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Abstract. We demonstrate a quasipolynomial-time deterministic approximation algorithm for the

partition function of a Gibbs point process interacting via a stable potential. This result holds for

all activities λ for which the partition function satisfies a zero-free assumption in a neighborhood of

the interval [0, λ]. As a corollary, for all finite-range stable potentials we obtain a quasipolynomial-

time determinsitic algorithm for all λ < 1/(eB+1Ĉϕ) where Ĉϕ is a temperedness parameter and B

is the stability constant of ϕ. In the special case of a repulsive potential such as the hard-sphere

gas we improve the range of activity by a factor of at least e2 and obtain a quasipolynomial-

time deterministic approximation algorithm for all λ < e/∆ϕ, where ∆ϕ is the potential-weighted

connective constant of the potential ϕ. Our algorithm approximates coefficients of the cluster

expansion of the partition function and uses the interpolation method of Barvinok to extend this

approximation throughout the zero-free region.

1. Introduction

Gibbs point processes are a fundamental model of random spatial phenomena in the continuum.

Most classically, such processes are used to model a gas under local interactions (see Ruelle’s [Rue99]

text). Beyond that, Gibbs point processes are used to model various physical phenomenon that

often exhibit local repulsion, such as the locations of galaxies in the universe, the time and place

of earthquakes, and the growth of trees in a forest; see [MW07, DVJ07] for these applications

and more. A simple and well-studied example of a Gibbs point process is the hard-sphere model,

where one samples a Poisson point process in a set of finite volume in Rd and conditions on no

two points having distance less than some parameter r > 0. In order to better understand these

models one often wants to approximately compute the partition function of the model, which may

be understood as a weighted count of allowable configurations of points. The partition function

grows exponentially in the volume, making exact computation intractable even for basic examples.

Additionally, the rate of exponential growth is equal to the infinite-volume pressure, a central

quantity in statistical physics.

Approximating the partition function and sampling—either approximately or exactly—are the

two main algorithmic problems associated to Gibbs point processes. Under very mild assumptions,

polynomial-time approximate sampling of the point process can be used to provide a randomized ap-

proximation to the partition function. Many techniques have been applied to Gibbs point processes

for approximate and exact sampling in certain regimes; in fact, the seminal Metropolis-Hastings

algorithm was developed to sample from the hard-sphere model in dimension 2 [MRR+53].

On the other hand, deterministic approximation algorithms for partition functions of Gibbs

point processes are less well-understood. For Gibbs point processes, to our knowledge the only

rigorous result giving a deterministic algorithm is that of Friedrich, Göbel, Katzmann, Krejca and

Pappik [FGK+22], which shows that for the special case of hard-spheres, one may approximate

the partition function in quasipolynomial time for a certain range of parameters. The authors

show that the hard-sphere model can be well approximated by its discrete analogue (the hard core
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model) allowing them to apply known algorithmic results from the discrete setting (see Section 1.3

for more detail).

In this paper, we provide a quasipolynomial time deterministic approximation algorithm for the

partition function for a general class of stable Gibbs point processes. Our main result is stated only

under the assumption of zero-freeness of the partition function; from there, we deduce two main

corollaries using existing zero-freeness results from the literature, one which applies for all stable

potentials and a stronger result that applies for the more restricted class of repulsive potentials.

We defer formal statements to Section 1.2.

Our approach is via Barvinok’s interpolation method [Bar16] combined with use of the cluster

expansion for Gibbs point processes. This allows us to work with the Gibbs process directly, rather

than a discrete approximation of the process. By combining our result with the zero-free region

for stable potentials guaranteed by the cluster expansion, we obtain what appears to be the first

algorithmic result for stable, non-repulsive potentials. In the special case of a repulsive potential,

combining our result with previous work of the second author and Perkins on zero-freeness [MP21]

yields the first quasipolynomial time deterministic approximation algorithm for a large class of

repulsive potentials (which includes the hard-sphere model) and range of parameters. For the hard-

sphere potential ϕ, we note that [MP21, Lemma 12] gives an explicit bound of ∆ϕ < Cϕ(1−8−d−1)

where ∆ϕ, Cϕ denote the potential-weighted connective constant and temperedness constant of

ϕ respectively (defined in the next sections). This demonstrates that our algorithm works for a

wider range of parameters than the previous deterministic algorithms of [FGK+22]. Additionally,

[FGKP21] argues that the connective constant of the discretization used in [FGKP21, FGK+22]

would not provide an improvement to their results; as such, working in the continuum and using

the zero-freeness result of [MP21] gets around this issue.

1.1. Formal definition of the model. The point processes we consider are defined by three

parameters:

• a measurable set S ⊂ Rd of finite volume,

• a parameter λ ⩾ 0 referred to as the activity or fugacity,

• a pair potential ϕ : Rd → R ∪ {+∞} satisfying ϕ(x) = ϕ(−x).

The temperedness constant of a potential is defined as

Cϕ =

∫
Rd

|1− e−ϕ(x)| dx . (1)

The temperedness constant may be understood as a measure of the strength of the potential. We

say that a potential ϕ is tempered if Cϕ < ∞, and always assume that ϕ is tempered. The energy

of a configuration of points {x1, . . . , xN} ⊂ Rd is defined by

H(x1, . . . , xN ) =
∑

1⩽i<j⩽N

ϕ(xi − xj) . (2)

We will always assume that ϕ is stable, meaning that there is a constant B ⩾ 0 so that for all N

and x1, . . . , xN we have

H(x1, . . . , xN ) ⩾ −BN . (3)

The infimum over such B is called the stability constant of ϕ. The assumption of stability is used to

show that the partition function—and thus the Gibbs point process—itself is well-defined. Under

certain conditions on ϕ, the assumption of stability is a necessary condition for the point process to

be well-defined (see [Rue99, Section 3.2] for a detailed discussion and many examples). A potential
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ϕ is repulsive, if ϕ(x) ⩾ 0 for all x. In particular, repulsive potentials are stable with stability

constant B = 0.

