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THE SINGULARITY PROBABILITY OF A RANDOM SYMMETRIC
MATRIX IS EXPONENTIALLY SMALL

MARCELO CAMPOS, MATTHEW JENSSEN, MARCUS MICHELEN AND JULIAN SAHASRABUDHE

Abstract. Let A be drawn uniformly at random from the set of all n × n symmetric

matrices with entries in {−1, 1}. We show that

P(det(A) = 0) 6 e−cn,

where c > 0 is an absolute constant, thereby resolving a long-standing conjecture.

1. Introduction

Let B be a random n × n matrix whose entries are chosen independently and uniformly

from {−1, 1}. It is an old problem, likely stemming from multiple origins, to determine

the probability that B is singular. While a moment’s thought reveals the lower bound of

(1 +o(1))2n22−n, the probability that two rows or columns are equal up to sign, establishing

the corresponding upper bound remains an extremely challenging open problem. Indeed, it

is widely believed that

P(det(B) = 0) = (1 + o(1))2n22−n. (1)

While this precise asymptotic has so far eluded researchers, a huge amount is now known

about this fascinating problem. The first advances were made by Komlós [22] in the 1960s,

who showed that the singularity probability is O(n−1/2) (see also [23] and [3]).

Nearly 30 years later Kahn, Komlós and Szemerédi [19], in a remarkable paper, showed

that the singularity probability is exponentially small. At the heart of their paper is an

ingenious argument with the Fourier transform that allows them to give vastly more efficient

descriptions of “structured” subspaces of Rn that are spanned by {−1, 1}-vectors. Their

method was then developed by Tao and Vu [45,46] who showed a bound of (3/4 + o(1))n, by

proving an interesting link between the ideas of [19] and the structure of set addition and,

in particular, Freiman’s theorem. This trajectory was then developed further by Bourgain,

Vu and Wood [5], who proved a bound of (2−1/2 + o(1))n, and by Tao and Vu [50], who

pioneered the development of “inverse Littlewood-Offord theory”, now an integral aspect of

random matrix theory (see Section 1.1).

In 2007, Rudelson and Vershynin, in an important and influential paper [33], gave a

different proof of the exponential upper bound on the singularity probability of B. The

key idea was to construct efficient ε-nets for points on the sphere that have special anti-

concentration properties and are thus more likely to be in the kernel of B. This then

led them to prove an elegant inverse Littlewood-Offord type result, inspired by [50], in a

geometric setting.
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This perspective was then developed further in the 2018 breakthrough work of Tikhomirov

[51], who proved

P(det(B) = 0) = (1/2 + o(1))n,

thereby essentially proving the conjectured upper bound. One of the key innovations in [51]

was to adopt a probabilistic viewpoint of the (discretized) sphere: instead of directly proving

that efficient nets exist by latching onto some sort of structure, he shows that the probability

of randomly selecting a “structured” point on the discrete sphere is incredibly unlikely. While

this change in perspective may not immediately sound useful, Tikhomirov’s “inversion of

randomness” gives him access to a whole host of probabilistic tools.

Another advance on the problem was made recently by Jain, Sah and Sawhney [17], who

(building on the recent work of Litvak and Tikhomirov [26]), proved the natural analogue

of (1) for random matrices with independent entries chosen from a finite set S, for any non-

uniform distribution on S. For the case of {−1, 1}-matrices, however, they do not improve

on the bound of Tikhomirov.

While the problem for matrices B with all entries independent is now very well understood,

the situation for symmetric random matrices remains somewhat more mysterious. Indeed

all of the previously mentioned works on random matrices depend deeply on the fact that

the entries of B are independent, and often treat B as n independent copies of a row, thus

allowing for an essentially “one-dimensional” treatment of the problem. In the symmetric

case, no such perspective is available.

Let A be a random n×n symmetric matrix, uniformly drawn from all symmetric matrices

with entries in {−1, 1}. Again, it is generally believed that P(detA = 0) = Θ(n22−n) (see,

e.g. [9,53,54]) but progress has come more slowly. The problem of showing that A is almost

surely non-singular goes back, at least, to Weiss in the early 1990s but was not resolved until

2005 by Costello, Tao and Vu [9], who obtained the bound

P(det(A) = 0) 6 n−1/8+o(1). (2)

The first super-polynomial bounds were obtained by Nguyen [31] and, simultaneously,

Vershynin [52], the latter obtaining a bound of the form exp(−nc). Nguyen [31] developed

the quadratic Littlewood-Offord theory introduced in [9], while Vershynin [52] worked in the

geometric framework pioneered in his work with Rudelson [33–35].

In 2019, a more combinatorial perspective for inversion of random discrete matrices was

introduced by Ferber, Jain, Luh and Samotij [12] and applied by Ferber and Jain [11] to

show

P(det(A) = 0) 6 exp(−cn1/4(log n)1/2) .

In a similar spirit, Campos, Mattos, Morris and Morrison [8] then improved this bound to

P(det(A) = 0) 6 exp(−c
√
n), (3)

by proving a“rough” inverse Littlewood-Offord theorem, inspired by the theory of hypergraph

containers (see [2, 41]). This bound was then improved by Jain, Sah and Sawhney [18],

who improved the exponent to −cn1/2 log1/4 n, and, simultaneously, by the authors of this

paper [6] who improved the exponent to −c
√
n log n.
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The convergence of these results onto the exponent of −c
√
n log n is no coincidence and

in fact represents a natural barrier in the problem. Indeed, all of the results up to now have

treated “structured” vectors by only using the top-half of the matrix (i.e. the half above

the diagonal), which conveniently consists of independent entries. However, as pointed out

in [8], if one is restricted to working in the top-half of A one cannot obtain an exponent

better than −c
√
n log n. Thus to get beyond this obstruction, somehow the randomness of

the matrix must “reused”.

In this paper we prove an exponential upper-bound on the singularity probability of a

random symmetric matrix, thereby breaking though this barrier and giving the optimal

bound, up to the constant in the exponent.

Theorem 1.1. Let A be uniformly drawn from all n×n symmetric matrices with entries in

{−1, 1}. Then

P(det(A) = 0) 6 e−cn, (4)

where c > 0 is an absolute constant.

The main technical innovations of this paper are a new inverse Littlewood-Offord type

theorem for “conditioned” random walks and a new “inversion of randomness” technique

that allows us to “reuse” the randomness of our matrix by pushing some of the randomness

onto the random selection of a vector from our discretized sphere. In fact, there is a del-

icate tradeoff between these two ingredients; a loss in the second ingredient allows for an

improvement in the first, unless some specific “arithmetic” structure arises (see Section 2).

1.1. Inverse Littlewood-Offord theory. For v ∈ Rn and X uniform in {−1, 1}n, we

define the concentration function (one of several to come) as

ρ(v) = max
b∈R

P
(
〈v,X〉 = b

)
. (5)

The study of ρ(v) goes back at least to the classical work of Littlewood and Offord [24, 25]

on the zeros of random polynomials, but perhaps begins in earnest with the beautiful 1945

result of Erdős [10]: if v ∈ Rn has all non-zero coordinates then

ρ(v) 6 ρ((1, . . . , 1)) = O(n−1/2).

This was then developed by Sárközy and Szemerédi [40], who showed that if all of the vi are

distinct then one can obtain the much stronger bound of O(n−3/2), and by Stanley [42] who

determined the exact maximum in this case. A higher-dimensional version of this problem

also received considerable attention and was studied by several authors [15,20,21,39] before

it was ultimately resolved in the work of Frankl and Füredi [14] (see also [48]).

Of these early results, the most important for us here is the work of Halász [16] who

made an important connection with the Fourier transform to prove (among other things)

the following beautiful result: if there are Nk solutions to x1 + · · · + xk = xk+1 + · · · + x2k

among the entries of v, then ρ(v) = O(n−2k−1/2Nk).

More recently the question has been turned on its head by Tao and Vu [50], who pioneered

the study of “inverse” Littlewood-Offord theory. They suggested that if ρ(v) is “large” then
3



v must exhibit some particular arithmetic structure. For example, Tao and Vu [47,50], and

Nguyen and Vu [30,32] proved that if v is such that ρ(v) > n−C then all but O(n1−ε) of the

elements vi of v can be efficiently covered with a generalized arithmetic progression of rank

r = Oε,C(1).

While these results provide a very detailed picture in the range ρ(v) > n−C , they begin

to break down1 if ρ(v) = n−ω(1) and therefore are of limited direct use in showing that the

singularity probability is exponentially small. Inverse results which work for smaller ρ bring

us to the “counting” Littlewood-Offord theorem of Ferber, Jain, Luh and Samotij [12], and

the “weak” inverse Littlewood-Offord theorems of Campos, Mattos, Morris and Morrison [8]

and of the present authors in [6], which are useful for ρ(v) as small as exp(−c(n log n)1/2),

but afford less structure.

Our novel inverse Littlewood-Offord theorem in this paper is most similar to that of

Rudelson and Vershynin [33,34,52], who showed that if ρ(v)� e−cn then there exists φ > 0

with |φ| = O(1/ρ(v)) for which the dilated vector φv is exceptionally close to the integer

lattice Zn. In particular, Rudelson and Vershynin define the following important notion. For

α ∈ (0, 1), define the least common denominator of a vector v ∈ Rd to be the smallest φ > 0

for which φv is within
√
αd of a non-zero integer point. That is,

Dα(v) = inf
{
φ > 0 : d(φv,Zd \ {0}) 6

√
αd
}
,

where d(x, S) denotes infs∈S{‖x − s‖2} (not to be confused with the dimension d). Note

here that we have excluded the origin from Zd in the definition since φv ≈ 0 does not tell

us anything interesting about v. Indeed, given any v ∈ Sd−1, one could always set φ <
√
αd

and obtain d(φv,Zd) 6 d(φv, 0) 6
√
αd, and so this degenerate case needs to be excluded

somehow. In fact, in the course of the paper, we will work with a slightly different non-

degeneracy condition (see (29)). Here we state the theorem of Rudelson and Vershynin in a

slightly less general form than they prove.

Theorem 1.2. For d ∈ N, α ∈ (0, 1) and t > 0, let v ∈ Sd−1 satisfy Dα(v) > 16/t. If

X ∼ {−1, 1}d is uniform then

P
(
|〈X, v〉| 6 t

)
6 Ct+ 2e−cαd .

Here C, c > 0 are absolute constants.

Thus we can think of Dα(v) as a measure of the arithmetic structure of v; a small value

of Dα(v) corresponds to more structure, a large value of Dα(v) to less.

Our Littlewood-Offord theorem shows that a similar conclusion can be obtained in the

presence of a large number (k ≈ n) of additional “soft” constraints on the random walk. We

prove the following result, which is in fact weaker than what we really need (see Lemma 4.1),

but captures its essence.

1Technically these results break down if ρ(v) < n− log logn.
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Theorem 1.3. For d ∈ N, α ∈ (0, 1) and t > 0, let v ∈ Sd−1 satisfy Dα(v) > 16/t. For

0 6 k 6 d, let W be a k× d matrix with orthonormal rows. If X ∼ {−1, 1}d is uniform then

PX
(
|〈X, v〉| 6 t and ‖WX‖2 6 c

√
k
)
6 Cte−ck + 2e−cαd, (6)

where C, c > 0 are absolute constants.

Note that if k = 0 then our theorem reduces to Rudelson and Vershynin’s theorem, stated

above. Here we interpret ‖WX‖2 6 c
√
k as encoding the k “soft” constraints and |〈X, v〉| 6 t

as the “hard” constraint. It is also useful to think of t ≈ ρ(v), although we actually apply

this theorem with t chosen with respect to a related notion, tailored specifically to our

application.

To understand the numerology of this theorem, it is perhaps best to think of it as a

result that allows us to “decouple” the hard constraint from the k soft constraints. It says

something to the effect of, if Dα(v) > 16/t then

P
(
|〈X, v〉| 6 t and ‖WX‖2 6 c

√
k
)
6 C · P

(
|〈X, v〉| 6 t

)
· P
(
‖WX‖2 6 c

√
k
)
. (7)

Given this, we see that Rudelson and Vershynin’s theorem and the Hanson-Wright inequality

allow us to deal with these two quantities in isolation. These say that

P
(
|〈X, v〉| 6 t

)
6 Ct+ e−cαd and P

(
‖WX‖2 6 c

√
k
)
6 e−ck, (8)

thus explaining the form of the conclusion of Theorem 1.3.

While we don’t prove exactly (7), the main difficulty for us lies in decoupling the soft

and hard constraints, which is ultimately achieved by a somewhat complicated geometric

argument on the Fourier side and will consume our focus in Sections 4, 5 and 6.

It is useful to compare our Theorem 1.3 to a mutlidimensional version of Theorem 1.2

proved by Rudelson and Vershynin Theorem 7.5 in [38]. Using their theorem, one could

prove a version of our Theorem 1.3 if one added the additional assumption that Dα(u) is

large for all unit vectors u that are obtained as certain2 linear combinations of v with the

rows of W . This is insufficient for us as Theorem 1.3 assumes no information about the the

structure of the space spanned by the rows of W .

2. Proof sketch and our novel “inversion of randomness” technique

Here we sketch the proof of Theorem 1.1, assuming our Littlewood Offord theorem (The-

orem 1.3) and show how it fits into our novel “inversion of randomness” technique, which

allows us to overcome the barrier encountered in previous works. We highlight this main new

idea in Section 2.3 after warming-up with some more general discussion of our approach.

Throughout this section we keep our discussion loose and impressionistic and only take

up our careful study in the following sections.

2Specifically, if we let wi be the rows of W , we are interested in all linear combinations of the form

θ0v +
∑k

i=1 θiwi, where |θ0| 6 C/ε and |θi| < C, for i = 1, . . . k
5



2.1. Setup. A matrix is singular if and only if there exists v ∈ Sn−1 such that Av = 0. A

central challenge in studying the singularity probability of discrete random matrices lies in

the fact that different v have vastly different probabilities of being in the kernel of A. For

example, it is easy to see that if

v = 2−1/2(1, 1, 0, . . . , 0) then P(Av = 0) = 2−n. (9)

If v = n−1/2(1, . . . , 1) it is significantly harder to determine the corresponding probability,

but one’s first guess actually resembles the truth; the probability that the first entry of Av is

0 is Θ(n−1/2), the probability a simple random walk returns to 0 after n steps. Thus, boldly

assuming the approximate independence of the rows, we expect that if

v = n−1/2(1, . . . , 1) then P(Av = 0) ≈ (Cn)−n/2, (10)

a very different result from (9). But these are both very structured and special examples.

The opposite extreme comes from a random vector v ∼ Sn−1 on the unit sphere. Here we

have to be a bit careful since there are only a finite number of possible kernel vectors of

a discrete random matrix and thus it is natural to instead consider the probability that a

random vector is ε-far from the kernel, for some well-chosen ε > 0. Again this case is not

easy to establish rigorously, but in a similar way to the above, for ε > e−cn, we expect if

v ∼ Sn−1 is random then P
(
‖Av‖2 6 ε

√
n
)
≈ (Cε)n, (11)

with high probability, where C > 0 represents a constant that is unimportant for us.

