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Situation-based neuromorphic memory in spiking
neuron-astrocyte network

Susanna Gordleeva, Yuliya A. Tsybina, Mikhail I. Krivonosov, Ivan Y. Tyukin, Victor B. Kazantsev, Alexey A.
Zaikin, Alexander N. Gorban

Abstract—Mammalian brains operate in a very special sur-
rounding: to survive they have to react quickly and effectively
to the pool of stimuli patterns previously recognized as danger.
Many learning tasks often encountered by living organisms
involve a specific set-up centered around a relatively small set
of patterns presented in a particular environment. For example,
at a party, people recognize friends immediately, without deep
analysis, just by seeing a fragment of their clothes. This set-
up with reduced “ontology” is referred to as a ”situation”.
Situations are usually local in space and time. In this work,
we propose that neuron-astrocyte networks provide a network
topology that is effectively adapted to accommodate situation-
based memory. In order to illustrate this, we numerically
simulate and analyze a well-established model of a neuron-
astrocyte network, which is subjected to stimuli conforming to
the situation-driven environment. Three pools of stimuli patterns
are considered: external patterns, patterns from the situation
associative pool regularly presented to the network and learned
by the network, and patterns already learned and remembered
by astrocytes. Patterns from the external world are added to and
removed from the associative pool. Then we show that astrocytes
are structurally necessary for an effective function in such a
learning and testing set-up. To demonstrate this we present a
novel neuromorphic computational model for short-term memory
implemented by a two-net spiking neural-astrocytic network.
Our results show that such a system tested on synthesized data
with selective astrocyte-induced modulation of neuronal activity
provides an enhancement of retrieval quality in comparison to
standard spiking neural networks trained via Hebbian plasticity
only. We argue that the proposed set-up may offer a new
way to analyze, model, and understand neuromorphic artificial
intelligence systems.

Index Terms—Spiking neural network, astrocyte, neuron-
astrocyte interaction, working memory.
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THE way the test data is organized, validated, as well as
the method used to train learning systems can critically

affect the result. Especially if the quality of learning is directly
linked to survival. Mammalian brains are trained to survive,
which is why they enable an animal to react quickly to patterns
previously associated with dangerous situations. Hence, it is
important to understand how such quick responses emerge
in highly uncertain and complicated real-world operational
conditions.

The cornerstone assumption of the classical statistical learn-
ing frameworks [1], [2], [3] is that a learner or a learning
machine operates in an environment which can be adequately
modelled by some unknown probability distribution. The
learner then gathers relevant information about the environ-
ment by accessing independent samples from this unknown
distribution. The problem, however, is that these apparently
sensible classical assumptions have major consequences af-
fecting the applicability of the theory. The independence
assumption may be violated when the learner’s training data
inherits strong temporal correlations (e.g. subsequent frames
taken from video footage) and which have been ignored at the
data-processing stage. The absence of any knowledge about
the fixed probability distribution, which is particularly difficult
to alleviate in high-dimensional settings, enforces conservative
worst-case distribution-agnostic generalisation bounds [1], [2],
[3] and can lead to a stream of foundational paradoxes
highlighting the potential impossibility to compute stable and
accurate learning machines [4]1. Finally, the fact that the distri-
bution is fixed and unknown has an impact on the possibility to
handle concept drifts – a widespread phenomenon in real-life
practical applications [5]. We suggest that the above difficulties
can potentially be overcome via the introduction of a new
mode of learning which we will refer to as situation-based
learning.

How many people did you meet yesterday? 5? 10? Was
it difficult to recognise them? Psychologists say that our
day-to-day activities impact our behaviour. Recognition of
patterns around us occurs in, what is called in psychology, a
situation. Obviously, biological creatures that require less time
to recognise a situation are getting an evolutionary advantage,
they can escape a predator faster, get a higher chance of
catching a prey, or when humans are concerned, earn more

1See also Theorem 7.1 from [1] showing that an arbitrarily small pertur-
bation added to an activation function has the capacity to make the Vapnik-
Chervonenkis dimension of a neuron with this modified activation function
infinite and hence rendering all classical generalisation bounds using Vapnik-
Chervonenkis dimension useless for neural networks with such neurons.
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Fig. 1. A diagram of situation-based model of data. In this model, all data
are partitioned into three pools of patterns. The largest circle of patterns (light
blue) is the external world that contains a huge number of patterns. Situation-
based pool of patterns is much smaller and includes only the patterns that we
meet regularly within this situation (purple). Data patterns in the situation-
based pool can be removed and replaced with patterns from the external world.
Patterns from this pool are used for learning much more often than a random
pattern from the external world pool, hence many of them are already learned,
stored, and can be easily and quickly recognised by association with patterns
stored in the system (dark blue lila).

money. We all live in a situation-ridden world, and our life
is based on recognition of patterns in current situation. But
how is this recognition organized? We do not normally spend
much time to recognize a friend, a fraction of a pattern is
usually enough. Such quick processing of is provided by a very
special structure of pattern learning. We learn patterns from
a situation-based pool, and, since the number of patterns in
the situation is limited, our pool usually is much smaller than
in the whole external world. Such a situation-based structure
of learning is visualised in the Fig. 1. There are three pools
of patterns. Patterns from the huge external pool get into
a situation-based pool, and then they become available for
learning much more often than the ones arriving directly from
the external pool. Hence, all patterns from a situation pool,
except for the newcomers, are learnt and stored in the memory
- the internal pool. Recognition is, hence, structure-associated,
and patterns from the structure pool are recognised much
easier and quicker patterns than from an external pool.

Obviously, such situation-based structure has two main
advantages: it is quick and requires less energy, which is very
important in the biological world. Creatures adapted to such
structure-oriented pattern of learning are more competitive
and have an evolutionary advantage. This new data model is
complementary to other important characteristics of learning
and memory explored in the previous work, including high-
dimensionality of the space of stimuli [6], [7] and properties
of data distributions conforming to the task of learning from
few examples [8], [9]. The importance of the problem was
mentioned by [10], [11]. The notion of the situation captures
spatiotemporal localisation of the task and the subjectivity of
learners, i.e. the relevant contexts. This enables a learner to
partition the complexity of the environment into the union
of much simple “sparse” tasks. A related notion of attention

in deep learning has already been proven successful in the
area of natural language processing giving rise to the popular
transformer models [12]. Here we formalise the notion at the
conceptual level regardless of its particular implementation in
a learning machine.

All this leads to the key question whether there exists a
structural organisation of neural circuitry that is particularly
suited for structure-based learning and that possesses charac-
teristics of information processing in these circuits that are
necessary to support this learning. In this paper, we propose
relevant neural circuits that are particularly suited to facilitate
situation-based learning. These circuits or networks combine
conventional neurons and astrocytes.

The structural, metabolic, and homeostatic functions of
astrocytes are well established [13]. Recently it has been
revealed that astrocytes contribute to neural information pro-
cessing via bidirectional exchange of regulatory signals with
the neuronal elements. Astrocytes respond to neural activity
by intracellular calcium elevations [14]. Calcium pulses in
astrocytes induce the release of chemical transmitters (termed
“gliotransmitters”) which then regulate the synaptic gain of
near and distant tripartite synapses at diverse timescales [15].
The data show that an astrocytes have an impact on local
synaptic plasticity, neuronal network oscillations, memory and
behaviour (for recent reviews see [16]–[18]). Despite that
the role played by astrocytes is not yet fully understood,
these recent findings support the hypothesis that cognitive
processing and memory are not the result of neuronal
activity only but of the coordinated activity of both
astrocytes and neurons [19]. Consequently, the most inter-
esting research question is: whether a presence of astrocytes,
which provide multiplex topology of a recognition network
with different time and spatial scales of communication,
facilitates the ability of the network to work with structure-
associated learning? In this paper, we investigate this question
and show numerically that neuron-astrocyte networks indeed
play a key role in situation-based recognition. This function
is also closely linked to the idea of local corrections in large
neural networks working with big data [7].

