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Learning-based sound speed reconstruction and

aberration correction in linear-array

photoacoustic/ultrasound imaging
Mengjie Shi, Tom Vercauteren, and Wenfeng Xia

Abstract—Photoacoustic (PA) image reconstruction involves
acoustic inversion that necessitates the specification of the speed
of sound (SoS) within the medium of propagation. Due to the
lack of information on the spatial distribution of the SoS within
heterogeneous soft tissue, a homogeneous SoS distribution (such
as 1540 m/s) is typically assumed in PA image reconstruction,
similar to that of ultrasound (US) imaging. Failure to compensate
the SoS variations leads to aberration artefacts, deteriorating
the image quality. In this work, we developed a deep learning
framework for SoS reconstruction and subsequent aberration
correction in a dual-modal PA/US imaging system sharing a
clinical US probe. As the PA and US data were inherently co-
registered, the reconstructed SoS distribution from US channel
data using deep neural networks was utilised for accurate PA
image reconstruction. On a numerical and a tissue-mimicking
phantom, this framework was able to significantly suppress
US aberration artefacts, with the structural similarity index
measure (SSIM) of up to 0.8109 and 0.8128 as compared to
the conventional approach (0.6096 and 0.5985, respectively). The
networks, trained only on simulated US data, also demonstrated
a good generalisation ability on data from ex vivo tissues and the
wrist and fingers of healthy human volunteers, and thus could
be valuable in various in vivo applications to enhance PA image
reconstruction.

Index Terms—Photoacoustic imaging, ultrasound imaging,
deep learning, speed of sound reconstruction, image reconstruc-
tion, aberration correction

I. INTRODUCTION

PA imaging is a hybrid modality that combines rich optical

contrast from optical imaging, and high spatial resolution

and large imaging depths from US imaging. In the past two

decades, PA imaging has demonstrated great potentials for a

wide range of applications in preclinical and clinical settings

[1]–[3]. It involves the illumination of biological tissues from

pulsed or modulated continuous-wave light sources such as

solid-state lasers and light-emitting diodes (LEDs). The light

is then selectively absorbed by endogenous chromophores

such as hemoglobin, water and lipids, and exogenous contrast

agents, leading to local temperature increases and transient

thermal expansion in conjunction with US wave generation.

The amplitudes, frequencies, and time-of-flights of the US

signals provide information of the optical absorption, sizes

and spatial locations of the optical absorbers, respectively.

In PA tomography configurations, the generated US waves
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propagate through tissue and are then detected with US

sensors located on the tissue surface. Subsequently, acoustic

inversion is performed on the acquired time series US data to

reconstruct PA images representing optical absorption contrast.

Here, the SoS in the propagation medium is usually stipulated

to be homogeneously distributed (typically 1540 m/s as an

average for soft tissue). However, SoS of soft tissue is highly

dependent on tissue types, varying from around 1450 m/s (fat)

to 1580 m/s (muscle) [4]. As such, this assumption can lead

to significant US aberration artefacts, degrading the image

contrast and spatial resolution [5].

Various methods were proposed to mitigate the SoS induced

aberration artefacts in PA tomography [6]–[19]. In 2011,

Treeby et al. reported an autofocus algorithm to arrive at an

optimal single SoS for the medium by iterative optimistion [6].

The automated selection of the optimal SoS can be achieved

by maximising resolution metrics such as image sharpness [6]

and a coherent factor [7]. These methods implemented the

global optimisation of SoS, therefore the resolution metrics

were optimised over the whole focus area and local variations

on SoS in heterogeneous tissue were neglected. To incorporate

the heterogeneity effect, parameterised SoS maps can be

directly reconstructed using PA measurements. Several works

investigated concurrent recovery of both SoS distributions and

initial pressure distributions or optical absorption from PA

measurements, which was referred to as a joint reconstruction

(JR) problem. Jiang et al. reported a JR approach by seeking

numerical solutions to the Helmholtz equation using a finite

element method [9]. Zhang et al. proposed a time-domain

method based on explicitly exploring two-fold data redun-

dancy in a generalized Radon transform imaging model [10].

