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Abstract

The purpose of this thesis is to lay down the theoretical foundations necessary for the

successful application of cylindrical Lévy processes as models of random perturbations

of infinite-dimensional systems. This is accomplished in three main steps.

First, we provide a comprehensive theory of stochastic integration with respect

to cylindrical Lévy processes in Hilbert space. In fact, we go further than simply

introducing the stochastic integral, and give a complete analytic characterisation of the

largest set of predictable Hilbert-Schmidt operator-valued processes integrable with

respect to a cylindrical Lévy process. We demonstrate the strength of the developed

integration theory by establishing a stochastic dominated convergence result.

Second, we prove an Itô formula for Itô processes driven by cylindrical α-stable

noise. It turns out that in the case of standard symmetric α-stable cylindrical Lévy

processes, our integration theory simplifies significantly and it is possible to identify

the largest space of predictable Hilbert-Schmidt operator-valued integrands with the

collection of all predictable processes that have paths in the Bochner space Lα. As

an application of our developed integration theory, we carry out an in-depth analysis

of the jump structure of stochastic integral processes driven by standard symmetric

α-stable cylindrical Lévy processes, which allows us to establish an Itô formula in this

setting.

Finally, we consider stochastic evolution equations driven by α-stable noise and

prove the existence of a mild solution, establish long-term regularity of the solutions

via a Lyapunov functional approach, and prove an Itô formula for mild solutions to

the evolution equations under consideration. The main tool for establishing these

results is a Yoshida approximation of the solution, which we combine with the crucial

observation that these approximations converge in the space C([0, T ], Lp(Ω, H)) of p-th

mean continuous Hilbert space-valued processes for any p < α.
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1 Introduction

Any rigorous discussion of stochastic partial differential equations (SPDEs) must be-

gin with the precise mathematical formulation of the driving noise. In an infinite-

dimensional setting, this task is highly non-trivial, since even the most fundamental

choice, the standard Brownian motion, fails to exist in the usual sense as a stochastic

process with values in the underlying infinite-dimensional space. In fact, these are ex-

actly the considerations that lead naturally to the theory of cylindrical processes and

their application as models of random perturbations of infinite-dimensional systems.

In the literature, one can find several alternative definitions for cylindrical Lévy

noise in an infinite-dimensional setting. The most popular approach is to introduce

cylindrical Lévy noise in a diagonal manner, wherein the noise is expressed as an infinite

sum of independent one-dimensional Lévy processes along an orthonormal basis, see

Peszat and Zabczyk [60], or Priola and Zabczyk [63] for the case when the components

of the orthogonal expansion are real-valued normalised symmetric α-stable processes.

Another approach, see for example Brzeźniak and Zabczyk [9], defines a cylindrical

Lévy process by subordinating a cylindrical Wiener process, which is then used as a

theoretical foundation of their models of random perturbations. Alternatively, in Peszat

and Zabczyk [59], the authors introduce the notion of a cylindrical Lévy process, which

they call an impulsive cylindrical process, via Poission random measures.

While all these definitions are mathematically rigorous, they are somewhat dissatis-

fying for the following reasons. First, a common theme in all the aforementioned papers

is the observation that a cylindrical Lévy process can be embedded into a larger space

where it becomes a classical Lévy process. However, within the context of SPDEs,

this point of view leads to the unnatural phenomenon that one needs to impose condi-

tions on the larger auxiliary space, which a priori has no relation to the problem under

consideration, see Brzeźniak and Zabczyk [9]. Second, if we introduce cylindrical Lévy
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noise using one of the above definitions, we impose great limitations on the behaviour of

the random perturbation. Indeed, taking the approach in Peszat and Zabczyk [60] with

diagonal noise as an example, the assumption that the one-dimensional components are

independent imply that these processes can only jump along the basis vectors, since

the probability that two different components jump at the same time is zero. Hence,

there arose the natural question of whether it is possible to find a general framework for

modeling Lévy-type noise in an infinite-dimensional setting, which allows for a unified

treatment of a wide variety of different random perturbations.

To provide an answer to this question, the first systematic treatment of the concept

of a cylindrical Lévy process was introduced by Applebaum and Riedle in their work

[4]. Their goal was to provide a definition of a cylindrical Lévy process, that is both

analytically rigorous and, at the same time, can be seen as a natural generalisation

of finite-dimensional Lévy processes. This has been accomplished by building on the

well-established theory of cylindrical measures, pioneered by the French school of math-

ematics in a series of papers, see Maurey [45], Schwartz [72] or Badrikian and Chevet

[5], among many others. Yet, before this rather general object could be used within the

context of SPDEs as a model of noise, it became unavoidable to overcome certain tech-

nical difficulties. SPDEs with additive noise, driven by specific examples of cylindrical

Lévy processes were considered in Brzeźniak and Zabczyk [9], Priola and Zabczyk [63]

and Peszat and Zabczyk [60]. However, in order to consider SPDEs with a more general

noise structure than the simple additive case, it became necessary to develop a theory

of stochastic integration with respect to general cylindrical Lévy processes.

The classical construction of the stochastic integral in finite-dimensional spaces is

based on the semi-martingale decomposition; see Dellacherie and Meyer [15]. Another

approach, beginning with the class of ”good integrators” is introduced in Protter [64],

or in Kurtz and Protter [39], in the infinite-dimensional setting. However, it is worth

noting that even in Protter’s work [64], the extension of the space of integrable pro-
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cesses from adapted, càglàd to general predictable processes relies heavily on the semi-

martingale decomposition. Alternatively, one might approach the problem of defining

stochastic integrals from the point of view of random measures. For an in-depth dis-

cussion of this perspective, see Métivier and Pellaumail [48] or Rao [65]. In yet another

approach, see Bichteler [7], the author successfully mimics the construction of the well-

known Daniell integral from calculus to introduce the notion of the stochastic integral.

The theory of stochastic integration presented by Kwapień and Woyczyński in their

works [40] and [41] relies crucially on a decoupling inequality for tangent sequences.

In their approach, they also go beyond the construction of the stochastic integral, and

provide a complete characterisation of the largest space of predictable integrands as a

randomized Musielak-Orlicz space. These ideas were later generalised to Hilbert-valued

quasi-left continuous semimartingales in Nowak [57].

Considering stochastic integration with respect to cylindrical processes, an extensive

literature is available in the special case when the integrator is a cylindrical Brownian

motion, see for example van Neerven et. al. [77] for a recent extension to the general

setting of UMD Banach spaces. The problem of stochastic integration with respect to

cylindrical processes other than cylindrical Brownian motion has received significantly

less attention. As a matter of fact, the only other class of cylindrical processes with

respect to which a theory of stochastic integration has been developed is the collection

of cylindrical martingales. This has been achieved through a Doléans measure approach

by Métivier and Pellaumail in [47], via the construction of a family of reproducing ker-

nel Hilbert spaces by Mikulevičius and Rozovskǐı in [50] and [51], or alternatively by

introducing a new type of quadratic variation for cylindrical continuous local martin-

gales in UMD Banach spaces in Veraar and Yaroslavtsev [78]. This limitation of the

literature to cylindrical martingales is due to the technical difficulty that in general,

cylindrical semi-martingales do not enjoy a semi-martingale decomposition in a cylin-

drical sense, see Jakubowski and Riedle [30, Re. 2.2]. As a consequence, one cannot use
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the above mentioned classical approach to develop a theory of stochastic integration in

this setting.

The problem of stochastic integration with respect to arbitrary cylindrical Lévy

processes in Hilbert space has been successfully addressed by Jakubowski and Riedle

in their work [30]. Here, the authors introduce the stochastic integral for càglàd inte-

grands using tightness arguments in Skorokhod space and the crucial observation that

tightness of the decoupled version of a collection of stochastic integrals implies tightness

of the original integrals. While the integration theory developed by Jakubowski and

Riedle in [30] made the first crucial step towards the possibility of considering SPDEs

with a rather general noise structure, it also had certain shortcomings. Most notably,

as observed in the paper by Brzeźniak et al. [8], solutions to SPDEs driven by cylin-

drical Lévy processes exhibit a rather interesting behaviour, wherein a solution can be

so irregular that it does not have a càdlàg modification. Hence, to ensure that we have

sufficiently powerful theoretical tools to deal with this situation, it became necessary

to consider stochastic integrals with predictable integrands. Since the integration the-

ory presented by Jakubowski and Riedle in [30] relies fundamentally on convergence

arguments in Skorokhod space, the extension of the notion of stochastic integral to

predictable integrands could not be achieved within this framework.

The first part of this thesis is devoted to filling this gap in the literature by pro-

viding a theory of stochastic integration for predictable integrands with respect to

arbitrary cylindrical Lévy processes in Hilbert space. In fact, by building on the orig-

inal ideas of Kwapień and Woyczyński, see for example [42], not only does it become

possible to introduce stochastic integrals with predictable integrands, but we also give

a complete characterisation of the largest space of predictable processes integrable with

respect to an arbitrary cylindrical Lévy process. As a by-product of our construction,

we obtain an explicit analytic condition for the integrability of a predictable process,

which is expressible in terms of the cylindrical characteristics of the integrator. Struc-
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turally speaking, the collection of all integrable processes forms a generalised modular

space, see Nakano [55], where the topology induced by the modular can be equivalently

metrised as a Polish space. As a demonstration of the robustness of our approach, we

provide a stochastic dominated convergence theorem in our setting, which allows for

the interchange of the limit and stochastic integral.

As a special case of our general integration theory, we consider separately stochastic

integrals with respect to standard symmetric α-stable cylindrical Lévy processes for

α ∈ (0, 2). Using the work of Kosmala and Riedle in [37], and utilising the well-known

tail properties of stable distributions, see for example Linde [43], we show that in case

the integrator is a standard symmetric α-stable cylindrical Lévy process, the largest

space of predictable integrands coincides with the collection of predictable processes

that almost surely have paths in the Bochner space Lα. This condition aligns perfectly

with its real-valued analogue, see Rosinski and Woyczynski [69], where the authors

obtain the same integrability condition for classical real-valued standard symmetric

α-stable Lévy processes via a random time change.

Moving away from stochastic integration, we consider another cornerstone of stochas-

tic analysis, the Itô formula. Historically speaking, the earliest form of the Itô formula

dates back to the seminal work of Itô [26]. Since then, Itô’s formula has been extended

in several directions. First, instead of a standard Brownian motion, one might consider

Itô processes driven by more general stochastic processes, like Lévy processes or general

semimartingales, see for example Jacod and Shiryaev [27], Meyer [49] or Protter [64].

Second, in keeping with modern mathematical developments, it is possible to leave the

one-dimensional setting behind and consider generalisations of Itô’s formula to more

abstract spaces, see Metivier [46] for a proof in Hilbert space, or Gyöngy and Krylov

[22] for the Banach-valued setting.
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In this thesis, we develop a (strong) Itô formula for processes of the form:

dX(t) = F (t) dt+G(t) dL(t) for t ∈ [0, T ], (1.1)

where L is a standard symmetric α-stable cylindrical Lévy process for α ∈ (1, 2), while

F : Ω × [0, T ] → H and G : Ω × [0, T ] → L2(U,H) are predictable processes satisfying

the integrability condition

∫ T

0
‖F (t)‖+ ‖G(t)‖αL2(U,H) dt <∞ a.s. (1.2)

Whereas the process in (1.1) is a Hilbert-valued semimartingale, and a classical Itô

formula is available in this setting, see Metivier [46, Th. 27.2], in order to successfully

apply this formula, it is often necessary to identify the martingale and bounded variation

parts. While this is usually accomplished through the semimartingale decomposition

of the driving noise, since cylindrical Lévy processes do not have a semimartingale

decomposition, obtaining a useful form of the Itô formula in this setting requires a

different approach. To tackle this problem, we draw upon the theory of random mea-

sures and compensators, e.g. Jacod and Shiryaev [27], and carry out an analysis of the

jump structure of stochastic integral processes driven by a standard symmetric α-stable

cylindrical Lévy process, which leads us naturally to a particularly useful form of the

Itô formula in this setting.

Armed with our Itô formula, we turn to stochastic evolution equations driven by

a standard symmetric α-stable cylindrical Lévy process. In the literature, there are

essentially two alternative approaches to this subject. The random field approach,

which originates from the work of Walsh [79], and the semigroup approach, introduced

by Da Prato and Zabyczyk in the monograph [13]. While in the random field approach,

one can find numerous publications with SPDEs perturbed by α-stable noise, see for
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example Chong [10], Mytnik [53], or Mueller [52], only in the work of Kosmala and

Riedle [37] do the authors take the semigroup approach. The scarcity of results in

the latter case can be attributed to the serious obstacle that similarly to cylindrical

Brownian motion, standard symmetric α-stable cylindrical Lévy processes exist only in

the generalised sense as cylindrical processes.

In the final chapter of this thesis, we take the semigroup approach and utilise

our developed integration theory and strong Itô formula to explore various aspects of

solutions to stochastic evolution equations driven by a standard symmetric α-stable

cylindrical Lévy process in a Hilbert space U for α ∈ (1, 2). More precisely, we consider

equations of the form:

dX(t) =
(
AX(t) + F (X(t))

)
dt+G(X(t−)) dL(t) for t ∈ [0, T ],

X(0) = x0, (1.3)

where A is a generator of a C0-semigroup (S(t))t≥0 in a Hilbert space H, x0 is an

F0-measurable H-valued random variable, F : H → H and G : H → L2(U,H) are

measurable mappings and T > 0. Our work in this direction is comprised of three main

results.

First, we build on the publication of Kosmala and Riedle in [37], and prove the

existence of a mild solution to (1.3). In fact, we significantly improve the existence

result presented by Kosmala and Riedle in [37], by showing that it is sufficient to

impose some rather natural Lipschitz and boundedness conditions on the coefficients

F and G in (1.3). The main tool in our proof is a Yosida approximation for the

solution, which is combined with the important observation that while solutions to the

Yosida approximating equations are pathwise discontinuous, they naturally live in the

space C([0, T ], Lp(Ω, H)) of p-th mean continuous Hilbert space-valued processes for

any p < α. This observation allows us to use the well-known Arzela-Ascoli theorem to
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establish relative compactness of solutions to the Yosida approximating equations in

the space C([0, T ], Lp(Ω, H)), from which our existence result follows immediately.

Second, we follow the work of Ichikawa [25] and take the functional Lyapunov ap-

proach to investigate regularity properties of mild solutions to (1.3). More precisely, we

provide explicit conditions on the coefficients F and G under which the mild solution

to (1.3) is exponentially ultimately bounded in the p-th moment for every p ∈ (0, 1).

The main ingredient of our proof is the strong Itô formula developed earlier in this

thesis. However, since mild solutions to SPDEs are not semimartingales, our strong

Itô formula cannot be applied directly. To circumvent this problem, we make use of

the fact that Yosida approximations have strong solutions, which makes it possible to

apply the developed strong Itô formula to these, and establish exponentially ultimate

boundedness of the solutions to the Yosida approximations. Since Yosida approxima-

tions converge to the mild solution of (1.3) in C([0, T ], Lp(Ω, H)), we then take the limit

to obtain exponential ultimate boundedness of the mild solution.

Finally, we consider the problem of proving an Itô formula for mild solutions to

(1.3). Since mild solutions to evolution equations are not semimartingales, the classical

Itô formula for semimartingales is not applicable. Hence, it becomes necessary to

develop a specific version of the Itô formula tailor-made for the evolution equation

under consideration. In the case of Gaussian noise, this problem was considered by

Ichikawa in [25], who provided one of the first examples of such a specialised Itô formula

for mild solutions. For a more recent treatment of the Gaussian case, see also the work

Da Prato et. al. [12]. For classical Lévy processes, an Itô formula for mild solutions

was obtained by Alberverio et. al. in [2]. As a final result of this thesis, we provide an

Itô formula for mild solutions to (1.3) by first applying our strong Itô formula to the

Yosida approximations, and then carefully extending this result to mild solutions via a

limiting argument.
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2 Preliminaries

2.1 Generalities

Throughout this thesis, unless otherwise stated, capital letters G,H,U, V denote sepa-

rable Hilbert spaces with norm ‖·‖ and scalar product 〈·, ·〉. We identify the dual of a

Hilbert space by the space itself. The Borel σ-algebra of a Hilbert space G is denoted

by B(G) and we denote by BG(r) the open ball in G with centre 0 and radius r. In the

special case when r = 1, we use the notation BG to denote the open unit ball around

the origin.

The Banach space of bounded linear operators from G to H will be denoted by

L(G,H) with the operator norm ‖·‖G→H , when G = H we use the shorthand L(G) :=

L(G,G). For each T ∈ L(G,H), we denote by T ∗ the adjoint operator of T . The

subspace L2(G,H) ⊆ L(G,H) of Hilbert-Schmidt operators is endowed with the norm

‖F‖2L2(G,H) :=
∑∞

k=1 ‖Fak‖
2 for F ∈ L2(G,H), where (ak)k∈N is an orthonormal basis

of G.

Let (S,S, ν) be a complete finite measure space and H a Hilbert space. We denote

by L0
ν(S,H) the space of equivalence classes of S-measurable functions f : S → H,

equipped with the topology of convergence in measure. In a similar manner, for each

p > 0, we denote by Lpν(S,H) the equivalence classes of measurable functions with finite

p-th moments. For p ≥ 1, this is a Banach space when equipped with the usual norm

‖f‖pLp :=
∫
S ‖f(s)‖p ν(ds), and for 0 < p < 1 it is a metric space under the translation

invariant metric d(f, g) =
∫
S ‖f(s)− g(s)‖p ν(ds). For ease of notation, we also use

the notation ‖f‖Lp to denote the metric d(0, f) for 0 < p < 1.

2.2 Infinitely divisible measures

The notion of infinitely divisible measures on a Hilbert space H can be defined in

essentially the same way as in Euclidean space; see Parthasarathy [58]. Much like in
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finite dimensions, infinitely divisible distributions on a Hilbert space H are uniquely

determined by a triplet (b,Q, λ), where b ∈ H, Q : H → H is nuclear and non-negative

mapping, and λ is a σ-finite measure on B(H) satisfying the conditions that λ({0}) = 0

and
∫
H

(
‖h‖2∧1

)
λ(dh) <∞. A measure λ on B(H) satisfying these two properties is

called a Lévy measure. Given any δ > 0 and Lévy measure λ on B(H), we say that δ is

a continuity point of λ, or in short δ ∈ C(λ), if λ({h ∈ H : ‖h‖ = δ}) = 0. A sequence

of infinitely divisible measures µn
D
= (bn, Qn, λn) with associated sequence (Tn)n∈N of

S-operators Tn : H → H, defined by

〈Tnh1, h2〉 = 〈Qnh1, h2〉+

∫
‖h1‖≤1

〈h1, u〉〈h2, u〉λn(du) for all h1, h2 ∈ H,

converges weakly to an infinitely divisible measure µ
D
= (b,Q, λ) if and only if the

following conditions are satisfied:

(1) b = lim
δ↓1

δ∈C(λ)

lim
n→∞

(
bn +

∫
1<‖h‖≤δ

h λn(dh)

)
; (2.1)

(2) lim
δ↓0

lim sup
n→∞

∫
‖h‖≤δ

〈h, u〉2 λn(du) + (Qnh, h) = (Qh, h) for all h ∈ H; (2.2)

(3) λn → λ weakly outside of every closed neighbourhood of the origin; (2.3)

(4) (Tn)n∈N is compact in the space of nuclear operators. (2.4)

The necessity of these conditions can be found in [43, Pr. 5.7.4], while their sufficiency

is an adaption of [58, Th. VI.5.5] to the case of a discontinuous truncation function.

In our preceding discussion of the characteristic triplet, we always assumed that the

truncation function f : H → H is of the form f(h) = h1B̄H . However, when dealing

with limit theorems, it is often preferable to use a continuous truncation function. In
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the following definition, we give a specific example of a continuous truncation function,

which will play an important role in the rest of this work.

Definition 2.1. Let θ : H → H be defined by

θ(h) =


h if ‖h‖ ≤ 1;

h
‖h‖ if ‖h‖ > 1.

We will denote by (bθ, Q, λ) the infinitely divisible characteristics expressed with

respect to the truncation function θ. One of the advantages of using a continuous

truncation function is highlighted by the following observation.

Remark 2.2. Let (I, ‖·‖0) denote the collection of H-valued infinitely divisible random

variables endowed with a translation invariant metric ‖·‖0 generating the topology of

convergence in probability. Define the mapping

g : I → H, g(X) = bθX ,

where bθX denotes the first characteristic of X with respect to the truncation function

θ. By [58, Th. VI.5.5], g is continuous and hence, by the topological characterisation

of continuity, for all ε > 0 there exists δ > 0, depending only on ε and the metric ‖·‖0,

such that for all X ∈ I we have the implication:

‖X‖0 < δ =⇒
∥∥∥bθX∥∥∥ < ε.

2.3 Characteristics of Lévy processes

The notion of characteristics for general real-valued semimartingales has been defined

in Jacod and Shiryaev [27]. In the case of quasi-left continuous real-valued semimartin-

gales, an alternative construction was given in Kwapien and Woyczinsky [42], which
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was later generalised to the Hilbert-valued setting in Nowak [56].

In the special case when the quasi-left continuous semimartingale is a Lévy process

L with values in a separable Hilbert space H, one might approach the problem of

defining its characteristics in two different ways. On the one hand, one can define the

characteristics of L through the Lévy-Khinchine formula. On the other hand, it is

possible to use the arguments in Nowak [56] and define the characteristics as limits of

certain increments of the process L over a suitably chosen sequence of partitions. As

one might expect, these two approaches essentially lead to the same answer provided

that we use the correct truncation function. An important relationship between the

two definitions of characteristics is given in the following theorem, for which we first

need to introduce the concept of a nested normal sequence of partitions.

Definition 2.3. Let (πn)n∈N be a sequence of partitions of the interval [s, t] of the form

πn =
{
s = p0,n < p1,n < ... < pN(n),n = t

}
.

We say that (πn)n∈N is a nested normal sequence of partitions if

(1) πn ⊆ πm for all n ≤ m;

(2) lim
n→∞

max
i∈{1,...,N(n)}

|pi,n − pi−1,n| = 0.

Theorem 2.4. Let L be an H-valued Lévy process with characteristics (bθ, Q, λ), and

let (πn)n∈N be a nested normal sequence of partitions of [s, t]. If we put di,n = L(pi,n)−

L(pi−1,n), then we have

(1) lim
n→∞

∑
πn

E [θ(di,n)] = (t− s)bθ;

(2) lim
n→∞

∑
πn

E
[
‖di,n‖2 ∧ 1

]
= (t− s)

(∫
H

(
‖h‖2 ∧ 1

)
λ(dh) + Tr(Q)

)
.
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Proof. For a proof, see [57, Le. 3.4], or the Appendix for an argument based purely on

the theory of infinitely divisible measures.

2.4 Cylindrical measures, random variables and processes

The first systematic treatment of the concept of a cylindrical Lévy process has been

introduced in the work of Applebaum and Riedle [4]. Analogously to cylindrical Brow-

nian motion, cylindrical Lévy processes exist only in the generalised sense of Gel’fand

and Vilenkin [21] or Segal [73] as cylindrical processes. As a first step towards a rigorous

definition of these generalised processes, we give a brief overview of the most crucial

concepts from the theory of cylindrical measures and random variables. For a detailed

account of these topics, see Schwartz [71] or Vakhania [76].

Let G be a Hilbert space and S ⊆ G. For each fixed n ∈ N, elements g1, ..., gn ∈ S

and Borel set A ∈ B(Rn), we define

C(g1, ..., gn;A) := {g ∈ G : (〈g, g1〉, ..., 〈g, gn〉) ∈ A}.

Such sets are called cylindrical sets with respect to A. The collection of all these

cylindrical sets is denoted by Z(G,S). In general, Z(G,S) forms an algebra of sets,

however, in the special case when S is finite, it becomes a σ-algebra. We will use the

shorthand Z(G) to denote Z(G,G).

Definition 2.5. A set function µ : Z(G) → [0,∞] is called a cylindrical measure on

Z(G) if for each finite subset S ⊆ G, the restriction of µ to the σ-algebra Z(G,S) is a

σ-additive measure.

A cylindrical measure µ on Z(G) is said to be finite if µ(G) < ∞, and is called a

cylindrical probability measure if we further require that µ(G) = 1.
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Definition 2.6. A cylindrical random variable X in G is a linear and continuous

mapping X : G→ L0
P (Ω,R).

Analogously to the case of real-valued random variables, each cylindrical random

variable X in G defines a cylindrical probability measure µX by

µX : Z(G)→ [0, 1], µX(Z) = P
(
(Xg1, . . . , Xgn) ∈ A

)
,

for cylindrical sets Z = C(g1, ..., gn;A). A cylindrical probability measure µX obtained

from a cylindrical random variable X through the above definition is called the cylin-

drical distribution of X. One can define the characteristic function ϕX of a cylindrical

random variable X by

ϕX : G→ C, ϕX(g) = E
[
eiXg

]
.

Assume that H is another Hilbert space and let T : G → H be a continuous, linear

operator. By defining

TX : H → L0
P (Ω,R), (TX)h = X(T ∗h),

we obtain a cylindrical random variable on H. An important special case of this

transformation is when T is a Hilbert-Schmidt operator and hence 0-Radonifying by

[76, Th. VI.5.2]. Then, it follows from [76, Pr. VI.5.3] that the cylindrical random

variable TX is induced by an H-valued random variable Y : Ω → H in the sense that

(TX)h = 〈Y, h〉 for all h ∈ H. This procedure of mapping cylindrical random variables

to classical ones is called Radonification. The following result shows that the inducing

random variable Y depends continuously on the Hilbert-Schmidt operator.
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Lemma 2.7. Let X be a cylindrical random variable and (Fn)n∈N a sequence in

L2(G,H) converging to F in ‖·‖L2(G,H). Then (FnX)n∈N converges to FX in L0
P (Ω, H).

Proof. Let µX denote the cylindrical distribution of X. As the sequence (Fn)n∈N is

compact in L2(G,H), the collection of measures {µX ◦ F−1
n : n ∈ N} is relatively

compact in the space of probability measures on B(H); see [30, Pr. 5.3]. Continuity of

X implies for all h ∈ H that

lim
n→∞

〈FnX,h〉 = lim
n→∞

X(F ∗nh) = X(F ∗h) = 〈FX, h〉 in L0
P (Ω,R).

Together with relative compactness, this implies that (FnX)n∈N converges to FX in

L0
P (Ω, H); see e.g. [28, Le. 2.4].

Having defined the notion of a cylindrical random variable, we can now introduce

cylindrical processes in the following natural way.

Definition 2.8. An indexed family (X(t) : t ≥ 0) of cylindrical random variables is

called a cylindrical process.

In this thesis, we will be interested in a special subclass of cylindrical processes, the

so called cylindrical Lévy processes. Simply put, these are cylindrical processes satis-

fying that their projections onto finite-dimensional subspaces become Lévy processes

in the classical sense. This is made precise in the definition below.

Definition 2.9. A family (L(t) : t ≥ 0) of cylindrical random variables L(t) : G →

L0
P (Ω,R) is called a cylindrical Lévy process if for each n ∈ N and g1, ..., gn ∈ G, the

stochastic process ((
L(t)g1, ..., L(t)gn

)
: t ≥ 0

)
is a Lévy process in Rn.
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One of the cornerstones of the theory of classical Lévy processes is the Lévy-

Khinchine formula, which provides an invaluable representation of the characteristic

function of Lévy processes. As it turns out, it is possible to obtain an analogous rep-

resentation for the characteristic function of cylindrical Lévy processes, provided one

defines the correct cylindrical analogue of Lévy measures. This is accomplished in the

following.

We denote by Z∗(G) the collection

{
{g ∈ G : (〈g, g1〉, ..., 〈g, gn〉) ∈ B} : n ∈ N, g1, ..., gn ∈ G,B ∈ B(Rn \ {0})

}
of cylindrical sets, which forms an algebra of subsets of G. Let L be a cylindrical Lévy

process in G. For fixed g1, ..., gn ∈ G, we denote by λg1,...,gn the Lévy measure of the

n-dimensional Lévy process
(
(L(t)g1, ..., L(t)gn) : t ≥ 0

)
obtained via the projection of

the cylindrical Lévy process L onto the coordinate functions g1, ..., gn.

Definition 2.10. We define a function λ : Z∗(G)→ [0,∞] by

λ(C) := λg1,...,gn(B) for C = {g ∈ G : (〈g, g1〉, ..., 〈g, gn〉) ∈ B},

where B ∈ B(Rn \{0}). The fact that λ is well-defined is shown in [4]. The set function

λ obtained in this manner is called the cylindrical Lévy measure of L.

Similarly to how classical Lévy processes are related to infinitely divisible measures,

cylindrical Lévy processes are related to the class of infinitely divisible cylindrical mea-

sures. For an in-depth study of the theory of infinitely divisible cylindrical measures,

see [66]. Building on the theoretical foundations laid down in [66], we know that for a

cylindrical Lévy process L in G, the characteristic function of L(t) for each t ≥ 0 takes

the form

ϕL(t) : G→ C, ϕL(t)(g) = exp (tS(g)) ,
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where the mapping S : G→ C is called the cylindrical symbol of L, and satisfies

S(g) = ia(g)− 1

2
〈Qg, g〉+

∫
G

(
ei〈g,h〉 − 1− i〈g, h〉1BR(〈g, h〉)

)
λ(dh).

Here, a : G → R is a continuous mapping with a(0) = 0, Q : G → G is a positive

and symmetric operator, and λ is a cylindrical Lévy measure on G. We call the triplet

(a,Q, λ) the cylindrical characteristics of L.

In the second half of this thesis, we restrict our attention to the important class

of standard symmetric α-stable cylindrical Lévy processes in G for α ∈ (0, 2). These

are cylindrical Lévy processes with characteristic function ϕL(t)(g) = exp(−t ‖g‖α) for

each t ≥ 0 and g ∈ G. For each n ∈ N and g1, ..., gn ∈ G we define the projection

πg1,...,gn : G→ Rn via the prescription

πg1,...,gn(g) = (〈g, g1〉, ..., 〈g, gn〉).

If (en)n∈N is an orthonormal basis of G, then it follows from [68, Le. 2.4] that the cylin-

drical Lévy measure λ of the standard symmetric α-stable cylindrical Lévy processes

in G satisfies the spectral representation

λ ◦ π−1
e1,...,en(B) =

α

cα

∫
SRn

νn(dx)

∫ ∞
0

1B(rx)
1

r1+α
dr for B ∈ B(Rn), (2.5)

where SRn := {β ∈ Rn : |β| = 1}, cα > 0 is a constant dependent only on α, and νn

denotes a uniform distribution on the sphere SRn .
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3 Stochastic integration with respect to cylindrical Lévy

processes

3.1 Construction of the modular space

Originally introduced by Nakano [54], modular spaces serve as natural generalizations

of Banach spaces. While numerous different definitions appear in the literature, see

[20] for an overview of these, in this work we will always use the following adaption of

Nakano’s definition of a generalized modular, see [55].

Definition 3.1. Let V be a real vector space. A function ∆ : V → [0,∞] is called a

modular if

(1) ∆(−v) = ∆(v) for all v ∈ V ;

(2) inf
α>0

∆(αv) = 0 for all v ∈ V ;

(3) ∆(αv) ≤ ∆(βv) for all 0 ≤ α ≤ β and v ∈ V ;

(4) there exists a constant c > 0 such that

∆(v + w) ≤ c (∆(v) + ∆(w)) for all v, w ∈ V.

Remark 3.2. A function satisfying Condition (4) of Definition 3.1 is said to be of

moderate growth.

It is known, see for example [76], that Hilbert-Schmidt operators between Hilbert

spaces map cylindrical random variables to genuine random variables. As it turns

out, a similar correspondence can be established between cylindrical and genuine Lévy

processes.
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Lemma 3.3. Let (L(t) : t ≥ 0) be a cylindrical Lévy process in G with cylindrical

characteristics (a,Q, λ), and let F ∈ L2(G,H) be a Hilbert-Schmidt operator. Then,

there exists an H-valued Lévy process (LF (t) : t ≥ 0) satisfying for all t ∈ [0, T ] and h ∈

H that 〈LF (t), h〉 = L(t)(F ∗h). Moreover, LF has characteristics (bF , FQF
∗, λ◦F−1),

where for all u ∈ H

〈bF , u〉 = a(F ∗u) +

∫
H
〈h, u〉 (1BH (h)− 1BR(〈h, u〉)) (λ ◦ F−1)(dh).

Proof. Existence of the H-valued Lévy process LF follows from [29, Th.A]. To derive

the characteristics, first apply [67, Le. 5.4] to obtain the cylindrical characteristics of

LF , and then use [67, Le. 5.8] to convert the cylindrical characteristics into genuine

characteristics.

Remark 3.4. Let F1, F2 ∈ L2(G,H). Then, it follows from linearity of the cylindrical

random variables L(t) that LF1+F2(t) = LF1(t) + LF2(t) for all t ≥ 0.

Remark 3.5. Note that in the special case, when the truncation function is θ, see

Definition 2.1, the first characteristic bθF satisfies for all u ∈ H that

〈bθF , u〉 = a(F ∗u) +

∫
H
〈θ(h), u〉 − 〈h, u〉1BR(〈h, u〉)

(
λ ◦ F−1

)
(dh). (3.1)

For the rest of this chapter, we fix a cylindrical Lévy process L with cylindrical

characteristics (a,Q, λ). Our aim is to define a modularmL on a suitable subspace of the

vector space of all measurable, Hilbert-Schmidt operator-valued functions ψ : [0, T ]→

L2(G,H), with mL explicitly expressed in terms of the cylindrical characteristics of L.