II. RELATED WORK

Although astrocytic involvement in the information process-
ing in the brain has been widely shown experimentally [16],
there is a lack of computational studies of neural circuits
focusing on astrocyte signaling in the context of learning
and memory. The importance of computational modelling for
developing better understanding of nature and findings answers
to open questions is difficult to overestimate. Examples of
works where such modelling brought new knowledge are
numerous. In the area of astrocytes modelling, recent study
[20] successfully demonstrated the self-repairing capability
of distributed spiking neuron-astrocyte network in a robotic
obstacle avoidance application. Nazari and colleages [21]
studied the information transmission between the cortical
spiking neural network and the cortical neuron–astrocyte net-
work. They showed how cortical spiking network managed
to improve its pattern recognition performance without the
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need for retraining by receiving an additional information
from neuron-astrocyte network. In addition, scholars proposed
several digital implementations of astrocytic dynamics [22]
and neuron-astrocyte interaction [23], [24]. In our previous
works, we investigated how the astrocyte-induced dynamic
coordination in the neuronal ensembles [25]–[27] induces the
generation of integrated information sets [28]–[30]. Moreover,
we showed that biologically-inspired spiking neuron-astrocyte
network can implement the multi-item short-term memory
[31]–[33]. We revealed that several information patterns can
be maintained in memory at the time scale of calcium ele-
vation in astrocytes, while the readout by the neurons due to
the astrocyte-induced activity-dependent short-term synaptic
plasticity resulted in local spatial synchronization in neuronal
ensembles. Following our approach, a recent modeling study
[34] investigated the contribution of astrocytic modulation of
synaptic transmission to the formation of different modes of
short-term working memory encoding. Another computational
model predicts that the duration and stability of working mem-
ory representations can be altered by astrocytic signaling [35].
We further showed that spiking neuron-astrocyte network can
reliably store not only binary but also analogous information
patterns in short-term memory [36]. However, the work in
this paper goes much further and proposes a new bio-inspired
two-net spiking neuron-astrocyte network (SNAN) for more
complex learning tasks, in which SNAN is implemented for
associated learning.

III. SIGNIFICANCE

In this paper, we present three key findings: (1) a novel
approach to formalizing machine learning data, namely, the
temporal organization of the data as opposed to the widely
accepted IID data sampling; (2) a novel neuromorphic compu-
tational model for short-term memory implemented by SNAN;
and, (3) a proof, through rigorous computational experiments,
that SNAN tested on synthesized data with selective astrocyte-
induced modulation of neuronal activity may provide an
enhancement of retrieval quality in comparison to a standard
SNN trained via Hebbian plasticity. The proposed SNAN
is a hybrid system, which combines the fast-spiking neural
networks pre-trained by the Spike Timing Dependent Plasticity
(STDP) rule with the general data set, and a slow astrocytic
network, which provides time-dependent data buffering via
calcium activity and gliatransmitter-induced spatial-temporal
coordination of neural network activity.

IV. SITUATION-BASED LEARNING IN SPIKING
NEURON-ASTROCYTE NETWORK MODEL

The concept of the proposed situation-based memory model
is schematically summarized in Fig. 2. A new biologically mo-
tivated computational model of short-term memory is imple-
mented through interaction of neural and astrocytic networks.
The model acts at multiple timescales: at a millisecond scale
of firing neurons and the second scale of calcium dynamics
in astrocytes. The neuronal network consists of randomly
sparsely connected excitatory and inhibitory spiking neurons
with plastic synapses. To train synapses in neural network, we

used the traditional spike-timing-dependent plasticity (STDP)
rule. Astrocytes track the neural activity and respond to it by
intracellular calcium elevations, which trigger the release of
gliotransmitters. Gliotransmitter-induced short-term synaptic
plasticity results in local spatial synchronization in neuronal
ensembles. The short-term memory realized by such astrocytic
modulation is characterized by one-shot learning and is main-
tained for seconds. The astrocytic influence on the synaptic
connections during the elevation of calcium concentration
implements Hebbian-like synaptic plasticity differentiating be-
tween specific and non-specific activations. Composed of two
building blocks, e.g., fast-spiking neurons and slow astrocytes,
the proposed memory architecture eventually demonstrated
synergetic functionality in loading information. The readout of
this memory by the neuronal block and storage implemented
by the astrocytes.

A. Spiking neuron-astrocyte network architecture

The architecture of the proposed SNAN is illustrated in
Fig. 3. The SNAN includes three interacting layers: the layer
of pyramidal neurons, the layer of interneurons, and the
astrocytic layer. An input signal encoded as two-dimensional
patterns was applied to the first layer. The first layer consists
of 6241 (79 × 79) synaptically coupled pyramidal neurons,
which are connected randomly with their connection length
determined by the exponential distribution. To maintain the
balance of excitation and inhibition during neuronal activity,
the layers of pyramidal neurons and interneurons communi-
cate bidirectionally. Astrocytes generating calcium signals are
connected by local gap junction diffusive couplings. To design
the neuronal and astrocytic layers interaction, we followed the
approach proposed in our previous works [37], [38]. Calcium
elevations occur in response to the increased concentration
of the neurotransmitter released by pyramidal neurons when
a group of them fire coherently. In turn, gliotransmitters are
released by activated astrocytes modulating the strength of the
synaptic connections in the corresponding neuronal group. The
output signal is taken from frequencies of transient discharges
of pyramidal neurons.

A detailed information concerning the models and the
description of parameters is provided in the Section V.

V. MODEL DETAILS

In this section, the SNAN architecture is described in detail
together with the STDP learning rule and neuron/astrocytic
models. Specifically, we start with biological realistic models
of neuronal, astrocytic networks that capture the essence of
the biological interplay between these cells, at the same time
minimising the computational overhead. Then we describe a
communication between pyramidal neurons and astrocytes at
tripartite synapses.

1) Neural network: Among the many existing biological
plausible spiking neuron models [39]–[42], we have chosen
simplified Izhikevich model [43] as computationally efficient
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Fig. 2. Concept of situation-based memory operation in the spiking neuron-astrocyte network model.

for modeling networks. The dynamics of neuronal membrane
potential is given by [43]:

dVi

dt
= 0.04V 2

i + 5Vi − Ui + 140 + Iapp,i + Isyn,i;

dUi

dt
= a(bVi − Ui);

(1)

with the auxiliary after-spike resetting

if Vi ≥ 30 mV, then

{
Vi ← c

Ui ← Ui + d,
(2)

where the subscript i corresponds to the neural index, Vi is the
neuronal membrane potential in mV, time t in ms. The applied
current Iapp,i simulates the input signal, Isyn,i is the synaptic
current. The parameter descriptions and their values used in
this work can be found in Table I.

The total synaptic current injected from all synapses of ith

neuron is described by [44], [45]:

Isyn,i =

Ni∑
k=1

wsyn,k(Esyn − Vi)

1 + exp(−Vpre,k/ksyn)
, (3)

where Ni is the total number of synapses, wsyn,k is the
weight of the kth synapse associated with neuron, Vpre is
the membrane potential of the presynaptic neuron, Esyn is the
synaptic reversal potential. Esyn = −90 mV for the inhibitory
synapse and Esyn = 0 mV for the excitatory. Parameter ksyn
denotes the slope of synaptic activation function threshold. We
neglect the synaptic and axonal delays in system for simplicity.

