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Abstract

The thesis focuses on optimizing the coverage and capacity of wireless networks
through the use of unmanned aerial vehicles (UAVs) in a cellular-connected en-
vironment. The limitations of UAVs in capturing large areas necessitate the
deployment of multiple UAVs to support the system, with the UAV Base Station
(UAV-BS) communicating with other UAVs. The positioning of UAVs is cru-
cial to maximize data communication rate and meet real-time requirements. To
ensure quality of experience (QoE) in real-time video streaming, a coordination
co-design between UAVs and the UAV-BS is implemented to capture dynamic
firefighting areas, by optimal bit-rate and power allocation to ensure smoothness
quality in multiple locations. The study also addresses the challenge of downlink
interference to terrestrial users (TUEs) when BSs serve both TUEs and UAVs.
An interference coordination mechanism is proposed to mitigate inter-cell inter-
ference and maximize radio connectivity for TUEs. Dynamic cell muting interfer-
ence and resource allocation scheduling schemes (MOSDS-DQN) are introduced,
leading to a significant improvement in throughput and satisfactory level for both
UAVs and TUEs. Conventional beam-sweeping approaches face challenges due
to the high mobility and autonomous operation of UAVs. To address this, the
deep reinforcement learning (DRL)-based framework using hierarchical Deep Q-
Network (hDQN) is proposed for UAV-BS beam alignment in a mmWave radio
setting. The framework utilizes location information to maximize beamforming
gain during communication requests. To improve convergence time, the convo-
lution neural network radio mapping and hDQN-based framework (hDRM) are
employed. Simulation results showed that QoE is improved 12% compared to the
non-learning algorithm with 41% improvement of the long-term video smooth-
ness. The proposed MOSDS-DQN showed 18% improvement compared to the
DQN algorithm. The proposed hDRM framework improved 63% over the con-
verging time compared to vanilla hDQN approaches under real-time conditions.
Overall, the thesis contributes to the optimal positioning of UAVs and BSs, dy-

namic bit-rate selection, interference mitigation, and efficient beam alignment



using advanced techniques such as coordination co-design, dynamic scheduling,
and deep reinforcement learning. These approaches enhance the performance and
coverage of UAV-UEs, mitigate interference, and improve the overall efficiency of

wireless networks in dynamic environments.
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Chapter 1
Introduction

The market for Unmanned Aerial Vehicles (UAVSs) is rapidly growing and has
become useful for improving efficiency, especially for streaming video [30, 113, 111,
119], agricultural use cases [185], streamline operations, and military applications.
The study in [105] shown that in coming year 2029, the worldwide commercial
UAV market will triple in size by cost of 14 billion dollars and these will lead to
traffic congestion of communication between UAVs and cellular-connected ground
users. In particular, UAVs also may give a vast benefit to the communication
community to provide reliable and cost-effective wireless communication solutions
in a real-world scenarios.

UAVs commonly communicate using a direct link and function as aerial user
equipment (UEs), known as cellular-connected UAVs, in coexistence with ground
users (e.g., video streaming or packet delivery) [113]. Despite the promising ad-
vantages of cellular-enabled UAV communications, there are still scenarios where
the cellular services are limited reach in remote or rural regions, as well as in
disaster-stricken areas or areas with challenging terrain. As an example, the nu-
merous wildfires have caused challenges for firefighters to control and monitor fire
in remote areas [114, 131]. To support such scenarios, the technologies such as the
flying ad hoc network or namely unmanned aerial vehicle base station (UAV-BS)
will support cellular communications beyond the terrestrial coverage of cellular
networks [131].

On the one hand, UAV-BS can deliver reliable, cost-effective, and on-demand
wireless communications to desired areas [68, 113]. Furthermore, the adjustable
altitude of UAV-BSs enables them to effectively establish line-of-sight (LoS) com-
munication links thus it mitigating signal blockage and shadowing [116]. Due to
potential advantages, UAVs admit many potential use cases in wireless networks

such as, UAV-BS can be deployed to enhance the wireless capacity and cover-
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age at ad-hoc events or hotspots such as sports stadiums and disasters [73, 141].
Moreover, UAVs can be used in public safety scenarios to support disaster relief
activities and to enable communications when conventional terrestrial networks
are damaged [30, 33, 83, 101, 125, 176, 120, 126]. Therefore, it is envisioned
that the future wireless network for supporting large-scale UAV communications
will have an integrated 3D architecture consisting of direct link UAV (UAV to
Network), UAV-to-ground communications (UAV to Device) and UAV-to-UAV,
as shown in Fig. 1, where each UAV may be enabled with one or more commu-
nication technologies to exploit the rich connectivity diversity in such a hybrid
network. However, in cellular networks, the base station (BS)’s inter-site distance
(ISD) is designed according to ground level channel models is not optimized for
UAVs in different propagation environments. As a result, the transmission per-
formance of UAVs and TUESs is severely affected by interference among them,

when BSs serving them in the same frequency simultaneously [23].

= UAV to Network Cellular Communications (U2N)
= UAV to UAV Communications (U2U)
=3 UAV to Device (U2D)
—p UAV to Network (U2N)
—3» Network to UAV (N2U)

Interference

-
-

:

-

N
).
.
N
o
"

>
. |

Figure 1.1: Supporting UAV communications with integrated network architecture

However, in the fifth generation (5G) and beyond, the Millimeter wave (mmWave)
frequencies (30 GHz to 300 GHz) together with multiple input multiple out-
put (MIMO) beam-forming are capable to provide high capacities and line-of-
sight (LoS) dominant connectivity where mmWave have high-capacity and inex-
pensive, could improve the signal directivity and reduce the co-channel interfer-
ence between users. The study focuses to optimize the mmWave beam alignment
for efficient control of unmanned aerial vehicles (UAVs) in beyond 5G communica-
tion, the high deployment of cellular-enabled UAVs-user equipment together with
unique features in mobility in three-dimensional (3D) space and autonomous op-
erations to the aerial-ground communications between BS and UAVs to increase

high reliability data rate.
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1.1. Overview

Thus, the challenge of attaining high reliability and low-latency communica-
tions, while simultaneously improving Quality of Experience (QoE) and Quality

of Service (QoS), as well as minimizing interference among users, arises.

Situation: High diversity UAV connectivity in hybrid network.

1.1 Overview

The current practice in the dynamic control and communication model in urban
and sub-urban of the 5G cellular-connected unmanned aerial vehicle (UAV) is
focused on this study. UAV will be an integral part of the next generation of
wireless communication networks and adopt in various communication-based ap-
plications is expected to improve coverage and spectral efficiency as compared
to traditional ground-based solutions. However, this new degree of freedom that
will be included in the network will add new challenges. Generally, UAVs need
wireless communication infrastructure to control based on UAV application cat-
egories. Therefore, UAV wireless communication can be divided into four (4)
types: (i) Terrestrial Base Station (BS) to UAV (ii) UAV to BS (iii) UAV-BS to

Terrestrial User (i.e., mobile user) and (iv) UAV-to-UAV communications.

1.1.1 UAV Communications

UAV communication refers to the exchange of information between UAV and
other systems, such as ground control stations. This communication enables
the control, navigation, and monitoring of UAVs, and can be obtained through
various means. The studies found that the UAV’s performance can be improved
by using high-speed wireless communication channels [27]. However, due to the
extensive coverage area and high mobility, channel communication may fluctuate,
especially in rural and sub-urban areas where it is difficult to get a full-coverage
signal for autonomous purposes. Existing wireless technologies, such as WiFi,
Bluetooth, and radio wave, can only support UAVs’ communication with a short

transmission range, making UAV-cellular collaboration inefficient.

1.1.2 UAV act as Flying User

The type of communication used for a UAV depends on several factors, including
the size and range of the UAV, the mission requirements, and the environment

in which the UAV is operating. The use of flying UAVs user can help in many
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1.1. Overview

sectors and can continuously move to provide full coverage to targeted areas
within a minimum possible time. As the UAV needs continuously moving, it
required a network to received and transmit control command. The issues need
to be highlighted when deploy the UAV user is whether current cellular network
is suitable for UAV communication, how inclusive UAV with the environment
including pathloss, power and network efficiency [38, 39, 55] and how UAV can
self-positioning themselves [55, 141]. In addition, how UAVs will impact to ground

user and the overall network efficiency should take into consideration [22, 119].

1.1.3 UAYV act as Flying Base Station

However, geographical constraints caused many arecas to suffer from poor network
connectivity and difficulty to deploy ad-hoc communications, i.e. search and
rescue. Thus, UAV can act as emergency cellular networks that support the
users [87]. For example, Emergency Cellular Network was introduced to adapt
and adjust the drone small scale [87] while static truck BS was placed in a similar
position as the original BS position to help the urban surveillance areas. The
authors in [166] considered the moving aerial base station (ABS) to give fair
coverage probability to all users and found that the average fade duration is
reduced compared to the static drone. Moreover, the use of UAVs is quite natural
due to their agility, mobility, flexibility, and dynamic altitude which enable to
provide a booster of the performance of the existing ground wireless networks in
terms of coverage, capacity, delay and overall quality which required real-time

control to support it [113].

1.1.4 UAV-to-UAV Communication

The reliability of the proposed UAV-BSs and relay to help other UAVs transmit
to the nearby terrestrial BS with a low signal-to-noise ratio (SNR) shows good
performance where the communication between UAV-BS can be extended to fly-
ing users. Study shown that when the distance of UAV communication decreases,
the SNR of the transmission increases and the transmission performance becomes
better. Furthermore, by using the power control policy, it will help to improve
the performance of ground users. In evaluating the power control, the height
dependency, and interference between spectrum sharing of U2U communication

can also be matrices in evaluating the U2U performance.
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1.2. What motivates this study?

1.1.5 High UAV number

As mentioned earlier, the growing number of the worldwide commercial UAV mar-
ket will triple in size [105] and this leads the traffic growth of cellular-connected
of flying UAV and ground user become crucial to minimize interference. There
are important requirements to provide coexistence and optimal performance for
both aerial and terrestrial users to ensure reliable performance. However, today’s
cellular networks aren’t built for aerial coverage, and deployments are primarily
focused on providing excellent service to terrestrial users. Therefore, it cause
UAVs and terrestrial users face problem to get high performance when there are
existing user in t-th time slot. Besides that, from the factors mentioned above, the
combined with stringent regulatory requirements resulted in extensive research
and standardization efforts to ensure that current cellular networks can reliably

operate aerial vehicles in a variety of deployment scenarios.

1.2 What motivates this study?

UAV deployment offers several advantages that contribute to more effective and
safer firefighting efforts. UAVs equipped with cameras and sensors provide real-
time aerial surveillance, allowing firefighters to gather crucial situational aware-
ness and make informed decisions [65]. They can quickly assess the extent of
the fire, identify hotspots, and monitor its progression. Furthermore, UAVs can
reach inaccessible or dangerous areas, providing valuable information without
risking human lives. With the advancement of cameras such as thermal imaging
capabilities, they can detect hidden fires and locate trapped individuals. Overall,
UAVs are able to enhance firefighting capabilities, improve response times, aid in
minimizing damage, preserve lives, and improve network reliability and latency.

The motivation behind this research is to solutions to these problems: (i)
dynamic wireless communication (ii) high interference, (iii) dynamic location and
video resolution in dynamic environments, (iv) emergency situations Quality of
experience for high-resolution video streaming (v) high volume of terrestrial and

flying users and (vii) overhead beam sweeping in mmWave.

1.2.1 Dynamic Wireless Communication

Wireless communication is tending to fading and interfere with other wireless
devices. A wireless signal may fade in time, space, and phase, causing temporary

connection failures and loss of packets. Fading along with signal attenuation in
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1.2. What motivates this study?

mobile wireless system makes bandwidth limited compared to wired networks
[115]. The networking and communication constraints associated to an ad-hoc
network of UAVs include limited transmission range, high mobility of nodes and
frequent topology change that may require route changes and multi-hop commu-
nication. The terrain, environmental changes, and obstacles in space can cause
higher and bursty bit errors [115]. Even if direct communication link is available,
the achieved throughput may not be sufficient for an acceptable quality of multi-
media transmission. In such case, some UAVs might be required as relay nodes to
provide connectivity and to increase the communication range. High mobility is
another constraint to be considered. High mobility makes the network topology
change frequently.

In long-term connection performance, the connectivity between the UAV and
the destination node may not be maintained due to a fluctuated change in the
network topology. QoE is important matrix to evaluate the user satisfaction. As
an example of video streaming situation, when then the network is unstable, the
quality of video will fluctuate and caused the user to have bad experience. If the
connection is poor or lost, UAVs cannot coordinate as a system and the mission

objectives might be jeopardized.

1.2.2 High interferences

Another challenge in providing connectivity to the multiple UAVs through the ex-
isting cellular network arises due to the increased interference in the network. The
increased altitude, distance and favourable propagation condition cause UAVs to
generate more interference to the neighbouring users. The uplink interference
problem may result in degraded performance, whereas the downlink interference
problem may make it challenging for UAV to maintain connection with the net-
work.

Generally, cellular-connected UAVs are integrated into cellular networks to
support many applications, as it provide higher probability of line of sight (LoS)
transmission to BSs. However, the presence of stronger link between UAV and its
associated BS and inter-cell interference (ICI) from neighbouring BSs cause severe
downlink interference to terrestrial users (TUEs) and other UAVs, especially when

the network has heavy loaded.
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1.2.3 Dynamic location and video resolution in dynamic

environments

UAYV can help to improve the quality of the data captured by the UAV and make
it easier to use this data for a variety of purposes. The reception conditions vary
in time, space and number of users, therefore the achievable throughput vary
for different members of the UAVs group. The distance, location, power control,
video resolution and reception condition of the wireless members of the UAVs
group may vary. To solve the problem, by jointly optimizing the UAVs location
while maximizing the data rate can be applied [81, 82].

In optimizing the position of the UAVs, the users can ensure that the video
captured by the UAV’s cameras is clear, stable, and free of obstructions. However,
as the quality of streaming video may be varying, the bit rate for each UAVs
traffic depends on the signal condition. This poses performance degradation
for the nodes that can afford better bit rates. Real-time video streaming has
higher requirements in terms of data rate, latency, and smoothness compared to
other data types. As example, in a firefighting scenario, the network channel
capacity fluctuates dramatically with the dynamic environment alongside the
UAVs’ movement, which can cause poor network performance and undesirable
delays. This in turn makes it harder to learn the pattern variance of the channel
capacity, thus resulting in failure to transmit with high capacity and high video
quality. To capture the practical performance from testbed, authors in [184]
used single UAV to conduct indoor experimental to measure the video streaming
performance from BS. Ideally, the received of video data may be different from
an individual transmission rate supported by each member. However, a higher
performance can be achieved by transmitting at a rate affordable for all members
of the UAVs rather than using the lowest transmission rate.

Furthermore, the user also might be interested to view from whole angle (360°)
to give a full satisfaction to user. If the connection is poor or lost, UAVs cannot
coordinate as a system and the mission objectives might be jeopardized. There-
fore, the communication link between the UAVs that fly to get a real view while

focused to ensure the quality of live-video transmission is important to be studied.

1.2.4 Emergency situation high-resolution video stream-
ing
In an emergency situation, UAVs equipped with high-resolution cameras can play

a crucial role in providing real-time video streaming and situational awareness in
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a situation in mission of surveillance or an event coverage where the UAVs are
deployed may require relaying data to the receiver. Consider a multiple large
area of interest are to be captured using UAVs in the form of multimedia traffic
to the targeted coverage area surveillance. The UAVs have limitation to capture
the marked areas that may require data to maintain connectivity. This depends
on how far the target areas away from the BS and the available number of UAVs
can be used to provide the service. Requests can be received from users who can
connect to the ground node or to the UAVs directly and receive their desired
multimedia transmission. Streaming videos from UAVs can be used for SAR,
surveillance, remote sensing, and post-disaster operations. Videos of different
observed areas can be streamed simultaneously using multiple UAVs to be viewed
by responders.

The challenge of this study is how to make multiple video reliable so that
the end video is cover the full view of the targeted area without any missing
information. However, the lost packets are retransmitted to the desired recipients
should take into consideration, so that the same video at tth time are received to
the receiver. The source cannot adapt the transmission rate when the receiver’s
link conditions are varied. Thus, the receiver node can suffer network congestion
due to the bad link condition, or it can waste available network resources when
it could afford higher bit rates. The objective is to achieve fairness through
rate adaptation such that the source transmission rate is controlled based on the
reception conditions of the members of the multi-video group. Adhering to strict
delay bounds between packet transmission and reception, and QoS support for
live video streaming is affected by fading, interference, and signal attenuation due
to mobility. For example, delays higher than 250 ms are not acceptable for live
video streaming but can be experienced when a receiver is three hops away from
the source [95].

1.2.5 High dense urban with high number UAV

Due to increasing technology, the usage of UAV growing faster, especially in
high dense urban area. There are mandatory requirements to achieve in order
to provide coexistence and optimal performance for both UAVs and terrestrial
users. However, today’s cellular networks aren’t built for aerial coverage, and
deployments are primarily focused on providing excellent service to terrestrial
users. Therefore, it caused UAV and terrestrial users face problems to maintain
high performance when there are existing both type of users in each time slot.

Furthermore, in the current dynamic network environment with uncertain
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user numbers, manual management becomes challenging in ensuring optimal ser-
vice provision between terrestrial users and UAVs. When UAVs and terrestrial
users shared the same resources, it may cause high interference.As such, the need
to manage the interference and maintaining high QoS for UAV and allowing ter-
restrial users to operate even with minimal service provision and to main the
high performance of both users. As a result, the combined with stringent regu-
latory requirements resulted in extensive research and standardization efforts to
ensure that current cellular networks can reliably operate UAVs in a variety of

deployment scenarios in excellent performance.

1.2.6 Overhead beam sweeping in mmWave

The mmWave frequencies beamforming capabilities can provide high capacities
and LoS dominant connectivity to the UAV- terrestrial communications between
BS and UAV. Fast mmWave beam alignment can enhance the data throughput
for both UAV-UAV and BSUAV communications under 5G and beyond wireless
systems. For example, the availability of UAV position information at lower
frequencies may also provide reliable communication in addition to increasing
throughput. Position information for fast beam alignment has been recently
studied under vehicular context in mmWave systems [142]. This research focus
on high mobility and autonomous operation of UAVs that require frequent beam
realignment and faster, reliable beam alignment using UAV position information
to enabling high data rate for mmWave UAVs for the high throughput. An
effective beam alignment or tracking scheme is usually required to ensure the

consistency of beam alignment in a high mobility environment.

1.3 Aim and Contributions

The overall aim of this research is to contribute to optimizing coverage, capacity,
and performance in UAV-based cellular networks, mitigating interference, and
enhancing beam alignment techniques. By achieving these aims, the study con-
tributes to the advancement of wireless communication systems and meets the
increasing demands of dynamic and challenging environments.

This study makes several contributions in the field of UAV-based cellular

networks and their optimization as described below:

1. Dynamic Model for UAV-to-UAV and UAV-to-Ground-to-UAV Communi-

cation: The study proposes a dynamic model that optimizes the coverage
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and capacity of UAV-based wireless networks. By considering the com-
munication between UAVs and the ground station, the study develops an
approach to position the UAV base station (UAV-BS) and UAV user equip-
ment (UAV-UE) to maximize uplink data communication rates in real-time.
This dynamic model addresses the challenges to capture large areas and

providing seamless coverage, to improve the overall network performance.

2. Interference Mitigation and Resource Allocation Schemes: The study focus
on mitigating inter-cell interference in scenarios where UAVs and terrestrial
users (TUEs) share the same spectrum resources. The proposed dynamic
cell muting interference and resource allocation scheduling schemes effec-
tively manage interference and optimize resource allocation, leading to im-
proved throughput and satisfactory levels for both UAVs and TUEs. These
schemes mitigate interference and enhance the performance of the UAV-UE

and TUE networks, enabling efficient coexistence in urban areas.

3. Enhance Beam Alignment Techniques: The study aim to develop advanced
beam alignment techniques that could overcome the challenges posed by
the high mobility and autonomous operation of UAVs. The study propose
the deep reinforcement learning (DRL)-based framework using hierarchi-
cal Deep Q-Network (hDQN) for uplink UAV-BS beam alignment in the
mmWave radio setting. The framework leverages location information to
maximize beamforming gain during communication requests. Additionally,
the convolution neural network radio mapping (C-RM) and DQN-based
framework are introduced to enhance convergence time. This contribution
improves the efficiency and reliability of UAV-BS communication and out-

performs heuristic-based and exhaustive approaches.

1.4 Conclusion

This study distinguish itself from other researchers by offering a dynamic model
for UAV-based wireless networks, focusing on UAV-to-UAV and UAV-to-ground-
to-UAV communication scenarios. It addresses the limitations of UAVs in captur-
ing large areas by deploying multiple UAVs and strategically positioning UAVs
with the UAV-BS. One key gap in current research on UAV-based wireless net-
works for firefighting environments is the need to address real-time video stream-
ing and QoE utility measurement to meet long-term requirements, which can

enhance the real situation to give awareness and fast decision-making during fire-
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fighting operations. The study also proposes interference mitigation and resource
allocation schemes to manage inter-cell interference between UAVs and terres-
trial users, enhancing throughput for both. Furthermore, it introduces the deep
reinforcement learning-based beam alignment approach using hierarchical Deep
Q-Network, combined with convolutional neural networks, to improve the effi-
ciency and reliability of UAV to BS communication. These unique contributions
contribute to the advancement of UAV-based wireless networks and provide novel
solutions for optimizing coverage, mitigating interference, and enhancing beam
alignment techniques.

In order to achieve the overall aims and goals, this thesis is divided into six
chapters. Chapter 1 is dedicated to the introduction of this research followed
by Chapter 2 which explains the concept of UAV, communication channel mod-
elling, network traffic, interference and live-video streaming concept is explained.
The dynamic model environment and the channel modelling are explained and
used in Chapter 3, 4, and 5. Chapter 3 presents the performance of the pro-
posed DQN algorithm in the co-design communication and control problem for
the static environment, and dynamic and multiple environments for (i) moving
UAV-BS and dynamic bit-rate selection and (ii) dynamic movement selection for
both UAV-BS and UAV-UEs with dynamic bit-rate selection. The interference
mitigation is presented to solve the issues of overwhelm number of UAVs and the
scheduling control is considered as main point to mitigate the interference, and
these will be described in Chapter 4. The context-information-beam-mapping to
solve beam-pair alignment problem in uplink mmWave MIMO communication
system is presented in Chapter 5. Chapter 6 concludes the study and discusses

the future research direction.
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Chapter 2
Literature Review

This chapter presents context information for the technical works discussed in
the rest of the thesis. The basic of Unmanned Aerial Vehicle (UAV) types and
functions is presented completely for a clear understanding of the whole thesis
including basics of UAVsS’ communication, channel modelling, network traffic re-
quirement, and their interference. To solve the problem in live-streaming from
UAVs’, the case study in surveillance areas with dynamic bitrate stream are
discussed. Also, the issue in mitigate the interference has also been studied.
Next, the mmWave beam alignment and interference mitigation will also discuss.
The concept of Machine learning, especially Reinforcement Learning, Deep Q-
Learning are then introduced for an essential understanding of technical works
used in Chapter 3, 4 and 5.

2.1 Unmanned Aerial Vehicle

The unmanned aerial vehicle (UAV) or commercially known as a drone is an
aircraft without a human pilot on board. UAV is typically a small type of air-
craft and able to fly in any environment, i.c. complex and complicated arca with
many obstacles. Therefore, the UAV can be deployed to the surveillance area
in high speed to oversee and provide visual information of the overall situation
of surveillance area [131]. The UAV needs wireless connectivity for communi-
cation between UAV and controller (base station), and the controller needs a
communication system to send the command to UAV. Wireless communication
has experienced significant massive expansion since the early 1980s, and it is now
the fastest-growing section of the communication industry and is one of the best
means of addressing the accelerating demands for instant and extensive access

to information [117]. Wireless communication has revolutionized the working en-
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vironment and workforce mobility by eliminating the need for individuals to be
tethered to a fixed location or formal work-based setting. In addition, UAVs can
be deployed quickly whenever needed, which makes them promising candidates
for providing cellular connectivity [58]. Furthermore, UAV also may work as tem-
porary BS, i.e. serve the ground user as temporary telecommunication network
[186].

UAV have emerged as powerful tools in various fields, and one area where
they have proven to be indispensable is firefighting [132]. The integration of
UAV technology in firefighting operations offers numerous benefits and addresses
critical challenges faced by firefighters [132]. One of the primary reasons why
we need UAVs for firefighting is their ability to provide enhanced situational
awareness. Equipped with advanced cameras, sensors, and thermal imaging tech-
nology, UAVs offer real-time aerial surveillance of fire incidents. They capture
high-resolution images and videos, providing firefighters with crucial information
about the fire’s behavior, size, and progression. This valuable data allows them
to make informed decisions, develop effective strategies, and deploy resources in

the most efficient manner.

2.1.1 Category of UAV

Based on studies, UAV can be categorized into three categories, based on generic
and distinct application, namely as Internet delivery, Attack, and Payload [67,
86, 148|.

Internet Delivery

For internet delivery, UAV helps in providing additional wireless infrastructure
for broad coverage areas or disaster-struck areas. The UAV will hover in the
area and be virtually stationary. The falling cost and increasing sophistication
of consumer UAVs, combined with miniaturization of base station (BS) electron-
ics, have made it technically feasible to deploy BSs on flying UAVs [58]. Since
UAV BSs can be quickly deployed at optimum locations in 3D space, they can
potentially provide much better performance in terms of coverage, load balanc-
ing, spectral efficiency, and user experience compared to existing ground based
solutions. The deployment of UAV BSs, however, faces several practical issues.
In particular, UAV placement and mobility optimization are challenging prob-
lems for UAV BSs, which have attracted significant attention from the research

community. The optimization of UAV power consumption and the development
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of practical recharging solutions for UAVs are also important challenges to over-
come for sustaining the operation of UAV BSs. Finally, the optimization of the
end-to-end link when moving UAV connects to terrestrial users (TUEs) of the
network is an issue to be studied. When a large number of cells, TUEs, and
UAVs exist in the network, with limited frequency bandwidth and spectrum re-
source reuse when BSs serve TUEs and UAVs, and causes severe interference to

TUESs, especially when the network has a heavy loaded.