The Gibbs point process in S with potential ϕ at activity λ is the point process in S whose

density against the Poisson point process of activity λ is proportional to e−H(x1,...,xN ). The grand

canonical partition function at activity λ is defined by

ZS(λ) =
∑
k⩾0

λk

k!

∫
Sk

e−H(x1,...,xk) dx1 . . . dxk . (4)

Throughout, we work with the case of S = Λn := [−n, n]d ⊂ Rd, i.e. the axis parallel box of

side-length 2n. One of the most studied examples of a Gibbs point process is the hard sphere model

which is defined by the potential

ϕ(x) =

{
+∞ if ∥x∥2 < r

0 otherwise ,
(5)

for fixed r > 0. The hard sphere model is supported on configurations {x1, . . . , xN} such that

H(x1, . . . , xN ) = 0 i.e. configurations consisting of the centers of a packing of spheres of radius r/2.

Another similar example is the Strauss potential, in which the +∞ in the definition of the hard

sphere potential is replaced with a parameter a > 0.

Among the most common examples of a stable potential that is not repulsive is a Lennard-Jones

potential (see [Rue99, Section 3.2.10]). While there are many examples of potentials that are called

Lennard-Jones potentials, they are characterized by being strongly repulsive at short distances and

weakly attractive at far distances. A large family of widely used potentials is of the form

ϕ(x) = A∥x∥−2α
2 −B∥x∥−α

2

for parameters A,B > 0 and α > d, where we recall d is the underlying dimension. One may also

truncate this potential to be of finite range by simply setting it equal to 0 if ∥x∥2 ⩾ T for some

parameter T , and this still yields a stable potential.

1.2. Statement of results. Our results will require only two additional assumptions on the poten-

tial: first a basic assumption on its form so that we may approximately compute certain volumes;

and second a zero-freeness assumption. The zero-freeness assumption we use for stable (non-

repulsive) potentials is a classical result that follows from the cluster expansion [Rue99, PY17],

while in the repulsive case we will use the work of the second author and Perkins [MP21]. We begin

with the assumption required for computational purposes.

Assumption 1.1. There are compact centrally symmetric convex sets {0} = K0 ⊂ K1 ⊂ K2 ⊂
. . . ⊂ Kℓ so that the function x 7→ exp(−ϕ(x)) is L-Lipschitz on each of ∆j := Kj \Kj−1. Addi-

tionally assume that there is an R > 0 so that supp(ϕ) ⊂ Kℓ ⊂ [−R,R]d and [−1/R, 1/R]d ⊂ K1.

We work in a real-valued model of computation, and assume unit cost for elementary operations;

we also assume that evaluation of e−ϕ as well as checking if a point lies in a given Kj have unit

cost.

Assumption 1.1 essentially has two elements: it assumes that the potential ϕ has a certain

amount of (piecewise) regularity, and also assumes that ϕ is of finite range. We are not aware of

any natural potential ϕ in the literature that fails to satisfy the piecewise regularity portion of the

assumption. There are however many natural potentials that are not of finite range.
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We remark that the hard sphere potential (5), the Strauss potential, and the truncated Lennard-

Jones potential are easily seen to satisfy Assumption 1.1.

A note on asymptotic notation. Throughout the paper we think of the parameters d, ℓ, L and

R from Assumption 1.1 as fixed and allow the implicit constants in our asymptotic notation to

depend on these parameters.

Our main theorem is that we obtain deterministic approximation algorithms for ZS(λ) for po-

tentials satisfying Assumption 1.1 and the following zero-freeness assumption on ZS(λ).

Assumption 1.2. We say a stable potential ϕ satisfies Assumption 1.2 at λ0 > 0 if there exist

constants δ, C > 0 so that the following holds. For all bounded, measurable S ⊂ Rd we have

ZS(λ) ̸= 0 and
1

|S|
| logZS(λ)| ⩽ C for all λ ∈ Nδ([0, λ0]) , (6)

where

Nδ([0, λ0]) = {z ∈ C : d(z, [0, λ0]) < δ} .

Assumption 1.2 may be understood as saying that the Gibbs point process exhibits no phase

transition in the regime [0, λ0] in the Lee-Yang sense (see Section 1.3).

Given a number Z, an ε-approximation to Z is a value Ẑ so that e−εẐ ⩽ Z ⩽ eεẐ. Our main

theorem asserts a quasipolynomial-time approximation for the partition function under these two

assumptions. Recall that Λn := [−n, n]d ⊂ Rd.

Theorem 1.3. Let ϕ be a stable pair potential that satisfies the regularity Assumption 1.1. Sup-

pose ϕ satisfies the zero-freeness Assumption 1.2 at λ ⩾ 0. Let ε ∈ (0, 1), n ∈ N. Then

there is a deterministic algorithm to compute an ε-approximation to ZΛn(λ) with runtime at most

exp(O(log3(|Λn|/ε))).

We note that the implicit constant in the exponent depends on the potential ϕ as well as the

activity λ.

We will deduce two main corollaries from Theorem 1.3. The first of which deduces an algorithm

for all stable potentials in the regime of cluster expansion convergence. The fact that for λ <

(e1+2BCϕ)
−1 a stable potential ϕ satisfies Assumption 1.2 is a direct consequence of the cluster

expansion (see, e.g., (11) or [Rue99, Thm 4.2.3]). This classical result was recently improved

by Procacci and Yuhjtman [PY17] who showed that any stable tempered potential ϕ satisfies

Assumption 1.2 at all λ < (e1+BĈϕ)
−1, where

Ĉϕ =

∫
Rd

1− e−|ϕ(x)| dx . (7)

We note that Ĉϕ ⩽ Cϕ for all ϕ with equality if ϕ is repulsive.