Pyramidal neurons interact with each other (connection
type: EE) and with interneurons (EI). Interneurons communi-
cate with pyramidal neurons (IE) and are not interconnected.
The architecture of synaptic connections between neurons is
non-specific (random) with different parameters within excita-
tory and inhibitory layers, as well as between layers, which is

described further below. A detailed list of parameters values
of synaptic connection organisation can be found in Table I.
The number of output connections per each neuron is fixed at
Nout. Each postsynaptic neuron is randomly selected in polar
coordinates. The distances between neurons r are determined
by the exponential distribution fR(r), and the angles ϕ are
chosen from a uniform distribution in the range [0; 2π]:

fR(r) =

{
1/λ exp(−r/λ), r ≥ 0,

0, r < 0.
(4)

Taking into account the difference in the sizes of the layers, the
coordinates of postsynaptic neurons are calculated as follows:

EE : xpost = ⌈xpre + r cos(ϕ)⌉ ,
ypost = ⌈ypre + r sin(ϕ)⌉ ;
EI : xpost =

⌈
K−1

1 xpre + r cos(ϕ)
⌉
,

ypost =
⌈
K−1

2 ypre + r sin(ϕ)
⌉
;

IE : xpost = ⌈K1xpre + r cos(ϕ)⌉ ,
ypost = ⌈K2ypre + r sin(ϕ)⌉ ,

(5)

where xpre, ypre denote the coordinates of the presynaptic
neuron, xpost, ypost are the coordinates of the postsynaptic
neurons, K1 = W/W1, K2 = H/H1. Coordinates are picked
repeatedly in case of duplicated connection (random selection
was a process without replacement).

In the proposed SNAN, the synaptic weights dynamically
adjust during training only for EE and IE types of synaptic
connections. The synaptic weights for EI synapses are fixed
and equal to wsynEI = 0.1. The initial weights of the synapses
between pyramidal neurons (EE) and interneuron–pyramidal
neuron (IE), are 10−4. The maximum weights are limited to
values wsynEEmax, wsynIEmax. The STDP rule updates the
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synaptic weights according to the timing difference between
the pre and postsynaptic spikes, and is described by:

δwsynEE,k(∆t) =

{
gsynEE exp(∆t/τ), ∆t ≤ 0,

−gsynEE exp(∆t/τ), ∆t > 0;

wsynEE,k ∈ [10−4, wsynEEmax],

(6)

where δwsynEE,k(∆t) is used to update the synaptic weight,
∆t is the time difference between presynaptic and postsynaptic
spikes, gsynEE is the plasticity window height, τ control the
width of the plasticity window, and they are 20 ms in our
model. Training of synaptic connections from interneurons to
pyramidal neurons is organized so that interneurons activated
by pyramidal neurons inhibit all subnetwork of pyramidal
neurons that were not active during the presentation of the
training pattern. In such way, the weights of IE synapses are
updated according the following:

δwsynIE,k(∆t) =

{
gsynIE exp(∆t/τ)H(f∗ − f), ∆t ≤ 0,

−gsynIE exp(∆t/τ), ∆t > 0;

wsynIE,k ∈ [10−4, wsynIEmax],
(7)

where ∆t is the time difference between presynaptic and
postsynaptic spikes, gsynIE is the plasticity window height,
τ control the width of the plasticity window, and they are
20 ms in our model. f and f∗ are the actual firing rate
(i.e. a running average over 10 ms) and threshold firing rate
of the postsynaptic pyramidal neuron, respectively. H is the
Heaviside step function.

2) Astrocytic network: The astrocytic layer consists of 676
cortical astrocytes connected with only nearest neighbors. It
has been experimentally shown that an individual cortical
astrocyte contacts on several neuronal somatas and hundreds
neuronal dendrites with some overlapping in the spatial terri-
tories corresponding to different astrocytes in the cortex [46].
Such an organization of neuron-astrocyte interaction allows
the astrocytes to integrate and coordinate a unique volume
of synaptic activity. Following experimental evidences, each
astrocyte in the SNAN bidirectionally interacts with ensemble
of NAE=16 pyramidal neurons with some overlapping. Spik-
ing neuronal activity induces the release of neurotransmitter
(glutamate) from the presynaptic terminals into the synap-
tic gap. The released glutamate binds to the metabotropic
glutamate receptors (mGluRs) on the astrocyte membrane
and triggers the production of inositol 1,4,5-trisphosphate
(IP3) in astrocytes, which is followed by the generation of
a calcium pulse. The Ullah model [47] is used to describe the
dynamics of the intracellular concentrations of IP3 and Ca2+

in astrocytes:

d[Ca2+]m
dt

= JER − Jpump + Jleak + Jin − Jout + JGca;

dhm

dt
= a2

(
d2

[IP3]m + d1
[IP3]m + d3

(1− hm)− [Ca2+]mhm

)
;

d[IP3]m
dt

=
[IP3]

∗ − [IP3]m
τIP3

+ JPLCδ + Jglu + JGip3

(8)

where m (m = 1, . . . , 676) is the astrocyte index.
[Ca2+], [IP3], h are the cytosolic calcium and IP3 concentra-

tions and fraction of activated IP3 receptor on the endoplasmic
reticulum (ER) membrane, respectively. JER is Ca2+ flux
from the ER to the cytosol, Jpump is the pump flux from
cytosol to ER, Jleak is the leakage flux from the ER to
the cytosol. The fluxes Jin and Jout describe the exchange
of calcium with the extracellular space. JPLCδ describes the
production of IP3 by phospholipase Cδ (PLCδ), Jglu describes
the glutamate-induced IP3 production in response to neural
activity. These fluxes are expressed as follows:

JER = c1v1[Ca2+]3h3[IP3]
3

(
c0/c1 − (1 + 1/c1)[Ca2+]

)
(([IP3] + d1)([Ca2+] + d5))

3 ;

Jpump =
v3[Ca2+]2

k23 + [Ca2+]2
;

Jleak = c1v2
(
c0/c1 − (1 + 1/c1)[Ca2+]

)
;

Jin =
v6[IP3]

2

k22 + [IP3]2
;

Jout = k1[Ca2+];

JPLCδ =
v4
(
[Ca2+] + (1− α)k4

)
[Ca2+] + k4

.

(9)
Astrocytes interact with each other through gap junctions.

Gap junctions are permeable to the second messenger IP3 and
to calcium ions [48], [49]. Currents JGcam and JGip3m describe
the diffusion of Ca2+ ions and IP3 molecules via gap junctions
of the mth astrocyte and can be expressed as follows:

JGcam = dca
∑
j

([Ca2+]j − [Ca2+]m);

JGip3m = dip3
∑
j

([IP3]j − [IP3]m);
(10)

where j, dca and dip3 represent, respectively, the number of
astrocytes connected to the mth astrocyte and the Ca2+ and
IP3 diffusion rates. Biophysical meaning of all parameters in
Eqs. (8), (9), (10) and their values can be found in [47] and
are summarised in Table II (astrocytic network parameters).
Note that the timescale of the model of calcium dynamics
in astrocyte is seconds. At the same time, the timescale of
model (1), (2) is milliseconds. To match the timescales in the
combined model we had to appropriately rescale the values of
relevant model parameters.

3) Bidirectional neuron-astrocyte interaction: The amount
of neurotransmitter-glutamate that diffuses from the synaptic
cleft associated with the ith pyramidal neuron and reaches the
astrocyte is described by the following equation [26], [50]:

dGi

dt
= −αgluGi + kgluH (Vi − 30mV ) , (11)

where αglu is the glutamate clearance constant, kglu is the
release efficiency, H is the Heaviside step function, and Vi

is the membrane potential of ith pyramidal neuron. Glutamate
contacts the mGluRs on the astrocyte membrane and initiates
the production of IP3. The flux Jglu represents the glutamate-
induced IP3 production and is defined as follows:

Jglu =

{
Aglu, if t0 < t ≤ t0 + tglu,

0, otherwise;
(12)
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here t0 represents the moment when the total level of glu-
tamate concentration in all synapses associated with this
astrocyte reaches a threshold:(

1

NAE

∑
i∈NAE

[Gi ≥ Gthr]

)
≥ Fact, (13)

where the parameter Gthr = 0.2 is the threshold for glutamate,
[x] is the Iverson bracket. Fact = 0.75 denotes the fraction
of synchronously spiking neurons of the neuronal ensemble
corresponding to the astrocyte.