Zhang et al. further reported an implicit method by iteratively

optimising a cost function with respect to the SoS map and

optical absorption simultaneously [11]. In fact, accurate JR

may not be achievable due to the numerical instability, as

shown in Refs [12], [20]. Therefore, prior information of SoS

distributions and detection geometries was usually incorpo-

rated for more accurate JR [14], [21]. Cai et al. proposed a

feature coupling (FC) based JR method integrated with a full

ring array photoacoustic computational tomography (PACT)

system [18]. The SoS distributions were obtained through an

iterative process that maximised the similarity between two

PA images reconstructed by the two half-ring data. Validation

on an in vivo mouse liver model demonstrated its superiority

on distortion mitigation. However, the performance of the

FC method can be significantly deteriorated when the image

http://arxiv.org/abs/2306.11034v1
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sparsity is high. To address this issue, a multi-segment feature

coupling (MSFC) method was developed. The full ring array

was partitioned into finer groups, and the FC method was

applied to each group individually to estimate a direction-

specific SoS [19].

SoS distributions can be independently measured with US

transmission tomography and used for correcting PA image

reconstruction in dedicated systems combining US and PA

measurements [22]. In adjunction to PACT, US tomography

can be implemented in a transmission mode by positioning

a US transmitter and a receiver in an opposite position [10],

or utilising passive elements which transmit US waves based

on the PA effect [23], [24]. Furthermore, Mercep et al. pro-

posed a transmission-reflection optoacoustic US (TROPUS)

imaging platform that can retrieve multiple acoustic properties

including SoS, acoustic attenuation and reflectivity [25]. In

such hybrid systems, SoS maps acquired via US transmission

tomography are employed for optimising PA image quality

during the reconstruction. However, these methods are usually

associated with a high degree of complexity, both in the

hardware design and algorithm developments.

Pulse-echo US can be readily integrated with PA imaging

by sharing a clinical US array probe for real-time imaging.

Such dual-modal imaging systems can provide complementary

morphological and molecular information of tissue based on

optical absorption. Therefore, this configuration could facil-

itate clinical translation of the PA imaging technique and

has thus attracted significant attention [26]–[29]. With recent

advances in deep learning (DL), Jeon et al. proposed a DL-

based framework for mitigating SoS aberration and streak

artefacts resulting from sparse sampling in a linear-array PA

imaging system [16]. The DL model was trained on simulated

PA data based on homogeneous SoS assumptions, which may

affect its performance on highly heterogeneous tissues.

In this work, for the first time to the best of our knowledge,

we propose a DL framework that retrieves the SoS distribution

to inform PA image reconstruction using co-registered US raw

data in a dual-modal PA/US imaging system with a clinical

linear array US probe. The main contributions of this work

can be summarised as follows:

• We designed a detailed simulation pipeline to generate

randomised and realistic US channel data based on a

clinical linear-array US probe.

• We trained a deep neural network to reconstruct SoS

distributions from single plane wave US transmission

using exclusively in silico data.

• The trained network demonstrated remarkable gener-

alisation capabilities by accurately reconstructing SoS

distributions on digital phantoms with previously unseen

structures, as well as on agar-based tissue-mimicking

phantoms, ex vivo samples, and in vivo data of human

fingers and wrist acquired from healthy volunteers.

• We demonstrated the viability of utilising SoS infor-

mation inherent in co-registered US data for compen-

sating PA reconstruction. This approach showcased its

effectiveness in enhancing image quality without the

need for additional algorithmic development or hardware

extensions.

II. METHODS AND MATERIALS

As illustrated in Fig.1, a deep neural network was trained on

US channel data acquired from in silico simulations based on

single plane wave transmission. The trained neural network

was then used to parameterise SoS distribution within the

medium. Sequentially, the estimated SoS map was incorpo-

rated into PA image reconstruction using a time-reversal-based

algorithm. This section is structured as follows: Sec. II-A de-

scribes the generation of in silico US dataset for training. Sec.I

introduces the architecture of the deep neural network used for

retrieving SoS distribution from US channel data, followed by

the training setup. For the model evaluation, Sec.II-C outlines

the experimental design including evaluations with a numerical

phantom, ex vivo tissues, a tissue-mimicking phantom, and

human volunteers and image metrics for quantification.