Corollary 1.4. Let ϕ be a stable tempered potential satisfying Assumption 1.1, let B denote its

stability constant and let Ĉϕ be as in (7). Let ε ∈ (0, 1), n ∈ N. Then for all λ < (e1+BĈϕ)
−1,

there is a deterministic algorithm to compute an ε-approximation to ZΛn(λ) with runtime at most

exp(O(log3(|Λn|/ε))).

Our second corollary applies for repulsive potentials—i.e. the case of B = 0—for a much wider

range of parameters. To apply Theorem 1.3 in the repulsive case, we will use pre-existing work
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on zero-freeness of Gibbs point process partition functions. In [MP21], the potential-weighted

connective constant ∆ϕ was introduced, which captures a relationship between the strength of the

potential and the geometry of the underlying space.

First, define Vk via

Vk =

∫
(Rd)k

k∏
j=1

[
exp

(
−

j−2∑
i=0

1∥vj−vi∥<∥vi−vi+1∥ϕ(vj − vi)

)
· (1− e−ϕ(vj−vj−1))

]
dv (8)

where we write dv = dv1 dv2 . . . dvk and interpret v0 = 0, and in the case of j = 1 interpret the

empty sum as equal to 0. Since the potential ϕ is repulsive, the sequence {Vk}k⩾1 is submultiplica-

tive and so we may define the potential-weighted connective constant ∆ϕ via

∆ϕ = lim
k→∞

V
1/k
k = inf

k⩾1
V

1/k
k . (9)

For any repulsive potential ϕ we have ∆ϕ ⩽ Cϕ where Cϕ is the temperedness constant defined

at (1). So long as ϕ is non-trivial we in fact have ∆ϕ < Cϕ. In [MP21] it was shown that Assumption

1.2 is satisfied for each tempered repulsive potential for all λ0 < e/∆ϕ. We therefore obtain the

following immediate corollary.

Corollary 1.5. Let ϕ be a repulsive tempered potential satisfying Assumption 1.1 and let ∆ϕ

denote its potential-weighted connective constant. Let ε ∈ (0, 1), n ∈ N. Then for all λ < e/∆ϕ,

there is a deterministic algorithm to compute an ε-approximation to ZΛn(λ) with runtime at most

exp(O(log3(|Λn|/ε))).

1.3. Context and related work. Much of the classical work on Gibbs point processes has con-

sisted of showing the absence of a phase transition when λ is small. There are many defini-

tions and notions of a phase transition. One of the most robust definitions is due to Lee and

Yang [LY52,YL52], which states that a phase transition is a point at which the pressure fails to

be analytic. Often, various other definitions of phase transitions, e.g. in terms of infinite-volume

Gibbs measures, can be shown to coincide with the Lee-Yang definition (see, e.g., [DS85] for some

rigorous equivalences in the discrete case).

It remains a major open problem to demonstrate—or rule out—a phase transition for even a

single non-trivial pair potential ϕ1. Groenveld [Gro62] used the cluster expansion to prove that

no phase transition occurs for λ < 1/(eCϕ) for repulsive potentials; this was extended to the

broader class of stable potentials by Penrose [Pen63] and Ruelle [Rue63]. For repulsive potentials,

works of Meeron [Mee62,Mee70] extends this regime to 1/Cϕ. Taking inspiration from Weitz’s

groundbreaking work [Wei06] on the hard-core model—a discrete repulsive spin system—the work

of the second author and Perkins [MP20] proved that there is no phase transition for λ < e/Cϕ. This

was extended further in [MP21] which showed that Cϕ may be replaced with the potential-weighted

connective constant ∆ϕ.

In practice, various Markov chain Monte Carlo algorithms are used to sample from Gibbs point

processes, both approximately and exactly. There is a large literature dedicated to this study, see

for example [MRR+53,AW57,BK11,PW96,HVLM99,Gar00,Møl01,Hub16,Pre75,Møl89,FGKP21,

MP22]. We refer to [MP22] and the references therein for more context and background on these

1The first example of a continuous system for which a phase transition was proven was the Widom-Rowlinson

model, a result due to Ruelle [Rue71]. However this does not fit into the framework of indistinguishable particles

that we consider in this paper.
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results; we also note that [MP22] demonstrates a fast mixing approximate sampling algorithm and

polynomial-time random approximation algorithm for a repulsive Gibbs point process in the regime

λ < e/∆ϕ, the same regime in which the results of this work hold.

When it comes to deterministic algorithms, there are several results for discrete systems. In this

setting, three approaches for obtaining approximation algorithms have emerged in recent years.

The first is due to Weitz [Wei06] who pioneered an approach based on a notion of correlation decay

(strong spatial mixing) related to the absence of phase transitions. The second is the interpola-

tion method introduced by Barvinok [Bar16]–a framework for showing that under a zero-freeness

assumption, one can approximate the logarithm of a polynomial using a small number of Taylor co-

efficients (see also [PR17] for an important extension of this method). The third is a method based

on the cluster expansion in statistical physics pioneered by Helmuth, Perkins and Regts [HPR20]

that is closely related to Barvinok’s method.