Thus we see that there is a great variety in how different directions contribute to the

singularity probability. For us the key task is to understand how “many” of each of these

different directions there are. For example there are about n2 different vectors v of type (9),

and this multiplied by the probability that one of these vectors is in the kernel represents the

conjectured asymptotic for the singularity probability. On the other hand, there are about

2n vectors of the type (10), thus the expected contribution of these vectors to the singulairty

probability is significantly less than (9).

The crux comes with estimating the quantity of vectors that fail to be of type (11), for each

ε > e−cn: we would like to say that extremely few v deviate from this heuristic, at any given

scale ε > 0. Here it does not quite make sense to count the number of such offending vectors,

since there are infinitely many; rather, we “capture” these vectors by building efficient ε-nets

for them. From this point of view, this is the main technical content of this paper.

2.2. Definition of the ε-nets. To define our ε-nets we would like to associate each vector

v ∈ Sn−1 with a scale ε = ε(v). Essentially, though we define things a bit differently in the

proof, we define the scale of a vector v to be the maximum ε ∈ (0, 1) for which

P
(
‖Av‖2 6 ε

√
n
)
> (Lε)n, (12)

where L is a large constant L � C. Intuitively speaking, the scale of the vector v is the

largest granularity at which our heuristic (11) fails. Importantly, we can prove that at this

scale we also have the reverse inequality P
(
‖Av‖2 6 ε

√
n
)
6 (CLε)n.
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Vectors that have scales that are smaller than e−cn can be dealt with using now-standard

ideas dating back to Costello, Tao and Vu [9]. As such, our focus will be on eliminating

vectors with scales ε > e−cn. It will also be easy, in light of previous work, to ignore “com-

pressible” vectors, that is, vectors that have almost all of their `2-mass on o(n) coordinates.

Thus we can restrict to vectors which have at least Ω(n) coordinates of magnitude Θ(n−1/2).

Let Sn−1
0 denote this subset of the sphere; without loss of generality, we can assume that

these coordinates are the first d and that d/n = Θ(1), but chosen to be sufficiently small.

For each ε > e−cn, we would like to build an ε-net for all v ∈ Sn−1
0 at scale ε. Our first

move is to start with a decent ε-net for all of Sn−1
0 , which we will call Λε, and then define a

subset Nε ⊂ Λε, which will serve as our desired ε-net. We note that the most efficient ε-nets

for the whole of Sn−1
0 are of size (C/ε)n, which is vastly too large for us and thus Nε must

be substantially smaller than Λε. Indeed, we need something like

|Nε| 6 L−2n|Λε| 6
(
C

L2ε

)n
, (13)

since we will be taking a union-bound over |Nε| events of the form ‖Av‖2 6 ε
√
n, each with

has probability at most (CLε)n, from the remark below (12).

We now prepare for the definition of Nε. For this we first introduce a different model of a

random symmetric matrix, that is slightly cleaner to work with, and which we will be able

to “swap” for A, in the proof. We define the random matrix

M =

[
0[d]×[d] HT

H 0[d+1,n]×[d+1,n]

]
, (14)

where H is a (n − d) × d random matrix with iid entries that are 1/4-lazy, meaning that

Hi,j = 0 with probability 3/4 and Hi,j = ±1 with probability 1/8. The key property that

we have here is that for all v,

P
(
‖Av‖2 6 ε

√
n
)
6 Cn · P

(
‖Mv‖2 6 ε

√
n
)
,

which we establish on the Fourier side, akin to [19]. We now crucially define3 our ε-net

Nε =
{
v ∈ Λε : P

(
‖Mv‖2 6 ε

√
n
)
> (Lε)n

}
. (15)

It turns out that it is not too hard to show that this is an ε-net; to do so, we simply adapt

some now-standard random rounding techniques [27] to this higher dimensional setting. The

real challenge lies in estimating the size of Nε. For this we take a probabilistic vantage point

(inspired by [51]) and it is this new source of randomness that helps us “recover” some of the

randomness lost due to the symmetry of A. To prove (13), it is enough to show, for v ∈ Λε

chosen uniformly at random, that

Pv∈Λε

(
v ∈ Nε

)
= Pv∈Λε

(
PM
(
‖Mv‖2 6 ε

√
n
)
> (Lε)n

)
6 (C/L2)n . (16)

3We actually use a slightly smaller net, see (27) for the formal definition.
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(see Lemma 8.3 for the precise statement.) To get a feel for how we tackle this, let us consider

the event ‖Mv‖2 6 ε
√
n. Indeed recalling the definition (14) of M , we have that

Mv =

[
HTv[d+1,n]

Hv[d]

]
and so to control the event ‖Mv‖2 6 ε

√
n, it is enough to control the intersection of events

‖Hv[d]‖2 6 ε
√
n and ‖HTv[d+1,n]‖2 6 ε

√
n. (17)

Note that if we simply ignore the second event and bound

PM
(
‖Mv‖2 6 ε

√
n
)
6 PH

(
‖Hv[d]‖2 6 ε

√
n
)
,

we land in a situation very similar to previous works; where half of the matrix is neglected

entirely. We are thus limited by the (n log n)1/2 obstruction, mentioned in the introduction.

So to overcome this barrier, we need to control these two events simultaneously.

To prove (16) we use a second moment argument. For now, however, we will limit ourselves

to a discussion of the first moment and then comment on the extra complications in working

with the second moment. In particular, we outline a proof of the inequality

Ev∈Λε PM
(
‖Mv‖2 6 ε

√
n
)
6 (Cε)n, (18)

which implies that |Nε| 6 (C/L)n|Λε| 6 (C/εL)n, by Markov’s inequality:

|Nε|
|Λε|

= Pv∈Λε

(
v ∈ Nε

)
= Pv∈Λε

(
PM
(
‖Mv‖2 6 ε

√
n
)
> (Lε)n

)
6

(
C

L

)n
.

This falls short of (13), for which we will need to control the second moment, but is a good

starting point.

2.3. Rank splitting and inversion of randomness. In understanding (18) we come to

our novel “inversion of randomness” technique that allows us to weave the randomness of v

into our arguments. The idea is to use the randomness in H to control the first event at

(17) and to use the randomness in v ∈ Λε to control the second. To get this to work, we

crucially partition the outcomes of H, based on a robust notion of rank. Indeed, let Ek be

the event that all but k of the singular values of H are “healthy”

Ek =
{
H : σd−k(H) > c

√
n and σd−k+1(H) < c

√
n
}
,

where σ1(H) > · · · > σd(H) denote the singular values of H. The point of this definition

is that it allows us to get some mileage out of the second event at (17). At this point it

is useful to point out that we may assume that the coordinates of v ∼ Λε are iid random

variables, which follows from an easy covering argument of Λε with product sets, as in [51].

Now, if H ∈ Ek is a fixed matrix, we prove, using only the randomness in v[d+1,n], that

Pv[d+1,n]

(
‖HTv[d+1,n]‖2 6 ε

√
n
)
6 (Cε)d−k. (19)

8



We prove (19) by adapting the main result of [37]. On the other hand, using only the

randomness in H, we bound PM(‖Mv‖2 6 ε
√
n) from above by

d∑
k=0

PH
(
‖HTv[d+1,n]‖2 6 ε

√
n
∣∣ {‖Hv[d]‖2 6 ε

√
n
}
∩Ek

)
PH
({
‖Hv[d]‖2 6 ε

√
n
}
∩Ek

)
. (20)

So to prove (18), we average (20) over all v ∈ Λε and use (19) to bound the first term in

each summand to obtain

Ev∈Λε PM
(
‖Mv‖2 6 ε

√
n
)
6 (Cε)d ·

d∑
k=0

(Cε)−k · Ev∈ΛεPH
({
‖Hv[d]‖2 6 ε

√
n
}
∩ Ek

)
, (21)

where we have used the independence of v[d] from v[d+1,n].

In dealing with the remaining probabilities in the sum at (21) we use our new inverse

Littlewood-Offord theorem, Theorem 1.3. We first note that

PH
({
‖Hv[d]‖2 6 ε

√
n
}
∩ Ek

)
6 PH

({
‖Hv[d]‖2 6 ε

√
n
}
∩
{
σd−k+1(H) < c

√
n
})
, (22)

and then observe that since the rows of H are independent, the probability on the right

hand side of (22) should approximately factor as the product of “one-dimensional” events,

corresponding to each row. In particular, we show the right-hand-side of (22) is at most

Cn−d · max
u1,...,uk

(
PX
(
|〈X, v[d]〉| 6 ε|〈X, u1〉| 6 cn−1/2, . . . , |〈X, uk〉| 6 cn−1/2

))n−d
, (23)

using a (considerably easier) ε-net argument along with a tensorization argument. Here

X ∼ {−1, 0, 1}d is distributed as a row of H and the maximum is taken over all orthonormal

k-tuples u1, . . . , uk ∈ Rd which correspond to the k orthonormal singular directions of H

that witness the event σd−k+1(H) < c
√
n.

We now observe that the probability in (23) is exactly the sort of quantity that we can

bound with our Littlewood–Offord theorem. There is a slight wrinkle here in that we need

to ensure Dα(v[d]) > 16/ε, but this is a technicality we can deal with earlier in the proof by

directly bounding the probability a random v ∈ Λε has Dα(v[d]) 6 16/ε. Thus we can apply

Theorem 1.3 to bound (23) and hence obtain

PH
(
{‖Hv[d]‖2 6 ε

√
n} ∩ {σd−k+1(H) 6 c

√
n}
)
6 (Cεe−ck)n−d. (24)

We then apply this bound to each term in (21), by way of (22), to see that

Ev∈Λε PM
(
‖Mv‖2 6 ε

√
n
)
6 (Cε)n,

where we have used that k 6 d 6 n, d/n is small compared to 1/C and c and that ε > e−cn.

This proves (18), as desired.

As we discussed above, this gives a bound in the direction of (16) but falls short of our

desired bound of (C/L2)n. For this, we instead study the second moment,

Ev
[
PM
(
‖Mv‖2 6 ε

√
n
)]2

. (25)
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Here, we decompose this quantity analogously to the above, to show that (25) is bounded

above by a quantity of the form

Ev∈Λε EH1PH2

(
‖H1v[d]‖2 6 ε

√
n, ‖H2v[d]‖2 6 ε

√
n, and ‖HT

3 v[d+1,n]‖2 6 2ε
√
n

)
,

where H1, H2 are independent copies of H and H3 := [H1, H2] is the concatenation of these

two matrices. We then proceed in much the same way as above, treating H3 in place of H.

We shall also require a more complicated form of our Littlewood-Offord theorem, where we

allow two “hard” constrains corresponding to the first two events in (25). Ultimately, we

arrive at the bound

Ev∈Λε

[
PM
(
‖Mv‖2 6 ε

√
n
)]2

6 (Cε)2n,

which implies the desired conclusion at (16).

2.4. Outline of the paper. In the next section we formally introduce the central definitions

and notions that will be used throughout this paper. The remainder of the paper is then

roughly divided into three parts. The first part consists of Sections 4-7. Sections 4-6 are

dedicated to proving our conditioned inverse Littlewood-Offord result, Lemma 4.1, which is

the “real” version of Theorem 1.3. This theorem is properly introduced in Section 4 where

we go on to set up the problem on the Fourier side. In Section 5, we establish the key

geometric results we need for navigating the Fourier side of the problem, before completing

the proof of Lemma 4.1 in Section 6.

In Section 7, the final section of this first part, we set ourselves up for the next part of the

paper by using Lemma 4.1 to establish the crucial inequality described at (24), the formal

statement of which takes the form of Theorem 7.1. Theorem 7.1 is the only result we carry

forward into later sections.

The second part of the paper consists of Sections 8 and 9. In Section 8, we obtain our

crucial bound on the size of our net Nε by carrying out our “inversion of randomness”

scheme, as outlined in Section 2.3. Section 9 contains the less exciting proof that Nε is in

fact a net for Σε.

In the final section, Section 10, we pull together the various elements of this proof, state

the reductions we use from previous work and complete the proof of Theorem 1.1.

In most cases, we have highlighted the main results of each section at the start. So if the

reader does not want to delve into the details of a particular element of the proof, she can

simply inspect the top of the section to glean what is needed for going forward.

3. Central Definitions

We now turn to give a proper treatment of the proof, by laying out the key definitions that

will concern us in this paper. We begin by partitioning the sphere Sn−1 into “structured”

and “unstructured” vectors. Formally, we set γ = e−cn, for sufficiently small c > 0, and then

define the “structured” vectors as

Σ :=
{
v ∈ Sn−1 : ρ(v) > γ

}
,

10



where ρ(v) is as defined at (5). The invertibility of a random symmetric matrix on the set

of “unstructured” vectors v ∈ Sn−1 \Σ is already well understood and so we can restrict our

attention to this set of structured vectors. We refer the reader to Section 10 for the details.

Following Rudelson and Vershynin [33], we make a further reduction to working with

vectors that are reasonably “flat” on a large part of their support. For D ⊆ [n], |D| = d,

define

I(D) :=
{
v ∈ Sn−1 : (κ0 + κ0/2)n−1/2 6 |vi| 6 (κ1 − κ0/2)n−1/2 for all i ∈ D

}
, (26)

where 0 < κ0 < 1 < κ1 are absolute constants, fixed throughout the paper and defined in

Section 3.1. We will set d := c2
0n/2, where c0 is defined below in Section 3.1. Now set

I :=
⋃
D

I(D),

where the union is over all D ⊆ [n], |D| = d. The case of non-flat v is already taken care of

in the work of Vershynin [52] (see Section 10) and so it is enough to work with I ∩Σ. Since

we will ultimately union bound over D, it is enough to work with I(D) ∩ Σ, for some fixed

set D, and so, by symmetry it is enough to restrict our attention to vectors v ∈ I([d]) ∩ Σ.

Now, with this in mind, we further partition the set I([d]) ∩ Σ ⊆ Sn−1, but for this we

need to introduce another distribution on symmetric matrices. Define the probability space

Mn(µ) by defining M ∼Mn(µ) to be the random matrix

M =

[
0[d]×[d] HT

1

H1 0[d+1,n]×[d+1,n]

]
,

where H1 is a (n−d)×d random matrix with i.i.d. entries that are µ-lazy (that is, (H1)i,j = 0

with probability 1− µ and (H1)i,j = ±1 with probability µ/2).

Now, given v ∈ I([d]) and L > 0, we define the scale of v as

TL(v) = sup
{
t ∈ [0, 1] : P(‖Mv‖2 6 t

√
n) > (4Lt)n

}
,

in the style of [51] (where it is called the threshold). Note we are defining TL relative to the

matrix M , rather than our original distribution A. Now define our partition of I([d]) ∩ Σ.

For ε ∈ (0, 1), let

Σε :=
{
v ∈ I([d]) : TL(v) ∈ [ε, 2ε]

}
.

We shall show (as it is not obvious) that indeed

Σ ∩ I([d]) ⊆
⋃

ε>γ4/(212L)

Σε .

With the definition of Σε in hand, we are able to define Nε which will be an efficient net

for Σε at scale ε. It turns out that defining this net is not hard, although showing that it

satisfies the desired properties will be the main challenge of this paper. For this, we first

define the trivial net at scale ε to be4

Λε := Bn(0, 2) ∩
(
4εn−1/2 · Zn

)
∩ I ′([d]),

4Here and throughout, Bn(x, r) is the `2 ball centered at x with radius r.
11



which is a natural net for I([d]). Here I ′(D) is similar to I(D) but with slightly looser

constraints:

I ′(D) :=
{
v ∈ Rn : κ0n

−1/2 6 |vi| 6 κ1n
−1/2 for all i ∈ D

}
.