Military Attack

The UAVs are utilized in several civilian and military communication fields.
While under the military attack category i.e., military target attack [67], the
UAV will require to make forays into enemy territory, therefore the UAV must
move fast and be able to plan autonomously. The UAV may operate with various
degrees of autonomy, either control by a human operator or autonomously by a
computer system. With the useful function and flexibility of UAV, the demand
for it has increased dramatically over the last decade [67].

However, several UAVs cannot be deployed for military usage as they pose
energy and security constraints. These issues are solved by introducing agents
that can perform security and individual authentication, checking of integrity,
image forgery detection, encryption, validation, and information collating and

planning of paths [57].

Payload

UAV payload refers to the maximum weight that a UAV can carry, which mea-
sures its lifting capability. Payloads of UAV vary from tens of grams up to
hundreds of kilograms. The larger the payload, the more equipment and acces-
sories can be carried at the expense of a larger drone size, higher battery capacity,
and shorter duration in the air. In addition, the UAV uplink also can cater for
payload communication, especially video streaming [30, 104]. Typical payloads
include video cameras and all sorts of sensors, which could be used for reconnais-
sance, surveillance, and commercial purposes. Normally, UAV equip with video
camera requires much higher transmission rate than its control than non-payload
communication (CNPC) in the downlink [104, 167]. UAV also can work as detec-
tion and collecting information, i.e., detection of forest fires or survey of crops.
The UAV will to stream a video and send to ground BS [148].
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2.1.2 Range and Altitude

The range of a UAV refers to the distance from which it can be remotely con-
trolled. The range varies from tens of meters for small UAVs to hundreds of
kilometers for large ones. Altitude here refers to the maximum height a UAV can
reach regardless of the country-specific regulations [170]. The maximum flying
altitude of a given UAV is a critical parameter for UAV-aided cellular communica-
tions, since a UAV BS needs to vary its altitude to maximize the ground coverage
and satisfy different quality of service (QoS) requirements. Overall, UAV plat-
forms can be classified into two types, depending on their altitude:

A. Low-altitude platforms (LAPs): LAPs are usually used to assist cellular com-
munications, since they are more cost-effective and allow fast deployment. More-
over, LAPs usually provide short-range line-of-sight (LOS) links that can signifi-
cantly enhance the communication performance [12].

B. High-altitude platforms (HAPs): HAPs or some call as balloons can also pro-
vide cellular connectivity. Compared to LAPs, HAPs have a wider coverage and

can stay much longer in the air [12]. However, HAP deployment is more complex.

2.2 Communication

The wireless radio channel poses a severe challenge as a medium for reliable high-
speed communication [64]. It is not only susceptible to noise, interference, and
other channel impediments, but these impediments change over time in unpre-
dictable ways due to user movement. In this section, we will characterize the
variation in received signal power over distance due to path loss and shadowing.
Path loss is caused by dissipation of the power radiated by the transmitter, as
well as effects of the propagation channel. Path loss models generally assume that
path loss is the same at a given transmit-receive distance. Shadowing is caused
by obstacles between the transmitter and receiver that absorb power. When the
obstacle absorbs all the power, the signal is blocked. Variation due to path loss
occurs over very large distances (100-1000 meters), whereas variation due to shad-
owing occurs over distances proportional to the length of the obstructing object
(10-100 meters in outdoor environments and less in indoor environments). Since
variations due to path loss and shadowing occur over relatively large distances,
this variation is sometimes referred to as large-scale propagation effects or local
mean attenuation. Variation due to multipath occurs over very short distances,
on the order of the signal wavelength, so these variations are sometimes referred

to as small-scale propagation effects or multipath fading. All transmitted and
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received signals we consider are real [64]. That is because modulators and de-
modulators are built using oscillators that generate real sinusoids (not complex

exponentials).

2.2.1 Propagation Models

Communication is burdened with particular propagation complications, making
reliable wireless communication more difficult than fixed communication between
and carefully positioned antennas. The antenna height at a mobile terminal
is usually very small, typically less than a few meters. Hence, the antenna is
expected to have very little ‘clearance’, so obstacles and reflecting surfaces in the
vicinity of the antenna have a substantial influence on the characteristics of the
propagation path. Moreover, the propagation characteristics change from place
to place and, if the terminal moves, from time to time. Usually the wireless
channel is evaluated from ‘statistical’ propagation models: no specific terrain
data is considered, and channel parameters are modelled as stochastic variables.
Three mutually independent, multiplicative propagation phenomena can usually

be distinguished: multipath fading, shadowing and ‘large-scale’ path loss.

Multipath propagation

Fading leads to rapid fluctuations of the phase and amplitude of the signal if the
vehicle moves over a distance in the order of a wave length or more. Multipath

fading thus has a ‘small-scale’ effect.

Shadowing

Shadowing is a ‘'medium-scale’ effect: field strength variations occur if the antenna
is displaced over distances larger than a few tens or hundreds of metres. Path
loss: In general, path loss is a non-negative number since the channel does not
contain active elements, and thus can only attenuate the signal. The path gain
in dB is defined as the negative of the path loss: Pt, = P, = 10logio(F,/P,),
which is generally a negative number. With shadowing, the received power will
include the effects of path loss and an additional random component due to
blockage from objects. The 3GPP model also captures the fact that the path
loss exponent of ground- to-UAV links generally decreases as UAVs increase their
height. Indeed, UAVs in LOS with their BSs experience a path loss similar to of

free-space propagation (o =2 : 2).
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Large-scale path loss.

The ’large-scale’ effects cause the received power to vary gradually due to signal
attenuation determined by the geometry of the path profile in its entirety. This
is in contrast to the local propagation mechanisms, which are determined by
terrain features in the immediate vicinity of the antennas. The large-scale effects
determine a power level averaged over an area of tens or hundreds of metres
and therefore called the ’area-mean’ power. Shadowing introduces additional

fluctuations, so the received local-mean power varies around the area-mean.

Rayleigh fading Rayleigh fading is caused by multipath reception. The mobile
antenna receives a large number, N, reflected and scattered waves. Because of
wave cancellation effects, the instantaneous received power seen by a moving
antenna becomes a random variable, dependent on the location of the antenna.
A sample of a Rayleigh fading signal. Signal amplitude (in dB) versus time
for an antenna moving at constant velocity. Notice the deep fades that occur
occasionally. Although fading is a random process, deep fades have a tendency

to occur approximately every half a wavelength of motion.

Rician fading The model behind Rician fading is similar to that for Rayleigh
fading, except that in Rician fading a strong dominant component is present.
This dominant component can for instance be the line-of-sight wave. Refined
Rician models also consider that the dominant wave can be a phasor sum of
two or more dominant signals, e.g. the line-of-sight, plus ground reflection. This
combined signal mostly treated as a deterministic (fully predictable) process, and
that the dominant wave can also be subjected to shadow attenuation. This is a
popular assumption in the modelling of satellite channels. Besides the dominant
component, the mobile antenna receives a large number of reflected and scattered

waves.

Rician factor The Rician K-factor is defined as the ratio of signal power in
the dominant component over the (local-mean) scattered power. In the expres-
sion for the received signal, the power in the line-of-sight equals C2/2. In indoor
channels with an unobstructed line-of-sight between transmitter and receiver an-
tenna, the K-factor is between, say, 4 and 12 dB. Rayleigh fading is recovered for
K = 0 (-infinity dB). However, in Rician fading the mean value of (at least) one

component is non-zero due to a deterministic strong wave.
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Nakagami fading The Rician and the Nakagami model behave approximately
equivalently near their mean value. This observation has been used in many
recent papers to advocate the Nakagami model as an approximation for situations
where a Rician model would be more appropriate. While this may be accurate
for the main body of the probability density, it becomes highly inaccurate for the
tails. As bit errors or outages mainly occur during deep fades, these performance
measures are mainly determined by the tail of the probability density function

(for probability to receive a low power).

2.2.2 Network traffic requirement

In 3GPP highlight the UAV Traffic Requirements. The 3GPP identified the traf-
fic types that cellular networks should cater for UAVs flying between ground level
and 300 meters. These can be classified into three categories: 1) synchronization

and radio control, 2) command control, and 3) application data.

1) Synchronization and radio control: The information contained within the
synchronization and radio control messages is essential for a successful associa-
tion and connectivity to the network. The transmission of these signals must be
robust enough to guarantee that they can be decoded by flying UAVs. Examples
of synchronization and radio control signalling include primary and secondary
synchronization signals (PSS/SSS) and the physical downlink control channel
(PDCCH), respectively.

2) Command control (CC) : The traffic enables beyond LoS UAV piloting and
has strict quality of service requirements (QoS) in terms of latency and reliabil-
ity. Cellular operators have identified an attractive business opportunity in the
management of this traffic, since it can be offered as a complementary network

service to organizations interested in reliably controlling their UAVs.
3) Application Data: The UAV application data transmissions are expected to

be uplink-dominated. However, transferral of live video streaming data and pho-

tos captured by camera equipped UAVs contribute towards this traffic imbalance.
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2.3 Video Streaming

UAV video streaming refers to the real-time transmission of video footage cap-
tured by an UAV to a remote location. With the advancements in UAV tech-
nology, live streaming capabilities have become increasingly popular and widely
used in various applications such as aerial photography, surveillance, sports events
coverage, and emergency response operations [72]. UAV live streaming offers sev-
eral advantages in different industries. In the field of aerial photography and
videography, it provides a unique perspective and allows professionals to cap-
ture stunning aerial shots and videos. In surveillance and security applications,
live streaming from UAVs enables real-time monitoring of large areas, enhancing
situational awareness and facilitating quick response to incidents [132]. During
emergency response operations, such as firefighting or search and rescue missions,
UAV live streaming provides valuable visual information to aid decision-making
and coordination of rescue efforts.

Another challenge that needs to be taken into consideration is the satisfaction
of the user during the live-streaming or in other words, good quality of experience
(QoE) [70, 180, 30]. Live-streaming requires any media delivered and played back
simultaneously from UAVs [180]. Then, humans will monitor the current situation
and give feedback towards the action which they should take. The large dynamic
environment poses a limitation to humans to learn the scenario and control action

toward the system in order to maintain the maximum QoE.

2.3.1 Video Stream in Surveillance System

Wireless or mobile surveillance systems that integrate wireless cameras or ad hoc
wireless video sensor networks with moving vehicles or mobile devices are neces-
sity. The video streams captured by wireless or mobile camera stations (CSs)
are uploaded via wireless channels to a control center where the acquired videos
can be archived, analyzed, and/or distributed [155]. Surveillance systems of this
kind have numerous applications, including real-time traffic monitoring, facil-
ity monitoring, combat/rescue operation monitoring, disaster relief, and damage
assessment, etc. Depending on specific application scenarios, different quality of
service (QoS) requirements may have to be imposed on the design of such systems.
For example, video streams that report critical unfolding events will require high
QoS levels compared with streams that contain no events. These existing works
focused on QoS parameters in physical-layer performance metrics, such as packet

loss rate, throughput, and jitter. The fluctuating performance of video stream-
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ing by UAVs in firefighting scenarios necessitates high data rates, reliability, and
smoothness. However, current methods of measuring QoE utility are impractical
[132, 156]. The gap lies in the need for real-time video streaming and QoE utility
measurement that can meet the long-term requirements of firefighting operations.
To address this, research should focus on developing dynamic video streaming
techniques and innovative QoE measurement approaches specific to firefighting
environments. Closing this gap will enable more effective decision-making, en-
hance situational awareness, and improve firefighting outcomes. Therefore, the
overall system needs to learn faster and respond quickly towards the action re-

quest to ensure the QoE is satisfied.

2.3.2 Dynamic bitrate streaming

Dynamic or adaptive bitrate streaming is a dynamic streaming technique that ad-
justs the quality of video playback based on the viewer’s network conditions, en-
suring a smooth and uninterrupted viewing experience. Adaptive bitrate stream-
ing is a technique used in streaming multimedia over computer networks. While
in the past most video or audio streaming technologies utilized streaming proto-
cols such as RTP with RTSP, today’s adaptive streaming technologies are almost
exclusively based on HTTP [75] and designed to work efficiently over large dis-
tributed HTTP networks such as the Internet. It works by detecting a user’s
bandwidth and CPU capacity in real time and adjusting the quality of the media
stream accordingly. Today’s UAVs are struggling to deliver high-quality video in
real time to ground receivers. The commercial UAVs adopt fixed-bitrate video
streaming strategies which may result in severe rebuffering under poor Internet
connection. The designs of wireless technologies that enable real-time streaming
of high-definition video between UAVs and ground clients present a conundrum.

Real-time video streaming has higher requirements in terms of data rate, la-
tency, and smoothness compared to other data types. In a firefighting scenario,
the network channel capacity fluctuates dramatically with the dynamic environ-
ment alongside the UAVS’ movement, which can cause poor network performance
and undesirable delays. This in turn makes it harder to learn the pattern variance
of the channel capacity, thus resulting in failure to transmit with high capacity
and high video quality. To capture the practical performance from test bed, au-
thors in [184] used single UAV to conduct indoor experimental to measure the
video streaming performance from one LTE BS. Therefore, to overcome the limi-
tation of fluctuate environment, the authors in [156] applied the Additive Varia-
tion Bitrate (ABR) method with Deep Reinforcement Learning (DRL) to select
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proper video resolution based on previous communication rate and throughput.
However, [156] only focused on a single video source ABR, which was guided
by RL to make decisions based on the network observations and video playback
states for selecting the optimal video resolution. While managing large firefight-
ing areas, multiple UAVs are required, authors in [70] used multiple UAVs to
stream a video and optimize the QoE to solved resource allocation using game
theory technique, however, the QoE utility measurement used error statistic of
PSNR and mean of sum (MOS) scale, which could lead to biased measurement.

Authors in [41] used UAV relay network and considered two factors, the bit
rate of the video and the freezing time, to maintain the quality. However, the dy-
namic channel and different requests are not considered. Therefore, we improve
the quality measurement by introducing three video quality factors, i.e., video
resolution measurement, video smoothness, and latency penalty. This problem
motivates us to exploit neural networks without relying on preconfigured informa-
tion such as velocity and distance. However, in large search and rescue firefighting
scenario, a nonordinary optical camera [65] should be considered to ensure the
reception of a high quality video. To deal with a more complex environment and
practical scenarios, such as search and rescue firefighting scenarios, the machine
learning algorithm is a promising tool for solving the problem. The machine
learning algorithms, especially deep reinforcement learning can be adapted to the

fluctuated channel quality in networks and ensure the long-term QoE.

2.4 Interference Mitigation

To enhancing UAV communications and increase the communication effective-
ness, the interference mitigation should be studied. A main challenge in provid-
ing connectivity to the low altitude UAVs through existing cellular network arises
due to the increased interference in the network [118]. The increased altitude and
favourable propagation condition cause UAVs to generate more interference to the
neighbouring cells, and at the same time experience more interference from the
downlink transmissions of the neighbouring BSs. The uplink interference prob-
lem may result in TUEs having degraded performance, whereas the downlink
interference problem may make it challenging for a UAV to maintain connection
with the network. The transmission performance of UAVs and TUEs is severely
affected by interference among them, when BSs serving them in the same fre-
quency simultaneously [23]. Using the model in [15], the study in [118] showed
that highly loaded scenarios decreased UAV coverage due to high interference.
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In addition, the authors in [88] gave theoretical interference analysis of cellular-
connected UAV networks with TUEs based on radio characteristics, including
UAVS’ heights, ISD and signal-to-interference ratio level.

Consequently, authors in [8, 20, 23, 30, 160] considered interference mitigation
schemes between TUEs and UAVs, by considering power control [8, 20, 30, 160],
reducing UAV height [8], and antenna beam selection [23]. Although decreasing
power allocation, reducing UAV height, and selecting proper antenna beams can
mitigate interference and improve throughput, they can result in low coverage of
UAVs and increase outage probability when BSs serving UAVs and TUEs simul-
taneously. To address this issue, authors in [103, 105] designed the cooperative
beamforming technique to effectively suppress inter-cell interference (ICI) to the
UAV, and authors in [119] designed a muting scheme to mute the cells with high
interference to decrease interference between UAVs and TUEs.

The power control mechanism ensures that the transmit power of different
uplink channels are controlled so as these channels are received at the BSs at
appropriate power level [160]. The power control procedure aims to control the
received power to be just enough to demodulate the channel (target received
power), at the same time the transmit power at UEs are not unnecessarily high
as it could create interference to the other uplink transmissions [160]. In many
standards like LTE, the transmit power of the UE depends on the DL pathloss
and target received power at the serving BS.

In addition, several downlink interference mitigation techniques to address in
the 3GPP [160]. The full dimension MIMO (FD-MIMO) multi-antenna BSs de-
fined in LTE Release 13 enhance the performance of UAV communications, which
allow reducing the amount of interference generated towards the constrained spa-
tial regions where UAVs lie, and their spatial multiplexing capabilities, which in
turn enable a better utilization of the precious time/frequency resources.

UAVs with directional antennas and beam forming capabilities contribute to
reduce the number of downlink interferers perceived by UAV devices. These
interference mitigation gains can be further complemented with a boost of the
useful signal power in UAVs beam steering towards their serving BS. Clearly, this

solution entails a complexity increase in the design of hardware UAV transceivers.

2.4.1 Inter-cell Interference

Furthermore, when large number of moving TUEs and UAVs exist in 5G networks,
there will be high inter-cell interference when BSs serving them. In [90, 91,

102], the authors considered cell muting and traditional optimization methods to
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mitigate the ICI. Specifically, authors in [102] optimized UAV resource allocation
based on their cell association to maximize throughput performances of TUEs
and UAVs, and considered inter-cell interference coordination (ICIC) based on
Release-10/11 to mitigate strong interference to TUEs. However, only a single
UAV was considered in [102] and the UAV could only access to the resource
block (RB) that had not been occupied by any TUEs, thus, the approach in
[102] could not be adapted to the scenario with multiple UAVs. Authors in
[90, 91] used the cell range expansion (CRE), enhanced inter-cell interference
coordination (eICIC), and further-enhanced ICIC (feICIC) schemes to improve
the overall spectral efficiency. However, the optimization methods in [90] and [91]
aimed at optimal solutions in each time slot with high computation complexity
and were not designed for long-term optimization problem.

With increasing number of devices in future terrestrial networks, the interfer-
ence problem between UAVs and TUEs becomes more complicated. Therefore,
efficient ICIC designs are required for enabling efficient spectrum sharing between
UAVs and TUEs in future cellular-connected networks, in which, the resource
allocation can be designed to mitigate interference and improve throughput of
UAVs and TUEs. Based on the previous RB allocation and traffic patterns, au-
thors in [140] proposed a deep Q-network (DQN) to select proper RBs for UAVs
and TUEs to perform transmission with low interference.

Although 5G helps improve data rate performance, it has some drawbacks.
Therefore, more 5G BSs are built to support 5G connectivity in multiple areas
and brought BSs closer to users [16]. With the increase in the number of 5G
BSs and TUESs, the interference among them increases, and with the increase in
transmission opportunity, the situation becomes more complex to reduce inter-
ference while guaranteeing high quality of service (QoS) of UAVs and TUEs. To
mitigate interference in complex scenarios, the DRL algorithm is considered.

To the best of our knowledge, none of these studies investigated multiple
UAVs and TUESs’ coordination in the cellular network and deployed dynamic
RB scheduling to maximize long-term throughput performance. In practice, the
control signal reception of UAVs is not only affected by the link quality of the
communication channel, but also susceptible to interference. Thus, the control
links between the BS and TUEs and UAVs are important, especially when the
spectrum resources are constrained. To effectively solve the aforementioned prob-
lems, UAVs and TUEs require high-level coordination to ensure all users meet
their minimum requirements and optimize their data-rate performance, especially

in a highly dynamic environment.
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To address this gap, we propose a dynamic scheduling, muting, and resource
block management approach to effectively manage interference between UAV's and
TUES, ensuring a high Quality of Service (QoS) for both user groups. By im-
plementing dynamic scheduling algorithms and muting techniques, we can adap-
tively allocate resources and manage interference in real-time, optimizing the
overall network performance. This approach will enable efficient utilization of
resources, mitigate interference, and ultimately enhance the QoS for UAVs and
TUESs in complex and dynamic environments. The interference is decreased by
muting the cells with the strongest interference and RBs are properly shared and
scheduled to UAVs and TUEs, with the aim to satisfy high QoS requirements of
UAVs and TUEs.

2.5 mmWave beam allignment

The mmWave beam alignment could enhance the reliability data for both UAV
communications and BS-to-UAV communications under 5G and beyond wireless
systems. The availability of user’s position information, which could help for reli-
able communication and increase throughput. Position information can be lever-
aged for fast beam alignment in the upcoming sixth generation (6G) mmWave
communications. The 5G radio wave direction can be obtained through mmWave
frequencies and MIMO beamforming and to enable high speed data access and
LoS dominant connectivity to UAVs. Position information for fast beam align-
ment has been recently studied under vehicular context in mmWave systems [142].
On the other hand, high mobility and autonomy UAV operation requires frequent
realignment of the beam. To be faster and more reliable beam alignment, position
information is highly needed in enabling high data rates for mmWave UAVs.
Beam alignment is the process of aligning the directional beams of both the
transmitter and receiver antennas to establish a strong and stable communica-
tion link. An effective beam alignment or tracking scheme is usually required to
ensure the consistency of beam alignment in a high mobility environment. Exist-
ing works [182] proposed beam tracking schemes using Kalman filters with high
processing complexity. An alternate approach is to undergo beam training [173]
and perform fast beam alignment after every significant change in UAV position
along the BS coverage area. Existing works in vehicular environment proposed
different training-based beam alignment approaches for terrestrial systems based
on stochastic methods such as genetic and evolutionary algorithms [84, 133] and

the use of contextual information [18, 46, 142, 144, 151]. Contextual information
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generally involves data from the sensors such as position information, antenna
configurations, channel state information and receiving signal power using low
frequency carrier (e.g. during initial communication in 3rd generation partner-
ship project (3GPP) beam access protocol [79, 43]) whenever needed, as this
information is used abundantly to reduce the beam training overhead.

High mobility and autonomous operation of UAVs also requires frequent beam
realignment and can be jointly optimized with reliable connectivity using rein-
forcement learning (RL)-based beam training [134, 47, 135, 137]. Authors in [47]
jointly optimized UAV-BS trajectory and mmWave connectivity using deep re-
inforcement learning (DRL) techniques to obtain secure transmission and energy
efficiency with eavesdroppers. In our previous work [135], we considered ran-
domly moving mmWave UAVs and proposed a position-aided beam-pair align-
ment learning framework at terrestrial BS using deep Q-network (DQN). In this
work, we have shown that a generic DQN-based framework at BS can enhance
the mmWave beam-forming gains for any randomly moving UAV inside their
coverage area in an online manner under different 3GPP conditions. However,
the work assumed independent and fixed grid elements in the BS - UAV envi-
ronment, increasing both action spaces and significant communication overhead
for uniform planar array (UPA) antenna configurations under the learning frame-
work. Hence, a better learning-based beamforming strategy is required for UPA

antennas to enhance reliable connectivity for autonomous UAVs.

2.6 Optimization Problem

This section introduces several scenarios for optimizing joint UAV network to
attain maximum network efficiency. Table 2.1 summarizes a selection of complex
problems that involve optimizing multiple parameters. The study will explore
numerous such intricate optimization problems and their corresponding solutions.

The authors in [125], briefly analysed to minimize the transmits power of the
communication system by optimizing period, number of bits and packet error to
ensure the control system’s reliability and delays requirements needed to guar-
antee its stability. However, the overall packet loss is caused by decoding errors,
transmission delay, and queuing delay violation [129], therefore, it is also impor-
tant to optimize the uplink and downlink bandwidth configuration and delay, so
it can minimize the total bandwidth. Another objective function commonly used
to maximize the spectral efficiency [35] and/or uplink/downlink sum-rate [177].

In order to support an inadequate network, UAV has been initially proposed as
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Table 2.1: Optimization problems to improve the network
Ref | Year | Optimization parameter Objective
sampling period, number of bits, | minimize the power
[125] | 2014 pme b P
packet error consumption
uplink-downlink bandwidth minimize the total
[129] | 2018
configuration and delay bandwidth
uplink resource allocation, maximize the spectral
[35] | 2019
communication, control efficiency
subchannel allocation, maximize the uplink
[177] | 2019
UAV speed sum-rate
trajectory, power allocation, o
maximize the overall
[171] | 2019 | transmission schedule,
) utility
rate allocation
maximize ener
[161] | 2019 | UAV location &Y
efficiency
bandwidth, maximize the total
[41] | 2020
power allocation long-term QokE
resource allocation, maximizing the total
[94] | 2021
UAV trajectory energy efficiency
UAV’s uplink cell associations, maximize weighted
[164] | 2022 | TX power allocations over UAV sum-rate of UAV,
multiple RB and TUEs

a relay to help other UAVs transmit to a nearby terrestrial BS with low signal-
to-noise ratio (SNR) [177], therefore it is important to consider the subchannel
allocation and UAV speed. Authors in [171] proposed a joint trajectory, power
allocation, transmission schedule and rate allocation during the mission. The ob-
jective is to maximize the overall utility. The simulation validate the analytical
findings against existing benchmark techniques.