A. Ultrasound simulations

Due to the lack of diverse US data with known SoS distri-

bution as ground truth, the training dataset was prepared using

US simulations in K-Wave [30]. The US imaging process was

modelled based on the geometry of a linear array US probe

that is used in a commercially available LED-based PA/US

imaging system (AcousticX, CYBERDYNE INC, Tsukuba,

Japan) capable of performing single plane-wave US imaging

and PA imaging. The probe had 128 elements spanning 38.4

mm with a pitch size of 0.3 mm and a central frequency of

7 MHz. The dimension of the simulation grid was 1536 ×

1536 with a grid size of 0.025 mm. The probe was located

at one side of the grid, with 11 grid points per piezo element

and 1 grid point per kerf. The plane wave transmission pulse

was simulated using 2-cycle tone burst signals with a central

frequency of 7 MHz.

The anatomies in the simulation were based on simplified

tissue models of organs and lesions used in [31]. Ellipses with

various dimensions and orientations were randomly distributed

within the medium. SoS values were randomly chosen from

a uniform distribution U [1400, 1600] for a homogeneous back-

ground and from a [1% - 7%] higher range for the inclusions.

The echogenicity was considered by simulating elliptical-

shaped inclusions as being hyperechoic. This was achieved by

either increasing the SoS values or the density of the speckles

inside the inclusions for an enhanced contrast [32]. In this

work, the hyperechoic features were simulated by randomly

assigning the SoS values with [7% - 11%] increments to the

background to 10 % of the grid points. Acoustic attenuation

and mass intensity were fixed to 0.5 dB/(MHz·cm) and 1020

kg/m3 according to human soft tissue. The speckle density had

a mean distribution of 3 speckles per λ2 (λ is the wavelength

of the transmit pulse). The intensity was assigned by sampling

the scatterers with a uniform distribution U [-0.03, 0.03].

The simulations were also subject to noise. Thermal noise

resulting from electrons’ agitation in US imaging systems was

modelled using a white Gaussian noise. The noise amplitude at

each channel was determined by the signal-to-noise ratios that

were randomly sampled from -80 dB to -40 dB. The noise as-

sociated with transmission interference was sampled from the

US measurements using AcousticX. For each channel, signals
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Fig. 1. Learning-based sound speed reconstruction and aberration correction for dual-modal photoacoustic (PA) /ultrasound (US) imaging. a. Deep learning
based speed of sound (SoS) reconstruction using US channel data. b. SoS compensation for co-registered PA image reconstruction (representative results using
in vivo human finger data).

from the first 50 time steps were extracted and added onto the

simulated US data accordingly. A time gain compensation of

0.5 dB/MHz.cm at 1540 m/s was implemented.

B. Deep neural networks for SoS reconstruction

The deep learning model was modified from the structure

proposed in [32], [33] where the input and output were defined

as:

Λ : Cn×m 7→ Sp×q (1)

The US channel data C acquired with a single plane wave

transmission were taken as the input with a size of n × m,

where n=128 is the number of channels and m=1024 is the

number of time steps at a sampling rate of 20 MHz. The output

is the corresponding SoS map S with dimensions of 384×384

(p× q) and a spatial resolution of 0.1 mm.

As depicted in Fig. 1a, the model was based on a fully con-

volutional neural network in an encoder-decoder configuration.

For the encoder, strided convolutional layers were adopted at

the first three layers for accommodating the non-square input

size and improving the smoothness of the SoS predictions,

followed by LeakyReLU, and Batch Normalisation (BN). The

next four layers consisted of convolution, LeakyReLU, Max-

Pooling, and BN. The decoder path had four layers consisting

of convolution, LeakyReLU, bilinear upsampling, and BN.

After resizing the output, 1×1 convolution was applied to

generate the final SoS map. The encoding and decoding paths

were connected by combining the output feature maps of the

layer 5, 6, 7 to the corresponding layer 9, 10, 11.

Before being fed into the network, the input US channel

data was normalised to have a mean of 0 and a standard

deviation of 1 for each channel. The network was trained on

6000 samples with a train/valid spilt of 0.9. Mean Square

Error (MSE) was used as the loss function. Stochastic

gradient descent with a mini batch size of 10 and a learning

rate of 0.0001 was used for training. After 100 epochs, the

network converged to a Root Mean Square Error (RMSE)

of 22.90 on the training set and 26.74 on the validation

set, respectively. No further improvements in performance

were observed beyond this point. The US simulations took

around 2 days with an NVIDIA Quadro RTX 5000 GPU. The

model was trained using Keras 2.12.0 with Python 3.10.11.

The experiments were conducted on NVIDIA DGX cluster

equipped with 8 A100 GPUs. Codes and data can be found in

https://github.com/MengjieSHI/learning-based-sos-correction-us-pa.

