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Abstract— Accurate determination of the speed-of-sound (SoS) 
within the propagation medium is of significant importance in 
photoacoustic (PA) image reconstruction. A common practice in 
PA imaging assumes a homogeneous SoS distribution, e.g., 1540 
m/s for soft tissue similar to that implemented in conventional 
ultrasound (US) beamforming. This assumption can lead to US 
aberration artefacts that degrade the image quality due to tissue 
heterogeneity. In this work, we introduce a learning-based method 
focusing on compensating SoS variations for PA image 
reconstruction in a dual-modal PA/US imaging system. Deep 
neural networks were trained for SoS retrieval using US channel 
data and subsequently informed the corresponding PA image 
reconstruction. The proposed framework demonstrated effective 
mitigation of US aberration artefacts with a numerical phantom, 
achieving a structural similarity index measure of 0.8267 
compared to 0.5042 with the conventional SoS assumption of 1540 
m/s. Likewise, the enhancements were also evident when testing 
the framework with ex vivo US/PA data, implying its great 
potentials in improving PA image quality for in vivo applications.  

Keywords— Photoacoustic imaging, Ultrasound imaging, 
Ultrasound aberration, speed-of-sound, deep learning  

I. INTRODUCTION 
PA imaging is a hybrid imaging modality based on optical 

absorption and US detection.  Capitalising on rich optical 
spectroscopic contrast and deep US imaging depth at ultrasonic 
resolution, PA imaging has been widely investigated for various 
pre-clinical and clinical applications [1]–[3]. In PA tomography, 
PA images are reconstructed via an acoustic inversion 
algorithm, i.e., acoustic waves detected by US transducers can 
be backpropagated to reconstruct initial pressure distributions. 

Similar to US beamforming, SoS in the propagation medium 
needs to be specified and a constant SoS value of 1540 m/s is 
commonly assumed. However, this assumption is readily 
disrupted in practice, as tissues exhibit heterogeneity. Failure to 
compensate SoS variations can lead to serve aberration artefacts 
that deteriorate the image quality.  

Researchers have explored different ways to mitigate sound 
speed aberrations in PA image reconstruction. SoS can be 
globally optimised regarding image fidelity metrics like image 
sharpness [4] and coherent factor [5]. But these methods fall 
short of accounting for local SoS variations. In contrast, a joint 
reconstruction (JR) problem was established seeking for 
concurrently retrieving SoS distributions and initial pressure 
distributions (or optical absorption maps) from PA 
measurements [6]–[9]. On the other hand, SoS maps can be 
rigorously measured with dual-modal PA/US imaging systems 
combing US transmission tomography and PA tomography 
[10]–[12]. However, such imaging systems are generally 
associated with hardware sophistication and substantial 
computation requirements. Deep learning (DL) has made 
noticeable advancements in signal and image processing in the 
field of US and PA imaging. For instance, Jeon et al. introduced 
a DL based method using simulated PA data for SoS aberration 
mitigation and artefact removal [13]. It was noted that the 
training dataset was simulated based on the assumption that SoS 
was largely homogeneous, which may be deficient for highly 
heterogeneous tissues.  

In this work, we propose a learning-based method for SoS 
compensation based on a dual-modal linear array-based US/PA 
imaging system. 

 

 
Fig. 1 Schematic diagram of a learning-based framework for speed-of-sound (SoS) reconstruction (a) and compensation (b) in dual-modal photoacoustic (PA) 
/ultrasound (US) imaging.  

II. MATERIALS AND METHODS 
      The proposed framework was schematically shown in Fig. 
1, deep neural networks were trained to reconstruct SoS 
distributions from US channel data, which were utilised for PA 

reconstruction via a time-reversal algorithm [14]. The initial 
evaluation of the proposed method was performed with 
numerical phantoms containing unseen layered structures, and 
ex vivo tissues in comparison with the conventional approach 



where a homogeneous SoS of 1540 m/s for soft tissue was 
assumed.  

A. Dataset  preparation   
 The training dataset was generated from US simulations in 
k-Wave where the acquisition parameters were modelled based 
on a clinical US probe used in a dual-modal linear array-based 
PA/US imaging system (AcousticX, Cyberdyne INC.) [15]–
[18]. The probe had a total number of 128 elements spanning a 
length of 38.4 mm with a central frequency of 7 MHz and a pitch 
size of 0.3 mm. Structures in US images were simulated as 
homogenous backgrounds with the elliptical inclusions 
mimicking organs and lesions. SoS values for the background 
and inclusions were randomly chosen from a uniform 
distribution ranging from 1400 m/s to 1600 m/s. Acoustic 
attenuation and mass intensity was fixed to 0.5 dB/MHz/cm and 
1020 kg/m3. The speckle density had a mean distribution of 3 
speckles per 𝜆 square and the intensity deviation was uniformly 
sampled from −0.03 to 0.03. Thermal noise and electrical noise 
were also considered.  