Experimental studies have shown that astrocytes are able to
facilitate synaptic transmission due to the action of glutamate
released from astrocytes. More precisely, we consider that
the astrocytic glutamate induces potentiation of the excitatory
synapse via NMDAR-dependent postsynaptic slow inward
currents (SICs) generation [51], [52] and mGluR-dependent
heterosynaptic facilitation of presynaptic glutamate release
[53]–[55]. In the SNAN, we propose that Ca2+ elevation in
astrocytes results in glutamate release, which can modulate
the synaptic strength of all synapses corresponding to the
morphological territory of a given astrocyte. For simplicity,
astrocyte-induced enhancement of synaptic weight of the af-
fected excitatory synapses, wsynEE , is described as follows:

wsynEE = wsynEE (1 + νCa) , wsynEE ∈ [0, wsynEEmax]

νCa = ν∗CaH
(
[Ca2+]m − [Ca2+]thr

)
,

(14)
where wsynEE is the weight of the excitatory synapse trained
according to Hebb’s rule, ν∗Ca = 2 represents the strength
of the astrocytic modulation of the synaptic weight, H(x)
is the Heaviside function, [Ca2+]thr denotes the threshold
Ca2+ concentration in the astrocyte m. The feedback from
the astrocytes to the neurons is activated when the astrocytic
Ca2+ concentration is larger than [Ca2+]thr, and the fraction
of synchronously spiking neurons of neuronal ensemble cor-
responding to the astrocyte Fastro during the period of τsyn
= 5 ms. The duration of astrocyte-induced enhancement of
synaptic transmission is fixed and equal to τastro = 20 ms.

Model equations are integrated using the Runge-Kutta
fourth-order method with a fixed time step, ∆t = 0.1 ms.
A detailed listing of model parameters and values can be
found in Tables I (neural network model), II (astrocytic
network parameters), III (neuron-astrocytic interaction pa-
rameters) and IV (training and testing protocol parameters).
The code is available at https://github.com/altergot/Neuron-
astrocyte-network-Situation-associated-memory.

VI. MEMORY PERFORMANCE METRICS

To measure the memory performance of the proposed
SNAN, we used the following correlation-like quantity C(t)
computing the similarity between recalled (actual) and in-
tended (ideal) patterns:

Mi(t) = I

 ∑
k∈[t−w,t]

I [Vi(k) ≥ 30 mV ]

 > 0

 ,

C(t) =
1

2

(
1

Ns

∑
i∈S

Mi(t) +
1

Nns

∑
i/∈S

(1−Mi(t))

)
.

(15)

In (15), Mi(t) is equal to 1 if the i-th pyramidal neuron
produces a spike within the interval [t − w, t] (with w =
1ms), otherwise Mi(t) is set to 0; S is the set of non-zero
pixels representing or encoding the ideal sample (Ns is their
number), Nns = (W ·H−Ns) is the number of pixels that do
not belong to the ideal sample; W , H are the dimensions of
the pyramidal neuron layer (width and height, respectively); I
in (15) is the indicator function. The correlation metric C(t)
can be related to the Hamming distance d between the ideal
and the recalled patterns.

For each j-th pattern, we computed their corresponding cor-
relation values Cj(t). This was then followed by determining
their maximal values over the finite interval (tracking range)
[t − TP , t], TP =30ms, and averaging over the set of all test
patterns:

Ctest(t) =
1

Ntest

Ntest∑
j=1

max
τ∈[t−TP ,t]

Cj(τ), (16)

where Ntest is the number of test patterns.

A. Training and Testing Protocol

To train and test the proposed SNAN, we use the alpha-
digits data set (https://github.com/altergot/Neuron-astrocyte-
network-Situation-associated-memory/tree/main/images)
which consists of P binary images of digits and capital letters
of size W × H pixels. The input patterns are fed to the
layer of pyramidal neurons. Each image pixel corresponds
to a neuron, which receives a rectangular excitatory pulse,
Iapp,i, with length tstim and amplitude Astim for training
(with ttest and Atest in case of testing). On average there
are 950 neurons under stimulation (15% of the network) in
a training image. Training samples were presented to highly
overlapped neuronal populations (an average for 40 training
samples overlapping was 51%). The output signal was read
out according to the firing rates of pyramidal neurons.

1) SNN pre-training: First, we pre-trained the synaptic
connections only in the spiking neuronal network consisting
of pyramidal neurons and interneurons without taking into
account the influence of astrocytes. During pre-training, each
of P patterns was presented to the neuronal network 10 times
in random order. After the pre-training was completed, the
network weights were fixed. To test the training quality, we
calculated the correlation of recalled patterns with the ideal
samples according to the procedure described in VI. In the
cued recall, we applied a shorter inputs with lower amplitude
(ttest, Atest) to the network. These inputs were spatially
distorted by high-level random noise matching the training
samples.

2) Situation-based learning in SNAN: To implement the
situation-based learning in the proposed SNAN, we use the
following protocol. After the SNN pre-training, we turn on
the bidirectional interaction between pyramidal neuron layer
and astrocytic layer. To let the astrocytic network generate
the first calcium pattern, we apply the initial pool of patterns
to SNAN. This pool consists of 7 (seven) randomly selected
patterns from the general data set used in the SNN pre-training.
Each pattern was presented 10 (ten) times.
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TABLE I
NEURAL NETWORK PARAMETERS ( [43], [44])

Parameter Parameter description Value
W ×H pyramidal neurons layer grid size 79×79
W1 ×H1 interneurons layer grid size 40×40
a time scale of the recovery variable 0.1
b sensitivity of the recovery variable to the

sub-threshold fluctuations of the membrane
potential

0.2

c after-spike reset value of the membrane
potential

-65 mV

d after-spike reset value of the recovery vari-
able

2

η synaptic weight without astrocytic influ-
ence

0.025

Esyn synaptic reversal potential for excitatory
synapses

0 mV

synaptic reversal potential for inhibitory
synapses

-90 mV

ksyn slope of the synaptic activation function 0.2 mV
Connections within a pyramidal neurons
layer:

NoutEE number of output connections per each
neuron

200

λEE rate of the exponential distribution of
synaptic connections distance

15

gsynEE change in the value of the weight during
training

0.007

wsynEEmax maximum synaptic weight 0.05
Connections from a pyramidal neurons
layer to interneurons layer:

NoutEI number of output connections per each
neuron

5

λEI rate of the exponential distribution of
synaptic connections distance

2

wsynEI weight of synaptic connections 0.1
Connections from a interneurons layer
to pyramidal neurons layer:

NoutIE number of output connections per each
neuron

2000

λIE rate of the exponential distribution of
synaptic connections distance

80

gsynIE change in the value of the weight during
training

0.007

wsynIEmax maximum synaptic weight 0.05
f∗ the threshold firing rate of the pyramidal

neuron for training of IE connections
0.3

Noise is an essential part of both sensory input [57] and
internal neuronal dynamics and may contribute to information
processing in neural systems as well as to learning and mem-
ory [58]. Noise can play a role of a regularizer in training deep
learning neural networks too [59]. Recent work demonstrated
that external noise in SNN-based learning systems could help
to maintain and recover memorized patterns [60]. Given the
ubiquity and relevance of noise, we corrupted the input train-
ing patterns by a random 5% ”salt and pepper” noise. After
a break (approximately 650 ms) needed for the formation of
calcium impulses in pattern-associated astrocytes, we started
the ongoing training-testing process of the SNAN in real time.
This situation-based learning process can be conventionally
divided into a sequence of cycles, which follow each other
continuously.