C. Model evaluation

The trained model was then validated using numerical

phantoms, tissue mimicking phantoms, ex vivo, and in vivo

data, respectively. The reconstructed SoS maps from the

trained model were directly used to inform co-registered PA

image reconstruction using a time-reversal (TR) algorithm

implemented in K-Wave [34].

To assess its performance beyond homogeneous back-

ground, numerical layered phantoms with point optical ab-

sorbers were simulated. Each layer had a random thickness

between [5 - 13] mm with a single SoS randomly chosen

from [1400 - 1600] m/s. The echogenicity was kept as being

hyperechoic. The point optical absorbers were simplified as a

series of 2-D grid coordinates with a constant initial pressure.

In comparison, classical assumption of the SoS in soft tissue

(1540 m/s) and an optimal SoS value based on an autofocus

method [6] were used for the PA reconstruction. Local struc-

ture similarity index measure (SSIM) was calculated for each

layer using the PA images reconstructed with the conventional

SoS assumption, and two SoS correction methods: autofocus

approach and DL, respectively.

The trained model was then tested on real data acquired

from agar-based tissue mimicking phantoms, ex vivo tissues

and in vivo human wrist and fingers. The tissue mimicking

phantom was composed of two layers of agar, with the

upper layer having a 5% w/v concentration and the bottom

layer having a 2% w/v concentration. Glass beads (0–63 µm,

Boud Minerals Limited, UK) with 1% w/v concentration were

used for both layers. Three pencil leads (Faber-Castell, Stein,

Germany) with a diameter of 0.5 mm were positioned at

the different layers within the phantom. The literature SoS

values for agar 2% and agar 5% phantoms were utilised

for comparison [35]. The local SSIM was evaluated at two

Regions of Interest (ROIs) manually selected at each layer.

These ROIs were carefully chosen to encompass the PA signals

emitted by the pencil leads. The ex vivo data were acquired

from two tissue phantoms made of chicken breast tissue and

pork belly, respectively. For the chicken breast tissue phantom,

a cylindrical 2% agar phantom (O.D. around 4 mm) containing

https://github.com/MengjieSHI/learning-based-sos-correction-us-pa
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carbon fibre bundles was included to introduce local SoS vari-

ations. The pork belly tissue comprised layers of skin, fat, and

muscle. A clinical needle (20G, BD, USA) was inserted into

the pork belly tissue for emulating the structural distortions

of the needle in PA images, which were induced by SoS

inhomogeneity of the medium. Furthermore, the established

model was tested on in vivo data from the wrist and fingers

of a human volunteer acquired with AcousticX. The human

volunteer experiments were approved by the King’s College

London Research Ethics Committee (study reference: HR-

18/19-8881).

III. RESULTS

A. Numerical phantoms

TABLE I
STRUCTURE SIMILARITY INDEX MEASURE (SSIM) COMPARISON OF

SOS-COMPENSATED PHOTOACOUSTIC IMAGES FOR A NUMERICAL

PHANTOM USING CONVENTIONAL, AUTOFOCUS, AND DEEP LEARNING

METHODS

SSIM

(c=1540 m/s)
Conventional

(c=1460 m/s)
Autofocus

DL

Layer 1 0.7476 0.8760 0.9035

Layer 2 0.4915 0.8446 0.8532

Layer 3 0.5896 0.4765 0.6760

Global Avea. 0.6096 0.7324 0.8109
aAverage of the SSIM at each layer

The trained model was tested on numerical phantoms that

contained layered structures not present in the training set.

Fig. 2 shows an exemplar that had three layers. Layer 1,

2, and 3 had a thickness of 5.00 mm, 6.75 mm, and 28.25

mm with a homogeneous SoS of 1480 m/s, 1420 m/s, and

1580 m/s for each layer, respectively. The DL model was

able to detect the layer boundaries with SoS predictions

close to the ground truth values, especially for the first and

second layers. As expected, the performance was degraded at

larger depths (lager than 3 cm) due to the limited penetration

depth and low signal-to-noise ratios with single plane wave

transmissions. PA images reconstructed using a conventional

SoS value in soft tissue (c = 1540 m/s), an optimal SoS value

obtained by an autofocus method, a SoS map retrieved by

the DL model, and the GT SoS are shown in Fig. 2 (e)-(h).