B. Network Implementation  
As shown in Fig. 1a, the deep learning model was based on 

a fully convolutional neural network that maps an US raw data 
with dimensions of 1024 ×  128 to the corresponding SoS 
distribution with a size of 384 × 384 (in number of pixels). The 
model was implemented using Keras 2.12.0 with Python 

3.10.11. Training was performed on 2000 samples for 100 
epochs with a batch size of 10 that minimised Mean Square 
Error (MSE) Loss using stochastic gradient descent (SGD) 
optimizer. The experiments were conducted on NVIDIA DGX 
cluster equipped with 8 A100 GPUs.  

III. RESULTS 

A. Numerical  phantom  
      The trained model was tested on in silico PA/US data 
obtained from a numerical phantom as shown in Fig. 3. The 
phantom consisted of two layers with a homogenous SoS of 
1406 m/s and 1553 m/s for each layer, respectively. Fig. 3c 
shows the SoS map predicted by the DL method with an 
average SoS of 1411 m/s for the first layer and 1533 m/s for the 
second layer. The predicted SoS map was incorporated in PA 
image reconstruction in comparison with a conventional SoS 
assumption of 1540 m/s and ground truth SoS, as shown in Fig. 
3e-g. US aberration artefacts manifesting as arc-shaped signals 
(shown in the insets) were observed in the conventional 
reconstruction at all depths. In contrast, the DL-based method 
effectively suppressed the aberration artefacts (structural 
similarity index measure: 0.8267 vs 0.5042 with the 
conventional reconstruction). The enhancement was consistent 
at depths of up to around 3 cm. 

 

 
Fig. 3 Evaluation of deep learning (DL) -based speed-of-sound (SoS) compensation method using in silico photoacoustic (PA)/ ultrasound (US) data. GT: ground 
truth. Scale bar: 5.00 mm.  PA images were normalised regarding the individual maximum amplitude. 
 
 

B. Chicken breast tissue ex vivo  
      To further test the generalisation ability of the DL model, 
ex vivo PA/US data were prepared from an ex vivo tissue 
phantom made of fresh chicken breast tissues and two pencil 
leads with the same diameter of 0.5 mm. As shown in Fig. 3b, 
the SoS difference between the coupling medium (water) and 

the tissues was successfully detected by the model. The 
averaged SoS estimation errors for the water and tissue regions 
(at depths of no more than 25 mm) were 11 m/s, 15 m/s, 
respectively (SoS of water was 1480 m/s at room temperature 
and soft tissue was 1540 m/s [19]). The corresponding SoS-
compensated PA images were remarkably enhanced, as 
evidenced by the decrease in lateral resolution shown in Fig. 3f.  
 



 
 

Fig. 3 Evaluation of deep learning (DL)-based speed-of-sound (SoS) compensation method using ex vivo photoacoustic (PA)/ ultrasound (US) data. Profiles in (f) 
were drawn along the yellow dashed lines. Reflection artefacts were denoted by the yellow arrows. A 2 mm offset was introduced on the DL SoS before shown in 
the overlay. PA images were normalised regarding the individual maximum amplitude.  
 
 

IV. DISCUSSION &  CONCLUSIONS 
In this work, we explored the usage of DL for SoS 

compensation in PA image reconstruction using co-registered 
US channel data in a dual-modal PA/US imaging system. 
This was inspired by recent studies investigating the 
feasibility of reconstructing SoS distributions directly from 
US channel data using DL models [20]–[22]. The proposed 
framework was tested using unseen in silico data and ex vivo 
data. The DL model was able to detect the SoS heterogeneity 
of the numerical phantom and ex vivo tissues using US 
channel data. The incorporation of SoS distribution 
effectively reduced the aberration artefacts in PA images. For 
the numerical phantom, the similarity index measure was 
improved by around 66% in contrast to the homogeneous SoS 
of 1540 m/s adopted in the conventional beamforming. 
Hence, the proposed SoS compensation method can be 
potentially helpful in enhancing PA image quality for diverse 
in vivo applications.  
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