The following functions play a key role in the definition of our modular.
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Definition 3.6. We define the functions kL, lL : L2(G,H)→ R by

kL(F ) =

∫
H

(
‖h‖2 ∧ 1

) (
λ ◦ F−1

)
(dh) + Tr(FQF ∗);

lL(F ) = sup
O∈L(H)1

∥∥∥bθOF∥∥∥ ,
where L(H)1 denotes the collection of bounded linear operators O : H → H satisfying

‖O‖H→H ≤ 1, (a,Q, λ) are the cylindrical characteristics of L, and for each O ∈ L(H)1

the expression bθOF denotes the first characteristic of the Radonified Lévy process LOF

as defined in Equation 3.1 above.

We are now ready to give the definition of our modular mL.

Definition 3.7. For a measurable function ψ : [0, T ]→ L2(G,H) we define

m′L(ψ) :=

∫ T

0
kL(ψ(t)) + lL(ψ(t)) dt;

m′′(ψ) :=

∫ T

0

(
‖ψ(t)‖2L2(G,H) ∧ 1

)
dt;

mL(ψ) := m′L(ψ) +m′′(ψ).

We denote by MHS
det,L := MHS

det,L(G,H) the space of Lebesgue a.e. equivalence classes

of measurable functions ψ : [0, T ]→ L2(G,H) for which mL(ψ) <∞.

Remark 3.8. The fact that the integrals in the above definition are well defined follows

from Lemma 3.12 below.

The rest of this chapter will be devoted to proving that MHS
det,L is a vector space

and mL is a modular on MHS
det,L in the sense of Definition 3.1. As a first step towards

this direction, the next lemma provides us with an alternative representation of lL.

This will be heavily used in the sequel when we investigate various properties of the

modular.

24



Lemma 3.9. Let L be a cylindrical Lévy process in G with characteristics (a,Q, λ).

For all F ∈ L2(G,H) and O ∈ L(H) it holds that

bθOF = ObθF +

∫
H
θ(Oh)−Oθ(h) (λ ◦ F−1)(dh).

Proof. The proof follows from a direct calculation using the characteristic function of

the Lévy process (LOFt )t≥0. To get the left hand side, we Radonify L by the composition

OF and apply Lemma 3.3. To obtain the right hand side, first we use Lemma 3.3 to

Radonify L by F , and then transform the genuine Lévy process (LFt )t≥0 by O using

[11, Th. 4.1] to get another Lévy process.

Remark 3.10. It follows from Lemma 3.9 that for each F ∈ L2(G,H) the expres-

sion lL(F ) is finite. To see this, we first note that for all h ∈ B̄H and O ∈ L(H)1

we have ‖θ(Oh)−Oθ(h)‖ = 0, and for all h ∈ H and O ∈ L(H)1 it holds that

‖θ(Oh)−Oθ(h)‖ ≤ 2. By combining these observations with Lemma 3.9 we obtain

sup
O∈L(H)1

∥∥∥bθOF∥∥∥ ≤ sup
O∈L(H)1

∥∥∥ObθF∥∥∥+ sup
O∈L(H)1

∥∥∥∥∫
H
θ(Oh)−Oθ(h) (λ ◦ F−1)(dh)

∥∥∥∥
≤
∥∥∥bθF∥∥∥+ 2(λ ◦ F−1)(B̄c

H) <∞.

Before we could prove that our modular mL is well-defined, we need to establish a

relationship between weak convergence of infinitely divisible measures and convergence

of the corresponding characteristics in the following sense:

Lemma 3.11. Let µn
D
= (bθn, Qn, λn) be a sequence of infinitely divisible measures on

B(H) converging weakly to µ
D
= (bθ, Q, λ). Then, the following conditions hold:

(1) lim
n→∞

(∫
H

(
‖h‖2 ∧ 1

)
λn (dh) + Tr(Qn)

)
=

∫
H

(
‖h‖2 ∧ 1

)
λ (dh) + Tr(Q);

(2) lim
n→∞

∥∥∥bθn − bθ∥∥∥ = 0.
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Proof. The fact that (2) holds follows directly from [58, Th. VI.5.5/(1)]. To prove (1),

fix δ ∈ (0, 1] such that δ ∈ C(λ). By [58, Th. VI.5.5/(2)] we have

lim
n→∞

∫
‖h‖>δ

(
‖h‖2 ∧ 1

)
λn(dh) =

∫
‖h‖>δ

(
‖h‖2 ∧ 1

)
λ(dh).

Therefore, it remains only to deal with the limit of the integrals over B̄H(δ). Let

ε > 0 be fixed. It follows from properties of the Lebesgue integral that there exists a

δ1 ∈ (0, δ] such that

∫
‖h‖≤δ1

‖h‖2 λ(dh) <
ε

12
. (3.2)

Let {ek}k∈N be an orthonormal basis of H. Since Q is a trace class operator, there

exists K1 ∈ N such that
∞∑

k=K1+1

〈Qek, ek〉 <
ε

12
.

By compactness of the associated S-operators, see [58, Th. VI.5.5/(3)], there exists

K2 ∈ N such that for all n ∈ N

∞∑
k=K2+1

(∫
‖h‖≤δ

〈ek, h〉2 λn(dh) + 〈Qnek, ek〉

)
<
ε

4
. (3.3)

Moreover, by another application of [58, Th. VI.5.5/(3)], there exists a δ2 < δ1 and

N1 ∈ N such that for all n ≥ N1 and for all k ≤ K2 we have that∣∣∣∣∣
∫
‖h‖≤δ2

〈ek, h〉2 λn(dh) + 〈Qnek, ek〉 − 〈Qek, ek〉

∣∣∣∣∣ < ε

12K
, (3.4)

where K := max{K1,K2}. Furthermore, by [58, Th. VI.5.5/(2)] , there exists N2 ∈ N
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such that for all n ≥ N2 we have that∣∣∣∣∣
∫
δ2<‖h‖≤δ

‖h‖2 λn(dh)−
∫
δ2<‖h‖≤δ

‖h‖2 λ(dh)

∣∣∣∣∣ < ε

2
. (3.5)

Rewriting the integral over B̄H(δ) as

∫
‖h‖≤δ

‖h‖2 λ(dh) =

∫
δ2<‖h‖≤δ

‖h‖2 λ(dh) +

∫
‖h‖≤δ2

‖h‖2 λ(dh),

we obtain that∣∣∣∣∣
∫
‖h‖≤δ

‖h‖2 λ(dh) + Tr(Q)−
∫
‖h‖≤δ

‖h‖2 λn(dh)− Tr(Qn)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
δ2<‖h‖≤δ

‖h‖2 λ(dh)−
∫
δ2<‖h‖≤δ

‖h‖2 λn(dh)

∣∣∣∣∣
+

∣∣∣∣∣
∫
‖h‖≤δ2

‖h‖2 λ(dh) + Tr(Q)−
∫
‖h‖≤δ2

‖h‖2 λn(dh)− Tr(Qn)

∣∣∣∣∣. (3.6)

We define N := max{N1, N2}. If n ≥ N then Equation (3.5) implies∣∣∣∣∣
∫
δ2<‖h‖≤δ

‖h‖2 λn(dh)−
∫
δ2<‖h‖≤δ

‖h‖2 λ(dh)

∣∣∣∣∣ < ε

2
. (3.7)

Thus, it remains only to control the second term on the right hand side of Equation

(3.6). By Parseval’s identity, Equations (3.2)-(3.4) and a repeated application of the

triangle inequality, we obtain for all n ≥ N that∣∣∣∣∣
∫
‖h‖≤δ2

‖h‖2 λ(dh) + Tr(Q)−
∫
‖h‖≤δ2

‖h‖2 λn(dh)− Tr(Qn)

∣∣∣∣∣
≤

∣∣∣∣∣Tr(Q)−
∫
‖h‖≤δ2

‖h‖2 λn(dh)− Tr(Qn)

∣∣∣∣∣+

∣∣∣∣∣
∫
‖h‖≤δ2

‖h‖2 λ(dh)

∣∣∣∣∣
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=

∣∣∣∣∣
∞∑
k=1

(
〈Qek, ek〉 −

∫
‖h‖≤δ2

〈h, ek〉2 λn(dh)− 〈Qnek, ek〉

)∣∣∣∣∣+

∣∣∣∣∣
∫
‖h‖≤δ2

‖h‖2 λ(dh)

∣∣∣∣∣
=

∣∣∣∣∣
K∑
k=1

(
〈Qek, ek〉 −

∫
‖h‖≤δ2

〈h, ek〉2 λn(dh)− 〈Qnek, ek〉

)∣∣∣∣∣
+

∣∣∣∣∣
∞∑

k=K+1

(
〈Qek, ek〉 −

∫
‖h‖≤δ2

〈h, ek〉2 λn(dh)− 〈Qnek, ek〉

)∣∣∣∣∣+

∣∣∣∣∣
∫
‖h‖≤δ2

‖h‖2 λ(dh)

∣∣∣∣∣
<
ε

2
. (3.8)

Hence, if n ≥ N then Equations (3.7) and (3.8) together imply

∣∣∣∣∣
∫
‖h‖≤δ

‖h‖2 λ(dh) + Tr(Q)−
∫
‖h‖≤δ

‖h‖2 λn(dh)− Tr(Qn)

∣∣∣∣∣ < ε.

Since ε > 0 was arbitrary, the result follows.

Lemma 3.12. Let kL, lL : L2(G,H)→ R be as in Definition 3.6. Then we have:

(1) kL is continuous;

(2) lL is lower-semicontinuous and continuous at 0.

Proof. Continuity of kL follows immediately from Lemmata 2.7 and 3.11. To prove

lower-semicontinuity of lL, we fix F ∈ L2(G,H) and a sequence (Fn)n∈N ⊆ L2(G,H)

satisfying that limn→∞ ‖Fn − F‖L2(G,H) = 0. Let ε > 0 be fixed. Since Remark 3.10 im-

plies that for each F ∈ L2(G,H) the expression supO∈L(H)1

∥∥bθOF∥∥ is finite, by the very

definition of the supremum, there exists Oε ∈ L(H)1 such that supO∈L(H)1

∥∥bθOF∥∥ ≤∥∥bθOεF∥∥ + ε. Moreover, for this Oε, we have by Lemma 2.7 and [58, Th. VI.5.5] that

limn→∞
∥∥bθOεFn∥∥ =

∥∥bθOεF∥∥. Since when the limit exists it is equivalent to the limit

inferior, we obtain
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sup
O∈L(H)1

∥∥∥bθOF∥∥∥ ≤ ∥∥∥bθOεF∥∥∥+ ε = lim
n→∞

∥∥∥bθOεFn∥∥∥+ ε

= lim inf
n→∞

∥∥∥bθOεFn∥∥∥+ ε ≤ lim inf
n→∞

sup
O∈L(H)1

∥∥∥bθOFn∥∥∥+ ε.

As ε > 0 is arbitrary, the above shows that

lL(F ) ≤ lim inf
n→∞

lL(Fn),

which proves lower-semicontinuity of lL. To show continuity of lL at 0, note that by

Lemma 2.7 and Remark 2.2, for all ε > 0 there exists δ > 0 such that ‖F‖L2(G,H) ≤

δ =⇒
∥∥bθF∥∥ ≤ ε. Since for all O ∈ L(H)1 it holds that ‖OF‖L2(G,H) ≤ ‖F‖L2(G,H), we

have

‖F‖L2(G,H) ≤ δ =⇒ sup
O∈L(H)1

∥∥∥bθOF∥∥∥ ≤ ε.
This concludes the proof.

In preparation for showing that mL is of moderate growth, see Definition 3.1/(4),

we prove the following technical lemmata.

Lemma 3.13. Let {ei}i∈N be an orthonormal basis of G and let Pn : G → G be the

projection onto Span{e1, ..., en}. Then, for all F ∈ L2(G,H) we have

lim
n→∞

‖FPn − F‖L2(G,H) = 0.

Proof. Since Pnei = ei for i ≤ n, and Pnei = 0 for i > n, we have

‖FPn − F‖2L2(G,H) =

∞∑
i=1

‖(FPn − F )ei‖2H =

∞∑
i=n+1

‖Fei‖2H .
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As F is Hilbert-Schmidt, the sum
∑∞

i=1 ‖Fei‖2H converges, which implies that

lim
n→∞

‖FPn − F‖2L2(G,H) = lim
n→∞

∞∑
i=n+1

‖Fei‖2H = 0,

which concludes the proof of our claim.

Lemma 3.14. For all F, F1, F2 ∈ L2(G,H) we have

(1) kL(F1 + F2) ≤ 2 (kL(F1) + kL(F2));

(2) sup
O∈L(H)1

kL(OF ) ≤ kL(F ).

Proof. Let Pn : G→ G denote the projections from Lemma 3.13. Using the inequality

(a+ b)2 ∧ 1 ≤ 2
[
(a2 ∧ 1) + (b2 ∧ 1)

]
for all a, b ∈ R, (3.9)

we observe that for each n ∈ N

∫
H

(
‖h‖2 ∧ 1

) (
λ ◦ ((F1 + F2)Pn)−1

)
(dh)

=

∫
H

(
‖h‖2 ∧ 1

) ((
λ ◦ P−1

n

)
◦ (F1 + F2)−1

)
(dh)

=

∫
G

(
‖(F1 + F2)g‖2 ∧ 1

) (
λ ◦ P−1

n

)
(dg)

≤2

(∫
G

(
‖F1g‖2 ∧ 1

) (
λ ◦ P−1

n

)
(dg) +

∫
G

(
‖F2g‖2 ∧ 1

) (
λ ◦ P−1

n

)
(dg)

)
=2

(∫
H

(
‖h‖2 ∧ 1

) ((
λ ◦ P−1

n

)
◦ F−1

1

)
(dh) +

∫
H

(
‖h‖2 ∧ 1

) ((
λ ◦ P−1

n

)
◦ F−1

2

)
(dh)

)
=2

(∫
H

(
‖h‖2 ∧ 1

) (
λ ◦ (F1Pn)−1

)
(dh) +

∫
H

(
‖h‖2 ∧ 1

) (
λ ◦ (F2Pn)−1

)
(dh)

)
.

(3.10)
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Moreover, by symmetry and positivity of Q, and basic properties of the trace operator

Tr (((F1 + F2)Pn)Q((F1 + F2)Pn)∗)

= Tr((F1Pn)Q(F1Pn)∗) + Tr((F1Pn)Q(F2Pn)∗)

+ Tr((F2Pn)Q(F1Pn)∗) + Tr((F2Pn)Q(F2Pn)∗)

≤
(∥∥∥F1PnQ

1/2
∥∥∥
L2(G,H)

+
∥∥∥F2PnQ

1/2
∥∥∥
L2(G,H)

)2

≤ 2

(∥∥∥F1PnQ
1/2
∥∥∥2

L2(G,H)
+
∥∥∥F2PnQ

1/2
∥∥∥2

L2(G,H)

)
= 2 (Tr((F1Pn)Q(F1Pn)∗) + Tr((F2Pn)Q(F2Pn)∗)) . (3.11)

By adding the Inequalities in (3.10) and (3.11) we get

kL((F1 + F2)Pn) ≤ 2 (kL(F1Pn) + kL(F2Pn)) .

By taking limits on both sides, and using continuity of kL, see Lemma 3.12/(1), the

first part of this Lemma is now proved.

To prove the second part, we fix F ∈ L2(G,H) and obtain for all O ∈ L(H)1 and

n ∈ N that

∫
H

(
‖h‖2 ∧ 1

) (
λ ◦ (OFPn)−1

)
(dh) =

∫
G

(
‖(OF )g‖2 ∧ 1

) (
λ ◦ P−1

n

)
(dg)

≤
∫
G

(
‖Fg‖2 ∧ 1

) (
λ ◦ P−1

n

)
(dg)

=

∫
H

(
‖h‖2 ∧ 1

) (
λ ◦ (FPn)−1

)
(dh). (3.12)

Moreover, using the relationship between the Hilbert-Schmidt norm and the trace op-
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erator, we obtain for all O ∈ L(H)1 and n ∈ N that

Tr((OFPn)Q(OFPn)∗) = Tr((OFPnQ
1/2)(OFPnQ

1/2)∗) (3.13)

=
∥∥∥OFPnQ1/2

∥∥∥2

L2(G,H)

≤
∥∥∥FPnQ1/2

∥∥∥2

L2(G,H)
= Tr((FPn)Q(FPn)∗).

By adding Inequalities (3.12) and (3.13), and taking limits on both sides, the result

now follows from Lemmata 3.11 and 3.13.

Lemma 3.15. For all ψ1, ψ2 ∈MHS
det,L we have

mL(ψ1 + ψ2) ≤ 4 (mL (ψ1) +mL (ψ2)) .

Proof. Let F1, F2 ∈ L2(G,H) and (πn)n∈N be a nested normal sequence of partitions of

the interval [0, 1]. By Lemma 3.3 and the limit characterisation of Lévy characteristics

in Theorem 2.4, we obtain

bθF1+F2
= lim

n→∞

N(n)∑
i=1

E
[
θ
(
LF1+F2(ti,n)− LF1+F2(ti−1,n)

)]
.

By Remark 3.4, we can rewrite the sum as

N(n)∑
i=1

E
[
θ
((
LF1(ti,n)− LF1(ti−1,n)

)
+
(
LF2(ti,n)− LF2(ti−1,n)

))]
.

In order to simplify the notation, for each n ∈ N and i ∈ {1, ..., N(n)} we define

Ai,n := LF1(ti,n)− LF1(ti−1,n) and Bi,n := LF2(ti,n)− LF2(ti−1,n).
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Using this notation, an application of the triangle inequality yields

∥∥∥bθF1+F2

∥∥∥
= lim
n→∞

∥∥∥∥∥∥
N(n)∑
i=1

E [θ(Ai,n +Bi,n)]

∥∥∥∥∥∥
= lim
n→∞

∥∥∥∥∥∥
N(n)∑
i=1

E [θ(Ai,n +Bi,n)− θ(Ai,n)− θ(Bi,n)] +

N(n)∑
i=1

E [θ(Ai,n) + θ(Bi,n)]

∥∥∥∥∥∥
≤ lim
n→∞

∥∥∥∥∥∥
N(n)∑
i=1

E [θ(Ai,n +Bi,n)− θ(Ai,n)− θ(Bi,n)]

∥∥∥∥∥∥+

∥∥∥∥∥∥
N(n)∑
i=1

E [θ(Ai,n) + θ(Bi,n)]

∥∥∥∥∥∥
 .

(3.14)

Applying the inequality

‖θ(h1 + h2)− θ(h1)− θ(h2)‖ ≤ 2
(
θ(‖h1‖)2 + θ(‖h2‖)2

)
for all h1, h2 ∈ H,

we see that ∥∥∥∥∥∥
N(n)∑
i=1

E [θ(Ai,n +Bi,n)− θ(Ai,n)− θ(Bi,n)]

∥∥∥∥∥∥
≤

N(n)∑
i=1

E [‖θ(Ai,n +Bi,n)− θ(Ai,n)− θ(Bi,n)‖]

≤
N(n)∑
i=1

E
[
2
(
θ(‖Ai,n‖)2 + θ(‖Bi,n‖)2

)]
= 2

N(n)∑
i=1

E
[
θ(‖Ai,n‖)2

]
+ 2

N(n)∑
i=1

E
[
θ(‖Bi,n‖)2

]
. (3.15)
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Moreover, by the triangle inequality we have∥∥∥∥∥∥
N(n)∑
i=1

E [θ(Ai,n) + θ(Bi,n)]

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
N(n)∑
i=1

E [θ(Ai,n)]

∥∥∥∥∥∥+

∥∥∥∥∥∥
N(n)∑
i=1

E [θ(Bi,n)]

∥∥∥∥∥∥ . (3.16)

Combining Equations (3.14)-(3.16), we get

∥∥∥bθF1+F2

∥∥∥ ≤ lim
n→∞

(
2

N(n)∑
i=1

E
[
θ(‖Ai,n‖)2

]
+ 2

N(n)∑
i=1

E
[
θ(‖Bi,n‖)2

]
+

∥∥∥∥∥∥
N(n)∑
i=1

E [θ(Ai,n)]

∥∥∥∥∥∥+

∥∥∥∥∥∥
N(n)∑
i=1

E [θ(Bi,n)]

∥∥∥∥∥∥
)
.

By taking the limit as n → ∞ and using the limit characterisation of Lévy character-

istics from Theorem 2.4, we obtain

∥∥∥bθF1+F2

∥∥∥ ≤ 2

(∫
H

(
‖h‖2 ∧ 1

) (
λ ◦ F−1

1

)
(dh) + Tr(F1QF

∗
1 )

)
+ 2

(∫
H

(
‖h‖2 ∧ 1

) (
λ ◦ F−1

2

)
(dh) + Tr(F2QF

∗
2 )

)
+
∥∥∥bθF1

∥∥∥+
∥∥∥bθF2

∥∥∥
= 2 (kL(F1) + kL(F2)) +

∥∥∥bθF1

∥∥∥+
∥∥∥bθF2

∥∥∥ . (3.17)

Therefore, by Equation (3.17) and Lemma 3.14/(2), we get

lL(F1 + F2) := sup
O∈L(H)1

∥∥∥bθO(F1+F2)

∥∥∥ ≤ 2 (kL(F1) + kL(F2)) + lL(F1) + lL(F2). (3.18)

Combining Equation (3.18) with Lemma 3.14/(1) yields that

kL(F1 + F2) + lL(F1 + F2) ≤ 4 (kL(F1) + kL(F2) + lL(F1) + lL(F2)) . (3.19)
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Hence, an application of Equation (3.19) and Inequality (3.9) implies for all measurable

functions ψ1, ψ2 ∈MHS
det,L that

mL(ψ1 + ψ2)

=

∫ T

0
kL
(
ψ1(t) + ψ2(t)

)
+ lL

(
ψ1(t) + ψ2(t)

)
dt+

∫ T

0

(
‖ψ1(t) + ψ2(t)‖2L2(G,H) ∧ 1

)
dt

≤ 4

(∫ T

0
kL(ψ1(t) + lL(ψ1(t) dt+

∫ T

0
kL(ψ2(t) + lL(ψ2(t) dt

)
+ 2

(∫ T

0

(
‖ψ1(t)‖2L2(G,H) ∧ 1

)
dt+

∫ T

0

(
‖ψ2(t)‖2L2(G,H) ∧ 1

)
dt

)
≤ 4 (mL(ψ1) +mL(ψ2)) .

This concludes the proof.

Lemma 3.16. For all r > 0 there exists cr > 0 such that

sup
‖F‖L2(G,H)≤r

(kL(F ) + lL(F )) ≤ cr.

Proof. By Lemma 3.12, kL + lL is continuous at 0, from which it follows that there

exists a δ > 0 such that ‖F‖L2(G,H) ≤ δ implies (kL + lL)(F ) ≤ 1. Let r > 0 be fixed.

If we choose Nr ∈ N to be large enough so that r
Nr
≤ δ, then by a repeated use of

Equation (3.19), we obtain for some cr > 0 that

sup
‖F‖L2(G,H)≤r

(kL + lL)(F ) = sup
‖F‖L2(G,H)≤r

(kL + lL)

(
Nr

F

Nr

)
≤ cr sup

‖F‖L2(G,H)≤r
(kL + lL)

(
F

Nr

)
≤ cr,

which completes the proof.
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Remark 3.17. In particular, Lemma 3.16 implies that for all bounded functions ψ :

[0, T ] → L2(G,H) we have that ψ ∈ MHS
det,L. Indeed, if supt∈[0,T ] ‖ψ(t)‖L2(G,H) ≤

r for some r > 0, then by Lemma 3.16 there exists cr > 0 such that it holds that

sup‖F‖L2(G,H)≤r (kL(F ) + lL(F )) ≤ cr. Hence we obtain

m′L(ψ) :=

∫ T

0

(
kL(ψ(t)) + lL(ψ(t))

)
dt ≤ T cr <∞.

Since by the very definition of m′′ we have that m′′(ψ) <∞, it follows that mL(ψ) <∞.

Having developed all the technical tools, we now present the main result of this

section, which shows that MHS
det,L is a vector space and mL is a modular on MHS

det,L in

the sense of Definition 3.1.

Theorem 3.18. MHS
det,L is a linear space and mL is a modular on MHS

det,L.

Proof. Let ψ1, ψ2 ∈MHS
det,L. By Lemma 3.15, we have

mL(ψ1 + ψ2) ≤ 4 (mL(ψ1) +mL(ψ2)) <∞,

which implies that MHS
det,L is closed under addition. A similar argument as in Lemma

3.16 shows that MHS
det,L is closed under multiplication by scalars, which completes the

proof that MHS
det,L is a vector space. Hence, it remains only to show that mL satisfies

the conditions of Definition 3.1. It follows directly from the definition of mL that

mL(−ψ) = mL(ψ) for all ψ ∈MHS
det,L. Condition (2) of Definition 3.1 is a consequence

of Lemma 3.12. Condition (3) of Definition 3.1 follows from an argument similar to

Lemma 3.14/(2) and the very definition of lL. Finally, Condition (4) of Definition 3.1

is a direct consequence of Lemma 3.15.

Remark 3.19. We say that a sequence (ψn)n∈N ⊆ MHS
det,L converges in the modular

topology to ψ ∈ MHS
det,L if limn→∞mL(ψn − ψ) = 0. Since mL(ψ) = 0 if and only
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if ψ(t) = 0 for Lebesgue almost all t ∈ [0, T ], we have that limits of sequences in the

modular topology are Lebesgue a.e. uniquely determined. For this and further properties

of the modular topology, see Section 2 of Nakano [55].

Later on, we will be interested in the space L0
P (Ω,MHS

det,L) ofMHS
det,L-valued random

elements. In order to make precise mathematical sense of L0
P (Ω,MHS

det,L), we prove that

the modular spaceMHS
det,L, considered as a topological space with the modular topology,

is a Polish space.

Lemma 3.20. The modular topology on MHS
det,L induced by mL is complete.

Proof. Let (ψi)i∈N ⊆ MHS
det,L be such that limi,j→∞mL(ψi − ψj) = 0. Then, for all

ε ∈ (0, 1) we have by Markov’s inequality that

lim
i,j→∞

Leb
(
t ∈ [0, T ] : ‖ψi(t)− ψj(t)‖L2(G,H) > ε

)
≤ lim

i,j→∞

1

ε2

∫ T

0

(
‖ψi(t)− ψj(t)‖2L2(G,H) ∧ 1

)
dt ≤ lim

i,j→∞

1

ε2
mL(ψi − ψj) = 0,

which implies that the sequence (ψi)i∈N is Cauchy in Lebesgue measure. Hence, there

exists a subsequence (ψin)n∈N converging Lebesgue almost everywhere to a measurable

function ψ : [0, T ]→ L2(G,H).

Let ε > 0 be fixed. By assumption, there exists N ∈ N such that for all i, j ≥ N

we have mL(ψi − ψj) < ε/2. Since by Lemma 3.12, kL is continuous and lL is lower-

semicontinuous, Fatou’s lemma implies for all i ≥ N that

m′L(ψi − ψ) =

∫ T

0
(kL + lL)(ψi(t)− ψ(t)) dt

≤
∫ T

0
lim inf
n→∞

(kL + lL)(ψi(t)− ψin(t)) dt (3.20)

≤ lim inf
n→∞

∫ T

0
(kL + lL)(ψi(t)− ψin(t)) dt ≤ lim inf

n→∞
mL(ψi − ψin) <

ε

2
.
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Since (ψin)n∈N converges Lebesgue a.e. to ψ, using the dominated convergence theorem

we obtain

m′′(ψi − ψ) =

∫ T

0

(
‖ψi(t)− ψ(t)‖2L2(G,H) ∧ 1

)
dt

=

∫ T

0
lim
n→∞

(
‖ψi(t)− ψin(t)‖2L2(G,H) ∧ 1

)
dt (3.21)

= lim
n→∞

∫ T

0

(
‖ψi(t)− ψin(t)‖2L2(G,H) ∧ 1

)
dt ≤ lim

n→∞
mL(ψi − ψin) <

ε

2
.

Equations (3.20) and (3.21) together imply that mL(ψi − ψ) < ε for all i ≥ N . Since

ε > 0 can be chosen to be arbitrarily small, we conclude that limi→∞mL(ψi − ψ) = 0.

Finally, to see that ψ ∈ MHS
det,L, fix i0 ∈ N such that mL(ψi0 − ψ) ≤ 1. Since ψi0 ∈

MHS
det,L, we have that mL(ψi0) <∞ and hence

mL(ψ) ≤ 4 (mL(ψ − ψi0) +mL(ψi0)) ≤ 4 (1 +mL(ψi0)) <∞.

Thus, we have that ψ ∈MHS
det,L, which concludes the proof.

Remark 3.21. Note that Lemma 3.20 explains the role of m′′ in the modular mL. In

particular, m′′ is needed to establish completeness of the modular topology by allowing

the identification of a potential mL-limit of an mL-Cauchy sequence.

Our next goal is to establish that step functions are dense in the modular space

MHS
det,L under the modular topology induced by mL. In particular, this will immediately

yield that the modular space is separable.

Lemma 3.22. The collection of Hilbert-Schmidt operator-valued step functions of the

form

ψ : [0, T ]→ L2(G,H), ψ(t) = F01{0}(t) +
n−1∑
i=1

Fi1(ti,ti+1](t),
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where 0 = t1 < · · · < tn = T , Fi ∈ L2(G,H) for each i ∈ {0, ..., n − 1}, is dense in

MHS
det,L with the modular topology. Moreover, the modular topology is separable.

Proof. First, it follows directly from Remark 3.17 that each step function of the above

form is an element of the modular space MHS
det,L. To prove the claimed result, we first

assume that ψ ∈ MHS
det,L is bounded, that is, there exists a constant r > 0 such that

supt∈[0,T ] ‖ψ(t)‖L2(G,H) ≤ r. By [24, Le. 1.2.19], there exists a sequence (ψn)n∈N of step

functions satisfying:

(1) supn∈N supt∈[0,T ] ‖ψn(t)‖L2(G,H) ≤ r;

(2) (ψn)n∈N converges to ψ Lebesgue a.e.

Then, we have

sup
n∈N

sup
t∈[0,T ]

‖ψn(t)− ψ(t)‖L2(G,H) ≤ 2r,

from which it follows by Lemma 3.16 that there exists a constant c > 0 such that

sup
n∈N

sup
t∈[0,T ]

(kL + lL)(ψn(t)− ψ(t)) ≤ c. (3.22)

Since by Lemma 3.12, kL and lL are continuous at 0, using Equation (3.22) to obtain a

dominating function, and noting that (ψn)n∈N converges to ψ Lebesgue a.e. , Lebesgue’s

dominated convergence theorem yields

lim
n→∞

∫ T

0
(kL + lL)(ψn(t)− ψ(t)) dt =

∫ T

0
lim
n→∞

(kL + lL)(ψn(t)− ψ(t)) dt = 0.

Arguing similarly, since (ψn)n∈N converges to ψ Lebesgue a.e. , another application of

Lebesgue’s dominated convergence theorem gives

lim
n→∞

∫ T

0

(
‖ψn(t)− ψ(t)‖2L2(G,H) ∧ 1

)
dt
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=

∫ T

0
lim
n→∞

(
‖ψn(t)− ψ(t)‖2L2(G,H) ∧ 1

)
dt = 0,

which proves our claim for any bounded ψ ∈MHS
det,L.

In the case of a general ψ ∈MHS
det,L, we define a sequence of functions

ψn : [0, T ]→ L2(G,H), ψn(t) =


ψ(t) if ‖ψ(t)‖L2(G,H) ≤ n,

0 otherwise.

It follows from the very definition of ψn that for every n ∈ N and t ∈ [0, T ] we have

(kL + lL)(ψn+1(t)− ψ(t)) ≤ (kL + lL)(ψn(t)− ψ(t)) ≤ (kL + lL)(ψ(t)).

Since mL(ψ) <∞ we get

∫ T

0
(kL + lL)(ψ1(t)− ψ(t)) dt ≤

∫ T

0
(kL + lL)(ψ(t)) dt ≤ mL(ψ) <∞.

Thus, by applying the monotone convergence theorem for the non-negative, pointwise

decreasing to 0 sequence of functions ((kL + lL)(ψn − ψ))n∈N, we obtain

lim
n→∞

∫ T

0
(kL + lL)(ψn(t)− ψ(t)) dt = 0. (3.23)

Moreover, since (ψn)n∈N converges pointwise to ψ, by Lebesgue’s dominated conver-

gence theorem we have

lim
n→∞

∫ T

0

(
‖ψn(t)− ψ(t)‖2L2(G,H) ∧ 1

)
dt = 0. (3.24)

Hence, it follows from Equations (3.23) and (3.24) that limn→∞mL(ψn − ψ) = 0. By

the first part of this lemma, for each n ∈ N there exists a sequence (ψn,i)i∈N of step
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functions converging to ψn in the modular mL as i→∞. For each n ∈ N we can choose

in ∈ N such that mL(ψn − ψn,in) < 1
n . Then, it follows from Lemma 3.15 that

lim
n→∞

mL(ψ − ψn,in) ≤ lim
n→∞

4 (mL(ψ − ψn) +mL(ψn − ψn,in)) = 0.

Since one might require that the approximating sequence of step functions are defined

on rational partitions of the time domain and, by separability of L2(G,H), only take

values in a countable dense subset of L2(G,H), separability of the modular topology

follows.

Proposition 3.23. The space MHS
det,L, considered as a topological space with the mod-

ular topology induced by mL, is a Polish space.