Since we are only interested in approximating vectors in Σε, we can get away with a

significantly more efficient net. For this we introduce two more concentration functions.

First, we define the Lévy concentration function: if X is a random vector taking values in

Rn, define

L(X, t) := max
w∈Rn

P (‖X − w‖2 6 t) .

Second, we define a variant of this concentration function for the uniform distribution on

random symmetric matrices with bounded operator norm. For a matrix A, we use the

notation ‖A‖ := maxx:‖x‖2=1 ‖A‖2 to denote the usual 2→ 2 operator norm and define

LA,op(v, t) := max
w∈Rn

P
(
{‖Av − w‖2 6 t} ∩ {‖A‖ 6 4

√
n}
)
.

Here we are just cutting out the slightly irritating event that A has large operator norm.

Intuitively this is an acceptable move as the probability that ‖A‖ > 4
√
n, is exponentially

small (see Lemma 10.5), however some care is needed as we are mostly concerned with far

less likely events.

We now introduce our nets Nε,

Nε :=
{
v ∈ Λε : P(‖Mv‖2 6 4ε

√
n) > (Lε)n and LA,op(v, ε

√
n) 6 (28Lε)n

}
. (27)

The reader should view the lower bound P(‖Mv‖2 6 4ε
√
n) > (Lε)n as the real core of

this definition, while the upper bound for LA,op is less important. The two main tasks of

this paper will be to show that Nε is indeed a net for Σε (an easier task) and secondly that

|Nε|/|Λε| is smaller than ≈ L−2n, where L is a large constant.

3.1. Discussion of constants and parameters. We will treat the constants κ0, κ1 (seen

at (26)) as absolute throughout the paper, and we allow other absolute constants C,C ′, · · ·
to depend on these exact quantities. In particular, we set κ0 = ρ/3 and κ1 = δ−1/2 + ρ/6,

where δ, ρ are as in Lemma 10.2 (which is a lemma from [52]). While we have not computed

these constants, it would not be too much work to do so.

We also note our treatment of c0, which, for most of the paper, will be presented as a

parameter and dependencies involving c0 will be explicitly noted. However, we will ultimately

fix c0 = min{2−24, ρδ1/2/2} where, again, δ, ρ are as in Lemma 10.2. Thus it is no harm for

the reader to view c0 as an absolute constant which is fixed throughout the paper. The

reason for the extra care with c0 comes from its delicate relationship to d/n. Indeed, we will

ultimately set d := dc2
0n/2e.

Another point to note is our use of R, which represents related, but different constants

throughout the paper. Roughly speaking, these related values of R increase as we get deeper

into the proof.
12



4. Inverse Littlewood-Offord for conditioned random walks I:

Statement of result and setting up the proof

This section is the first of three sections where we lay out and prove our main Littlewood-

Offord type theorem, Lemma 4.1, which works in the presence of a large number (k ≈ n) of

relatively soft constraints on our random walk. As we will see, the proof of Lemma 4.1 is

rather involved and consists mainly of a geometric argument on the Fourier side to “decouple”

the many soft constraints from the few hard constraints.

Given a 2d × ` matrix W (which encodes these soft constraints on our walk, as in Theo-

rem 1.3) and a vector Y ∈ Rd, we define the Y -augmented matrix WY as

WY =

[
W,

[
0d
Y

]
,

[
Y

0d

]]
. (28)

Here Y ≈ v/t will be a re-scaled version of v from Theorem 1.3. We define, for α ∈ (0, 1),

the least common denominator of a vector v ∈ Rd to be

Dα(v) := inf
{
φ > 0 : ‖φ · v‖T 6 min

{
φ‖v‖2/2,

√
αd
}}

, (29)

where ‖x‖T := inf{‖x − y‖2 : y ∈ Zd}, for x ∈ Rd, denotes the minimum distance to an

integer point. Note the definition at (29) is a bit different from the definition presented in

the introduction, in that the “non-degeneracy condition” is now ‖φ ·v‖T 6 φ‖v‖2/2. We will

stick with this definition throughout the paper.

We let ‖A‖HS denote the Hilbert-Schmidt norm of a matrix A, that is, ‖A‖2
HS :=

∑
i,j |Ai,j|2

and for µ ∈ (0, 1), m ∈ N, define the m-dimensional µ-lazy random vector τ ∼ Q(m,µ) to

be the vector with independent entries (τi)
m
i=1, satisfying

P(τi = −1) = P(τi = +1) = µ/2 and P(τi = 0) = 1− µ.

We now state our main Littlewood-Offord type theorem, which is our “real” (and strength-

ened) version of Theorem 1.3, from Section 1.1.

Lemma 4.1. For d ∈ N and α, µ ∈ (0, 1], let 0 6 k 6 2−10αd and t > exp(−2−8µαd). For

0 < c0 6 2−22µ, let Y ∈ Rd satisfy ‖Y ‖2 > 2−10c0/t, let W be a 2d× k matrix with ‖W‖ 6 2

and ‖W‖HS >
√
k/2.

If τ ∼ Q(2d, µ) and Dα(Y ) > 16 then

L
(
W T
Y τ, c

1/2
0

√
k + 1

)
6 (Rt)2 exp(−c0k), (30)

where R = 233c−2
0 µ−1/2.

Before we start working towards the proof of Lemma 4.1, we make a few informal remarks

on its statement and its connection to Theorem 1.3. The main difference to note is that

there are now two “hard” constraints encoded in the left-hand side of (30); these are, in the

notation of Theorem 1.3,

|〈(v, 0[d]), τ〉| < t and |〈(0[d], v), τ〉| < t.
13



The “soft” constraints are, as above, encoded as the columns w1, . . . , wk of W . To combine

the “hard” and “soft” constraints into a single matrix inequality, we rescale v, thinking of

|〈(v, 0[d]), τ〉| < t as |〈c1/2
0 t−1(v, 0[d]), τ〉| < c

1/2
0 . This explains the scaling on Y , which is

unusually written as ‖Y ‖2 > 2−10c0/t, where t should be thought of a very small number

≈ e−cn.

The scaling of Dα(Y ) in Lemma 4.1, in contrast with the statement of Theorem 1.3, is

explained in a similar way. If φ · Y ∼ Zd, where φ = O(1) then (φ/t) = O(1/t) satisfies

(φ/t) · v ∼ Zd, as we think of Y ≈ v/t.

This also makes the numerology of Lemma 4.1 a little more transparent. If Y is a random

vector with ‖Y ‖2 ≈ 1/t, we have |Yi| ≈ t−1n−1/2 and thus we expect the one dimensional

random walk 〈Y, τ〉 to have

L
(
〈Y, τ〉, c1/2

0

)
≈ t.

Thus we expect Y to have some special structure if L
(
〈Y, τ〉, c1/2

0

)
� t. On the other

hand, for each wi we expect that |〈wi, τ〉| ≈ 1 and, since the wi must be “approximately

orthogonal” (due to the assumption ‖W‖ 6 2), we should expect

L
(
Wτ, c

1/2
0

√
k
)
≈ e−ck,

being somewhat vague about this constant c > 0.

As a warm-up for the reader, we show how Lemma 4.1 easily implies Theorem 1.3.

Proof of Theorem 1.3. Let α, t ∈ (0, 1), v ∈ Sd−1 with Dα(v) > 16/t and W be a k × d

matrix with orthonormal rows. Let Y = (2−23/t)v and note we have ‖Y ‖2 = 2−22t−1 and

Dα(Y ) > 16. Now let X,X ′ ∼ {−1, 1}d be iid uniform random variables and let τ = (X,X ′).

We bound the square of quantity at (6) above by

P
(
|〈Y,X〉| 6 c0/2, ‖WX‖ 6

√
c0k/2

)2

6 P
(
〈Y,X〉2 + 〈Y,X ′〉2 + ‖Wτ‖2

2 6 c0(k + 1)
)
.

We now define W ′ to be the k× 2d matrix formed by of concatenating two copies of W . We

note that ‖W ′‖ =
√

2 and ‖W ′‖HS =
√

2k. We then easily see that

P
(
〈Y,X〉2 + 〈Y,X ′〉2 + ‖Wτ‖2

2 6 c0(k + 1)
)
6 L

(
W ′
Y τ, c

1/2
0

√
k + 1

)
.

We now apply Lemma 4.1 with t′ = t+ exp(2−8αd), µ = 1 and c0 = 2−22 to see

L
(
W ′
Y τ, c

1/2
0

√
k + 1

)
6 (Rt′)

2
exp(−c0k).

Now using that Y = (c0/2t)v and letting C = R = 277 and c = c0/2 = 2−23 we obtain

PX
(
|〈X, v〉| 6 t and ‖WX‖2 6 c

√
k
)
6 Cte−ck + 2e−cαd ,

as desired. �

For the remainder of this section, we take some first steps towards the proof of Lemma 4.1.

We first pass to the Fourier side and set up our problem there, describing our goal in terms

of a certain “level set”. We then make a first reduction, by getting some basic control on
14



the fibers of this level set. In the following section, Section 5, we make a more significant

reduction about the geometry of our level set. In Section 6 we prove the key Lemma 6.1,

the statement of which is very similar to that of Lemma 4.1, but with a more complicated

quantity replacing the right-hand side of (30). Finally, with one further step, we conclude

Section 6, with the proof of Lemma 4.1.

4.1. Passing to the Fourier side. To prove Lemma 4.1 we will prove the contrapositive;

assume (30) fails and then obtain an upper bound on the least common denominator by

finding a non-trivial φ > 0 that satisfies φ = O(1) and ‖φ · Y ‖T 6
√
αd. Our first step

in proving Lemma 4.1 is to use the lower bound in the negation of (30) to obtain a lower

bound on a level set of an appropriate Fourier transform. This manoeuvre was pioneered by

Halász [16] and has been a key step in all of the Fourier approaches to inverse Littlewood-

Offord theory.

For a 2d× ` matrix W , we define the W -level set, for t > 0, to be

SW (t) :=
{
θ ∈ R` : ‖Wθ‖T 6

√
t
}

and we define γ` to be the ` dimensional Gaussian measure defined by γ`(S) = P(g ∈ S),

where g ∼ N (0, (2π)−1I`) and I` denotes the `× ` identity matrix.

The following Esseen-type lemma, allows us relate the quantity seen at the left-hand side

of (30) with the Gaussian volume of a level-set.

Lemma 4.2. Let β > 0, ν ∈ (0, 1], let W be a 2d × ` matrix and let τ ∼ Q(2d, ν). Then

there exists m > 0 so that

L(W T τ, β
√
`) 6 2 exp

(
2β2`− νm/2

)
γ`(SW (m)).

The proof of this Lemma is a straightforward exercise with the characteristic function of

W T τ and is postponed to Appendix A.

We can now describe how our least common denominator can be spotted in Fourier space.

From Lemma 4.2 along with the negation of (30), we obtain m > 0 and a set SWY
(m) ⊆ Rk+2

with Gaussian volume bounded below by (Rt)2 exp(c1m − c2k). Now, for reasons that we

will not explain here (since it is just a consequence of the Fourier transform), the first k-

coordinates of the space, correspond to the k “soft” constraints while the final two coordinates

correspond to the two “hard” constraints.

With this in mind, the idea is to find an element ψ ∈ SWY
(m) for which ‖ψ[k]‖2 = O(

√
k),

and one of ψk+1, ψk+2 is O(1) and “non-trivial”. It will turn out that one of ψk+1, ψk+2 is a

good candidate for our desired least common denominator. The condition on the ψ[k] should

be thought of as just getting these coordinates “out of the way”.

To find this desired ψ ∈ SWY
(m), for r, s > 0, we define the cylinder

Γr,s :=
{
θ ∈ Rk+2 :

∥∥θ[k]

∥∥
2
6 r, |θk+1| 6 s and |θk+2| 6 s

}
. (31)

We now restate our condition on ψ in terms of Γr,s: we want to show that there exists an

x ∈ SWY
(m) for which

(Γ2
√
k,16 \ Γ2

√
k,s + x) ∩ SWY

(m) 6= ∅, (32)
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where s is chosen depending on the non-triviality condition we need. We shall then ultimately

see that if y ∈ (Γ2
√
k,16 \ Γ2

√
k,s + x), where x ∈ SWY

(m), then (x − y) is a good candidate

for ψ (see Claims 6.4-6.6). In what remains in this section, we warm up by making a first

easy reduction on the structure of SWY
(m) under the assumption that (32) fails.

4.2. A first reduction: controlling the density on fibers. For our first reduction, we

first record the following easy fact.

Fact 4.3. For s > 0, let S ⊆ R2 be such that γ2(S) > 8s2, then there exists x, y ∈ S so that

s < ‖x− y‖∞ 6 16.

Proof. First note that if 8s2 > 1 then the statement holds trivially and so we may assume

8s2 6 1. We prove the contrapositive and assume there is no pair x, y ∈ S with s <

‖x − y‖∞ 6 16. We cover R2 =
⋃
p∈16·Z2 Qp where Qp := p + [−8, 8]2. Thus γ2(S) 6∑

p∈16·Z2 γ2(S ∩Qp). Since there is no x, y ∈ S so that s < ‖x− y‖∞ 6 16, then for each Qp

there is x = x(p) ∈ Qp so that

γ2(S ∩Qp) = γ2(S ∩Qp ∩ (x(p) + [−s, s]2)) 6 γ2(x(p) + [−s, s]2).

Letting g ∼ N (0, (2π)−1), we have

γ2(x+ [−s, s]2) 6 P(x1 − s 6 g 6 x1 + s)P(x2 − s 6 g 6 x2 + s) 6 4s2 exp(−π‖p‖2
2/16),

where we have used that (xi − s)2 > p2
i /8, which holds since s < 1. Now we may bound

γ2(S) 6
∑

p∈16·Z2

γ2(S ∩Qp) 6 4s2
∑

p∈16·Z2

exp(−π‖p‖2
2/16) < 8s2,

which completes the proof. �

Now for S ⊆ Rk+2, and θ[k] ∈ Rk, we define the “vertical fiber”

S(θ[k]) :=
{

(θk+1, θk+2) ∈ R2 : (θ[k], θk+1, θk+2) ∈ S
}
. (33)

The following lemma tells us that if we are unable to find a point in our desired intersection

(Γr,16 \ Γr,s + x)∩S, for all x ∈ S, we can obtain good control on the measure of the vertical

fibers of S.

Lemma 4.4. For k ∈ N, r > 0 and s > 0, let S ⊂ Rk+2 be such that for all x ∈ S we have

(Γr,16 \ Γr,s + x) ∩ S = ∅ .

Then

max
θ[k]∈Rk

γ2(S(θ[k])) 6 8s2 .