Every test cycle starts with training of the SNAN on one
new pattern which was absent in the initial pool and was
randomly chosen from the general data set. After that, we test
the storage of all patterns from the initial pool in memory.

TABLE II
ASTROCYTIC NETWORK PARAMETERS [47]

Parameter Parameter description Value
M ×N astrocytic network grid size 26× 26
c0 total Ca2+ in terms of cytosolic vol 2.0 µM
c1 (ER vol)/(cytosolic vol) 0.185
v1 max Ca2+ channel flux 6 s−1

v2 Ca2+ leak flux constant 0.11 s−1

v3 max Ca2+ uptake 2.2 µM s−1

v6 maximum rate of activation dependent cal-
cium influx

0.2 µM s−1

k1 rate constant of calcium extrusion 0.5 s−1

k2 half-saturation constant for agonist-
dependent calcium entry

1 µM

k3 activation constant for ATP-Ca2+ pump 0.1 µM
d1 dissociation constant for IP3 0.13 µM
d2 dissociation constant for Ca2+ inhibition 1.049 µM
d3 receptor dissociation constant for IP3 943.4 nM
d5 Ca2+ activation constant 82 nM
α 0.8
v4 max rate of IP3 production 0.3 µM s−1

1/τr rate constant for loss of IP3 0.14 s−1

[IP3]∗ steady state concentration of IP3 0.16 µM
k4 dissociation constant for Ca2+ stimulation

of IP3 production
1.1 µM

dca Ca2+ diffusion rate 0.05 s−1

dip3 IP3 diffusion rate 0.05 s−1

TABLE III
NEURON-ASTROCYTIC INTERACTION PARAMETERS [50]

Parameter Parameter description Value
NAE number of neurons interacting with one

astrocyte
16, 4× 4

αglu glutamate clearance constant 50 s−1

kglu efficacy of the glutamate release 600 µM s−1

Aglu rate of IP3 production through glutamate 5 µM s−1

tglu duration of IP3 production through gluta-
mate

60 ms

Gthr threshold concentration of glutamate for
IP3 production

0.2

Fact fraction of synchronously spiking neurons
required for the emergence of Ca2+ eleva-
tion

0.75

Fastro fraction of synchronously spiking neurons
required for the emergence of astrocytic
modulation of synaptic transmission

0.5

ν∗Ca strength of the astrocyte-induced modula-
tion of synaptic weight

2

[Ca2+]thr threshold concentration of Ca2+ for the
astrocytic modulation of synapse

0.15 µM

τastro duration of the astrocyte-induced modula-
tion of synapse

20 ms

TABLE IV
TRAINING AND TESTING PROTOCOL PARAMETERS

Parameter Parameter description Value
Astim stimulation amplitude in training 80 µA
tstim stimulation duration in training 2 ms
tbetween stim time between patterns in training 3 ms

noise level in training 5%
Atest stimulation amplitude in test 8 µA
ttest stimulation length in test 20 ms
tbetween test time between patterns in test 50 ms

noise level in test 20%
P number of pre-training patterns 40; 20
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Input signal

(79×79) Pyramidal neurons

(79×79) Astrocytes

(26×26)

Interneurons

(40×40)

Fig. 3. A spiking neuron-astrocyte network topology. The SNAN includes
three interacting layers: the layer of pyramidal neurons, the layer of interneu-
rons, and the astrocytic layer. First layer (79 × 79) consists of synaptically
coupled pyramidal neurons. The pyramidal neurons bidirectionally communi-
cate with the interneurons from the second layer (40×40). Ratio of pyramidal
neurons to interneurons in the model is chosen in accordance with the
experimental observations and computational model of the cortex [56], where
80% of the CSN neurons are pyramidal neurons and 20% are interneurons.
Astrocytes are connected by a local gap junction diffusive couplings and
represent a two-dimensional square lattice with a dimension 26×26. We focus
on the bidirectional interaction between the first neuronal and astrocytic layers.
Each astrocyte is interconnected with an ensemble of Na = 16 pyramidal
neurons with dimensions 4 × 4 (red lines) with overlapping in one row and
one column. An input signal encoded as a two-dimensional pattern is applied
to the first layer.

Throughout the article, we use the term ’memory’ referring
to the ability of pattern recall in presence of perturbations.
We present the SNAN with the 7 test patterns which match
the patterns from the initial pool, but have a shorter lengths,
lower amplitude (ttest, Atest) and which are spatially distorted
by high level (20%) random noise. To identify the memory
performance, we analyze the quality of the recalled patterns.
In the next cycle, one pattern from the initial pool is replaced
by a new pattern which has been learned in the previous
cycle. Thus, after 7 cycles all patterns from the initial pool
are substituted by new patterns from the general pre-training
data set. This procedure can be performed endlessly allowing
the system to work with all patterns from the general data
set in a situation-based mode. Figure 4 illustrates the time
scheme of the training and testing protocol. The values of the
stimulation parameters are listed in Table IV.

VII. RESULTS

A. SNN memory performance

First, we determine the size of the general data set that can
be loaded in memory of the SNN and used for implementation
of the situation-based learning in the proposed SNAN. For this,
we pre-train the SNN on the data set of different sizes and test
the quality of memory maintenance of the SNN in cued recall.
Information retrieval is organized by the application of a cue
sample representing one pattern from the memory set distorted
by ”salt and pepper” noise. The dependencies of the correla-
tion between the SNN cued recalls and the ideal target samples
(averaged over all test patterns ± standard deviation) on the
data set size are shown in Fig. 5 by red curves. Two cases
were considered for test images distorted by 20% (Fig. 5a)
and 30% (Fig. 5b) noise levels. The maximum correlations
between SNN recalls and non-target sample averaged over all
test patterns and the maximum correlation between target and
non-target samples are presented by blue and green curves
in Fig. 5, respectively. According to the results obtained,
the considered SNN can learn up to 40 patterns. In further
analysis, we used data set sizes of 20 and 40 patterns for
comparison.

B. SNAN situation-based learning performance

1) Astrocytic contribution to the SNAN memory perfor-
mance: To assess the contribution of astrocytes in informa-
tion processing and memory formation in neuron-astrocyte
networks, the pre-trained SNN was bidirectionally connected
to the astrocytic layer. To start the process of the SNAN
situation-based learning, we load the initial pool of 7 patterns
to the system by applying the inputs (Fig. 6A, D, G) to
the pyramidal neuronal layer. The activity of pattern-specific
neuronal subnetworks (Fig. 6B, E, H) induces the generation
of calcium signals in corresponding astrocytes. Due to the
fact that calcium dynamics in astrocytes has slow scale, the
overlapped spatial calcium patterns in astrocytic layer for
different samples coexist for several seconds (Fig. 6C, F, I).

Then we ran the ongoing process of situation-based learning
according to the approach described in the Section VI-A2 and
illustrated in Fig. 4. Briefly, in each of the 10 cycles, we
loaded a new pattern from pre-training data set to the SNAN
and tested the patterns memorized in the previous cycles. A
constant number of patterns in the cycle was maintained by
deleting one randomly selected pattern during each cycle. Test
patterns were applied to the pyramidal neurons with 20 %
level noise, and the SNANs cued recalls in the values of
the neuronal firing rate were read out. Examples of input
test images from several cycles and the systems retrievals are
shown in Fig. 7.