Proof. Since mL is of moderate growth, it follows from [1] that the modular topology

on MHS
det,L is metrizable. More precisely, by [1, Th. I], there exists a metric dL on

MHS
det,L satisfying for some α > 1 and c1, c2 > 0 that

c1mL(ψ1 − ψ2) ≤ dL(ψ1, ψ2)α ≤ c2mL(ψ1 − ψ2) for all ψ1, ψ1 ∈MHS
det,L. (3.25)

Combining Equation (3.25) with Lemma 3.20, Theorem 3.18 and Lemma 3.22 we obtain

that (MHS
det,L, dL) is a complete and separable metric linear space. Thus, [34, Cor. 2.6]

implies that there exists a translation invariant metric ρL, equivalent to dL, such that

(MHS
det,L, ρL) is a Polish space.

3.2 Characterisation of deterministic integrable processes

The definition of the stochastic integral for deterministic integrands with respect to a

cylindrical Lévy process L depends heavily on two classes of step functions. We give

in the following a precise definition of what is meant by a step function.
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Definition 3.24.

(1) An L2(G,H)-valued step function is of the form

ψ : [0, T ]→ L2(G,H), ψ(t) = F01{0}(t) +
n−1∑
i=1

Fi1(ti,ti+1](t), (3.26)

where 0 = t1 < · · · < tn = T , Fi ∈ L2(G,H) for each i ∈ {0, ..., n− 1}. The space

of L2(G,H)-valued step functions is denoted by SHS
det := SHS

det(G,H).

(2) An L(H)-valued step function is of the form

γ : [0, T ]→ L(H), γ(t) = F01{0}(t) +
n−1∑
i=1

Fi1(ti,ti+1](t), (3.27)

where 0 = t1 < · · · < tn = T and Fi ∈ L(H) for each i ∈ {0, ..., n − 1}. The

space of L(H)-valued step functions with supt∈[0,T ] ‖γ(t)‖H→H ≤ 1 is denoted by

S1,op
det := S1,op

det (H,H).

Let L(ti+1) − L(ti) be an increment of the cylindrical Lévy process L and assume

that Fi ∈ L2(G,H) for each i ∈ {1, ..., n − 1}. Since Hilbert-Schmidt operators are 0-

Radonifying by [76, Th. VI.5.2], it follows from [76, Pr. VI.5.3] that there exist genuine

random variables Fi
(
L(ti+1)− L(ti)

)
: Ω→ H for each i ∈ {1, ..., n− 1} satisfying

(L(ti+1)− L(ti))(F
∗
i h) = 〈Fi(L(ti+1)− L(ti)), h〉 P -a.s. for all h ∈ H.

We call the random variables Fi
(
L(ti+1)− L(ti)

)
for each i ∈ {1, ..., n− 1} Radonified

increments. The stochastic integral is defined for any ψ ∈ SHS
det with representation

(3.26) as the sum of the Radonified increments

I(ψ) :=

∫ T

0
ψ dL =

n−1∑
i=1

Fi(L(ti+1)− L(ti)).
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Thus, the integral I(ψ) : Ω→ H is a genuine H-valued random variable.

The following definition of the stochastic integral can be traced back to the theory

of vector measures, and was adapted to the probabilistic setting in [75] by Urbanik and

Woyczyński.

Definition 3.25. A function ψ : [0, T ] → L2(G,H) is integrable if there exists a se-

quence (ψn)n∈N of elements of SHS
det satisfying

(1) (ψn)n∈N converges to ψ Lebesgue a.e.;

(2) lim
m,n→∞

sup
γ∈S1,op

det

E

[∥∥∥∥∫ T

0
γ(ψm − ψn) dL

∥∥∥∥ ∧ 1

]
= 0.

In this case, the stochastic integral of the deterministic function ψ is defined by

I(ψ) :=

∫ T

0
ψ dL := lim

n→∞

∫ T

0
ψn dL in L0

P (Ω, H).

The class of all deterministic L-integrable Hilbert-Schmidt operator-valued functions is

denoted by IHS
det,L := IHS

det,L(G,H).

Remark 3.26. If Conditions (1) and (2) in Definition 3.25 are satisfied, then com-

pleteness of L0
P (Ω, H) implies the existence of the limit. Furthermore, it follows that

the integral process (
∫ t

0 ψ dL)t≥0, defined by
∫ t

0 ψ dL :=
∫ T

0 1[0,t]ψ dL has cádlág paths.

To see this, note that for each m,n ∈ N the process (
∫ t

0 (ψm − ψn) dL)t≥0 has cádlág

paths. By an extension of [42, Pr. 8.2.1] to H-valued processes and Condition (2)

above, we obtain

lim
m,n→∞

P

(
sup

0≤t≤T

∥∥∥∥∫ t

0
(ψm − ψn) dL

∥∥∥∥ > ε

)

≤ 3 lim
m,n→∞

sup
0≤t≤T

P

(∥∥∥∥∫ t

0
(ψm − ψn) dL

∥∥∥∥ > ε

3

)
= 0.
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By passing on to a suitable subsequence if necessary, we obtain that there exists a

subsequence (
∫ t

0 ψnk dL)k∈N that converges uniformly almost surely, which guarantees

that the limiting process has cádlág paths.

The following is the main result of this section identifying the largest space of L-

integrable Hilbert-Schmidt operator-valued functions with the modular space MHS
det,L.

Theorem 3.27. The space IHS
det,L of deterministic functions integrable with respect to

the cylindrical Lévy process L in G coincides with the modular space MHS
det,L.

The remainder of this section is devoted to proving the above theorem. As a first

step, we prove a key Lemma, which shows that convergence of step functions in the

modular topology is equivalent to convergence of the corresponding stochastic integrals

in the following sense.

Lemma 3.28. Let L be a cylindrical Lévy process in G, and (ψn)n∈N a sequence in

SHS
det. Then the following are equivalent:

(a) lim
n→∞

mL(ψn) = 0;

(b) lim
n→∞

sup
γ∈S1,op

det

E

[∥∥∥∥∫ T

0
γψn dL

∥∥∥∥ ∧ 1

]
= 0 and lim

n→∞
m′′(ψn) = 0.

The proof of the implication (a) ⇒ (b) relies on two technical lemmata. The first

of these gives a limit representation of the modular.

Lemma 3.29. Let (L(t) : t ≥ 0) be a cylindrical Lévy process in G with cylindrical

characteristics (a,Q, λ) and assume that ψ ∈ SHS
det has the representation as in (3.26).

If (πk)k∈N is a nested normal sequence of partitions of [0, T ] containing the jumps of ψ

then we have

lim
k→∞

n−1∑
i=1

∑
pj,k∈πk

ti<pj,k≤ti+1

E
[
θ
(
LFi(pj,k)− LFi(pj−1,k)

)]
=

∫ T

0
bθψ(t) dt,
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and

lim
k→∞

n−1∑
i=1

∑
pj,k∈πk

ti<pj,k≤ti+1

E
[∥∥θ (LFi(pj,k)− LFi(pj−1,k)

)∥∥2
]

=

∫ T

0

∫
H

(
‖h‖2 ∧ 1

) (
λ ◦ ψ(t)−1

)
(dh)dt+

∫ T

0
Tr(ψ(t)Qψ(t)∗) dt.

Proof. The proof is a direct application of Lemma 3.3 and the limit characterisation of

Lévy characteristics in Theorem 2.4.

The next result establishes the relationship between the limit characterization of

the modular given in Lemma 3.29, and the size of the stochastic integral in L0
P (Ω, H).

Lemma 3.30. For all ε > 0 there exists δ > 0 such that if (Xn)n∈{1,...,N} is a sequence

of independent H-valued random variables satisfying that

∥∥∥∥∥
N∑
n=1

E[θ(Xn)]

∥∥∥∥∥ < δ and
N∑
n=1

E
[
‖θ(Xn)‖2

]
< δ

then

E

[∥∥∥∥∥
N∑
n=1

Xn

∥∥∥∥∥ ∧ 1

]
< ε.

Proof. See [42, Pr. 8.1.1/(ii)].

Proof of (a)⇒ (b) in Lemma 3.28. Let ε > 0 be fixed and choose δ > 0 so that the

implication in Lemma 3.30 holds. By assumption, we have that mL(ψn) → 0, from

which it follows that there exists an N ∈ N such that for all n ≥ N we have m(ψn) < δ.

To conclude the proof, it suffices to show that for all n ≥ N and γ ∈ S1,op
det we have

E

[∥∥∥∥∫ T

0
γψn dL

∥∥∥∥ ∧ 1

]
< ε.
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Let n0 ≥ N and γ0 ∈ S1,op
det be fixed. We assume the representation

γ0ψn0(t) = O0,n0F0,n01{0}(t) +

N(n0)−1∑
i=0

Oi,n0Fi,n01(ti,n0
,ti+1,n0

](t),

where 0 = t0,n0 < t1,n0 < ... < tN(n0),n0
= T , Oi,n0 ∈ L(H)1 and Fi,n0 ∈ L2(G,H).

Let (πk)k∈N be a nested normal sequence of partitions containing the jumps of γ0ψn0 .

Since by Lemma 3.14 and the very definition of lL we have mL(γ0ψn0) ≤ mL(ψn0) < δ,

Lemma 3.29 guarantees that there exists a K ∈ N such that the partition πK satisfies∥∥∥∥∥∥∥∥
N(n0)−1∑
i=0

∑
pj,K∈πK

ti,n0
<pj,K≤ti+1,n0

E
[
θ
(
LOi,n0

Fi,n0 (pj,K)− LOi,n0
Fi,n0 (pj−1,K)

)]∥∥∥∥∥∥∥∥ < δ (3.28)

and

N(n0)−1∑
i=0

∑
pj,K∈πK

ti,n0
<pj,K≤ti+1,n0

E
[∥∥θ (LOi,n0

Fi,n0 (pj,K)− LOi,n0
Fi,n0 (pj−1,K)

)∥∥2
]
< δ. (3.29)

Since πK contains the jumps of γ0ψn0 , by Lemma 3.30, the estimates (3.28) and (3.29)

together imply

E

[∥∥∥∥∫ T

0
γ0ψn0 dL

∥∥∥∥ ∧ 1

]
= E

∥∥∥∥∥∥
N(n0)−1∑
i=0

Oi,n0Fi,n0 (L(ti+1,n0)− L(ti,n0))

∥∥∥∥∥∥ ∧ 1


= E

∥∥∥∥∥∥
N(n0)−1∑
i=0

(
LOi,n0

Fi,n0 (ti+1,n0)− LOi,n0
Fi,n0 (ti,n0)

)∥∥∥∥∥∥ ∧ 1


< ε.

This concludes the proof of the implication.
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In order to prove the reverse implication (b) ⇒ (a) in Lemma 3.28, we need a

number of preliminary results. The key technical tool used in our arguments will be

the Kuratowski-Ryll Nardzewski measurable selection theorem, which we quote below.

Theorem 3.31. Let (X,S) be a measurable space, Y a Polish space, and denote by

2Y the family of all subsets of Y . If a set-valued function Γ : X → 2Y satisfies that

{x ∈ X : Γ(x) ∩ A 6= ∅} ∈ S for all open sets A ⊆ Y , then Γ admits an S/B(Y )-

measurable selector γ : X → Y .

Proof. See [38].

Remark 3.32. To avoid issues with non-separability of the norm topology, we will

always endow L(H)1 with the strong topology, which turns L(H)1 into a Polish space,

see [32]. In particular, this implies that there exists a countable subset D1 ⊆ L(H)1,

which is dense in L(H)1 under the strong topology.

The following lemma provides an alternative form of
∫ T

0 lL(ψ(t)) dt, by allowing us

to move the supremum out of the integral.

Lemma 3.33. If ψ ∈ SHS
det then

∫ T

0
lL(ψ(t)) dt :=

∫ T

0
sup

O∈L(H)1

∥∥∥bθOψ(t)

∥∥∥ dt = sup
γ∈S1,op

det

∥∥∥∥∫ T

0
bθγψ(t) dt

∥∥∥∥ ,
where S1,op

det was defined in Definition 3.24/(2).

Proof. Fix an element e ∈ H such that ‖e‖ = 1. If h ∈ H is linearly independent of e,

we define Ah := Span{e, h}. For each h ∈ H we define the mapping f : H → L(H)1 by

f(h)(h′) =


RAh(h′Ah) + h′

A⊥h
if h ∈ H \ Span{e}

sgn(λ)h′ if h = λe,

(3.30)
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where h′Ah and h′
A⊥h

denote the projections of h′ onto the subspace Ah and its orthogonal

complement A⊥h , respectively, and RAh denotes the rotation on the plane Ah around

the origin by the angle ∠(h, e), that is, by the angle which rotates the vector h into e.

We claim that f satisfies the following properties:

(1) for each h ∈ H the mapping f(h) : H → H is a linear isometry;

(2) for each h ∈ H and F ∈ L2(G,H) we have bθf(h)F = f(h)bθF ;

(3) for each h ∈ H it holds that 〈e, f(h)(h)〉 = ‖f(h)(h)‖.

Proof of (1): We first assume that h ∈ H \Span{e}. Then, since for any h′ ∈ H we

have that h′ = h′Ah + h′
A⊥h

, and h′Ah is orthogonal to h′
A⊥h

, it follows that

∥∥h′∥∥2
=
∥∥∥h′Ah + h′

A⊥h

∥∥∥2
=
〈
h′Ah + h′

A⊥h
, h′Ah + h′

A⊥h

〉
= 〈h′Ah , h

′
Ah
〉+ 〈h′

A⊥h
, h′

A⊥h
〉 =

∥∥h′Ah∥∥2
+
∥∥∥h′A⊥h ∥∥∥2

. (3.31)

Since rotations are isometries, we have
∥∥∥RAh(h′Ah)

∥∥∥ =
∥∥∥h′Ah∥∥∥, moreover, it follows from

the definition of the rotation RAh that RAh(h′Ah) is orthogonal to h′
A⊥h

. Using these

observations, a similar argument as above yields for all h ∈ H \ Span{e} and h′ ∈ H

that

∥∥f(h)(h′)
∥∥2

=
∥∥∥RAh(h′Ah) + h′

A⊥h

∥∥∥2
=
∥∥RAh(h′Ah)

∥∥2
+
∥∥∥h′A⊥h ∥∥∥2

=
∥∥h′Ah∥∥2

+
∥∥∥h′A⊥h ∥∥∥2

.

(3.32)

Hence, if h ∈ H \ Span{e} then by Equations (3.31) and (3.32) we have for all h′ ∈ H

that ‖f(h)(h′)‖ = ‖h′‖. If, on the other hand, we have h = λe for some λ ∈ R, then

it follows from the very definition of f that ‖f(h)(h′)‖ = ‖sgn(λ)h′‖ = ‖h′‖, which

finishes the proof that for all h ∈ H the mapping f(h) : H → H is an isometry.

Linearity of f(h) follows directly from the definition.
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Proof of (2): By Lemma 3.9 and the fact that by Step (1), for each h0 ∈ H the

mapping f(h0) : H → H is a linear isometry, we obtain for all F ∈ L2(G,H) that

bθf(h0)F = f(h0)bθF +

∫
H
θ(f(h0)h)− f(h0)θ(h) (λ ◦ F−1)(dh)

= f(h0)bθF +

∫
H
f(h0)θ(h)− f(h0)θ(h) (λ ◦ F−1)(dh) = f(h0)bθF .

Proof of (3): Assume first that h ∈ H \ Span{e}. Then, we have that hAh = h and

hA⊥h
= 0. By combining these observations with the fact that by its very definition, Rh

rotates the vector h into e, we get

〈e, f(h)(h)〉 = 〈e,Rh(h)〉 = 〈e, ‖h‖ e〉 = ‖h‖ 〈e, e〉 = ‖h‖ = ‖Rh(h)‖ = ‖f(h)(h)‖ .

(3.33)

If, on the other hand, we assume that h = λe for some λ ∈ R then

〈e, f(h)(h)〉 = 〈e, sgn(λ)λe〉 = |λ| = ‖sgn(λ)λe‖ = ‖f(h)h‖ . (3.34)

Equations (3.33) and (3.34) together imply that for all h ∈ H we have 〈e, f(h)(h)〉 =

‖f(h)(h)‖.

To finish the proof of this lemma, let ε > 0 be fixed. We define a set-valued function

g : L2(G,H)→ 2L(H)1
by

g(F ) =

{
O ∈ L(H)1 : sup

Q∈L(H)1

∥∥∥bθQF∥∥∥− ∥∥∥bθOF∥∥∥ < ε

T

}
.

In order to prove the existence of a measurable selector for g, by Theorem 3.31, it

suffices to show that for all open sets S ⊆ L(H)1 we have

{F ∈ L2(G,H) : g(F ) ∩ S 6= ∅} ∈ B(L2(G,H)).
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We define the mapping h : L2(G,H)× L(H)1 → R by

h(F,O) = sup
Q∈L(H)1

∥∥∥bθQF∥∥∥− ∥∥∥bθOF∥∥∥ .
It follows from lower-semicontinuity of lL, see Lemma 3.12, that for each fixed O ∈

L(H)1 the mapping F 7→ h(F,O) is lower-semicontinuous. Moreover, by [36, Th.3],

Lemma 2.7 and [58, Th.VI.5.5], we have that for each fixed F ∈ L2(G,H) the mapping

O 7→ h(F,O) is continuous with the strong topology. By using these observations and

noting that S is an open set in the strong topology, we obtain that

{F ∈ L2(G,H) : g(F ) ∩ S 6= ∅} = ∪O∈S
{
F ∈ L2(G,H) : h(F,O) <

ε

T

}
= ∪O∈S∩D1

{
F ∈ L2(G,H) : h(F,O) <

ε

T

}
,

where D1 denotes a countable dense subset of L(H)1 with the strong topology, see

Remark 3.32. Since for each fixed O ∈ L(H)1, the mapping F 7→ h(F,O) is lower-

semicontinuous and hence measurable, for each fixed O ∈ S it holds that

{
F ∈ L2(G,H) : h(F,O) <

ε

T

}
∈ B(L2(G,H)).

Since D1 is countable, we obtain

∪O∈S∩D1

{
F ∈ L2(G,H) : h(F,O) <

ε

T

}
∈ B(L2(G,H)).

Hence, we can apply the Kuratowski-Ryll Nardzewski measurable selection theorem,

to conclude that there exists a measurable selector function i : L2(G,H) → L(H)1

satisfying for all F ∈ L2(G,H) that i(F ) ∈ g(F ).
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Finally, we define a function η : [0, T ]→ L(H)1 by

η = f(bθi(ψ)ψ) ◦ i(ψ),

where η is measurable since it is the composition of measurable functions. Using prop-

erties (1)− (3) of the mapping f , we obtain

∥∥∥∥∫ T

0
bθηψ dt

∥∥∥∥ ≥ ∫ T

0
〈bθηψ, e〉dt

=

∫ T

0
〈f(bθi(ψ)ψ)bθi(ψ)ψ, e〉 dt

=

∫ T

0

∥∥∥f(bθi(ψ)ψ)bθi(ψ)ψ

∥∥∥ dt

=

∫ T

0

∥∥∥bθi(ψ)ψ

∥∥∥ dt

≥
∫ T

0

(
sup

O∈L(H)1

∥∥∥bθOψ(t)

∥∥∥− ε

T

)
dt

=

∫ T

0
sup

O∈L(H)1

∥∥∥bθOψ(t)

∥∥∥ dt− ε. (3.35)

Since ε > 0 is arbitrary, and by approximating η using processes from S1,op
det we conclude

sup
γ∈S1,op

det

∥∥∥∥∫ T

0
bθγψ dt

∥∥∥∥ ≥ ∫ T

0
sup

O∈L(H)1

∥∥∥bθOψ(t)

∥∥∥ dt.

As the reverse inequality follows directly from basic properties of the Bochner integral,

the proof is complete.

Lemma 3.34. If a sequence (ψn)n∈N ⊆ SHS
det satisfies

lim
n→∞

sup
γ∈S1,op

det

E

[∥∥∥∥∫ T

0
γψn dL

∥∥∥∥ ∧ 1

]
= 0,
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then

lim
n→∞

sup
γ∈S1,op

det

∥∥∥∥∫ T

0
bθγψn(t) dt

∥∥∥∥ = 0.

Proof. Assume, aiming for a contradiction, that this is not the case. Then, by passing

on to a suitable subsequence if necessary, there exists an ε > 0 and a sequence (γn)n∈N ⊆

S1,op
det satisfying for all n ∈ N that

∥∥∥∥∫ T

0
bθγnψn(t) dt

∥∥∥∥ > ε. (3.36)

On the other hand, the condition

lim
n→∞

sup
γ∈S1,op

det

E

[∥∥∥∥∫ T

0
γψn dL

∥∥∥∥ ∧ 1

]
= 0

implies that the sequence (I(γnψn))n∈N of infinitely divisible random variables with

corresponding sequence of first characteristics
(∫ T

0 bθγnψn(t) dt
)
n∈N

converges to 0 in

probability. By [58, Th.VI.5.5/(1)], we then have

lim
n→∞

∫ T

0
bθγnψn(t) dt = 0,

which contradicts Equation (3.36). Hence, the result follows.

The product measure of two cylindrical measures is defined analogously to the case

of Radon measures; see [71, Ch. II.2.2]. The following lemma provides an alternative

representation of an integral with respect to the product measure of the cylindrical

Lévy measure of L and the Lebesgue measure on a finite interval. To make sense out

of this, the Lebesgue measure is considered as a cylindrical measure on B(R).
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Lemma 3.35. Let L be a cylindrical Lévy process in G with cylindrical Lévy measure

λ. Then we have for each ψ ∈ SHS
det with ψ(0) = 0 that

∫ T

0

∫
H

(
‖h‖2 ∧ 1

) (
λ ◦ ψ(t)−1

)
(dh) dt =

∫
H

(
‖h‖2 ∧ 1

)(
(λ⊗ Leb) ◦ κ−1

ψ

)
(dh),

where κψ : G× [0, T ]→ H is defined by κψ(g, t) = ψ(t)g.

Proof. First, we show that the result holds for ψ = F1(ti,ti+1], where F ∈ L2(G,H) and

0 ≤ ti < ti+1 ≤ T . In this case, we see that for all C ∈ Z∗(H)

(
λ⊗Leb

)
◦ κ−1

ψ (C) =
(
λ⊗ Leb

)(
F−1(C)× (ti, ti+1]

)
= (ti − ti+1)

(
λ ◦ F−1

)
(C).

(3.37)

Since the cylindrical measure on the right hand side of Equation (3.37) is the cylindrical

Lévy measure of the Radonified increment F (L(ti+1)− L(ti)), it extends to a genuine

Lévy measure on B(H) for which we keep the notation λ ◦ F−1. Consequently, the

cylindrical Lévy measure on the left hand side of Equation (3.37) extends to a genuine

Lévy measure on B(H), and the two extensions agree on B(H). It follows that

∫
H

(
‖h‖2 ∧ 1

)((
λ⊗ Leb

)
◦ κ−1

ψ

)
(dh) (3.38)

=

∫ ti+1

ti

∫
H

(
‖h‖2 ∧ 1

)(
λ ◦ F−1

)
(dh) dt =

∫ T

0

∫
H

(
‖h‖2 ∧ 1

)(
λ ◦ ψ(t)−1

)
(dh) dt.

Let ψ ∈ SHS
det be of the form as in (3.26) with ψ(0) = 0. For each C ∈ Z∗(H) we obtain

κ−1
ψ (C) =

n−1⋃
i=1

{
(g, t) ∈ G× [0, T ] : Fig1(ti,ti+1] ∈ C

}
.
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Since the above is a finite union of disjoint cylindrical sets, it follows

(
(λ⊗ Leb) ◦ κ−1

ψ

)
(C) =

n−1∑
i=1

(
(λ⊗ Leb) ◦ κ−1

Fi1(ti,ti+1]

)
(C). (3.39)

As the measure on the right side of Equation (3.39) extends to a genuine Lévy measure

on B(H) according to the first part of this proof, the measure on the left extends to a

genuine Lévy measure on B(H). It follows from Equation (3.38) that

∫
H

(
‖h‖2 ∧ 1

)((
λ⊗ Leb

)
◦ κ−1

ψ

)
(dh)

=

n−1∑
i=1

∫
H

(
‖h‖2 ∧ 1

)((
λ⊗ Leb

)
◦ κ−1

Fi1(ti,ti+1]

)
(dh)

=

n−1∑
i=1

∫ T

0

∫
H

(
‖h‖2 ∧ 1

)(
λ ◦ (Fi1(ti,ti+1](t))

−1
)

(dh) dt

=

∫ T

0

∫
H

(
‖h‖2 ∧ 1

)(
λ ◦ ψ(t)−1

)
(dh) dt,

which completes the proof.

Proof of (b)⇒ (a) in Lemma 3.28. By assumption, we have that limn→∞m
′′(ψn) = 0

and

lim
n→∞

sup
γ∈S1,op

det

E

[∥∥∥∥∫ T

0
γψn dL

∥∥∥∥ ∧ 1

]
= 0. (3.40)

Since for each n ∈ N, ψn has a representation of the form

ψn(t) = Fn0 1{0}(t) +

N(n)−1∑
i=1

Fni 1(tni ,t
n
i+1](t),

where 0 = tn1 < ... < tnN(n) = T , and Fni ∈ L2(G,H) for each i ∈ {0, ..., N(n)− 1}, the
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integral I(ψn) takes the form

I(ψn) =

N(n)−1∑
i=1

Fni
(
L(tni+1)− L(tni )

)
.

Since the integral I(ψn) is the sum of independent infinitely divisible random variables,

I(ψn) is also infinitely divisible and has characteristics

N(n)−1∑
i=1

(tni+1 − tni )bθFni ,

N(n)−1∑
i=1

(tni+1 − tni )Fni Q(Fni )∗,

N(n)−1∑
i=1

(tni+1 − tni )
(
λ ◦ (Fni )−1

) .

Since Equation (3.40) implies that limn→∞ I(ψn) = 0 in L0
P (Ω, H), and we may assume

that ψn(0) = 0 since it plays no role in the definition of the stochastic integral, we

conclude from Lemmata 3.11 and 3.35 that

lim
n→∞

∫ T

0
kL(ψ(t)) dt

= lim
n→∞

∫ T

0

∫
H

(
‖h‖2 ∧ 1

)
(λ ◦ ψn(t)−1) (dh) dt+

∫ T

0
Tr (ψn(t)Qψn(t)∗) dt

= lim
n→∞

∫
H

(
‖h‖2 ∧ 1

)(
(λ⊗ Leb) ◦ κ−1

ψn

)
(dh) + Tr

(∫ T

0
(ψn(t)Qψn(t)∗) dt

)
= 0.

(3.41)

Furthermore, it follows from Equation (3.40) by Lemmata 3.33 and 3.34 that

lim
n→∞

∫ T

0
lL(ψn(t))dt = lim

n→∞

∫ T

0
sup

O∈L(H)1

∥∥∥bθOψn(t)

∥∥∥ dt

= lim
n→∞

sup
γ∈S1,op

det

∥∥∥∥∫ T

0
bθγψn(t) dt

∥∥∥∥ = 0. (3.42)

Equations (3.41) and (3.42) together imply that limn→∞m
′
L(ψn) = 0. Since by as-

sumption, we have limn→∞m
′′(ψn) = 0, we obtain that limn→∞mL(ψn) = 0.
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We are now ready to present the proof of the main result of this section characteris-

ing the largest space of deterministic Hilbert-Schmidt operator-valued functions which

are integrable with respect to a cylindrical Lévy process L in Hilbert space.

Proof of Theorem 3.27. If ψ ∈ IHS
det,L then by the very definition of integrability, see

Definition 3.25, there exists a sequence (ψn)n∈N j SHS
det such that ψn → ψ Lebesgue

a.e. and sup
γ∈S1,op

det
E[‖I(γ(ψn − ψm))‖ ∧ 1] → 0. By Lemma 3.28, this implies that

mL(ψn − ψm) → 0. Completeness of the modular space MHS
det,L, see Lemma 3.20, and

the fact that ψn → ψ Lebesgue a.e. allows us to conclude that ψ ∈MHS
det,L.

Conversely, if ψ ∈ MHS
det,L, then Lemma 3.22 implies that there exists a sequence

(ψn)n∈N of elements in SHS
det such that ψn → ψ Lebesgue a.e. and mL(ψn − ψ)→ 0. It

follows that mL(ψn − ψm) → 0, which implies sup
γ∈S1,op

det
E[‖I(γ(ψn − ψm))‖ ∧ 1] → 0

by Lemma 3.28 and establishes that ψ ∈ IHS
det,L.

3.3 Predictable integrands

For the remainder of this section, we fix a filtered probability space (Ω,F , (Ft)t≥0, P ).

As in the case of deterministic integrands, we begin by introducing two classes of

functions on which our definition of the stochastic integral depend.

Definition 3.36.

(1) An L2(G,H)-valued predictable step process Ψ: Ω × [0, T ] → L2(G,H) is of the

form

Ψ(ω, t) =

N(0)∑
k=1

F0,k1A0,k
(ω)

 1{0}(t) +

n−1∑
i=1

N(i)∑
k=1

Fi,k1Ai,k(ω)

1(ti,ti+1](t),

(3.43)

where 0 = t1 < · · · < tn = T , A0,k ∈ F0 and F0,k ∈ L2(G,H) for all k =
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1, ..., N(0), Ai,k ∈ Fti and Fi,k ∈ L2(G,H) for all i = 1, ..., n − 1 and k =

1, ..., N(i). The space of all L2(G,H)-valued predictable step processes is denoted

by SHS
prd := SHS

prd(G,H).

(2) An L(H)-valued predictable step process Γ: Ω× [0, T ]→ L(H,H) is of the form

Γ(ω, t) =

N(0)∑
k=1

O0,k1A0,k
(ω)

1{0}(t) +

n−1∑
i=1

N(i)∑
k=1

Oi,k1Ai,k(ω)

 1(ti,ti+1](t),

(3.44)

where 0 = t1 < · · · < tn = T , A0,k ∈ F0 and O0,k ∈ L(H) for all k = 1, ..., N(0),

Ai,k ∈ Fti and Oi,k ∈ L(H) for all i = 1, ..., n− 1 and k = 1, ..., N(i). The space

of all L(H)-valued predictable step processes with

sup
(ω,t)∈Ω×[0,T ]

‖Γ(ω, t)‖H→H ≤ 1

is denoted by S1,op
prd := S1,op

prd (H,H).

Let Ψ ∈ SHS
prd be of the form (3.43). Since Hilbert-Schmidt operators are 0-

Radonifying by [76, Th. VI.5.2], it follows from [76, Pr. VI.5.3] that there exists an

H-valued random variable Fi,k(L(ti+1) − L(ti)) : Ω → H for each i = 1, ..., n − 1 and

k = 1, ..., N(i), satisfying

(
L(ti+1)− L(ti)

)
(F ∗i,kh) = 〈Fi,k(L(ti+1)− L(ti)), h〉 P -a.s. for all h ∈ H.

In this case, the stochastic integral of Ψ is defined by

I(Ψ) :=

∫ T

0
Ψ(t) dL(t) :=

n−1∑
i=1

N(i)∑
k=1

1Ai,kFi,k(L(ti+1)− L(ti)).

57



Thus, the integral I(Ψ) : Ω→ H is a genuine H-valued random variable.

For the purposes of this section, it is convenient to introduce the measure space(
Ω × [0, T ],P, PT

)
, where P denotes the predictable σ-algebra and the measure PT is

defined by PT := P ⊗ Leb|[0,T ].

Definition 3.37. We say that a predictable process Ψ is L-integrable if there exists a

sequence (Ψn)n∈N of processes in SHS
prd such that

(1) (Ψn)n∈N converges PT -a.e. to Ψ;

(2) lim
m,n→∞

sup
Γ∈S1,op

prd

E

[∥∥∥∥∫ T

0
Γ(Ψm −Ψn) dL

∥∥∥∥ ∧ 1

]
= 0.

In this case, the stochastic integral of Ψ is defined by

I(Ψ) :=

∫ T

0
Ψ dL = lim

n→∞

∫ T

0
Ψn dL in L0

P (Ω, H).

The class of all L-integrable L2(G,H)-valued predictable processes will be denoted by

IHS
prd,L := IHS

prd,L(G,H). As usual, for t ∈ [0, T ], we define
∫ t

0 Ψ dL :=
∫ T

0 1Ω×(0,t]Ψ dL.

Remark 3.38. An extension of [41, Le. 2.3] to H-valued random variables shows that

Condition (2) of Definition 3.37 implies

lim
m,n→∞

E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Ψm −Ψn dL

∥∥∥∥ ∧ 1

]
= 0.

Hence, the notion of convergence introduced in Definition 3.37 is stronger than ucp

convergence. In particular, this immediately gives that for each Ψ ∈ IHS
prd,L the process(∫ t

0 Ψ dL
)
t∈[0,T ]

has cádlág paths. For details, see the end of Remark 3.26.

Let L0
P (Ω, (MHS

det,L, ρL)) denote the collection of all random variables Ψ : Ω →

MHS
det,L taking values in the Polish space (MHS

det,L, ρL), see Proposition 3.23. We endow
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the space L0
P (Ω, (MHS

det,L, ρL)) with the translation invariant metric

|||Ψ1 −Ψ2|||L := E [ρL(Ψ1 −Ψ2) ∧ 1] for Ψ1,Ψ2 ∈ L0
P (Ω, (MHS

det,L, ρL)).

Recall, see for example [18, Th. 9.2.3] or [31, Le. 3.6], that
(
L0
P (Ω, (MHS

det,L, ρL)), |||·|||L
)

is a complete metric linear space. For ease of notation we will often use the shorthand

L0
P (Ω,MHS

det,L) :=
(
L0
P (Ω, (MHS

det,L, ρL)), |||·|||L
)

.

