
for ∆t ≥ 5 min for the tumour ROI at the ROI level.

This study still has several limitations: (1) In the simulation study, we introduced
2D images with only 3 different homogeneous regions (white matter, gray matter and
tumour region) and minor variations on the kinetic parameters. Further work is necessary
to examine the proposed method for 3D PET images with multiple tissue classes and
different levels of variation. (2) The total scan time was limited to 50 min, and the framing
scheme was assumed to be the same for each dynamic scan with a given ∆t. The impact of
the total scanning time and different framing schemes need to be investigated in order to
optimise the separation performance. (3) The number of tracers was restricted to two. In
the literature, a three-tracer separation task was feasible [25] using the CM-based method.
Inspired by the proposed network architecture, it is possible to include multiple decoders,
one for each tracer, to separate multi-tracer signals. It is noteworthy that our method
does not rely on prior knowledge of the tracers, such as their half-lives, kinetic models or
input functions. Theoretically, the proposed DL-based method can be extended to other
tracer combinations.

The proposed method presupposes that there are enough training data available. How-
ever, this is usually not the case in medical imaging. Further developing more advanced
network architectures to enable better separation performance based on small training
sets is crucial. Lastly, our method will ultimately need to be rigorously evaluated with
clinical data. Further study would need to focus on training the model using phantom and
Monte Carlo simulation data. The model could then potentially be fine tuned with real
patient data.

6. Conclusions

This paper presented a DL-based method for dual-tracer [18F]FDG and [11C]MET
dynamic PET image separation. The method employed a 2D convolutional encoder–
decoder to separate dynamic dual-tracer images acquired in a single scan to infer static
single-tracer images. Our simulation results showed that the proposed DL-based method
using different numbers of training pairs (up to 80) outperformed the CM-based method
at the pixel level for short time delay intervals ∆t ≤ 15 min and even for simultaneous
injections (∆t = 0 min).
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Abbreviations
The following abbreviations are used in this manuscript:

PET Positron Emission Tomography
[18F]FDG 18F-Fluorodeoxyglucos
[11C]MET 11C-Methionine
TACs Time-Activity Curves
AIF Arterial Input Function
PCA Principal Component Analysis
rXGBoost Recurrent Extreme Gradient Boosting
ROI Region of Interest
DL Deep Learning
CED Convolutional Encoder–Decoder
GAN Generative Adversarial Network
WM White Matter
GM Grey Matter
TM Tumour
MLEM Maximum-Likelihood Expectation Maximization
GT Ground-Truth
NF Noise-Free
MSE Mean Square Error
WNLS Weighted Non-Linear Least Squares
NRMSE Normalised Root Mean Square Error
SD Standard Deviation
FI Frame Integrated
FWHM Full Width at Half Maximum

Appendix A

Appendix A.1. Feng’s Input Function Parameters

Table A1 contains the parameters used for generating the AIFs for [18F]FDG and
[11C]MET based on Feng’s input function model.

Table A1. Parameters used for generating the AIFs of [18F]FDG and [11C]MET based on Feng’s input
function model.

A1 A2 A3 λ1 λ2 λ3

[18F]FDG 4543.7089 5.7558 8.9690 19.6371 0.9830 0.0482
[11C]MET 8843.7089 10.7558 20.9690 20.6371 0.7830 0.0552
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Appendix A.2. Batch Sizes for Network Training

Table A2 shows the batch sizes for network training based on the number of training pairs.

Table A2. Batch sizes based on the number of training pairs.

# of Training Pairs (Images) 1 4 8 40 80

# of training pairs (TACs) 1 × 1282 4 × 1282 8 × 1282 40 × 1282 80 × 1282

Batch size 1 4 8 8 8

Appendix A.3. NRMSE of Separated Static Images for the Tumour ROI

Figure A1 shows the NRMSE of separated static [18F]FDG images and [11C]MET
images using the DL-based and the CM-based methods for the tumour ROI ΩBrain.

(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Figure A1. Brain phantom (tumour ROI): NRMSE of separated static [18F]FDG images (a–e) and
[11C]MET images (f–j) using DL-based and CM-based methods for the tumour ROI ΩBrain.
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