To estimate the astrocytic impact on the memory formation
in the SNAN, we calculated the dependencies of recall correla-
tion with samples on the noise level. First the test was run with
astrocytic modulation of synaptic transmission in the SNN and
then without it (Fig. 8). The test involved 20 and 40 patterns
from the pre-trained data set. The differences in correlation
between the recalled pattern and noisy input clearly show that
astrocytes steadily improve the quality of the system retrieval
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Fig. 4. Training and testing protocol. For training and testing of the proposed SNAN we use the alpha-digits data set consisting of P binary images of digits
and capital letters. The input patterns are fed to the layer of pyramidal neurons. First, we pre-train the spiking neuronal network consisting of pyramidal
neurons and interneurons without taking into account the influence of astrocytes. During pre-training, each P pattern is presented to the neuronal network
10 times in random order (green color). After the pre-training is completed, the synaptic weights are fixed. To implement the situation-based learning in
the proposed SNAN, we use the following protocol. After the SNN pre-training, we turn on the bidirectional interaction between pyramidal neurons and
astrocytic layers. To let the astrocytic network generate the first calcium pattern, we apply the initial pool of patterns to SNAN. This pool consists of 7 (seven)
randomly selected patterns (pink color) from the general data set used in the SNN pre-training. Each pattern is presented 10 times with the addition of a
random 5% ”salt and pepper” noise. After a break (approximately 650 ms) necessary for the formation of calcium elevations in the pattern-specific astrocytes
(examples of astrocytic Ca2+ signals are shown in colors corresponding to the patterns), we start ongoing training-testing process of the SNAN in real time.
This situation-based learning process can be conventionally divided into a sequence of cycles, which follow each other continuously. Every test cycle starts
with training of the SNAN on one new pattern (e.g. pattern ”A”, grey color), which was absent in the initial pool and was randomly chosen from the general
data set. After that, we test the memorization of all patterns from the initial pool - ”Cycle 1”. We present the SNAN with test patterns which have been
spatially distorted by high-level noise. To identify the memory performance, we analyze the quality of the recalled patterns. In the next cycle, ”Cycle 2”, one
pattern from the initial pool (pattern ”C”) is replaced by new pattern which has been learned in the previous cycle (pattern ”A”), this models situation-based
environment. Thus, after N cycles all patterns from the initial pool are substituted by new patterns from the general pre-training data set. This procedure can
be performed endlessly allowing the system to work with all patterns from the general data set in situation-based mode.

up to 10% for high noise levels (red curve in comparison
with blue curve). The reason for such recalls enhancement
is that a short presentation of the cue to the neural network
evokes the additional astrocytic-induced spike in the synaptic
strength between stimulus-specific neurons, which results in
a local spatial synchronization in the whole stimulus-specific
neuronal population.

2) Contribution of the SNN pre-training to the SNAN mem-
ory performance: Next, we evaluate the contribution of the
neural network learning to the SNAN memory performance
according to synaptic weights adjustment via the STDP rule.
For this, we compare the memory performance of the three
SNAN types (i) with synaptic connections trained according to
the STDP rule, (ii) with randomly mixed synaptic weights after
the SNN pre-training, and (iii) with fixed synaptic weights

without the SNN pre-training. Figure 9(A) shows the changes
in the correlation of the SNANs cued retrievals relative to
the input noise patterns for these cases with and without
astrocytic influence on neural activity. The best levels of recall
correlations were demonstrated by the proposed SNAN trained
by the STDP rule with astrocytic modulation of synaptic
transmission, followed by the SNAN with mixed synaptic
weights and astrocytic modulation, and then the pre-trained
SNN without astrocytes. The worst results were shown by net-
works without astrocytic modulation of synaptic transmission
and without training of synaptic connections. Interestingly,
astrocyte-induced enhancement of synaptic transmission in
the sample-specific neuronal subnetworks can provide good
quality retrieval in the system even for neural networks with
mixed weights of synaptic connections (blue line in Fig. 9(A)).
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Fig. 5. The pre-trained SNN’s memory performance. The correlations between
SNN recalls and the ideal target samples for different data set size are marked
by red. The maximum correlations between SNN recalls and non-target sample
are marked by blue. The maximum correlation between target and non-target
samples are marked by green. Average means over all test patterns ± standard
deviation are shown for 20% (A) and 30% (B) noise levels in test images.
The dotted line indicates test patterns correlation.

3) Effect of the synaptic connectivity strength on the SNAN
memory performance: Next, we studied the influence of
synaptic connectivity architecture in the neural layers of the
SNAN on the correlation of the system recalls. We specifically
focused on the weight of synaptic connections between layers
and inside the pyramidal neuronal layer. Higher inhibition of
the system (Fig. 9(B)) due to the increase of the maximum
synaptic weights of the connection from interneurons layer
to pyramidal neurons, wsynIEmax, induces the SNN memory
performance decline (red dashed line), but does not affect the
SNAN memory performance (red line). This can be explained
by the fact that samples in training were applied to higly over-
lapped neuronal population. Such subnetworks of interneurons
corresponding to several patterns provide strong inhibition
of the signal propagation in sample-specific population of
pyramidal neurons and prevent correct recall. However, this
can be compensated by the stimul-specific astrocyte-induced
enhancement of excitatory synaptic transmission. On the con-
trary, increasing the maximum excitatory synaptic strengths in
the pyramidal neuronal layer, wsynEEmax, results in astrocyte-
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Fig. 6. The example of SNAN training on the patterns from initial pool
(Figure 4). (A, D, G) The first, second, and the 7th training patterns from
initial pool, respectively. (B, E, H) Responses of the pyramidal neuronal layer
to the patterns. The values of the membrane potentials are shown. (C, F, I)
Intracellular Ca2+ concentrations in the astrocytic layer.

induced overactivation of the SNAN and a decrease in the
recall quality (Fig. 9(C) red and green lines).

4) Capacity of the situation-based memory in the SNAN:
The situation-based memory capacity in the proposed SNAN
is determined by the duration of Ca2+ signals in astrocytes.
Duration of astrocytic Ca2+ elevations is determined by the
intrinsic mechanisms of the IP3-evoked calcium release from
the endoplasmic reticulum in astrocytes, which is described by
the biophysical model [47] used in this study. Brief application
of the cue samples during testing results in prolongation
of Ca2+ elevations in astrocytes and, thus, in the increased
storage time of patterns in the memory of the SNAN. On
average, the Ca2+ signals duration in astrocytes is 3.8 s, which
can support the situation-based learning during 9 cycles on 15
different patterns.

5) Impact of the overlapping level in samples on the SNAN
memory performance: The pre-trained spiking neural network
can retrieve the correct samples from test images distorted
with 20% noise level with the average correlation level of
96%. This, however, applies only to non-overlapping patterns
without additional effect of astrocytic modulation, since even
a small sample overlapping results in chimeras generation in
the solely neuronal network model. To characterize the impact
of the overlapping level in training samples on the SNAN
memory performance, we use rectangles of different sizes
displaced at the fixed number of pixels relative to the neighbor
as information patterns (Fig. 10A). In this case, in contrast to
the used alpha-digit data set, the level of overlapping between
the neighboring patterns can be precisely specified.