Lemma 3.39. Let Ψ be a predictable stochastic process in L0
P (Ω,MHS

det,L). Then there

exists a sequence (Ψk)k∈N of elements of SHS
prd converging to Ψ both in the metric |||·|||L

and PT -a.e.

Proof. If Ψ is bounded, then Ψ ∈ L∞PT
(
Ω× [0, T ], L2(G,H)

)
. Since the algebra of sets

A′ =
{

(s, t]×B : s < t,B ∈ Fs
}
∪
{
{0} ×B : B ∈ F0

}
generates P, we conclude from [24, Le. 1.2.19] and [24, Re. 1.2.20] that there exists a

sequence (Ψk)k∈N of uniformly bounded processes in SHS
prd such that Ψk → Ψ PT -a.e.

Thus, there exists a set N ∈ P such that PT (N) = 0 and
(
Ψk(ω, t)−Ψ(ω, t)

)
→ 0 for

all (ω, t) ∈ N c. Fubini’s theorem implies that

PT (N) = P ⊗ Leb|[0,T ](N) =

∫
Ω

Leb|[0,T ](Nω)P (dω) = 0,

where for each fixed ω ∈ Ω we define

Nω :=
{
t ∈ [0, T ] :

(
Ψk(ω, t)−Ψ(ω, t)

)
m∈N does not converge to 0

}
.

The above implies that Leb|[0,T ](Nω) = 0 for almost all ω ∈ Ω, that is, there exists an
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Ω0 ⊆ Ω with P (Ω0) = 1 such that for all ω ∈ Ω0 we have

Leb|[0,T ]

(
t ∈ [0, T ] :

(
Ψk(ω, t)−Ψ(ω, t)

)
m∈N does not converge to 0

)
= 0.

Because (Ψk)k∈N is uniformly bounded and Ψ is bounded, we can conclude from

Lebesgue’s dominated convergence theorem that limn→∞mL (Ψk(ω, ·)−Ψ(ω, ·)) = 0

for each ω ∈ Ω0. Since mL and ρL generate the same topology on MHS
det,L, we also

have ρL(Ψk(ω, ·) − Ψ(ω, ·)) → 0 as k → ∞ for each ω ∈ Ω0. Another application of

Lebesgue’s dominated convergence theorem yields

lim
k→∞

|||Ψk −Ψ|||L = lim
k→∞

∫
Ω

(
ρL(Ψk(ω, ·)−Ψ(ω, ·)) ∧ 1

)
dP = 0,

which shows the claim if Ψ is bounded. In the case of a general Ψ, we define

Ψn : Ω× [0, T ]→ L2(G,H), Ψn(ω, t) =


Ψ(ω, t) if ‖Ψ(ω, t)‖L2(G,H) ≤ n,

0 otherwise.

Clearly, limn→∞ |||Ψ−Ψn|||L = 0. The first part of the proof shows that for each n ∈ N

there exists a sequence (Ψn,k)k∈N ⊆ SHS
prd converging to Ψn as k → ∞ in |||·|||L and

PT -a.e. For each n ∈ N choose kn ∈ N such that |||(Ψn −Ψn,kn)|||L <
1
n . It follows that

lim
n→∞

|||(Ψ−Ψn,kn)|||L ≤ lim
n→∞

(
|||(Ψ−Ψn)|||L + |||(Ψn −Ψn,kn)|||L

)
= 0,

which completes the proof, since by passing on to a suitable subsequence, we also have

convergence PT -a.e.
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3.4 Construction of the decoupled tangent sequence

The technique of constructing decoupled tangent sequences is a powerful tool to obtain

strong results on a sequence of possibly dependent random variables. In this section,

we briefly recall the fundamental definition, see e.g. Kwapień and Woyczyński [42] or

de la Peña and Giné [61], and construct the decoupled tangent sequence in our setting

which will enable us to identify the largest space of predictable integrands in the next

section.

Remark 3.40. We repeatedly use the fact in the following that given a random variable

X on (Ω,F , P ) and another probability space (Ω′,F ′, P ′), the random variable X can

always be considered as a random variable on the product space (Ω×Ω′,F⊗F ′, P ⊗P ′)

by defining

X(ω, ω′) = X(ω) for all (ω, ω′) ∈ Ω× Ω′.

In this case, if X is real-valued and P -integrable we have EP [X] = EP⊗P ′ [X].

In the next definition, we follow closely Chapter 4.3 of [42].

Definition 3.41. Let
(
Ω,F , P, (Fn)n∈N

)
be a filtered probability space and (Xn)n∈N

an (Fn)-adapted sequence of H-valued random variables. If
(
Ω′,F ′, P ′, (F ′n)n∈N

)
is

another filtered probability space, then a sequence (Yn)n∈N of H-valued random variables

defined on
(
Ω × Ω′,F ⊗ F ′, P ⊗ P ′, (Fn ⊗ F ′n)n∈N

)
is said to be a decoupled tangent

sequence to (Xn)n∈N if

(1) for each ω ∈ Ω, we have that (Yn(ω, ·))n∈N is a sequence of independent random

variables on (Ω′,F ′, P ′);

(2) the sequences (Xn)n∈N and (Yn)n∈N satisfy for each n ∈ N that

L(Xn|Fn−1 ⊗F ′n−1) = L(Yn|Fn−1 ⊗F ′n−1) P ⊗ P ′ − a.s.
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Remark 3.42. The importance of decoupled tangent sequences within the framework

of stochastic integration lies in the existence of a collection of inequalities, frequently

called decoupling inequalities, which relate convergence of an adapted sequence of ran-

dom variables to convergence of their decoupled tangent sequence. More precisely, by

[42, Pr. 5.7.1.(ii)], there exists a constant c1 > 0 such that for all finite adapted se-

quences (Xn)n=1,...,N of H-valued random variables with corresponding decoupled tan-

gent sequence (Yn)n=1,...,N it holds that

EP

[∥∥∥∥∥
N∑
n=1

Xn

∥∥∥∥∥ ∧ 1

]
≤ c1EP⊗P

[∥∥∥∥∥
N∑
n=1

Yn

∥∥∥∥∥ ∧ 1

]
.

Moreover, by [42, Pr. 5.7.2], there exists c2 > 0 such that the following ”recoupling”

inequality also holds

EP⊗P

[∥∥∥∥∥
N∑
n=1

Yn

∥∥∥∥∥ ∧ 1

]
≤ c2 sup

εn∈{±1}
EP

[∥∥∥∥∥
N∑
n=1

εnXn

∥∥∥∥∥ ∧ 1

]
.

The main tool for establishing the stochastic integral in the next section is a cylin-

drical Lévy process L̃ on an enlarged probability space, whose Radonified increments

are decoupled to the Radonified increments of the original cylindrical Lévy process.

This cylindrical Lévy process L̃ is explicitly constructed in the following result.

Proposition 3.43. Let L be a cylindrical Lévy process in G, 0 = t0 ≤ ... ≤ tN = T be

a partition of [0, T ] and for each n = 1, ..., N we define Θn :=
∑M(n)

k=1 Fn,k1An,k , where

Fn,k ∈ L2(G,H), An,k ∈ Ftn−1 for all k = 1, ...,M(n). By defining cylindrical random

variables

L̃(t) : G→ L0
P⊗P (Ω× Ω; R),

(
L̃(t)g

)
(ω, ω′) =

(
L(t)g

)
(ω′),

it follows that (L̃(t) : t ≥ 0) is a cylindrical Lévy process on G and the sequence of its
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Radonified increments (
Θn

(
L̃(tn)− L̃(tn−1)

))
n∈{1,...,N}

defined on
(
Ω×Ω,F ⊗F , P ⊗P, (Ftn ⊗Ftn)n∈{0,...,N}

)
is a decoupled tangent sequence

to the sequence of Radonified increments

(
Θn

(
L(tn)− L(tn−1)

))
n∈{1,...,N}

defined on
(
Ω,F , P, (Ftn)n∈{0,...,N}

)
.

Proof. In order to make it easier to follow this proof, we define Ω′ = Ω, F ′ = F , P ′ = P

and F ′tn = Ftn for all n ∈ {0, ..., N} and instead of denoting the filtered product space

by (
Ω× Ω,F ⊗ F , P ⊗ P, (Ftn ⊗Ftn)n∈{0,...,N}

)
,

we write (
Ω× Ω′,F ⊗ F ′, P ⊗ P ′, (Ftn ⊗F ′tn)n∈{0,...,N}

)
.

The fact that for each t ≥ 0 the mapping L̃(t) : G → L0
P⊗P ′(Ω × Ω′,R) is continuous

follows directly from the definition of L̃ and Remark 3.40. Thus L̃ is a cylindrical

stochastic process. To prove that it is in fact a cylindrical Lévy process, let us fix

n ∈ N and g1, . . . , gn ∈ G and consider the n-dimensional processes Y and Z defined

by Y (t) = (L̃(t)g1, . . . , L̃(t)gn) and Z(t) = (L(t)g1, . . . , L(t)gn). It is enough to show

that for any m ∈ N and times 0 ≤ t0 < · · · < tm ≤ T the random variables Y (tm) −

Y (tm−1), . . . , Y (t1) − Y (t0) and Z(tm) − Z(tm−1), . . . , Z(t1) − Z(t0) have the same

distribution. Here we only prove that for any 0 ≤ s < t ≤ T the random variables

Y (t) − Y (s) and Z(t) − Z(s) have the same distribution. The general case follows
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analogously. To see this, let A ∈ B(Rn) be arbitrary. The very definition of L̃ shows

(P ⊗ P ′) (Y (t)− Y (s) ∈ A)

= (P ⊗ P ′)
(

(L̃(t)g1 − L̃(s)g1, ..., L̃(t)gn − L̃(s)gn) ∈ A
)

= (P ⊗ P ′) (Ω× {(L(t)g1 − L(s)g1, ..., L(t)gn − L(s)gn) ∈ A})

= P ′ ((L(t)g1 − L(s)g1, ..., L(t)gn − L(s)gn) ∈ A)

= P (Z(t)− Z(s) ∈ A) .

To show that the Radonified increments of L̃ satisfy Condition (1) of Definition 3.41, fix

some ω ∈ Ω. Then Θn(ω) is a (deterministic) Hilbert-Schmidt operator and (L̃(t)(ω, ·) :

t ≥ 0) is a cylindrical Lévy process in G. Thus, for a fixed ω ∈ Ω and n ∈ {1, ..., N}, the

Radonified increment Θn(ω)(L̃(tn)(ω, ·)− L̃(tn−1)(ω, ·)) is an F ′tn-measurable H-valued

random variable on (Ω′,F ′, P ′) independent of F ′tn−1
. It follows for each ω ∈ Ω that

(
Θn(ω)(L̃(tn)(ω, ·)− L̃(tn−1)(ω, ·))

)
n∈{1,...,N}

is a sequence of independent random variables.

For establishing Condition (2) of Definition 3.41, we define for each n ∈ {1, ..., N}

the H-valued random variables

Xn := Θn

(
L(tn)− L(tn−1)

)
:=

M(n)∑
k=1

1An,kFn,k
(
L(tn)− L(tn−1)

)
,

Yn := Θn

(
L̃(tn)− L̃(tn−1)

)
:=

M(n)∑
k=1

1An,kFn,k
(
L̃(tn)− L̃(tn−1)

)
,

where Fn,k
(
L(tn) − L(tn−1)

)
and Fn,k

(
L̃(tn) − L̃(tn−1)

)
refer to the Radonified incre-

ments, and by taking another representation of Θn if necessary, we may assume that

for each n ∈ N the representation of Θn satisfies that An,k ∩ An,l = ∅ for k 6= l and
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∪M(n)
k=1 An,k = Ω. Choose regular versions of the conditional distributions

(P ⊗ P ′)Xn : B(H)× (Ω× Ω′)→ [0, 1],

(P ⊗ P ′)Xn
(
B, (ω, ω′)

)
= (P ⊗ P ′)(Xn ∈ B|Ftn−1 ⊗F ′tn−1)(ω, ω′),

(P ⊗ P ′)Yn : B(H)× (Ω× Ω′)→ [0, 1],

(P ⊗ P ′)Yn
(
B, (ω, ω′)

)
= (P ⊗ P ′)(Yn ∈ B|Ftn−1 ⊗F ′tn−1)(ω, ω′).

Since L̃(t) is a cylindrical Lévy process, and for each n ∈ N we have An,k ∩An,l = ∅ for

k 6= l and ∪M(n)
k=1 An,k = Ω, we obtain for all h ∈ H and n ∈ N that

EP⊗P ′
[
ei〈Yn,h〉

∣∣∣Ftn−1 ⊗F ′tn−1

]
= EP⊗P ′

[
e
i
〈(∑M(n)

k=1 1An,k×Ω′Fn,k

)
(L̃(tn)−L̃(tn−1)),h

〉∣∣∣Ftn−1 ⊗F ′tn−1

]

=

M(n)∑
k=1

EP⊗P ′
[
1An,k×Ω′ e

i〈Fn,k(L̃(tn)−L̃(tn−1)),h〉
∣∣∣Ftn−1 ⊗F ′tn−1

]

=

M(n)∑
k=1

1An,k×Ω′ EP⊗P ′
[
ei〈Fn,k(L̃(tn)−L̃(tn−1)),h〉

∣∣∣Ftn−1 ⊗F ′tn−1

]

=

M(n)∑
k=1

1An,k×Ω′ EP⊗P ′
[
ei〈Fn,k(L̃(tn)−L̃(tn−1)),h〉

]

=

M(n)∑
k=1

1An,k×Ω′ EP ′
[
ei〈Fn,k(L(tn)−L(tn−1)),h〉

]

=

M(n)∑
k=1

1An,k×Ω′ e
(tn−tn−1)S(F ∗n,kh)

= e(tn−tn−1)S(Θ∗nh) P ⊗ P ′ − a.s., (3.45)
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where S denotes the cylindrical Lévy symbol of L. In the same way we obtain

EP⊗P ′
[
ei〈Xn,h〉

∣∣∣Ftn−1 ⊗F ′tn−1

]
= e(tn−tn−1)S(Θ∗nh) P ⊗ P ′ − a.s. (3.46)

It follows from (3.45) and (3.46) by calculating the conditional expectation from the

conditional probability, see e.g. [31, Th. 6.4], that for P ⊗ P ′ a.a. (ω, ω′) ∈ Ω×Ω′ and

for all u ∈ H we have

ϕ(P⊗P ′)Xn (·,(ω,ω′))(u) =

∫
H
ei〈h,u〉 (P ⊗ P ′)Xn

(
dh, (ω, ω′)

)
= EP⊗P ′

[
ei〈Xn,u〉

∣∣∣Ftn−1 ⊗F ′tn−1

]
(ω, ω′)

= EP⊗P ′
[
ei〈Yn,u〉

∣∣∣Ftn−1 ⊗F ′tn−1

]
(ω, ω′)

=

∫
H
ei〈h,u〉 (P ⊗ P ′)Xn

(
dh, (ω, ω′)

)
= ϕ(P⊗P ′)Yn (·,(ω,ω′))(u).

Since characteristic functions uniquely determine distributions on B(H), we obtain

(P ⊗ P ′)Xn(·, (ω, ω′)) = (P ⊗ P ′)Yn(·, (ω, ω′)) P ⊗ P ′ − a.s.,

establishing Condition (2) of Definition 3.41.

3.5 Characterisation of random integrable processes

The following is the main result of this chapter characterising the largest space of

predictable integrands which are stochastically integrable with respect to a cylindrical

Lévy process L in Hilbert space.

Theorem 3.44. The space IHS
prd,L of predicable Hilbert-Schmidt operator-valued pro-

cesses integrable with respect to a cylindrical Lévy process L in G coincides with the

class of predictable processes in L0
P (Ω,MHS

det,L).
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As in the case of deterministic integrands, the above characterisation of the space

of L-integrable predictable processes strongly relies on the equivalent notion of conver-

gences in two spaces.

Lemma 3.45. Let L be a cylindrical Lévy process in G, and (Ψn)n∈N a sequence in

SHS
prd. Then the following are equivalent:

(a) lim
n→∞

|||Ψn|||L = 0;

(b) lim
n→∞

sup
Γ∈S1,op

prd

E

[∥∥∥∥∫ T

0
ΓΨn dL

∥∥∥∥ ∧ 1

]
= 0 and lim

n→∞
E
[
m′′(Ψn) ∧ 1

]
= 0.

Proof. To prove (a)⇒ (b), let ε > 0 be fixed. Lemma 3.28 and the fact that mL and ρL

generate the same topology on MHS
det,L enables us to choose δ > 0 such that for every

ψ ∈ SHS
det we have the implication:

ρL(ψ) ≤ δ ⇒ sup
γ∈S1,op

det

P

(∥∥∥∥∫ T

0
γψ dL

∥∥∥∥ > ε

)
≤ ε. (3.47)

Since limn→∞ |||Ψn|||L = 0, there exists n0 ∈ N such that the set

An := {ω ∈ Ω : ρL(Ψn(ω)) ≤ δ}

satisfies P (An) ≥ 1− ε for all n ≥ n0. By recalling the definition of L̃ and (Ω′,F ′, P ′)

from Proposition 3.43, implication (3.47) implies for all ω ∈ An and n ≥ n0 that

sup
Γ∈S1,op

prd

P ′
(
ω′ ∈ Ω′ :

∥∥∥∥(∫ T

0
Γ(ω)Ψn(ω) dL̃(ω, ·)

)
(ω′)

∥∥∥∥ > ε

)
≤ ε.

Since P (An) ≥ 1− ε for all n ≥ n0, we obtain

P

ω ∈ Ω: sup
Γ∈S1,op

prd

P ′
(
ω′ ∈ Ω′ :

∥∥∥∥(∫ T

0
Γ(ω)Ψn(ω) dL̃(ω, ·)

)
(ω′)

∥∥∥∥ > ε

)
≤ ε


67



≥ P (An) ≥ 1− ε.

Fubini’s theorem implies for all n ≥ n0 and Γ ∈ S1,op
prd that

(P ⊗ P ′)
(

(ω, ω′) ∈ Ω× Ω′ :

∥∥∥∥(∫ T

0
ΓΨn dL̃

)
(ω, ω′)

∥∥∥∥ > ε

)
=

∫
Ω
P ′
(
ω′ ∈ Ω′ :

∥∥∥∥(∫ T

0
Γ(ω)Ψn(ω) dL̃(ω, ·)

)
(ω′)

∥∥∥∥ > ε

)
P (dω) ≤ ε+ ε(1− ε).

As ε > 0 is arbitrary, we obtain

lim
n→∞

sup
Γ∈S1,op

prd

EP⊗P ′

[∥∥∥∥∫ T

0
ΓΨn dL̃

∥∥∥∥ ∧ 1

]
= 0. (3.48)

By the ideal property of L2(G,H), for each n ∈ N and Γ ∈ S1,op
prd the integrand ΓΨn

lies in SHS
prd and has a representation of the from

ΓΨn = Γn0F
n
0 1{0} +

N(n)−1∑
i=1

Γni F
n
i 1(tni ,t

n
i+1], (3.49)

where 0 = tn1 ≤ · · · < tnN(n) = T , and Γni F
n
i is an Ftni -measurable L2(G,H)-valued ran-

dom variable taking only finitely many values for each i = 0, ..., N(n)− 1. Proposition

3.43 guarantees for each n ∈ N that the sequence of Radonified increments

(
Γni F

n
i (L(tni+1)− L(tni ))

)
i=1,...,Nn−1

has the decoupled tangent sequence

(
Γni F

n
i (L̃(tni+1)− L̃(tni ))

)
i=1,...,Nn−1

.

We conclude from the decoupling inequality [42, Pr. 5.7.1.(ii)] that there exists a con-
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stant c > 0 such that, for all n ∈ N and Γ ∈ S1,op
prd , we have

EP⊗P ′

[∥∥∥∥∫ T

0
ΓΨn dL

∥∥∥∥ ∧ 1

]
= EP⊗P ′

[∥∥∥∥∥∥
N(n)−1∑
i=1

Γni F
n
i (L(tni+1)− L(tni ))

∥∥∥∥∥∥ ∧ 1

]

≤ cEP⊗P ′
[∥∥∥∥∥∥

N(n)−1∑
i=1

Γni F
n
i (L̃(tni+1)− L̃(tni ))

∥∥∥∥∥∥ ∧ 1

]

= cEP⊗P ′

[∥∥∥∥∫ T

0
ΓΨn dL̃

∥∥∥∥ ∧ 1

]
.

We conclude from Remark 3.40 and (3.48) that

lim
n→∞

sup
Γ∈S1,op

prd

EP

[∥∥∥∥∫ T

0
ΓΨn dL

∥∥∥∥ ∧ 1

]
= lim

n→∞
sup

Γ∈S1,op
prd

EP⊗P ′

[∥∥∥∥∫ T

0
ΓΨn dL

∥∥∥∥ ∧ 1

]
= 0.

Seeing that mL and ρL generate the same topology on MHS
det,L, our assumption that

limn→∞ |||Ψn|||L = 0 implies limn→∞E[m′′(Ψn) ∧ 1] = 0, which immediately gives (b).

For establishing (b) ⇒ (a), given any Γ ∈ S1,op
prd we may assume that ΓΨn has a

representation of the form (3.49). We conclude from [42, Pr. 5.7.2] that there exists a

constant c > 0 such that for all Γ ∈ S1,op
prd we have

EP⊗P ′

[∥∥∥∥∫ T

0
ΓΨn dL̃

∥∥∥∥ ∧ 1

]
= EP⊗P ′

[∥∥∥∥∥∥
N(n)−1∑
i=1

Γni F
n
i (L̃(tni+1)− L̃(tni ))

∥∥∥∥∥∥ ∧ 1

]

≤ c max
εi∈{±1}

EP⊗P ′

[∥∥∥∥∥∥
N(n)−1∑
i=1

εiΓ
n
i F

n
i (L(tni+1)− L(tni ))

∥∥∥∥∥∥ ∧ 1

]

= c max
εi∈{±1}

EP

[∥∥∥∥∥∥
N(n)−1∑
i=1

εiΓ
n
i F

n
i (L(tni+1)− L(tni ))

∥∥∥∥∥∥ ∧ 1

]

≤ c sup
Θ∈S1,op

prd

EP

[∥∥∥∥∥∥
N(n)−1∑
i=1

Θn
i F

n
i (L(tni+1)− L(tni ))

∥∥∥∥∥∥ ∧ 1

]
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= c sup
Θ∈S1,op

prd

EP

[∥∥∥∥∫ T

0
ΘΨn dL

∥∥∥∥ ∧ 1

]
. (3.50)

By choosing Γ = Id1Ω×(0,T ], the hypothesis on (Ψn)n∈N implies

lim
n→∞

EP⊗P ′

[∥∥∥∥∫ T

0
Ψn dL̃

∥∥∥∥ ∧ 1

]
= 0.

It follows that for every subsequence (Ψnm)m∈N of (Ψn)n∈N, there exists a further

subsequence (Ψnmj
)j∈N and a set N ⊆ Ω× Ω′ with (P ⊗ P ′)(N) = 0 satisfying

lim
j→∞

(∫ T

0
Ψnmj

dL̃

)
(ω, ω′) = 0 for each (ω, ω′) ∈ N c.

Define the section of the set N for each ω ∈ Ω by

Nω =

{
ω′ ∈ Ω′ : lim

j→∞

(∫ T

0
Ψnmj

(ω) dL̃(ω, ·)
)

(ω′) 6= 0

}
,

where we note that since Ψnmj
are predictable step processes, it holds that

(∫ T

0
Ψnmj

dL̃

)
(ω, ·) =

∫ T

0
Ψnmj

(ω) dL̃(ω, ·) for all ω ∈ Ω.

Fubini’s theorem implies 0 = (P ⊗ P ′)(N) =
∫

Ω P
′(Nω)dP (ω), from which it follows

that there exists Ω1 ⊆ Ω with P (Ω1) = 1 such that P ′(Nω) = 0 for all ω ∈ Ω1. In other

words, for each fixed ω ∈ Ω1, the sequence of random variables(∫ T

0
Ψnmj

(ω) dL̃(ω, ·)

)
j∈N

converges P ′-a.s. to 0 as H-valued random variables on (Ω′,F ′, P ′). Since for each fixed
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ω ∈ Ω1, the above sequence is infinitely divisible and has characteristics

(∫ T

0
bθΨnmj (ω,t) dt,

∫ T

0
Ψnmj

(ω, t)QΨ∗nmj
(ω, t) dt, (λ⊗ Leb) ◦ κ−1

Ψnmj (ω)

)
,

by Lemmata 3.11, 3.35 and the fact that for each ω ∈ Ω the cylindrical Lévy process

L̃(ω, ·) has the same cylindrical characteristics as L, we obtain for all ω ∈ Ω1 that

lim
j→∞

kL(Ψnmj
(ω)) = lim

j→∞
k
L̃(ω)

(Ψnmj
(ω)) = 0.

As P (Ω1) = 1, the above argument proves that for all ε > 0 we have

lim
n→∞

P

(
ω ∈ Ω :

∫ T

0
kL(Ψn(ω, t)) dt > ε

)
= 0. (3.51)

To finish the proof, it remains to show that for all ε > 0 we have

lim
n→∞

P

(
ω ∈ Ω :

∫ T

0
lL(Ψn(ω, t)) dt > ε

)
= 0. (3.52)

It follows from Equation (3.50) that the sequence (Ψn)n∈N ⊆ SHS
prd satisfies

lim
n→∞

sup
Γ∈S1,op

prd

EP⊗P ′

[∥∥∥∥∫ T

0
ΓΨn dL̃

∥∥∥∥ ∧ 1

]
= 0. (3.53)

Let ε ∈ (0, 1) be fixed. Since stochastic integrals with deterministic integrands with

respect to L are infinitely divisible, Remark 2.2 implies that there exists δ ∈ (0, ε) such

that for all ψ ∈MHS
det we have the implication

P

(∥∥∥∥∫ T

0
ψ dL

∥∥∥∥ > √δ) <
√
δ =⇒

∥∥∥∥∫ T

0
bθψ(t) dt

∥∥∥∥ < ε. (3.54)
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By Equation (3.53), there exists an N ∈ N such that for all n ≥ N we have

sup
Γ∈S1,op

prd

(P ⊗ P ′)
(∥∥∥∥∫ T

0
ΓΨn dL̃

∥∥∥∥ > δ

)
< δ. (3.55)

Chebyshev’s inequality, Fubini’s theorem and Equation (3.55) imply for all n ≥ N and

Γ ∈ S1,op
prd that

P

(
P ′
(∥∥∥∥∫ T

0
ΓΨn dL̃

∥∥∥∥ > δ

)
<
√
δ

)
= 1− P

(
P ′
(∥∥∥∥∫ T

0
ΓΨn dL̃

∥∥∥∥ > δ

)
≥
√
δ

)
≥ 1− 1√

δ

∫
Ω
P ′
(∥∥∥∥∫ T

0
ΓΨn dL̃

∥∥∥∥ > δ

)
dP

= 1− 1√
δ

(P ⊗ P ′)
(∥∥∥∥∫ T

0
ΓΨn dL̃

∥∥∥∥ > δ

)
≥ 1−

√
δ. (3.56)

In light of Equations (3.54) and (3.56), we have for all n ≥ N and Γ ∈ S1,op
prd that

P

(∥∥∥∥∫ T

0
bθΓ(ω)Ψn(ω) dt

∥∥∥∥ < ε

)
≥ 1−

√
δ,

or equivalently, for all n ≥ N we have

sup
Γ∈S1,op

prd

P

(∥∥∥∥∫ T

0
bθΓ(ω)Ψn(ω) dt

∥∥∥∥ ≥ ε) ≤ √δ.
The above inequality, combined with an approximation argument using functions in

S1,op
prd shows that for any predictable L(H)1-valued process Λ and n ≥ N it holds that

P

(∥∥∥∥∫ T

0
bθΛ(ω)Ψn(ω) dt

∥∥∥∥ ≥ ε) ≤ √δ. (3.57)
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For each fixed n ≥ N , define a process Hn : Ω× [0, T ]→ L(H)1 by

Hn(ω) = f(bθi(Ψn(ω))Ψn(ω)) ◦ i(Ψn(ω)),

with i and f as in Lemma 3.33. Then, Hn is predictable and, by the same argument

as in Equation (3.35), it satisfies for each ω ∈ Ω that

∫ T

0
sup

O∈L(H)1

∥∥∥bθOΨn(ω,t)

∥∥∥ dt ≤
∥∥∥∥∫ T

0
bθHn(ω,t)Ψn(ω,t) dt

∥∥∥∥+ ε. (3.58)

By Equation (3.58), and replacing Λ by Hn in Equation (3.57), for all n ≥ N we obtain

P

(∫ T

0
sup

O∈L(H)1

∥∥∥bθOΨn(ω,t)

∥∥∥ dt ≥ 2ε

)
≤ P

(∥∥∥∥∫ T

0
bθHn(ω,t)Ψn(ω,t) dt

∥∥∥∥ ≥ ε) ≤ √δ.
Since we have that δ < ε, this finishes the proof of the claim in Equation (3.52). Finally,

by Equations (3.51), (3.52), and the assumption that limn→∞E [m′′(Ψn) ∧ 1] = 0, we

obtain that limn→∞E [mL(Ψn) ∧ 1] = 0. This completes the proof, since mL and ρL

generate the same topology.

Remark 3.46. In light of Lemma 3.45, it follows by the same argument as in Remark

3.38 that conditions (a) and (b) of Lemma 3.45 both imply

lim
n→∞

E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Ψn dL

∥∥∥∥ ∧ 1

]
= 0.

Proof of Theorem 3.44. If Ψ ∈ IHS
prd,L then Definition 3.37 guarantees the existence of

a sequence (Ψn)n∈N of elements of SHS
prd converging PT -a.e. to Ψ and satisfying

lim
m,n→∞

sup
Γ∈S1,op

prd

E

[∥∥∥∥∫ T

0
Γ(Ψm −Ψn) dL

∥∥∥∥ ∧ 1

]
= 0.
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Lemma 3.45 implies that limm,n→∞ |||Ψm −Ψn|||L = 0. Completeness of the metric

space (L0
P (Ω,MHS

det,L), |||·|||L) and the fact that (Ψn)n∈N converges PT -a.e. to Ψ to-

gether yield that the sequence (Ψn)n∈N has a limit in L0
P (Ω,MHS

det,L) and that this

limit necessarily coincides with Ψ. Thus Ψ ∈ L0
P (Ω,MHS

det,L).

To establish the reverse inclusion, let Ψ be a predictable process in the space

L0
P (Ω,MHS

det,L). Lemma 3.39 guarantees that there exists a sequence (Ψn)n∈N of el-

ements of SHS
prd converging to Ψ in |||·|||L and PT -a.e. Then, (Ψm − Ψn) converges to 0

both in |||·|||L and PT -a.e. as m,n→∞. This implies by Lemma 3.45 that

lim
m,n→∞

sup
Γ∈S1,op

prd

E

[∥∥∥∥∫ T

0
Γ(Ψm −Ψn) dL

∥∥∥∥ ∧ 1

]
= 0.

Thus Ψ satisfies the conditions of Definition 3.37, which means that Ψ ∈ IHS
prd,L.

Lemma 3.45 is crucial to characterise the space of integrable predictable processes in

Theorem 3.44, as it describes convergence of predictable step processes in the space of

integrands in terms of convergence in the randomised modular space. Having identified

the space of integrable predictable processes, we can extend Lemma 3.45 to the whole

space of integrable predictable processes.

Corollary 3.47. Let L be a cylindrical Lévy process in G, and (Ψn)n∈N a sequence in

IHS
prd,L. Then the following are equivalent:

(a) lim
n→∞

|||Ψn|||L = 0;

(b) lim
n→∞

sup
Γ∈S1,op

prd

E

[∥∥∥∥∫ T

0
ΓΨn dL

∥∥∥∥ ∧ 1

]
= 0 and lim

n→∞
E
[
m′′(Ψn) ∧ 1

]
= 0.

Proof. To establish the implication (a) ⇒ (b), first note that it follows from the defini-

tion of |||·|||L and the fact that ρL generate the same topology as mL that m′′(Ψn)→ 0

in probability. Let ε > 0 be fixed. Lemma 3.45 implies that there exists a δ(ε) > 0 such
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that we have for all Ψ ∈ SHS
prd the implication:

|||Ψ|||L < δ(ε) ⇒ sup
Γ∈S1,op

prd

E

[∥∥∥∥∫ T

0
ΓΨ dL

∥∥∥∥ ∧ 1

]
< ε. (3.59)

Since limn→∞ |||Ψn|||L = 0, there exists an n0 ∈ N such that |||Ψn|||L < δ(ε)
2 for all

n ≥ n0. By Theorem 3.44 we have that (Ψn)n∈N ⊆ L0
P (Ω,MHS

det,L), hence Lemma 3.39

guarantees for each n ∈ N the existence of a sequence (Ψm
n )m∈N ⊆ SHS

prd converging to

Ψn in |||·|||L and PT -a.e. Consequently, we can find m0(n, ε) ∈ N for each n ∈ N such

that for all m ≥ m0(n, ε) we have |||Ψm
n −Ψn|||L <

δ(ε)
2 . We obtain for each n ≥ n0 and

m ≥ m0(n, ε) that

|||Ψm
n |||L ≤ |||Ψ

m
n −Ψn|||L + |||Ψn|||L < δ(ε),

which implies by (3.59) that

sup
Γ∈S1,op

prd

E

[∥∥∥∥∫ T

0
ΓΨm

n dL

∥∥∥∥ ∧ 1

]
< ε. (3.60)

Thus, if we fix an n ≥ n0 and recall that the integral of Ψn is defined to be the limit in

probability of the integrals of Ψm
n as m→∞, we obtain from Equation (3.60) that

sup
Γ∈S1,op

prd

E

[∥∥∥∥∫ T

0
ΓΨn dL

∥∥∥∥ ∧ 1

]
= sup

Γ∈S1,op
prd

lim
m→∞

E

[∥∥∥∥∫ T

0
ΓΨm

n dL

∥∥∥∥ ∧ 1

]

≤ lim
m→∞

sup
Γ∈S1,op

prd

E

[∥∥∥∥∫ T

0
ΓΨm

n dL

∥∥∥∥ ∧ 1

]
< ε.