For Gibbs point processes, to our knowledge the only rigorous result giving a deterministic

algorithm is that of Friedrich, Göbel, Katzmann, Krejca and Pappik [FGK+22]. They show that for

the hard-spheres model, one may approximately compute the partition function in quasipolynomial

time for λ < e/Cϕ. The approach of [FGK+22] works by showing that one may approximate the

partition function of the hard-sphere model with the partition function for the hard-core model

on a graph given by discretizing Euclidean space with a small mesh. After this approximation

is in place, an application of Weitz’s method [Wei06] provides an algorithm. We note also that

[FGK+22] applies not only to the hard-sphere model, but also to a class of multi-type Gibbs point

processes with hard constraints, an example of this more general class being the Widom-Rowlinson

model. Additionally, while both the algorithm of [FGK+22] and Theorem 1.3 have quasipolynomial

runtime, the algorithm of [FGK+22] runs in time exp(O(log2(|Λn|/ε)) rather than our runtime of

exp(O(log3(|Λn|/ε)).
To our knowledge, Theorem 1.3 marks the first approximation algorithm of any kind for the

partition function for stable, non-repulsive potentials.

1.4. Our approach. Our approach is via Barvinok’s interpolation method combined with use of

the cluster expansion. The cluster expansion—also called the Meyer series—is a combinatorial

description of the Taylor coefficients of logZS(λ). In particular for bounded, measurable S ⊂ Rd

and |λ| < (e1+BĈϕ)
−1 we have

logZS(λ) =
∑
k⩾1

λk

k!
Ck(S) (10)

Ck(S) =
∑
G∈Gk

∫
Sk

∏
{i,j}∈E(G)

(e−ϕ(xi−xj) − 1) dx (11)

where Gk is the set of connected labeled graphs with k vertices and E(G) is the set of edges in a

graph G (see, e.g., [PY17] for this and similar expansions).

The algorithmic significance of the cluster expansion stems from two observations. The first is

that in order to compute 1
|S| logZS(λ) up to an additive error of ε, it suffices to compute the first

O(log(|S|/ε)) coefficients Ck(S). This simple but crucial observation is at the heart of Barvinok’s

interpolation method and algorithmic applications of the cluster expansion. The second is that

the description of the Taylor coefficients as a sum over connected graphs allows us to approximate

them efficiently.
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At first sight, it seems that the use of the cluster expansion restricts the range of λ for which

we can obtain algorithms to the interval (0, (e1+BĈϕ)
−1) where the cluster expansion is known

to converge. Moreover, the work of Groeneveld [Gro62] and Penrose [Pen63] implies that for a

repulsive potential the radius of convergence of the cluster expansion is at most 1/Cϕ (see Remark

3.7 in [NF20]). In order to use the cluster expansion to produce an algorithm throughout the

zero-free region (which for repulsive potentials is known to include values of λ outside of the radius

of convergence), we use an idea of Barvinok and apply a well-chosen polynomial to map between

the zero-free region and the disk. This is handled in Section 3.

The main technical contribution of this work is to approximate the coefficients of the cluster

expansion (11) in quasipolynomial time. We note that the problem of approximating coefficients of

the cluster expansion was pointed out in [FGK+22] as a central obstacle to obtaining an efficient

deterministic algorithm that works entirely in the continuum. To approximate the coefficients

Ck(S), the main challenge is that for each graph G ∈ Gk, the integrand in (11) need not be well-

behaved; in particular, it need not be Lipschitz. To handle this, we break each such term into

many subsequent terms, each of which will give us an integral of a function that is Lipschitz over

its support. We then approximate each of these integrals by taking a sufficiently fine mesh and

comparing the integral to a weighted sum over this mesh. Our assumption that the potential ϕ

has finite range allows us to restrict our attention to approximating integrals over regions whose

volume is independent of n. It would be interesting to extend the results of this paper to include

stable potentials of infinite range.

2. Approximating coefficients in the cluster expansion

Throughout this section, we fix a stable potential ϕ with with stability constant B that satisfies

Assumption 1.1. Recall that Λn := [−n, n]d ⊂ Rd. Our goal in this section is to provide an

approximation algorithm for Ck(Λn) (as defined at (11)). In the next section we show how to use

these approximate coefficients to arrive at an approximation of the partition function ZΛn(λ).

Proposition 2.1. Let ϕ be a stable potential satisfying Assumption 1.1. There are constants

C, c > 0 depending only on ϕ and the dimension d so that the following holds. For each ε ∈ (0, 1)

and k, n ∈ N we may approximate Ck(Λn)/|Λn| up to an additive error of ε in time at most

C|Λn|ε−dkeck
3
.

Note that Proposition 2.1 makes no use of a zero-freeness or correlation decay type assumption.

In order to prove Proposition 2.1, we will approximate each summand in (11). Further, we will

break up the term for each graph into the terms that are Lipschitz on their support. The main work

of this section is Lemma 2.3 below, which provides an approximation for each of these Lipschitz

terms. Before stating this precisely, we make a few definitions.

Definition 2.2. Let ∆1, . . . ,∆ℓ be defined as in Assumption 1.1.

(1) Given a connected graph G on k vertices, an edge-labelling is a function σ : E(G) →
= {1, . . . , l}.

(2) For each labelling σ and edge {i, j} ∈ E(G), define the function fσ
i,j : (Rd)k → R via

fσ
i,j(x) := (e−ϕ(xi−xj) − 1)1{xi − xj ∈ ∆σ({i,j})} .

.
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(3) Define fσ via

fσ(x) :=
∏

{i,j}∈E(G)

fσ
i,j(x) .

(4) Define Aσ ⊂ (Rd)k via

Aσ := {x ∈ (Rd)k : xi − xj ∈ ∆σ({i,j}) for all {i, j} ∈ E(G)} ,

and note that supp(fσ) ⊆ Aσ.