Regions enclosing three representative point targets (ROI 1 to

3) distributed within different layers with different background

SoS values were chosen for comparing the reconstruction

performance by inspecting their lateral profiles (Fig. 2 (i)-

(k)). With conventional reconstructions (SoS of 1540 m/s), US

aberration artefacts were visible at all depths and manifested

as arc-shaped structures as shown in the insets. The optimal

SoS value of 1460 m/s estimated by the autofocus approach

was close to the average SoS of the top two layers. Thus, it

effectively corrected the PA reconstructions of the targets in

these areas (ROI 1 and 2). Aberration artefacts were apparent

in ROI 3 where there was a substantial divergence between

the true (1580 m/s) and the estimated optimal SoS (1460

m/s). In contrast, the performance of the DL-based approach

was largely consistent at different depths. The SoS values

calculated from the reconstructed SoS map for the three layers

were 1472 m/s, 1414 m/s, 1542 m/s, with standard deviations

of 28.16 m/s, 11.33 m/s, and 26.14 m/s, respectively. This

represents a mean percentage error of 0.54%, 0.42%, and

2.41% for layer 1, 2, and 3, respectively. Besides, compared

to the autofocus approach, the PA images corrected by the

DL approach achieved better spatial resolution; for the point

target at ROI 3, the full width at half maximum (FWHM) of

the lateral profile was 0.65 mm using the DL based method,

compared to 1.05 mm with the autofocus approach. This

corresponds to an improvement in the lateral resolution by

around 38%. The superiority was also quantified by SSIM

as shown in Table I. The DL method exhibited the highest

local SSIM values across all the three layers, achieving a

global average of 0.8109. It is worth noting that the PA

reconstructions of the point targets that were far from the

sensors were distorted since the estimation errors of the model

accumulated at the deep layer. In contrast to the central area,

the distortion was also legitimately enhanced at the peripheral

regions where the PA waves travelled through longer distances

towards the distal sensors.

B. Tissue mimicking phantoms

TABLE II
STRUCTURE SIMILARITY INDEX MEASURE (SSIM) COMPARISON OF

SOS-COMPENSATED PHOTOACOUSTIC IMAGES FOR A
TISSUE-MIMICKING PHANTOM USING CONVENTIONAL, AUTOFOCUS,

AND DEEP LEARNING METHODS

SSIM

(c=1540 m/s)
Conventional

(c=1460 m/s)
Autofocus

DL

ROI 1 0.4760 0.7751 0.8105

ROI 2 0.7156 0.8221 0.8151

Global Avea . 0.5985 0.7986 0.8128
aAverage of the SSIM at each ROI

As a second validation step of the trained model, its perfor-

mance was evaluated using real US data by imaging an agar-

based tissue-mimicking phantom. As shown in Fig.3, the phan-

tom consisted of two layers of different agar concentrations.

Agar has been widely used as a tissue-mimicking material

for PA and US phantoms [36]. According to the acoustic

properties of selected tissue phantom materials for US imaging

measured in [35], the SoS of 2% and 4.8% agar phantoms at a

room temperature of 20.2◦C was measured as 1497±6m/s and

1516±6 m/s, respectively, which were employed as the ground

truth values for SoS parameterisation. In the DL-predicted

SoS map, even though the model was trained using a pure

in silico dataset without layered structures, the model was

able to infer the SoS differences of the two-layered phantoms

in agreement with our expectations. The average SoS for the

water layer was around 1491 m/s with a standard deviation of

21 m/s (water SoS at 20◦C is around 1480 m/s [4]). Noticeably,

the SoS for the initial layer of the dual-layered phantom was

effectively estimated, yielding a mean value of 1533 m/s and

an average deviation of 23 m/s in comparison to the literature

value of 1516±6 m/s. Likewise, the mean prediction for the

bottom layer was 1431 m/s with a higher deviation of 30
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Fig. 2. Learning-based sound speed reconstruction and aberration correction in dual-modal photoacoustic (PA)/ultrasound (US) imaging demonstrated with a
numerical phantom with point optical absorbers. (a) Ultrasound (US) image with the top 2 mm zeroed due to the presence of the noise (b) The ground truth
(GT) of the Sound of Speed (SoS) and (c) the parameterised SoS distribution estimated by the deep learning (DL) model. (d) Initial pressure distribution
used for acoustic forwarding in the K-Wave simulation. (e-h) Co-registered PA reconstructions using a conventional SoS value in soft tissue (c = 1540 m/s),
an optimal SoS value by an autofocus method (c = 1460 m/s), the SoS distribution by the DL model, and the GT SoS; Zoom-in images of three Regions
of Interest (ROIs) at different depths are shown in the yellow boxes. (i-k) Lateral PA profiles of the point sources in ROI 1, 2, 3. Scale bar: 5.00 mm. PA
images were normalised regarding the individual maximum amplitude.