To establish the reverse implication (b) ⇒ (a), let ε > 0 be fixed. Lemma 3.45
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implies that there exists a δ(ε) > 0 such that we have for all Ψ ∈ SHS
prd the implication:

sup
Γ∈S1,op

prd

E

[∥∥∥∥∫ T

0
ΓΨ dL

∥∥∥∥ ∧ 1

]
+ E

[
m′′(Ψ) ∧ 1

]
< δ(ε) ⇒ |||Ψ|||L <

ε
2 . (3.61)

By assumption, there exists an n0 ∈ N such that for all n ≥ n0 we have

sup
Γ∈S1,op

prd

E

[∥∥∥∥∫ T

0
ΓΨn dL

∥∥∥∥ ∧ 1

]
+ E

[
m′′(Ψn) ∧ 1

]
< δ(ε)

4 . (3.62)

As (Ψn)n∈N ⊆ IHS
prd,L, it follows from Theorem 3.44 and Lemma 3.39 that for each

n ∈ N there exists a sequence (Ψm
n )m∈N of elements of SHS

prd converging to Ψn in |||·|||L
and PT -a.e. Consequently, we can find m0(n, ε) ∈ N for each n ∈ N, such that for all

m ≥ m0(n, ε) we have

|||Ψm
n −Ψn|||L < ε/2. (3.63)

Since for each n ∈ N we have that limm→∞ |||Ψm
n −Ψn|||L = 0, the first part of this

Corollary and the reverse triangle inequality shows that for each n ∈ N there exists an

m1(n, ε) ∈ N such that for all m ≥ m1(n, ε) we have∣∣∣∣∣∣ sup
Γ∈S1,op

prd

E

[∥∥∥∥∫ T

0
ΓΨn dL

∥∥∥∥ ∧ 1

]
− sup

Γ∈S1,op
prd

E

[∥∥∥∥∫ T

0
ΓΨm

n dL

∥∥∥∥ ∧ 1

]∣∣∣∣∣∣ < δ(ε)
4 . (3.64)

Moreover, since for each n ∈ N we have that Ψm
n → Ψn PT -a.e. as m→∞, there exists

m2(n, ε) ∈ N such that for all m ≥ m2(n, ε) it holds that

∣∣E [m′′(Ψn) ∧ 1
]
− E

[
m′′(Ψm

n ) ∧ 1
]∣∣ < δ(ε)

4
. (3.65)

By combining Equations (3.62),(3.64) and (3.65), we obtain for all n ≥ n0 and m ≥
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max{m0(n, ε),m1(n, ε),m2(n, ε)} that

sup
Γ∈S1,op

prd

E

[∥∥∥∥∫ T

0
ΓΨm

n dL

∥∥∥∥ ∧ 1

]
+ E

[
m′′(Ψm

n ) ∧ 1
]
< δ(ε),

which implies by (3.61) and (3.63) that

|||Ψn|||L ≤ |||Ψn −Ψm
n |||L + |||Ψm

n |||L < ε.

As ε > 0 was arbitrary, this concludes the proof.

Remark 3.48. Using Remark 3.46, a similar argument as in implication (a) ⇒ (b)

of Corollary 3.47 can be used to show that conditions (a) and (b) of Lemma 3.47 both

imply

lim
n→∞

E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Ψn dL

∥∥∥∥ ∧ 1

]
= 0.

Having introduced the notion of the stochastic integral, we now show that stochastic

integral processes, obtained by fixing an integrand and varying the upper limit of the

stochastic integral, are in fact semimartingales.

Theorem 3.49. If Ψ ∈ IHS
prd,L, then the integral process (I(Ψ)(t) : t ∈ [0, T ]) defined by

I(Ψ)(t) :=

∫ T

0
1[0,t](s)Ψ(s)L(ds) for t ∈ [0, T ],

is a semimartingale.

Proof. Let Γ ∈ S1,op
prd be of the form

Γ(t) = Γ01{0}(t) +

N−1∑
k=1

Γk1(sk,sk+1](t),
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where 0 = s1 < ... < sN = T are deterministic times, Γ0 : Ω→ L(H)1 is F0-measurable,

and each Γk : Ω → L(H)1 is an Fsk -measurable random variable taking only finitely

many values for k = 1, ..., N − 1. Then we define the stochastic integral

∫ T

0
Γ dI(Ψ) :=

N−1∑
k=1

Γk

(
I(Ψ)(sk+1)− I(Ψ)(sk)

)
.

To prove the claim, by [29, Th. 2.1], it suffices to show that the set

{∫ T

0
Γ dI(Ψ) : Γ ∈ S1,op

prd

}

is bounded in probability. Suppose, aiming for a contradiction, that it is not the case.

Then there exists an ε > 0 and a sequence (Γn)n∈N ⊆ S1,op
prd satisfying for all n ∈ N that

P

(∥∥∥∥∫ T

0
Γn dI(Ψ)

∥∥∥∥ > n

)
≥ ε. (3.66)

For each Ψ ∈ SHS
prd and Γ ∈ S1,op

prd , the very definitions of stochastic integrals show

∫ T

0
Γ dI(Ψ) =

∫ T

0
ΓΨ dL.

This equality can be generalised to arbitrary Ψ ∈ IHS
prd,L and Γ ∈ S1,op

prd by a standard

approximation argument. Using this to rewrite Equation (3.66), we obtain for all n ∈ N

that

ε ≤ P
(∥∥∥∥∫ T

0
Γn dI(Ψ)

∥∥∥∥ > n

)
= P

(∥∥∥∥∫ T

0

1

n
ΓnΨ dL

∥∥∥∥ > 1

)
. (3.67)

On the other hand, since
∣∣∣∣∣∣ 1
nΓnΨ

∣∣∣∣∣∣
L
→ 0 as n→∞, Corollary 3.47 implies

lim
n→∞

E

[∥∥∥∥∫ T

0

1

n
ΓnΨ dL

∥∥∥∥ ∧ 1

]
= 0,
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which contradicts (3.67) because of the equivalent characterisation of the topology in

L0
P (Ω, H).

We finish this section with a stochastic dominated convergence theorem.

Theorem 3.50. Let (Ψn)n∈N be a sequence of processes in IHS
prd,L such that

(1) (Ψn)n∈N converges PT -a.e. to an L2(G,H)-valued predictable process Ψ;

(2) there exists a process Υ ∈ IHS
prd,L satisfying for all n ∈ N that

(kL + lL)(Ψn(ω, t)) ≤ (kL + lL)(Υ(ω, t)) for PT -a.a. (ω, t) ∈ Ω× [0, T ].

Then it follows that Ψ ∈ IHS
prd,L and

lim
n→∞

P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Ψn dL−

∫ t

0
Ψ dL

∥∥∥∥ > ε

)
= 0 for all ε > 0.

Proof. By assumption, there exists a set N ⊆ Ω × [0, T ] with PT (N) = 0 such that

limn→∞Ψn(ω, t) = Ψ(ω, t) and (kL + lL)(Ψn(ω, t)) ≤ (kL + lL)(Υ(ω, t)) for all (ω, t) ∈

N c and n ∈ N. Fubini’s theorem yields that

0 = PT (N) =

∫
Ω

Leb|[0,T ](Nω)P (dω),

where

Nω :={
t ∈ [0, T ] : lim

n→∞
Ψn(ω, t) 6= Ψ(ω, t)} or (kL + lL)(Ψn(ω, t)) > (kL + lL)(Υ(ω, t))

}
.

It follows that there exists an Ω1 ⊆ Ω with P (Ω1) = 1 such that Leb|[0,T ](Nω) = 0 for all

ω ∈ Ω1. Consequently, for each ω ∈ Ω1 we have (kL+ lL)(Ψn(ω, t)) ≤ (kL+ lL)(Υ(ω, t))
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and limn→∞Ψn(ω, t) = Ψ(ω, t) for Lebesgue almost every t ∈ [0, T ]. Theorem 3.44

guarantees that there exists Ω2 ⊆ Ω with P (Ω2) = 1 such that mL(Υ(ω, ·)) < ∞ for

all ω ∈ Ω2. Continuity of kL and lL at 0, see Lemma 3.12, and the classical version of

Lebesgue’s dominated convergence theorem implies that for all ω ∈ Ω1 ∩ Ω2 we have

lim
m,n→∞

mL(Ψm(ω, ·)−Ψn(ω, ·))

= lim
m,n→∞

(∫ T

0
kL(Ψm(ω, t)−Ψn(ω, t)) + lL(Ψm(ω, t)−Ψn(ω, t)) dt

+

∫ T

0
‖Ψm(ω, t)−Ψn(ω, t)‖2L2(G,H) ∧ 1 dt

)
= 0.

Hence, for each ω ∈ Ω1 ∩Ω2 the sequence (Ψn)n∈N is Cauchy in the modular topology,

which by Lemma 3.20 and the fact that Ψn(ω) → Ψ(ω) for Lebesgue a.a. t ∈ [0, T ]

allows us to conclude that Ψ(ω) ∈MHS
det,L. Since P (Ω1 ∩Ω2) = 1, Theorem 3.44 shows

Ψ ∈ IHS
prd,L.

Another application of Lebesgue’s dominated convergence theorem establishes that

limn→∞ |||Ψn −Ψ|||L = 0. Corollary 3.47 implies

lim
n→∞

sup
Γ∈S1,op

prd

E

[∥∥∥∥∫ T

0
Γ(Ψn −Ψ) dL

∥∥∥∥ ∧ 1

]
= 0,

which, by Remark 3.48, implies ucp convergence. This allows us to conclude that the

sequence (I(Ψn))n∈N of processes converges in probability on compact time intervals

to the process I(Ψ). Hence we have

lim
n→∞

P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Ψn dL−

∫ t

0
Ψ dL

∥∥∥∥ > ε

)
= 0 for all ε > 0,

which completes the proof.
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4 Integral processes driven by standard symmetric α-stable

cylindrical Lévy processes

4.1 Integration theory for α-stable cylindrical Lévy processes

From this point on, instead of working with general cylindrical Lévy processes, we re-

strict our attention to the subclass of standard symmetric α-stable cylindrical Lévy

processes for α ∈ (0, 2). Recall that these are cylindrical Lévy processes with charac-

teristic function ϕL(t)(g) = exp(−t ‖g‖α) for each t ≥ 0 and g ∈ G.

In this section, we revisit the problem of stochastic integration and show that in

the special case when the integrator is a standard symmetric α-stable cylindrical Lévy

process, our integration theory simplifies significantly and the abstract modular space

MHS
det,L can be identified with the Bochner space LαLeb([0, T ], L2(G,H)). As we shall see,

this simplification is possible due to the special tail properties of stable distributions and

the fact that standard symmetric α-stable cylindrical Lévy processes have cylindrical

characteristics (0, 0, λ), which implies that the modular mL takes a much simpler form

than in the general case.

In order to identify the modular spaceMHS
det,L with LαLeb([0, T ], L2(G,H)), it suffices

to obtain both upper and lower bounds on the modular mL in terms of ‖·‖Lα . This is

accomplished below in two technical lemmata.

Lemma 4.1. Let L be the canonical α-stable cylindrical Lévy process in G with cylin-

drical Lévy measure λ. Then there exists a constant cα > 0 such that

∫ T

0
‖ψ(t)‖αL2(G,H) dt ≤ cα

∫ T

0

∫
H

(
‖h‖2 ∧ 1

)
(λ ◦ ψ(t)−1)(dh) dt

for all measurable functions ψ : [0, T ]→ L2(G,H).

Proof. Let F be an operator in L2(G,H). The spectral theorem for compact operators,
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see e.g. [17, Th. 4.1], guarantees that F has a decomposition of the form

F =
∞∑
j=1

γj〈aj , ·〉bj , (4.1)

where (aj)j∈N and (bj)j∈N are orthonormal bases of G and H, respectively, and (γj)j∈N

is a sequence in R. Let πn : H → H be the projection onto Span{b1, ..., bn}. We conclude

from the spectral representation (2.5) of the stable measure λ ◦ π−1
a1,...,an for each n ∈ N

that

(λ ◦ F−1 ◦ π−1
n )(B̄c

H) = λ
({
g ∈ G :

n∑
j=1

γ2
j 〈aj , g〉2 > 1

})
= λ ◦ π−1

a1,...,an

({
x ∈ Rn :

n∑
j=1

γ2
j x

2
j > 1

})
=

α

cα

∫
SRn

∫ ∞
0

1{y∈Rn:
∑n
j=1 γ

2
j y

2
j>1}(rx)

1

r1+α
dr νn(dx)

=
1

cα

∫
SRn

( n∑
j=1

γ2
j x

2
j

)α/2
νn (dx),

where νn is a uniform distribution on the sphere SRn not necessarily of unit mass.

By defining cn :=
∑n

j=1 γ
2
j and applying Jensen’s inequality to the concave function

β 7→ βα/2 with respect to the discrete probability measure {c−1
n γ2

1 , ..., c
−1
n γ2

n}, we obtain

1

cα

∫
SRn

( n∑
j=1

γ2
j x

2
j

)α/2
νn(dx) ≥ c

α/2
n

cα

∫
SRn

n∑
j=1

γ2
j

cn
|xj |α νn(dx).

Letting ν1
n = 1

νn(SRn )νn, Lemma 2.4 and A2 in [68] imply

c
α/2
n

cα

∫
SRn

n∑
j=1

γ2
j

cn
|xj |α νn(dx) =

c
α/2
n

cα
νn(SRn)

n∑
j=1

γ2
j

cn

∫
SRn

|xj |αν1
n(dx)
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=
c
α/2
n

cα
νn(SRn)

Γ(n2 )Γ(1+α
2 )

Γ(1
2)Γ(n+α

2 )

n∑
j=1

γ2
j

cn

=
1

cα

( n∑
j=1

γ2
j

)α/2
=

1

cα

( n∑
j=1

‖Faj‖2
)α/2

,

where the last step follows from the spectral representation (4.1). Thus, for all n ∈ N

it holds that

1

cα

( n∑
j=1

‖Faj‖2
)α/2

≤ (λ ◦ F−1 ◦ π−1
n )(B̄c

H). (4.2)

Since πnF → F in L2(G,H), Lemma 2.7 implies that
(
(πn ◦ F )(L(1))

)
n∈N converges

in probability to the random variable F (L(1)). Condition (2.3) yields

lim
n→∞

(λ ◦ F−1 ◦ π−1
n )(B̄c

H) = (λ ◦ F−1)(B̄c
H).

By taking limits as n→∞ on both sides in (4.2), we obtain

1

cα
‖F‖αL2(G,H) ≤ (λ ◦ F−1)(B̄c

H).

It follows for any measurable function ψ : [0, T ]→ L2(G,H) that

∫ T

0
‖ψ(t)‖αL2(G,H) dt ≤ cα

∫ T

0

∫
B̄cH

(λ ◦ ψ(t)−1) (dh) dt

≤ cα
∫ T

0

∫
H

(
‖h‖2 ∧ 1

)
(λ ◦ ψ(t)−1) (dh) dt,

which completes the proof.
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The next lemma is a direct consequence of the inequality

(
λ ◦ F−1

)
(Bc

H) ≤ c ‖F‖αL2(G,H) , F ∈ L2(G,H) (4.3)

for some constant c > 0 depending only on α, where λ denotes the cylindrical Lévy

measure of a standard symmetric α-stable cylindrical Lévy process, see [37, Le. 1].

Lemma 4.2. Let L be a standard symmetric α-stable cylindrical Lévy process with

cylindrical Lévy measure λ. Then, for all α ∈ (0, 2) and m ∈ N there exists amα < ∞

depending only on α and m such that

∫
‖h‖≤1/m

||h||2 (λ ◦ F−1)(dh) ≤ amα ||F ||
α
L2(G,H) (4.4)

for all F ∈ L2(G,H), where limm→∞ a
m
α = 0. Moreover, if α ∈ (1, 2) then for all

m ∈ N there exists dmα <∞ depending only on α and m such that

∫
‖h‖≤1/m

||h||2 (λ ◦ F−1)(dh) +

∫
‖h‖>m

||h|| (λ ◦ F−1)(dh) ≤ dmα ||F ||
α
L2(G,H) (4.5)

for all F ∈ L2(G,H), where limm→∞ d
m
α = 0.

Proof. Step 1: We begin by proving that there exists an amα such that

∫
‖h‖≤1/m

||h||2 (λ ◦ F−1)(dh) ≤ amα ||F ||
α
L2(G,H) (4.6)

for some amα <∞. For each m,n ∈ N, we define

Bi,m,n :=

{
h ∈ H : ‖h‖ ≤ i

m2n

}
for i = 1, ..., 2n.
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We approximate the function ‖·‖2 : H → R on BH( 1
m) by

fmn : H → R, fmn (h) =
2n−1∑
i=1

(
i

m2n

)2

1Bci,m,n\Bci+1,m,n
(h).

Since λ ◦ F−1 is a genuine α-stable measure in H, by [43, Thm. 6.2.7] we have

(λ ◦ F−1)(Bc
H(r)) = r−α(λ ◦ F−1)(Bc

H) (4.7)

for r > 0, from which we obtain

∫
‖h‖≤1/m

fmn (h)(λ ◦ F−1)(dh) =

=
1

m2

2n−1∑
i=1

(
i

2n

)2(
(λ ◦ F−1)

(
Bc
i,m,n

)
− (λ ◦ F−1)

(
Bc
i+1,m,n

))

=
1

m2
(λ ◦ F−1)(Bc

H)
2n−1∑
i=1

(
i

2n

)2
((

i

m2n

)−α
−
(
i+ 1

m2n

)−α)

=mα−2(λ ◦ F−1)(Bc
H)

∫ 1

0

(
2n−1∑
i=1

−
(
i

2n

)2

1( i
2n
, i+1

2n ](r)

)
d(r−α)

=mα−2(λ ◦ F−1)(Bc
H)

∫ 1

0

(
2n−1∑
i=1

(
i

2n

)2

1( i
2n
, i+1

2n ](r)

)
αr−(α+1) dr

for n ∈ N. Hence, by the Monotone Convergence Theorem we obtain

lim
n→∞

∫
‖h‖≤1/m

fmn (h)(λ ◦ F−1)(dh)

= mα−2α(λ ◦ F−1)(Bc
H) lim

n→∞

∫ 1

0

(
2n−1∑
i=1

(
i

2n

)2

1( i
2n
, i+1

2n ](r)

)
r−(α+1) dr

= mα−2α(λ ◦ F−1)(Bc
H)

∫ 1

0
r2r−(α+1) dr

= mα−2α(λ ◦ F−1)(Bc
H)

∫ 1

0
r1−α dr
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= mα−2 α

2− α
(λ ◦ F−1)(Bc

H). (4.8)

At the same time, since for all h ∈ BH( 1
m) we have limn→∞ f

m
n (h) = ‖h‖2 and fmn (h) ≤

‖h‖2 for all m,n ∈ N, we can use the Monotone Convergence Theorem to conclude that

lim
n→∞

∫
‖h‖≤1/m

fmn (h)(λ ◦ F−1)(dh) =

∫
‖h‖≤1/m

‖h‖2 (λ ◦ F−1)(dh). (4.9)

Combining Equations (4.8) and (4.9) and applying estimate (4.3), we get

∫
‖h‖≤1/m

‖h‖2 (λ ◦ F−1)(dh) = mα−2 α

2− α
(λ ◦ F−1)(Bc

H) ≤ mα−2 α

2− α
c ‖F‖αL2(G,H) .

Hence, we arrive at the estimate (4.6), with amα = mα−2 α
2−αc. Since α < 2, it follows

that limm→∞ a
m
α = 0.

Step 2: We claim that for all α ∈ (1, 2) and m ∈ N there exists bmα <∞, depending

only on α and m, such that

∫
‖h‖>m

||h|| (λ ◦ F−1)(dh) ≤ bmα ||F ||
α
L2(G,H)

for all F ∈ L2(G,H), where for each α ∈ (1, 2) we have limm→∞ b
m
α = 0. The proof is

analogous to Step 1.

Theorem 4.3. The space IHS
det,L of deterministic functions integrable with respect to

the standard symmetric α-stable cylindrical Lévy process in G for α ∈ (0, 2) coincides

with LαLeb

(
[0, T ], L2(G,H)

)
.

Proof. Combining Lemma 4.1, Lemma 4.2 and Inequality (4.3), we get that there exists

constants cα, dα > 0, depending only on α, such that for all measurable functions
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ψ : [0, T ]→ L2(G,H) we have

1

cα

∫ T

0
‖ψ(t)‖αL2(G,H) dt ≤

∫ T

0

∫
H

(
‖h‖2 ∧ 1

)
(λ ◦ ψ(t)−1)(dh) dt

≤ dα
∫ T

0
‖ψ(t)‖αL2(G,H) dt. (4.10)

Since L has cylindrical characteristics (0, 0, λ), for each measurable function ψ : [0, T ]→

L2(G,H), the modular mL takes the form

mL(ψ) =

∫ T

0

∫
H

(
‖h‖2 ∧ 1

)
(λ ◦ ψ(t)−1)(dh) dt+

∫ T

0

(
‖ψ(t)‖2HS ∧ 1

)
dt.

Hence, it follows from Equation (4.10) that mL(ψ) is finite if and only if ‖ψ‖Lα is finite,

which implies that MHS
det,L = LαLeb

(
[0, T ], L2(G,H)

)
. Since by Theorem 3.27, we have

that MHS
det,L = IHS

det,L, the result follows.

In light of the above theorem, we can now complete the picture, and characterise the

largest space of predictable integrands which are stochastically integrable with respect

to a standard symmetric α-stable cylindrical Lévy process. This result might be viewed

as the natural extension of the integrability condition obtained for real-valued standard

symmetric α-stable Lévy processes by Rosinski and Woyczynski in [69, Th. 4.1].

Theorem 4.4. The space IHS
prd,L of predicable Hilbert-Schmidt operator-valued processes

integrable with respect to a standard symmetric α-stable cylindrical Lévy process in G

for α ∈ (0, 2) coincides with predictable processes in L0
P

(
Ω, LαLeb

(
[0, T ], L2(G,H)

))
.

Proof. The proof is a direct consequence of Theorems 3.44 and 4.3.

While a stochastic dominated convergence theorem for general cylindrical Lévy

processes was proved in Theorem 3.50, due to the complicated nature of the general

modular, in practice, it might be rather difficult to apply this result. However, as one
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might expect, in the case of a standard symmetric α-stable cylindrical Lévy process,

the conditions become much simpler.

Theorem 4.5. Let L be a standard symmetric α-stable cylindrical Lévy process and

(Ψn)n∈N a sequence of processes in IHS
prd,L such that

(1) (Ψn)n∈N converges PT -a.e. to an L2(G,H)-valued predictable process Ψ;

(2) there exists a process Υ ∈ IHS
prd,L satisfying for all n ∈ N that

‖Ψn(ω, t)‖L2(G,H) ≤ ‖Υ(ω, t)‖L2(G,H) for PT -a.a. (ω, t) ∈ Ω× [0, T ].

Then it follows that Ψ ∈ IHS
prd,L and

lim
n→∞

P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Ψn dL−

∫ t

0
Ψ dL

∥∥∥∥ > ε

)
= 0 for all ε > 0.

Proof. Since Equation (4.10) implies that mL(·) and ‖·‖Lα generate the same topol-

ogy when L is a standard symmetric α-stable cylindrical Lévy process, we can apply

Theorem 3.50 to conclude the proof.

Later, we will need the following stochastic Fubini theorem, which provides condi-

tions under which it is possible to interchange stochastic and Lebsegue integrals.

Theorem 4.6 (Stochastic Fubini Theorem). Let L be a standard symmetric α-stable

cylindrical Lévy process for α ∈ (1, 2). If Ψ: Ω × [0, T ]2 → L2(G,H) is measurable,

Ψ(t, ·) is predictable for every t ∈ [0, T ], and
∫ T

0

∫ T
0 ‖Ψ(t, s)‖αL2(G,H) dtds < ∞ a.s.

then it follows:

(a) Ψ(t, ·) is stochastically integrable for every t ∈ [0, T ] and
∫ T

0 Ψ(·, s)dL(s) is a.s.

Bochner integrable;
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(b) Ψ(·, s) is a.s. Bochner integrable for every s ∈ [0, T ] and
∫ T

0 Ψ(t, ·) dt is stochas-

tically integrable;

(c)

∫ T

0

(∫ T

0
Ψ(t, s) dt

)
dL(s) =

∫ T

0

(∫ T

0
Ψ(t, s) dL(s)

)
dt a.s.

Proof. The proof is similar as in finite dimensions; see [82].

Finally, we recall an important moment estimate for stochastic integrals with respect

to standard symmetric α-stable cylindrical Lévy processes, which will be heavily used

in the sequel.

Lemma 4.7. For every 0 < p < α and stochastically integrable predictable process Ψ

we have

E

[
sup
t∈[0,T ]

∣∣∣∣∣∣∣∣∫ t

0
Ψ dL

∣∣∣∣∣∣∣∣p
]
≤ ep,α

(
E

[∫ T

0
||Ψ(t)||αL2(U,H) dt

])p/α
, (4.11)

where L is a standard symmetric α-stable cylindrical Lévy process and ep,α = α
α−pe

p/α
2,α

for some e2,α ∈ (0,∞) that depends only on α.

Proof. A straightforward extension of [37, Cor. 3] to predictable integrands.

4.2 Random measures and compensators

In this section, we briefly recall some results on random measures and their compen-

sators from [27, Ch. II].

Definition 4.8 (Random measure). A family µ = {µ(ω; dt,dh) : ω ∈ Ω} is called a

random measure on [0, T ]×H if µ(ω) is a measure on B([0, T ])⊗B(H) for each ω ∈ Ω.

It is said to be an integer-valued random measure if moreover, we have:

(i) µ({t} ×H) ≤ 1 for all t ∈ [0, T ] P -a.s.;

(ii) µ takes values in N ∪ {∞} P -a.s.
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We denote by P̃ (resp. Õ) the predictable (resp. optional) σ-algebra on Ω×[0, T ]×H

and call a function W : Ω× [0, T ]×H 7→ R predictable (resp. optional) if it is P̃ (resp.

Õ) measurable.

If µ is a random measure and W is optional we define

(∫ t

0

∫
H
W (s, h)µ(ds, dh)

)
(ω)

:=


∫ t

0

∫
HW (ω, s, h)µ(ω)(ds, dh), if

∫ t
0

∫
H |W (ω, s, h)|µ(ω)(ds, dh) <∞,

∞, otherwise.

A random measure µ is called predictable (resp. optional) if (
∫ t

0

∫
HW (s, h)µ(ds,dh) :

t ∈ [0, T ]) is predictable (resp. optional) for every predictable (resp. optional) func-

tion W . An optional random measure µ is called P̃-σ-finite if there exists a sequence

(An)n∈N ⊂ P̃ with
⋃∞
n=1An = Ω×[0, T ]×H, such that E

[∫ T
0

∫
H 1An(s, h)µ(ds, dh)

]
<

∞ for each n ∈ N.

For each P̃-σ-finite, optional random measure µ on [0, T ] × H there exists a pre-

dictable random measure ν on [0, T ]×H such that

E

[∫ t

0

∫
H
W (s, h)µ(ds, dh)

]
= E

[∫ t

0

∫
H
W (s, h) ν(ds, dh)

]
(4.12)

for all t ∈ [0, T ], and any non-negative predictable function W . The measure ν is deter-

mined uniquely up to a set of probability zero by (4.12) and is called the compensator

of µ; see [27, th. II.1.8].

If Y is an H-valued, adapted càdlàg process then the integer-valued random measure

µY characterised by

µY ((0, t]×B) =
∑

0≤s≤t
1B(∆Y (s)), t ∈ (0, T ], B ∈ B(H), 0 /∈ B,
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where ∆Y (s) := Y (s) − limh↘0+ Y (s − h) for s ∈ [0, T ], is an optional and P̃-σ-finite

random measure on [0, T ]×H. Thus, its compensator exists, which we denote by νY .

Example 4.9. Let L be a genuine H-valued Lévy process with Lévy measure λ. Then

the compensator νL of the jump measure µL is given as the extension of µL((s, t]×B) =

(t− s)λ(B), 0 ≤ s < t ≤ T , B ∈ B(H) to B([0, T ])⊗B(H).

In the sequel, we will make use of another characterisation of compensators of

jump-measures. We denote by C+(H) the class of non-negative, continuous functions

k : H → R bounded on H and vanishing inside a neighbourhood of 0.

Proposition 4.10. The compensator νY of the jump-measure µY of an H-valued

càdlàg semimartingale Y is characterised by being predictable and satisfying either of

the following:

(i) The process

(∫ t

0

∫
H
k(h)µY (ds, dh)−

∫ t

0

∫
H
k(h) νY (ds, dh) : t ∈ [0, T ]

)

is a local martingale for every k ∈ C+(H).

(ii) If W is predictable and the process

(∫ t

0

∫
H
W (s, h)µY (ds, dh) : t ∈ [0, T ]

)
(4.13)

is locally integrable, then so is

(∫ t

0

∫
H
W (s, h) νY (ds, dh) : t ∈ [0, T ]

)
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and

(∫ t

0

∫
H
W (s, h)µY (ds, dh)−

∫ t

0

∫
H
W (s, h) νY (ds, dh) : t ∈ [0, T ]

)

is a local martingale.

Proof. The equivalence between (i) and (ii) follows by the same argument as in the proof

of [27, Th. II.2.21.]. The fact that (ii) is an equivalent definition of the compensator is

proved in [27, Th. II.1.8.].

Proposition 4.10 justifies the following standard notation: if W is predictable and

(4.13) is locally integrable, we define the following local martingale

∫ t

0

∫
H
W (s, h) (µY − νY )(ds, dh)

:=

∫ t

0

∫
H
W (s, h)µY (ds, dh)−

∫ t

0

∫
H
W (s, h) νY (ds, dh)

for each t ∈ [0, T ].

4.3 Predictable compensator of the integral process

In what follows, we will be interested in stochastic integral processes driven by standard

symmetric α-stable cylindrical Lévy processes L in a Hilbert space U . More precisely,

we fix a predictable stochastic process G ∈ L0
P

(
Ω, LαLeb

(
[0, T ], L2(U,H)

))
, and consider

the integral process (∫ t

0
G dL

)
t∈[0,T ]

.

By Theorem 3.49, we know that these processes are semimartingales. However, as we

shall see below, when L is a standard symmetric α-stable cylindrical Lévy process for

some α ∈ (1, 2), these integral processes become local martingales.
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Lemma 4.11. If G is a predictable stochastic process, stochastically integrable with

respect to a standard symmetric α-stable cylindrical Lévy process L in U for some

α ∈ (1, 2), then the integral process
∫ ·

0 GdL is a local martingale.

Proof. Define the predictable stopping times τn = inf
{
t > 0 :

∫ t
0 ||G(s)||αL2(U,H) ds > n

}
for n ∈ N. It follows from Proposition 4.22(ii) and Lemma 1.3 in [13] that for each

n ∈ N there exists a sequence of predictable step processes (Gn,k)k∈N such that

lim
k→∞

E

[∫ T

0

∣∣∣∣G(s)1[0,τn](s)−Gn,k(s)
∣∣∣∣α
L2(U,H)

ds

]
= 0. (4.14)

Since inequality (4.11) guarantees for each k, n ∈ N that

E

[
sup

0≤t≤T

∣∣∣∣∣∣∣∣∫ t

0
Gn,k dL

∣∣∣∣∣∣∣∣
]
≤ e1,α

(
E

[∫ T

0
||Gn,k(s)||αL2(U,H) ds

])1/α

<∞,

the same arguments as in [64, Th. I:51] show that the processes
∫ ·

0 Gn,k dL are martin-

gales. By Inequality (4.11) and Equation (4.14), we have that
∫ ·

0 G1[0,τn] dL is a limit

of martingales in L1(Ω, H), and thus a martingale. Since standard arguments, see e.g.

[64, Th. I.12], establish

(∫ ·
0
G dL

)τn
=

∫ ·
0
G1[0,τn] dL a.s., (4.15)

for the stopped integral process, the proof is completed.

For a standard symmetric α-stable cylindrical Lévy process L for some α ∈ (1, 2)

and a stochastically integrable predictable process G, we define the integral process

X =
∫ ·

0 GdL and

ν ((0, t]×B) :=

∫ t

0

(
λ ◦G(s)−1

)
(B) ds for each t ∈ (0, T ], B ∈ B(H) with 0 /∈ B̄.

(4.16)
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The main result of this section is that ν extends to a random measure on [0, T ] × H

and that the extension is the predictable compensator of the jump measure of X. We

will derive this result in a number of Lemmata.

Lemma 4.12. The set function ν defined in (4.16) is well defined and extends to a

predictable random measure on [0, T ]×H. This extension is unique among the class of

σ-finite random measures on [0, T ]×H that assign 0 mass to the origin.