Recall that Gk is the set of connected labeled graphs with k vertices. Given a graph G ∈ Gk we

have ∫
Λk
n

∏
{i,j}∈E(G)

(e−ϕ(xi−xj) − 1) dx =
∑
σ

∫
Λk
n

fσ(x)dx , (12)

where the sum ranges over all edge-labellings σ of G. We note that there are ℓ|E(G)| ⩽ ℓk
2/2 such

labellings, and there are at most 2k
2/2 connected graphs on k vertices.

With this setup in mind, in order to approximate Ck(Λn), it is sufficient to approximate the

integral of fσ for each labelling σ of each graph G ∈ Gk. In the next subsection, we will demonstrate

such an approximation:

Lemma 2.3. Let n, k ∈ N. For any G ∈ Gk, labelling σ, and δ < cd,R, there is a set of points

Sσ,δ ⊂ Λk
n with |Sσ,δ| = O(|Λn|(2R)d(k−1)δ−dk) so that we have∣∣∣∣∣∣

∫
Λk
n

fσ(x) dx−
∑

x∈Sσ,δ

δdkfσ(x)

∣∣∣∣∣∣ = O(k2eBk2δ|Λn|(2R)d(k−1)) .

Further, the set Sσ,δ may be computed in time O(k2|Λn|(2R)d(k−1)δ−dk).

Proposition 2.1 follows quickly from here.

Proof of Proposition 2.1. Note that by (12)

Ck(Λn) =
∑
G∈Gk

∑
σ

∫
Λk
n

fσ(x)dx .

Taking δ = ε exp(−Ck2) in Lemma 2.3 with C sufficiently large as a function of R, d, ℓ and B

we may approximate Ck(Λn)/|Λn| up to additive error ε in time O(k2eBk2 |Λn|(2R)d(k−1)δ−dk) =

O(|Λn|ε−dkeck
3
) where c is a constant depending only on R, d and ℓ and B. □

2.1. Approximating the integral over a labelling. In this section, we prove Lemma 2.3. Fix

G ∈ Gk and set S = Λn.

Recall from Assumption 1.1 that the sets ∆j are defined via ∆j = Kj \Kj−1. For a given γ ⩾ 0,

∆
(γ)
j := (1− γ)Kj \ (1 + γ)Kj−1 .

Define the set Uγ via

Uγ := {x ∈ Sk : xi − xj ∈ ∆
(γ)
σ({i,j}), for all {i, j} ∈ E(G)} ∩ supp(fσ) .

Before continuing, let us motivate the definition of Uγ . We will show that if x ∈ Uγ , then fσ

is Lipschitz on a small neighbourhood of x (see Lemmas 2.8 and 2.7 below). This will allow us to

approximate the integral
∫
Uγ

fσ(x) dx by a sum over a mesh. Indeed, we define
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Sσ,δ := Uγ ∩ ((δZ)d)k ,

and prove the following lemma.

Lemma 2.4. ∣∣∣∣∣∣
∫
Uγ

fσ(x) dx−
∑

x∈Sσ,δ

δdkfσ(x)

∣∣∣∣∣∣ = O(k2eBk2δ|S|(2R)d(k−1)) .

To complete the proof of Lemma 2.3 we show that
∫
Uγ

fσ(x) dx closely approximates
∫
Λk
n
fσ(x) dx

and that the sum in Lemma 2.4 can be computed efficiently. We turn our attention first to the

latter task.

Lemma 2.5. The set Sσ,δ may be enumerated in time O(k2|S|(2R)d(k−1))δ−dk) and satisfies |Sσ,δ| =
O(|S|(2R)d(k−1))δ−dk).

Proof. Fix a spanning tree T of G and let

T = {x ∈ Sk ∩ ((δZ)d)k : ∥xi − xj∥∞ ⩽ 2R for all {i, j} ∈ E(T )} .

First observe that Sσ,δ ⊆ T , since if x ∈ Uγ then xi − xj ∈ ∆
(γ)
σ({i,j}) ⊆ [−R,R]d for all {i, j} ∈

E(G). In particular, ∥xi − xj∥∞ ⩽ 2R for all {i, j} ∈ E(T ).

Note that |T | = O(|S|(2R)d(k−1)δ−dk) and that T may be enumerated in timeO(|S|(2R)d(k−1)δ−dk)

as well. Further, for each point in T , we may check membership in Sσ,δ in time O(k2), completing

the lemma. □
To show that

∫
Uγ

fσ(x) dx closely approximates
∫
Sk f

σ(x) dx it will be enough to show that the

measure of

Wγ = Sk ∩ supp(fσ) \ Uγ ,

is small.

Lemma 2.6. For γ ⩽ 1/d we have |Wγ | ⩽ 4|S||E(G)|(2R)d(k−1)dγ.

Proof. For each edge {a, b} ∈ E(G) define

Wγ,a,b = {x ∈ Sk : xi − xj ∈ ∆σ({i,j}) for all {i, j} ∈ E(G), and xa − xb /∈ ∆
(γ)
σ({a,b})} .

Note then that Wγ ⊆ ∪{a,b}∈E(G)Wγ,a,b. Thus, it is sufficient to prove

|Wγ,a,b| ⩽ 4|S|(2R)d(k−1)dγ . (13)

To see (13), fix a spanning tree T of G so that {a, b} ∈ E(T ). We then have that

Wγ,a,b ⊆ {x ∈ (Rd)k : x1 ∈ S, xi−xj ∈ [−R,R]d for all {i, j} ∈ E(T ), xa−xb ∈ ∆σ({a,b})\∆
(γ)
σ({a,b})} .

This provides a bound of

|Wγ,a,b| ⩽ |S|(2R)d(k−2)|∆σ({a,b}) \∆
(γ)
σ({a,b})| .