Proof. We prove the contrapositive; let ψ[k] be such that γ2

(
S(ψ[k])

)
> 8s2. This implies

(Fact 4.3) that there exists (θk+1, θk+2), (θ′k+1, θ
′
k+2) ∈ S(ψ[k]) with

s 6 max{|θk+1 − θ′k+1|, |θk+2 − θ′k+2|} 6 16 .
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Unpacking what this means in the full space Rk+2: we have θ, θ′ ∈ S so that θ[k], θ
′
[k] = ψ[k],

and s 6 max{|θk+1 − θ′k+1|, |θk+2 − θ′k+2|} 6 16. Thus

θ ∈ (θ′ + Γr,16 \ Γr,s),

as desired. �

In the next section we go on to obtain a more complicated reduction of this form, that

will ultimately be key in proving Lemma 4.1.

5. Inverse Littlewood Offord II: A geometric inequality

We now turn to make a more intricate and subtle reduction from that seen in Section 4.2,

that will be key in finding our least common denominator. The lemma we prove here is

purely geometric, but one should always think of it as being applied to an appropriate level

set S = SWY
(m), as seen in Lemma 4.2.

Given a set S ⊂ Rk+2 and y ∈ Rk+2, define the “translated horizontal fiber”,

Fy(S; a, b) := {θ[k] = (θ1, . . . , θk) ∈ Rk : (θ1, . . . , θk, a, b) ∈ S − y} .

Our main goal of this section tells us that under the assumption

(Γ2
√
k,16 \ Γ2

√
k,s + x) ∩ S = ∅,

for all x ∈ S, the total measure of S can be controlled by the measure of the k-dimensional

fibers Fy(S; a, b). We state it in the contrapositive form to make the application (in Section 6)

a little easier to spot. Given sets A,B ⊆ Rk, we let A − B = {a − b : a ∈ A, b ∈ B} and

define A+B similarly.

Lemma 5.1. For k ∈ N and s > 0, let S ⊂ Rk+2 be a measurable set which satisfies

8s2e−k/8 + 64s2 max
a,b,y

(
γk(Fy(S; a, b)− Fy(S; a, b))

)1/4
< γk+2(S) . (34)

Then there is an x ∈ S so that5

(Γ2
√
k,16 \ Γ2

√
k,s + x) ∩ S 6= ∅ . (35)

To prove this lemma, we will need a few facts about Gaussian space, which we collect in

Sections 5.1 and 5.2, before moving on to prove Lemma 5.1 in Section 5.3.

5.1. A few facts about Gaussian space. Recall that for ` ∈ N, γ` is the ` dimensional

Gaussian measure defined by γ`(S) = P(g ∈ S), where g ∼ N (0, (2π)−1I`).

Lemma 5.2. Let k > 0, r > 0 and S ⊂ Rk+2 be measurable. Then there exists x ∈ S, and

h ∈ Γr,8 so that

γk+2(S ∩B) 6 8γk+2((S − x) ∩ Γ2r,16 + h) ,

where B := {θ ∈ Rk+2 : ‖θ[k]‖2 6 r}.
5Note, in particular, that Lemma 5.1 says that if (34) is satisfied then we must have s < 16.
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Proof. Consider translates Γr,8 + y where yk+1, yk+2 ∈ 16Z2 to write

γk+2(S ∩B) =
∑

y∈{0}k×16Z2

γk+2(S ∩ (Γr,8 + y)) . (36)

We express γk+2(S ∩ (Γr,8 + y)) as∫
Rk+2

1
[
θ ∈ S ∩ (Γr,8 + y)

]
e−π‖θ‖

2
2/2 dθ =

∫
Rk+2

1
[
φ ∈ (S − y) ∩ Γr,8

]
e−π‖φ+y‖22/2 dφ. (37)

Rewriting the exponent in the integrand at (37)

−‖φ+ y‖2
2 = −‖φ‖2

2 − 2φk+1yk+1 − 2φk+2yk+2 − y2
k+1 − y2

k+2,

we use that |φk+1|, |φk+2| 6 8 whenever 1[φ ∈ (S − y) ∩ Γr,8] 6= 0, to see

γk+2(S∩(Γr,8+y)) 6 exp
(
−π

2
y2
k+1 −

π

2
y2
k+2 + 8π|yk+1|+ 8π|yk+2|

)
γk+2((S−y)∩Γr,8) . (38)

So, apply (38) to (36) to get

γk+2(S ∩B) 6
∑

y∈{0}k×16Z2

γk+2((S − y) ∩ Γr,8)e−
π
2
y2k+1−

π
2
y2k+2+8π|yk+1|+8π|yk+2|

6 max
y
γk+2((S − y) ∩ Γr,8)

∑
yk+1,yk+2∈16Z

e−
π
2
y2k+1−

π
2
y2k+2+8π|yk+1|+8π|yk+2|

6 16 max
y
γk+2((S − y) ∩ Γr,8) .

Let y be a vector at which the above maximum is attained. Now observe that if S∩(Γr,8+y) =

∅ then (S − y) ∩ Γr,8 = ∅ and thus γk+2(S ∩ B) = 0; so there is nothing to prove. Thus we

may assume S ∩ (Γr,8 + y) 6= ∅ and let x ∈ S ∩ (Γ8,r + y). Define h := x− y ∈ Γr,8 and notice

that

(S − y) ∩ Γr,8 − h = (S − y − h) ∩ (Γr,8 − h) ⊆ (S − x) ∩ Γ2r,16,

where the inclusion holds since h ∈ Γr,8. Therefore (S − y) ∩ Γr,8 ⊆ (S − x) ∩ Γ2r,16 + h,

allowing us to conclude that

γk+2(S ∩B) 6 16γk+2((S − y) ∩ Γr,8) 6 16γk+2((S − x) ∩ Γ2r,16 + h),

as desired. �

We also need the following standard tail estimate on a k-dimensional Gaussian.

Fact 5.3. γk
(
{x ∈ Rk : ‖x‖2

2 > k}
)
6 exp(−k/8).

Proof. For any ε ∈ (0, 1) the standard Gaussian measure of the set {x ∈ Rk : ‖x‖2
2 >

k/(1 − ε)} is at most exp(−ε2k/4). Recalling that γk has standard deviation (2π)−1/2 and

taking ε = 1− (2π)−1, gives the desired bound. �
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5.2. A Gaussian Brunn-Minkowski type theorem. We now lay out a useful tool which

gives us some control of the Gaussian measure of the sum set A+B, relative to the Gaussian

measures of A and B. Indeed, the following theorem due to Borell [4], can be viewed as a

Brunn-Minkowski-type theorem for Gaussian space.

For this, let Φ(x) be the cumulative probability function Φ(x) := P(Z 6 x), for the stan-

dard one dimensional Gaussian Z ∼ N (0, 1), while γk is (still) the k-dimensional Gaussian

with covariance matrix (2π)−1Ik.

Theorem 5.4 (Borell). Let A,B ⊆ Rk be Borel sets. Then

γk(A+B) > Φ

(
Φ−1(γk(A)) + Φ−1(γk(B))

)
.

Proof. In [4] Theorem 5.4 is proved for the standard Gaussian measure rather than γk.

However we can change the standard deviation of the measure by taking dilates of the sets

A and B. �

We will use the following simple consequence of Theorem 5.4.

Lemma 5.5. Let A ⊆ Rk be Borel sets. Then

γk(A− A) > γk(A)4 .

Proof. By Theorem 5.4, we have

γk(A− A) > Φ(2Φ−1(γk(A))) = Φ(2x), (39)

where we have set x = Φ−1(γk(A)). Note that

Φ(2x) = P(Z 6 2x) = P (Z1 + Z2 + Z3 + Z4 6 4x) > P(Z 6 x)4 = Φ(x)4 (40)

where Zj are i.i.d. copies of Z ∼ N (0, 1). Combining (39) and (40) completes the proof. �

5.3. Proof of Lemma 5.1. With these pieces now in place, we can move on to prove

Lemma 5.1, our key geometric lemma on the Fourier side.

Proof of Lemma 5.1. Write r =
√
k for simplicity. We prove the contrapositive and assume

for every x ∈ S we have

(Γ2r,16 \ Γ2r,s + x) ∩ S = ∅. (41)

We recall that

B = {θ ∈ Rk+2 : ‖θ[k]‖2 6 r} ,

and proceed to bound γk+2(S) from above by first bounding γk+2(S \B) and then bounding

γk+2(S ∩B).

Step 1: Upper bound for γk+2(S \B). For θ[k] ∈ Rk, let S(θ[k]) be as defined at (33):

S(θ[k]) =
{

(θk+1, θk+2) ∈ R2 : (θ[k], θk+1, θk+2) ∈ S
}
.
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We may write

γk+2(S \B) =

∫
‖θ[k]‖2>r

γ2

(
S(θ[k])

)
dγk (42)

and thus

γk+2(S \B) 6

(
max
θ[k]∈Rk

γ2

(
S(θ[k])

))
γk
(
{‖θ[k]‖2 > r}

)
. (43)

Lemma 4.4 and (41) show that

max
θ[k]∈Rk

γ2

(
S(θ[k])

)
6 8s2. (44)

Fact 5.3 bounds

γk
(
{‖θ[k]‖2 > r}

)
6 exp(−k/8) (45)

and so from (43), (44) and (45) we learn

γk+2(S \B) 6 8s2e−k/8. (46)

Step 2: Upper bound for γk+2(S ∩ B). By Lemma 5.2, there exists x ∈ S and h ∈ Γr,8 such

that

γk+2(S ∩B) 6 16γk+2((S − x) ∩ Γ2r,16 + h). (47)

Now since x ∈ S, we use (41) to deduce that

(S − x) ∩ Γ2r,16 ⊆ (S − x) ∩ Γ2r,s (48)

and so letting y = x− h, we see

(S − x) ∩ Γ2r,s + h = (S − x+ h) ∩ (Γ2r,s + h) = (S − y) ∩ (Γ2r,s + h). (49)

Thus by (47), (48) and (49), we have

γk+2(S ∩B) 6 16γk+2((S − y) ∩ (Γ2r,s + h)) . (50)

Bound

γk+2((S − y) ∩ (Γ2r,s + h)) 6
∫
|a−hk+1|,|b−hk+2|6s

γk
(
Fy(S; a, b)

)
dγ2 (51)

and apply Lemma 5.5 to obtain

γk+2((S − y) ∩ (Γ2r,s + h)) 6 4s2 max
a,b,y

(γk(Fy(S; a, b)− Fy(S; a, b)))1/4 . (52)

Combining (50) and (52) gives

γk+2(S ∩B) 6 64s2 max
a,b,y

(
γk (Fy(S; a, b)− Fy(S; a, b))

)1/4
(53)

Putting Step 1 and Step 2 together : (53) together with (46) implies

γk+2(S) 6 8s2e−k/8 + 64s2 max
a,b,y

(γk(Fy(S; a, b)− Fy(S; a, b)))1/4,

completing the proof of the contrapositive. �
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6. Inverse Littlewood-Offord III:

Comparison to a lazier walk and the proof of Lemma 4.1

In Section 5 we proved our key geometric ingredient, Lemma 5.1, to deal with the geometry

of our level set (as seen in Section 4.1). We now use this lemma to take the following big

step towards Lemma 4.1.

Lemma 6.1. For d ∈ N and α, µ ∈ (0, 1], let 0 6 k 6 2−8αd and t > exp(−2−8µαd). For

0 < c0 6 2−22µ, let Y ∈ Rd satisfy ‖Y ‖ > 2−10c0/t and let W be a 2d × k matrix with

‖W‖ 6 2. Also let τ ∼ Q(2d, µ) and τ ′ ∼ Q(2d, 2−7µ) and β ∈ [c0/2
10,
√
c0], β′ ∈ (0,

√
c0).

If

L(W T
Y τ, β

√
k + 1) > (Rt)2 exp(4β2k)

(
P(‖W T τ ′‖2 6 β′

√
k) + exp(−β′2k)

)1/4

(54)

then Dα(Y ) 6 16. Here we have set R = 232c−2
0 µ−1/2.

Of course, Lemma 6.1 looks quite a bit like Lemma 4.1 save for quantity

P(‖W T τ ′‖2 6 β′
√
k) + exp(−β′2k), (55)

on the right-hand side of (54). One should view this quantity as an approximation of

the contribution that the “soft” constraints make. Indeed, if one reads this lemma in the

contrapositive, it says that we can successfully “decouple” the “soft” constraints from the

“hard” constraints, provided Y is sufficiently “unstructured”, meaning Dα(Y ) > 16. Of

course, this story is not quite an honest one; we have to use the lazier vector τ ′, rather than

τ , to get things to work out, and we also take a loss in the exponent of 1/4. The key here

is that we obtain the correct power of t in our bound, which is deeply important for our

application. We also note that our use of “decoupling” should not be confused with the

“decoupling” step in Costello, Tao and Vu [9], which is used to deal with very unstructured

vectors.

We prove this lemma in Section 6.2 after laying out a few facts on level sets in Section 6.1.

We will then conclude this section in Section 6.3 with a proof of Lemma 4.1, by combining

Lemma 6.1 with one further ingredient to bound (55).

6.1. Working with level sets. To prepare for the proof of Lemma 6.1, we record two basic

facts about level sets. First off, we note a sort of converse to the Esseen-type inequality that

we saw in Section 4, Lemma 4.2. Again, we will postpone the straightforward proof of this

lemma to Appendix A. Recall that we defined, for a 2d × ` matrix W , the W -level set, for

t > 0, to be

SW (t) :=
{
θ ∈ R` : ‖Wθ‖T 6

√
t
}
.

Lemma 6.2. Let β > 0, ν ∈ (0, 1/4], let W be a 2d× ` matrix, and let τ ∼ Q(2d, ν). Then

for all t > 0, we have

γ`(SW (t))e−32νt 6 Pτ
(
‖W T τ‖2 6 β

√
`
)

+ exp
(
−β2`

)
.
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We remark that we impose laziness ν ∈ (0, 1/4] here to make the characteristic function

of W T τ nonnegative.

We need also need the following basic fact about level sets. Recall that, for a set S ⊂ Rk+2

and y ∈ Rk+2, we defined the “translated horizontal fiber”,

Fy(S; a, b) := {θ[k] = (θ1, . . . , θk) ∈ Rk : (θ1, . . . , θk, a, b) ∈ S − y} .

Fact 6.3. For any 2d× (k + 2) matrix W . If m > 0 we have

SW (m)− SW (m) ⊆ SW (4m).

Similarly, for any y ∈ Rk+2 and a, b ∈ R we have

Fy(SW (m); a, b)− Fy(SW (m); a, b) ⊆ F0(SW (4m); 0, 0). (56)

Proof. Notice that if x, y ∈ SW (m) then by definition ‖Wx‖T, ‖Wy‖T 6
√
m . Thus, by the

triangle inequality,

‖W (x− y)‖T 6 ‖Wx‖T + ‖Wy‖T 6 2
√
m.

For (56), let θ[k], θ
′
[k] ∈ Fy(S; a, b). We have that

(θ1, . . . , θk, a, b), (θ
′
1, . . . , θ

′
k, a, b) ∈ SW (m)− y

and so θ′′ := (θ1 − θ′1, . . . , θk − θ′k, 0, 0) ∈ SW (4m). Thus θ[k] − θ′[k] ∈ F0(SW (4m); 0, 0),

implying (56). �

6.2. Proof of Lemma 6.1. We may now turn to proving Lemma 6.1, our big step towards

Lemma 4.1.