Proof. Step 1: We show that for all open sets B ⊆ H with 0 /∈ B̄ the process

f : Ω× [0, T ]→ R, f(ω, t) =
(
λ ◦G(ω, t)−1

)
(B)

is predictable. Since the set B is assumed to be open and bounded away from 0, it fol-

lows from Lemma 2.7 and the Portmanteau Theorem that the function h : L2(U,H)→ R

defined by h(F ) = (λ◦F−1)(B) is lower semicontinuous, and hence measurable. More-

over, as the stochastic process G : Ω× [0, T ]→ L2(U,H) is predictable, it follows that

the composition f = h ◦G is predictable.

Step 2: We show that f is predictable for all B ∈ B(H \ {0}), which will immediately

imply that (4.16) is almost surely well defined and predictable as it is then just an

integral of a non-negative predictable process. We define

D =
{
B ∈ B(H \ {0}) : λ ◦G(·, ·)−1(B) is predictable

}
,

and claim that D is a λ-system. Continuity of measures implies that H \{0} ∈ D since,

for all t ∈ (0, T ] and ω ∈ Ω, we have

(
λ ◦G(ω, t)−1

)
(H \ {0}) = lim

n→∞

(
λ ◦G(ω, t)−1

) (
B̄H (1/n)c

)
,

where the right hand side is the limit of processes that are predictable by Step 1. If
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B ∈ D then Bc ∈ D since

(
λ ◦G(ω, t)−1

)
(Bc) =

(
λ ◦G(ω, t)−1

)
(H \ {0})−

(
λ ◦G(ω, t)−1

)
(B).

The collection D is closed under union of increasing sequences, which follows as above

from continuity of measures and predictability of the pointwise limit. This concludes

the proof of the claim that D is a λ-system.

We define the π-system.

I = {B ∈ B(H \ {0}) : B is open} .

The family I is contained in D, since for each B ∈ I we have

(
λ ◦G(ω, t)−1

)
(B) = lim

n→∞

(
λ ◦G(ω, t)−1

) (
B ∩ B̄H(1/n)c

)
,

and the right-hand side is predictable by Step 1. The Dynkin π-λ theorem for sets, see

e.g. [31, Th. 1.1] implies σ(I) ⊆ D, and thus D = B(H \ {0}).

Step 3 : Let ω ∈ Ω be such that
∫ T

0 ‖G(ω, s)‖αL2(U,H) ds < ∞. Equation (4.16) defines

the set function ν(ω) on the semi-ring

S = {(0, t]×B : t ∈ [0, T ] and B ∈ B(H \ {0})} .

The set function ν(ω) is σ-additive by its very definition and σ-finite, since for n ∈ N

we have by (4.3) and (4.7) that

ν(ω)
(
(0, T ]×Bc

H (1/n)
)

=

∫ T

0

(
λ ◦G(ω, s)−1

) (
B
c
H (1/n)

)
ds

=nα
∫ T

0

(
λ ◦G(ω, s)−1

) (
B
c
H

)
ds
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≤nα c
∫ T

0
‖G(ω, s)‖αL2(U,H) ds <∞.

Carathéodory’s extension theorem, see e.g. [31, Th. 2.5], implies that the set function

ν(ω) extends uniquely to a measure on B([0, T ]) ⊗B(H \ {0}) which we also denote

by ν(ω).

Step 4: It remains to show that ν is predictable. Applying the monotone class

theorem as above shows that the process
∫ ·

0

(
λ ◦G(s)−1

)
(B) ds is predictable for each

B ∈ B(H \ {0}). Since

∫ ·
0
1(s,t](u)1A

(
λ ◦G(u)−1

)
(B) du =

∫ ·
0

(
λ ◦
(
1(s,t](u)1AG(u)

)−1
)

(B) du,

it follows that the process
∫ ·

0

∫
HW (u, h) ν(du,dh)(·) is predictable for all functions

W = 1(s,t]1A1B with 0 < s < t ≤ T , A ∈ Fs and B ∈ B(H \ {0}). An application

of the functional monotone class theorem (follows e.g. from [81, Th. 3.14]) extends

this result to all predictable processes W on Ω× [0, T ]×H, which shows predictability

of the random measure ν on [0, T ] × H \ {0}. Defining ν((s, t] × {0}) := 0 for any

0 ≤ s < t ≤ T extends ν to a predictable random measure on [0, T ]×H.

To show that the random measure ν characterised by (4.16) is the compensator of

the jump-measure µX of the integral process X, we first consider the case when the

integrand is a predictable step process.

Lemma 4.13. Suppose that G is a predictable step process in SHS
prd. Then the random

measure ν obtained in Lemma 4.12 is the predictable compensator of µX .

Proof. Since Lemma 4.12 guarantees that ν is predictable, it remains to show (4.12),
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which by the functional monotone class theorem reduces to proving

E

1A ∑
s<u≤t

1B(∆X(u))

 = E

[
1A

∫ t

s

(
λ ◦G(u)−1

)
(B) du

]

for any 0 < s < t ≤ T , A ∈ Fs and B ∈ B(H) with 0 6∈ B̄. Let G be of the form

G = F01{0} +

N∑
i=1

Fi1(ti−1,ti], (4.17)

where N ∈ N, 0 = t0 < t1 < · · · < tN = T and Fi is an Fti−1-measurable and

L2(U,H)-valued random variable taking finitely many values. Moreover, without the

loss of generality, we may assume that the points of the time partition contain s and t;

otherwise these can be added without changing G. Then X takes the form

X(t) :=

∫ t

0
GdL :=

N∑
i=1

Fi
(
L(ti ∧ t)− L(ti−1 ∧ t)

)
, t ∈ [0, T ], (4.18)

and it follows that

1A

∑
s<u≤t

1B(∆X(u)) = 1A

N∑
i=1

∑
s≤ti−1<u≤ti≤t

1B

(
∆
(
G(ti)L(u)

))

= 1A

N∑
i=1

∑
s≤ti−1<u≤ti≤t

1B

(
∆
(
FiL(u)

))
.

For each i ∈ {1, . . . , N}, the random variable Fi is of the form Fi =
∑mi

j=1 1Ai,jϕi,j for

some pairwise disjoint sets Ai,j ∈ Fti−1 and ϕi,j ∈ L2(U,H) for j ∈ {1, . . . ,mi}. Since

0 6∈ B̄, we have

E

1A ∑
ti−1<u≤ti

1B

(
∆
(
FiL(u)

)) =

mi∑
j=1

E

1A∩Ai,j ∑
ti−1<u≤ti

1B

(
∆
(
ϕi,jL(u)

))
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=

mi∑
j=1

(ti − ti−1)E
[
1A∩Ai,j

(
λ ◦ ϕ−1

i,j

)
(B)

]
= (ti − ti−1)E

[
1A

(
λ ◦ F−1

i

)
(B)

]
,

because A∩Ai,j ∈ Fti−1 and the compensator of the jump measure of the Lévy process

ϕi,jL in H is given by
(
λ ◦ ϕ−1

i,j

)
dhdt since its Lévy measure is

(
λ ◦ ϕ−1

i,j

)
, see Example

4.9.

Before we show that the result of Lemma 4.13 can be extended to general integrands,

we need to prove some technical Lemmata. Recall the class of functions C+(H) used

in Proposition 4.10 (and defined just before) to determine the compensator.

Lemma 4.14. Let (fn)n∈N be a sequence of càdlàg functions fn : [0, T ]→ H converging

uniformly to f : [0, T ]→ H. Then we have for any k ∈ C+(H) that

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∣∣
∑

0≤s≤t
k(∆fn(s))−

∑
0≤s≤t

k(∆f(s))

∣∣∣∣∣∣ = 0. (4.19)

Proof. Both sums in (4.19) are finite by the càdlàg property of f, fn and since k vanishes

inside a neighbourhood of 0. The assumed uniform convergence implies

lim
n→∞

sup
t∈[0,T ]

‖∆fn(t)−∆f(t)‖ = 0. (4.20)

Denoting supp(k) := {h ∈ H : k(h) 6= 0} and δ := 1
2dist(0, supp(k)), we obtain

that supp(k)δ := {h ∈ H,dist(h, supp(k)) < δ}, is bounded away from zero, i.e. 0 /∈

supp(k)δ. It follows that the set D := {t ∈ [0, T ] : ∆f(t) ∈ supp(k)δ} is finite, which

together with continuity of k and (4.20) implies

lim
n→∞

sup
t∈D
|k(∆fn(t))− k(∆f(t))| = 0. (4.21)
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Since (4.20) guarantees that there exists n0 ∈ N such that we have ∆fn(t) /∈ supp(k)

for all n ≥ n0 and t ∈ [0, T ] \D, we conclude from (4.21) for n ≥ n0 that

sup
t∈[0,T ]

∣∣∣∣∣∣
∑

0≤s≤t
k(∆fn(s))−

∑
0≤s≤t

k(∆f(s))

∣∣∣∣∣∣
= sup

t∈[0,T ]

∣∣∣∣∣∣
∑

s∈D∩[0,t]

k(∆fn(s))−
∑

s∈D∩[0,t]

k(∆f(s))

∣∣∣∣∣∣
≤ |D| sup

t∈D
|k(∆fn(t))− k(∆f(t))| → 0, n→∞.

The proof is complete.

Lemma 4.15. Let gn, g ∈ LαLeb([0, T ], L2(U,H)), n ∈ N, be such that gn converges to

g in LαLeb([0, T ], L2(U,H)) and pointwise for almost every s ∈ [0, T ]. Then we obtain

for each k ∈ C+(H) that

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∫ t

0

∫
H
k(h)

(
λ ◦ gn(s)−1

)
dhds−

∫ t

0

∫
H
k(h)

(
λ ◦ g(s)−1

)
dhds

∣∣∣∣ = 0.

Proof. Let k ∈ C+(H) be fixed. By Lemma 2.7, we have for Lebesgue almost all

s ∈ [0, T ] that

lim
n→∞

∫
H
k(h)

(
λ ◦ gn(s)−1

)
dh =

∫
H
k(h)

(
λ ◦ g(s)−1

)
dh.

Since k is bounded and vanishes in a neighbourhood of 0, we conclude from Inequality

(4.3) and Equation 4.7 that

∫
H
k(h)

(
λ ◦ gn(s)−1

)
dh ≤ ck,α ||gn(s)||αL2(U,H) ,

for a constant ck,α independent of s ∈ [0, T ] and n ∈ N. Since it follows from our
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assumptions that for each t ∈ [0, T ] we have

lim
n→∞

∫ t

0
||gn(s)||αL2(U,H) ds =

∫ t

0
||g(s)||αL2(U,H) ds,

the generalised dominated convergence theorem, see e.g. [70, Th. 4.19], implies

lim
n→∞

∫ t

0

∫
H
k(h)

(
λ ◦ gn(s)−1

)
dhds =

∫ t

0

∫
H
k(h)

(
λ ◦ g(s)−1

)
dhds.

As the functions

t 7→
∫ t

0

∫
H
k(h)

(
λ ◦ gn(s)−1

)
dhds

are continuous monotone and converge pointwise to a continuous limit on [0, T ], the

convergence is uniform by [62, p. 81/127] (or deuxième théorème de Dini).

Now we can prove the main result of this section.

Theorem 4.16. Let L be a standard symmetric α-stable cylindrical Lévy process L

for some α ∈ (1, 2), and G a stochastically integrable predictable process. Then the

predictable compensator νX of the jump measure µX of X :=
∫ ·

0 GdL is characterised

by (4.16).

Proof. In light of Proposition 4.10, it suffices to show that the process Mk defined by

(
Mk(t) :=

∫ t

0

∫
H
k(h)µX(ds, dh)−

∫ t

0

∫
H
k(h)

(
λ ◦G(s)−1

)
dhds, t ∈ [0, T ]

)
,

is a local martingale for any k ∈ C+(H). By Theorem 3.44, we can use Lemma

3.39 to show that there exists a sequence (Gn)n∈N of predictable step processes in

SHS
prd converging in probability in LαLeb([0, T ], L2(U,H)) and PT − a.e. to G. By tak-

ing a suitable subsequence, we may assume that (Gn)n∈N converges almost surely in
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LαLeb([0, T ], L2(U,H)). Moreover, it follows from Corollary 3.47 and Remark 3.48 that

by taking another subsequence if necessary, we can assume that the sequence of inte-

gral processes (
∫ ·

0 GndL)n∈N converges uniformly almost surely to the integral process∫ ·
0 GdL. Letting Xn :=

∫ ·
0 GndL and denoting the jump-measure of Xn by µXn , we

define for each k ∈ C+(H) and n ∈ N a process Mk
n by

(
Mk
n(t) :=

∫ t

0

∫
H
k(h)µXn(ds, dh)−

∫ t

0

∫
H
k(h)

(
λ ◦Gn(s)−1

)
dhds, t ∈ [0, T ]

)
.

Proposition 4.10 and Lemma 4.13 imply that Mk
n is a local martingale for all n ∈ N.

Since for each n ∈ N and t ∈ [0, T ] we have that µXn({t} × H) ≤ 1 almost surely, it

follows that for each n ∈ N and t ∈ [0, T ] we have

∣∣∣∣∆(∫ t

0

∫
H
k(h)µXn(dh,ds)

)∣∣∣∣ ≤ ‖k‖∞ a.s.,

which shows that
∣∣∆Mk

n(t)
∣∣ ≤ ‖k‖∞ a.s. for all n ∈ N and t ∈ [0, T ].

Almost sure uniform convergence of Xn and Lemma 4.14 guarantee that there exists

an Ω1 ⊆ Ω with P (Ω1) = 1 such that, for all ω ∈ Ω1, we have

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∫ t

0

∫
H
k(h)µXn(ω)(dh,ds)−

∫ t

0

∫
H
k(h)µX(ω)(dh,ds)

∣∣∣∣ = 0. (4.22)

In the same way, convergence of Gn both in LαLeb([0, T ], L2(U,H)) a.s. and PT − a.e.

allows us to conclude by Lemma 4.15 that there exists an Ω2 ⊆ Ω with P (Ω2) = 1 such

that, for all ω ∈ Ω2, we have

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∫ t

0

∫
H
k(h)

(
λ ◦Gn(ω, s)−1

)
dhds−

∫ t

0

∫
H
k(h)

(
λ ◦G(ω, s)−1

)
dhds

∣∣∣∣ = 0.

(4.23)

Equations (4.22) and (4.23) show that Mk
n converges uniformly to Mk almost surely.
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As the jumps of Mk
n are a.s. uniformly bounded by ‖k‖∞, we conclude from [27, Co.

IX.1.19] that Mk is a local martingale and the proof is complete.

4.4 Quadratic variation of the integral process

The covariation of two real-valued càdlàg semimartingales V1 and V2 starting from zero

is the process [V1, V2] defined by

[V1, V2] (t) := V1(t)V2(t)−
∫ t

0
V1(s−) dV2(s)−

∫ t

0
V2(s−) dV1(s), t ∈ [0, T ].

When V := V1 = V2, we call the process [V ] := [V, V ] the quadratic variation of V .

The continuous part of [V ] is defined by

[V ]c (t) = [V ] (t)−
∑

0≤s≤t
(∆V (s))2 for each t ∈ [0, T ]. (4.24)

If [V ]c = 0 we say that V is purely discontinuous; see e.g. [64, Se. II.6].

The concept of quadratic variation is generalised for a càdlàg semimartingale Z

with values in the separable Hilbert space H in [46, Sec. 26]. Let (fi)i∈N denote an

orthonormal basis of H. There exists a unique stochastic process [[Z]] with values in

the Hilbert-Schmidt tensor product of H satisfying

〈[[Z]] , fi ⊗ fj〉 = [Zi, Zj ] for all i, j ∈ N,

where ⊗ denotes the tensor product and Zi(t) = 〈Z(t), fi〉 for t ∈ [0, T ] are the projec-

tion processes of Z; see [46, Se. 21.2] for brief introduction. The process [[Z]] does not

depend on the choice of the orthonormal basis (fi)i∈N. The process [[Z]] is called the

102



tensor quadratic variation of Z and its continuous part [[Z]]c is defined by

〈[[Z]]c (t), fi ⊗ fj〉

= 〈[[Z]] (t), fi ⊗ fj〉 −
∑

0≤s≤t
∆
(
Zi(s)Zj(s)

)
for all t ∈ [0, T ], i, j ∈ N.

We say that Z is purely discontinuous if [[Z]]c=0.

Proposition 4.17. Let L be a standard symmetric α-stable cylindrical Lévy process

for some α ∈ (1, 2), and G a stochastically integrable predictable process with values in

L2(U,H). Then the integral process X :=
∫ ·

0 GdL is purely discontinuous.

Proof. We proceed in three steps.

Step 1: Assume H = R and U = Rd for some d ∈ N. In this case, L is a U -valued

standard symmetric α-stable Lévy process, and therefore purely discontinuous; see e.g.

[64, p. 71]. Pure discontinuity is preserved also for the integral process; see e.g. [27, Se.

IX.5.5a] or [64, Th. II.29].

Step 2: Assume H = R, but without any further restrictions on U . In that case, by

the identification U ' L2(U,R), the integrand G is a U -valued process satisfying

∫ T

0
||G(t)||α dt <∞ a.s. (4.25)

Fix an orthonormal basis (fk)k∈N in U and define for each n ∈ N the projection

πn : U → U, πn(u) =

n∑
k=1

〈u, fk〉fk.

Since the projection πn is a Hilbert-Schmidt operator, there exists a U -valued Lévy

process Ln with the property 〈Ln, u〉 = L(π∗nu) for all u ∈ U . We define the approxi-
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mations

Xn :=

∫ ·
0
GdLn, n ∈ N.

Since Ln attains values in a finite-dimensional subspace and is a symmetric α-stable

process by [68, Le. 2.4], it follows that Xn is purely discontinuous by Step 1.

Let M be a real-valued, continuous martingale and define for k ∈ N the stopping

times

τk = inf

{
t > 0 :

∫ t

0
||G(s)||α ds ≥ k

}
∧ inf {t > 0 : |M(t)| ≥ k} ∧ T.

It follows that τk → T as k →∞ by (4.25). Since Xn is purely discontinuous, it follows

from [27, Le. I.4.14] that (XnM)τk is a local martingale for each k, n ∈ N. Since

applying Inequality (4.11) and Equation (4.15) shows

E

[
sup

0≤t≤T
|(XnM)τk(t)|

]
= E

[
sup

0≤t≤T
|M(t)τk |

∣∣∣∣∫ t

0
1[0,τk]G dLn

∣∣∣∣
]

≤ k e1,αE

[∫ τk

0
||G(s)||α ds

]
≤ e1,α k

2 <∞,

we obtain that (XnM)τk is a martingale by [64, Th. I:51].

Noting that
∫ ·

0 GdLn =
∫ ·

0 Gπn dL, Inequality (4.11) and Equation (4.15) establish

for each t ≥ 0 that

lim
n→∞

E [|(XnM −XM)τk(t)|] ≤ lim
n→∞

kE

[∣∣∣∣∫ t

0
1[0,τk]G(πn − I) dL

∣∣∣∣]
≤ lim

n→∞
e1,αk

(
E

[∫ T

0
||G(s)(πn − I)||αL2(U,H) ds

])1/α

= 0.
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It follows that the process (XM)τk as a limit of martingales is itself a martingale. Since

X is a local martingale according to Lemma 4.11 and M is an arbitrary real-valued

continuous martingale, it follows from [27, Le. I.4.14] that X is purely discontinuous.

Step 3: For the general case, we fix an orthonormal basis (fi)i∈N in H and choose any

i, j ∈ N. Since 〈X(t), fi〉 =
∫ t

0 G
∗fi dL :=

∫ t
0 〈G

∗fi, ·〉dL for every t ≥ 0, the polarisation

formula for real-valued covariation shows

〈[[X]] , ei ⊗ ej〉 =

[∫ ·
0
G∗ei dL,

∫ ·
0
G∗ej dL

]
=

1

2

([∫ ·
0
G∗(ei + ej) dL

]
−
[∫ ·

0
G∗ei dL

]
−
[∫ ·

0
G∗ej dL

])
.

Linearity of the integral and binomial formula enable us to conclude

∑
0≤s≤t

∆〈X(s), ei〉〈X(s), ej〉

=
∑

0≤s≤t
∆

(∫ s

0
G∗ei dL

)(∫ s

0
G∗ej dL

)

=
∑

0≤s≤t

1

2

(
∆

(∫ s

0
G∗(ei + ej) dL

)2

−∆

(∫ s

0
G∗ei dL

)2

−∆

(∫ s

0
G∗ej dL

)2
)
.

The very definition (4.24) of the continuous part leads us to

〈[[X]]c , ei ⊗ ej〉 = 〈[[X]] , ei ⊗ ej〉 −
∑

0≤s≤t
∆〈X(s), ei〉〈X(s), ej〉

=
1

2

([∫ ·
0
G∗(ei + ej) dL

]c
−
[∫ ·

0
G∗ei dL

]c
−
[∫ ·

0
G∗ej dL

]c)
.

Since Step 2 guarantees that the processes
∫ ·

0 G
∗(ei+ej) dL,

∫ ·
0 G
∗ei dL and

∫ ·
0 G
∗ei dL

are purely discontinuous, it follows that 〈[[X]]c , ei ⊗ ej〉 = 0 for all i, j ∈ N which

completes the proof.
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4.5 Strong Itô formula

In this section, we establish an Itô formula for processes that are given by a differential

driven by a standard symmetric α-stable cylindrical Lévy process L for α ∈ (1, 2) and

are of the form

dX(t) = F (t) dt+G(t) dL(t) for t ∈ [0, T ], (4.26)

where F : Ω× [0, T ]→ H, G : Ω× [0, T ]→ L2(U,H) are predictable and satisfy

∫ T

0
‖F (t)‖+ ‖G(t)‖αL2(U,H) dt <∞ a.s. (4.27)

We denote by C2
b (H) the space of continuous functions f : H → R having bounded first

and second Fréchet derivatives, which are denoted by Df and D2f , respectively.

Theorem 4.18. Let X be a stochastic process of the form (4.26). It follows for each

f ∈ C2
b (H) and t ∈ [0, T ] that

f(X(t))

= f(X(0)) +

∫ t

0
〈Df(X(s)), F (s)〉 ds+

∫ t

0
〈G(s)∗Df(X(s−)), ·〉dL(s) +Mf (t)

+

∫ t

0

∫
H

(
f(X(s−) + h)− f(X(s−))− 〈Df(X(s−)), h〉

)
νX(dh,ds),

where Mf :=
(
Mf (t) : t ∈ [0, T ]

)
is a local martingale defined by

Mf (t) :=

∫ t

0

∫
H

(
f(X(s−) + h)− f(X(s−))− 〈Df(X(s−)), h〉

)
(µX − νX)(dh,ds),

and we have

νX(dh,ds) =
(
λ ◦G(s)−1

)
(dh) ds.
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Lemma 4.19. Let λ be the cylindrical Lévy measure of a standard symmetric α-stable

cylindrical Lévy process for α ∈ (1, 2). Then we have for each f ∈ C2
b (H), h ∈ H, and

F ∈ L2(U,H) that

∫
H

∣∣f(h+ g)− f(h)− 〈Df(h), g〉
∣∣ (λ ◦ F−1

)
(dg)

≤d1
α

(
2 ||Df ||∞ +

1

2

∣∣∣∣D2f
∣∣∣∣
∞

)
‖F‖αL2(U,H) ,

where d1
α is a constant depending only on α as defined in Inequality (4.5).

Proof. Taylor’s remainder theorem in the integral form, see [3, Th. VII.5.8], and In-

equality (4.5) imply

∫
BH

∣∣f(h+ g)− f(h)− 〈Df(h), g〉
∣∣ (λ ◦ F−1

)
(dg)

=

∫
BH

∣∣∣∣∫ 1

0
〈D2f(h+ θg)g, g〉(1− θ) dθ

∣∣∣∣ (λ ◦ F−1
)

(dg)

≤
∣∣∣∣D2f

∣∣∣∣
∞

∫
BH

(∫ 1

0
‖g‖2 (1− θ) dθ

) (
λ ◦ F−1

)
(dg)

=
1

2

∥∥D2f
∥∥
∞

∫
BH

‖g‖2
(
λ ◦ F−1

)
(dg)

≤ d1
α

1

2

∥∥D2f
∥∥
∞ ‖F‖

α
L2(U,H) . (4.28)

Similarly, Taylor’s remainder theorem in the integral form and Inequality (4.5) show

∫
B
c
H

|f(h+ g)− f(h)|
(
λ ◦ F−1

)
(dg) =

∫
B
c
H

∣∣∣∣∫ 1

0
〈Df(h+ θg), g〉dθ

∣∣∣∣ (λ ◦ F−1
)

(dg)

≤ ||Df ||∞
∫
B
c
H

(∫ 1

0
||g|| dθ

) (
λ ◦ F−1

)
(dg)

≤ d1
α ||Df ||∞ ||F ||

α
L2(U,H) . (4.29)
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Another application of Inequality (4.5) shows

∫
B
c
H

|〈Df(h), g〉|
(
λ ◦ F−1

)
(dg) ≤ ||Df ||∞

∫
B
c
H

||g||
(
λ ◦ F−1

)
(dg)

≤ d1
α ||Df ||∞ ||F ||

α
L2(U,H) . (4.30)

Combining Inequalities (4.28) to (4.30) completes the proof.

Proof of Theorem 4.18. The stochastic process X given by (4.26) is purely discontin-

uous as it is the sum of a finite-variation process and a purely discontinuous process

according to Proposition 4.17. The Itô formula in [46, Th. 27.2] takes for all t ∈ [0, T ]

the form

df(X(t)) = 〈Df(X(t−)), ·〉dX(t)

+

∫
H

(
f(X(t−) + h)− f(X(t−))− 〈Df(X(t−)), h〉

)
µX(dh,dt).

(4.31)

One can show by approximating with simple integrands that

〈Df(X(t−)), ·〉dX(t) = 〈Df(X(t−)), F (t)〉 dt+ 〈G(t)∗Df(X(t−)), ·〉dL(t),

where both integrals are well-defined since (4.27) guarantees

∫ T

0
|〈Df(X(t−)), F (t)〉|+ ‖〈G(t)∗Df(X(t−)), ·〉‖αL2(U,R) dt

≤ ‖Df‖∞
∫ T

0
‖F (t)‖ dt+ ‖Df‖α∞

∫ T

0
‖G(t)‖αL2(U,H) dt <∞ a.s.
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The definition of the compensator νX and Lemma 4.19 imply

E

[∫ T

0

∫
H

∣∣f(X(s−) + h)− f(X(s−))− 〈Df(X(s−)), h〉
∣∣µX(ds, dh)

]
= E

[∫ T

0

∫
H

∣∣f(X(s−) + h)− f(X(s−))− 〈Df(X(s−)), h〉
∣∣ νX(ds, dh)

]
≤ d1

α

(
2 ||Df ||∞ +

1

2

∣∣∣∣D2f
∣∣∣∣
∞

)
E

[∫ T

0
‖G(s)‖αL2(U,H) ds

]
. (4.32)

The stopping times τn := inf
{
t > 0 :

∫ t
0 ||G(s)||αL2(U,H) ds ≥ n

}
∧ T satisfy τn → T as

n→∞ by (4.27). Since Inequality (4.32) guarantees for all n ∈ N that

E

[∫ T∧τn

0

∫
H
|f(X(s−) + h)− f(X(s−))− 〈Df(X(s−)), h〉|µX(ds, dh)

]
<∞,

Proposition 4.10 shows that Mf is a local martingale. This concludes the proof, since

the claimed formula is just a different form of (4.31).
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5 Stochastic evolution equations driven by standard sym-

metric α-stable cylindrical Lévy processes

5.1 Mild solutions to stochastic evolution equations

We recall that U and H are separable Hilbert spaces with norms ‖·‖ and L is a standard

symmetric α-stable cylindrical (Ft)-Lévy process in U with α ∈ (1, 2). In this section

we consider the mild solution of the stochastic evolution equation:

dX(t) =
(
AX(t) + F (X(t))

)
dt+G(X(t−)) dL(t) for t ∈ [0, T ],

X(0) = x0, (5.1)

where A is a generator of a C0-semigroup (S(t))t≥0 in H, x0 is an F0-measurable H-

valued random variable, F : H → H and G : H → L2(U,H) are measurable mappings

and T > 0.

Definition 5.1. An H-valued predictable process X is a mild solution to (5.1) if

X(t) = S(t)x0 +

∫ t

0
S(t− s)F (X(s))ds+

∫ t

0
S(t− s)G(X(s−))dL(s)

for every t ∈ [0, T ].

We work under the following assumptions:

(A1) The C0-semigroup (S(t))t≥0 is compact, analytic and a semigroup of contractions,

and 0 is an element of the resolvent set of A.

(A2) The mapping F is Lipschitz and bounded, i.e. there exists KF ∈ (0,∞) such that

‖F (h1)− F (h2)‖ ≤ KF ‖h1 − h2‖ , ‖F (h)‖ ≤ KF (5.2)
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for every h1, h2, h ∈ H.

(A3) The mapping G is Lipschitz and bounded, i.e. there exists KG ∈ (0,∞) such that

‖G(h1)−G(h2)‖L2(U,H) ≤ KG ‖h1 − h2‖ , ‖G(h)‖L2(U,H) ≤ KG (5.3)

for every h1, h2, h ∈ H.

(A4) The initial condition x0 has finite p-th moment for every p < α.

Remark 5.2. We shall use the notation Dδ := Dom((−A)δ) for the domain of the frac-

tional generator (−A)δ for δ ∈ [0, 1], and equip Dδ with the norm ‖h‖δ :=
∥∥(−A)δh

∥∥.

It follows from Assumption (A1) that the embedding of Hilbert spaces Dδ ↪→ Dγ is

dense and compact for every 0 ≤ γ < δ ≤ 1, cf. [6, Cor. 3.8.2].

Remark 5.3. Assumption (A1) implies, cf. [35, p. 289], that for every δ ≥ 0 there

exists cδ ∈ (0,∞) depending only on δ such that

‖S(t)‖L(H,Dδ) ≤ cδt
−δ for every t > 0. (5.4)

Remark 5.4. By considering the cases ‖h1 − h2‖ ≤ 1 and ‖h1 − h2‖ > 1 separately,

we conclude from Assumptions (A2) and (A3) that there exist KF ,KG ∈ (0,∞) such

that for any β ∈ (0, 1) we have

‖F (h1)− F (h2)‖ ≤ KF ‖h1 − h2‖β , ‖F (h)‖ ≤ KF , (5.5)

and

‖G(h1)−G(h2)‖L2(U,H) ≤ KG ‖h1 − h2‖β , ‖G(h)‖L2(U,H) ≤ KG, (5.6)

for every h1, h2, h ∈ H.
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The first main theorem of this chapter is the following existence result, which also

includes properties on the path regularity of the solution.

Theorem 5.5. Under the assumptions (A1)-(A4), there exists a mild solution X to

(5.1). The mild solution X is an element of C([0, T ], Lp(Ω, H)) for every p < α and

has càdlàg paths in H.

We will obtain the solution to (5.1) by using Yosida approximations. For this

purpose, we define Rn = n (nI−A)−1 for n ∈ N and denote by Xn the mild solution to

dXn(t) =
(
AXn(t) +RnF (Xn(t))

)
dt+RnG(Xn(t−)) dL(t),

Xn(0) = Rnx0. (5.7)

Existence of the mild solution Xn to Equation (5.7) with cádlág paths is guaranteed

by [37, Th. 12].

Remark 5.6. We recall that under Assumption (A1) we have for all δ ∈ [0, 1] that

‖Rn‖L(Dδ) ≤ 1, n ∈ N.

This follows from the fact, that if an operator commutes with A then it commutes with

Aγ, see e.g. [23, Pr. 3.1.1], which enables us to conclude for every n ∈ N that

‖Rn‖L(Dγ) = sup
‖(−A)γh‖≤1

∥∥n(nI −A)−1(−A)γh
∥∥ ≤ sup

‖h‖≤1

∥∥n(nI −A)−1h
∥∥ = ‖Rn‖L(H) .

Since (S(t))t≥0 is a contraction semigroup, [19, Th. 3.5] guarantees ‖Rn‖L(H) ≤ 1 for

all n ∈ N.

The solution to (5.1) will be constructed as a limit of Xn in C([0, T ], Lp(Ω, H)) for an

arbitrary but fixed p < α. In the first three Lemmata, we establish relative compactness

of the Yosida approximation {Xn : n ∈ N} in the space C([0, T ], Lp(Ω, H)).
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Lemma 5.7. The set {Xn(t) : n ∈ N} is tight in H for every t ∈ [0, T ].

Proof. The case t = 0 follows immediately from the strong convergence of Rn. For the

case t ∈ (0, T ] we first prove that for every 1 ≤ q < α, and 0 ≤ δ < 1/α we have

sup
n∈N

E
[
‖Xn(t)‖qδ

]
<∞. (5.8)

Applying Hölder’s inequality and inequality (4.11) shows for every n ∈ N that

E
[
‖Xn(t)‖qδ

]
= E

[∥∥∥∥S(t)Rnx0 +

∫ t

0
S(t− s)RnF (Xn(s))ds+

∫ t

0
S(t− s)RnG(Xn(s−))dL

∥∥∥∥p
δ

]
≤ 3q−1

(
E
[
‖S(t)Rnx0‖qδ

]
+ tq−1E

[∫ t

0
‖S(t− s)RnF (Xn(s))‖qδ ds

]
+eq,α

(
E

[∫ t

0
‖S(t− s)RnG(Xn(s))‖αL2(U,Dδ) ds

]) q
α

)
.

Commutativity of S and Rn, Remark 5.3 and Remark 5.6 verify

E
[
‖S(t)Rnx0‖qδ

]
≤ cqδt

−qδ sup
n∈N
‖Rn‖qL(Dδ)

E [‖x0‖q] <∞.