9



Write j = σ({a, b}) for notational simplicity. By convexity of the sets Kj and Kj−1 we have

(1− γ)Kj ⊂ Kj and Kj−1 ⊂ (1 + γ)Kj−1. We may therefore bound

|∆j \∆(γ)
j | ⩽ |Kj | − |(1− γ)Kj |+ |(1 + γ)Kj−1| − |Kj−1|

= |Kj |
(
1− (1− γ)d

)
+ |Kj−1|

(
(1 + γ)d − 1

)
⩽ (2R)d · 2dγ + (2R)d · 2dγ . (14)

Combining the two previous displayed equations shows (13) and completes the lemma. □
Assuming Lemma 2.4, the proof of Lemma 2.3 now follows quickly.

Proof of Lemma 2.3. Bound∣∣∣∣∣∣
∫
Sk

fσ(x) dx−
∑

x∈Sσ,δ

δdkfσ(x)

∣∣∣∣∣∣ ⩽
∣∣∣∣∣
∫
Sk\Uγ

fσ(x) dx

∣∣∣∣∣+
∣∣∣∣∣∣
∫
Uγ

fσ(x) dx−
∑

x∈Sσ,δ

δdkfσ(x)

∣∣∣∣∣∣ . (15)

Since |e−ϕ(x) − 1| ⩽ e2B, we have that |fσ| ⩽ eBk2 . The first term on the RHS of (15) may thus be

bounded by eBk2 |Wγ | which we bound using Lemma 2.6, and the latter term may be bounded by

Lemma 2.4. □
It remains to prove Lemma 2.4. As discussed, a key step will be to show that if x ∈ Uγ , then fσ

is Lipschitz on a small neighbourhood of x. This is carried out in the following two lemmas.

Lemma 2.7. The function fσ is (2eBk2L|E(G)|)-Lipschitz on Aσ.

Proof. Let x,y ∈ Aσ. Then by definition

|fσ(x)− fσ(y)| =

∣∣∣∣∣∣
∏

{i,j}∈E(G)

(e−ϕ(xi−xj) − 1)−
∏

{i,j}∈E(G)

(e−ϕ(yi−yj) − 1)

∣∣∣∣∣∣ . (16)

To bound (16) we use the inequality∣∣∣∣∣
m∏
i=1

zi −
m∏
i=1

wi

∣∣∣∣∣ ⩽ Tm−1
m∑
i=1

|zi − wi| ,

which holds whenever |zi| ⩽ T, |wi| ⩽ T for all i. This yields

|fσ(x)− fσ(y)| ⩽ eBk2
∑

{i,j}∈E(G)

∣∣∣e−ϕ(xi−xj) − e−ϕ(yi−yj)
∣∣∣

⩽ eBk2 |E(G)|L max
{i,j}∈E(G)

∥(xi − yi)− (xj − yj)∥2

⩽ 2eBk2 |E(G)|L∥x− y∥2 ,

where we used that x 7→ exp(−ϕ(x)) is L-Lipschitz on each ∆j by Assumption 1.1. □
Set

γ := 2Rδ . (17)

Since we are working in the context of Lemma 2.3, we may also assume that γ ⩽ 1/d by taking

δ small enough as a function of d and R.
10



Lemma 2.8. Let γ be as in (17). If x ∈ Uγ, then

B∞(x; δ) ⊆ Aσ ,

where B∞(x; δ) denotes the open ℓ∞ ball of radius δ centred at x.

Proof. Let x ∈ Uγ ⊆ supp(fσ). Suppose that v ∈ (Rd)k is such that ∥v∥∞ < δ. It suffices to show

that x+ v ∈ Aσ. Let {i, j} ∈ E(G) and let t = σ({i, j}). Our task is to verify that

xi − xj + vi − vj ∈ ∆t . (18)

Since x ∈ Uγ we have, by definition,

xi − xj ∈ ∆
(γ)
t .

Moreover ∥vi − vj∥∞ ⩽ 2δ. The statement (18) then follows from the following claim.

Claim 2.9. If y ∈ ∆
(γ)
t , then B∞(y; 2δ) ⊆ ∆t.

Proof. Recall that

∆t = Kt \Kt−1 and ∆
(γ)
t = (1− γ)Kt \ (1 + γ)Kt−1 .

We will show that B∞(y; 2δ) ⊆ Kt. The argument to show that B∞(y; 2δ) ⊆ Kc
t−1 is analogous.

We let ∥·∥ denote the norm associated to the centrally symmetric convex set Kt, that is for u ∈ Rd,

∥u∥ := inf{θ > 0 : u ∈ θKt} .

We note that since [−1/R, 1/R]d ⊆ Kt ⊆ [R,R]d by assumption, we have

1

R
∥u∥∞ ⩽ ∥u∥ ⩽ R∥u∥∞ . (19)

With these observations in hand, we note that since y ∈ ∆
(γ)
t ⊆ (1− γ)Kt, we have ∥y∥ ⩽ (1− γ).

Suppose now that ∥z∥∞ < 2δ, then by the triangle inequality, (17) and (19)

∥y + z∥ ⩽ ∥y∥+ ∥z∥ < 1− γ + 2Rδ = 1 .

In other words y + z ∈ Kt as desired. □
Applying Claim 2.9 verifies (18). □

With the previous two lemmas in hand, we are now in a position to prove Lemma 2.4.