m/s than the first layer. This discrepancy may be attributed

to the US reflections artefacts originated from the bottom

of the water tank as well as the pencil leads. Finally, the

predicted SoS was applied to PA image reconstruction and

compared against a homogeneous SoS assumption of 1540

m/s and 1440 m/s (given by the autofocus algorithm). As

shown in Fig. 3(e) and (f), the PA signals of the pencil leads,

especially those positioned at the bottom layer, were distorted

under the constant SoS values. In contrast, it was observed

that the distortion was mitigated when using the parameterised

SoS map by the DL model (Fig. 3(g). Table II compares

the local and the global average SSIM values for various PA

reconstruction methods using the PA reconstruction with the

ground-truth SoS as the reference. These methods included

the conventional reconstruction and SoS compensation based

on the autofocus or DL method. The proposed DL-based

method demonstrated the highest global average SSIM of

0.8128, outperforming the conventional method with an SSIM

of 0.5985, as well as the autofocus method with an SSIM of

0.7986.

C. Ex vivo tissue and tissue phantoms

To further assess the generalisation capability of the trained

networks, ex vivo chicken breast tissue with an agar inclusion

was assembled for imaging. The US image in Fig. 4 indicates

the structure of the phantom where the agar inclusion was

sandwiched by two pieces of chicken breast tissue. Carbon

fibre bundles were embedded in the agar phantom as the PA

targets. The retrieved SoS distribution with DL revealed the

boundaries between the coupling medium (water at around 16
◦C), the chicken breast tissue, and the agar inclusion. The

predicted SoS values in each area were close to those found

in literature (about 1460 m/s for water at 16 ◦C [4]; 1516 m/s

for the 5% agar phantom [35]). The mean SoS prediction for

chicken breast tissue within a depth range of 10 mm to 20

mm was 1530 m/s with a variation of up to 50 m/s. This can

be attributed to the inherent tissue heterogeneity caused by

non-uniform water content and the presence of tendons. It is

noticeable that the gap between the chicken breast and the agar

inclusion was also detected with the predicted SoS close to that

of the background. SoS reconstruction was less accurate for

some hypoechoic regions in the US image (bottom-left corner),
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Fig. 3. Learning-based sound speed reconstruction and aberration correction
in dual-modal photoacoustic (PA)/ultrasound (US) imaging demonstrated with
an agar-based tissue mimicking phantom.(a) US image. (b) Ground truth of
speed of sound (SoS) (c-d) Parameterised SoS map by the deep learning (DL)
model and overlaid with the US image. (e-h) Co-registered PA reconstructions
using a conventional SoS value in soft tissue (c = 1540 m/s), an optimal
SoS value by an autofocus method (c = 1440 m/s), the SoS map by the
DL model, and the GT SoS; Zoom-in images of two Regions of Interest
(ROIs) at different layers are shown in the yellow boxes. A 2 mm offset was
introduced on the predicted SoS before shown in the overlay (This was applied
to the remaining overlay results). PA images were normalised regarding the
individual maximum amplitude.

Fig. 4. Learning-based sound speed reconstruction and aberration correction
in dual-modal photoacoustic (PA)/ultrasound (US) imaging demonstrated with
chicken breast ex vivo tissue with an 5% agar inclusion. (a) US image. (b-c)
Parameterised SoS map by the deep learning (DL) model and overlaid with
the US image. (d-e) Co-registered PA reconstructions using a conventional
SoS value in soft tissue (c = 1540 m/s) and the SoS map by the DL model;
Zoom-in of the PA signals are shown in the yellow boxes. PA images were
normalised regarding the individual maximum amplitude.

which could be explained by the similar US appearance with

water and as such they could be misinterpreted as water by

the trained networks. By employing the predicted SoS map

for PA reconstruction, the SoS aberration artefacts were sig-

nificantly suppressed as compared to those in the conventional

reconstruction (yellow boxes).