The authors in [94, 161] focused on maximized energy by proposed to op-
timized UAV location [161] and resources allocation and UAV trajectory [94].
Another objective function commonly used is sum-rate UAV, authors in [164]
find it by optimizing the cell association and power allocation. Authors in [41]
used UAV relay network and considered two factors, the bit rate of the video and

the freezing time to maintain the quality.
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Most optimization problems that are related to UAVs placement and resource
allocation can be found in the literature. We classify them into three categories:
resource allocation for fixed UAV positions, 3D placement and UAV trajectory
optimization, and UAV-BS 3D placement.

A. Resource Allocation for Fixed UAV Positions In [127], the authors
present a distributed greedy approach to improve the user’s sum-rate under back-
haul capacity, bandwidth constraint, and maximum number of links limitation.
The optimal power and spectrum allocation are investigated in [92] where the au-
thors minimize the mean packet transmission delay for uplink communications.
In [93], the authors’ goal is to minimize the maximum energy needed to ensure a
certain bit error rate target. Last but not least, the authors propose the global
scheduling technique using standard optimization, and provide the light version

of the algorithm to reach the suboptimal solution.

B. 3D Placement and UAV Trajectory Authors in [14] investigate the 3D
placement of UAVs while maximizing the number of covered users. The UAV hor-
izontal and vertical locations are optimized separately. The optimal altitude is
found by solving a convex decoupled optimization problem, while the optimal 2D
location is achieved by finding a solution to the smallest enclosing circle problem.
In [51], authors optimize the UAV trajectory to accurately learn the environment
propagation parameters. The authors introduced the map compression method
and use dynamic programming to efficiently design the UAV trajectory. The
optimal UAV position to maximize the end-to-end throughput is studied in [37]
where information provided by the signal strength radio map is leveraged. In line
with the previous cited work, authors in [36] provide an online algorithm, based
on the theory of asynchronous stochastic approximation, for a fast deployment of
flying relays, that minimizes the power consumption under constraints of outage

probability and number of deployed drones.

C. Placement Optimization for UAV BSs The problem of optimum place-
ment is more challenging for UAV BSs compared to the conventional terrestrial
BSs because the UAV BS can be placed at many different heights in the sky [63].
However, the coverage as well as the different channels change with the altitude

of the BS. Different researchers used different algorithms to solve the placement
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optimization problem for UAV BSs. Some researchers considered the height of
the UAV BS as a variable in their optimization formulation, thus treating it as
a 3D placement problem, while others essentially solved 2D placement problems
for constant heights. Optimizations also differed in whether the backhaul, inter-
ference from other BSs, and existence of terrestrial BSs in the same coverage area
were considered in problem formulation.

3D placement optimizations were studied in [112] but sought to minimize
the total transmit power of the homogeneous network of UAV BSs. For such
scenarios, the authors solved the 3D placement optimization problem by dividing
the problem into two subproblems that are solved iteratively. Given the height
of the UAV BSs, the first sub-problem obtains the optimal locations of the UAVs
using the facility location framework. In the second sub-problem, the locations of
UAV BS are assumed to be fixed, and the optimal heights are obtained using tools
from optimal transport theory. Two types of mobilities based on the transport
methods of UAV BSs:

1) UAVs are used only to transport the BS to a particular ground location
where the BS autostarts to serve the users. If the BS needs to be relocated, it
must shut down first before being transported to the new location. However, this
type of UAV BSs cannot serve while it is in motion, but it can resume its service
as soon as it reaches a target location.

2) UAVs continue to carry the BSs and the BSs can continuously serve the
ground users while they are flying. Considering the first type of UAV BSs, Chou
et. al., [42] studied the BS placement mechanism where the ground users are not
served by the BS when it is moving to a new location. The loss of service time due
to BS mobility therefore becomes a critical parameter for the optimization. The
UAV BS in this case should consider both the user density of the target location
as well as the moving time to the new location when deciding its target location.
The authors of [42] have shown that this problem can be modelled as a facility
location problem, where the transport cost represents the loss of service time due
to the movement of the BS from the previous location to the new location.

The second type of UAV BS mobility opens up new opportunities to use UAV
BSs due to their ability to serve ground users while in motion. In particular,
under this scenario, the cost of BS mobility becomes negligible. It is then pos-
sible to design more advanced solutions where UAV BSs can continuously cruise
the service area to maximize network performance under geospatial variance of
demands. In both types, although a single UAV can perform plenty of tasks,

multiple UAVs can form a cooperative group to achieve an objective more ef-
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ficiently, and to increase the chance of successful task operation. Additionally,
the robustness of the communications will increase by cooperative UAVs [181].
Maintaining the connectivity and controlling the distance between multiple UAVs
is one of the main challenges in using cooperative UAVs [122]. Maximizing the
coverage area [124], cooperative carrying task [40, 139], searching and localizing
a target [45] are among the tasks that can be done by multiple UAVs.
Designing cruising UAV BSs requires autonomous mobility control algorithms
that can continuously adjust the movement direction or heading of the BS in a
way that maximizes system performance. These algorithms must also ensure that
multiple UAV BSs cruising in an area can maintain a safe distance from each
other to avoid collisions. Fotouhi et. al. [60] proposed distributed algorithms
that take the interference signals, mobile users’ locations and the received signal
strengths at UEs into consideration to find the best direction for BS movements
at any time. Controlling the mobility of a single serving UAV is also discussed
in [58]. Game theoretic mobility control algorithms are proposed in [59, 60]
for multiple UAV base stations cruising freely over a large service area without
being subject to individual geofencing. The game theoretic mobility control not
only increased packet throughput by 4 times compared to hovering BSs, it also
helped avoid collisions as the BSs were implicitly motivated to move towards
different directions to maximize coverage and throughput. The trajectory of a
single UAV also can be optimized to improve the system performance. The UAV
with a mission to fly between a source and destination point is studied in [178].
During this mission it has to maintain a reliable connection by associating with
the ground BSs at each time. In [99] a UAV is used to offload data traffic from
cell edge users and improve their performance. It is shown that by using one
single UAV and optimizing its trajectory, the throughput improves significantly
compared with the conventional cell-edge throughput enhancement scheme with

multiple micro/small cells.

2.7 Machine Learning

In machine learning, there are three main types depending on training method,
Supervised, Unsupervised and Reinforcement learning.

Supervised learning train the machine using data which are well “labeled.” It
means some data is already tagged with the correct answer. It can be compared
to learning which takes place in the presence of a supervisor or a teacher. Fur-

thermore, supervised learning algorithm learns from labeled training data, helps
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to predict outcomes for unforeseen data.

Unsupervised learning is a machine learning technique that allows the model
to work on its own to discover information without supervision. It mainly deals
with the unlabelled data. Unsupervised learning algorithms allow to perform
more complex processing tasks compared to supervised learning. Unsupervised
machine learning finds all kind of unknown patterns in data. Unsupervised meth-
ods help to find features which can be useful for categorization.

Reinforcement learning is well-known and helpful to solve various problems
in a highly dynamic environment [81]. Although there are many optimization
methods, Reinforcement Learning (RL) seems to give an excellent solution where
provides a great solution to a complicated and practical situation, and it is ca-
pable of interacting with the stochastic environment and giving feedback to the
control. Various literature found RL helps to solve problem in control and also
in communication [7, 76, 33, 96, 97, 156, 162]. RL also has shown good results
in multiple disciplines such as medical, chemistry and many more. RL had effec-
tively shown control of the path planning in [76, 33], and using the Echo State
Network (ESN) solved the problem in planning and latency is thus optimized
[33]. RL also helps in maximizing energy control whilst ensuring the fairness of
communication connectivity [96]. All the research above say that RL methods
guaranty the converged result. However, RL is a proving method to converge

results and able to solve a dynamic environment effectively.

2.7.1 Applications of ML in UAV Communications

Nowadays, various applications of the ML solutions in UAV-enabled communica-
tions are depicted. Generally, the importance of distilling intelligence in wireless
communication networks has been outlined in numerous works [133, 158, 175,
168, 56, 48, 29, 73, 25, 157, 47, 137, 159, 174, 66]. The authors have observed
that the ever increasing heterogeneity and complexity of mobile networks has
made monitoring and management of network elements intractable [172]. More-
over, ML allows systematic mining of valuable information from mobile data and
automatically identifies correlations that are too complex to be derived by hu-
man experts. Likewise, the work in [85] has noted that, in wireless networks,
ML enables the wireless devices to actively and intelligently monitor their envi-
ronment, exploiting mobile data for training purposes in order to learn, predict,
and adapt to the evolution of environmental features, including wireless channel
dynamics, traffic and mobility patterns, as well as network composition, among

others. In this way, they can proactively act towards maximizing the probability
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of satisfying different performance metrics. It can be seen that ML takes as in-
put data from different sources and through the application of various learning
techniques, i.e., supervised /unsupervised, deep or reinforcement learning, allows
the network to adapt to the wireless environment in a dynamic and autonomous
manner. Thus, especially in networks consisting of a large number of nodes, such
as those consisting of swarms of UAVs, centralized coordination and excessive
overheads that must be acquired and exchanged among the network nodes are
avoided, paving the way for distributed network optimization where intelligence
plays a key role.

Motivations of Deep Reinforcement Learning (DRL) is to address the above
issues in network optimizations, a wireless network should be intelligent enough
to adjust itself in dynamic environments, explore unknown optimal policies, and
transfer theoretical knowledge to practical scenarios. Motivated by these de-
mands, machine learning technologies have been considered as viable solutions to
solve communications issue [20]. There are numerous machine learning technolo-
gies that have been applied in communication systems [28]. Among them, DRL
has shown great potential in beyond 5G wireless networks [172, 165]. Unlike opti-
mization algorithms, DRL approaches can be model-free [98], and implemented in
real-world communication systems. DRL leverages deep neural networks (DNN)
and reinforcement learning to enable UAVs to learn from experience and make
intelligent decisions in complex and dynamic environments. By combining per-
ception, decision-making, and action, DRL algorithms allow UAVs to adapt and
optimize their behavior over time.

In designing wireless networks for URLLC, the stringent QoS requirements
should be satisfied. When using a DNN to approximate the optimal policy, the
approximation should be accurate enough to guarantee the QoS constraints. How-
ever, when the environment changes, the pre-trained DNN can no longer guar-
antee the QoS constraints of URLLC. To handle this issue, the system needs to
adjust the DNN in non-stationary environments with few or no training samples.
However, during explorations, the DRL algorithm may try some bad actions while
improve the policy in the unknown environment, which will deteriorate the QoS
significantly and may lead to unexpected accidents in URLLC systems. Thus,
the exploration safety will become a tradeoff for applying DRL in URLLC.

In recent years, researchers have explored various applications of DRL in
the UAV domain, aiming to address challenges related to navigation, surveil-
lance, communication, and more [159, 174]. Researchers have developed DRL-

based navigation systems that enable UAVs to learn optimal trajectories and
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avoid obstacles in real-time. These systems leverage neural networks to process
sensor data and learn navigation policies through reinforcement learning algo-
rithms [174]. Researchers have explored multiple aspects of UAV navigation
using DRL, including trajectory optimization, fault tolerance, positioning, cover-
age path planning, and path optimization. By applying DRL algorithms, UAVs
can autonomously navigate through complex environments, avoiding obstacles
and achieving efficient and collision-free trajectories [183]. For example, study
in [174] focused on capacity maximization in RIS-UAV networks, utilizing DRL
to optimize trajectory and phase shift, leading to improved system capacity and
resource allocation efficiency. In another research effort, a 3D positioning method
for UAVs employed DRL to support configurable antennas and accurately mea-
sure parameters like angle of departure, angle of arrival, polarization status, and
3D positions [159]. DRL techniques have also been applied to address fault tol-
erance, ensuring stable and fixed-time tracking of UAV attitudes, even in the
presence of nonlinear faults. Additionally, vision-based navigation techniques,
when combined with DRL, provide UAVs with the ability to perceive their sur-
roundings and make informed navigation decisions based on visual cues, which is
particularly advantageous in GPS-blind environments [17].

Another significant application of DRL in UAVs has proven to be an effective
approach for addressing challenges related to surveillance and its communication.
Different with DRL-based navigation systems, DRL algorithm also able optimize
trajectory control and power allocation for UAVs, leading to improved transmis-
sion latency [66]. Similarly, in wireless edge networks, DRL combined with com-
munication transformer enables intelligent edge networks that provide quality-
assured live streaming services while optimizing energy consumption. DRL-driven
UAV-assisted edge computing enhances the quality of experience (QoE) for In-
ternet of Things devices, while energy-efficient UAV movement control, guided
by DRL, improves coverage, minimizes energy consumption, and ensures fair-
ness [150]. Moreover, joint communication and action learning with DRL in
multi-target tracking of UAV swarms improves performance, scalability, and ro-
bustness under communication failures. Cooperative multi-agent DRL facilitates
reliable surveillance in smart city applications, surpassing other algorithms in
terms of surveillance coverage, user support capability, and computational costs
[175]. Finally, a deep reinforcement learning approach for joint trajectory design
in multi-UAV networks explicitly considers the mutual influences among UAVs,
optimizing the mission time [158]. However, the 3D positioning, network, and

video resolution parameter also should take into consideration to enhance the
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QoE in long-term situations, which can enhance situational awareness and im-
prove mission efficiency.

Furthermore, DRL has shown promise in improving UAV communication and
network management. By utilizing DRL algorithms, UAVs can optimize their
communication protocols, spectrum allocation, and resource utilization [33]. DRL
has shown promise in addressing interference challenges in UAV applications. By
employing DRL, interference-aware, power control, and cooperative techniques
can be developed to reduce interference, improve spectral efficiency, and enhance
overall system performance [33, 106] . DRL-based approaches also optimize dy-
namic resource allocation [103], cancelling UAV-terrestrial interference [106], and
enhancing connectivity with the cellular network. These studies highlight the
potential of DRL in optimizing UAV operations, reducing interference, and im-
proving network efficiency in UAV applications. This enables efficient and reliable
communication between UAVs and ground stations, enhancing the overall per-
formance of UAV networks.

Despite the significant advancements, several challenges remain in the field
of DRL for UAVs. One key challenge is the high dimensionality and complexity
of the UAV environment, which requires efficient training techniques and explo-
ration strategies. Fast mmWave beam alignment could enhance the reliability
and decrease the latency of 5G and beyond wireless systems for both UAV-
UAV and BS-UAV communications [34]. Especially, the availability of UAV
position information at lower frequencies (following the works [143, 145]) may
also provide scope for reliable communication in addition to increasing through-
put. Position information for fast beam alignment has been recently studied in
mmWave systems [142, 146, 19]. The authors in [146, 19] proposed a learning-
based beam training schemes using multi-armed bandit (MAB) approach, by
building a database of finite beam-pairs useful for beam training based on ve-
hicular position information. In these works, the key idea is that the machine
learning (ML)-based approaches can effectively use the position information for
fast mmWave beam alignment in an online manner.

High mobility and autonomous operation of UAVs also requires frequent beam
realignment and can be jointly optimized with reliable connectivity using RL-
based beam training [134, 47, 135, 137]. Authors in [47] jointly optimized UAV-
BS trajectory and mmWave connectivity using DRL techniques to obtain secure
transmission and energy efficiency with eavesdroppers. In [135], considered ran-
domly moving mmWave UAVs and proposed a position-aided beam-pair align-

ment learning framework at terrestrial BS using DQN. In this work, we have
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shown that a generic DQN-based framework at BS can enhance the mmWave
beam-forming gains for any randomly moving UAV inside their coverage area in
an online manner under different 3GPP conditions. However, the work assumed
independent and fixed grid elements in the BS - UAV environment, increasing
both action spaces and significant communication overhead for UPA antenna
configurations under the learning framework. Hence, a better learning-based
beamforming strategy is required for UPA antennas to enhance reliable connec-
tivity for autonomous UAVs.

In conclusion, DRL offers exciting opportunities for advancing the capabilities
of UAVs. Through its ability to learn from experience and optimize behavior,
DRL can enable UAVs to navigate autonomously, perform surveillance tasks,
and optimize communication. However, further research is required to address

challenges related to practicality, training efficiency, safety, and scalability.

2.8 Conclusion

In this chapter, the study focused the fundamental concept of telecommunica-
tion and control in the context of UAV-based cellular networks. First, the study
presents the UAV types and functions is presented completely for a clear under-
standing of the whole thesis. There is a need for UAV-to-UAV to stream real-time
video and practical measure Quality of Experience (QoE) utility in ad-hoc scenar-
ios. Secondly, efficient interference management and resource allocation schemes
are required to address the interference problem between UAVs and terrestrial
users in future cellular networks. Lastly, a better learning-based beamforming
strategy is needed for UAVs equipped with Uniform Planar Array (UPA) anten-
nas to optimize beam alignment and enhance reliable connectivity. Addressing
these gaps will contribute to the development of practical solutions for real-time
video streaming, interference management, and beam alignment in UAV applica-
tions, particularly in firefighting environments. The concept of Machine learning,
especially Reinforcement Learning, Deep Q-Learning are then introduced for an

essential understanding of technical works used in Chapter 3, 4 and 5.
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Chapter 3

UAV-to-UAV Communications

3.1 Introduction

Live video become phenomena and can be accessed worldwide. The challenge in
live-streaming especially in remote areas with lack of network bandwidth capacity
and information is critical for the rescue team to do search and rescue (SAR).
SAR network coverage, especially in forest fire areas, presents unique challenges
due to the environmental conditions and the rapid spread of the fire. Forested
regions often lack reliable network infrastructure, making it difficult to provide
adequate coverage during fire emergencies [10].

In a firefighting scenario, the network channel capacity fluctuates dramatically
with the dynamic environment alongside the UAVs’ movement, which can cause
poor network performance and undesirable delays [132]. This in turn makes it
harder to learn the pattern variance of the channel capacity, thus resulting in
failure to transmit with high capacity and high video quality. In this chapter, we
consider UAV-to-UAV (U2U) communication to facilitate such scenario, where
UAV at the high altitude acts as mobile base station (UAV-BS) to stream videos
from other flying UAV-users (UAV-UEs) through the uplink. Over the years,
numerous wildfires have caused challenges for firefighters to control and monitor
fire in remote areas [114, 131]. Without new technology to monitor the incident
area from the control station, the current practice of the fire station control lacks
the technology to remotely visualize the dynamic fire situation in real-time for
immediate action [131]. Therefore, it became challenge for the rescue teams in
fighting against wildfire in remote areas when the information of the incidents
did not receive in clear manner, such as the size and images of fire areas. As
such, live-streaming from UAVs help to capture videos of dynamic fire areas,

and is important for firefighter commanders in any location to monitor the fire
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situation with quick response. The 5G network is promising wireless technology
to support such scenarios. However, the position of the UAV will affect the
performance of ad-hoc network. When a UAV is positioned imperfectly within
an ad-hoc network, it can lead to several performance issues such as weak signal
strength and interference [162, 38]. Due to the mobility of the UAV-BS and
UAV-UEs, it is important to determine the optimal movements and transmission
powers for UAV-BSs and UAV-UEs in real-time.

The increased altitude and favourable propagation condition cause UAVs to
generate more interference to the neighbouring UAVs. The uplink interference
problem may result in UAV-UE having degraded performance, and the interfer-
ence problem may make it challenging for a UAV to maintain connection with the
UAV-BS. Therefore, to maximize the data rate of video transmission with smooth-
ness and low latency, while mitigating the interference according to the dynamics
in fire areas and wireless channel conditions, the co-design of video resolution,
the movement, and the power control of UAV-BS and UAV-UEs is proposed to
maximize the Quality of Experience (QoE) of real-time video streaming. The
algorithm will learn the dynamic fire areas and communication environment by
using the Deep Q-Network (DQN) and Actor-Critic (AC) to maximize the QoE
of video transmission from all UAV-UEs to a single UAV-BS. Simulation results
shown the effectiveness of the proposed algorithm in terms of the QoE, delay and
video smoothness as compared to the Greedy algorithm.

The contributions of this chapter are summarized as follows:

e To develop a framework for a dynamic UAV-to-UAV (U2U) communication
model with a moving UAV-BS in multiple firefighting areas to capture a
live-streaming panoramic view. The model of the dynamic fire arrival with
different heights in every fire area is designed and UAVs’ request arrival as
Poisson process in each time slot, and design the UAV-UEs location spaces

to capture a full panoramic view with multiple UAVs.

e To guarantee the smoothness and latency of the live video streaming among
UAV-BS and UAV-UEs in this U2U network, the formulation of long-term
Quality of Experience (QoE) is designed to maximization problem via opti-
mizing the UAVs’ positions, video resolution, and transmit power over each

time slot.

e To solve the above problem, Deep Reinforcement Learning (DRL) approach
based on the Actor-Critic (AC) and the Deep Q Network (DQN) are pro-
posed. The results shown that the proposed AC and DQN approaches
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outperform the Greedy algorithm in terms of QoE.

3.2 System Model and Problem Formulation

-------- > Uplink R | UAV-Ue Flying Area

Figure 3.1: Illustration of System Model

As illustrated in Figure 3.1, this research will consider the single UAV-BS
to provide the network coverage for multiple UAV-UEs to satisfy the network
rate requirement of each UAV-UE to stream high quality video of multiple fire-
fighting areas. The UAV-BS is located at the center of the environment, such
as forest area, with the maximum coverage radius 7,.,. The UAV-BS is con-
nected through wireless network to the fixed or mobile control station. As the
arriving distribution of the fire video streaming request is the same as that of
the fire arrival distribution [121], which follows Poisson process distribution with
density A\,. The reason for this model is that the authors in [121] used the real
data for 30 years of annual areas burned data to model the distributions, where
the distributions of size and arrival time in real data are proved to follow the
Poisson distribution. UAV-BS acts as agent to compute, communicate and con-
trol all UAVs’ actions, including position and power allocation at each time slot.
In our model, we assume using multirotor UAVs that have ability to hover in
place, close-range inspection, mapping, and monitoring of fire-affected areas and
equipped with cameras, sensors, and thermal imaging devices to capture detailed
imagery and collect data [130]. The UAV-BS will receive the request when a fire
event occurs, and the kth UAV-UE automatically flies to the center of kth flying
region FRy to serve the ith fire area A;(x;,v;).

We consider a video streaming task that lasts for 1" time slots with an equal

duration t. The selection of the optimal location to stream the video plays an
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important role in ensuring the UAV-UEs capture the full firefighting area of A;.
Therefore, the kth UAV-UE need to find the optimal position U(x},yf, hy) to
transmit the video to the UAV-BS. The size of the kth fire region FRy, for the kth
UAV-UE depends on the number of UAV-UEs that perform the video streaming
for the ith fire area A;. To make sure that all UAV-UEs can jointly capture the
panoramic video of A;, K UAV-UEs are distributed evenly around A;, as shown
in Figure 3.1. Meanwhile, the UAV-BS also searches for the optimal location
P(x}q,Yng, hlg) to satisfy the minimum data rate requirement for all UAV-UEs.
In addition, the safety region of the A; is considered to guarantee FR, and A;, and
A; and A;,; are not overlapping to guarantee that the UAV-BS and UAV-UEs

are safe from fire.

3.2.1 Request Arrival

The request contains the ith area A; with its centre at (z;,vy;) with radius ;.
We assume that K UAV-UEs serve each fire area and stream real-time videos
simultaneously. We assume that the height of the fire h; follows Log-normal
distribution [147], thus, the minimum flying height of all UAVs is Ay, which
satisfies hpy, = max(h;). All UAV-UEs in A; will be operated at the same

altitude. The environment is divided into W square grids, thus, the length,

width and height of each grid are ——, ——, —Z—. respectively. At the tth time
¢ BRI v v TPy
slot, the flying position U(z; , Yk, hix) of the kth UAV-UE can be calculated as

ﬁt+l(xi,k»yi,ka hig) = ﬁt(%,k,%,k, hig) +@'(z.y,2), (3.1)
with
v, —a <z, <z +a, (3.2)
Yi —a <yir <y +0, (3.3)
hmin Shz,k S hma)ﬁ (34)
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Figure 3.2: Flying boundry of the kth UAV-UE.

U(ti7k:1) ={(zr,y. )|z —a<zin <z +ayi+a<y1 <y +bh <h <yt
(3.5a)

U(ti,k:m ={(x2,y2, ho)|zi —b < @io < i —a,y; —a < Yis <y +a,hi < hy < hpeats
(3.5b)

U(ti,k:g) ={(zs.ys. h3)|zi —a<wis<zi+a,yi—b<yis<yi—ahi <hs <hmne}t
(3.5¢)

U(ti7k:4) ={(zg, s ha)|lzi +a<zis <zi+byi—a<ys <y +ah <hg<hpet
(3.5d)

where d@'(x,y, z) is the action vector to determine the flying direction of the
UAV-UE. The action vector a = r; + r limits the horizontal boundaries of flying
UAV-UE, and b = r; + r, + [ is the vertical boundaries of the UAV-UE. r, is
the safe distance between A; and FR; to ensure the UAV cannot be affected by
the fire and close enough to stream the fire area, [ is the length of flying region,
and hpay is the maximum height of UAV-UE regulated by the government (i.e.
120 m in UK [3]). The upper boundaries are introduced to ensure better uplink
performance, capture a clear picture. This is because the picture frame can be
clearer when the UAV-UEs are closer to the surveillance area. Furthermore, to
capture full panoramic video, we propose the boundary flying area for UAV-UEs

in each fire area, which can be written as Eq. (3.5).
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3.2.2 Channel Model

In the wireless network, we assume that the channel model between the kth UAV-
UE and the UAV-BS contains large-scale fading (path loss and channel gain) and
small-scale fading [21]. We assume that the link between the UAVs are line-of-
sight (LoS). Also, we consider that the wildfires have occurred in rural areas, and
the height of the UAV should be higher than the fire to guarantee the UAV cannot
be damaged by the fire. As all UAVs are flying in free space area, there are no
blockages between the UAVs, and the UAVs can capture the videos following the
Rural Macrocell Aerial Vehicular (RMa-AV) path loss model in 3GPP standard
[4][Table B-2]. Also, to ensure the safety of UAVs, all UAVs are designed to fly
above trees and fire, therefore no Non-LOS are considered in our model. The

pathloss from the kth UAV-UE to the UAV-BS can be written as

4 f.dl,

C

PL! g, = 20log ( ) + NLos: (3.6)

where f. is the carrier frequency, ¢ is the speed of light in vacuum, 7. is the
additional attenuation factors due to the LoS connection, and d} is distance
between the kth UAV-UE and the UAV-BS, as shown in Figure 3.3, which can

be calculated as

= (s = )" + (s — 98 + (s — )" (3.7

In our model, we use the Rician distribution [49][63] to define small scale

fading pe(dy), which can be denoted as
dt _dt2 . p2 dt
di) =% —r T I %o .
peld) Ugexp( — ) o (%at). (3.5)

with di. > 0, and p and o are the strength of the dominant and scattered

(non-dominant) paths, respectively. The Rice factor x can be defined as
K=-—7. (3.9)

It is possible that the selected position of each UAV-UE can generate more
interference to the UAVs nearby, which can result in poor transmission perfor-
mance and make it difficult for the UAV-UE to maintain the connection with the

UAV-BS. Power control can be the solution to minimize the uplink interference
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UAV-BS (XBS, VBs, hRS)

Diss

N

Figure 3.3: UAV-to-UAV communication.

among UAV-UEs at appropriate power level [160]. Through properly controlling
the transmit power of each UAV-UE in the uplink transmission, the interference
among UAV-UEs can be mitigated. According to the 3GPP guidelines [4], we
consider fractional power control for all UAVs and the power transmitted by the
kth UAV-UE while communicating with the UAV-BS can be given by

P{, = min {P[‘]‘;ax, ( 101ogyg (B)) + pu P Lt o5k ) } ; (3.10)

where P5* is the maximum transmit power of the UAV-UE, B is the chan-
nel bandwidth, and p,, = {0,0.4,0.5,0.6,0.7,0.8,0.9, 1} is a fractional path loss
compensation power control parameter [160].