Proof of Lemma 2.4. Given x ∈ (Rd)k, let r(x) denote the point in ((δZ)d)k closest to x in ℓ∞
distance (breaking ties arbitrarily). Note that if x ∈ Uγ then r(x) ∈ Aσ by Lemma 2.8. It follows

from Lemma 2.7 that∣∣∣∣∣
∫
Uγ

fσ(x)− fσ(r(x)) dx

∣∣∣∣∣ ⩽ 2eBk2LE(G)
√
dkδ|Uγ | = O(eBk2 |E(G)|δ|S|(2R)d(k−1)) . (20)

Define

U ′
γ :=

⋃
x∈Sσ,δ

B∞(x, δ/2)

and note that ∫
U ′
γ

fσ(r(x)) dx =
∑

x∈Sσ,δ

δdkfσ(x) . (21)

11



Using the bound |fσ| ⩽ eBk2 gives∣∣∣∣∣
∫
Uγ

fσ(r(x)) dx−
∫
U ′
γ

fσ(r(x)) dx

∣∣∣∣∣ ⩽ eBk2 |U ′
γ△Uγ | . (22)

Combining lines (20), (21) and (22), it suffices to show that |U ′
γ△Uγ | = O

(
|E(G)|δ|S|(2R)d(k−1)

)
to complete the lemma. To this end note that

U ′
γ△Uγ ⊆ Xγ := {x ∈ (Rd)k : d∞(∂Uγ ,x) ⩽ δ/2} .

If y ∈ ∂Uγ , then ya − yb ∈ ∂∆
(γ)
σ({a,b}) for some {a, b} ∈ E(G). Thus, if x ∈ Xγ , then

d∞(xa − xb, ∂∆
(γ)
σ({a,b})) ⩽ δ

for some {a, b} ∈ E(G). Arguing as in Lemma 2.6, it suffices to show that for t ∈ [ℓ],

|{z : d∞(z, ∂∆
(γ)
t ) ⩽ δ}| = O((2R)dδ) .

Suppose then that d∞(z, ∂∆
(γ)
t ) ⩽ δ. Since,

∂∆
(γ)
t ⊆ ∂((1− γ)Kt) ∪ ∂((1 + γ)Kt−1) ,

let us suppose first that

d∞(z, ∂((1− γ)Kt)) ⩽ δ . (23)

As in the proof of Claim 2.9, let ∥ · ∥ denote the norm associated to Kt. Then by (23), there exists

p, q ∈ Rd such that z = p+ q, ∥p∥ = (1− γ), ∥q∥∞ ⩽ δ. By the triangle inequality, (17) and (19)

∥z∥ ⩽ ∥p∥+ ∥q∥ ⩽ 1− γ +Rδ < 1.

Similarly ∥z∥ > 1− 2γ. In other words,

z ∈ Kt\(1− 2γ)Kt .

If instead d∞(z, ∂((1+γ)Kt−1)) ⩽ δ, then by a similar argument we have that z ∈ (1+2γ)Kt−1\Kt−1.

By the same calculation as in (14), we conclude that

|{z : d∞(z, ∂∆
(γ)
t ) ⩽ δ}| ⩽ |Kt\(1− 2γ)Kt|+ |(1 + 2γ)Kt−1\Kt−1| = O((2R)dδ) ,

as desired. □

3. Reducing to cluster expansion coefficients

Here we show that one can approximate 1
|Λn| logZΛn(λ) using approximations of the coefficients

of the cluster expansion. A slight nuisance is that λ need not lie in the radius of convergence of the

cluster expansion; in particular, it is known [Gro62,Pen63] that for a repulsive potential the radius

of convergence of the cluster expansion is at most 1/Cϕ (see remark 3.7 in [NF20]). To get around

this issue, we will use an idea of Barvinok and precompose our function f = |Λn|−1 logZΛn with

a well-chosen polynomial map sending the unit disk into our zero-free region. This will result in a

function that is analytic in the disk, and the appearance of the polynomial will end up providing

only a polynomial fuzz to the efficiency of our algorithms. This approach is outlined in Barvinok’s

monograph [Bar16, pg. 22] on partition functions; we isolate and prove an abstract version of this

idea here.

Define Nγ := {z ∈ C : d(z, [0, 1]) < γ} for all γ ∈ (0, 1).
12



Theorem 3.1. Let γ ∈ (0, 1). Suppose f is analytic in Nγ and |f(z)| ⩽ 1 for all z ∈ Nγ.

Then there is a constant C = Cγ > 0 depending only on γ so that the following holds for all

ε ∈ (0, 1/2). If one can approximate each of f (j)(0)/j! up to an additive error of εC for all

j = 0, 1, . . . , C log(1/ε) in time at most T , then one can approximate f(1) up to an additive error

of ε in time CT log(1/ε) + logC(1/ε) .

We let D = {z ∈ C : |z| < 1} denote the open unit disk in C. Our first step is finding a

polynomial to map D into the region Nγ so that some point in D is mapped to 1. While there

are many ways to find such a polynomial (for example, [Bar16, Lemma 2.2.3] gives an explicit

construction) the form of the polynomial is not important for us here, and so we state the relevant

properties:

Lemma 3.2. For each γ > 0 we may find a polynomial Φ = Φγ so that Φ(D) ⊂ Nγ, Φ(0) = 0 and

there is a point z1 ∈ D so that Φ(z1) = 1.

The point now will be to work with the function g : D → C defined by g = f ◦ Φ. Under the

assumptions of Theorem 3.1, such a function g is analytic in D and |g(z)| ⩽ 1 for all z ∈ D. The

Cauchy integral formula will imply that we can approximate g by its Taylor polynomial provided

we are not near the boundary:

Fact 3.3. Let g be analytic in D with |g(z)| ⩽ 1 for all z ∈ D. Then for all z ∈ D and k ∈ N we

have ∣∣∣∣∣∣g(z)−
k−1∑
j=0

g(j)(0)

j!
zj

∣∣∣∣∣∣ ⩽ |z|k

1− |z|
.