The pork belly tissue phantom also demonstrated the effect

of US aberration on structural PA targets such as metallic

needles (Fig. 5). In the non-corrected PA image (SoS was

1540 m/s), the distal segment of the needle suffered from a

Fig. 5. Learning-based sound speed reconstruction and aberration correction
in dual-modal photoacoustic (PA)/ultrasound (US) imaging demonstrated
with needle insertion into pork belly tissue ex vivo. (a) US image. (b-c)
Parameterised SoS map by the deep learning (DL) model and overlaid with
the US image. (d-e) Co-registered PA reconstructions using a conventional
SoS value in soft tissue (c = 1540 m/s) and the SoS map by the DL model;
White arrows denote PA signals from the skin. Red arrows denote needle tip
distortions due to SoS aberration. Green arrows denote artefacts associated
PA visualisation of a clinical needle using a linear array. PA images were
normalised regarding the individual maximum amplitude.

bending distortion (denoted by a red arrow). The signal at the

tip exhibited a deviation from the shaft, accompanied by the

presence of reflection artefacts in the vicinity of the tip region.

It could lead to the ambiguity of the tip localisation in PA

images. However, the tissue boundary was clearly detected in

the predicted SoS distribution by the networks, following the

skin anatomy in the corresponding US image. The average

SoS estimation of the skin layer was 1572 m/s. Similar to

the chick breast tissue phantom, SoS reconstruction was also

less accurate at large depths (3-4 cm), where the signal-to-

noise ratios are low. The SoS aberration at the needle tip area

was effectively alleviated in the corrected PA image, and the

artefacts were suppressed as well.

D. In vivo human data

The model was further tested using co-registered PA and

US data obtained from the wrist and fingers of healthy human

volunteers. As shown in Fig. 6a, for the human wrist data,

although the ground truth SoS was not accessible, the pre-

dicted SoS map demonstrated a good correspondence with the

anatomy depicted by the corresponding US image, particularly,

the boundary between skin and water. The recovered SoS value

for soft tissue (1515.8 m/s ± 14.5 m/s) matched the value

found in the literature [4], whilst the SoS of water (1438.5

m/s ± 23.9 m/s) was slightly underestimated. The SoS for a

region within the tissue (denoted by yellow arrows in Fig. 6a)

was also underestimated. This could be ascribed to local signal

degradation which resulted in a US appearance similar to that

of water. The reconstructed PA images exhibited a significant

improvement in the visualisation of the cross-sections of blood

vessels (indicated by the white arrows). This improvement

was notable when compared to the results obtained under
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Fig. 6. Learning-based sound speed reconstruction and aberration correction in dual-modal photoacoustic (PA)/ultrasound (US) imaging demonstrated with
the wrist (a) and fingers (b) from healthy human volunteers. (i) US image. (ii-iii) Parameterised SoS map by the deep learning (DL) model and overlaid with
the US image. (iv-v) Co-registered PA reconstructions using a conventional SoS value in soft tissue (c = 1540 m/s) and the SoS map by the DL model; White
arrows denote the superficial vessels. PA images were normalised regarding the individual maximum amplitude. Yellow arrows denote the SoS underestimation
by the DL method.

the constant SoS assumption, where the cross-sections of

blood vessels were significantly extended laterally due to US

aberrations. It was further observed that PA images of the

vessels with DL-based SoS compensation also suffered from

slight deformation, which could be attributed to the external

force applied by handheld imaging probe and the limited-view

angle of the linear probe.

With the human finger experiment (Fig. 6b), the recon-

structed SoS map enabled a distinct differentiation between

water and the fingers, as shown in the overlay with the US

image. The estimated SoS was around 1491.6 m/s ± 28.2

m/s for the water and 1566.4 m/s ± 20.1 m/s for the muscle,

which was consistent with the values reported in the literature

[4]. It is worth emphasising that the PA signals emanating at

large depths (> 1.5 cm) were not prominent due to strong

light attenuation. Therefore, the improvements due to SoS

corrections were only apparent on the superficial vessels, as

denoted by white arrows.