In the proposed wireless UAV network, the received power from the kth UAV-
UE to the UAV-BS at the tth time slot is presented as

—a —pg(dh)

Pl=P,G(d) 10 o, (3.11)
where P[t]k is the transmit power of the kth UAV-UE, G is the channel power
gains factor introduced by the amplifier and antenna [177], (d})™" is the pathloss,
a is the path loss exponent, and pe(d},) is the Rician small scale fading. The
interference from the mth UAV-UE to the UAV-BS at the tth time slot can be
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Table 3.1: Type of Video Quality [1]

Video Quality | Resolution | FPS | Bitrate (average) | Data used/min | Data used/hr
144p 256x144 30 80-100 Kbps 0.5-1.5 MB 30-90 MB
240p 426x240 30 300-700 Kbps 3-4.5 MB 180-250 MB
360p 640x360 30 400-1,000 Kbps 5-7.5 MB 300-450 MB
480p 854x480 30 500-2,000 Kbps 8-11 MB 480-660 MB

720p (HD) 1280x720 | 30-60 1.5-6.0 Mbps 20-45 MB 1.2-2.7 GB
1080p (FHD) | 1920x1080 | 30-60 3.0-9.0 Mbps 50-68 MB 2.5-4.1 GB
written as
Tior = UnPh (3.12)

meK\k
where ¢/ = 1 indicates that the transmission between the kth UAV-UE and
the UAV-BS is active, otherwise, ¢!, = 0, and P!, is the transmit power of mth
UAV-UE. The signal to interference plus noise ratio (SINR) of the UAV-BS is
given by

L
PN+ > omervk Vi

(3.13)

where N is the noise power at the UAV-BS whose elements are average of indepen-
dent random Gaussian variables with the variances o2. Then, the transmission
uplink rate from the kth UAV-UE to the UAV-BS can be denoted as

R, = Blog, (1+;). (3.14)

3.2.3 Video Streaming Model

In this research, we consider the long-term video streaming that are modelled as
consecutive video segments to maintain the live video streaming in the selected
area. FEach segment consists of multiple frames, and the frame is considered to be
the smallest data unit. The resolution of each frame corresponds to its minimum
For

example, if the communication rate (bitrate) is between 300-700 kbps, the video

data rate requirement. Table 3.1 presents the type of Video Quality [1].

type that we should consider to use is 240 p. Knowing that 144p corresponds to
the smallest size of the video type, all UAV-UEs need to satisfy the minimum
uplink bitrate, i.e., R;;,=80 kbps.
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Each UAV-UE is equipped with non-ordinary optical camera with the resolu-
tion of rp,, X 1,,, and the video is consisted of multiple consecutive frames [65],
which is used to monitor the fire area with three main goals: 1) detect the size
of fire by continuous capturing the panoramic video; 2) verify and locate fires
reported; and 3) closely monitor the known fire by streams using distribution
relationship around the incident. The quality of the video frame depends on its
resolution of the ith video frame at the ¢th time slot vf. Furthermore, for each
video frame, we assume that it has the same playback time 7;, i.e. 2ms to 4ms,
which depends on 30 FPS or 60 FPS. In addition, the delay of the video streaming
via UAVs is consisted of three elements, i.e. capture time, encoding time, and
transmission time. As all UAVs capture the video using the same resolution, the
capturing time and the encoding time are constant. Thus, we mainly focus on
the uplink transmission time, which can be expressed as

D(v;) Tpz  Tpy - D

T = = , 3.15
R, Blogy (1+9)) (349)

where b is the number of bits per pixel, and D(v!) is the data size based on
vf. The video frames are processed in parallel in multi-core processors, and the
time consumption at the fth time slot is 7% = max{T},} [32]. To guarantee
the smoothness and seamless of the video streaming, 7% must satisfy the delay

constraint, namely, 17" < Tj.

3.2.4 Quality of Experience Model

The key parameters of video streaming are video quality, quality of variation,
rebuffer time, and the startup delay [163]. Therefore, QoE is formulated by three
factors, 1) the sum of video quality over K UAV users in ith area, 2) jitter between
video frames (video smoothness penalty), and 3) video latency (delay penalty),
where [ is the maximum number of fire areas at the tth time slot. In practice, the
video quality metric measured each video frame quality based on the selection
of bitrate. However, the quality will decrease if the long-term video playback is
not smooth, so we introduce two parameters, namely, video smoothness penalty
and video latency. In long-term scenario, the drastic changes of video resolution
can lead to uncomfortable to firefighters. Therefore, in our learning algorithm,
we consider this element to ensure the smoothness of the playback. Finally,
the latency is determined by streaming time and transmission time at the tth
time slot, 7", rebuffer time, and the startup delay [163]. According to [156], the

rebuffering time and startup delay can be ignored. Thus, the video transmission
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may be suffered from a delay, which can be calculated as D' = T* — T}, where T}

is the delay constraint. The QoE is denoted as

¢ I K
QoE =34 (LS alf) - ) — a( D) -0 (310)

i=1 k=1

where q(R},) is video quality metrics [100], which can be written as

(R',) =1 By (3.17)
» = 10 5 .
Tk & Ruin (Uf )

where Ii;k and w! are the weights of video quality and delay, respectively. As our
aim is to maximize the QoE, the condition of !, > w' must be guaranteed, and

Rpin (v}) is the minimum rate that should be satisfied for the selected v?.

3.2.5 Problem Formulation

The optimization problem in the context of UAVs positioning within an ad-hoc
network involves finding the optimal locations for UAV placement to maximize
overall performance. It is a complex problem that requires considering various
factors, constraints, and objectives. Our aim is to maximize the QoE that jointly
exploit the optimal positions of the UAV-BS and UAV-UEs, power control, and
the optimal dynamic bitrate selection that result in maximize QoE and over-
all improved performance. The fluctuation of the transmission link will cause
unstable network performance that leads to low QoE and high delay.

Thus, to minimize the delay and maintain the smoothness at each Transmis-
sion Time Interval (TTI) and maximize the quality of video streaming. We jointly
consider the optimal UAV-BS location BP = (zl34, yh, h';5), the position of the
kth UAV-UE, BU = (x}, i, ht ), the maximum power control of UAV-UE Py,
the bitrate resolution BV = {144, 240, 360, 480, 720, and 1080}p, and UAV-UE’s
power Py, = {23,25,and 30} dBm [78], so that the adequate throughput can be
achieved.

In this research, we aim to tackle the problem of optimizing the control factors
defined as A, = {BP, BU, BV, Py, } in an online manner for every frame, where
BP is UAV-BS’s flying direction, BU is UAV-UEs’ flying directions, BV is res-
olution of the ith UAV-UE, and P, UAV-UE’s power. At the tth time slot, the
UAV-BS aims at maximizing the total long-term QoE in continuous time slots
with respect to the policy 7 that maps the current state information s; to the

probabilities of selecting possible actions in A;. Therefore, based on the QoE of
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each UAV-UE, the optimization problem can be formulated as

max ZZ’W "QoE,(7) (3.18)

m(A¢|Se)
(AelS) =

s.t.max h; > hisg > Roax, (3.19)
Ry > Ry (0)), (3.20)
vl € {144p, 240p, 360p, 480p, 720p, 1080p} (3.21)
Plminy > Pj, > Pimax), (3.22)
V @hg = 22 + (s — )2 > 13 + 74, (3.23)
U € Eq.(3.1). (3.24)

where the objective function in Eq. (3.18) captures the average QoE received
at the UAV-BS and v € [0,1) is the discount factor to determine the weight
accumulated in the future frames, and v = 0 means that the agent concerns
only the immediate reward. The UAV-BS’s height must follow the condition in
Eq. (3.19). The minimum requirement of data rate of UAV-UEs based on the
dynamic bitrate selection guarantees Ry, obtained from Uj, as shown in Eq. (3.20)
and follows minimum bitrate in Eq. (3.21) as shown in Table 3.1, while Pék in Eq.
(3.22)) follows the maximum and the minimum power constraints. The maximum
power constraint consideration is influenced by the available power capacity of the
UAV’s onboard battery, which also will affect the overall flight time and battery
life. Then, Eq. (3.23) guarantees that the position of the UAV-BS will not
intersect with the UAV-UFE’s flying region. U follows the requirement of the flying
region FR; presented in Eq. (3.1). In the experiment, the UAVs are hovering
and flying at a constant speed. In our study, there are several trafe-offs in this
problem: 1) throughput-bit rate trade-off, 2) throughput-power control trade-off,
3) throughput-distance trade-off, 4) power-distance trade-off, 5) throughput-video
smoothness trade-off and 6) throughput-delay trade-off. Therefore, to achieve
maximum QoE in long-term time slot, it is important to solve an optimal trade-
off between data rate, bit-rate resolution selection, power control, and positions,
which further motivates us to use the learning algorithms to jointly optimize the
total long-term QoE of all UAV-UEs. All the factors mentioned above help to
measure the QoE from the selected resolution to maintain the whole performance
in long-term time slots. Also, the correlation between the video smoothness and

the penalty delay is to ensure the overall video performance from the beginning
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3

Data Information Sharing
Uplink : Current QoE, number of fire,
K UAVs’ Position, power allocation

and resolution

Downlink : UAVs’ Position, power

~—3 allocation and resolution

Figure 3.4: UAV-BS to UAV-UE communication information sharing.

to the end.

3.2.6 Channel State Information Sharing

Signal exchange happens in the uplink, the UAV-UEs have to send its locations,
fire areas to the UAV-BS, and the QoE information of each UAV-UE will be
readily available at the UAV-BS. After the learning is performed at the UAV-BS,
the outputs are the actions, including the movement of the UAVs, selected video
resolution, and power. After that, the selected actions will be sent through the
downlink from the UAV-BS to each UAV-UE for its control. The whole process
is illustrated in Figure 3.4.

3.3 Optimization Problem via Reinforcement

Learning

In this section, we design several DRL algorithms to maximize the long-term QoE
in UAV-to-UAV network to be compared with the existing traditional method -
Greedy algorithm. Since the channel and the locations fire change over time,
different numbers of UAVs are required at each time slot. Our problem cannot
be solved by the traditional optimization method. It is because we have partially
observed information, and our formulated optimization problem is a long-term
problem, it cannot be solved by the traditional optimization method. In our
problem, we consider long-term quality and smoothness of video streaming, which
cannot be solved by the traditional optimization problem. Thus, we cannot com-

pare with any state of the art traditional optimization problem. Thus, there is
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no traditional optimization methods we can compare, and our problem can only
be solved by deep reinforcement learning, because we focus on maximizing the
long-term QoE. However, the traditional optimization method can only optimize
for the current time slot and cannot optimize for long-term period. Specifically,
we propose two DRL algorithms, which are Deep Q-Learning and Actor-Critic,

to maximize the long-term QoE of live video streaming in U2U communication.

3.3.1 Reinforcement Learning

Our propose for RL-based method, the UAV-BS acts as centralized agent to
collect video from UAV-UEs while maximizing QoE to solve problem which influ-
enced by the delay, UAVs’ positions, and bitrate selection during each TTI, and
forms the partially observable Markov decision process (POMDP). At each TTI,
the channel network condition, fire arrival, and network condition are different
in each timeslot. Therefore, through learning algorithms, the UAV-BS (agent)
is able to select the positions of the UAV-BS, positions of the UAV-UEs, the
dynamic resolution and the maximum power allocation in order to maximize the

individual QoE at each time slot and the long-term QoE objective.

State Representation

The current state s' corresponds to a set of current observed information. The
state of the UAV-BS can be denoted as s = [P, V,U, Py, , QoE], where P= (x5,
yhg, hlyg) is the position of the UAV-BS, V is the bitrate selection, U = (%, yk, ht)
is the positions of UAV-UEs, and Py, is k-UAV-UE’s power.

Action Space

Q-agent will choose action a = (BP, BU, BV, P) from set A. The dimension of
the action set can be calculated as A = BP x BU>* x BV x P. The actions for
UAVs include (i) UAV-BS’s flying direction (BP), (ii) UAV-UEs’ flying directions
(BU), (iii) resolution of the ith UAV-UE (BV), and (iv) UAV-UE’s power (P).

The action space is presented as
e BP = ( up, down, left, right, ascent, descent or hover )
e BU = ( up, down, left, right, or hover )
o BV= (144, 240, 360, 480, 720, or 1080) p

e P = (23,25, 30) dBm
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To ensure the balance of exploration and exploitation actions of the UAV-BS,
e -greedy ( 0 < € < 1) exploration is deployed. At the tth TTI, the UAV-BS
randomly generates a probability p! to compare with e. If the probability p! < ¢,
the algorithm randomly selects an action from the feasible actions to improve the
value of the non-greedy action. However, if p! > €, the algorithm exploits the
current knowledge of the Q-value table to choose the action that maximizes the

expected reward.

Rewards

When the a is performed, the corresponding reward re' is defined as

l/)fk <Z i o(R RL,) - q(Rfjj)l) — WD, (3.25)

i=1 k=1

where ¢(R} ) is video quality metrics [100], which can be written as

q(Riy) = log (RL"}J , (3.26)

'min (Ui

k and w’ are the weights of video quality and delay, respectively. If R! ' x is unable
i), namely, R, < RF. (v)),

to satisfy the minimum transmission rate for R, (v! i

the system will receive negative reward, which means re! < 0.

3.3.2 Q-learning

The learning algorithm needs to use QQ-table to store the state-action values ac-
cording to different states and actions. Through the policy (s, a), a value func-
tion @(s,a) can be obtained through performing action based on the current
state. At the tth time slot, according to the observed state s, an action a’ is
selected following € -greedy approach from all actions. By obtaining a reward re’,
the agent updates its policy 7 of action a’. Meanwhile, Bellman Equation is used

to update the state-action value function, which can be denoted as

Q(Stv at) :(1 - O‘)Q(Stv at)

+ « {re’”rl + 7 max Qs a")
ate

} (3.27)

where « is the learning rate, 7 € [0, 1) is the discount rate that determines how

current reward affects the updating value function. Particularly, o is suggested
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to be set to a small value (e.g., @« = 0.01) to guarantee the stable convergence of

training.

3.3.3 Deep Q-learning

However, the dimension of both state space and action space can be very large
if we use the traditional tabular Q-learning, which will cause high computation
complexity. To solve this problem, deep learning is integrated with Q-learning,
namely, Deep Q-Network (DQN), where a deep neural network (DNN) is used
to approximate the state-action value function [168]. Q(s,a) is parameterized by
using a function Q)(s,a;@pqn), where Opqy is the weight matrix of DNN with
multiple layers. s is the state observed by the UAV and acts as an input to
Neural Networks (NNs). The output are selected actions in A. Furthermore, the
intermediate layer contains multiple hidden layers and is connected with Rectifier
Linear Units (ReLu) via using f(z) = max(0, z) function. At the tth time slot,
the weight vector is updated by using Stochastic Gradient Descent (SGD) and

Adam Optimizer, which can be written as

01(;511\1) = Opgn — Aapan - VL(Opgy), (3.28)

where Aapaw is the Adam learning rate, and Aapaw - VE(BEQN) is the gradient

of the loss function £(6hqy), which can be written as

VC(OILDQN) = Esi,Ai,Rei+1,Si+1 [(Qtar _ Q(S’i’ Al’

. o (3.29)
BDQN) ’ VQ(S A §9DQN)]7

where the expectation is calculated with respect to a so-called minibatch, which
are randomly selected in previous samples (S¢, A%, Re'! S™1) for some i €
{t = M,,t — M, +1,...,t}, with M, being the replay memory. The minibatch
sampling is able to improve the convergence reliability of the updated value func-
tion [107]. In addition, the target Q-value Q. can be estimated by

Quar = 1™ +ymax Q(S™, a; Opqy), (3.30)

where éfDQN is the weight vector of the target Q-network to be used to estimate
the future value of the Q-function in the update rule. This parameter is periodi-
cally copied from the current value O%QN and kept fixed for a number of episodes.
The DQN algorithm is a value-based algorithm, which can obtain an optimal

strategy through using experience replay and target networks. It enables the
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Algorithm 1: : Optimization by using DQN

Input: The set of UAV-BS position {zps,yns, hps}, bitrate selection V|
the position of the kth UAV-UE Uy, = (i, yL, ht), > QoFE and
operation iteration I.

Algorithm hyperparameters: Learning rate o € (0, 1], € € (0, 1],
target network update frequency K;

Initialization of replay memory M, the primary Q-network @, and the

target Q-network 6;

for e+ 1 to I do

Initialization of s! by executing a random action a’;
fort«+ 1 toT do
if p. < € then: Randomly select action a' from A;

else select a' = argmazx@ (S*, a,0) ;
acA

The UAV-BS performs a at the tth TTT ;
The UAV-BS observes s'™! and calculate re'™ using Eq. (3.25);
Store transition (s; a’; re™!; s*1) in replay memory M;

Sample random minibatch of transitions (S% A’; Re'™!; S™1) from
replay memory M,

Perform a gradient descent for Q(s;a; @) using (3.29) ;

Every K steps update target Q-network 6 = 6.
end

end

agent to sample from and train by the previously observed data online. This is
due to the experience replay mechanism and randomly sampling in DQN, which
use the training samples efficiently to smooth the training distribution over the
previous behaviours. Not only does this massively reduce the amount of inter-
actions needed with the environment, but also reduce the variance of learning
updates. The DQN algorithm will create a sequence of policies whose corre-
sponding value functions converge to the optimal value function, when both the
sample size and the number of iteration go to infinity. The DQN algorithm is

presented in Algorithm 1.

3.3.4 Actor-Critic

Different from the DQN algorithm, which obtains the optimal strategy indirectly
by optimizing the state-action value function, while the AC algorithm directly

determines the strategy that should be executed by observing the environment
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3.3. Optimization Problem via Reinforcement Learning

state. The AC algorithm combines the advantages of value-based function method
and policy-based function method. In the AC algorithm, the agent is consisted
of two parts, i.e., actor network and critic network, and it solves the problem
through using two neural networks. Meanwhile, the AC algorithm deploys a
separate memory structure to explicitly represent the policy, which is independent
of the value function. The policy structure is known as the actor network, which
is used to select actions. Meanwhile, the estimated value function is known as
the critic network, which is used to criticize the actions performed by the actor.
The AC algorithm is an on-policy method and temporal difference (TD) error is
deployed in the critic network. To sum up, the actor network aims to improve the
current policies while the critic network evaluates the current policy to improve
the actor network in the learning process.

The critic network uses value-based learning to learn a value function. The

state-action value function V'(s*, w') in the critic network can be denoted as
V(s,w') = w'®(s"), (3.31)

where ®(s') = s is state features vector and w’ is critic parameters, which can
be updated as
wt =w' +ald'V,V (s w'), (3.32)

where «,, is the learning rate in the critic network. After performing the selected
action, TD error 6 is used to evaluate whether the selected action based on the

current state performs well [180], which can be calculated as
8 ="t 4, (V (s w') = V (s, w)). (3.33)

Then, the actor network is used to search the best policy to maximize the expected

reward under the given policy with parameters O,¢, which can be updated as
0\ =0\ + QaVoyod <7T95m> , (3.34)

where «, is the learning rate in the actor network, which is positive and must be
small enough to avoid causing oscillatory behaviour in the policy, and according

to [180], Vg .. (mg,.) can be calculated as

Voo <7T6t

vo) = Vo, (7 (a']s',04c)) (3.35)

The AC algorithm is presented in Algorithm 2.
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Algorithm 2: : Actor-Critic Algorithm

Inputs: The set of UAV-BS position {xps,yss, hps}, bitrate selection
V, the position of the kth UAV-UE Uy = (x%, vk, hL), > QoFE and
operation iteration I.

Algorithm hyper-parameter: Learning rate a. € (0,1], € € (0, 1],
Target network update frequency K;

Initialization of policy parameter 6 ,¢, weight of the actor network w,

value of the critic network V;

for e+ 1 to I do

Initialization of s° by executing a random action;
fort <+ 1toT do

Select action a' according to the current policy;

The UAV-BS observes s*! and calculate re'*! using (3.25);
Store transition (s; a’; rettt; stt1);

Update TD-error functions;

Update the weights w of critic network by minimizing the loss;

Update the policy parameter vector ¢ for actor network;

Update the policy 04¢ and state-value function V' (st, w').
end

end

Finally, Figure 3.5 shows the network architecture design, where the current
state is input to the neural network for both algorithms, DQN and Actor-Critic.
DQN and Actor-Critic used an agent in sequential decision-making tasks, and
they both belong to the family of policy-based methods. There are key differences
in their architectures and learning approaches. DQN utilizes a single network and
employs epsilon-greedy exploration, while Actor-Critic has separate networks for
the actor and critic, allowing for more nuanced exploration and exploitation.
DQN can suffer from training instability due to correlated observations, whereas
Actor-Critic typically exhibits more stable training dynamics. The next key step
is to determine the action to be sent to the environment and the reward to measure
the QoE. Then, the new states are generated from observation for the next round
of updates. Overall, considering DQN and Actor-Critic algorithms in our problem
provides unique features and novelties contribute to their effectiveness towards

adapting in different scenarios.
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Figure 3.5: The network architecture designed.

3.3.5 Analysis Complexity of Reinforcement Learning Al-

gorithms

The computational complexity of the DQN/AC algorithm, which includes DQN/AC
learning architecture, the action selection of the UAVs, and the downlink trans-
mission, are given by O(mlogn + 24 + N;N;), where m is the number of layers,
n is the number of units per learning layer, A is number of action, N; is number

of fire area, and Ny is number of UAV for each fire area.

3.4 Simulation Results

In this section, we evaluate our proposed learning algorithms in our problem
setup. The area of the region is 5000 m x 5000m x 100m. In the simulation,
the maximum flying height hy., of the UAV-BS is 100m, which is satisfied with
the maximum flying height 120m that is stipulated by the UK government. We

assume that the available video bitrates of the dynamic video streaming for each
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Table 3.2: Parameter

Parameter Value

Number of UAV-UEs 12

Transmission power, PUe 23 dBm [177]
Bandwidth, B 3 MHz

Noise variance o2 -96 dBm [177]

Center frequency, f. 2 GHz [128, pp. 3777]
Power gains factor, G -31.5 dB [177]

Alpha, « 2

Channel parameter, LoS 0.1 [13, pp. 572]
Channel parameter, N LoS 21 [13]

Channel parameter, a 4.88 [128, pp. 3777],[11, pp. 7]
Channel parameter, b 0.43 [128, pp. 3777] ,[11, pp. 7]
Radius of target region 1250 m

Radius of Surveillance region, 7; 250 m

Learning Rate 0.1, 0.01

Initial, Final Exploration 1, 0.1

Discount Rate 0.8

Replay memory 1000

video frame are (80,300, 700, 1000, 2000, 3000)kbps. The target area is captured
by K UAV-UE(s), i.e., K = 4 in the ith fire area A; (i = 1,2,and, 3). At the
beginning, the UAV-BS will be deployed at the centre of the environment, i.e.
(1250, 1250, hupin), where hpy;, is the maximum height of the fire. When the fire
occurs at the remote area, the UAV-UEs will immediately reach the fire location
to stream and oversee the real-time situation. The height of the UAV-UEs in
each fire area are fixed and follow the distribution of the fire height [121]. The
network parameters for the system are shown in Table 3.2 and follow the existing
approach and 3GPP specifications in [177], [4], and [13]. The performance of
all results is obtained by averaging around 100 episodes, where each episode is
consisted of 100 TTIs. The result is measured for the equal duration of the time
slot at each time slot ¢ and also called as T'TT, where each TTT is equal to 0.5ms as
follows in 3GPP [4]. Finally, the channel model parameters and grid environment
parameters are set according to [177].

Figure 3.6 plots the average QoE value over different grid sizes via AC and
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Figure 3.6: Average QoE of the UAV-BS with different schemes via different learning
algorithms with different grid size of each episode.