Assumption (A2) on boundedness of F together with Remark 5.3 and Remark 5.6 yield

E

[∫ t

0
‖S(t− s)RnF (Xn(s))‖qδ ds

]
≤ cqδ

t1−qδ

1− qδ
sup
n∈N
‖Rn‖qL(Dδ)

Kq
F <∞.

Similarly, Assumption (A3) on boundedness of G implies

(
E

[∫ t

0
‖S(t− s)RnG(Xn(s))‖αL2(U,Dγ) ds

]) q
α

≤ cqδ

(
t1−αδ

1− αδ

) q
α

sup
n∈N
‖Rn‖qL(Dδ)

Kq
G <∞.
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Combining the above estimates establishes (5.8), which in turn gives the statement of

the Lemma. Indeed, choose any δ ∈ (0, 1/α) and use Markov’s inequality and (5.8) for

q = 1 to obtain for each N > 0 that

sup
n∈N

P (‖Xn(t)‖δ > N) ≤ c

N

for some constant c ∈ (0,∞). Since the embedding Dδ ↪→ H is compact according to

Remark 5.2, we obtain tightness of {Xn(t) : n ∈ N} by Prokhorov’s theorem.

The following technical result will turn out to be useful in the sequel.

Lemma 5.8. Let V be a separable Hilbert space with the norm ‖·‖V and let Am ∈ L(V )

be a sequence of operators converging strongly to 0. If (Bn)n∈N is a tight sequence of

uniformly bounded V -valued random variables, then it follows for all p > 0 that

lim
m→∞

sup
n∈N

E
[
‖AmBn‖pV

]
= 0.

Proof. Let ε > 0 be fixed. Our assumptions guarantee that there exists a constant

c > 0 such that supn,m∈N ‖AmBn‖
p
V ≤ c a.s. and a compact set Kε ⊆ V satisfying

P (Bn /∈ Kε) <
ε
c for every n ∈ N. Since any continuous mapping converging to zero

converges uniformly on compacts, there exists m1 ∈ N such that for all m ≥ m1 we

have

sup
n∈N

∫
{Bn∈Kε}

‖AmBn(ω)‖pV P (dω) < ε.

It follows for all n ∈ N and m ≥ m1 that

E
[
‖AmBn‖pV

]
=

∫
{Bn∈Kε}

‖AmBn(ω)‖pV P (dω) +

∫
{Bn /∈Kε}

‖AmBn(ω)‖pV P (dω) ≤ 2ε,

which completes the proof.
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Lemma 5.9. The sequence {Xn(t) : n ∈ N} is relatively compact in L0
P (Ω, H) for

every t ∈ [0, T ].

Proof. First, we impose the additional assumption that

T122e2,α (Kα
F +Kα

G) < 1, (5.9)

where KF ,KG come from (5.5), (5.6) and e2,α is defined just below (4.11). For 1 < p <

α and m,n ∈ N we estimate the p-th moment of the difference Xm(t)−Xn(t) by

E [‖Xm(t)−Xn(t)‖p]

≤ 3p−1

(
E [‖S(t)(Rm −Rn)x0‖p]

+ E

[∥∥∥∥∫ t

0
S(t− s)(RmF (Xm(s))−RnF (Xn(s)))ds

∥∥∥∥p]
+ E

[∥∥∥∥∫ t

0
S(t− s)(RmG(Xm(s−))−RnG(Xn(s−)))dL(s)

∥∥∥∥p]
)

≤ 6p−1

(
E [‖S(t)(Rm −Rn)x0‖p]

+ E

[∥∥∥∥∫ t

0
S(t− s)(Rm −Rn)F (Xm(s))ds

∥∥∥∥p]
+ E

[∥∥∥∥∫ t

0
S(t− s)Rn(F (Xm(s))− F (Xn(s)))ds

∥∥∥∥p]
+ E

[∥∥∥∥∫ t

0
S(t− s)(Rm −Rn)G(Xm(s−))dL(s)

∥∥∥∥p]
+ E

[∥∥∥∥∫ t

0
S(t− s)Rn(G(Xm(s−))−G(Xn(s−)))dL(s)

∥∥∥∥p]
)
. (5.10)

Furthermore, using Hölder’s inequality, Inequality (4.11), Remark 5.6, (A1) and the
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estimates (5.5) and (5.6) with β = p/α, we obtain

E

[∥∥∥∥∫ t

0
S(t− s)Rn(F (Xm(s))− F (Xn(s)))ds

∥∥∥∥p ]
≤ T p−

p
α

(
E

[∫ t

0
‖S(t− s)Rn(F (Xm(s))− F (Xn(s)))‖α ds

]) p
α

≤ T p−
p
αKp

F

(
E

[∫ t

0
‖Xm(s)−Xn(s)‖p ds

]) p
α

,

and

E

[∥∥∥∥∫ t

0
S(t− s)Rn(G(Xm(s−))−G(Xn(s−)))dL(s)

∥∥∥∥p ]
≤ ep,α

(
E

[∫ t

0
‖S(t− s)Rn(G(Xm(s))−G(Xn(s)))‖α ds

]) p
α

≤ ep,αKp
G

(
E

[∫ t

0
‖Xm(s)−Xn(s)‖p ds

]) p
α

,

which together with (5.10) yield

E [‖Xm(t)−Xn(t)‖p]

≤ 6p−1

(
E [‖S(t)(Rm −Rn)x0‖p] + E

[∥∥∥∥∫ t

0
S(t− s)(Rm −Rn)F (Xm(s))ds

∥∥∥∥p]

+ T p−
p
αKp

F

(
E

[∫ t

0
‖Xm(s)−Xn(s)‖p ds

]) p
α

+ E

[∥∥∥∥∫ t

0
S(t− s)(Rm −Rn)G(Xm(s−))dL(s)

∥∥∥∥p]
+ ep,αK

p
G

(
E

[∫ t

0
‖Xm(s)−Xn(s)‖p ds

]) p
α

)
. (5.11)

If we define

un,m,p(t) := (E [‖Xm(t)−Xn(t)‖p])
α
p
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u0
n,m,p := 5

α
p
−1

6
α
p

(p−1)

(
sup
t∈[0,T ]

‖S(t)‖αL(H) (E [‖(Rm −Rn)x0‖p])
α
p

+

(
sup
t∈[0,T ]

E

[∥∥∥∥∫ t

0
S(t− s)(Rm −Rn)F (Xm(s))ds

∥∥∥∥p]
)α

p

+

(
sup
t∈[0,T ]

E

[∥∥∥∥∫ t

0
S(t− s)(Rm −Rn)G(Xm(s−))dL(s)

∥∥∥∥p]
)α

p
)

wp := 5
α
p
−1

6
α
p

(p−1)
(
Tα−1Kα

F + e
α
p
p,αK

α
G

)

for t ∈ [0, T ], then after raising both sides of (5.11) to the power of α/p and simple

algebraic steps we obtain

un,m,p(t) ≤ u0
n,m,p + wp

∫ t

0
(un,m,p(s))

p
α ds,

which in turn by Gronwall’s inequality in [80, Th. 2] gives

un,m,p(t)

≤ 2
α
α−p−1

(
u0
n,m,p +

(
α− p
α

twp

) α
α−p
)
≤ 2

α
α−pu0

n,m,p + 2
α
α−p

(
α− p
α

twp

) α
α−p

.

(5.12)

If we show that

lim
p→α−

2
α
α−p

(
α− p
α

twp

) α
α−p

= lim
p→α−

(
2
α− p
α

twp

) α
α−p

= 0, (5.13)

and for any 1 < p < α

lim
m,n→∞

u0
n,m,p = 0, (5.14)
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then by (5.12), for each ε ∈ (0, 1) we can find p∗ ∈ (1, α) such that

2
α

α−p∗

(
α− p∗

α
twp∗

) α
α−p∗

<
εα+1

2
,

and an N ∈ N such that for all m,n ≥ N

2
α

α−p∗ u0
n,m,p∗ ≤

εα+1

2
.

Thus, for any m,n ≥ N we obtain using Markov’s inequality that

P (‖Xm(t)−Xn(t)‖ ≥ ε) ≤ 1

εp∗
E
[
‖Xm(t)−Xn(t)‖p

∗
]

=
1

εp∗
(un,m,p∗(t))

p∗
α

≤ ε
p∗
α

(α+1)−p∗ = ε
p∗
α ≤

√
ε,

which concludes the proof under the additional assumption (5.9).

Argument for (5.13): Recall that 1 < p and ep,α = α
α−pe

p/α
2,α for some e2,α ∈ (0,∞)

independent of p. Thus, if p is sufficiently close to α we have Tα−1 ≤ e
α
p
p,α and estimate

(
2
α− p
p

twp

) α
α−p

=

(
2
α− p
α

t5
α−p
p 6

α
p

(p−1)
(
Tα−1Kα

F + e
α
p
p,αK

α
G

)) α
α−p

≤ 5
α
p

(
2
α− p
α

t62

(
α− p
α

)−α
p

e2,α (Kα
F +Kα

G)

) α
α−p

≤ 5α
(
α− p
α

)−α
p (
t122e2,α (Kα

F +Kα
G)
) α
α−p

≤ 5α
(
α− p
α

)−2 (
T122e2,α (Kα

F +Kα
G)
) α
α−p .
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Thus, (5.13) follows from the limit

lim
y→∞

y2
(
T122e2,α (Kα

F +Kα
G)
)y

= lim
y→∞

y2(
T122e2,α

(
Kα
F +Kα

G

))−y = 0

by using L’Hospital’s rule and the assumption in Equation (5.9).

Argument for (5.14): Let p ∈ (1, α) be fixed. By strong convergence of Rn and

Lebesgue’s dominated convergence theorem we have

lim
m,n→∞

E [‖(Rm −Rn)x0‖p] = 0. (5.15)

Moreover, by Hölder’s inequality, strong convergence of Rn, Lemma 5.8 and Lebesgue’s

dominated convergence theorem we have

lim
m,n→∞

(
sup
t∈[0,T ]

E

[∥∥∥∥∫ t

0
S(t− s)(Rm −Rn)F (Xm(s))ds

∥∥∥∥p]
)

≤T p−1 sup
t∈[0,T ]

‖S(t)‖pL(H) lim
m,n→∞

(
E

[∫ T

0
‖(Rm −Rn)F (Xm(s))‖p ds

])
= 0,

(5.16)

where the assumptions of Lemma 5.8 are satisfied by boundedness of F , see (5.2), and

tightness of {F (Xn(s)),m ∈ N} implied by Lemma 5.7 and continuity of F . Similarly,

using inequality (4.11) and (5.6), we obtain

lim
m,n→∞

(
sup
t∈[0,T ]

E

[∥∥∥∥∫ t

0
S(t− s)(Rm −Rn)G(Xm(s−))dL(s)

∥∥∥∥p]
)

≤ep,α sup
t∈[0,T ]

‖S(t)‖pL(H) lim
m,n→∞

(
E

[∫ T

0
‖(Rm −Rn)G(Xm(s))‖α ds

]) p
α

= 0.

(5.17)

To prove the general case without the assumption (5.9), we proceed by induction.
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Fix a time

T0 ∈

(
0,

1

122e2,α

(
Kα
F +Kα

G

)) . (5.18)

If t ∈ [0, T0], relative compactness of {Xn(t), n ∈ N} in L0
P (Ω, H) follows from (5.18)

by the previous arguments. Assume that the collection {Xn(t), n ∈ N} is relatively

compact in L0
P (Ω, H) for all t ∈ ((k − 1)T0, kT0]. In order to finish the proof, we need

to show that the result then also holds for all t ∈ (kT0, (k + 1)T0]. To see this, we fix

t ∈ (kT0, (k + 1)T0] and write

Xm(t)−Xn(t) = S (t− kT0)

(
S (kT0) (Rm −Rn)x0

+

∫ kT0

0
S (kT0 − s) (RmF (Xm(s)−RnF (Xn(s))) ds

+

∫ kT0

0
S (kT0 − s) (RmG(Xm(s−)−RnG(Xn(s−))) dL(s)

)

+

∫ t

kT0

S(t− s)(RmF (Xm(s)−RnF (Xn(s))) ds

+

∫ t

kT0

S(t− s)(RmG(Xm(s−)−RnG(Xn(s−))) dL(s)

= S (t− kT0) (Xm (kT0)−Xn (kT0))

+

∫ t

kT0

S(t− s)(RmF (Xm(s)−RnF (Xn(s))) ds

+

∫ t

kT0

S(t− s)(RmG(Xm(s−)−RnG(Xn(s−))) dL(s).

Since our inductive hypothesis implies that {Xn(kT0), n ∈ N} is relatively compact in

L0
P (Ω, H), it follows that the collection {S(t − T0)Xn(kT0), n ∈ N} is also relatively

compact in L0
P (Ω, H). Since t − kT0 < T0, it follows from Equation (5.18) that we

have (t− kT0) 122e2,α (Kα
F +Kα

G) < 1, and we can use the same argument as in the

120



first part of the proof to obtain relative compactness of (Xn(t))n∈N in L0
P (Ω, H) for

each t ∈ (kT0, (k + 1)T0]. By mathematical induction, we can now cover intervals of

arbitrary length. This concludes the proof of the general case.

We now step from relative compactness of {Xn(t) : n ∈ N} in L0
P (Ω, H) for

fixed time t to relative compactness of the processes {Xn : n ∈ N} in the space

C([0, T ], Lp(Ω, H)) for 0 < p < α using the Arzelà–Ascoli Theorem.

Lemma 5.10. The collection {Xn : n ∈ N} is relatively compact in C([0, T ], Lp(Ω, H))

for any 0 < p < α.

Proof. We consider the case 1 < p < α as the case p ≤ 1 follows from the fact that rela-

tive compactness in C([0, T ], Lp(Ω, H)) implies relative compactness in C([0, T ], Lp
′
(Ω, H))

for p > p′. In light of the Arzelà–Ascoli Theorem, cf. e.g. [33, Th. 7.17]), it suffices to

show that

(a) {Xn(t) : n ∈ N} ⊂ Lp(Ω, H) is relatively compact for each t ∈ [0, T ];

(b) {Xn : n ∈ N} ⊂ C([0, T ], Lp(Ω, H)) is equicontinuous.

The claim in (a) follows from [16, Cor. 3.3] by Lemmata 5.7, 5.9 and the fact that

Equation (5.8) with δ = 0 and any q ∈ (p, α) implies via the Vallee-Poussin Theorem

[14, Th. II.22] that the collection {Xn(t) : n ∈ N} is p-uniformly integrable and bounded

in Lp(Ω, H). Hence, it remains only to prove (b). To that end, we take t ∈ [0, T ) and

h ∈ (0, T − t], and estimate

‖Xn(t+ h)−Xn(t)‖p

≤ 5p−1

(
‖(S(h)− I)S(t)Rnx0‖p +

∥∥∥∥∫ t+h

t
S(t+ h− s)RnF (Xn(s)) ds

∥∥∥∥p
+

∥∥∥∥∫ t+h

t
S(t+ h− s)RnG(Xn(s−)) dL(s)

∥∥∥∥p
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+

∥∥∥∥∫ t

0
(S(h)− I)S(t− s)RnF (Xn(s)) ds

∥∥∥∥p
+

∥∥∥∥∫ t

0
(S(h)− I)S(t− s)RnG(Xn(s−)) dL(s)

∥∥∥∥p
)
. (5.19)

Commutativity of Rn and S and contractivity of S implies

E [‖(S(h)− I)S(t)Rnx0‖p] ≤ sup
n∈N
‖Rn‖pL(H)E [‖(S(h)− I)x0‖p] . (5.20)

Boundedness of F in Assumption (A2) and contractivity of S imply

E

[∥∥∥∥∫ t+h

t
S(t+ h− s)RnF (Xn(s)) ds

∥∥∥∥p
]
≤ hp sup

n∈N
‖Rn‖pL(H)K

p
F . (5.21)

We conclude from Inequality (4.11) by using boundedness of G in Assumption (A3)

and contractivity of S that

E

[∥∥∥∥∫ t+h

t
S(t+ h− s)RnG(Xn(s−)) dL(s)

∥∥∥∥p
]

(5.22)

≤ ep,α
(
E

[∫ t+h

t
‖S(t+ h− s)G(Xn(s))‖αL2(U,H) ds

])p/α
≤ ep,α sup

n∈N
‖Rn‖pL(H)K

p
Gh

p/α.

It follows from Lemma 5.7 that {Xn(s) : n ∈ N} is tight in H for every s ∈ [0, t].

Lemma 5.8 implies

lim
h↘0

sup
n∈N

E [‖(S(h)− I)S(t− s)RnF (Xn(s))‖p] = 0.

Lebesgue’s dominated convergence theorem shows

lim
h↘0

∫ t

0
sup
n∈N

E [‖(S(h)− I)S(t− s)RnF (Xn(s))‖p] ds = 0. (5.23)
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In the same way, after applying Inequality (4.11), we obtain from Lemma 5.8

lim
h↘0

sup
n∈N

E

[∥∥∥∥∫ t

0
(S(h)− I)S(t− s)RnG(Xn(s−)) dL(s)

∥∥∥∥p] = 0. (5.24)

Applying (5.20) - (5.24) to Inequality (5.19) shows uniform continuity from the right.

Similar arguments establish uniform continuity from the left, which proves (b), and

thus completes the proof.

Proof of Theorem 5.5. Let p ∈ (0, α) be fixed and fix β ∈ (0, 1) such that p = αβ,

where β is the Hölder exponent from (5.6). Lemma 5.10 guarantees that there exists a

subsequence (nk)
∞
k=1 such that

lim
k→∞

sup
t∈[0,T ]

E [‖Xnk(t)− Z(t)‖p] = 0 (5.25)

for some Z ∈ C([0, T ], Lp(Ω, H)). The proof will be complete if we show that Z is a mild

solution to (5.1). We conclude for each k ∈ N and t ∈ [0, T ] from Lipschitz continuity

of F and Hölder continuity of G in (5.2) and (5.6) and contractivity of S by applying

Hölder’s inequality and Inequality (4.11) that

E

[∥∥∥∥Z(t)− S(t)x0 −
∫ t

0
S(t− s)F (Z(s)) ds−

∫ t

0
S(t− s)G(Z(s−)) dL(s)

∥∥∥∥p]
≤ (1 ∧ 4p−1)

(
E [‖S(t)(Rnk − I)x0‖p] + E [‖Z(t)−Xnk(t)‖p]

+ E

[∥∥∥∥∫ t

0
S(t− s)

(
F (Z(s))− F (Xnk(s))

)
ds

∥∥∥∥p]
+ E

[∥∥∥∥∫ t

0
S(t− s)

(
G(Z(s−))−G(Xnk(s−))

)
dL(s)

∥∥∥∥p]
)

≤ (1 ∧ 4p−1)

(
E [‖S(t)(Rnk − I)x0‖p] + E [‖Z(t)−Xnk(t)‖p]
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+ T p−1E

[∫ t

0

∥∥S(t− s)
(
F (Z(s))− F (Xnk(s))

)∥∥p ds

]
+ ep,α

(
E

[∫ t

0

∥∥S(t− s)
(
G(Z(s))−G(Xnk(s))

)∥∥α
L2(U,H)

ds

])p/α)

≤ (1 ∧ 4p−1)

(
E [‖S(t)(Rnk − I)x0‖p] + E [‖Z(t)−Xnk(t)‖p]

+ T p−1Kp
F sup
t∈[0,T ]

‖S(t)‖pL(H)E

[∫ t

0
‖Z(s)−Xnk(s)‖p ds

]

+ ep,αK
p
G sup
t∈[0,T ]

‖S(t)‖pL(H)

(
E

[∫ t

0
‖Z(s)−Xnk(s)‖αβL2(U,H) ds

])p/α)

≤ (1 ∧ 4p−1)

(
E [‖S(t)(Rnk − I)x0‖p] +

(
1 + T pKp

F

)
sup
t∈[0,T ]

E [‖Z(t)−Xnk(t)‖p]

+ ep,αK
p
GT

p/α sup
t∈[0,T ]

(E [‖Z(t)−Xnk(t)‖p])β
)

As the last line tends to 0 as k →∞ by (5.25) and strong convergence of Rnk to I, it

follows that Z is a mild solution to (5.1).

It remains only to establish that Z has càdlàg paths, which will follow immediately

from the following corollary as well as the observation that Xn has càdlàg paths.

At the end of this section, we present a stronger convergence result for Yosida

approximations that not only completes the proof of Theorem 5.5 but also turns out

to be useful in applications as will be seen in the following sections.

Corollary 5.11. For all 0 < p < α there exists a subsequence (Xnk)k∈N of the Yosida

approximations, which converges to a solution to (5.1) both in C([0, T ], Lp(Ω, H)) and

uniformly on [0, T ] almost surely.

Proof. Lemma 5.10 enables us to choose a subsequence (Xn)n∈N of the Yosida approxi-

mations which converges to the mild solution X in C([0, T ], Lp(Ω, H)). To prove almost
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sure convergence, we fix an arbitrary r > 0 and estimate

P

(
sup
t∈[0,T ]

‖X(t)−Xn(t)‖ > r

)

≤ P

(
sup
t∈[0,T ]

‖S(t)(I −Rn)x0‖ >
r

3

)

+ P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
S(t− s)

(
F (X(s))−RnF (Xn(s))

)
ds

∥∥∥∥ > r

3

)

+ P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
S(t− s)

(
G(X(s−))−RnG(Xn(s−))

)
dL(s)

∥∥∥∥ > r

3

)
. (5.26)

For the following arguments, we define m := supt∈[0,T ] ‖S(t)‖L(H). As I−Rn converges

to zero strongly as n→∞ we obtain

P

(
sup
t∈[0,T ]

‖S(t)(I −Rn)x0‖ >
r

3

)
≤ P

(
m ‖(I −Rn)x0‖ >

r

3

)
→ 0.

For estimating the second term in (5.26), we apply Markov’s inequality and Lipschitz

continuity of F in (A2) to obtain

P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
S(t− s)

(
F (X(s))−RnF (Xn(s))

)
ds

∥∥∥∥ > r

3

)

≤ P
(
m

∫ T

0
‖F (X(s))−RnF (Xn(s))‖ ds >

r

3

)
≤ P

(∫ T

0
‖(I −Rn)F (X(s))‖ ds >

r

6m

)
+ P

(∫ T

0
‖Rn(F (X(s))− F (Xn(s)))‖ ds >

r

6m

)
≤ 6m

r
E

[∫ T

0
‖(I −Rn)F (X(s))‖ ds

]
+

6m

r
E

[∫ T

0
‖Rn(F (X(s))− F (Xn(s)))‖ ds

]
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≤ 6m

r
E

[∫ T

0
‖(I −Rn)F (X(s))‖ ds

]
+

6m

r

(
sup
n∈N
‖Rn‖L(H)

)
TKF sup

t∈[0,T ]
E [‖X(t)−Xn(t)‖] .

We conclude from the last inequality by Lebesgue’s dominated convergence theorem

and convergence of Xn to X in C([0, T ], L1(Ω, H)) that

lim
n→∞

P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
S(t− s)(F (X(s))−RnF (Xn(s))) ds

∥∥∥∥ > r

3

)
= 0.

To estimate the last term in (5.26), we apply the dilation theorem for contraction

semigroups, see [74, Th. I.8.1]): there exists a C0-group (Ŝ(t))t∈R of unitary operators

Ŝ(t) on a larger Hilbert space Ĥ in which H is continuously embedded satisfying

S(t) = πŜ(t)i for all t ≥ 0, where π is the projection from Ĥ to H and i is the

continuous embedding of H into Ĥ. Thus, if we denote m = supt∈[0,T ]

∥∥∥πŜ(t)
∥∥∥
L(Ĥ,H)

,

k = sups∈[−T,0]

∥∥∥Ŝ(s)i
∥∥∥
L(H,Ĥ)

, we may estimate using Markov’s inequality, Inequality

(4.11) and Hölder continuity of G in (5.6)

P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
S(t− s) (G(X(s−))−RnG(Xn(s−))) dL(s)

∥∥∥∥ > r

3

)

≤ P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
S(t− s) (I −Rn)G(X(s−))dL(s)

∥∥∥∥ > r

6

)

+ P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
S(t− s)Rn (G(X(s−))−G(Xn(s−))) dL(s)

∥∥∥∥ > r

6

)

= P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
πŜ(t− s)i (I −Rn)G(X(s−))dL(s)

∥∥∥∥ > r

6

)

+ P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
πŜ(t− s)iRn (G(X(s−))−G(Xn(s−))) dL(s)

∥∥∥∥ > r

6

)
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= P

(
sup
t∈[0,T ]

∥∥∥∥πŜ(t)

∫ t

0
Ŝ(−s)i (I −Rn)G(X(s−))dL(s)

∥∥∥∥ > r

6

)

+ P

(
sup
t∈[0,T ]

∥∥∥∥πŜ(t)

∫ t

0
Ŝ(−s)iRn (G(X(s−))−G(Xn(s−))) dL(s)

∥∥∥∥ > r

6

)

≤ P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Ŝ(−s)i (I −Rn)G(X(s−))dL(s)

∥∥∥∥
Ĥ

>
r

6m

)

+ P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Ŝ(−s)iRn (G(X(s−))−G(Xn(s−))) dL(s)

∥∥∥∥
Ĥ

>
r

6m

)

≤ 6m

r
E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Ŝ(−s)i (I −Rn)G(X(s−))dL(s)

∥∥∥∥
Ĥ

]

+
6m

r
E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Ŝ(−s)iRn (G(X(s−))−G(Xn(s−))) dL(s)

∥∥∥∥
Ĥ

]

≤ e1,α
6m

r

(
E

[∫ T

0

∥∥∥Ŝ(−s)i (I −Rn)G(X(s−))
∥∥∥α
L2(U,Ĥ)

ds

])1/α

+ e1,α
6m

r

(
E

[∫ T

0

∥∥∥Ŝ(−s)iRn (G(X(s−))−G(Xn(s−)))
∥∥∥α
L2(U,Ĥ)

ds

])1/α

≤ e1,α
6m

r
k

(
E

[∫ T

0
‖(I −Rn)G(X(s−))‖α

L2(U,Ĥ)
ds

])1/α

+ e1,α
6m

r
kKGT

1/α

(
sup
t∈[0,T ]

E
[
‖(X(t))−Xn(t)‖αβ

])1/α

,

for β ∈ (0, 1). We conclude from the last inequality by Lebesgue’s dominated conver-

gence, strong convergence of Rn to I, boundedness G in (5.6) and convergence of Xn

to X in C([0, T ], Lαβ(Ω, H)) that

lim
n→∞

P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
S(t− s)(G(X(s−))−RnG(Xn(s−))) dL(s)

∥∥∥∥ > r

3

)
= 0,

We have shown that all the terms on the right hand side of (5.26) converge to zero

as n tends to infinity which gives uniform convergence of Xn to X in probability on
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[0, T ]. This concludes the proof, since uniform convergence in probability implies the

existence of a desired subsequence.

5.2 Moment boundedness of evolution equations

In this section, we investigate stability properties of the solution for the stochastic

evolution equation (5.1) by applying the strong Itô formula derived in Theorem 4.18.

More precisely, we shall provide conditions on the coefficients such that the mild solution

X is ultimately exponentially bounded in the p-th moment, that is, there exist constants

m1,m2,m3 > 0 such that

E [‖X(t)‖p] ≤ m1e
−tm2E [‖x0‖p] +m3 for all t ≥ 0.

Recall that C2
b (H) denotes the space of continuous real-valued functions defined on

H with bounded first and second Fréchet derivatives. In what follows, our goal is to

derive a Lyapunov-type criterion using the following operator on C2
b (H):

Lf(h) = 〈Df(h), Ah+ F (h)〉

+

∫
H

(
f(h+ g)− f(h)− 〈Df(h), g〉

) (
λ ◦G(h)−1

)
(dg), h ∈ D1 (5.27)

for f ∈ C2
b (H). Note that the right hand side of (5.27) is well defined by Lemma

4.19. We can now state the main result of this section, the following general moment

boundedness criterion.

Theorem 5.12. Let p ∈ (0, 1) be fixed and V be a function in C2
b (H) satisfying for

some constants β1, β2, β3, k1, k3 > 0 the inequalities

β1 ||h||p − k1 ≤ V (h) ≤ β2 ||h||p for all h ∈ H, (5.28)

LV (h) ≤ −β3V (h) + k3 for all h ∈ D1. (5.29)
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Then the solution X to (5.1) is exponentially ultimately bounded in the p-th moment:

E [||X(t)||p] ≤ β2

β1
e−β3tE [‖x0‖p] +

1

β1

(
k1 +

k3

β3

)
.

Before we prove Theorem 5.12 we demonstrate its application by deriving conditions

for moment boundedness in terms of the coefficients of Equation (5.1).

Corollary 5.13. Suppose that there exists ε > 0 such that

〈Ah+ F (h), h〉 ≤ −ε ||h||2 for all h ∈ D1,

then the solution to (5.1) is exponentially ultimately bounded in the p-th moment for

every p ∈ (0, 1).

Proof. Fix p ∈ (0, 1) and let ζ be a function in C2([0,∞)) satisfying ζ(x) = xp/2 for

x ≥ 1 and ζ(x) ≤ 1 for x < 1. By defining V (h) = ζ(‖h‖2) for all h ∈ H, we obtain

V ∈ C2
b (H) and

V (h) = ||h||p for all h ∈ Bc
H and 0 ≤ V (h) ≤ 1 for all h ∈ BH .

It follows that (5.28) holds with β1 = β2 = k1 = 1. We show that (5.29) also holds. By

the definition of V , it follows for each h ∈ D1 ∩Bc
H that

〈DV (h), Ah+ F (h)〉 = p ||h||p−2 〈h,Ah+ F (h)〉 ≤ −εp ||h||p = −εpV (h).

For h ∈ D1 ∩BH , one obtains by boundedness of F in Assumption (A2) that

〈DV (h), Ah+ F (h)〉 ≤ ||DV ||∞
(
||A||L(D1) +KF

)
.

Since Lemma 4.19 together with boundedness of G in Assumption (A3) implies for each
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h ∈ H that

∫
H

(
V (h+ g)− V (h)− 〈DV (h), g〉

) (
λ ◦G−1(h)

)
(dg)

≤ d1
α

(
2 ||DV ||∞ +

1

2

∣∣∣∣D2V
∣∣∣∣
∞

)
Kα
G,

we have verified Condition (5.29). Hence, an application of Theorem 5.12 completes

the proof.

In the remaining of this section, we prove Theorem 5.12 using the Yosida approxi-

mations established in the previous sections. For this purpose, let Xn denote the mild

solution to the approximating equations (5.7) for each n ∈ N. We may assume due

to Corollary 5.11, by passing to a subsequence if necessary, that Xn converges to the

solution X of (5.1) uniformly almost surely on [0, T ]. In what follows, we will routinely

pass on to a subsequence without changing the indices.

Proposition 5.14. The mild solution Xn of (5.7) is a strong solution attaining values

in D1, that is, for each t ∈ [0, T ], it satisfies

Xn(t) = Rnx0 +

∫ t

0

(
AXn(s) +RnF (Xn(s))

)
ds+

∫ t

0
RnG(Xn(s−)) dL(s).

Proof. Our argument will follow closely the proof of [2, Th. 2]. As mild solution, Xn

satisfies

Xn(t) = S(t)Rnx0 +

∫ t

0
S(t− s)RnF (Xn(s)) ds+

∫ t

0
S(t− s)RnG(Xn(s−)) dL(s).

(5.30)

130



The process Xn is (Ft)-measurable with càdlàg paths and attains values in D1.

First, we obtain from (5.30) by interchanging integrals and A ∈ L(D1) for t ≥ 0 that

AXn(t) = AS(t)Rnx0 +

∫ t

0
AS(t− s))RnF (Xn(s)) ds

+

∫ t

0
AS(t− s)RnG(Xn(s−)) dL(s). (5.31)

Each term on the right hand side of (5.31) is almost surely Bochner integrable. Indeed,

integrability of the first term is immediate from the uniform boundedness principle.

For the second term, boundedness of F in Condition (A2) and commutativity of S and

Rn implies

∫ t

0

∫ s

0
‖AS(s− r)RnF (Xn(r))‖1 dr ds

≤ ‖A‖L(D1) ‖Rn‖L(H,D1)

∫ t

0

∫ s

0
‖S(s− r)F (Xn(s))‖ dr ds <∞ a.s.

Almost sure Bochner integrability of the stochastic integral in (5.31) follows from

boundedness of G in Assumption (A3) and commutativity of S and Rn via the es-

timate

E

[∫ t

0

∫ s

0
‖AS(s− r)RnG(Xn(r))‖αL2(U,D1) dr ds

]
≤ ‖A‖αL(D1) ‖Rn‖

α
L(H,D1)E

[∫ t

0

∫ s

0
‖S(s− r)G(Xn(r))‖αL2(U,H) dr ds

]
<∞.

Integrating both sides of (5.31) results in the equality

∫ t

0
AXn(s) ds =

∫ t

0
AS(s)Rnx0 ds+

∫ t

0

∫ s

0
AS(s− r)RnF (Xn(r)) dr ds

+

∫ t

0

∫ s

0
AS(s− r)RnG(Xn(r−)) dL(r) ds.
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Applying Fubini’s theorems, see Theorem 4.6 for the stochastic version, and the equality∫ t
0 AS(s)Rnhds = S(t)Rnh−Rnh for all h ∈ H enable us to conclude

∫ t

0
AXn(s) ds =

∫ t

0
AS(s)Rnx0 ds+

∫ t

0

∫ t

r
AS(s− r)RnF (Xn(r)) ds dr

+

∫ t

0

∫ t

r
AS(s− r)RnG(Xn(r−)) ds dL(r)

= S(t)Rnx0 −Rnx0 +

∫ t

0
S(t− r)RnF (Xn(r)) dr −

∫ t

0
RnF (Xn(r)) dr

+

∫ t

0
S(t− r)RnG(Xn(r−)) dL(r)−

∫ t

0
RnG(Xn(r−)) dL(r)

= Xn(t)−Rnx0 −
∫ t

0
RnF (Xn(r)) dr −

∫ t

0
RnG(Xn(r−)) dL(r),

which verifies Xn as a strong solution to (5.1).