Proof of Lemma 6.1. Apply Lemma 4.2, with parameter µ, to find m > 0 such that the level

set

S := SWY
(m) = {θ ∈ Rk+2 : ‖WY θ‖T 6

√
m},

satisfies

e−
µm
2

+2β2kγk+2(S) > L(W T
Y τ, β

√
k + 1). (57)

Thus (57) together with our hypothesis (54) gives a lower bound

γk+2(S) >
1

4
e
µm
2

+2β2k (Rt)2 T 1/4, (58)

where we have set

T := P(‖W T τ ′‖2 6 β′
√
k) + exp(−β′2k),

where we recall that τ ′ ∼ Q(2d, 2−7µ). We now make the following important designations,

r0 :=
√
k and s0 := 216c−1

0 (
√
m+

√
k)t. (59)

Recall from (31) that for r, s > 0 we defined the cylinder

Γr,s :=
{
θ ∈ Rk+2 :

∥∥θ[k]

∥∥
2
6 r and |θk+1| 6 s, |θk+2| 6 s,

}
.

Claim 6.4. There exists x ∈ S ⊆ Rk+2 so that6(
Γ2r0,16 \ Γ2r0,s0 + x

)
∩ S 6= ∅. (60)

6Note that this claim shows, in particular, that s0 < 16.
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Proof of Claim 6.4. We look to apply Lemma 5.1 with s = s0. For this, we bound

M := max
a,b,y

{
γk

(
Fy(S; a, b)− Fy(S; a, b)

)}
,

above by eµmT , thus giving a lower bound on γk+2(S) and allowing us to apply Lemma 5.1.

Use Fact 6.3 to see that for any y, a, b, we have

Fy(S; a, b)− Fy(S; a, b) ⊆ F0(SWY
(4m); 0, 0) . (61)

Now carefully observe that

F0(SWY
(4m); 0, 0) =

{
θ[k] ∈ Rk : ‖Wθ[k]‖T 6

√
4m
}

= SW (4m),

which is a level-set corresponding to the (“decoupled”) event Pτ ′(‖W T τ ′‖2 6 β′
√
k), where

τ ′ ∼ Q(2d, 2−7µ) and β′ ∈ (0, 1/2) is as in the hypothesis. Thus we may apply Lemma 6.2

(with ν = 2−7µ and t = 4m) along with (61) to obtain

M 6 γk(F0(SWY
(4m), 0, 0)) = γk(SW (4m)) 6 eµmT .

We may combine this with the fact that T > exp(−β′2k) > e−k/4, since β′ 6 1/2, to get

T 1/4 >
1

2
e−µm/4(e−k/16 +M1/4) . (62)

So combining (62) with (58), gives

γk+2(S) > (1/8)eµm/4+2β2k(Rt)2(e−k/16 +M1/4) > 64s2
0(e−k/16 +M1/4) , (63)

allowing us to apply Lemma 5.1 and complete the proof of the claim. The last inequality at

(63) follows from a simple check. First note that

s2
0 = 232c−2

0 (
√
m+

√
k)2t2 < 233(k +m)(t/c0)2 . (64)

Now use (64) and the facts that R = µ−1/2c−2
0 232 and β > 2−10c0 to bound

64s2
0 6 239t2c−2

0 (220c−2
0 β2k + 4µ−1(µm/4)) 6

1

8
(Rt)2eµm/4+2β2k

thus showing the second inequality at (63) and finishing the proof of the claim. �

We now observe the simple consequence of Claim 6.4.

Claim 6.5. We have that SWY
(4m) ∩ (Γ2r0,16 \ Γ2r0,s0) 6= ∅.

Proof of Claim 6.5. By Claim 6.4, there exists x, y ∈ S = SWY
(m) so that y ∈ (Γ2r0,16 \

Γ2r0,s0 +x
)
∩S. Set φ := y−x and observe that φ ∈ SWY

(4m)∩ (Γ2r0,16 \Γ2r0,s0), by Fact 6.3.

�

We now conclude the proof of Lemma 6.1 with the following claim.

Claim 6.6. If ψ ∈ SWY
(4m) ∩ (Γ2r0,16 \ Γ2r0,s0) then there exists i ∈ {k + 1, k + 2} so that

‖ψiY ‖T < min{ψi‖Y ‖2/2,
√
αd} .
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Proof of Claim 6.6. Note that since ψ ∈ SWY
(4m) there is a p ∈ Z2d so that WY ψ ∈

B2d(p, 2
√
m). So if we express

WY ψ = Wψ[k] + ψk+1

[
Y

0d

]
+ ψk+2

[
0d
Y

]
,

we have that

ψk+1

[
Y

0d

]
+ ψk+2

[
0d
Y

]
∈ B2d(p, 2

√
m)−Wψ[k] ⊆ B2d(p, 2

√
m+ 4

√
k), (65)

where the last inclusion holds because ψ ∈ Γ2r0,16 and so ‖ψ[k]‖2 6 2r0 6 2
√
k and ‖W‖ 6 2.

Since ψ 6∈ Γ2r0,s0 we have that at least one of |ψk+1|, |ψk+2| are > s0. So, assume without

loss that |ψk+1| > s0 and that ψk+1 > 0 (otherwise replace ψ with −ψ). Now project (65)

onto the first d coordinates, to obtain

ψk+1Y ∈ Bd(p[d], 2
√
m+ 4

√
k). (66)

We now observe that ‖ψk+1Y ‖T < ψk+1‖Y ‖2
2

. Indeed,

ψk+1‖Y ‖2

2
>
s0‖Y ‖2

2
>

(
215(
√
m+

√
k)t

c0

)(
2−10 c0

t

)
> (2
√
m+ 4

√
k), (67)

where we have used the definition of s0 and that ‖Y ‖2 > 2−10c0/t.

Finally, we note that m 6 2−4αd. To see this, we use (58), the bounds γk+2(S) 6 1,

T > e−β
′2k and our assumption t > exp(−2−8µαd) to see that

e−µm/2 > γk+2(S)e−µm/2 >
1

4
(Rt)2e2β2k−β′2k/4 > exp(−2−5µαd),

where we have used R2 > 4, k 6 2−7αd and β′ 6
√
c0 for the last inequality. It follows that

m 6 2−4αd and so by (66) and (67) we have

‖ψk+1Y ‖T 6 2
√
m+ 4

√
k 6
√
αd,

as desired. This completes the proof of the Claim 6.6. �

Let ψ and i ∈ {k+1, k+2} be as guaranteed by Claim 6.6. Then ψi 6 16, since ψ ∈ Γ2r0,16,

and

‖ψiY ‖T < min{‖ψiY ‖2/2,
√
αd},

and so Dα(Y ) 6 16 thus completing the proof of Lemma 6.1. �

6.3. Proof of Lemma 4.1. Before turning to prove Lemma 4.1, we require one further

result which tells us that ‖Wσ‖2 is anti-concentrated when σ is a random vector and W is a

fixed matrix. While there are several interesting results of this type in the literature [13,16,36]

(and we will encounter another in Subsection 8.2), we state here a variant of the Hanson-

Wright inequality with an explicit constant. A proof can be found in Appendix D of [7], the

arXiv version of this paper, and is a consequence of a classical concentration inequality due

to Talagrand [43].
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Lemma 6.7. For d ∈ N, ν ∈ (0, 1), let δ ∈ (0,
√
ν/16), let σ ∼ Q(2d, ν), and let W be a

2d× k matrix satisfying ‖W‖HS >
√
k/2 and ‖W‖ 6 2. Then

P(‖W Tσ‖2 6 δ
√
k) 6 4 exp(−2−12νk) . (68)

We now turn to prove Lemma 4.1.

Proof of Lemma 4.1. Setting β′ := 4
√
c0, we look to apply Lemma 6.1. For this, note that the

hypotheses in Lemma 4.1 imply the hypotheses in Lemma 6.1 with respect to c0, d, α, k, Y,W

and τ (and we have the extra condition on ‖W‖HS). So if we additionally assumeDα(Y ) > 16,

we may apply Lemma 6.1 (in the contrapositive) to obtain

L
(
W T
Y τ, β

√
k + 1

)
6 (232c−2

0 µ−1/2t/2)2e4β2k
(
P(‖W T τ ′‖2 6 β′

√
k) + e−β

′2k
)1/4

. (69)

To deal with the right-hand side, we apply Lemma 6.7 to take care of the quantity involving

τ ′ ∈ {−1, 0, 1}2d, our ν = 2−7µ lazy random vector. Note that 4
√
c0 6 2−9√µ 6

√
ν/16, and

that our given W satisfies ‖W‖HS >
√
k/2 and ‖W‖ 6 2. Thus we may apply Lemma 6.7,

with δ = β′ and σ = τ ′, to see

P(‖W T τ ′‖2 6 β′
√
k) 6 4 exp(−2−12νk). (70)

Plugging this into the right-hand side of (69) yields

exp(4β2k)
(
P(‖W T τ ′‖2 6 β′

√
k) + exp(−β′2k)

)1/4

6 2 exp(4c0k − 2−14νk) + 2 exp(2c0k − 4c0k)

6 4 exp(−c0k).

Putting this together with (69), yields

L
(
W T
Y τ, β

√
k + 1

)
6 (Rt)2 exp(−c0k),

as desired. �

7. Inverse Littlewood-Offord for conditioned random matrices

In this section we lift the main result of the previous sections (Lemma 4.1) to study the

concentration of the vector H1X, where H1 is a random (n− d)× d matrix, conditioned on

having k singular values which are much smaller than “typical” and X is a fixed vector for

which |Xi| ≈ N for each i.

Here N should be thought of as ≈ 1/ε, in the context of the proof (see Section 2) and H1

comes from its appearance in our matrix M ,

M =

[
0[d]×[d] HT

1

H1 0[d+1,n]×[d+1,n]

]
.

The main result of this section is the following theorem7.

7For convenience, we define σj(H) = 0 for j > rk(H).
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Theorem 7.1. For n ∈ N and 0 < c0 6 2−24, let d 6 c2
0n, and for α ∈ (0, 1), let 0 6 k 6

2−10αd and N 6 exp(2−10αd). Let X ∈ Rd satisfy ‖X‖2 > c02−10n1/2N , and let H be a

random (n− d)× 2d matrix with i.i.d. (1/4)-lazy entries in {−1, 0, 1}.
If Dα(rnX) > 16 then

PH
(
σ2d−k+1(H) 6 c02−4

√
n and ‖H1X‖2, ‖H2X‖2 6 n

)
6 e−c0nk/4

(
R

N

)2n−2d

, (71)

where we have set H1 := H[n−d]×[d], H2 := H[n−d]×[d+1,2d], rn := c0
16
√
n

and R := 239c−3
0 .

To understand the numerology in Theorem 7.1, notice that if we only consider the “soft”

constraints on the singular values (without the constraints imposed by X) we would expect

something like

PH
(
σ2d−k+1(H) 6 c02−4

√
n
)
≈ cnk, (72)

for some absolute c ∈ (0, 1), which depends on the value of c0. Here we are using, crucially,

that H is a rectangular matrix with aspect ratio bounded away from 1. Indeed, if H were a

square matrix then σmin(H) ≈ n−1/2, with high probability8.

On the other hand, the inverse Littlewood-Offord theorem of Rudelson and Vershynin [33]

(with a bit of extra work) tells us that if X is such that |Xi| ≈ N for all i ∈ [d], and

P
(
‖H1X‖2, ‖H2X‖2 6 n

)
>

(
R

N

)2n−2d

,

then Dα(n−1/2X) = O(1). Thus Theorem 7.1 is telling us that we maintain an inverse

Littlewood-Offord type theorem even in the presence of many additional constraints imposed

by the condition on the least singular values.

7.1. A tensorization step. We need the following basic fact.

Fact 7.2. If r > t > 0 and X is a random variable taking values in Rk+2, then

L(X, t) 6 L(X, r) 6 (1 + 2r/t)k+2L(X, t).

Proof. The lower bound is trivial. The upper bound follows from the fact that a ball of

radius r in Rk+2 can be covered by (1 + 2r/t)k+2 balls of radius t. �

We now prove a “tensorization” lemma which shows that anti-concentration of a single

row in a random matrix H (with iid rows) implies the anti-concentration of matrix products

involving H.

8While we can refer the reader to [34,35] for more on the singular values of rectangular random matrices,

we were not able to find any result such as (72) in the literature. However, it is not so hard to deduce (72)

from the Hanson-Wright inequality [36] along with a “random rounding” step similar to that in Appendix

E in [7] .
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Lemma 7.3. For d < n and k > 0, let W be a 2d×(k+2) matrix and let H be a (n−d)×2d

random matrix with i.i.d. rows. Let τ ∈ R2d be a random vector with the same distribution

as the rows of H. If β ∈ (0, 1/8) then

PH
(
‖HW‖HS 6 β2

√
(k + 1)(n− d)

)
6
(

25e2β2kL
(
W T τ, β

√
k + 1

))n−d
.

Proof. Apply Markov’s inequality to see that

P
(
‖HW‖HS 6 β2

√
(k + 1)(n− d)

)
6 exp

(
2β2(k + 1)(n− d)

)
EHe−2‖HW‖2HS/β

2

. (73)

Letting τ1, . . . , τn−d denote the i.i.d. rows of H, we may rewrite

EH e−2‖HW‖2HS/β
2

=
n−d∏
i=1

Eτi e−2‖WT τi‖2/β2

=
(
Eτ e−2‖WT τ‖2/β2

)n−d
. (74)

Observe now that

Eτ e−2‖WT τ‖2/β2

=

∫ ∞
0

P
(
e−2‖WT τ‖2/β2

> u
)
du =

∫ ∞
0

4ue−2u2P
(
‖W T τ‖2/β 6 u

)
du.

Splitting the integral on the right-hand side gives

Eτ e−2‖WT τ‖2/β2

=

∫ √k+1

0

4ue−2u2P
(
‖W T τ‖2 6 βu

)
+

∫ ∞
√
k+1

4ue−2u2P
(
‖W T τ‖2 6 βu

)
.

We then appeal to Fact 7.2 to write

Eτ e−2‖WT τ‖2/β2

6 L
(
W T τ, β

√
k + 1

)(∫ √k+1

0

4ue−2u2 du+

∫ ∞
√
k+1

(
1 +

2u√
k + 1

)k+2

4ue−2u2 du

)
.

Here the first integral is 6 1, while the second integral is 6 8 and thus

Eτ e−2‖WT τ‖2/β2

6 9L
(
W T τ, β

√
k + 1

)
. (75)

Combining lines (75) with (74) and (73) gives

PH(‖HW‖HS 6 β2
√

(k + 1)(n− d)) 6

(
9 exp(2β2(k + 1))L

(
W T τ, β

√
k + 1

))n−d
,

and the result follows. �

7.2. Approximating matrices W with nets. Note that in Theorem 7.1, the least singular

values of the matrix H could, a priori, correspond to any of a huge number of possible

directions. To limit the number of directions we need to consider, we build nets for k-tuples

of these directions. Luckily, the construction of these nets is rendered relatively simple (unlike

the nets Nε) by appealing to a randomized-rounding technique pioneered in the context of

random matrices by Livshyts [27] (also see Section 3 of [28]).

With this in mind, let U2d,k be the set of all 2d × k matrices with orthonormal columns.