DQN algorithms. From the result, it can be seen the 25m x 25m grid sizes pro-
duced the highest average QoE of the UAV-BS for both DQN and AC algorithms,
therefore in the next simulation, we use 25 x 25m grid size. From the result, the
number of grids will influence the movement of the UAV, the UAV will move
more frequently in small grid size with more number of grids. In this case, the
performance can be improved due to that the UAV can explore and exploit the
environment more accurately. However, increasing the number of grids can lead
to increased complexity in learning algorithms. It is because the action space
will increase with more number of grids. In practice, the UAV operator has to
decide what will be the best square size according to the movement step of each
UAV. However, if we want to reduce the complexity by increasing the grid size
or decreasing the number of grid, the result shows degraded performance of QoE,
and it takes more time to obtain the convergence results due to difficulties in
finding an optimal solution in long-term QoE analysis.

In each scenario, our proposed DQN and AC algorithms are compared with
the Greedy algorithm. The Greedy algorithm selects the actions based on the
immediate reward and local optimum strategy. The DQN is designed with 3
hidden layers, which each layer consists of 256, 128, 128 ReLU units, respectively.
For the AC method, the critic DNN consists of an input layer with 19 neurons,
a fully-connected neural network with two hidden layers, each with 128 neurons,
and an output layer with 1 neuron. The UAV-BS is initially set at the centre of the

environment with the height h,,;,. In wildfires environment problem, the network
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coverage with smooth streaming needs to overview the real-time situation. To
guarantee high quality of video transmission from multiple UAVs in continuous
time slots, the Recurrent Neural Network (RNN) is deployed. In temporal data,
RNN based GRU network can approximate the value function or the policy of
each DRL algorithm, where the stateless RNN does not need to re-initialize the
memory at each training step, while the training progress is more resource-hungry
and less stable [27]. The learning-based predictor uses a modern RNN model with
parameters 6 to predict the traffic statistic at each frame. The use of RNN is
due to its ability to capture the time correlation of traffic statistics over multiple
frames, which can aid in learning the time-varying traffic trend and improving
prediction accuracy. Thus, RNN can capture the correlation among the state
or action in over time, which can help DRL select more optimal action, and

guarantee the high quality of video transmission.
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Figure 3.7: Average QoE value for each frame via AC, DQN and Greedy algorithms.

Figure 3.7 plots the average QoE value over all frames via AC, DQN and
Greedy algorithms. It can be seen that DRL algorithms outperform the non-
learning based algorithm, i.e., Greedy algorithm. The convergence of the re-
inforcement learning algorithms has been proved in [80], [77], an agent of the
Q-learning algorithm is assured to converge to the optimal @. Figure 3.7 plots
the average QoE value over all frames in each episode via DQN/AC learning
algorithms, which shows the convergence of the proposed two algorithms. It is
observed that the total reward and the convergence speed of these two DRL learn-
ing algorithms follows: AC' > DQN. This is due to the AC algorithm is updated

in two steps, including the critic step and actor step. At each step, the critic
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network judges the action selected by the actor network, which can select the
actions more appropriately. Moreover, it can be seen that the DRL algorithms
outperform the Greedy algorithm, where the convergence speed of the DRL algo-
rithms is faster than the Greedy algorithm. Specifically, in the Greedy algorithm,
the UAVs only consider exploiting the current reward, rather than exploring the
long-term reward. Therefore, the UAVs are not able to achieve higher expected

reward compared to the DRL algorithm.
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Figure 3.8: Average QoE of the UAV-BS with different schemes via different learning
algorithms and with different optimization schemes of each episode.

Figure 3.8 plots the average QoE of the UAV-BS with different video trans-
mission schemes via different learning algorithms in each episode. For simplic-
ity, “DR” represents the scheme with dynamic resolution, “DB” is the scheme
with dynamic resolution and dynamic UAV-BS, and “DBU” is the scheme with
dynamic resolution, dynamic UAV-BS and UAV-UEs. It is observed that the
average QoE of the AC algorithm outperforms all other algorithms, with it being
able to achieve an optimal trade-off between data rate, bitrate resolution selec-
tion, power control, and positions. From the result, it is observed that with the
dynamic environment and large size of the action, and the AC algorithm is able
to select proper positions of UAVs and video resolution of video frames. This
is mainly due to the experience replay mechanism, which efficiently utilizes the
training samples, and the actor and critic functions are able to smooth the train-
ing distribution over the previous behaviours compared to DQN. In addition, we
can observe that the strategies of selecting optimal positions for UAVs achieve

higher performance compared to the UAVs with fixed locations. This result em-
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phasizes the importance of the strategy with mobile UAVs. This is due to the fact
that mobile UAVs can move through the network to reach the optimal positions

that are able to adapt to dynamic fire scenarios.
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Figure 3.9: The request of the UAV-UEs in continuous time slots.

We provide more in-depth investigation of the relationship between the num-
ber of UAV request, dynamic video resolution, dynamic power control, and
throughput with different learning algorithms in continuous 100 time slots. The
results are also compared among the three algorithms, namely DQN, AC, and
Greedy algorithms. The detailed results show how the optimization control helps
UAVs to maximize the QoE at each time slot.

Figure 3.9 plots the UAV’s requests follow the fire arrival distribution, which
follow Poisson process distribution with density A. In phase 1, there is a small
number of fire arrival which leads to low request of UAV’s number. But with
time increases, the number of fire arrival is getting higher and leads high number
of UAV’s request is needed as shown in phase 2 and in phase 3, the request is
dropped and less UAV’s request is demanded. As the number of requests rapidly
changes, we introduce power control to control the transmit power at UAV-UEs
to mitigate the interference among UAV-UEs, thus maximizing the achievable
rate of each UAV-UE.

Following the fire arrival requests depicted in Fig 3.9, Figure 3.10 shows the
plots of the average power control over all UAV-UEs in continuous time slots
with AC, DQN and Greedy algorithms. The power control helps mitigate the
interference among UAV-UEs. As shown in phase 1 and phase 3 in Figure 3.9,

there is a small number of fire requests with small number of UAVs to transmit
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Figure 3.10: The power control of the UAV-UEs in continuous time slots with different
learning algorithms.
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Figure 3.11: The average dynamic resolution of the UAV-UEs in continuous time
slots with different learning algorithms.

the data. However, when the number of requests increases, a large number of
UAVs are demanded, as shown in phase 2 of Figure 3.9. As can be seen from
Phase 2 of Figure 3.10, the DRL algorithms learn the environment and effectively
reduce the transmit power of each UAV-UE, to reduce the interference from UAV-
UEs. We see that the Greedy algorithm maintains the higher power, even though
high power can provide high received signal, it also causes high interference at

the UAV-BS and failure in transmission.
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Figure 3.12: Average latency of video streaming with different learning algorithms.

Following the fire arrival requests depicted in Figure 3.9, Figure 3.11 shows
the plots of the minimum dynamic resolution over all UAV-UEs in continuous
time slots with different learning algorithms. It is shown that the minimum video
resolution of the AC algorithm is higher than the DQN and the Greedy algorithm
in all scenarios. The AC algorithm is able to maintain an optimal video resolution
at each time slot and guarantee high quality and smooth video playback with
new request. However, the Greedy algorithm exploits with a minimum video
resolution to maintain high rewards, and it only uses local optimal policy and
causes poor performance. For phase 1 and 3, when the number of requests is low
at the tth time slot, the power is high, and the throughput increases, thus, the
resolution of video is high. However, when the number of request is increasing in
phase 2, the AC algorithm is able to maintain a high resolution due to helps of
dynamic power, which leads to better QoE for each UAV-UE. This will help to
reduces the interference and improve the quality of the video resolution.

In Figure 3.12, we plot the average latency of video streaming of AC, DQN
and Greedy algorithms. It can be seen that the latency performance of the
AC algorithm outperforms that of the DQN algorithm. When multiple video
streaming exist in the U2U communication, the interference among UAV-UEs
occur and causes higher latency. Based on the observed state, the AC algorithm
is able to select proper positions and transmission power of the UAV-UEs to
mitigate the interference, which further decreases the latency. Thus, the AC
algorithm is able to maximize the average QoE with the lowest average time

latency. However, the Greedy algorithm is unable to exploit the violation of
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Figure 3.13: Average smoothness penalty with different learning algorithms.

latency constraints resulting in higher latency, which leads to lower QoE.

Figure 3.13 plots the average smoothness penalty of AC, DQN and Greedy
algorithms. The smoothness penalty demonstrates the average video stability
occupancy of UAV-UEs at each episode. When the learning algorithm is able to
automatically choose the suitable resolution at the tth time slots and (¢t — 1)th
time slot, it will obtain lower smoothness penalty and higher QoE. Moreover,
the AC algorithm is able to automatically choose the proper action based on
actor and critic function, which leads to better smoothness of the AC algorithm
compared to that of the DQN and Greedy algorithms. It has proved that the
AC algorithm guarantees the smoothness of video transmission with high QoE.
Meanwhile, the Greedy algorithm shows the worst performance, as it only makes
local optimal selections.

Finally, the dynamic movement of UAVs as shown in Figure 3.14, and the
duration time is 100s. In this simulation, we assume that all the UAVs moved
at constant speed. At each time slot, the UAV-BS selects the direction from the
action space, which contains 7 directions, while the action space of the UAV-UE
contains 5 directions. Then, the dynamic movement maximizes the total long-
term QokE of all UAVs. To reduce the complexity, we select only one UAV-UE for
each fire area to illustrate the optimized trajectory of UAV-BS and UAV-UEs,

which is shown in Figure 3.14.
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Figure 3.14: Dynamic trajectory of UAVs when dynamic fire arrival from t=0 to
t=100s.

3.5 Conclusion

As conclusion, we developed a deep reinforcement learning approach for the mo-
bile U2U communication to maximize the Quality of Experience (QoE) of UAV-
UEs, through optimizing the locations for all UAVs, the additive video resolution,
and the transmission power for UAV-UEs. The QoE function was designed to
guarantee the smoothness of live video streaming among UAV-BS and UAV-UEs
in this U2U network. The dynamic interference problem is resolved by utilizing
the dynamic power control to achieve a higher achievable rate. Through our de-
veloped Deep Q Network and Actor-Critic methods, the optimal additive video
resolution can be selected to stream real-time video frames, and optimal positions
of the UAV-BS and UAV-UEs can be selected to satisfy the transmission rate
requirement. Simulation results demonstrated the effectiveness of our proposed
learning-based schemes compared to the Greedy algorithm in terms of higher QoE
with low latency and high video smoothness. Therefore, AC achieved 12% higher
achievable rate and QoE in the U2U communication scenario, because of integrat-
ing the advantages of the value-based and policy-based functions. However, since
AC has two neural networks and needs more parameters to update, AC is more
complex in terms of computation complexity compared to that of DQN. Thus,
in future research, DQN can be more preferable to use if the scenario is more
complex than our current scenario. DQN offers a novel and effective approach

to address the challenges and complexities of optimizing dynamics U2U commu-
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nication systems, which enhances the stability and convergence of the learning
process, leading to improved overall performance and able to handle different

scenarios, variations in network conditions and still achieve satisfactory results.
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Chapter 4

Inter-cell Interference Mitigation
for Cellular-connected UAVs

4.1 Introduction

UAV cellular network are widely deployed as a solution for providing large-scale
radio connectivity towards current needs. However, today’s cellular networks
aren’t built for aerial coverage, and deployments are primarily focused on provid-
ing excellent service to terrestrial users. These factors, combined with stringent
regulatory requirements, have resulted in extensive research and standardization
efforts to ensure the current cellular networks can reliably operate aerial vehicles
in the variety of deployment scenario. Therefore, there is a need to investigate
the performance of aerial radio connectivity in a typical urban area network de-
ployment using extensive channel measurements and system simulations. The
downlink radio interference play a key role, and yield relatively poor performance
for the aerial traffic, when load is high in the network. However, due to different
user type, i.e., flying and terrestrial user with high volume of them, the interfer-
ence become the challenging for each user to receive strong connectivity network.
Therefore, interference mitigation is a solution and will investigate in this chap-
ter. Further, we introduce and evaluate the novel downlink inter-cell interference
coordination mechanism applied to the aerial command and control traffic. Our
proposed coordination mechanism is shown to provide the required aerial down-
link performance increasing and degradation in the serving and interfering cells.

The contributions of this chapter are summarized as follows:

e We propose the dynamic muting scheme for moving UAVs and terrestrial
users (TUESs) in the downlink scenario of the cellular network. The UAVs
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and TUEs are uniformly distributed in the communication environment,
and the dynamic requests from them follow Poisson process in each time
slot.

e To guarantee excellent service among TUEs in the dynamic network, we
formulate a long-term problem to mitigate the interference level of each
UAV by muting cells, which can satisfy QoS requirements of TUEs and

UAVs over time and maximize sum-rate of TUEs.

e To further increase the throughput of downlink transmission based on cell
muting technique, we propose the dynamic muting and time-frequency
scheduling algorithm. The muting scheme mutes proper number of in-
terfering cells, and the time-frequency scheduling scheme allocates proper
physical resource blocks (PRBs) to TUEs and UAVs.

e To solve the aforementioned problem, we deploy value function approxi-
mation solution (VFA), Tabular-Q, Deep Q Network (DQN), and MOSDS-
DQN. Learning algorithms help the agent to select actions to maximize the
long-term throughput of downlink transmission. The linear muting scheme
from [119] is set as a benchmark as it using traditional optimization mut-
ing scheme to mitigate the inter-cell interference. Simulation results show
that our proposed DQN approach outperforms the linear muting scheme in
terms of higher throughput and lower interference. Furthermore, the pro-
posed MOSDS-DQN guarantees the throughput performance of TUEs with

increasing number of UAVs.

4.2 System Model and Problem

We assume that C' base stations (BSs) with M antennas are deployed at the
centre of C' cells, using Orthogonal frequency-division multiplexing (OFDM) to
serve the associated users, as shown in Figure 4.1. The OFDM has been used
for over a decade and proved its robustness in multi-carrier technologies. It uses
multiple smaller subcarriers to avoid the Inter-Channel Interference (ICI) and
Inter-Symbol Interference (ISI) over wireless networks, and adds a Cyclic Prefix
(CP) to demodulate the signal effectively on the receiver side [149].

According to [123, 4, 5], as show in Figure 4.2, the antenna element pattern
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Figure 4.1: Illustration of UAV-cellular network model and resource block scheduling.

A(0, ¢) for the mth antenna array is given by

A, ¢) = — min{ — [AE,V(Q) + AE7H(¢)] : Am}, (4.1)

where A v (0) and Ap (@) are vertical and horizontal radiation patterns of an-

tenna elements, respectively, and Ag v (0) is denoted as

Apy(0) = —min {12 (9 _ 900) , SLAV}. (4.2)

3dB

In Eq. (4.1) and (4.2), 6 is the vertical 3 dB beamwidth, SLAy is the side-lobe

level limit , and Ag y(¢) is denoted as

A u(6) = — min {12( ¢ ) ,Am}. (4.3)
$3dB

In (4.3), ¢ is the horizontal 3 dB beamwidth, and A,, is the front-back ratio.
Based on (4.2) and (4.3), the 3D antenna element gain for each pair of angles
(0, @) is calculated as

AG(ev ¢) = Gmam — min { - [AE,V(Q) + AE,H(¢)] ) Am}v (44)

where G4, is the maximum directional gain of the antenna element [5, 123, 24].
The above equations (4.1) - (4.4) provide the dB gain experienced by a ray with
angle pair (0, ¢) based on the effect of the element radiation pattern. The cth
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Elevation plane

Azimuth plane

Figure 4.2: Illustration of antenna pattern.

BS (c € C) operates in a single-user mode serving either a terrestrial UE (TUE)
with DL data or an UAV with Command and Control (C2) data. Both TUEs
and UAVs are assumed to be equipped with a single antenna. Each cell consists
of I uniformly distributed TUESs, while the total number of UAVs is J and they
are uniformly distributed over the entire network with radius Ry . The UAV
in a cell is prioritized and assigned with PRBs, as it requires critical C2 data
transmitted in a required data rate [4]. The distribution of TUEs is modelled
as Poisson Process and the remaining available PRBs should be allocated to all
TUES.

4.2.1 Mobility Model

In the 3D environment, we assume that the UAV flies at the fixed height and
speed, resulting in the mapping of the 3D environment into the 2D image with
W x W grids. Each grid has the side length of a meters, and the UAV follows
the center of each grid, creating the finite set of possible paths. Additionally, the
UAV moves in four directions: right, left, forward, and backward. As the move-
ment speed between grids is fixed, the latency experienced during the movement
remains constant due to the consistent travel time between grids. The UAVs and
UEs are distributed uniformly over the BS coverage area [62]. We consider the
regular urban grid deployment of building blocks captured by a Point Poisson
Process Process (PPP).
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4.2.2 Channel Model

We adopt two different 3GPP standards to model the channels for TUEs and
UAVs, respectively [4] [5]. Here, the UAV is assumed to be flying at a height where
a line-of-sight (LoS) link is ensured. The small-scale channel gain of the UAV
is modelled as Rician channel, while for TUEs, there are modelled as Rayleigh
channels [5, 2, 34]. The pathloss from the uth UE to the BS is written as

15.3 + 37.61og,(d3p), 1.5m < ht < 22.5m
PL{s. =13 28.0+22logy, (dsp) + 201og,, (£.), (4.5)

22.5m < ht < 300m

where f, is the carrier frequency, and d4,(t) is the distance between the uth user
and the BS. We assume that each BS uses the same transmit power and each user
has perfect knowledge of its channel state information (CSI), so that the signal
to interference plus noise ratio (SINR) ., ; between the cth cell and the jth UAV

1S written as

Pe|lbe; - Vel

= 17 ,
Nej+ ZkeC\c Pc”hk,u © Vial?

Ve, j (46)

where P, = 10%?% X Ag(0,¢), and Ppy is the downlink transmit power per
PRB. In (4.6), h. ; € CM*! denotes the channel vector between the cth BS and
the jth UAV, and hy, is the channel between the kth BS and the uth user in the
cth cell. The channel model h includes both the small-scale fading and large-scale
fading calculated by h = g.8'/2, where g and /3 are small-scale fading and large-
scale fading parameters, respectively. In (4.6), v, , = (gk,u)H (gku (gk,u)H)_l
represents the transmit zero-forcing precoding vector of the uth user in the cth
cell [54], and gy, € CM*! is the channel vector between the kth BS and the uth
user in the kth cell. In addition, N, ; is the additive white Gaussian noise at the

jth user.

4.2.3 User Association

According to [118], we consider the maximum Reference Signal Receive Power
(RSRP) in the user association policy, which widely used cell association strategy.
RSRP is defined as the linear average over the power contributions (in [W]) of the
resource elements that carry cell-specific reference signals within the considered

measurement frequency bandwidth [9]. However, if RSRP is calculated directly
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through the receiving signals, there may be a lot of noise. Thus, the RSRP is

denoted as

RSRP,, = P. — PLy,s). (4.7)

In the maximum RSRP-based user association, the user is connected to the
cell that provides the maximum RSRP. It is considered that the users can only
be associated with one BS. The policy allows the jth user to be associated with
the BS ¢ that has the strongest RSRP.

u;j = {u | max RSRP,,,Vj € J}. (4.8)

Based on (4.6), the achievable rate of the jth UAV is calculated as

RGY = B logy(1 + 7, 5), (4.9)

where B, is the bandwidth of the cth cell.

4.2.4 Latency Model

The overall packet loss is caused by downlink/uplink transmission delays, queue-
ing delay and backhaul delay [129]. The queuing delay and transmission delay
are two major bottlenecks against achieving the stringent latency constraints
[53]. These delay components are hardly controlled in a dynamic system, and
must control to be at very minimum [53]. The total downlink latency at the BS

frans and queue latency 72 [129),

is the sum of the downlink UAV transmission T, o

C?J
which is written as

total __ _trans sch
Teg = Tey T Tej (4.10)

Given the achievable date rate, the corresponding downlink transmission of
jth UAV 7774 is given by [69]

L
e p—— (4.11)
i) Rc,j

where L is the data size of the required of jth UAV, in B unit [119, 69].
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4.2.5 Inter-Cell Interference Coordination (ICIC) for Macro-
cell Muting

To improve received SINR of the UAV, the cells coordinate PRBs among TUEs

and UAVs. The interfering BS ¢ € C’ leaves the PRBs blank/muted, allowing

the UAV-serving BS to schedule its transmission within the same frame shared
with TUEs. Therefore, Eq. (4.6) is rewritten as

_ Pellhej - ve,ll?
- = ,
Nej+ X pecnengor Pellbe,y = Viull?

where C” C C is the set of cells being muted, and the second term in the denom-

Ve, j (4.12)

inator is the total interference from other cells. The SINR between the cth cell
and TUE is given by

Pollhey - veull,
New + ZkeC”\c,kQC’ PCHth,u : Vk,u||2'
In (4.13), h., € CM*! denotes the channel vector between the cth BS and the
uth user. Based on Eq. (4.12) and (4.13), the date rate of the uth TUE is defined

as

Ve,u = (413)

R:." = Belogy(1+ veu)s (4.14)

where B, is the bandwidth of the cth cell and the data rate of the jth UAV is

defined as

R = Bej logy(1 +7c,5). (4.15)

In (4.15), B.; is the fraction of bandwidth allocated to user j at cell ¢, with
respect to the available bandwidth.

4.2.6 Antenna Beam Selection

When assuming the antenna elements are mounted on the UAV at the right
spacing and angle/orientation, antenna selection with two or more directional
antenna elements is equivalent to a simple beam selection [119]. For example, the
UAV rotates its fuselage in the azimuth plane while keeping the right direction,
then 1 or 2 antenna elements are sufficient to generate a ‘beam’ towards the
serving cell. If degrees of freedom of the UAV are more restricted, at least 4

antenna elements need to be mounted to provide four beams in the azimuth plane.

86



4.2. System Model and Problem

Thus, we assume that antenna beam selection of the UAV is applied only in the
azimuth plane, and an omnidirectional elevation radiation pattern is considered.
An antenna beam radiation pattern is modelled as a sinc()? function, with -3 dB
beam-widths of approximately 90°, or 50° in the azimuth plane with six beams
[119]. The modelled beam patterns provide +6.6 dBi gain in the main direction
and -3 dB gain in the front-to-side lobe attenuation according to [119], which can
be used to compensate for the non-ideal orientation and shape of beams [119].
As shown in Figure 4.3, a simple setup with a grid of 2, 4 or 6 fixed beams is
used (fixed relative to the UAV fuselage) to emulate a practical antenna selection

mechanism.

Direction of travel Direction of travel Direction of travel

2 x 90° beams 4 x 90° beams 6 x 50° beams

(a) (b) (©)

Figure 4.3: Modelled antenna beam configurations for the UAV.

4.2.7 Downlink Resource Block Scheduler

LTE transmission is segmented into frames, each one consists of 10 subframes,
and each subframe is further divided into two slots. Each slot is 0.5 ms, so that
the total time for each frame is 10 ms. Each time slot on the LTE downlink system
consists of 7 OFDM symbols. The flexible spectrum allows the LTE system to
use bandwidths ranging from 1.4 MHz to 20 MHz, where higher bandwidths are
used for higher LTE data rates. The physical resources of the LTE downlink
can be illustrated as a frequency-time resource grid, as shown in Figure 4.4. A
Resource Block (RB) has a duration of 0.5 ms (one slot) and a bandwidth of 180
kHz (12 sub-carriers). Each RB has 84 resource elements in the case of a normal
cyclic prefix and 72 resource elements for extended cyclic prefix.

In the RB scheduler technique, there are several types of scheduling algo-
rithms, such as Round Robin (RR) [171] and proportional fairness (PF) [29]. RR

scheduling is a non-aware scheduling scheme that allows users to take turns in
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using the shared resources (time-RBs), without taking the instantaneous channel
conditions into account. The radio resources in RR are assigned equally among
all users, which compromises the throughput performance of the system. While
PF is defined as the ratio of the average data rate to all users to maintain the
equality of fairness [29]. To solve the problem, dynamic scheduling is introduced
to schedule the available data for each Transmission Time Interval (TTT), which
maximizes the scheduling gains. As shown in Figure 4.4, PRBs are allocated to
sub-bands according to its channel and resource allocation models. However, the
challenge is that it requires frequent coordination for exchanging control signals

between cells, which increases the overhead among cells.

4.2.8 Problem Formulation

The objective is to maximize the throughput of TUE networks by selecting opti-
mal actions in A’ subject to the UAV’s QoS requirements (i.e., reliability). Thus,

the optimization problem is formulated as

co C U

):  max (= ”RTUE 4.16
(PL): max 3 226 (i, f) (4.16)

F
s.t.pr <P, p;r>0, (4.17)

=1
RNV, f) =Ry, VjieJ (4.18)
RIVEG, f) = Rp”, Yuel (4.19)
gt e [0,1]. (4.20)

where 8¢ € [0, 1) is the discount factor determining the performance accumulated
in the future reward. When 8* = 0, the agent only concerns about the immediate
reward.

The optimization relies on the selection of actions in A; according to the cur-
rent and historical observations O, with respect to the stochastic policy 7 (A" | S*).
The optimization problem aims at maximizing the total long-term reward in con-
tinuous time slots with respect to the policy 7 that maps the current state in-
formation s, to the probabilities of selecting possible actions in A’. The state
St contains the set of instantaneous and cumulative data rates of both UAVs
and TUEs, and the agent selects a specific action A* € A(S*) that determines
the index of cell(s) being muted. The throughput form of TUEs in (4.16) and
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(4.19) should be the same, Eq. (4.17) in P1 means that the sum of power of
cach sub-frame should not larger than the maximum transmit power, ps is the
power of each sub-frame, and F' is the total number of sub-frames. Eq. (4.17)
guarantees the allocation of power [152] used by all total selected frames, F' in
maximum transmit power threshold at the BS, P, , and Eq. (4.18) and Eq. (4.19)
guarantee the transmission rate for UAVs and TUEs, RY/!V and RIVE | respec-
tively. The optimization problem aims at maximizing the total long-term reward
in continuous time slots with respect to the policy 7w that maps the current state
information s; to the probabilities of selecting possible actions in A*. The state
S* contains the set of instantaneous and cumulative data rates of both UAVs and
TUEs, and the agent selects a specific action A® € A(S?) that determines the
index of cell(s) being muted.