Proof. Bound ∣∣∣∣∣∣g(z)−
k−1∑
j=0

g(j)(0)

j!
zj

∣∣∣∣∣∣ ⩽
∑
j⩾k

∣∣∣∣∣g(j)(0)j!

∣∣∣∣∣ · |z|j
and note that by Cauchy’s integral formula we have∣∣∣∣∣g(j)(0)j!

∣∣∣∣∣ ⩽ 1 .

Summing over j ⩾ k completes the proof. □
Let z1 be as in Lemma 3.2. It follows that in order to approximate f(1) = g(z1) up to an additive

error of ε, it is sufficient to approximate the first k = Cγ log(1/ε) terms g(j)(0)/j! up to an error

of ε/(2k) each. To do so, we will relate the derivatives of g to those of f . Iterating the chain rule

gives the classical Faà di Bruno formula:

Fact 3.4 (Faà di Bruno’s formula). Let Φ and f be analytic at 0 with Φ(0) = 0 and set g = f ◦Φ.
Then for each n ∈ N we have

g(n)(0) =
n∑

k=1

f (k)(0)Bn,k(Φ
′(0),Φ′′(0), . . . ,Φ(n−k+1)(0)) (24)

where Bn,k(x1, x2, . . . , xn−k+1) are the Bell polynomials given by

Bn,k(x1, x2, . . . , xn−k+1) =
∑ n!

j1!j2! · · · jn−k+1!

(x1
1!

)j1 (x2
2!

)j2
· · ·
(

xn−k+1

(n− k + 1)!

)jn−k+1

(25)
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where the sum is over all sequences of non-negative integers j1, j2, . . . , jn−k+1 satisfying
∑

ji = k

and
∑

iji = n.

To make use of this fact, we will need to evaluate the Bell polynomials Bn,k at derivatives of our

polynomial Φ. A simple term-by-term bound will be good enough for our purposes.

Lemma 3.5. For each polynomial Φ there is a constant C = CΦ > 0 so that the following holds.

For all n, k ∈ N we may compute Bn,k(Φ
′(0),Φ′′(0), . . . ,Φ(n−k+1)(0)) in time O(kC) and we have

the bound ∣∣∣∣k!n!Bn,k(Φ
′(0),Φ′′(0), . . . ,Φ(n−k+1)(0))

∣∣∣∣ ⩽ eCk .

Proof. First compute all derivatives of Φ at 0, which takes OΦ(1) time since Φ is a polynomial. Set

xj = Φ(j)(0) and note that xj = 0 for j > d where d is the degree of Φ. We may thus reduce the

sum in (25) to those for which ji = 0 for all i > d as all other summands are 0. Since the values

j1, . . . , jd are non-negative integers of size at most k, we have (k + 1)d choices for the sequence

(j1, . . . , jd). Moreover the constraints
∑

ji = k and
∑

iji = n imply that n ⩽ dk and so each

summand in (25) can be computed in time Od(k
C′
) for some C ′ = C ′

d > 0. We may therefore

calculate the sum (25) in time OΦ(k
C) for some C = Cd > 0.

To see the claimed bound, apply the triangle inequality to see∣∣∣∣k!n!Bn,k(x1, x2, . . . , xn−k+1)

∣∣∣∣ ⩽∑(
k

j1, . . . , jd

)
|x1|j1 |x2|j2 · · · |xd|jd .

Relaxing the sum to consist of sequences satisfying
∑

ji = k, the binomial theorem gives∑(
k

j1, . . . , jd

)
|x1|j1 |x2|j2 · · · |xd|jd = (|x1|+ |x2|+ . . .+ |xd|)k ⩽ eCk

for C large enough with respect to Φ. □
The proof of Theorem 3.1 now follows from some bookkeeping.

Proof of Theorem 3.1. Apply Lemma 3.2 to find a polynomial Φ = Φγ satisfying the hypotheses of

the lemma and define g = f ◦ Φ. Then by Fact 3.3 we may take k := Cγ log(1/ε) large enough so

that ∣∣∣∣∣∣g(z1)−
k−1∑
j=0

g(j)(0)

j!
zj1

∣∣∣∣∣∣ ⩽ ε/2 .

Since g(z1) = f(1), it is thus sufficient to approximate g(j)(0)/j! for j = 0, 1, . . . , k − 1 up to an

additive error of at most δ := ε/(2k). By Fact 3.4 and Lemma 3.5 we may expand

g(j)

j!
(0) =

j∑
i=1

f (i)(0)

i!
Bi,j

where the coefficients Bi,j satisfy |Bi,j | ⩽ eCi ⩽ eCk = O(ε−C) and may be computed in time

O(kC) = O(logC(1/ε)). Thus, if we take C ′ large enough (as a function of γ) and approximate

f (i)(0)/i! up to additive error εC
′
, we obtain an approximation to g(z1) = f(1) up to additive error

ε. □
14



4. Proof of Theorem 1.3

Proof of Theorem 1.3. Set f(z) := 1
C|Λn| logZΛn(λz), where C is as in Assumption 1.2. Then f

satisfies the hypotheses of Theorem 3.1, and note that by (11) we have f (j)(0) = λjCj(Λn)/(C|Λn|).
If we set δ = ε/(C|Λn|), then we are seeking to approximate f(1) up to an additive error of δ. By

Propostion 2.1, for each j = 0, 1, . . . , O(log(1/δ)), we may compute f (j)(0) up to additive error

δO(1) in time at most O(|Λn|δ−O(j)eO(j3)) = exp(O(log3(1/δ))) . Applying Theorem 3.1 completes

the proof. □
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