The following theorem provides a net for U2d,k, when viewed as a subset of R[2d]×[k]. A proof

can be found in Appendix E of [7], the arXiv version of this paper.
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Lemma 7.4. For k 6 d and δ ∈ (0, 1/2), there exists W = W2d,k ⊂ R[2d]×[k] with |W| 6
(26/δ)2dk so that for any U ∈ U2d,k, any r ∈ N and r × 2d matrix A there exists W ∈ W so

that

(1) ‖A(W − U)‖HS 6 δ(k/2d)1/2‖A‖HS,

(2) ‖W − U‖HS 6 δ
√
k and

(3) ‖W − U‖ 6 8δ.

Recall, for a 2d× k matrix W and Y ∈ Rd, we defined (at (28)) the augmented matrix

WY =

[
W,

[
0d
Y

]
,

[
Y

0d

]]
.

7.3. Proof of Theorem 7.1. We recall a standard fact from linear algebra, reworded to

suit our context.

Fact 7.5. For 3d < n, let H be a (n − d) × 2d matrix. If σ2d−k+1(H) 6 x then there exist

k orthogonal unit vectors w1, . . . , wk ∈ R2d so that ‖Hwi‖2 6 x. In particular, there exists

W ∈ U2d,k so that ‖HW‖HS 6 x
√
k.

We also note that if H is a (n−d)×2d matrix with entries in {−1, 0, 1} then we immediately

have ‖H‖HS 6
√

2d(n− d).

Proof of Theorem 7.1. Write Y := c0
16
√
n
·X. We use Fact 7.5 to upper bound the left-hand-

side of (71) as

P(σ2d−k+1(H) 6 c02−4
√
n and ‖H1X‖2, ‖H2X‖2 6 n)

6 P(∃U ∈ U2d,k : ‖HUY ‖HS 6 3c0

√
n(k + 1)/16).

Set δ := c0/16, and let W be the net for U2d,k, given by Lemma 7.4.

We fix a matrix H for a moment. If there exists a matrix U ∈ U2d,k so that ‖HUY ‖HS 6
3c0

√
n(k + 1)/16, apply Lemma 7.4 to find W ∈ W so that

‖HWY ‖HS 6 ‖H(WY − UY )‖HS + ‖HUY ‖HS 6 δ(k/2d)1/2‖H‖HS + 3c0

√
n(k + 1)/16

which is at most c0

√
n(k + 1)/4, since ‖H‖HS 6

√
2nd. Thus

P
(
∃U ∈ U2d,k : ‖HUY ‖HS 6

c0

16

√
n(k + 1)

)
6 P

(
∃W ∈ W : ‖HWY ‖HS 6

c0

4

√
n(k + 1)

)
.

So by the union bound, we have

P
(
∃W ∈ W : ‖HWY ‖HS 6 (c0/4)

√
n(k + 1)

)
6
∑
W∈W

P
(
‖HWY ‖HS 6 (c0/4)

√
n(k + 1)

)
.

Now, by Lemma 7.4,

|W| 6 (26/δ)2dk 6 exp(32dk log c−1
0 ) 6 exp(c0k(n− d)/4),
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where the last inequality holds since d 6 c2
0n, and so∑

W∈W

P
(
‖HWY ‖HS 6

c0

4

√
n(k + 1)

)
6 ec0k(n−d)/4 max

W∈W
P
(
‖HWY ‖HS 6

c0

4

√
n(k + 1)

)
.

(76)

Let W ∈ W be such that the maximum in (76) is attained, apply Lemma 7.3 with β :=
√
c0/2

to obtain

P(‖HWY ‖HS 6 (c0/4)
√
n(k + 1)) 6

(
25ec0k/2L

(
W T
Y τ, c

1/2
0

√
k + 1

))n−d
. (77)

We now look to apply Lemma 4.1. We define t := 16/(c0N) > exp(−2−9αd) and

R0 := 2−7c0R = 2−7c0(239c−3
0 ) = 232c−2

0 so that we have

‖Y ‖2 = c0‖X‖2/(16n1/2) > 2−14c2
0N = 2−10c0/t.

By the construction of W in Lemma 7.4 we have ‖W‖ 6 2 and ‖W‖HS >
√
k/2. We also

have k 6 2−10αd and Dα( c0
16
√
n
X) = Dα(Y ) > 16, therefore we may apply Lemma 4.1 to see

that

L
(
W T
Y τ, c

1/2
0

√
k + 1

)
6 (R0t)

2 exp(−c0k) 6

(
R

8N

)2

exp(−c0k).

Substituting this bound in (77) we get

max
W∈W

PH(‖HWY ‖2 6 (c0/4)
√
n(k + 1)) 6

(
R

N

)2n−2d

exp(−c0k(n− d)/2)

and finally combining it with the previous bounds gives

P(σ2d−k+1(H) 6 c0

√
n/16 and ‖H1X‖2, ‖H2X‖2 6 n) 6

(
R

N

)2n−2d

exp(−c0k(n− d)/4).

This completes the proof of Theorem 7.1. �

8. Nets for structured vectors: Size of the Net

In this section we take a important step towards Theorem 1.1 by bounding the size of our

net

Nε :=
{
v ∈ Λε : (Lε)n 6 P(‖Mv‖2 6 4ε

√
n) and LA,op(v, ε

√
n) 6 (28Lε)n

}
,

where we recall that

Λε := Bn(0, 2) ∩
(
4εn−1/2Zn

)
∩ I ′([d]).

In particular, our main goal of this section will be to prove the following theorem on |Nε|.

Theorem 8.1. For L > 2 and 0 < c0 6 2−24, let n > L64/c20, let d ∈ [c2
0n/4, c

2
0n] and let

ε > 0 be such that log ε−1 6 nL−32/c20. Then

|Nε| 6
(

C

c6
0L

2ε

)n
,

where C > 0 is an absolute constant.
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As the geometry of the set Λε is a bit complicated, we follow an idea of Tikhomirov [51], by

working with the intersection of Nε with a selection of “boxes” which cover (an appropriately

re-scaled) Λε.

Definition 8.2. For d, n,N ∈ N with d 6 n and κ > 1, define a (N, κ, d)-box to be a set of

the form B = B1 × . . .×Bn ⊂ Zn where |Bi| > N for all i > 1; Bi = [−κN,−N ] ∪ [N, κN ],

for i ∈ [d]; and |B| 6 (κN)n.

The advantage of working with these boxes is that they lend themselves naturally to a

probabilistic interpretation, which we now adopt. We ask “what is the probability that

PM(‖MX‖2 6 n) >

(
L

N

)n
,

where X is chosen uniformly at random from B?”. This interpretation was used to ingenious

effect in the work of Tikhomirov, who called this the “inversion of randomness”. While we do

take this vantage point, our path forward is considerably different from that of Tikhomirov.

We now state our key “box” version of Theorem 8.1, in this probabilistic framework.

Indeed, almost all of the work in proving Theorem 8.1 goes into proving the following variant

for boxes.

Lemma 8.3. For L > 2 and 0 < c0 6 2−24, let n > L64/c20 and let 1
4
c2

0n 6 d 6 c2
0n. For

N > 2, satisfying logN 6 c0L
−8n/dd, and κ > 2, let B be a (N, κ, d)-box and let X be chosen

uniformly at random from B. Then

PX
(
PM(‖MX‖2 6 n) >

(
L

N

)n)
6

(
R

L

)2n

,

where R := Cc−3
0 and C > 0 is an absolute constant.

8.1. Counting with the least common denominator. In this subsection, we prove the

following simple lemma, which says that the probability of choosing X ∈ B with “large”

least common denominator is super-exponentially small. This will ultimately allow us to

apply Theorem 7.1, which requires an upper-bound on the Dα(X) for application.

We point out that in Lemma 8.4, we rescale by a factor of rn = c02−4n−1/2, despite the

fact we are working in d < n dimensions. This is just a trace of the fact that Rn is our true

point of reference. Additionally we will only need Lemma 8.4 when K = 16.

Lemma 8.4. For α ∈ (0, 1), K > 1 and κ > 2, let n > d > K2/α and let N > 2 be so that

KN < 2d. Let B = ([−κN,−N ] ∪ [N, κN ])d and let X be chosen uniformly at random from

B. Then

PX
(
Dα

(
rnX

)
6 K

)
6 (220α)d/4 , (78)

where we have set rn := c02−4n−1/2.
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Proof. If Dα

(
rnX

)
6 K then let ψ ∈ (0, K] be the minimum9 in the definition of least

common denominator. Set φ := rnψ and observe that φ satisfies

‖φX‖T 6
√
αd and φ ∈ [(2κN)−1, rnK] . (79)

To see the bound φ > (2κN)−1, note that if φ < (2κN)−1 then each coordinate of φX

lies in (−1/2, 1/2) which would imply ‖φX‖T = ‖φX‖2 = φ‖X‖2. Using the non-triviality

condition in the definition of least common denominator (29), this would imply

φ‖X‖2 = ‖φX‖T = ‖ψ(rnX)‖T 6 ψ‖rnX‖2/2 = φ‖X‖2/2,

which is a contradiction. Thus the bounds in (79) hold.

Now to calculate the probability in (78), we discretize the range of possible φ. For each

integer i ∈ [1/α, 2KN/α] =: I we define φi := iα/(2κN) and note that if X,φ satisfy (79)

then there exists φi for which

‖φiX‖T 6 2
√
αd and φi ∈ [(2κN)−1, rnK],

by simply choosing φi for which |φi − φ| 6 α/(κN) and using triangle inequality

‖φiX‖T 6 ‖φX‖T + ‖(φi − φ)X‖2 6
√
αd+ |φi − φ| ·

√
d(κN) 6 2

√
αd. (80)

Thus we have that

PX(Dα(rnX) 6 K) 6
∑
i∈I

PX
(
‖φiX‖T 6 2

√
αd
)
. (81)

To bound the terms on the right-hand side, note that if ‖φiX‖T 6 2
√
αd then

1

d

d∑
j=1

‖φiXj‖2
T 6 4α .

By averaging, there is a set S(X, i) ⊂ [d] with |S(X, i)| > d/2 for which ‖φiXj‖T 6 4
√
α

for all j ∈ S(X, i). Union bounding over all sets S ⊆ [d] and using the independence of the

coordinates Xj we have

PX(Dα(rnX) 6 K) 6 2d
∑
i∈I

d/2∏
j=1

PXj
(
‖φiXj‖T 6 4

√
α
)
. (82)

We now claim that

PXj
(
‖φiXj‖T 6 4

√
α
)
6 32

√
α. (83)

For this, note that if ‖φiXj‖T 6 4
√
α, then |φiXj − p| 6 4

√
α, where p ∈ Z satisfies

|p| 6 |φiXj|+ 1 6 φiκN + 1 =: Ti. And so

PXj(‖φiXj‖T 6 4
√
α) 6

Ti∑
p=−Ti

PXj(|Xj − pφ−1
i | 6 4

√
αφ−1

i ) 6
(2Ti + 1)(8α1/2φ−1

i + 1)

2(κ− 1)N
.

9Technically the least common denominator is defined in terms of an infimum, however the minimum is

always attained for non-zero vectors.
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where we have used that Xj is uniform on [−κN,−N ]∪[N, κN ] and the lower bound κNφi >
1/2 from (80) along with the assumption κ > 2. Also note that 8α1/2φ−1

i > 1 since φ 6
rnK 6 d−1/2K, allowing us to conclude (83).

Now, plugging (83) into (82) and bounding |I| 6 (2KN/α + 1) 6 3d completes the proof

of Lemma 8.4. �

8.2. Anti-concentration for linear projections of random vectors. In this subsection

we prove the following anti-concentration result for random variables HX, where H is a fixed

matrix and X is a random vector with independent entries. One small remark regarding

notation: H as stated in Lemma 8.5 will actually be HT in Section 8.3.

Lemma 8.5. Let N ∈ N, n, d, k ∈ N be such that n−d > 2d > 2k, H be a 2d×(n−d) matrix

with σ2d−k(H) > c0

√
n/16 and B1, . . . , Bn−d ⊂ Z with |Bi| > N . If X is taken uniformly at

random from B := B1 × . . .×Bn−d, then

PX
(
‖HX‖2 6 n

)
6

(
Cn

dc0N

)2d−k

,

where C > 0 is an absolute constant.

We derive this from the following anti-concentration result of Rudelson and Vershynin.

This is essentially Corollary 1.4 along with Remark 2.3 in their paper [37], but we have

restated their result slightly to better suit our context.

Theorem 8.6. Let N ∈ N and let n, d, k ∈ N be such that n − d > 2d > k. Let P

be an orthogonal projection of Rn−d onto a (2d − k)-dimensional subspace and let X =

(X1, . . . , Xn−d) be a random vector with independent entries for which

L
(
Xi, 1/2

)
6 N−1,

for all i ∈ [n− d]. Then, for all K > 1,

max
y∈Rn−d

PX
(
‖PX − y‖2 6 K

√
2d− k

)
6

(
CK

N

)2d−k

,

where C > 0 is a absolute constant.

We can now deduce Lemma 8.5.

Proof of Lemma 8.5. Since HTH is a symmetric (n− d)× (n− d) matrix with rk(H) 6 2d,

by the spectral theorem we have HTH =
∑2d

i=1 σi(H)2viv
T
i , where v1, . . . , v2d ∈ Rn−d are

orthonormal. Define the orthogonal projection P :=
∑2d−k

i=1 viv
T
i . Then we have

‖HX‖2
2 = 〈X,HTHX〉 =

2d∑
j=1

σj(H)2〈X, vj〉2 > σ2d−k(H)2

2d−k∑
j=1

〈X, vj〉2 > 2−8c2
0n‖PX‖2

2.

Therefore

PX(‖HX‖2 6 n) 6 PX(‖PX‖2 6 16c−1
0

√
n). (84)
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We now apply Theorem 8.6 to the orthogonal projection P , with K = 16c−1
0

√
n/(2d− k),

PX(‖PX‖2 6 K
√

2d− k) 6

(
Cn

dc0N

)2d−k

, (85)

which together with (84) completes the proof of Lemma 8.5. �

8.3. Proof of Lemma 8.3. We take a moment to prepare the ground for the proof of

Lemma 8.3. We express our random matrix M, as in the statement of Lemma 8.3, as

M =

[
0[d]×[d] HT

1

H1 0[n−d]×[n−d],

]
where H1 is a (n − d) × d random matrix with iid 1/4-lazy entries in {−1, 0, 1}. We shall

also let H2 be an independent copy of H1 and define H to be the (n− d)× 2d matrix

H :=
[
H1 H2

]
.

For a vector X ∈ Rn, we define the event A1 = A1(X) by

A1 :=
{
H : ‖H1X[d]‖2 6 n and ‖H2X[d]‖2 6 n

}
and let A2 = A2(X) be the event

A2 :=
{
H : ‖HTX[d+1,n]‖2 6 2n

}
.

We now note a simple inequality linking H, A1 and A2 with the event {‖MX‖2 6 n}.

Fact 8.7. For X ∈ Rn, let A1 = A1(X), A2 = A2(X) be as above. We have

(PM(‖MX‖2 6 n))2 6 PH(A1 ∩ A2).