To solve the problem, we consider muting schemes using reinforcement learn-

ing (RL), which are introduced in detail in the next section.
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Figure 4.4: Dynamic PRB scheduling for UAVs and TUEs.

4.3 Muting Optimization Scheme using Rein-

forcement Learning

Since the channel and locations of UAVs and TUEs are changing over time also
different muting and dynamic scheduling schemes are required in continuous time
slots, the problem in P1 cannot be solved by a traditional optimization method,

as the formulated optimization problem is a non-convex and long-term problem.
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Therefore, in this section, we design several Reinforcement Learning (RL) algo-
rithms to solve the problem in P1. The RL agent learns the optimal mapping
from the input states to select the resource allocation action to maximize the

long-term throughput.

4.3.1 Tabular Q-Learning

Consider the Q-agent deployed at the central unit to optimize the service provision
for both UAVs and TUEs. To optimize the long-term reward, the agent first
explores the environment. Let s € S, a € A, and r € R denote the state, action,

and reward, respectively.

State Representation

The current state S* corresponds to a set of current observations. The state of
the system is denoted as S = [>_ Rrug, », Ruav], where Rryp is a set of data

rate of TUEs and Ry 4y is a set of instantaneous rate of UAVs.

Action Space

Q-agent selects action A from set A. The action is denoted as ALY, = {N,},
where N, is the index of muting cells. To ensure the balance of exploration and
exploitation actions of the agent, e-greedy (0 < € < 1) exploration is deployed.
At the tth TTI, the agent randomly generates a probability p! to compare with
e. If the probability p! < e, the algorithm randomly selects an action from the
feasible actions to improve the value of the non-greedy action. However, if p! > e,
the algorithm exploits the current knowledge of the Q-value table to choose the

action that maximizes the expected reward.

Rewards

At the beginning of each TTI, the Q-agent observes the current state S* and
selects the specific action A" € A. After performing the selected action A’, the
agent receives a reward R and observes a new state S'™!. The optimization
goal is to maximize the long-term throughput of TUEs while guaranteeing the
quality of service (QoS) of UAVs, which is defined as:

U
Reward{" =Y "R, -1[Ry; > Ry, (4.21)
u=1
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where,

1[R.; > Rrp) =1[Ry > Rrp] N1 [R; > Ryyl . (4.22)

In Eq. (4.22), 1[x] is the indicator function, 1[z] = 1 when x is true, otherwise,
1[z] = 0, and N is a logical and operation function. In the logical and operation
function, 1[z] N'1[y] =1 as z and y are true, otherwise, 1[x] N 1[y] = 0 [77].

In tabular Q, the state to action mapping is learned through value function
Q(s, a), which consists of a scalar value for all state and action spaces. The action
that has the maximum value is selected from A. To dynamically optimize the
number of muted cells, the function learns the optimal policy 7* and optimizes
the Q-table. The agent updates its Q-table using the immediate reward R*! and

the next state-action value Q(S*!, a), which is given by

Q(St7 At) = Q(St7 At)+

a [RtH +7 mea}Q(St“, a) — QS At)]. (4.23)

In Eq. (4.23), @ € (0,1) is the learning rate, and v € [0,1) is the discount
rate that determines how much the current reward affects the future value. In
each TTI, the agent selects the action with the highest probability with proba-
bility p! > €, or vice versa. The learning rate «, most importantly, is set to be
a small constant to guarantee stable convergence, as the reward can be biased
due to unknown and unpredictable distribution of the observed states. The im-

plementation of cell muting using tabular-(Q method is shown in Algorithm 3.

4.3.2 Linear Value Function Approximation

However, the Tabular-Q) requires large space to store state-action value, and needs
to update each parameter to achieve convergence. To address these issues, we
consider a linear value function approximation (VFA) method. VFA uses a ‘Value
Function’ approximator to obtain a sub-optimal policy, but its efficiency depends
on the deployed approximation function, such as Linear Approximator (LA), Deep
Q-Learning (DQN), and decision trees.

LA approximates the value function Q(S*, A") by

Q(S!, AY) = Q(S, A, wt), (4.24)
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Algorithm 3: : Tabular Q-Learning/Linear VFA to optimize cumula-
tive terrestrial users’ throughput

Algorithm hyperparameters: a € (0,1],7 € [0,1),€ € (0, 1]

Tab-Q: Initialize Q-table Q(s, a) VFA: Initialize w
for Iteration < 1 to I do

Initialize s' by executing a random action A°;

UAVs identify the BS with the highest RSRP and associate with it.
for t < 1 to T do

if p. < e

Randomly select an action A from A;

else
Tab-Q: select A = argmax@ (S, A);
AcA
VFA: select A" = argmaz@Q (S, A, ,w);
AcA

The agent performs A* and mutes the selected cells.

The agent observes S™* and calculates R using Eq. (4.21).
Tab-Q: Update Q(S, A) according to Eq. (4.23).

VFA: Update w according to Eq. (4.31).

end

Determine all active UEs (TUEs and UAVs) using
Bernoulli process.

Determine associate cell UEs and active UEs matrices.

Update the queue matrices.

Calculate SINR and transmission rate.
end

where w! is the weight vector. The objective is to minimize the mean-squared
error between these two values, given by
J(w') = E,[(Q(S", 4" — Q(5", A, w"))?). (4.25)

To obtain the optimal policy, w' is updated by stochastic gradient descent (SGD),

which is calculated as

1 N =[Q(S!, AY) — Q(S7, A", w'
5 Vwd (W) =[Q(S7, AT) — Q(S7, A%, wh)] (4.26)
VWQ(St7 At? Wt)7
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and
Vvw! = a[Q(S", AY) — Q(S*, A, wh)]V.Q(S!, AL, wh). (4.27)

In LA, Q(S!, A', w') is represented as a dot product of feature vector x(S¢, A*)

and weight vector w', which is denoted as

Q(St, A, wh) =x"(S!, Ahw' = ixk(St, Abywt, (4.28)
and ] k:1_
x; (ST, Af)

w5t = [ 24 (4.29)
Xk (S0, AY)

where x(S?, A") corresponds to the entire state-action space. The current action
is selected from the vector Q(S*, A*, w') in Eq. (4.28), following the e-greedy
policy, which is the same as that of tabular Q-learning. The gradient descent in
Eq. (4.27) is calculated as

VwQ(Sh, Al wh) = Vi [x7 (S, AYw'] =x(S!, AY), (4.30)

and

Vw = a[Q(S!, AY) — Q(S, A, w)x(S?, AY). (4.31)

The implementation of cell muting using VFA method is shown in Algorithm 3.
However, the basic linear tabular- QQ is not suitable, as the state-action space is so
large and are increasing with the number of cell, and also function approximation
technique is unable to train and get the optimal solution. Therefore, we consider
DQN algorithm as a tool to solve large state-action space to find optimal cell

muting solution to mitigate interference between users.

4.3.3 Deep Q-Network

When large number of cells, TUEs, and UAVs exist in the network, the state-
action space increases exponentially. To address this issue, DQN is used to update
the network’s weights. The DQN algorithm for P1 is presented in Algorithm 4.
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Algorithm 4: : DQN to optimize cumulative terrestrial users’ through-
put
Algorithm hyper-parameters: « € (0,1],7 € [0,1),¢e € (0,1]

Initialize replay memory M, primary Q-network 8, and target Q-network
0

for e < 1to I do

Initialize s! by executing a random action a’;

UAVs identify the BS with the highest RSRP and associate with it.
for t < 1 to T do

If p. < € : Randomly select action a® from A;

else select a' = argmaz@ (S, a, 6);
a€A

Agent performs the selected A and mutes cells.
Agent observes S'™! and calculates R'**.

Store transitions (S*, A', R, S“*1) in replay
memory, and sample random minibatch of
transitions (S*, A*, R', S**1) from M.
Calculate Q(S™!, a, 8) according to Eq. (?7?).
Calculate gradient descent using Eq. (4.31).

Update 8 every K steps.
end

Determine all active UEs (TUEs and UAVs) using
Bernoulli process.
Determine associate cell UEs and active UE matrices.

Update the queue matrices.

Calculate SINR and transmission rate.
end

4.3.4  Muting Optimization Scheme and Dynamic time-
frequency PRB Scheduling (MOSDS)

In this section, solutions on solving interference among TUEs and UAVs while
maximizing the TUESs’ capacity is proposed. Dynamic requests from both TUEs
and UAVs can cause higher interference, especially in a high dense urban area. To
deal with this issue, we consider a MOSDS-DQN to maximize the total capacity
of TUESs, mitigate the interference, and mute the cell causing high interference.
The effect of blank subframes is modelled by assuming that the downlink

transmission from the corresponding cells is muted in the corresponding frequen-
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cies. The main component is to suppress the blank sub-frames of the interfering
cell, and the Almost Blank Sub-frames (ABS) scheme is applied according to
ICIC Release 10 [90]. However, to reduce interferences, further-enhanced ICIC
(feICIC) solutions are implemented in the system, which pre-allocate the packet
in frequency and time domain for UAVs and TUEs as visualized in Figure 4.1
and Figure 4.4.

In this model, the available frequency bandwidth for the DL transmissions
is divided into F' sub-bands indexed by f = 1,2,...,F and the time interval
is slotted into transmission time intervals (TTIs) indexed by i = 1,2,..., N as
shown in Figure 4.4. The time-frequency resource grid consists of F' x N RBs.
Therefore, the date rate of the uth TUE is defined as

RLP = By logy(1 +7eu), (4.32)

where Bf ; is the bandwidth of the RB (7, f) at the cth cell and the data rate of
the jth UAV is defined as

R} = By logy(1+ e, )- (4.33)

For dynamic resource scheduling, we mainly consider efficient dynamic schedul-
ing, where different data sizes and requirements are considered in this scenario.
As proposed in [4], the UAV data rate and latency requirements need to satisfy
60-100Kbps and 50ms. Specifically, for the resource allocation problems with dif-
ferent time and frequency requirements, quantized time-frequency resource block
allocation scheme is considered, as shown in Figure 4.5. First, the controller clas-
sifies different services with the specific QoS requirements according to the service
characteristics and the current network congestion. Second, according to the ad-
mission control policy, the resource block of each scheduled UAVs and TUEs
are continuously mapped to the specific time and frequency domain. Finally,
based on the current muting scheme, data sizes, and previous learning experi-
ence, dynamic resource scheduling for UAVs and TUEs are considered to reduce
interference. Thus, to maximize TUE throughput and guarantee the reliability
and latency of UAVs, optimizing both of the scheduling policies and cell muting
selection are considered.

In addition, the omnidirectional antenna [119] is utilized in the algorithm to
help mitigate the interference efficiently while maximizing the capacity of both
TUEs and UAVs. It is assumed that each UAV transmits 1250B every 100ms
[119]. Authors in [119] showed that TUEs could achieve the lowest capacity loss
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Figure 4.5: The dynamic scheduling design for MOSDS-DQN.

when the UAVs were scheduled to send information at every 10th and 50th TTI.
However, the results are different when they have different number of UAVs in
different scenarios, i.e., high load scenario. In real scenarios, it is difficult to
predict the number of users. Thus, the main focus in this section is to jointly
optimize the number of muting cells and UAVs’ scheduling schemes, and the

optimization problem is formulated as

oo C U

P2 max (= RTUE 4.34
(P e 33530 ORI) (430
s.t.Np, ﬂNBj =g, Yu#j, (4.35)

Lu
> Np, Q. Y(ul), (4.36)

=1
RIM (i, f) > BRIV, Vjied, (4.37)
RIVE(i, f) > RIVP, Yuel, (4.38)
Bt e o,1]. (4.39)

where 8 € [0, 1) is the discount factor determining the performance accumulated
in the future reward. If 3* = 0, it means that the agent only concerns the
immediate reward. Eq. (4.35) shows a RB should always be allocated to one
user. The scheduler length Nz, in Eq. (4.36) should allocate no more than the
maximum queue length Q). Next, Eq. (4.37) and Eq. (4.38) ensure a good service
rate for UAVs and TUEs, respectively. As the arrival of UAVs cause a trade-off

between available PRBs and interferences among all users, it is important to
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consider an optimal trade-off among the RSRP, the group of UAV’s RB, and
muting scheme, which further motivates us to use the learning algorithms to
jointly optimize long-term throughput of all users. The DRL agent then learns

the optimal mapping from the input states to select the resource allocation action.

State Representation

The current state of the system includes commutative throughput of TUEs and
UAVs, given by S = {ZjV:TIU P RIVE ST R{AVY, where Ryyp is a set of data rates
of TUEs and R4y is the instantaneous rate of UAVs.

Action Space

Q-agent will choose an action a from set A. The dimension of the action set
is calculated as A = N,, - t,. The action is denoted as A;2 = {N,,.ts}, where
N, is the number of muting cells and ¢, is the slice time allocation for UAVs to

transmit data.

Rewards

After performing the selected actions, the accumulated reward function is given
as

U
Reward” = " R, -1[Ru; > Ry). (4.40)

u=1

The MOSDS-DQN algorithm is shown in Algorithm 5.

Figure 4.6 shows the proposed network architecture, where the current state
is input into the neural network for the DQN algorithm. Next, an RNN-based
GRU network is used to approximate the value function of the DRL algorithm.
The GRU can capture the correlation between the state and action over time,

and helps DRL to select the optimal actions.

4.3.5 Computational Complexity Analysis

In this section, we evaluate the computational complexity of one iteration of
our proposed algorithm with respect to the size of the network, namely, the
number of UEs and available resources. The computational complexity of the
DQN algorithm, including DQN learning architecture, the action selection of the
agent, and the downlink transmission, is given by O(mlogn + 24 4+ N;N}.), where
m is the number of layers, n is the number of units per learning layer, and A is

the number of action.
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Algorithm 5: : MOSDS
Initialization «, €, M, 6, and 6.
UAV identifies the highest RSRP and associate with it.
Receive muting cell ID from Algorithm 4 and the packet scheduling.

Determine all active UEs (TUEs & UAVs) using Bernoulli process and
time packet scheduling.

Determine associate cell UEs & active UEs matrices.
for e« 1tol do

Initialize s! by executing a random action a';
for t < 1 to T do

If p. < ¢ : Randomly select action a' from A;
else select a® = argmazx@ (S, a, 6);
acA

for PRB; + 1 to I do
for activecell, < 1 to C do

Update the queue matrices.
Calculate pathloss.
Calculate Antenna Gain.
Calculate received power.

Calculate the channel states.

Calculate SINR and transmission rate.
end

end

end
end

4.4 Numerical Results and Evaluation

In this section, we examine the effectiveness of our proposed muting optimization
schemes using DQN algorithm. The network consists of 7 cells covering 1500m
x 1500m area. In the simulation, the UAVs are distributed with a fixed flying
height. The height of all TUEs is 1.5m, and the height of all UAVs is assumed to
be of 120 m following UK regulations [3]. Both TUEs and UAVs are assumed to
equipped with a single antenna. The TUEs and UAVs in each cell are uniformly
distributed and the maximum number of UAVs in the entire network is 10. We
assume that all users move within its corresponding cells. When a TUE reaches
the boundary, it turns back and moves in a random direction. The network pa-
rameters for the system are shown in Table I, and follow the 3GPP specifications

in [4], [13], and [177]. The proposed algorithms were implemented through the
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Figure 4.6: The learning network architecture for MOSDS-DQN

Python 3.7 programming tool, which is a powerful multi-purpose programming
language with the TensorFlow framework in conjunction with multiple python
packages and libraries, like keras and sklearn, because of their advanced and
helper functions that make it much easier and faster to write DRL algorithms,
due to the familiarity of the researchers with the tool. The results are obtained
by averaging over 100 episodes, with each episode containing 100 TTTIs.

In the downlink, the TUE traffic pattern is modeled as File Transfer Protocol
(FTP) sessions [119], where both packet size and arrival time follow Poisson
distribution. The downlink scheduler prioritizes the UAV transmission and C2
traffic over the FTP traffic, meaning that the BS schedules the UAV transmission
first, and then the remaining TUEs and resources are divided equally among the
connected TUEs that have FTP data to receive. If there is no downlink data to
be transmitted, users are assumed to be in an idle mode. Otherwise, the user
switches from the idle mode to a connected mode. Once the data buffer is clear,

the user returns to the idle mode.

4.4.1 Muting Optimization Scheme using Deep Q-Learning

Figure 4.7 shows the reward of the dynamic muting scheme for different learning
algorithms. From the simulation results, it is clearly shown that DQN outper-
forms both VFA and Tab-Q. The convergence of both VFA and Tab-Q are slightly
faster than DQN, but unable to obtain the maximum reward as of DQN. Tab-Q

fails to perform exploitation of each action in continuous time slots as it is fixed
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Table 4.1: Simulation Parameter

Parameters Value
Transmission power, P, 30 dBm
Bandwidth, B 3 MHz
Noise power N, -142.39 dBm
Center frequency, f. 2 GHz [61]
O3an 65°
P3dn 65°
SLAy 30dB
Am 30dB
Antenna Gain, G4 8dbi
UAV Threshold, RYAY | 1Mbps [169]
UAV Threshold, RTYF | 20 bps [94]
Learning Rate 0.1, 0.01
Discount Rate 0.8
Replay memory 1000

in a suboptimal strategy [81]. In addition, the VFA’s target network might not
fully works due to features and high number of state-action, which causes VFA
cannot perform better exploration over time. DQN can explore and exploit ac-
tions, which enable it to obtain the maximum state-action value. Moreover, the
convergence analysis of the reinforcement learning algorithms has been proven
in [77],[80], so that the agent of the Q-learning algorithm can converge to the
optimal Q value.

Figure 4.8 shows how dynamic muting actions affect the total throughput for
all TUEs and UAVs via DQN muting scheme over time. In Figure 4.8, “Reward”
represents the cumulative reward, “UAV” represents the total throughput for all
UAVs, “TUE” represents the total throughput for all TUEs, and “Mute Cells”
represents the number of muting cell in each time slot. At the early stage of
learning, DQN learns to be adapted to the environment based on the observations,
and the reward continues increasing. When ¢ = 155,156,189, and 21617, the
rewards drop to zero due to the difficulties in choosing the correct muting number
that suits the current environment, which leads to the transmission rate of UAV
not satisfying the threshold in Eq. (4.18). As time passes, DQN can predict and
learn how to maximize the reward. However, the system can become unstable

when the epsilon-greedy parameter is less than the threshold, namely, p, < €, as
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Figure 4.7: Rewards performance comparison between different learning algorithms.

it directly selects a random action and decreases the performances of TUE. When
the algorithm converges, the performance of all TUEs and UAVs maintain at the
maximum value with an optimized number of muting cell.

Figure 4.9 plots the convergence performance of DQN with different mitiga-
tion schemes [119]. For simplicity, “Highest benchmark” represents the linear
muting scheme with 3 strong interfering neighboring cells are muted to allow
UAVs to transmit the data without interference from TUEs, and “Lowest bench-
mark” shows the performance of the linear muting scheme when the system mutes
a single neighboring cell with the highest interference, which can mitigate the
interference between UAVs and TUEs. The “Highest benchmark” and “Low-
est benchmark” use linear mitigation schemes in [119]. In [119], the “highest
benchmark” has muted a maximum of 3 strongest RSRP interference signals to
cancel the interference as following by the 3GPP Release-13 model [119, 71].
The DQN-based muting scheme shows 48% improvement compared to “Highest
benchmark”. It is proved that the DQN scheme can adequately select the correct
number of muting cells to reduce interference, even though the proposed system
changes dynamically. In addition, the DQN is able to perform in a dynamic sce-
nario with a varying number of UAVs and TUEs, and select proper actions for the
agent to maintain a higher data rate of TUEs. Compare to the lowest benchmark
scheme, DQN improves nearly 80% of the overall data rate performance.

Figure 4.10 plots the interference comparison analysis for DQN-based mut-
ing and linear muting schemes in [119]. It can be seen that the proposed DQN

muting scheme outperforms the Highest benchmark scheme. The result proves
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Figure 4.8: Dynamic action influence the rate for all TUEs and UAVs over time.

that the DQN muting scheme can accurately choose the cell muting index to re-
duce the interference in dynamic environments, and further maximize the average
throughput.

Figure 4.11 and Figure 4.12 show the throughput performance of TUEs and
UAVs in different situations, respectively. From Figure 4.11, we observed that
when the number of TUESs increases, the interference increases, and more num-
ber of TUEs and UAVs cannot satisfy its minimum transmission requirements.
From Figure 4.12, we can obtain that when the number of TUEs is small, UAVs
achieve high throughput. However, when the number of TUEs increases up to 70,
the average capacity of UAVs decreases because of high interference, and more
UAVs cannot satisfy its minimum transmission requirements. It is because the
muting schemes try to decrease the number of muting cells to let a high number
of TUEs transmit data, which leads to the UAVs being unable to satisfy its min-
imum requirements of transmission rate. Also, high number of TUEs causes less
bandwidth allocated to UAVs, which further leads to lower throughput of UAVs.
In addition, the performance of the UAV with the Tab-Q algorithm decreases
dramatically when the number of TUEs increases. This is because Tab-Q with
high dimensional state space requires large memory, and has difficulty in selecting

proper actions to achieve optimal results.
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Figure 4.9: Average TUEs’ throughput comparison between DQN-based muting
scheme and linear muting.

4.4.2 Muting Optimization Scheme and Dynamic PRB
Scheduling (MOSDS-DQN)

This section evaluates the proposed muting optimization scheme and dynamic
PRB scheduling with MOSDS-DQN algorithm. Figure 4.13 shows the conver-
gence performance of the MOSDS-DQN muting scheme. For instant, “MOSDS-
DQN” represents DQN muting optimization scheme and dynamic PRB schedul-
ing. It is observed that the MOSDS-DQN algorithm performs better than the
DQN muting scheme. However, the MOSDS-DQN scheme shows the lowerst con-
vergence speed. It is because MOSDS-DQN muting scheme has larger state and
action space, and needs to select more proper actions to mute cells and allocate
PRBs to UAVs and TUEs.

Figure 4.14 shows the throughput performance of dynamic actions over time.
In Figure 4.14, “Reward” represents the cumulative reward, “UAV” represents
the total throughput of all UAVs, and “Mute Cells” represents the number of
muting cells each time slot. Figure 4.14a shows the muting cell action selected
to maximize the overall throughput. At the beginning of the learning process,
the reward continues increasing, it is because the algorithm is learning the envi-
ronment based on previous experience. When the learning algorithms converge,
proper number of muting cells is selected to decrease the interference and im-
prove the throughput. However, in some time slots, the performance of the UAV

severely decreases and cannot satisfy the minimum QoS because of some factors,
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Figure 4.10: Comparison of interference analysis between DQN-based muting scheme
and linear muting.

160

140

(=3 [\
(=] (=]
T T

Average TUE Capacity (kpbs)
(o]
(=)

60 -

40 DQN
-=-Tab-Q

20

0

21 42 70
Total maximum number of terrestrial user

Figure 4.11: Average capacity rate for TUE based on different number of TUEs.

such as the data size of UAV, time allocation, and bandwidth allocation.

Figure 4.14b shows how the BS sends data to the UAV in 100ms. The network
environment condition and the location of UAV play important roles in MOSDS-
DQN to plan the number of data pack of UAV transmission. For example, if
the UAV is far from the cell, the frequency of sending UAV’s data pack should
be reduced to decrease the transmission failure. Thus, less data pack of the
UAYV is transmitted, and less PRB is allocated to the UAV, which decreases the

interference and improve the throughput performance of TUEs.
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Figure 4.13: Rewards performance comparison between different schemes.

In the early phase of Figure 4.14c, the high-frequency range is used frequently,
and it causes the performance of both UAVs and TUEs to decrease because of
high interference. When the learning algorithms converge, proper frequency range
for each PRB is selected to satisfy the QoS requirement. Therefore, the MOSDS-
DQN algorithm is able to provide an effective way to select proper number of cells
to mute and allocate proper PRBs to TUEs and UAVs, especially in different
scenarios.

Figure 4.15 plots the interference comparison analysis for DQN-based muting
and MOSDS-DQN schemes. It can be seen that the proposed MOSDS-DQN mut-
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Figure 4.14: Dynamic action influence the reward for all UAVs in each episode.

ing scheme outperforms the DQN scheme. The result proves that the MOSDS-
DQN muting scheme can accurately choose the cell muting index and allocate
proper PRBs to TUESs to reduce interference in dynamic environments.

Figure 4.16 plots the average capacity rate for all TUEs with different number
of UAVs based on muting schemes via DQN and MOSDS-DQN. It is observed

106



4.4. Numerical Results and Evaluation

2.50E+05

DQN —~—MOSDS-DQN

2.00E+05

1.50E+05

rence (dBm)

& 1.00E+05 |

Inte

5.00E+04

0.00E+00
0 100 200 300 400 500 600 700 800 900 1000 1100

Episodes

Figure 4.15: Comparison of interference analysis between DQN-based muting scheme
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that when the number of UAVs is less than 4, both algorithms increase average
capacity rate. However, when the number of UAVs increases from 4 to 5, the
DQN algorithm is unable to increase average capacity. It is because it cannot
select proper actions in a large action space. When the scenario becomes more
complex, the algorithms need to balance the performance between UAVs and
TUEs. In the simulation, UAVs have higher priority, thus, the performance of

TUESs decreases tremendously when a high number of UAVs exist. Furthermore,

107



4.5. Conclusion

when the number of UAVs increases, the performance of MOSDS-DQN is higher
than DQN.