After the SNN pre-training on 40 patterns with fixed over-
lapping, we use the situation-based training and testing pro-
tocol for the SNAN described above with little modifications.
To be sure that sample overlapping level inside one cycle is
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Fig. 7. The example of the SNAN test patterns from the general pre-trained data set (Figure 4). Three testing cycles are shown. Left panel presents the
testing images with 20% ”salt-and-pepper” noise. Right panel presents the cued recalls in the pyramidal neuronal layer. The averaged firing rate on the test
time interval for each neuron is shown.
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Fig. 8. The astrocyte-induced enhancement of the memory performance in the
proposed SNAN. (A, B) The correlations between SNAN recalls and the ideal
samples dependent on noise level in testing patterns with astrocytic modulation
of synaptic transmission in neural network (red curves) and without it (blue
curves). (C, D) The difference between correlations of systems recalls and test
patterns. (A,C) and (B, D) correspond to data set sizes of 20 and 40 patterns,
respectively. The dotted line indicates test patterns correlation.

constant between all patterns, we apply samples to the SNAN
sequentially (not in random order as before). The example of
corresponding calcium activity in astrocytic layer is shown
in Fig. 10B. The dependencies of correlation level of the
SNANs cued recalls on different overlapping levels of samples
are shown in Fig. 11 for SNAN with astrocytic modulation
of synaptic transmission and without it. Results show that
including the astrocytic modulation of synaptic transmission
into spiking neural network with connections trained according
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Fig. 9. The difference between correlations of the SNANs recalls and test
patterns. The memory performance was shown for three SNAN types with and
without astrocytic influence: (i) with synaptic connections trained according to
the STDP rule, (ii) with randomly mixed synaptic weights after the SNN pre-
training, and (iii) with fixed synaptic weights without the SNN pre-training.
(A) wsynIEmax=0.05, wsynEEmax=0.05; (B) Strong connections from
interneurons to pyramidal neurons wsynIEmax=0.15, wsynEEmax=0.05;
(C) Strong connections inside the pyramidal neurons layer wsynIEmax=0.05,
wsynEEmax=0.07.

to the Hebbian plasticity leads to a robust improvement of
the system retrieval performance for almost all levels of
sample overlapping, excluding the highest levels (> 80%).
It is important to note that the contribution of astrocytes is
especially significant for a high noise value in cue samples
(comparing Fig. 11(A) with Fig. 11(B)). On average, in range
of samples with overlapping level from 0 to 0.9, the astrocyte-
induced enhancements of retrieval quality (in particular, the
correlation of cued recalls with ideal samples) amounts to
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5% for test samples distorted by 20% noise and 20% for -
30% noise in cue samples. Fig. 11 shows that even for huge
pattern overlapping, spurious correlations never dominate in
that sense as accuracy of our system is always equal to 100%.
Correlation with the target sample always exceeds correlation
with the wrong sample.

6) Comparative analysis: For comparative analysis, we
summarized the performance of the situation-based memory
in the developed SNAN and also that of other published
studies on the short-term working memory in the SNNs with
biologically relevant unsupervised learning rule, such as STDP,
in Table S I of the supplementary material. Obviously, our
result is one of the best in term of frequency of target
pattern activation. The developed SNAN is the only one who
can deal with patterns presented to the overlapped neuronal
populations, for the best of our knowledge.

To compare our results with the previous studies
of the SNN-based classification methods, SNAN is
trained and tested on the standard MNIST data set
(https://github.com/teavanist/MNIST-JPG) within the proposed
situation-based memory framework. The data set used in
experiments was partitioned into the training and test sets
comprising 10 000 and 2000 samples of 28×28 pixels images
of digits 0-9, respectively. Original images from the MNIST
data set have been converted into 79×79 patterns to ensure
consistency with the size of the pyramidal neuron layer. The
SNN was pre-trained on 10 000 training samples distorted by
5% noise applied to the rescaled images with one presentation
of the sample. After the SNN pre-training, we trained the
SNAN on the initial pool (containing 69 images in total,
3 digits×23 images) using the proposed situation-based
learning approach. The MNIST test images presented to
the SNAN were corrupted with 20% noise applied to the
rescaled images. During the ongoing training-testing process
of the situation-based memory in our system in real time,
we calculated the correlations between recalls in the SNAN
and the images from the MNIST training set. The average
accuracy, measured as the proportion of instances when
the pattern corresponding to the maximal correlation of
SNAN recalls coincided with the target digit, is 97.2 %. This
compares favourably with the classification accuracy achieved
in the previously reported SNN architectures.

Table S II of the supplementary material summarizes the
classification accuracies of the SNN-based systems with bi-
ologically plausible learning rules on the MNIST test set.
Surprisingly, the pattern recognition system based on SNAN
equipped with a simple correlator to process recalls appears
to show higher accuracy than all other architectures presented
in Table S II of the supplementary material.

Using the procedure described above we also tested how
the proposed situation-based memory in the SNAN can deal
with the MNIST test set corrupted by correlated noise. A
detailed description of these experiments and examples of the
noisy test images along with the accuracy attained by the
SNAN system in this task are provided in the Supplementary
Material. Interestingly, in these additional experiments, the
SNAN demonstrated good accuracy on test images distorted
with high-level correlated noise without being shown any
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Fig. 10. (A) The example of data set used for evaluation of the impact of the
samples overlapping on the SNAN memory performance. The figure shows
the case for samples of size 17×17 pixels with overlapping in 7 pixels which
corresponds to overlapping in 41.18 % between the neighboring patterns. (B)
The corresponding calcium activity in astrocytic layer.

examples of images corrupted by such noise.
Comparing the proposed model with recent deep neural

network (DNN) models in terms of memory performance can
be highly intriguing. However, implementing deep-learning
networks using spike-based frameworks is a topic that requires
further research [61]. Such an approach is believed to be one of
the primary challenges and future prospects of neuromorphic
computing. Based on the results obtained thus far, the enrich-
ment of spiking DNN models with astrocytic layers shows
great promise. Conducting a comprehensive comparison of
performance metrics between spiking DNN models with and
without astrocytes would be highly interesting.

7) Relation to transformer models: Situation-based learn-
ing and inference implemented in the proposed SNAN model
are closely related to the idea of attention. They also bear
functional similarity to popular transformer models [12] in that
both learning and inference are modulated by contexts inherent
to particular situations evolving over time. SNANs’ attention
mechanism, implemented through astrocytes and relevant sig-
nalling pathways, is the consequence of the neuromorphic
organisation of the network (cf. [62]). This mechanism enables
SNANs to exploit contexts, potentially over large temporal
scales, whilst enjoying the benefits of parallel processing
of information. The presence of attention circumventing the
shortcomings of fixed network topology could explain why
SNANs compare favorably to other relevant models, as is
shown in Tables S I and S II of the supplementary material.

VIII. DISCUSSION

The results obtained in the paper could be instrumental
for the development of the brain-like (e.g. “strong”) artificial
intelligence. Inspired by the brain structural and functional
organizational hierarchy, neuromorphic hardware systems that
implement spike-driven computations could potentially be
capable of implementing energy-efficient machine intelligence
[61]. In addition, the possibility to enhance learning perfor-
mance by astrocytes is an important milestone in the ongoing
discussion of the role astrocyte-neuronal network interactions
in brain processing [16]. Specifically, we have investigated
functional roles of different players, e.g. neurons, synapses,
plasticity, astrocytes, in the implementation of cognitive in-
formation processing tasks in the brain. In particular, it was
interesting to observe how the interplay of synaptic changes by
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Fig. 11. Impact of the overlapping level in samples on the SNAN memory
performance. The dependencies of correlation level of the SNANs cued recalls
and samples for different level of sample overlapping are shown for SNAN
with astrocytic modulation of synaptic transmission and without it for 20%
(A) and 30% (B) noise level. Blue and red dotted lines show correlation of
system recalls with the most similar non-target samples. Black dotted lines
indicate test patterns correlation.

STDP and by the gliotransmitter modulations improve memory
performance (see, for example, Fig. 9).

The STDP-based plasticity represents a key biophysical
mechanism of learning in neuronal networks and is considered
as one of the most perspective features for SNNs. Modelling
and implementing this mechanism involves choosing appropri-
ate values of its parameters. In this work, we did not intend
to find optimal parameters of the STDP laws for SNNs as this
was beyond the scope of our study. The main focus here was
on exploring the holistic interaction between STDP, astrocytes,
and neural dynamics in situation-based learning. Nevertheless,
we recognise the importance of selecting parameters of STDP-
based plasticity appropriately and would therefore like to refer
interested readers to relevant literature on the topic [63]–[65].