We denote by Ln the usual generator associated with the Yosida approximations

Xn, n ∈ N, defined for f ∈ C2
b (H) and h ∈ D1 by

Lnf(h) = 〈Df(h), Ah+RnF (h)〉

+

∫
H

(
f(h+Rng)− f(h)− 〈Df(h), Rng〉

) (
λ ◦G(h)−1

)
(dg). (5.32)

The right hand side of (5.32) is well defined by Lemma 4.19. Recall that the counterpart

to Ln for the mild solution X denoted by L was introduced in (5.27). The generators

Ln and L are related by the following crucial convergence result.

Lemma 5.15. Let (Xn)n∈N be solutions of (5.7) which a.s. converges uniformly to the

solution of (5.1). It follows for each f ∈ C2
b (H) that

lim
n→∞

E

[∫ T

0

∣∣∣∣Lnf(Xn(s)) −Lf(Xn(s))

∣∣∣∣ ds] = 0.
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Proof. We obtain for each h ∈ D1 that

|Lf(h)− Lnf(h)| ≤ ||Df ||∞ ||(I −Rn)F (h)||

+

∫
BH

|f(h+ g)− f(h+Rng)− 〈Df(h), (I −Rn) g〉|
(
λ ◦G(h)−1

)
(dg)

+

∫
B
c
H

|f(h+ g)− f(h+Rng)|
(
λ ◦G(h)−1

)
(dg)

+

∫
B
c
H

|〈Df(h), (I −Rn) g〉|
(
λ ◦G(h)−1

)
(dg). (5.33)

Taylor’s remainder theorem in the integral form implies

∫
BH

|f(h+ g)− f(h+Rng)− 〈Df(h), (I −Rn) g〉|
(
λ ◦G(h)−1

)
(dg)

≤
∫
BH

∫ 1

0
|〈D2f(h+ θ (I −Rn) g) (I −Rn) g, (I −Rn) g〉(1− θ) |dθ

(
λ ◦G(h)−1

)
(dg)

≤ 1

2

∣∣∣∣D2f
∣∣∣∣
∞

∫
BH

||(I −Rn) g||2
(
λ ◦G(h)−1

)
(dg).

In the same way, we obtain

∫
B
c
H

|f(h+ g)− f(h+Rng)|
(
λ ◦G(h)−1

)
(dg)

≤ ||Df ||∞
∫
B
c
H

||(I −Rn) g||
(
λ ◦G(h)−1

)
(dg),

and also

∫
B
c
H

|〈Df(h), (I −Rn) g〉|
(
λ ◦G(h)−1

)
(dg)

≤ ||Df ||∞
∫
B
c
H

||(I −Rn) g||
(
λ ◦G(h)−1

)
(dg).

Applying the last three estimates to (5.33) and taking expectation on both sides, it
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follows from Inequality (4.5) and for each n ∈ N that

E

[∫ T

0
|Lnf(Xn(s))− Lf(Xn(s))| ds

]
≤ ||Df ||∞E

[∫ T

0
||(I −Rn)F (Xn(s))||ds

]
+ cE

[∫ T

0
||(I −Rn)G(Xn(s))||αL2(U,H) ds

]
,

where c := d1
α

(
2 ||Df ||∞ + 1

2

∣∣∣∣D2f
∣∣∣∣
∞
)
.

To complete the proof, it remains to show that both

lim
n→∞

E

[∫ T

0
||(I −Rn)F (Xn(s))||ds

]
= 0, (5.34)

lim
n→∞

E

[∫ T

0
||(I −Rn)G(Xn(s))||αL2(U,H) ds

]
= 0. (5.35)

Let t ∈ [0, T ] be arbitrary but fixed, and recall that we chose Xn(t) almost surely

convergent and thus {Xm(t)(ω) : m ∈ N} ⊂ H is compact for almost all ω ∈ Ω. Strong

convergence of I−Rn to zero, see [19, Le. 3.4], continuity of F and G and the fact that

continuous mapping converging pointwise to a continuous mapping converge uniformly

over compacts together imply for each t ∈ [0, T ] that, almost surely, we obtain

lim
n→∞

||(I −Rn)F (Xn(t))|| ≤ lim
n→∞

sup
m∈N
||(I −Rn)F (Xm(t))|| = 0,

lim
n→∞

||(I −Rn)G(Xn(t))||αL2(U,H) ≤ lim
n→∞

sup
m∈N
||(I −Rn)G(Xm(t))||αL2(U,H) = 0.

Since the boundedness conditions in (A2) and (A3) guarantee

||(I −Rn)F (Xn(t))|| ≤
(

sup
n∈N
||I −Rn||L(H)

)
KF a.s.,

||(I −Rn)G(Xn(t))||αL2(U,H) ≤
(

sup
n∈N
||I −Rn||αL(H)

)
Kα
G a.s.
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an application of Lebesgue’s dominated convergence theorem verifies (5.34) and (5.35),

which completes the proof.

Proof of Theorem 5.12. Let (Xn)n∈N be the solutions of (5.7). Because of Corollary

5.11, we can assume that (Xn)n∈N converges uniformly to the solution of (5.1) a.s.

Proposition 5.14 enables us to apply our strong Itô formula in Theorem 4.18 to Xn,

which results in

V (Xn(t))

= V (Xn(0)) +

∫ t

0
LnV (Xn(s))ds+

∫ t

0
〈G(Xn(s−))∗R∗nDV (Xn(s−)), ·〉dL(s)

+

∫ t

0

∫
H
V (Xn(s−) + h)− V (Xn(s−))− 〈DV (Xn(s−)), h〉(µXn − νXn) (ds,dh)

(5.36)

almost surely for all t ≥ 0. Applying the product formula to the real-valued semi-

martingale V (Xn(·)) and the function t 7→ eβ3t and taking expectations on both sides

of (5.36) shows

eβ3tE [V (Xn(t))] =E [V (Xn(0))] + E

[∫ t

0
eβ3s (β3V (Xn(s)) + LnV (Xn(s))) ds

]
.

(5.37)

Here, we used the fact that the last two integrals in (5.36) define martingales, and thus

have expectation zero. This follows from the observation that they are local martingales

according to Lemma 4.11 and Theorem 4.18 and are uniformly bounded in mean, see

[64, Th I.51]. The latter is guaranteed by the boundedness of G in (A3), since

E

[∫ t

0
||〈G(Xn(s))∗R∗nDV (Xn(s)), ·〉||αL2(U,R) ds

]
= E

[∫ t

0
||G(Xn(s))∗R∗nDV (Xn(s))||α ds

]
≤ ||Rn||αL(H) ||DV ||

α
∞ TK

α
G <∞,
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and similarly, by using Lemma 4.19,

E

[∫ t

0

∫
H
|V (Xn(s−) + h)− V (Xn(s−))− 〈DV (Xn(s−), h〉| νXn(ds, dh)

]
≤ d1

α

(
2 ||DV ||∞ +

1

2

∣∣∣∣D2V
∣∣∣∣
∞

)
||Rn||αL(H)E

[∫ t

0
||G(Xn(s))||αL2(U,H) ds

]
<∞.

The first term on the right hand side in (5.37) is finite since

E [V (Xn(0))] ≤ β2 ‖Rn‖pL(H)E [‖x0‖p] <∞.

The same holds for the second term, which can be shown using the same arguments as

in the proof of Lemma 5.15. By applying Inequality (5.29) to (5.37), we conclude

eβ3tE [[V (Xn(t))]

≤ E [V (Xn(0))] + E

[∫ t

0
eβ3s

(
− LV (Xn(s)) + LnV (Xn(s)) + k3

)
ds

]

≤ E [V (Xn(0))] + eβ3TE

[∫ t

0

∣∣∣∣LnV (Xn(s))− LV (Xn(s))

∣∣∣∣ds
]

+
k3

β3

(
eβ3t − 1

)
.

Lemma 5.15 together with Fatou’s lemma implies

E [V (X(t))] ≤ lim inf
n→∞

E [V (Xn(t))] ≤ e−β3tE [V (x0)] +
k3

β3
.

Applying Assumption (5.28) completes the proof.
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5.3 Mild Itô formula

In this section, we prove an Itô formula for mild solutions of Equation (5.1) and map-

pings f ∈ C2
b (H) such that the second derivative D2f is not only continuous but satisfies

lim
n→∞

‖gn − g‖ = 0 =⇒ lim
n→∞

sup
h∈BH

∥∥D2f(gn + h)−D2f(g + h)
∥∥
L(H)

= 0. (5.38)

The subspace of all these functions is denoted by C2
b,u(H).

Theorem 5.16 (Itô formula for mild solutions). A mild solution X of (5.1) satisfies

for each f ∈ C2
b,u(H) and t ≥ 0 that

f(X(t)) = f(x0) +

∫ t

0
〈G(X(s−)∗Df(X(s−))), ·〉dL(s) (5.39)

+

∫ t

0

∫
H

(
f(X(s−) + h)− f(X(s−))− 〈Df(X(s−)), h〉

) (
µX − νX

)
(ds,dh)

+ lim
n→∞

(∫ t

0
〈Df(Xn(s)), AXn(s)〉 ds

)
+

∫ t

0
〈Df(X(s)), F (X(s))〉ds

+

∫ t

0

∫
H

(
f(X(s) + h)− f(X(s))− 〈Df(X(s)), h〉

) (
λ ◦G(X(s))−1

)
(dh) ds,

where the limit is taken in L0
P (Ω,R).

Remark 5.17. Note that while X may not be a semimartingale, the compensated

measure µX − νX in (5.39) still exists as X is both adapted and càdlàg; see [27, Chap.

II].

Remark 5.18. Unlike in similar situation with the driving noise being Gaussian, see

e.g. [44], we do not identify the limit in (5.39) as then the imposed assumptions on f

are very restrictive. In applications (see e.g. [2]), it is usually enough to establish some
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bound on the limit

lim
n→∞

(∫ t

0
〈Df(Xn(s)), AXn(s)〉 ds

)
,

which leads to natural assumptions on the generator A.

We divide the proof of the above theorem into a few technical lemmata. To simplify

the notation, we introduce the function Tf : H ×H → R for f ∈ C2
b,u(H) defined by

Tf (g, h) = f(g + h)− f(g)− 〈Df(g), h〉, g, h ∈ H.

Lemma 5.19. Let λ be the cylindrical Lévy measure of a standard symmetric α-stable

cylindrical Lévy process L for α ∈ (1, 2). It follows for every f ∈ C2
b (H), ϕ ∈ L2(U,H)

and g, h ∈ H that

∫
H
|Tf (g, b)− Tf (h, b)|

(
λ ◦ ϕ−1

)
(db)

≤ 2d1
α ‖ϕ‖

α
L2(U,H)

(
sup
b∈BH

∥∥D2f(g + b)−D2f(h+ b)
∥∥
L(H)

+
∥∥D2f

∥∥
∞ ‖g − h‖

)
.

Proof. Taylor’s remainder theorem in the integral form and Inequality (4.5) imply

∫
BH

|Tf (g, b)− Tf (h, b)|
(
λ ◦ ϕ−1

)
(db)

=

∫
BH

∣∣∣∣∫ 1

0
〈(D2f(g + θb)−D2f(h+ θb))b, b〉(1− θ) dθ

∣∣∣∣ (λ ◦ ϕ−1
)

(db)

≤ 1

2
sup
b∈BH

∥∥D2f(g + b)−D2f(h+ b)
∥∥
L(H)

∫
BH

‖b‖2
(
λ ◦ ϕ−1

)
(db)

≤ 1

2
d1
α

(
sup
b∈BH

∥∥D2f(g + b)−D2f(h+ b)
∥∥
L(H)

)
‖ϕ‖αL2(U,H) . (5.40)
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A similar argument yields

∫
B
c
H

|Tf (g, b)− Tf (h, b)|
(
λ ◦ ϕ−1

)
(db)

≤
∫
B
c
H

∣∣∣∣∫ 1

0
〈Df(g + θb)−Df(h+ θb), b〉 dθ

∣∣∣∣ (λ ◦ ϕ−1
)

(db)

+

∫
B
c
H

|〈Df(g)−Df(h), b〉|
(
λ ◦ ϕ−1

)
(db)

≤
(

sup
b∈H
‖Df(g + b)−Df(h+ b)‖+ ‖Df(g)−Df(h)‖

)∫
B
c
H

‖b‖
(
λ ◦ ϕ−1

)
(db)

≤ 2d1
α

∥∥D2f
∥∥
∞ ‖g − h‖ ‖ϕ‖

α
L2(U,H) . (5.41)

Combining Inequalities (5.40) and (5.41) completes the proof.

Lemma 5.20. Let (Xn)n∈N denote a subsequence of the solutions to the Yosida approx-

imating equations (5.7), satisfying that (Xn)n∈N converges to the mild solution X to

(5.1) both in C([0, T ], Lp(Ω, H)) and uniformly on [0, T ] almost surely. Then it follows

for any f ∈ C2
b,u(H) and t ∈ [0, T ] that

lim
n→∞

∫ t

0

∫
H
Tf (Xn(s−), h)µXn(ds, dh) =

∫ t

0

∫
H
Tf (X(s−), h)µX(ds, dh) in L0

P (Ω,R).

Proof. First, the existence of a subsequence (Xn)n∈N with the claimed properties is

guaranteed by Corollary 5.11. By recalling the form of Xn in Proposition 5.14, it

follows from Theorem 4.16 that for each n ∈ N we have

E

[∣∣∣∣∫ t

0

∫
H

(
Tf (Xn(s−), h)− Tf (X(s−), h)

)
µXn(ds, dh)

∣∣∣∣]
≤ E

[∫ t

0

∫
H

∣∣Tf (Xn(s−), h)− Tf (X(s−), h)
∣∣µXn(ds, dh)

]
= E

[∫ t

0

∫
H

∣∣Tf (Xn(s), h)− Tf (X(s), h)
∣∣ νXn(ds, dh)

]
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= E

[∫ t

0

∫
H

∣∣Tf (Xn(s), h)− Tf (X(s), h)
∣∣ (λ ◦ (RnG(Xn(s−)))−1

)
(dh) ds

]
.

(5.42)

Since Remark 5.6 guarantees c := 2d1
αK

α
G supn∈N ‖Rn‖

α
L(H) < ∞, we obtain from

Lemma 5.19 for PT -a.a. (ω, s) ∈ Ω× [0, T ] that

∫
H
|Tf (Xn(s)(ω), h)− Tf (X(s)(ω), h)|

(
λ ◦ (RnG(Xn(s−)(ω)))−1

)
(dh)

≤ c

(
sup
b∈BH

∥∥D2f(Xn(s)(ω) + b)−D2f(X(s)(ω) + b)
∥∥
L(H)

+
∥∥D2f

∥∥
∞ ‖f(Xn(s)(ω))− f(X(s)(ω))‖

)
.

Since f satisfies (5.38), Lebesgue’s dominated convergence theorem implies

lim
n→∞

E

[∣∣∣∣∫ t

0

∫
H

(
Tf (Xn(s−), h)− Tf (X(s−), h)

)
µXn(ds, dh)

∣∣∣∣] = 0. (5.43)

For the next step, fix ε, ε′ > 0, and bound for any m,n ∈ N the expression

P

(∣∣∣∣∫ t

0

∫
H
Tf (X(s−), h)

(
µXn(ds, dh)− µX(ds, dh)

)∣∣∣∣ > ε

)
≤ P

(∣∣∣∣∣
∫ t

0

∫
BH(1/m)

Tf (X(s−), h)µXn(ds, dh)

∣∣∣∣∣ > ε

3

)

+ P

(∣∣∣∣∣
∫ t

0

∫
BH(1/m)

Tf (X(s−), h)µX(ds, dh)

∣∣∣∣∣ > ε

3

)

+ P

(∣∣∣∣∣
∫ t

0

∫
BH(1/m)c

Tf (X(s−), h)
(
µXn(ds, dh)− µX(ds, dh)

)∣∣∣∣∣ > ε

3

)
.

(5.44)

Since Taylor’s remainder theorem in the integral form implies that for all h ∈ H we have

|Tf (X(s−), h)| ≤ 1
2

∥∥D2f
∥∥
∞ ‖h‖

2, we obtain by applying Theorem 4.16 and Inequality
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(4.5) that

E

[∣∣∣∣∣
∫ t

0

∫
BH(1/m)

Tf (X(s−), h)µXn(ds, dh)

∣∣∣∣∣
]

≤ 1

2

∥∥D2f
∥∥
∞E

[∫ t

0

∫
BH(1/m)

‖h‖2
(
λ ◦ (RnG(Xn(s)))−1

)
(dh)ds

]
≤ dmαKα

G

1

2

∥∥D2f
∥∥
∞ T,

where in the last step we used that by Remark 5.6 we have ‖Rn‖L(H) ≤ 1 for all n ∈ N.

Since the last line is independent of n ∈ N and dmα → 0 as m → ∞ according to

Inequality (4.5), Markov’s inequality implies that there exists m1 ∈ N such that for all

m ≥ m1 and all n ∈ N

P

(∣∣∣∣∣
∫ t

0

∫
BH(1/m)

Tf (X(s−), h)µXn(ds, dh)

∣∣∣∣∣ > ε

3

)
≤ ε′. (5.45)

Exactly the same arguments establish that for all m ≥ m1

P

(∣∣∣∣∣
∫ t

0

∫
BH(1/m)

Tf (X(s−), h)µX(ds, dh)

∣∣∣∣∣ > ε

3

)
≤ ε′. (5.46)

To bound the last term in (5.44), first note that for each m,n ∈ N we have that

∫ t

0

∫
BH(1/m)c

Tf (X(s−), h)
(
µXn(ds, dh)− µX(ds, dh)

)
=
∑

0≤s≤t
Tf (X(s−),∆Xn(s))1BH(1/m)c(∆Xn(s))

−
∑

0≤s≤t
Tf (X(s−),∆X(s))1BH(1/m)c(∆X(s))

=
∑

0≤s≤t
Tf (X(s−),∆Xn(s))

(
1BH(1/m)c(∆Xn(s))− 1BH(1/m)c(∆X(s))

)
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+
∑

0≤s≤t

(
Tf (X(s−),∆Xn(s))− Tf (X(s−),∆X(s))

)
1BH(1/m)c(∆X(s)). (5.47)

For estimating the first term in the last line, we use the equality 1A(x) − 1A(y) =

1A(x)1Ac(y)− 1Ac(x)1A(y). Applying this identity to the first term on the right hand

side of Equation (5.47), we conclude from Taylor’s remainder theorem in the integral

form that∣∣∣∣∣∣
∑

0≤s≤t
Tf (X(s−) ,∆Xn(s))1BH(1/m)c(∆Xn(s))1BH(1/m)(∆X(s))

∣∣∣∣∣∣
≤
∑

0≤s≤t

∣∣Tf (X(s−),∆Xn(s))
∣∣1BH(1/m)c(∆Xn(s))1BH(1/m)(∆X(s))

≤ 1

2

∥∥D2f
∥∥
∞

∑
0≤s≤t

‖∆Xn(s)‖2 1BH(1/m)c(∆Xn(s))1BH(1/m)(∆X(s))

≤ cf
∑

0≤s≤t

(
‖∆X(s)‖2 + ‖∆Xn(s)−∆X(s)‖2

)
1BH(1/m)c(∆Xn(s))1BH(1/m)(∆X(s)),

(5.48)

where we used the notation cf :=
∥∥D2f

∥∥
∞. Applying Theorem 4.16 and using the

boundedness assumption on G in (A3) allows us to conclude that

E

 ∑
0≤s≤t

‖∆X(s)‖2 1BH(1/m)(∆X(s))

 = E

[∫ t

0

∫
BH(1/m)

‖h‖2 µX(ds, dh)

]

= E

[∫ t

0

∫
BH(1/m)

‖h‖2
(
λ ◦G(X(s−))−1

)
(dh,ds)

]
≤ dmα TKα

G.

Since dmα → 0 as m → ∞, Markov’s inequality implies that there exists m2 ∈ N with

m2 ≥ m1 such that for all m ≥ m2 and all n ∈ N

P

 ∑
0≤s≤t

‖∆X(s)‖2 1BH(1/m)c(∆Xn(s))1BH(1/m)(∆X(s)) ≥ ε

24cf

 ≤ ε′

8
. (5.49)
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In the remaining part of the proof fix m ≥ m2 ≥ m1 such that (5.49) is satisfied. Since

(Xn)n∈N converges to X uniformly almost surely, there exists n1 ∈ N such that the

set An := {sups∈[0,t] ‖∆Xn(s)−∆X(s)‖ ≤ 1
2m} satisfies P (Acn) ≤ ε′

16 for all n ≥ n1.

Hence, if n ≥ n1 and ω ∈ An then by the reverse triangle inequality it holds that if

‖∆Xn(ω, s)‖ ≥ 1
m then

‖∆X(ω, s)‖ ≥ ‖∆Xn(ω, s)‖ − ‖∆Xn(ω, s)−∆X(ω, s)‖ ≥ 1

2m
.

Consequently, we obtain for all n ≥ n1 that

P

 ∑
0≤s≤t

‖∆Xn(s)−∆X(s)‖2 1BH(1/m)c(∆Xn(s))1BH(1/m)(∆X(s)) ≥ ε

24cf


≤ P

 ∑
0≤s≤t

‖∆Xn(s)−∆X(s)‖2 1BH(1/2m)c(∆X(s)) ≥ ε

24cf

+
ε′

16
.

Since X has only finitely many jumps in BH(1/2m)c on [0, t] and ∆Xn(s) converges to

∆X(s) for all s ∈ [0, t], there exists n2 such that for all n ≥ n2

P

 ∑
0≤s≤t

‖∆Xn(s)−∆X(s)‖2 1BH(1/m)c(∆Xn(s))1BH(1/m)(∆X(s)) ≥ ε

24cf

 ≤ ε′

8
.

Applying this together with (5.49) to Inequality (5.48) proves that for m ≥ m2 there

exists n2 such that for all n ≥ n2

P

 ∑
0≤s≤t

Tf (X(s−) ,∆Xn(s))1BH(1/m)c(∆Xn(s))1BH(1/m)(∆X(s)) ≥ ε

12

 ≤ ε′

4
.

(5.50)

As ∆Xn converges to ∆X uniformly on [0, T ] almost surely we obtain that for almost
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all ω ∈ Ω we have

1BH(1/m)(∆Xn(s)(ω))1BH(1/m)c(∆X(s)(ω)) = 0

if n is large enough. Therefore

lim
n→∞

 ∑
0≤s≤t

Tf (X(s−),∆Xn(s))1BH(1/m)(∆Xn(s))1BH(1/m)c(∆X(s))

 = 0 a.s.

and thus we obtain that there exists n3 such that for all n ≥ n3 we have

P

 ∑
0≤s≤t

Tf (X(s−),∆Xn(s))1BH(1/m)(∆Xn(s))1BH(1/m)c(∆X(s)) ≥ ε

12

 ≤ ε′

4
.

Combining this with (5.50) shows that for m ≥ m2 and n ≥ max{n2, n3} we have

P

 ∑
0≤s≤t

Tf (X(s−),∆Xn(s))
(
1BH(1/m)c(∆Xn(s))− 1BH(1/m)c(∆X(s))

)
≥ ε

6

 ≤ ε′

2
.

(5.51)

Since X has only finitely many jumps in BH(1/m)c on [0, t] and ∆Xn(s) converges to

∆X(s) for all s ∈ [0, t], there exits n4 such that for all n ≥ n4

P

 ∑
0≤s≤t

(
Tf (X(s−),∆Xn(s))− Tf (X(s−),∆X(s))

)
1BH(1/m)c(∆X(s)) ≥ ε

6

 ≤ ε′

2
.

Applying this together with (5.51) to (5.47) shows

P

(∫ t

0

∫
BH(1/m)c

Tf (X(s−), h)
(
µXn(ds, dh)− µX(ds, dh)

∣∣ ≥ ε

3

)
≤ ε′. (5.52)
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By applying Equations (5.45),(5.46) and (5.52) to (5.44), the proof is now complete.

Proof of Theorem 5.16. Let (Xn)n∈N be the solutions to (5.7). According to Corollary

5.11, we can assume that (Xn)n∈N converges both in C([0, T ], Lp(Ω, H)) and uniformly

on [0, T ] almost surely to the mild solution X, which has càdlàg paths. Since Xn is a

strong solution to (5.7) according to Proposition 5.14, the Itô formula in Theorem 4.18

implies for all t ≥ 0 and n ∈ N that

f(Xn(t)) = f(Rnx0) +

∫ t

0
〈G(Xn(s−))∗R∗nDf(Xn(s−)), ·〉dL(s)

+

∫ t

0
〈Df(Xn(s)), AXn(s)〉ds+

∫ t

0
〈Df(Xn(s)), RnF (Xn(s))〉ds

+

∫ t

0

∫
H

(
f(Xn(s−) + h)− f(Xn(s−))− 〈Df(Xn(s−)), h〉

)
µXn(ds,dh).

(5.53)

Continuity of f shows that f(Xn(t)) → f(X(t)) and f(Rnx0) → f(x0) a.s. Inequality

(4.11) implies for the first integral in (5.53) that

E

[∥∥∥∥∫ t

0
〈G(Xn(s−))∗R∗nDf(Xn(s−)), ·〉dL(s)−

∫ t

0
〈G(X(s−))∗Df(X(s−)), ·〉dL(s)

∥∥∥∥]
≤ e1,α

(
E

[∫ t

0
‖G(Xn(s))∗R∗nDf(Xn(s))−G(X(s))∗Df(X(s))‖αL2(U,R) ds

])1/α

,

which tends to zero by a similar argument as in the proof of Lemma 5.15. It follows in

L1
P (Ω,R) that

lim
n→∞

∫ t

0
〈G(Xn(s−))∗R∗nDf(Xn(s−)), ·〉dL(s) =

∫ t

0
〈G(X(s−))∗Df(X(s−)), ·〉dL(s).

Lemma 5.20 implies in L0
P (Ω,R) that

lim
n→∞

∫ t

0

∫
H

(
f(Xn(s−) + h)− f(Xn(s−))− 〈Df(Xn(s−)), h〉

)
µXn(ds, dh)
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=

∫ t

0

∫
H

(
f(X(s−) + h)− f(X(s−))− 〈Df(X(s−)), h〉

)
µX(ds, dh).

Almost sure uniform convergence of (Xn)n∈N and Lebesgue’s dominated convergence

theorem yields that

lim
n→∞

∫ t

0
〈Df(Xn(s)), RnF (Xn(s))〉 ds =

∫ t

0
〈Df(X(s)), F (X(s))〉ds a.s.

As all terms in (5.53) converge in L0
P (Ω,R), it follows that the remaining term

∫ t

0
〈Df(Xn(s)), AXn(s) 〉ds

also converges in L0
P (Ω,R), which completes the proof.
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6 Appendix

Proof of Theorem 2.4. We prove the lemma for the case when s = 0 and t = 1, the

general case follows similarly. By [56, Th. 3.9], both limits exist and are independent

of the partition (πn)n∈N.1 Thus, we may choose

πn :=

{
0 <

1

2n
< ... < (2n − 1)

1

2n
< 1

}
.

Using the notation µ
D
= (bθ, Q, λ) to denote the cylindrical distribution of L(1), since

the partitions are evenly spaced, it follows from [43, Th. 5.7.3/(iii)] that

lim
n→∞

∑
πn

E [θ(dni )]

= lim
n→∞

∫
H
θ(h)

(
2nµ∗

1
2n

)
(dh)

= lim
δ↓1

δ∈C(λ)

lim
n→∞

(∫
‖h‖>δ

θ(h)
(

2nµ∗
1

2n

)
(dh) +

∫
‖h‖≤δ

θ(h)
(

2nµ∗
1

2n

)
(dh)

)

= lim
δ↓1

δ∈C(λ)

lim
n→∞

∫
‖h‖>δ

θ(h)
(

2nµ∗
1

2n

)
(dh) + bh1B̄H

= lim
δ↓1

δ∈C(λ)

∫
‖h‖>δ

θ(h)λ(dh) + bh1B̄H

=

∫
‖h‖>1

θ(h)λ(dh) + bh1B̄H

=

∫
H

(
θ(h)− h1B̄H

)
λ(dh) + bh1B̄H = bθ.

1For this thesis, it would be enough to prove this lemma under the assumption of equidistant
partitions, since all step functions could be defined over rational time partitions. Hence, there is no
need to rely on any external results here.
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To prove the second assertion, recall that by [43, Pr. 5.7.2]

e
(

2nµ∗
1

2n

)
⇒ µ (6.1)

where e
(

2nµ∗
1

2n

)
denotes the exponent measure of the finite measure

(
2nµ∗

1
2n

)
. If we

express the characteristics of the exponent measure in terms of the truncation function

θ, we get

e
(

2nµ∗
1

2n

)
D
=

(∫
H
θ(h)

(
2nµ∗

1
2n

)
(dh), 0,

(
2nµ∗

1
2n

))
and µ

D
= (bθ, Q, λ). (6.2)

From this, it follows that

lim
n→∞

∑
πn

E
[
‖dni ‖

2 ∧ 1
]

= lim
n→∞

∫
H

(
‖h‖2 ∧ 1

) (
2nµ∗

1
2n

)
(dh)

= lim
ε↓0

lim
n→∞

(∫
‖h‖>ε

(
‖h‖2 ∧ 1

) (
2nµ∗

1
2n

)
(dh) +

∫
‖h‖≤ε

(
‖h‖2 ∧ 1

) (
2nµ∗

1
2n

)
(dh)

)
.

(6.3)

Splitting (6.3) into the sum of two limits, we first see that

lim
ε↓0

lim
n→∞

∫
‖h‖>ε

(
‖h‖2 ∧ 1

) (
2nµ∗

1
2n

)
(dh) =

∫
H

(
‖h‖2 ∧ 1

)
λ(dh).

It remains only to identify the second limit in (6.3). Without the loss of generality, we

may fix an orthonormal basis (ei)i∈N ⊆ H, and assume that ε ≤ 1. Then, it follows from

the Parseval identity, [43, Th. 5.7.3/(ii)] and compactness of the sequence of S-operators

corresponding to the sequence of exponential measures
(
e
(

2nµ∗
1

2n

))
n∈N

that for all
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δ > 0 there exists an Nδ,1 ∈ N such that

sup
ε∈(0,1]

sup
n∈N

∞∑
i=Nδ,1

∫
‖h‖≤ε

〈h, ei〉2
(

2nµ∗
1

2n

)
(dh) <

δ

2
.

Moreover, since Tr(Q) <∞, for all δ > 0 there exists Nδ,2 ∈ N such that

∞∑
i=Nδ,2

〈Qei, ei〉 <
δ

2
.

Let δ > 0 be fixed. Then, if we define Nδ = max{Nδ,1, Nδ,2} then we see that

∣∣∣∣∣
∫
‖h‖≤ε

(
‖h‖2 ∧ 1

) (
2nµ∗

1
2n

)
(dh)− Tr(Q)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
‖h‖≤ε

(
‖h‖2 ∧ 1

) (
2nµ∗

1
2n

)
(dh)−

Nδ−1∑
i=1

∫
‖h‖≤ε

〈h, ei〉2
(

2nµ∗
1

2n

)
(dh)

∣∣∣∣∣
+

∣∣∣∣∣
Nδ−1∑
i=1

∫
‖h‖≤ε

〈h, ei〉2
(

2nµ∗
1

2n

)
(dh)− Tr(Q)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
‖h‖≤ε

(
‖h‖2 ∧ 1

) (
2nµ∗

1
2n

)
(dh)−

Nδ−1∑
i=1

∫
‖h‖≤ε

〈h, ei〉2
(

2nµ∗
1

2n

)
(dh)

∣∣∣∣∣
+

∣∣∣∣∣
Nδ−1∑
i=1

∫
‖h‖≤ε

〈h, ei〉2
(

2nµ∗
1

2n

)
(dh)−

Nδ−1∑
i=1

〈Qei, ei〉

∣∣∣∣∣+

∣∣∣∣∣
Nδ−1∑
i=1

〈Qei, ei〉 − Tr(Q)

∣∣∣∣∣
< δ +

∣∣∣∣∣
Nδ−1∑
i=1

∫
‖h‖≤ε

〈h, ei〉2
(

2nµ∗
1

2n

)
(dh)−

Nδ−1∑
i=1

〈Qei, ei〉

∣∣∣∣∣ .
Taking limits on both sides of the inequality above, it follows from Equations (6.1) and

(6.2) by [58, VI.Th 5.5]/(3) that

lim
ε↓0

lim
n→∞

∣∣∣∣∣
Nδ−1∑
i=1

∫
‖h‖≤ε

〈h, ei〉2
(

2nµ∗
1

2n

)
(dh)−

Nδ−1∑
i=1

〈Qei, ei〉

∣∣∣∣∣ = 0,
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which immediately implies

lim
ε↓0

lim
n→∞

∣∣∣∣∣
∫
‖h‖≤ε

(
‖h‖2 ∧ 1

) (
2nµ∗

1
2n

)
(dh)− Tr(Q)

∣∣∣∣∣ ≤ δ.
Since δ > 0 is arbitrary, this concludes the proof.
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metric spaces. Revista Unión Matemática Argentina, 41(2):67–75, 1998.
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