4.5 Conclusion

As conclusion, the downlink inter-cell interference coordination mechanism is de-
veloped to mitigate the interference between BSs and TUEs while satisfying the
rate requirements of UAVs. Dynamic muting optimization scheme and dynamic
scheduling of PRBs were proposed to maximize the throughput of all users, and
mitigate the interference by muting the cell(s) that caused high interference. The
proper muting technique with proper number of muting interference cell and the
time-frequency scheduling schemes to allocate the PRBs of TUEs and UAVs guar-
antee excellent service and satisfy QoS among TUEs and UAVs in long time slot.
Simulation results showed that our proposed learning-based schemes achieved
80% and 48% performance improvement of throughput compared to the lowest
and highest linear muting algorithms, respectively. Furthermore, the proposed
MOSDS-DQN also showed 18% improvement compared to DQN algorithm.
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Chapter 5

Radio Mapping-aided Beam
Alignment for mmWave UAVs

5.1 Introduction

Beam forming alignment is vital component in millimeter wave (mmWave) wire-
less communication system. However, the usage of cellular-connected unmanned
aerial vehicle (UAV) especially in dynamic scenario will cause challenges in con-
ventional beam sweeping approach, especially when has a large overhead due to
the high mobility and autonomous operation of UAVs.

In this chapter, we propose the deep reinforcement learning (DRL)-based
framework for UAV-BS beam alignment using the hDQN in the 5G radio setting.
Fast mmWave beam alignment could enhance the reliability and decrease the la-
tency of 5G and beyond wireless systems for both UAV-UAV and BS-UAV com-
munications [34]. Especially, the availability of UAV position information at lower
frequencies (following the works [143, 145]) may also provide scope for reliable
communication in addition to increasing throughput. Position information for
fast beam alignment has been recently studied in mmWave systems [142, 146, 19].
The authors in [146, 19] proposed the learning-based beam training schemes us-
ing MAB approach, by building the database of finite beam-pairs useful for beam
training based on vehicular position information. The key idea is that the ML-
based approaches can effectively use the position information for fast mmWave
beam alignment in an online manner. High mobility and autonomous operation
of UAVs also requires frequent beam realignment and can be jointly optimized
with reliable connectivity effectively using RL-based beam training.

The authors in [109] use radio map-based channel propagation environment

information for efficient positioning of UAV. Radio map can be helpful in im-
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proving learning and real-time update when there are sufficient changes in the
radio source location (e.g., moving beyond the decorrelation distance power and
others [26]). In such scenarios, radio maps that describe average outage chan-
nel probability, channel gains or signal-to-interference-plus-noise ratio (SINR)
[168, 26, 179, 52, 109] help to extract such features needed to enhance the infor-
mation needed to reduce training overhead and improve converges time. Radio
map refers to the geographical signal power spectrum density, formed by the su-
perposition of concurrent wireless transmissions, as a mathematical function of lo-
cation, frequency and time. It contains rich and useful information regarding the
spectral activities and propagation channels in wireless networks [26]. This shows
that radio maps can be useful to better capture the spatial correlation informa-
tion and decrease the overall learning convergence time. Recent works [153, 154]
used channel knowledge map and the UAV location information, namely channel
path map and beam index map, to derive network efficiency. However, the work
assumes using the perfect channel which may be impractical for real-world envi-
ronments. Therefore, we model the BS - UAV beam pair alignment problem using
hDQN and convolution neural network radio mapping (CRM) with the aim to
reduce the beam search complexity for UPA configurations. We consider the up-
link environment where both BS and UAV beam direction pairs act as parameters
of the learning problem, so that BS can be the receiver and the learning agent.
The spatial position grid arrangement of the antenna elements that dependent on
landmark configurations is designed by using vertical and horizontal angular, and
configuring 360° of coverage area can be effectively exploited alongside the UAV
position. The spatial information is considering mmWave beams with different
beam width resolutions in a hierarchical manner during beam-training. Our sim-
ulations showed that the hDQN approach reduces the beam training overhead by
63% from our prior DQN method.

The contributions of this chapter are summarized as follows:

o We model the spatial position context-information-beam-mapping to solve
beam-pair alignment problem in uplink mmWave MIMO communication
system. The BS serves a UAV using 5G new radio (NR) in the communi-

cation protocol.

e We solve the BS - UAV beam pair alignment problem using hDQN. Dur-
ing uplink communication, the proposed method optimizes the BS - UAV
beam-pair alignment generically across any UAV grid position inside the

BS coverage area.
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Figure 5.1: Ilustration of System Model

e We develop the radio map as input to the 360° spatial-information-beam-
mapping to give additional information to hDQN and help improve the

convergence time.

e To maximize the performance of UAV, we maximize the beam-forming gain

for every communication requests by using CRM-hDQN.

e We compare our CRM-hDQN-based proposed approach with vanilla method
and hDQN beam alignment under ideal channel conditions. We analyse
these approaches over different coverage areas and antenna configurations.
Our results shown that CRM-hDQN-based approach achieves the optimal

beam alignment with reduced number of training iterations.

5.2 System Model

Figure 5.1 considers a cellular mmWave MIMO uplink communications between
the UAV and the BS. The BS serves multiple UAVs in the time domain multiple
access (TDMA) manner under its spherical coverage area. The BS is fixed at
centre, O (0,0, hgs) € R? and communicates with the moving UAV with a multi-
path mmWave beam-forming. We assume single UAV and single BS for the urban
macro-cellular (UMa) environments. The multi-antenna UAV hovers randomly
and communicates with the multi-antenna BS in the urban environment following
5G NR standard protocol [31]. The environment is 3D spherical coverage area

composed of multiple grids, the set enclosing them is denoted as U. Following
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the 3D spherical coordinate system, let r,, 6y, ¢, represent the radial distance,
elevation and azimuthal angles of grid index h € {0,1,...|U|} with respect to
BS.

We consider an analog beamforming equipped with one radio frequency (RF)
chain and UPA structures of V; and N, antennas for both BS and UAV, respec-
tively. The UAV transmit (TX) while the BS receives received (RX) a radio signal
in multiple beam directions following Brx and Brx codebook, respectively with

angles defined as
s
N

where b; represents a RF radio beam direction with a fixed narrow beam width

bi=(i—1)—,ie{l,2,....N}, (5.1)

(%) , N represents Ny, N, antennas for Brx and Bgrx codebook, respectively.
The codebook values are defined using the beamforming vectors wrx and wgrx

forUAVand BS, respectively, given by

1 2
W(b,;)]flvz_ol = \/—Nexp (,j W)\nd sin(bi)> ,b; € B, (5.2)

where N = N;,B = Brx and N = N,, B = Brx for w = wrx and w = wgx,
respectively. Here, d is the antenna spacing assumed to be % in this work. X is

the wavelength and b; is the i*" codebook direction Eq. (5.1).

5.2.1 User Mobility

The UAV moves randomly along the 3D coverage area which is divided into
multiple (z,y, z) grids of equal size. UAV/,(¢) in represents the user equipment
(UE) position on grid index h € {0,1,...]U|} in the BS coverage area U at any

time instant t is given by

UAV,,(t) = (rp, sin 0y, cos ¢y, 1, sin Oy, sin ¢p,, 7, cos ) (5.3)

where Uxy,y;, 2z, € U and r, is the UE radical distance from BS and grid ele-
vation angle and azimuth angle. The UE acts as TX, BS as RX equipped with
single RF chains and uniform linear array (ULA) structure of IV, and N, anten-
nas, respectively. Here, U and {z:} € Z are the coverage areas of the serving
Node BS and altitude ranges of UE, respectively. The BS receives (RX) radio
signal through one of its multiple beam directions each time, following the same
codebook set B. We assume UE,, (with respect to BS locations) is known during
each P; procedure of 3GPP beam access protocol. Here we assume UAV hovers

on every hop with random mobility and enters the grid position defined in U.
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The communication begins with the TX request from UAV, while the BS
RX radio unit at BS, and starts with the random beam-pair at time ¢ = 0 and
learns to choose the beam direction (by,b,) , b, € Brx,b, € Brx over time for each
TX grid position with index h € {0,1,...|U|}. We assume TX and RX beam
directions to be the same for all UAVs movements within each grid position.

The BS receives the initial radio beam b, at broader angular-resolution level
from F and then switch to narrow radio-beams over time, to reduce the beam
search space and still achieve efficient beamforming gains for UPA antenna con-
figurations. Here, we assume the moving UAV transmit radio signals in the
same narrow beam directions within each grid position. Thus, the BS selects
the sequence of beam-pair directions for TX and RX, with every change in grid
position as the substantial change in TX location induces a variance in the radio
measurements, following 3GPP fifth 5G NR beam alignment protocol [43]. The
3GPP 5G NR beam alignment protocol for physical layer consists of initial com-
munication (used as (P1) procedure), beam selection (used as (P2) procedure)
and an optional beam refinement (used as (P3) procedure) [43]. We consider BS
and UAV following (P1) and (P2) procedures at every grid position, along the
coverage area set U. During (P1) procedure, the UAV is assumed to send the
communication request with respect to its position, while the learning framework
at BS responds with a hierarchical sequence of radio beam-pairs to be consid-
ered for next phase of uplink based beam access protocol. (P2) generally implies
the radio beam selection procedure at mmWave frequencies later used for the
data transmission [43]. Similar to the works in [144, 133, 135], the BS and UAV
in (P2) are assumed to undergo the beam-training procedure following the se-
quence of beam-pairs configured by the BS-side learning framework from initial
communication procedure.

The received signal measurement can be observed at the BS for different
TX-RX beam pairs during these procedures and its’ timing information can be
estimated using 5G protocol frame structure [43]. We define travel time unit
(TTU) as the orthogonalorthogonal frequency division multiple access (OFDM)
symbol time during every beam transmission or reception from the 5G frame
structure. In this work, we use this definition to measure the communication

overhead for the learning-based beam sweeping procedure in TTU units.

5.2.2 Communication Model

We consider the multi-path link (LoS or non-line-of-sight (nLoS)) radio channel
between UAV at time ¢ and BS location O € R3. The BS and UE are equipped
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with single radio frequency (RF) chains of (N;X,N;X) receive and (N;X,Nytx)
transmit antennas respectively. As the BS serves multiple UEs in a TDMA
manner, we model the communication between single UAV and single BS with
UPA for the UMa environments [43]. We assume each UPA beam at both BS and
UAV projected with azimuthal ¢ and elevation # main lobe broadside direction.
Let M denote the number of multi-paths or reflection points in the environment,

the channel matrix corresponding to the m* path is given by
H, £ Bmar (O, énm) ag (9;}1(7 ¢§f) (5.4)

where, 3, is the antenna channel gain, 8, 0™ are the azimuthal angle of depar-
ture (AoD) and angle of arrival (AoA), ¢, ¢ are the elevation AoD and AoA of
m'™ communication link between BS and UE. a g (0%, ¢™) € CM="™" ap (0%, ¢*) €
CNﬂtva;X are the antenna array steering vectors for (0, ¢™) and (6%, o), re-
spectively. Let w, = Qfdm sin 0 cos ¢, w, = 27”dy sinfsin ¢, A is the wavelength,
® denote the Kronecker product, N, and N, are the antenna elements along
x and y-axis, d, and d, are the antenna element spacing in x and y-direction,

respectively. Then, the array steering vector is given by

1 1
1 ejwy ejwz
a(0,9) = —— ) (5.5)
ztVy
ej(Ny_l)Wy ej(Nw_l)Wx

where (6, ¢) = (055, &%) , (N, Ny) = (erx, N;X) and (0, ¢) = (0%, o) , (N, Nyy) =
(N3, NX) for ag (0, ¢3Y) and ag (6, ¢ ), respectively. For a unit-norm trans-
mit and receive beamforming vectors namely, w;, € CV: F N and f, € CNe Ny©,

baseband equivalent of the received signal at discrete symbol time £ is given by

M
Y = Z V Pt H Wiy +uy, (5.6)
m=0

Vv
Tk

where P, is transmission power, v ~ CN (0, W Ny) is the effective noise with zero
mean and two-sided power spectral density %l, x represents one OFDM symbol
of the time-domain transmitted signal with bandwidth W and TTU time period
with + S ollwk]>= 1. We assume H,, to follow 3GPP UMa conditions [44] and

114



5.2. System Model

k =0,1,...K denotes the number of samples spanned over TTU time. w;, and f,
for UPA beams are measured using (5.5) for selected codebook directional pairs
(Ok, ¢x) from W and F, respectively.

5.2.3 Antenna Configuration Model

Follow to our previous work on linear codebook direction sets [136] and follow-
ing (5.5), the UPA radio beam directions are determined by linear array angular
resolutions namely, N% and le with their physical angles (=7, %) along x and
y direction, respectively. For example, the maximum number of ULA antenna
elements considered either at TX or RX side is 8. Similarly under UPA, the max-
imum number of antenna elements at TX side and RX side are set as 2 x 2 =4
and 8 x 8 = 64, respectively. Therefore, if a configuration of 8 ULA antenna ele-
ments at both TX and RX, thus, the total possible beam pair is 64. We consider
a mmWave radio signal with 30 GHz carrier frequency and perform the simula-
tions on both aerial LoS and nLoS 3GPP UMa channel conditions. The path loss
models for LoS and nLoS are denoted by UMa-avLoS and UMa-avnLoS, respec-
tively, following five parameter alpha-beta-gamma model (from [6]) as shown in
Table 5.1.

We assume that the UE transmits radio signals with a narrowest angular res-
olutions in W codebook directions while the BS receives the signal through one of
its hierarchical multi-angular resolution codebook directions from F. The hierar-
chical directional set F consists of L (for example, 0 < [ < L, L = log,(N}*) along

x-axis) multiple angular resolution levels along = and y directions separately, with

the [ level codebook directional subset F; = {fl(l), fQ(Z), ey égr d(Fz)} designed to
uniformly cover all the spatial frequency range (—1,1) (physical angles (=7, %))

along x and y-directions separately and satisfy the relation card(F;) < ... <
card(Fy) as shown in Figure 5.2. Here, card(F) denotes the cardinality of F.
For this work, we consider a two level angular-resolution subsets at RX, namely,
Fp and Fy (card(Fp) < card(Fy)) with their beam widths ¢ = #(f),
Y = P and ¢ = YN (B > V) for Fz and Fy., respectively. We select
(W2, 47) = (s ww) and (OF.0F) = (P, T ). 1 € [0,L). We assume
an elliptical surface for every rectangular grid element in U and is proportional

where

to B given by ( f,?/}f) = (ngcosty, ny) where ny and 7, are the elevation and
azimuthal angular resolution in U, respectively[50]. 6y is the elevation angle of a
UE grid element g, g € U from the BS. Thus, with ¢® selection, 7, and 7, can be
chosen to favour single broad beam projection from BS, for every grid element in
U. We define rj, = ZTAT/{:O VP £H,,wyxy. Then, the signal-to-noise ratio (SNR)
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Angle domain -1 1
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F layer fl( )
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Figure 5.2: Beam coverage of a hierarchical beam structure codebook.

1 K 2
. _nT . .
= K%’;——V{}k and overall rate measurement R in bits per channel

use is log(14+SNR). Thus, the optimal beam-pair for UE-BS during P, procedure

is given as SNR

is selected based on the data rate measurements.

5.2.4 Problem Formulation

We consider an uplink communication between BS and UAV following 3GPP
beam access protocol [44]. We formulate the learning-based beam-pair alignment
as the partially observable Markov decision process (POMDP) during P, and P
procedures, and maximize the beamforming gain for any UAV position around
the BS coverage area U. We consider received signal strength (RSS) of radio
signal and radio beam pair directions (both TX and RX ) as the known and
unknown parameters of this multi-location environment, respectively.

In this work, we model the interactive RL-based beam-pair alignment problem
as the partially observable Markov decision process (POMDP). At any time
instant ¢, we define the parameters s; = {(UEy, b, bs, by,),

UE;, € U,b, € W, b, € Fg,b, € Fr}, a® = {(by,b,),b, € W,b, € Fg}, a¥ =
{(by; bp), b € W, b, € Fa} where s;, aZ, a, r, are the state, broad beam-
pair action, narrow beam-pair action and reward at time instant . Data rate
measurements computed for each applied action are considered as the rewards
for the problem. As shown in Figure 5.2, every broad beam codebook direction
D in F comprise a finite subset of narrow beam codebook directions { fc(l) — 302—8 <
fc(iL) < f(gl) + g, fc(iL) € Fy} with cardinality defined as V. Let m; and 5 denote
the broad beam action and narrow beam action policies for state transitions
(54,08, reiv, sepv) and (sg, a7y, 8141), respectively.

After UE’s P, procedure, BS starts with the random receiving beam direction
and then proceeds towards the maximum beamforming gain by applying actions
and undergoing state transitions, accordingly. The current applied action be-

comes part of the next state, undergoing state transition. We define an episode
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er, . as the consecutive set of such broad beam and narrow beam actions until
the terminal state following policies m; and 7y, respectively. The objective of this

problem for broad beam and narrow beam actions can be formulated as

(P1): max Z YR, )]

{772 al t<z<oo

2 al 1<i<oo
s.t.
( N) (5.7)
1 if R ay > Rmax (St)
r(a) = 7
—1 otherwise
v € (0,1],

where R,..(s;) is the optimal data rate measurement observed among the in-
formation history o, until its previous episode e, x,, 7(a™*) and R(a’*) are the
rewards and data rate measurement observed on applying action beam-pair a’\t,
respectively. We maximize the objective formulation by learning the hierarchical
sequence of beam-pair actions starting with broad beam level selection from Fp
and switch to narrow-beam level selection from Fys following the same reward
function (5.9). We consider the hDQN approach to solve this objective problem

n (P1).

5.3 Learning Methods Formulation

In this research, we tackle the beam alignment problem at every grid location as a
learning problem. Moreover, the performance of RL approach also comparable to
that of traditional exhaustive search method. Once RL learning-based methods
converged, can significantly reduce the communication overhead during initial
access procedure and maximize beamforming in O(1) time. On the other hand,
the traditional approach always results in exhaustive search over entire action
space A each time. The focus of this work is to design an online learning frame-
work that is generic across both location and time, suitable to the considered

environment.
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5.3.1 The Exhaustive method

The method mainly involves exhaustive search among the set of actions A, to
find the best beam pair with maximum possible beamforming between UE and
BS. Since we consider the multi-location environment, exhaustive beam scanning
is required for every change in grid element unit of UE inside U. This frequent
scanning results in significant communication overhead, especially with higher
antenna elements. However, this method can determine the best possible beam
alignment between BS and UE. If s; € § is the UE state information available

at time instant , then this method can be formulated as

(P1) : max R(sy, a),
(at|st) (58)
st.a € A

where R(s;,a;) is the measured data rate on applying a, to state s; between BS
and UE.

5.3.2 Reinforcement Learning

RL is an interactive learning problem consisting of set of states S, actions A and
rewards, following the markov decision process (MDP) or POMDP process [138].
The state transition is involved on applying each action until the terminal state
is reached. The objective of the problem is to learn an optimal policy of state
transitions with actions over time and reach the terminal state through reward

accumulation [138].

. max T
(P3 {r(at]or)} 4 Z v ol

(t) 1 if R(at) Z Rmax(st)
r[lt = 9
—1 otherwise

v € (0,1].

In this work, the RL based beam alignment problem is modelled as a POMDP
problem. At any time instant ¢, we define the parameters s, = {(s',a’) s’ € S,d’ €
A}, a; € Aand 1, € R where s;, ay, ¢ are the state, action and reward at time
instant ¢. Here, S and A correspond to state and action spaces for scenario. o

corresponds to the set of previous actions applied for state transitions until the
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time instant ¢.

S = {(UE/7 b?"7 bs)a UE/ S [U7 b’l" € BTX) bs S BRX}

(5.10)
A= {(bpqu)abp € Brx, b, € Brx},

where UE; is the location of UE within coverage area U while Bryx, Brx are
the beam codebook sets at UE and BS side respectively. & are the state-action
space learning environments for RL methods. As shown in (5.10), b,, by are the
beam codebook directions corresponding to UE; previous time instant, following
Brx and Bgrx, respectively. This information is helpful to instantiate the state-
transition model at UE;, required for RL POMDP formulation [138]. Data rate
measurements computed on applying each action are considered as the rewards
for the problem. We denote o; = {a;_1, St_1, as_2, St_2, ...., a1, s1} as the observed
history of all such state information and past actions. After the 3GPP initial
communication procedure with UE, BS starts with a random receiving beam
direction and then proceeds towards the maximum beamforming gain by applying
actions and undergoing state transitions, accordingly. The current applied action
becomes part of the next state, undergoing state transition. We define an episode
e, as the consecutive set of such actions until the terminal state following a policy
7. The objective of this problem can be formulated as mentioned in (5.9), where
Rinaz(8¢) is the optimal data rate measurement observed among the information

=t is the discount factor applied on the

history o, until its previous episode e, =y
rewards received from future actions a; in the episode, 7, (t) is the reward and
R(a;) is the data rate measurement observed on applying action beam-pair ay,

respectively. We follow DQN approach to solve this RL objective problem.

5.3.3 Deep Q-Network

Complete steps followed by DQN for RL based beam alignment problem are
shown in Algorithm 6.

We define episode as the consecutive set of actions applied on the starting
state until it reaches the terminal state with maximum beam alignment for that
location. In order to prevent episodes with infinite set of actions during training,
we confine maximum episode length to exhaustive set of beam pairs possible
under the chosen antenna configuration. For example, the configuration of 8 ULA
antenna elements at both TX and RX can result in maximum episode length of
64.

As the RL learning objective formulation involves both current data rate R,
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and best observed data rate Ruy.(s;) measurements (shown in (5.9)), we con-
sider the overall online training procedure of DQN framework under two phases
namely, Warmup phase and Training phase. During the Warmup phase, the ex-
ploration is set to maximum, in order to observe the best possible data rate for
the given UE location by applying maximum episode length of actions. During
the Training phase, the algorithm continues to reduce its exploration and move
towards exploitation following e-greedy policy. The episode starts with initial
random action and applies next actions to reach the terminal state as quickly as
possible. The Warmup phase results in extra training time at the start but this is
later helpful in quick learning of DQN framework during the training phase. This
procedure also favours quick convergence of beam alignment process for the cur-
rent location based on its neighbourhood beam alignment convergence through
experience replay memory buffer, thereby leading to overall faster training of

DQN framework for multi-location environment.

5.3.4 Hierarchical DQN-based beam allignment

DQN is a value-based approach, learning the optimal approximated policy of
states mapping to actions m(s) = a by parameterizing and estimating state-
action value function Q(s, a;#) where 6 denotes the weight matrix of the primary
deep neural networks (DNN) [108]. The hDQN framework integrates hierarchical
action-value functions operating at different temporal scales using DQN approach
and learns optimal approximated policies m1(s) = a,a € Ap and m(s) = a,a €
Ay, respectively [89, 74]. Under our hDQN framework, we consider the broad
beam (BB) and narrow beam (NB) DQN agents over the same state space S but
different action spaces Ag and Ay, respectively as shown in Figure 5.3.

For the BB agent, we denote the primary DNN network weight matrix and
target DNN network weight matrix as 6, and 6, respectively [108]. We consider
the fully connected DNN for both the networks where 6; is updated with primary
network parameters 6, after every K iterations. The input of DNN is given by
the variables in s;. The intermediate layers are fully connected linear units with
rectifier linear units (ReLLU) and the output layer is composed of linear units in
a correspondence with Az. We consider both DNNs with zeros initialization bias
and Kaiming normalization weights. The memory buffer of experiences D; =
{e1,e9,e3,...,e:}, e, = (si, af riv, 87;+v) are collected, where the mini batch of
them U (D;) are randomly sampled and sent into BBDQN [108]. For the NB
agent, we follow the same procedure with network weight parameters as 65, 65,

target network updated every K, iterations, the output layer mapped to Ay with
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Algorithm 6: RL approach using DQN

M — Training Episodes;

Algorithm hyper-parameters: learning rate £ € (0, 1], discount rate
v € 10,1), e-greedy rate € € (0, 1], update steps K;

Initialization of replay memory M to capacity C', the primary Q-network
with parameters ¢;, the target Q-network with parameters 6

S, A: State and Action space of DQN agent

for episode <— 1 to M // for each episode

do
Any random UAV transmits the communication request from the

(x,y,z) location.
N —Episode limit
BS responds with sequence of N action beam-pairs over the channel
with policy 7
Initialization of s; by executing a random action ay and (x,y,z)
location information
n=0,
while T'rue do
// Episode with e-greedy policy =
if p. < € then
| select a random action a;, € A
else
| select a; = argmaz o 4Q(st,a,0)
end
BS applies a; beam-pair over the channel, receive signal for
(t + 1)™" iteration during uplink communication
UAVobserves s;,1, compute data rate and calculate the reward
following (5.9)
Store transition e = (g, az, 441, S¢+1) in replay memory D
Sample random minibatch of transitions U(D)
Compute Loss and Perform gradient descent for Q(s, a; @)
Update the target network parameters 6y = 6, after every K steps
n=n+1// Increment episode time
if done or (n = N) then
Update the optimal data rate measurement Ry« (s;)
break // End episode

end

DQN updates the sequence of action beam-pairs for (x,y,z) location

// BS uses the updated sequence on next TX request from
(x,y,2z) location

end
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Figure 5.3: hDQN framework with BB and NB DQN agents

disjoint (from D; ) memory buffer of experiences as Dy = {e],¢h, ¢4, ..., ¢} and
collected transitions as e} = (Si, a{v Tt si+1) respectively.