Proof. Let M ′ be an independent copy of M . Expand 1(‖MX‖2 6 n) as a sum of indicators,

apply EM and square to see

(PM(‖MX‖2 6 n))2 =
∑
M,M ′

P(M ′)P(M)1(‖MX‖2, ‖M ′X‖2 6 n),

which is at most∑
H1,H2

P(H1)P(H2)1
(
‖H1X[d]‖2 6 n, ‖H2X[d]‖2 6 n and ‖HTX[d+1,n]‖2 6 2n

)
,

which is exactly PH(A1 ∩ A2). �

We shall also need a “robust” notion of the rank of the matrix H: Define Ek to be

Ek :=
{
H : σ2d−k(H) > c0

√
n/16 and σ2d−k+1(H) < c0

√
n/16

}
and note that always exactly one of the events E0, . . . , E2d holds. We now set

α := 213L−8n/d, (86)

and, given a box B, we define the set of typical vectors T (B) ⊆ B to be

T = T (B) :=
{
X ∈ B : Dα(c02−4n−1/2X[d]) > 16

}
. (87)
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Now set K := 16 and note that Lemma 8.4 implies that if X is chosen uniformly from B
and n > L64/c20 > 28/α we have

PX(X 6∈ T ) = PX
(
Dα(c02−4n−1/2X[d]) 6 16

)
6
(
233L−8n/d

)d/4
6

(
2

L

)2n

. (88)

Proof of Lemma 8.3. Let M , H1, H2, H, A1,A2, Ek, α and T := T (B) be as above. We

denote

E :=
{
X ∈ B : PM(‖MX‖2 6 n) > (L/N)n

}
and write

PX(E) 6 PX(E ∩ {X ∈ T}) + PX(X 6∈ T ).

Now define

f(X) := PM(‖MX‖2 6 n)1(X ∈ T )

and apply (88), the bound on PX(X 6∈ T ), to obtain

PX(E) 6 PX (f(X) > (L/N)n) + (2/L)2n 6 (N/L)2nEX f(X)2 + (2/L)2n, (89)

where the last inequality follows from Markov’s inequality. So to prove Lemma 8.3, it is

enough to prove EX f(X)2 6 2(R/N)2n.

From Fact 8.7 we may write

PM(‖MX‖2 6 n)2 6 PH(A1 ∩ A2) =
d∑

k=0

PH(A2|A1 ∩ Ek)PH(A1 ∩ Ek) (90)

and so

f(X)2 6
d∑

k=0

PH(A2|A1 ∩ Ek)PH(A1 ∩ Ek)1(X ∈ T ). (91)

We now look to apply Lemma 7.1 to obtain upper bounds for the quantities PH(A1 ∩ Ek),
when X ∈ T . For this, note that d 6 c2

0n, N 6 exp(L−8n/dd) 6 exp(2−10αn) and set

R0 := 239c−3
0 (This is the “R” in Theorem 7.1). Also note that, by the definition of a

(N, κ, d)-box and the fact that d > 1
4
c2

0n, we have that ‖X[d]‖2 > d1/2N > c02−10
√
nN . Now

set α′ := 2−10α to see that for X ∈ T and 0 6 k 6 α′d,

PH(A1 ∩ Ek) 6 exp(−c0nk/4)

(
R0

N

)2n−2d

.

Moreover by Theorem 7.1,∑
k>α′d

PH(A1 ∩ Ek) 6 PH
(
{σ2d−α′d(H) 6 c0

√
n/16} ∩ A1

)
6 exp(−c0α

′dn/4).

Thus, for all X ∈ B, we have

f(X)2 6
α′d∑
k=0

PH(A2 | A1 ∩ Ek) exp(−c0nk/4)

(
R0

N

)2n−2d

+ exp(−c0α
′dn/4) . (92)
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We now consider the quantities gk(X) := PH(A2 | A1 ∩ Ek) appearing in (92). Indeed,

EX [gk(X)] = EXEH
[
A2 | A1 ∩ Ek

]
= EX[d]

EH
[
EX[d+1,n]

1[A2]
∣∣A1 ∩ Ek

]
.

We now consider a fixed H ∈ A1 ∩ Ek for k 6 α′d. Each such H has σ2d−k(H) > c0

√
n/16

and thus we may apply Lemma 8.5 to see that

EX[d+1,n]
1[A2] = PX[d+1,n]

(
‖HTX[d+1,n]‖2 6 n

)
6

(
C ′n

c0dN

)2d−k

6

(
4C ′

c3
0N

)2d−k

,

for an absolute constant C ′ > 0, using that d > 1
4
c2

0n. And so for each 0 6 k 6 α′d, taking

R := max{8C ′c−3
0 , 2R0}, we have

EX [gk(X)] 6

(
R

2N

)2d−k

. (93)

We apply EX to (92) and then use (93) to obtain

EXf(X)2 6

(
R

2N

)2n α′d∑
k=0

(
2N

R

)k
exp(−c0nk/4) + exp(−c0α

′dn/4).

Using that N 6 exp(c0n/4) and N 6 exp(c0L
−8n/dd) = exp(c0α

′d/8) gives

EX f(X)2 6 2

(
R

2N

)2n

. (94)

Combining (94) with (89) completes the proof of Lemma 8.3. �

8.4. Proof of Theorem 8.1. The main work of this section is now complete with the proof

of Lemma 8.3. We now just need to go from X in a “box” to X in a “sphere” Λε. To

accomplish this step, we simply cover the sphere with boxes. Recall that

I ′([d]) :=
{
v ∈ Rn : κ0n

−1/2 6 |vi| 6 κ1n
−1/2 for all i ∈ [d]

}
,

Λε := Bn(0, 2) ∩
(
4εn−1/2Zn

)
∩ I ′([d]),

and that 0 < κ0 < 1 < κ1 are absolute constants defined in Section 3.

Lemma 8.8. For all ε ∈ [0, 1], κ > max{κ1/κ0, 2
8κ−4

0 }, there exists a family F of (N, κ, d)-

boxes with |F| 6 κn so that

Λε ⊆
⋃
B∈F

(4εn−1/2)B , (95)

where N = κ0/(4ε).

Proof. For ` > 1 define the interval of integers I` :=
[
−2`N, 2`N

]
\
[
−2`−1N, 2`−1N

]
and

I0 := [−N,N ]. Also take J := [−κN, κN ]\[−N,N ]. For (`d+1, . . . , `n) ∈ Zn>0 we define the

box B(`d+1, . . . , `n) := Jd ×
∏n

j=d+1 I`j and the family of boxes

F :=

B(`d+1, . . . , `n) :
∑
j:`j>0

22`j 6 8n/κ2
0

 .
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We claim that F is the desired family. For this, we first show the inclusion at (95). Let

v ∈ Λε. Since v ∈ 4εn−1/2Zn, X := vn1/2/(4ε) ∈ Zn. For i ∈ [d + 1, n], define `i so that

Xi ∈ I(`i). We claim X ∈ B(`d+1, . . . , `n). For this, observe that Xi ∈ J for i ∈ [d]: since

v ∈ I ′([d]), we have κ0 6 |vi|n1/2 6 κ1, for i ∈ [d]. So κ0/(4ε) 6 |Xi| 6 κ1/(4ε), for i ∈ [d].

Thus Xi ∈ J since N = κ0/(4ε) and κ > κ1/κ0. Thus X ∈ B(`d+1, . . . , `n). We now observe

that B(`d+1, . . . , `n) ∈ F , since∑
j:`j>0

22(`j−1)N2 6
n∑
j=1

X2
j 6 n/(4ε)2

(∑
i

v2
i

)
6 4nN2/κ2

0.

Thus we have (95).

We now show |F| 6 κn. For this we only need to count the number of sequences

(`d+1, . . . , `n) of non-negative integers for which
∑

`i>0 4`i 6 8n/κ2
0. For each t > 0 there are

at most max{8n/(4tκ2
0), n} values of i ∈ [d + 1, n] for which `i = t. There are therefore at

most
8n/(κ204t)∑
j=0

(
n

j

)
6

(
eκ2

04t

8

)8n/(κ204t)

6 e8n/(κ202t)

choices for these values of i if 8/(κ2
02t) 6 1 and at most 2n choices otherwise. Hence, there

are at most

2n log2(8/κ20) ·
∏

t>log2(8/κ20)

e8n/(κ202t) 6 (8/κ2
0)n · e2n < κn

such sequences (`d+1, . . . , `n).

It only remains to show an upper bound on the size of B(`d+1, . . . , `n) ∈ F . We have

|B(`d+1, . . . , `n)| 6 Nnκd2n+
∑
j `j 6 κd(16/κ2

0)nNn 6 (κN)n

where the second inequality holds due to the fact
∏

j 2`j 6
(

1
n

∑
j 22`j

)n
6 (8/κ2

0)n and the

last inequality holds due to the choice of κ. �

We may now use our covering Lemma 8.8 to apply Lemma 8.3 to deduce Theorem 8.1,

the main result of this section.

Proof of Theorem 8.1. Apply Lemma 8.8 with κ = max{κ1/κ0, 2
8κ−4

0 } and use the fact that

Nε ⊆ Λε to write

Nε ⊆
⋃
B∈F

(
(4εn−1/2)B

)
∩Nε

and so

|Nε| 6
∑
B∈F

|(4εn−1/2B) ∩Nε| 6 |F| ·max
B∈F

|(4εn−1/2B) ∩Nε|.

By rescaling by
√
n/(4ε) and applying Lemma 8.3, we have

|(4εn−1/2B) ∩Nε| 6
∣∣∣{X ∈ B : PM

(
‖MX‖2 6 n

)
> (Lε)n

}∣∣∣ 6 (R
L

)2n

|B|.
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Here the application of Lemma 8.3 is justified as 0 < c0 6 2−24, c2
0n/2 6 d 6 c2

0n; κ > 2; we

have log 1/ε 6 n/L32/c20 and therefore

logN = log κ0/(4ε) 6 n/L32/c20 6 c0L
−8n/dd,

as specified in Lemma 8.3, since κ0 < 1, d > L−1/c20n, c0 > L−1/c20 and 8n/d 6 16/c2
0. So,

using that |F| 6 κn and |B| 6 (κN)n for each B ∈ F , we have

|Nε| 6 κn
(
R

L

)2n

|B| 6 κn
(
R

L

)2n

(κN)n 6

(
C

c6
0L

2ε

)n
,

where C = κ2R2c6
0, thus completing the proof of Theorem 8.1. �

9. Nets for structured vectors: approximating with the net

While we have spent considerable energy up to this point showing that Nε is small, we

have so far not shown that it is in fact a net. We now show just this, by showing that vectors

in Σε are approximated by elements of Nε. As we will see, this is considerably easier and is

taken care of in Lemma 9.2, which, in a similar spirit to Lemma 7.4, is based on randomized

rounding. For this, we recall that we defined

Σε = {v ∈ I([d]) : TL(v) ∈ [ε, 2ε]} ⊂ Sn−1 , (96)

where TL(v) = sup{t ∈ [0, 1] : P(‖Mv‖2 6 t
√
n) > (4Lt)n}, and d = c2

0n < 2−32n. Also

recall the definition of our net

Nε =
{
v ∈ Λε : P(‖Mv‖2 6 4ε

√
n) > (Lε)n and LA,op(v, ε

√
n) 6 (28Lε)n

}
.

We also make the basic observation that if TL(v) = s, then

(2sL)n 6 P(‖Mv‖2 6 s
√
n) 6 (8sL)n .

Until now, we have almost entirely been working with the matrix M . The following lemma

allows us to make a comparison between M and our central object of study: A, a uniform

n × n symmetric matrix with entries in {−1, 1}. The proof of the lemma is based on a

comparison of Fourier transforms and is deferred to Appendix B. We note that the proof

makes use of the fact that for fixed v ∈ Rn, the characteristic function of Mv is nonnegative

since the entries of M are sufficiently lazy. This is similar to the replacement step in the

work of Kahn Komlós and Szemerédi [19] and subsequent works [5, 46]. However, here we

only need to “break even”, whereas they are looking for a substantial gain at this step.

Lemma 9.1. For v ∈ Rn and t > TL(v) we have

L(Av, t
√
n) 6 (50Lt)n .

We now prove Lemma 9.2 which tells us that Nε is a net for Σε.

Lemma 9.2. Let ε ∈ (0, κ0/8), d 6 n/32. If v ∈ Σε then there is u ∈ Nε with ‖u− v‖∞ 6
4εn−1/2.
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Proof. Given v ∈ Σε, we define a random variable r = (r1, . . . , rn) where the ri are indepen-

dent, E ri = 0, |ri| 6 4εn−1/2 and such that v − r ∈ 4εn−1/2Zn, for all r. We then define the

random variable u := v − r. We will show that with positive probability there is a choice of

u ∈ Nε.
Note that ‖r‖∞ = ‖u−v‖∞ 6 4εn−1/2 for all u. Also, u ∈ I ′([d]) for all u, since v ∈ I([d])

and ‖u− v‖∞ 6 4ε/
√
n 6 κ0/(2

√
n). So, from the definition of Nε, we need only show that

there exists such a u satisfying

P(‖Mu‖2 6 4ε
√
n) > (Lε)n and LA,op(u, ε

√
n) 6 (28Lε)n. (97)

We first show that all u satisfy the upper bound at (97). To see this, write E = {‖A‖ 6 4
√
n}

and let w(u) ∈ Rn, be such that

LA,op(u, ε
√
n) = P

(
‖Av − Ar − w(u)‖ 6 ε

√
n and E

)
6 P

(
‖Av − w(u)‖ 6 5ε

√
n and E

)
6 LA,op(v, 5ε

√
n) 6 L(Av, 5ε

√
n).

Since v ∈ Σε, Lemma 9.1 bounds

L(Av, 5ε
√
n) 6 (28Lε)n . (98)

We now show that

Eu PM(‖Mu‖2 6 4ε
√
n) > (1/2)PM(‖Mv‖2 6 2ε

√
n) > (1/2)(2εL)n , (99)

where the last inequality holds by the fact v ∈ Σε. From (99), it follows that there exists

u ∈ Λε satisfying (97).

So to prove the first inequality in (97), we define the event E := {M : ‖Mv‖2 6 2ε
√
n}.

For all u, we have

PM(‖Mu‖2 6 4ε
√
n) = PM(‖Mv −Mr‖2 6 4ε

√
n) > PM(‖Mr‖2 6 2ε

√
n and E);

Thus

PM(‖Mu‖2 6 4ε
√
n) > PM(‖Mr‖2 6 2ε

√
n
∣∣E)P(E)

>
(
1− PM(‖Mr‖2 > 2ε

√
n
∣∣E)
)
PM(‖Mv‖2 6 2ε

√
n) .

Taking expectations with respect to u gives,

EuPM(‖Mu‖2 6 4ε
√
n) >

(
1− EuPM(‖Mr‖2 > 2ε

√
n
∣∣E)
)
PM(‖Mv‖2 6 2ε

√
n) (100)

and exchanging the expectations reveals that it is enough to show

EM
[
Pr(‖Mr‖2 > 2ε

√
n)
∣∣ E] 6 1/2.