In memory tasks, the synaptic weights are adjusted follow-
ing a training protocol by sequential image application. Indeed,
we also verified that STDP provided successful in training
and information retrieval with certain degree of fidelity. In this
context the interneurons balanced network firing by depression
and, hence, we can safely assume that they are responsible for
lateral inhibition via “selecting” stimulus specific excitation
routes. This solely neuronal story can not resolve the problem
of “overlapping populations” when different input patterns
stimulate similar neuronal groups (up to 50 % of overlaps in
our samples). Obviously, the synaptic plasticity alone can not
resolve this problem, as it will inevitably lead to false recalls

and the decreased performance. However, our research shows
that astrocytes can significantly improve this situation.

The astrocytic calcium operates at much slower time scales,
hence, the astrocytes can not significantly affect the fast
dynamics of neurons and synapses at the time scale of single
image processing. Moreover, the calcium excitability has a
gradual character [66]. It provides a proportional response
to stimuli with different intensities. Thus, the stronger the
activation of pyramidal neurons in terms of their discharges
intensities over interval of dozen of seconds, the higher the
calcium response in the corresponding astrocytes. This way
the astrocytes corresponding to the overlapping areas generate
larger signals. In turn, they send back different level of modu-
lations during the recall processing. Furthermore, patterns with
a high degree of overlap can be successfully resolved, which
gives a noticeable increase in the retrieval fidelity.

At functional level, astrocytes supplement neuronal process-
ing by an amplitude modulation in addition to rate encoding
by all-or-none firing neurons. At the same time, being dis-
tributed in time the astrocytic modulation provides a dynamic
separation of overlapping patterns. It is very similar to the
reservoir computing in machine learning with traditional artifi-
cial neurons [67], [68]. Here, the atrocytes serve as a reservoir
naturally “predicting” correct retrieval due to dozen of seconds
of stored history.

In general, decoding the physiological meaning of the
spatial-temporal Ca2+ signalling in astrocytes, its computa-
tional properties, and its impact on neuronal signalling remains
a major challenge in modern neurobiology [14]. Integration of
astrocytic signalling in cognitive processing has implications
for understanding the basis of cognitive dysfunction and the
development of new therapeutic strategies [16], [69], [70].
SNAN model proposed here could constitute a tool to investi-
gate the role of astrocytes in cognitive functions. To facilitate
a stronger link of the proposed SNAN with neuroscience, it
might be interesting to employ the mechanisms of intracellular
integration of Ca2+ signals in astrocytes [38].

Our current work and model do not consider challenges
and issues related to the hardware implementation of the
model. Having said this, hardware implementation of SNN
models is a promising and viable modern trend in the field
of neuromorphic electronics. Memristors and memritsive elec-
tronics can already reproduce in silico both spiking neuron
dynamics, synaptic signal transmission and synaptic plasticity.
With respect to the implementation of astrocytes and the
astrocyte-to-neuron control in silico, several papers reported
successful implementations of the astrocyte dynamics [22],
[23], [71]. This suggests that hardware implementations of
SNN-based neuromorphic memory could be viable in the near-
future.

Finally, we would like to comment on the biological plau-
sibility and model limitations in capturing the behaviour of
real brain circuits. By construction, our neuromorphic SNN
model imitates morphological constitutions of real brain net-
works at the macroscopic level. At this macroscopic level, the
model demonstrates that involving astrocytes in the processing
circuits can lead to significant improvements in memory per-
formance, as compared to neuronal SNNs without astrocytes
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(see Tables S I and S II of the supplementary material).
The proposed SNAN model reflects experimental data on the
structure, connectivity, and neurophysiology of the interaction
between neurons and astrocytes in the underlying cortical
tissue [14], [16], [19]. As the prototype of the SNAN model,
we utilize our previously published biologically plausible
computational model of working memory [31]. This model
consists of a SNN interacting with a network of astrocytes. In
order to enhance its bio-fidelity, we enriched the model with
an unsupervised synaptic learning rule based on spike-timing-
dependent Hebbian plasticity, as well as a layer of inhibitory
neurons [61].

Our biologically relevant, yet still general, modeling ap-
proach has ultimately provided insight into the hypothesis of
astrocytes participating in memory formation. This hypothe-
sis has emerged from various experimental findings on the
contribution of astrocyte signaling to information processing
and cognitive function [16], [17]. However, many of these
cases lack a comprehensive understanding of the precise
mechanisms underlying the astrocytic contribution, making
our understanding somewhat fragmented. Therefore, further
research is necessary to elucidate the specific role of astrocytic
action in memory processes.

It is difficult to compare true human memory with any
given and fixed mathematical model as our understanding of
memory and its mechanisms is far from complete. Moreover,
this understanding is continuously evolving. Circuits of true
memory are involved in (and are affected by) many complex
biological processes, including hormonal regulations at the
micro level, and emotions and stresses at the psychophysi-
ological level. These factors may significantly affect memory
performance in different “intrinsic situations”, somewhat sim-
ilar to what we modelled here as “external situations”. In this
context, by involving astrocytic components, our model offers
a framework capable of accounting for factors previously
considered exogenous. Remarkably, we show here that doing
so is advantageous as compared to other models of memory
(see Tables S I and S II of the supplementary material). Further
steps could consider including and assessing the performance
of brain circuits which are directly responsible for memory
function, for example, the hippocampus. The topological or-
ganisation of cells in such structures is more complicated
than simple layered architectures which are typical artificial
neuronal networks including SNNs. The advantage of con-
sidering more complicated topologies of networks could be
to explore the existence of architectures optimizing network
learning and retrieval tasks. Another point which is missed in
almost all mathematical models of SNNs is structural plasticity
– dynamic changes in the number of connections, neurons,
and astrocytes in the network and their properties. Finally,
all living networks have an afferentation facilitating ongoing
information exchange with the external world, forming pro-
cessing pathways from the sensory stimuli, e.g. visual images
in our case, to execution signals, repository system and others.
Including, modelling, and analysing these could be natural
steps towards bringing performance of neuromorphic SNNs
to that of true living brains.

IX. CONCLUSION

This paper presents a novel approach to temporal non-IID
data organization for machine learning in spiking neuronal
networks. The effectiveness of data formalization in situation-
based pools is demonstrated by the short-term memory task
implemented by the brain-inspired spiking neuron-astrocytic
network (SNAN). The SNAN includes a layer of principle
(pyramidal) neurons supplied by a group of inhibitory in-
terneurons. Synaptic connections in the pyramidal layer self-
adjust adaptively according to the Hebbian-like spike timing
dependent plasticity (STDP). Following morphological brain
synaptic organization, the pyramidal neurons are accompanied
by astrocytes organized in the the form of a layer network (see
Fig. 3). Astrocytic modulation of neuronal activity represents
the activity-dependent short-term synaptic plasticity which
induces the stimulus-specific local spatial synchronization in
neuronal ensembles. The synergistic interplay between fast
spiking neuronal network trained on the general data set and
slow astrocytic syncytia provides buffering of situation-based
data pools by the selective coordination of neuronal signalling,
which results in successful storage and retrieval of highly
overlapped information patterns. We demonstrated that the
astrocyte-induced influence on synaptic transmission results
in 10% enhancement of spiking neural network memory
performance in terms of correlation level between the cued
retrievals and samples for strong 50% overlapped patterns.

X. CODE AVAILABILITY

The code is available at https://github.com/altergot/Neuron-
astrocyte-network-Situation-associated-memory.
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