IV. DISCUSSION & CONCLUSIONS

A long-standing challenge in PA image reconstruction is the

lack of accurate information of SoS variations in heteroge-

neous biological tissue. Failure to compensate the variation in

SoS can result in severe image distortions and artefacts, which

compromise the image quality. Prior studies have explored

different approaches to incorporate the SoS heterogeneity

during PA image reconstruction. Although promising results

have been reported, they usually involve certain complexities

such as dedicated imaging hardware and sophisticated algo-

rithm developments. Recent works demonstrated that deep

learning was able to directly retrieve SoS distributions from

raw channel data of pulse-echo US imaging [31], [33], [37].

Feign et al. proposed a SoS inversion method using a fully

convolutional deep neural network [33]. The network was

trained using simulated plane wave US raw data. Results

on the human neck and calf muscles provided promising

indications of SoS variations. Similarly, Jush et al. explored

a deep neural network for SoS reconstruction for US breast

imaging using single plane wave US acquisition [31] and

further extended to in-phase and quadrature data as the input

[38]. Inspired by the feasibility of retrieving SoS distributions

from US channel data with deep neural networks, a learning-

based SoS correction method for PA imaging was proposed

based on a dual-modal PA/US imaging system.

The dual-modal system can acquire interleaved PA and

US data for real time applications, making it possible for

enhancing PA image reconstruction using SoS information

inherited in the corresponding co-registered US data. The

training dataset was prepared in silico, taking into consid-

eration the variations of acoustic properties and structures

present in the real-world scenario. Noise including thermal

noise and system noise from real measurements was added.

The networks’ performance was evaluated with a numerical

phantom, tissue-mimicking phantoms, ex vivo tissues, and in

vivo human data.

With the numerical phantom and the tissue-mimicking phan-

tom experiment, US imaging was able to separate the layers

with different SoS. The trained DL model was able to retrieve

the SoS values at each layer using the channel data. This

could be useful for identifying tissue boundaries that may not

be detectable in B-mode US images. Conventional and the

autofocus methods resulted in deformations in point source

reconstructions as evidenced by degradation in the lateral

resolution. The DL-reconstructed SoS map can compensate

the SoS variations over the entire field-of-view. As a result,

the PA image quality was consistently enhanced, especially

for the targets that were far from the detector as indicated by

the significant improvements in SSIM.
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Although the DL model was trained on pure in silico data,

promising results were observed with measurements on ex

vivo tissue and in vivo human data. With ex vivo tissue

measurements, the boundaries of the chicken breast tissue and

the agar inclusion can be discriminated from the SoS output.

The predicted SoS values for each structure were situated in

the range of the values reported in the literature and was

found to be effective for mitigating the SoS-related artefacts in

the conventional PA reconstruction. Similarly, the model can

identify the SoS changes from the coupling medium (water)

to the skin layer in the pork belly tissue. The SoS aberration

artefacts distorted the image of the subcutaneous needle due

to the large SoS discrepancy between the water and animal

skin. With the SoS information from the networks, the position

of the in-plane needle was corrected with reduced artefacts

originated from the tip area. This could be advantageous

for tracking the needle tip relative to the patient anatomy

during various US-guided minimally invasive procedures such

as peripheral nerve blocks and tumour biopsy [27], [39]–[41].

Similarly, with the in vivo data from human wrist and fingers,

although quantitative assessment of the estimated SoS map

was impossible due to the lack of the ground truth SoS, it

demonstrated a good correspondence with the anatomy in the

corresponding B-mode US images. By applying the predicted

SoS, the cross-sections of the blood vessels at the superficial

areas were effectively enhanced.

The performance of the networks deteriorated when the

depth was larger than approximately 2.5 cm, leading to

underestimated SoS values. This could be explained by the

intrinsically restricted generalisation and robustness ability of

the networks that were built on simulated data. Besides, the

US channel data based on single wave transmission had low

signal-to-noise ratios. As such, a single wave transmission

may not be adequate for a full-field recovery, which is also

reported in [33]. Advanced US transmission strategies such

as coherent compounding could be potentially helpful for

acquiring data with improved signal-to-noise ratios [42]. To

increase the fidelity and realism of the simulation, the effects

of inhomogeneous acoustic attenuation and the frequency

response of the US transducer could be incorporated during US

simulations. Simulated data merit further investigation in terms

of well-defined ultrasonic and optical properties and easy

accessed ground truths, but the model trained with simulated

data may be less efficient on certain measurement data due

to the presence of a domain gap. Further studies can be

performed on circumventing the model bias by incorporating

measurement data from US tissue-mimicking phantoms, of

which the SoS can be well controlled during fabrication as

the ground truth for training.
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