Let Q1 (s,a;0;) and Q3 (s, a; 09) denote the state-action value functions of BB
and NB agents, respectively as shown in Figure 5.3. For both the DQN agents,
mean squared error (MSE) loss function is computed between primary, target
networks during back propagation, and 6 is updated using stocastic gradient
descent (SGD) and Adam Optimizer as

9t+l - 915 - CAdam VL (91‘) 5

where (agam 18 the learning rate, VL (6;) is the gradient of the DQN loss function.
Here, (0,VL) = (0,,VL,) and (0, VL) = (62, VLy) for BB and NB agents,
respectively. Thus, we note that hDQN is practical in applying only narrow
beams over the channel by using BB agent as the meta-controller. Here, we define
episode as the consecutive set of hierarchical actions applied on the starting state
until it reaches the terminal state with maximum beamforming gain for that
location. In order to prevent episodes with infinite set of actions during training,
we confine maximum episode length to exhaustive set of beam pairs under the
chosen UPA configuration. Hence, in the proposed hDQN, the maximum episode

lengths are card (Ap) (say K ) and V for the BB and NB agents, respectively.
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Algorithm 7: Hierarchical DRL using DQN

1 M — Training Episodes: Algorithm hyper-parameters: BB learning rate {; € (0, 1], BB e-greedy
rate €1 € (0, 1]. BB episode limit K5, NB learning rate (2 £ (0, 1], NB e-greedy rate e2 £ (0, 1],
NB episode limit V;

2 Initialization of replay memory I); to capacity €', Do to capacity C5, BB network parameters
f,,6, and NB network parameters . f;

3 & : State space of BB, NB agent;

4 Ap, Ay : Action space of BB and NB agent, respectively;

5 for episode +— 1 to M // for sach episode

6 do
7 Any random UAV transmits the communication request from the (x.y.z) location:
8 BS responds with a sequence of IV K action beam-pairs over the channel with 7, ™ policies;
9 Initialization of sy by executing a random action aUB 3 a{}r and (x.y.z) location information;
10 E=0
11 while True do
12 if done or (k= Kg) then
// End Training episcde
13 Reset Env and obtain new sg
14 select a? from BB network following ¢,
15 BS selects the NB action subset P (|P| < V) corresponds to aZ;
16 o =0;
17 for p<V do
18 if done or (p=V) then
// End NB episocde
19 ‘ Update RY, (s:4,):
20 if warmup then
2 | Randomly select Y € Ay
22 else
23 | select @} from NB network following €
24 BS applies a.j,\" over the channel, receive signal for (t + 1) episode during uplink
communication;
25 UE observes s;.; and calculate the reward ?‘{a‘f}:
26 Store the experience (s¢,aY , s, S¢v1) to Da;
n Train and update NB parameters fs;
28 Store the experience (s;,a’, r(a‘zﬁp}. S¢4p) 1o Dy,
20 Train and update BB parameters #,;
30 k=k+1// Increment episode time
3 hDQN updates the sequence of action beam-pairs for (x.y.z) location:
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We consider the overall hDQN training procedure into Warmup and Training
phases, similar to our prior work in [136]. As the reward formulation in (5.9)
involve computing R« (s;) measurements over Ay, we consider the warmup
phase only for NB agent of hDQN. During Training phase, the hDQN perform
exploration and exploitation using e-greedy policies ¢; and e; for BB and NB
agents, respectively. The Warmup phase results in extra training time at the
start but favours quick convergence of hDQN during training phase resulting in

faster beam-alignment training for the multi-location environment.

5.3.5 Convolution neural network radio mapping (CRM)

To solve the convergence and optimize problem in (5.9), we propose the learn-
ing architecture based on convolution neural network (CNN), and radio mapping
namely as CRM, as shown in Figure 5.4. As beam alignment is the key problem
to maintaining the quality of backhaul link between UAV and BS under mmWave
communications. For example, a major challenge for achieving high 3D beam-
forming gain in UAV communication is to effectively track the channel variation
arising from UAV’s high mobility and thereby obtain accurate channel state in-
formation (CSI) at BS. CNNs offer the ability to learn complex patterns and
relationships from data, which can be leveraged to improve the spatial correla-
tion of the channel state information (CSI) between the transmitter and receiver,
such as beamforming alignment in wireless communication systems. Beamform-
ing alignment often requires accurate estimation CNNs can be utilized to estimate
the channel characteristics by learning the complex relationships between trans-
mitted signals and received signals. By training the CNN with a large dataset
of known/unknown channel conditions, it can learn to extract features from the
received signals and estimate the channel parameters necessary for beamforming
alignment. The authors in [109] use radio map-based channel propagation envi-
ronment information for efficient positioning of UAV. Radio map can be helpful
in improving learning and real-time update when there are sufficient changes in
the radio source location (e.g., moving beyond the decorrelation distance power
and others [26]).

In such scenarios, radio maps that describe average outage channel probabil-
ity, channel gains or SINR [168, 26, 179, 52, 109] help to extract such features
needed to enhance the information needed to reduce training overhead and im-
prove converges time. The image of radio mapping is captured and feed to CNN
algorithm. The radio mapping process will elaborate in detail in Section 5.4. The

CRM will gather the data features to feed the system with the current and previ-

124



5.3. Learning Methods Formulation
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Figure 5.4: Proposed CNN to classify the channel status and strength

ous features of the environment. Once the features are captured, the hDQN will
learn faster and fasten the convergence process. The different locations’ channel
strength are labelled with different colours, and the features are mapped into
the 3D image in each timeslot. The CNN is a multi-layer network evolved from
the traditional neural network. The CNN mainly includes an input layer, several
convolution layers, several pooling layers, a fully-connected layer, and an output
layer. It is used for feature extraction and mapping through fast training and
possesses high classification and prediction accuracy. We assume that the pro-
posed CNN model consists of one data input layer, NN, convolution layers, N,
pooling layers, Ny fully-connected layers, and N output layer. It is assumed that
the size of the input image is 220 x 220. The detailed description of each layer is
introduced as follows:

(a) Data Input Layer: The BS location, the UAV users with different locations
and radius, and signal stregth denoted by different colors in the 3D image with
the groundtruth label of the best beam-pair allignment. The preprocessed images
are used as input data of the convolution network. All images are projected into
a characteristic subspace of Ny x Ny x 3, where 3 presents the color of the image
is in RGB model.

(b) Convolution Layer: The characteristics of the input image are extracted
by the randomly initialized filter. It is possible that the input image has various
characteristics, thus, multiple filters are used to extract all features of the original
image. Zero padding is also used for each convolution layer to keep the size of
features extracted from the input image.

(c) Pooling Layer: It plays an important role in sub-sampling via using fea-
tures extracted from the convolution layers. The time complexity is decreased
in the next convolution layer or fully-connected layer by reducing the number
of operations in sub-sampling. The Max-pooling method is usually deployed to
extract the largest value in the sliding window for the subsampling among all

methods used in the pooling layer.
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(d) Fully-connected Layer: The features extracted by the convolution and
pooling layers are inserted into the neural network. The softmax layer that is
often used for the classification of multiple classes is employed at the end of the
fully-connected layer. The classification result corresponds to a probability that
the overall probabilities of all classes is equal to 1, and the class with the highest

probability is the estimated label for the corresponding input image.

5.4 Radio map in radio networks

In this section, the spatial features are used to show the coverage area of BS
to maximize the transmission reliability. Radio mapping could solve the entire
coverage over the large and continuous geographical area [26]. To maximize in
long-term spectral activity, the radio map is useful to improve the learning and
update when there are sufficient changes in the radio source location (e.g., moving

beyond the decorrelation distance power and others).
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Figure 5.5: Radio map network

As shown in Fig. 5.5, the use of the radio map in wireless networks consists
of three major steps: (i) measurement collection and processing; (ii) radio map
construction and update; and (iii) radio map-assisted BS / UAV management.
Specifically, the system operator first collects and filters the distributed measure-
ments, which are then used by the estimator to compute the radio map. The
constructed radio map is then used to derive useful knowledge about the spec-
trum usage pattern and essential parameters in the network, for example, wireless

device location, interference level, and channel models. The radio map for each
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cth BS refers to the spatial distribution of its large-scale channel gain over the 3D
space, i.e., height’s with UAV at locations u € R3®. As the space is infinite and
continuous, it is not feasible to store the entire data c, € R? for all locations of
u, due to the finite storage in practice [179]. Therefore, we propose to discretize
the space into the 3D grid follow in Figure 5.1 and 5.6 where AD is chosen to
be sufficiently describe the channel gain as being approximately constant within

each grid cell.

Coverage
Radio Map

Figure 5.6: Illustration of scenario and 3D radio map projection

5.4.1 3D and 2D map projection

As shown in Figure 5.6a, we consider the large spherical environment area with
the BS at the center. The spatial information can be captured from the geo-
graphical signal power spectrum density, which is formed by the superposition of
concurrent wireless transmissions in different locations, frequencies, and times.
The spatial features are different in each time, therefore we decided to use the
rate maps heatmap using ranges of data rates in each vertical and horizontal
degree to illustrate the information. The measurements are computed from the
DQN/ hDQN simulations at the end of each episode. The data are collected via
offline or online manner and will create 3D data rate radio map and update the
received data of coverage area as in Figure5.6b. The 3D illustration is important
to ensure all the information is well captured to maximize the usage of spatial
features. So we can get 360° of the current network once UAVs fly to target

allocation. However, in the real situation, the receive data is like a small hexag-
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onal, and cell size cannot fix in the big sphere or hexagonal which will cause in
accuracy during the data measurement [110], therefore to improve the accuracy
by model the projection of angular angle and illustrate as 3D grid radio map
projection. This helps radio mapping in capturing spatial information in a real
scenario and online manner. Then, as shown in Figure 5.6b, once we received the
updated radio mapping following the yellow-green heat colour map. To ease the
overall view, we create 2D rectangular projections as shown in Figure 5.6¢, from
which we borrow the concept in 3D video tiles projection in [73] to maximize
the beam-forming gain. Then, we arrange based on the horizontal degree and
the vertical degree, which are the angle and elevation angle, respectively. When
the UAV is moving to the different radius, the radio map will capture and fill
the tile with the current information and update the layer in z-axis as shown in

Figure 5.6¢. 3D coverage area will automatically update by the end of the episode.

5.4.2 Offline

A high-level overview of offline and online CRM for UAV radio network is illus-
trated in Figure 5.7. The key difference between CRM and a standard RL setup
is the utilization of a radio map in CRM, which provides precomputed informa-
tion about the environment’s wireless characteristics. This helps the hDQN in
estimating initial beam-pair features for all locations during early episodes, fa-
cilitating more informed decision-making and efficient learning in the context of
cellular-connected UAVs and beamforming. In the offline phase, the CNN model
uses the radio map ground truth data set that we received from the offline dataset
based on the Vanilla hDQN dataset, which initially feeds into the database to
train, learn and predict the initial radio beam pair alignment, aZ. Then it will
be used to predict the initial pair in every initial episode. The flow is shown in

Figure 5.7.

5.4.3 Omnline

Given the limitations in practical implementation, obtaining the updated Vanilla
hDQN dataset in an offline manner is not feasible, as it can only be collected
after the training process has been completed. Therefore, we propose an online
configuration hDQN. In each episode, hDQN will revise an online update and
generate the radio map image to feed into the CNN database. The CNN will train

the image dataset in each episode from current hDQN training, and select the
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Figure 5.7: Flow methodology of Radio map in hDQN network

best model and predict the best acurate initial beam-pair (action, a?). Initially,
the image datasets are only collect from the warm-up phase, as the algorithm still
exploring in order to exploit the best possible data rate for the given UE location
by applying maximum episode length of actions. When the hDQN explore the
environment, the dataset with the current new data is collected, and the radio
map is generated in each episode to feed in real-time into CNN framework. While
in training the CNN model, we train the CNN with the previous and current
dataset, and this we called an online training manner. The benefit of online
model is to reduce the probability of misselect an action, a? and able to find
the correct beam-pair, and also reduce the time for NB DQN to predict a” in
maximizing the overall beamforming gain. However, with additional training in
every episode, the online CNN in hDQN will cause the additional time to converge
compared to the offline manner.

However, since the wireless channel conditions between the UAV and the base
station can change rapidly due to the UAV’s movement, environmental factors,
and interference. Fast beam tracking and real-time adjustment are required to
compensate for UAV motion and maintain a stable and uninterrupted backhaul
link. Continuous and accurate beam alignment is necessary to adapt in an online
(real-time) algorithm in adapting to these changing channel conditions and main-
tain a stable and high-quality backhaul link. Another benefit of the online-hDRM
approach is able to monitor the UAV-beam pair alignment in real time because it
capture real scenario and able to maintain the network connectivity with enough
training time. Since the training, i.e., command and control is conducted at the
terrestrial-based station, it will be the drawback to the offline-hDRM approach,
due to the algorithm needs to have the complete data set before the training will

be started, which is not practical in control and command for dynamic scenarios.
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Table 5.1: Simulation Parameter

Parameters Value
mmWave freq 30GHz
Bandwidth W 120MHz

antenna element spacing d 0.5
Radius 7y, 50,100, 150m
Transmit power P, 0dB
Transmit antenna elements Ny, {(2x2),(4x4)}
Receiving antenna elements N, {(4x4),(8x8)}
Noise Level N —174 dBm/Hz
BS location (in m) 0,0, 25]
UMa-nLoS pathloss coefficients | v : 4.6 — 0.71ogy (Usoc),
B —=175,v:2.0,0:6.0
k2 201og 10 (49%) [11]

5.5 Simulation Results

As described in Section 5.2-C and Section 5.3, we implement the hDQN-based
beam-pair alignment, following P1 and Algorithm 6. Similarly, we implement the
state of-the-art DQN-based approach [136] over UPA configuration and compare
our results. We note here that both the RL-based methods, once converged, can
significantly reduce the communication overhead during P, procedure [44] and
maximize the beam-forming gain in O(1) time. In this section, we investigate
the training performance of our proposed hDQN-based training procedures over
different UPA configurations and UMa -nL.oS channel conditions. We select 13
random reflection points within BS coverage and fix them throughout the hDQN
and DQN nLoS simulations. For simplicity, we consider UAV hovers in U with
fixed radial distance from BS r = 20 m. The simulation conditions for all the

numerical results are listed in Table 5.1.

5.5.1 hDQN vs DQN Training Performance

As shown in Figure. 5.8, the red plot shows the DQN overall reward performance
under the UMa-LoS channel while the green and blue plots depict the rewards
(following (5.7)) over hDQN overall training time under UMa-LoS and UMa-

nLoS conditions, respectively. We note that all the simulations are carried out
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Figure 5.8: hDQN,DQN training convergence for (Ntx, BNrx, Nrx) = (2 x 2,4 X
4,8 x 8) UPA configuration.

with (Nrx, Nrx) = (2 x 2,8 x 8) and (I, [,) = (2,2) i.e. BNgx =4 x 4UPA is
selected under UMa channel with thermal noise but no shadow fading and channel
variation conditions. DQN simulations are performed over A, action space while
the hDQN method apply broad (Ap) and narrow beams (.4,s) using BB and
NB networks, respectively. We observe that under both UMa -LoS and UMa
-nLoS conditions, the hDQN training procedure attains the maximum reward
with significantly less training time compared to the DQN method, resulting in

faster training convergence.

5.5.2 hDQN For Different UPA Configurations

In this subsection, we plot the training times (TTUs) and maximum achievable
data rates (5.7) of hDQN and DQN-based approaches under different UPA an-
tenna configurations with UMa-nLoS conditions. As shown in Figure 5.9, blue
and red bars shown the training times of hDQN and DQN respectively, while
the black plot depict maximum learnt data rates obtained in both methods. We
note that the same DNN architecture and hyperparameters values are used for all
the hDQN simulations. We observe that hDQN converges faster than DQN and
achieves the maximum data rate with average reduction in training overhead of
43% among all UPA simulations. Under the same (Nrx, Nrx) configuration, we
observe that selection of higher B Ngx increases the reliability of providing maxi-

mum achievable rate across narrow grid element area in U. This also impacts the
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Figure 5.9: hDQN overall training performance under UMa nLoS conditions.

training time due to the increase in state space S for DQN, both S and Ag in
hDQN. However, we notice that hDQN converges faster as the selection of broad
beam actions depends on both €; policy and the convergence of NB network.
Now, increasing the BNgx, decreases the cardinality (V') of narrow beam subset
for each broad beam pair in Ag, resulting in faster overall convergence. Thus,
the observed results show that broad beam level selection is crucial and has more
impact on both training and rate performance under the hDQN approach. This
can be useful to trade-off rate and training performances over broad beam level

selections for different cellular UAV applications.

5.5.3 hDQN with increasing coverage area

In this subsection, we study the training performance of hDQN with the increase
in coverage area requirement under UMa channel condition. Figure 5.10 shows
the reward performance of hDQN over time across with difference BS radial dis-
tance as in Eq. (5.3). The radius is compared to measure the performance of
UAV of it converging time when the distance between BS and UAV differs. We
note that the accumulated reward plots are shown against the number of TTUs
for better analysis of its convergence. With the increase in radial of the BS,
more grid elements are needed to hover around and support its radio link. It is
observed that the hDQN-based approach converges well with different coverage
area requirements. The learning is observed to be relatively quicker in conver-

gence with increase in the coverage area of BS under r = 20m. However, when
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Figure 5.10: hDQN different radius under UMa nLoS conditions.

r = 30m, 40m, 50m, it required more exploration, therefore, the chosen r = 20m

is suitable with the grid element that we set at the initial state with help to fasten

exploit and converge process.

5.5.4 DRM performance
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Figure 5.11: Comparison between CRM-DQN and Vanilla DQN.

In this subsection, firstly, we measure the performance of CNN in accuracy

and model loss before we deploy the model into CRM and DQN-based framework,
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namely as DRM. The accuracy performance and loss function is evaluated to en-
sure the selected model is accurate to help DQN to predict the initial action. This
process is important in CRM algorithm as it will future direct the direction of ex-
ploration and exploitation of the algorithm. Figure 5.11 plot the average reward
of CRM-DQN and DQN-based approaches under UMa-nLoS conditions. For in-
stant, blue line is Vanilla DQN namely as ‘DQN’; orange line is DQN-CRM offline
namely as ‘DRM-offline” and green line is DQN-CRM online namely as ‘DRM-
online’. We note that the same DNN architecture and hyper-parameters values
are used for all the DQN and CRM simulations. We observe that DRM converges
60% and 20% faster than DQN in UPA simulations for offline and online, respec-
tively. The DRM-offline shows better performance compared to DRM-online, this
is due to the DRM-offline algorithm using the previous Vanillla-DQN dataset to
choose the initial action for the training phase, this can help shorten the process
of exploration of DQN, as previous training is already converged. However, in
the real situation, DRM-online is more practical because the DRM-online is using
the real-time data to generate radio-map to feed to CNN, so it can be able to get

the fresh dataset for initial beam-pair prediction and use in DQN algorithm.
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Figure 5.12: RSS Error plot for offline and online DRM.

Figure 5.12 plot the RSS errors of the agent with respect to the exhaustive ap-
proach, respectively. Average RSS error is defined as the mean difference in RSS
values of a proposed DRM approach with respect to an exhaustive approach (mea-
sured in dB scale) over UE locations. This metric helps us estimate the accuracy
of learning a beam-pair in the proposed DRM approach with respect to the tradi-

tional exhaustive approach, at every time instant during the training procedure.
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In this environment, we are plotting different channel condition UMA-nLoS to
UMA-LOS. DRM training performance in real-time conditions in an online man-
ner by considering change in channel conditions, thermal noise, slow fading and
slow channel variation as shown Fig. 5.12. We observed that the DRM-offline
received higher RSS errors compared to DRM-online. However, DRM-offline con-
verges faster when the environment changes, this is because DRM-offline used the
previous model and dataset, and also convolutional neural network (CNN) is able
to supervise learning to choose the initial action, which leads to minimum error
compared to online-based. Even though, DRM-online takes a longer time to adapt
to new environments, it learns faster and received lower errors, as it continues
to learn during the training process. Therefore, it strengthens our hypothesis,
the DRM-online is more practical and able to adapt to different environments
because the DRM-online is using real-time data to generate radio-map to feed to
CNN, and able to get a fresh dataset for initial beam-pair prediction and use in
DQN algorithm.

5.5.5 hDRM performance
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Figure 5.13: Comparison between CRM-hDQN and Vanilla hDQN.

Figure 5.13 plots the TTU and average reward of vanilla hDQN-based ap-
proaches and CRM and hDQN-based framework, namely as hDRM. The simu-
lation is simulated under the same UPA antenna configurations with UMa-nLoS
conditions. For instant, the blue line is Vanilla hDQN namely as ‘hDQN’; and

green line and purple line are integration between hDQN and radio mapping us-

135



5.5. Simulation Results

ing CRM in an offline and online manner, namely as ‘hDRM-offline” and ‘hDRM-
online’, respectively. The random location is generated and based on the location,
we generate the radio map and predict the initial beam pair using CRM and feed
it to vanilla hDQN. Based on the CRM database, we replace the initial random
selection with a” which generate from CNN and CRM algorithm, which are able
to reduce the exploration of hDQN and reduce the convergence time. It clearly
shows hDRM outperform and successfully reduce 63% of convergence time com-
pared to vanilla hDQN. The radio map of channel strength and its features helps
the hDRM to reduce the convergence in the training phase, the predicted initial
beam-pair was fed to BB-DQN as shown on in Figure 5.7. It helps the process
of NB-DQN to have the correct group to predict action in NB DQN. As it also
can reduce the hDQN complexity and helps NB-DQN to exploit the beam-pair

action faster.
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2000 -
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Figure 5.14: Comparison between DQN, hDQN, CRM-DQN, CRM-hDQN.

Finally, the performance of standard vanilla DQN, Vanilla hDQN, and DRM,
hDRM for both offline and online manner are present in Figure 5.14. The ‘stan-
dard’ represent Vanilla DQN and hDQN with red bar and blue bars, respectively.
While DRM is represented by red bars and hDRM with blue bars for both CRM-
offline and CRM-online. From the bar-plot, it showed, hDRM-offline have the best
performance compared to other algorithms. However, there is a problem for the
hDRM-offline that used data from vanilla hDQN, and consider not that practical
because the prior data collected after vanilla hDQN finished train, whereas even
the hDRM-online is the second-best algorithm, but it wins in practicality. Even

we can be observed hDRM-offline faster compared to online-based approaches.
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Therefore, it became the tradeoff between practicality and convergent time.

5.6 Conclusion

In this research, we proposed the hDQN-based position-aided beam alignment
framework for cellular-connected mmWave UAVs and maximize the beam-forming
gain within the BS coverage area in an online manner. We also analyzed the
hDQN approach over state-of-the-art DQN-based method under different UPA
antenna configurations and diverse channel conditions. Our results showed that
the proposed hDQN converges faster than the DQN method with an average over-
all training reduction of 43% for UPA configurations. 360° spatial-information-
beam-mapping are proposed to give additional information to hDQN and help
improved the convergence time. The CRM and DQN-based framework showed
60% improve over the convergence time compared to the proposed framework

against vanilla-method approaches.
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Chapter 6

Summary and Concluding

Remarks

In this chapter, the main contributions and the future research directions of this

thesis are summarized and presented as below.

6.1 Conclusion

In conclusion, this study has highlighted the significant contributions and ad-
vancements made in the field of UAV-based cellular networks for urban and sub-
urban (firefighting) scenarios. By optimizing coverage and capacity, together with
mitigating interference and improving beam alignment techniques, the study has
demonstrated the potential of UAVs to enhance communication and data trans-
mission in dynamic environments.

The study’s outcomes showcase improved coverage and capacity through the
strategic deployment of multiple UAVs in coordination with base stations. This
optimization enables better communication rates and ensures smooth video stream-
ing, ultimately enhanced the Quality of Experience (QoE) for UAV users.

Furthermore, the study addresses the challenge of interference between UAVs
and terrestrial users, offering interference coordination mechanisms and resource
allocation schemes. These innovations effectively mitigate inter-cell interference,
resulting in significant throughput improvements for both UAVs and terrestrial
users.

Additionally, the study introduces deep reinforcement learning-based beam
alignment techniques, combining hierarchical Deep Q-Networks and convolutional
neural networks. These techniques enhanced the efficiency and reliability of UAV

to BS communication, reducing convergence time and improving overall perfor-
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mance in mmWave radio settings.
Overall, this study findings has contributed to the advancement of UAV-based
wireless networks, offering novel solutions for optimizing coverage, mitigating

interference, and improving beam alignment techniques.

6.2 Future Research

Based on the findings and advancements made in this study, there are several
promising areas for future research in UAV-based cellular networks.

One important aspect to consider is the optimization of battery life usage in
UAVs especially in firefighting operations. UAVs typically have limited battery
capacity, which can impact their operational time and effectiveness in extended
firefighting missions. Future research can focus on developing energy-efficient al-
gorithms and techniques to optimize UAV battery usage. This can include intelli-
gent path planning, dynamic power management, and energy harvesting methods
to prolong the UAV’s operational time and ensure sustained communication and
surveillance capabilities during firefighting operations.

For the development 6G networks in future, which are envisioned to provide
ultra-high data rates, ultra-low latency, and massive connectivity, the backhaul
plays a crucial role in enabling reliable and high-capacity communication be-
tween UAVs and base stations, and interference management remains a critical
challenge in UAV-based cellular networks. Future research can explore advanced
interference management techniques and scheduling algorithms to mitigate inter-
ference and improve overall network performance. This can involve dynamic spec-
trum allocation, interference coordination mechanisms, and intelligent scheduling
algorithms that consider the dynamic nature of UAV movements. These ad-
vancements would enhance the coexistence of UAVs and terrestrial users while
maximizing the efficiency of wireless communication in ad-hoc and high-dense
scenarios.

Future research could focus on addressing the challenges associated with back-
haul in beam pair alignment for 6G. This can involve the development of efficient
backhaul architectures, protocols, and optimization algorithms to establish reli-
able and high-capacity connections between UAVs and base stations. The scal-
able backhaul solutions need to be designed to handle the increased traffic and
connectivity demands of UAVs in a 6G environment.

By exploring these future research directions, researchers can further advance

the field of UAV-based cellular networks for urban, suburban, and ad-hoc sce-
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narios such as firefighting applications. The outcomes of such research would
contribute to the development of more efficient and effective communication sys-
tems, extending the capabilities of UAVs and ultimately enhancing the safety and

effectiveness of firefighting teams.
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