We will show that Pr(‖Mr‖2 > 2ε
√
n) 6 1/4 for all M ∈ E , by Markov’s inequality. For

this, fix a n×n matrix M with entries |Mi,j| 6 1 and Mi,j = 0, if (i, j) ∈ [d+1, n]× [d+1, n],

and note that

Er ‖Mr‖2
2 =

∑
i,j

E (Mi,jri)
2 =

∑
i

E r2
i

∑
j

M2
i,j 6 32ε2d 6 ε2n,
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where, for the second equality, we have used that the ri are mutually independent and

E ri = 0, for the third inequality, we used ‖r‖∞ 6 4ε/
√
n and for the final inequality we

used d 6 n/32. Thus by Markov, we have

Pr(‖Mr‖2 > 2ε
√
n) 6 (2ε

√
n)−2Er ‖Mr‖2

2 6 1/4. (101)

Putting (101) together with (100) proves (99), completing the proof of (97). �

10. Proof of Theorem 1.1

In this section we put together our results to prove Theorem 1.1. But before we get to

this, we note a few reductions afforded by previous work. Let us define

qn(γ) := max
w∈Rn

PA(∃v ∈ Rn \ {0} : Av = w, ρ(v) > γ), (102)

where

ρ(v) = max
w∈R

P

(
n∑
i=1

εivi = w

)
and ε1, . . . , εn ∈ {−1, 1} are i.i.d. and uniform. One slightly irritating aspect of the definition

(102) is that the existential quantifies over all non-zero v ∈ Rn, rather than all v ∈ Sn−1,

as we have been working with. So, as we will shortly see, we will need to approximate this

extra dimension of freedom with a net.

These small issues aside, we will use the following inequality, which effectively allows us

to remove very unstructured vectors from consideration.

Lemma 10.1. Let A be a random n× n symmetric {−1, 1}-matrix. For all γ > 0 we have

P(det(A) = 0) 6 16n
2n−2∑
m=n

(
γ1/8 +

qm−1(γ)

γ

)
.

We record the details of this lemma in Appendix C of the arXiv version of this paper [7],

although an almost identical lemma can be found in [8], which collected elements from

[9,11,31].

10.1. Non-flat vectors. Here we note a lemma due to Vershynin [52] which tells us that

it is enough for us to consider vectors v ∈ I. For this, we reiterate the important notion

of compressible vectors, introduced by Rudelson and Vershynin [33]. Say a vector in Sn−1 is

(δ, ρ)-compressible if it has distance 6 ρ from a vector with support 6 δn. Let Comp (δ, ρ)

denote the set of such compressible vectors. In [52, Proposition 4.2], Vershynin provides the

following lemma which allows us to disregard all compressible vectors.

Lemma 10.2. There exist δ, ρ, c ∈ (0, 1) so that for all n ∈ N,

max
w∈Rn

PA

 ⋃
v∈Sn−1\Comp (δ,ρ)

{
‖Av − w‖2 6 c

√
n
} 6 2e−cn,

where A is a random n× n symmetric {−1, 1}-matrix.
39



The following lemma of Rudelson and Vershynin [33, Lemma 3.4] tells us that incompressible

vectors are “flat” for a constant proportion of coordinates.

Lemma 10.3. For δ, ρ ∈ (0, 1), let v ∈ Incomp (δ, ρ). Then

(ρ/2)n−1/2 6 |vi| 6 δ−1/2n−1/2

for at least ρ2δn/2 values of i ∈ [n].

Now recall that we defined

I(D) =
{
v ∈ Sn−1 : (κ0 + κ0/2)n−1/2 6 |vi| 6 (κ1 − κ0/2)n−1/2 for all i ∈ D

}
and I =

⋃
D⊆[n],|D|=d I(D). Here we fix κ0 = ρ/3 and κ1 = δ−1/2 + ρ/6, where δ, ρ are as in

Lemma 10.2. We also fix c0 = min{2−24, ρδ1/2/2}.
The following lemma is what we will apply in the proof of Theorem 1.1.

Lemma 10.4. For n ∈ N, let d < c2
0n. Then

max
w∈Rn

PA

 ⋃
v∈Sn−1\I

{
Av ∈ {tw}t>0, ‖A‖ 6 4

√
n
} 6 16c−1e−cn.

Proof. Apply Lemma 10.3 along with the definitions of κ1, κ2 and I to see Sn−1 \ I ⊆
Comp (δ, ρ). Clearly we may assume that ‖w‖2 = 1 or w = 0. Now take a c

√
n-net X for

{tw}0<t64
√
n of size at most 8c−1. Then{
A : Av ∈ {tw}t>0, ‖A‖ 6 4

√
n
}
⊂
⋃
w′∈X

{
A : ‖Av − w′‖2 6 c

√
n
}
.

Union bounding over X and applying Lemma 10.2 completes the lemma. �

10.2. Proof of Theorem 1.1. As we noted in Section 3, matrices A with ‖A‖ > 4
√
n will

be a slight nuisance for us. The following concentration inequality for the operator norm of

a random matrix will allow us to remove all such matrices A from consideration.

Lemma 10.5. Let A be uniformly drawn from all n× n symmetric matrices with entries in

{−1, 1}. Then for n sufficiently large,

P
(
‖A‖ > 4

√
n
)
6 4e−n/32.

This follows from a classical result of Bai and Yin [1] (see also [44, Theorem 2.3.23]) which

implies that the median of ‖A‖ is equal to (2 + o(1))
√
n, combined with a concentration

inequality due to Meckes [29, Theorem 2]. A version of Lemma 10.5 without explicit con-

stants, is well-known and straightforward, though we have included a version with explicit

constants for concreteness.

We will also need the following, rather weak, relationship between the threshold TL, defined

in terms of the matrix M , and ρ(v), the “one-dimensional” concentration function of v. For

this we define one more bit of (standard) notation

ρε(v) := max
b∈Rn

P

(∑
i

viεi ∈ (b− ε, b+ ε)

)
.
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Lemma 10.6. Let v ∈ Sn−1 and ε = TL(v). Then ρε(v)4 6 212Lε.

We postpone the proof of this lemma to Appendix B and move on to the proof of Theo-

rem 1.1.

Proof of Theorem 1.1. It is not hard to see that P(det(A) = 0) < 1 for all n, and therefore

it is enough to prove Theorem 1.1 for all sufficiently large n.

Now, as in Section 3, we set γ = e−cn, where we now define, c := L−32/c20/8, L :=

max{226C1, 16/κ0}, where C1 = C/c6
0 is the constant appearing in Theorem 8.1. By possibly

decreasing c we may also assume that it is at most half the constant from Lemma 10.4 (which

we note depends only on c0). We also let c0 > 0 be as defined above and d := dc2
0n/2e.

From Lemma 10.1 we have

P(det(A) = 0) 6 16n
2n−2∑
m=n

(
γ1/8 +

qm−1(γ)

γ

)
and so it is enough to bound qn(γ) for all large n. Let Σ = {v ∈ Sn−1 : ρ(v) > γ}, as defined

in Section 3, and note that

{A : ∃v ∈ Rn, Av = w, ρ(v) > γ} ⊂ {A : ∃v ∈ Σ, Av ∈ {tw}t>0}.

Since d = dc2
0n/2e, by Lemma 10.4 and Lemma 10.5, we have

qn(γ) 6 max
w∈Rn

PA
(
{∃v ∈ I ∩ Σ : Av ∈ {tw}t>0} ∩ {‖A‖ 6 4

√
n}
)

+ 64c−1e−2cn (103)

and so it is enough to show the first term on the right-hand-side is 6 2−n. Using that

I =
⋃
D I(D), we have the first term of (103) is

6 2n max
D∈[n](d)

max
w∈Rn

PA
(
{∃v ∈ I(D) ∩ Σ : Av ∈ {tw}t>0} ∩ {‖A‖ 6 4

√
n}
)

(104)

= 2n max
w∈Rn

PA
(
{∃v ∈ I([d]) ∩ Σ : Av ∈ {tw}t>0} ∩ {‖A‖ 6 4

√
n}
)
, (105)

where the last line holds by symmetry of the coordinates. Thus it is enough to show that

the maximum at (105) is at most 4−n.

Now, for v ∈ Σ we have ρ(v) > γ and so, by Lemma 10.6, we have that

γ4 6 ρ(v)4 6 ρTL(v)(v)4 6 212LTL(v).

Define η := γ4/(212L) 6 TL(v). Also note that by definition, TL(v) 6 1/L 6 κ0/8.

Now, recalling definition (96) of Σε = Σε([d]) from Section 3, we may write

I([d]) ∩ Σ ⊆
n⋃
i=1

{
v ∈ I : TL(v) ∈ [2j−1η, 2jη]

}
=

log2(κ0/16η)⋃
j=0

Σ2jη

and so by the union bound, it is enough to show

max
w∈Rn

PA
(
{∃v ∈ Σε : Av ∈ {tw}t>0} ∩ {‖A‖ 6 4

√
n}
)
6 8−n,
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for all ε ∈ [η, κ0/16]. Fix an ε
√
n-net X for {tw}0<t64

√
n of size 8/ε 6 2n to get

{A : Av ∈ {tw}t>0, ‖A‖ 6 4
√
n} ⊂

⋃
w′∈X

{A : ‖Av − w′‖2 6 ε
√
n, ‖A‖ 6 4

√
n}.

So by taking the union bound over X it is enough to prove that

Qε := max
w∈Rn

PA
(
{∃v ∈ Σε : ‖Av − w‖2 6 ε

√
n} ∩ {‖A‖ 6 4

√
n}
)
6 2−4n. (106)

Let w ∈ Rn be such that the maximum at (106) is attained. Now, since ε < κ0/8 for

v ∈ Σε, we apply Lemma 9.2, to find a u ∈ Nε = Nε([d]) so that ‖v − u‖2 6 4ε. So if

‖A‖ 6 4
√
n and ‖Av − w‖ 6 ε

√
n, we see that

‖Au− w‖2 6 ‖Av − w‖2 + ‖A(v − u)‖2 6 ‖Av − w‖2 + ‖A‖‖(v − u)‖2 6 32ε
√
n

and thus

{A : ∃v ∈ Σε : ‖Av−w‖ 6 ε
√
n}∩{‖A‖ 6 4

√
n} ⊆ {A : ∃u ∈ Nε : ‖Au−w‖ 6 32ε

√
n, ‖A‖ 6 4

√
n}.

So, by union bounding over our net Nε, we see that

Qε 6 PA
(
∃u ∈ Nε : ‖Au− w‖ 6 32ε

√
n and ‖A‖ 6 4

√
n
)
6
∑
u∈Nε

LA,op
(
u, 32ε

√
n
)
.

Now note that if u ∈ Nε, then LA,op(u, ε
√
n) 6 (28Lε)n and so by Fact 7.2 we have that

LA,op (u, 32ε
√
n) 6 (216Lε)n. As a result,

Qε 6 |Nε|(216Lε)n 6

(
C

L2ε

)n
(216Lε)n 6 2−4n,

where the second to last inequality follows from our Theorem 8.1 and the last inequality

holds for our choice of L = max{226C1, 16/κ0}. To see that the application of Theorem 8.1

is valid, note that

log 1/ε 6 log 1/η = log 212L/γ4 6 nL−32/c20/2 + log 212L 6 nL−32/c20 ,

where the last inequality hold for all sufficiently large n. This completes the proof. �
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Appendix A. The Proofs of two Esseen-type lemmas

In this section we prove our two Esseen-type lemmas, Lemma 4.2 and Lemma 6.2, for

random variables of the form W T τ , where τ is a µ-lazy random vector in {−1, 0, 1}2d and

W is a (fixed) 2d × ` matrix for some ` ∈ N. Recall that for a vector u ∈ R`, we let ‖u‖T
denote the Euclidean distance from u to the integer lattice Z`.

A.1. Basics of Fourier representation. As above, we let τ be a µ-lazy random vector in

{−1, 0, 1}2d and let W be a 2d× ` matrix. Recall the characteristic function ϕX of a vector

valued random variable X is defined as

ϕX(θ) = E exp(2πi〈X, θ〉),

and so we may express characteristic function of W T τ as

ϕ(θ) = E exp(2πi〈τ,Wθ〉) =
2d∏
j=1

(
(1− µ) + µ cos(2π(Wθ)j)

)
.

We note the elementary fact that for µ ∈ [0, 1/4] we have

− log (1− µ+ µ cos(2πx)) 6 32µ‖x‖2
T , (107)

and for µ ∈ [0, 1]

− log (|1− µ+ µ cos(2πx)|) > µ‖x‖2
T (108)

from which we deduce that for µ ∈ [0, 1/4]

ϕ(θ) > exp
(
−32µ ‖Wθ‖2

T
)
, (109)

and for µ ∈ [0, 1]

|ϕ(θ)| 6 exp
(
−µ ‖Wθ‖2

T
)
. (110)

We now note a standard fact regarding Fourier inversion (see [49] p.290).

Fact A.1 (Fourier inversion). Let X be a random vector in R`, then for w ∈ R` we have

E exp

(
−π‖X − w‖

2
2

2

)
=

∫
R`
e−π‖θ‖

2
2 · e−2πi〈w,θ〉ϕX(θ) dθ .

In particular, letting g ∼ N (0, (2π)−1I`), we have

E exp

(
−π‖X − w‖

2
2

2

)
= Eg(e−2πi〈w,g〉ϕX(g)) .
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A.2. Proof of Lemma 4.2 and Lemma 6.2. Recall that for ` ∈ N, γ` denotes the `

dimensional Gaussian measure defined by γ`(S) = P(g ∈ S), where g ∼ N (0, (2π)−1I`). We

begin with the proof of Lemma 4.2.

Proof of Lemma 4.2. Let w ∈ R`. We apply Markov’s inequality to obtain

Pτ
(
‖W T τ − w‖2 6 β

√
`
)
6 exp

(π
2
β2`
)
Eτ exp

(
−π‖W

T τ − w‖2
2

2

)
.

As above, let ϕ be the characteristic function of W T τ . We apply Fact A.1 and (110) to

obtain

Eτ exp

(
−π‖W

T τ − w‖2
2

2

)
= Eg[e−2πi〈w,g〉ϕ(g)] 6 Eg[exp(−ν‖Wg‖2

T)].

The right-hand-side of the above may be rewritten as∫ 1

0

Pg(exp(−ν‖Wg‖2
T) > t) dt = ν

∫ ∞
0

Pg(‖Wg‖2
T 6 u)e−νu du = ν

∫ ∞
0

γ`(SW (u))e−νu du,

where for the first equality we made the change of variable t = e−νu.

Choosing m to maximize γ`(SW (u))e−νu/2 (as a function of u), we may bound

ν

∫ ∞
0

γ`(SW (u))e−νudu 6 νγ`(SW (m))e−νm/2
∫ ∞

0

e−νu/2du = 2γ`(SW (m))e−νm/2 .

Putting everything together we obtain

Pτ (‖W T τ − w‖2 6 2β
√
`) 6 2eπβ

2`/2e−νm/2γ`(SW (m)) .

�
The proof of Lemma 6.2 proceeds in much the same way.

Proof of Lemma 6.2. Let us set X = ‖W T τ‖2 and write

EXe−πX
2/2 = EX 1(X 6 β

√
`)e−πX

2/2 +EX 1
(
X > β

√
`
)
e−πX

2/2 6 PX(X 6 β
√
`) + e−πβ

2`/2

and therefore, using that exp(−πβ2`/2) 6 exp(−β2`),

Eτ exp

(
−π‖W T τ‖2

2

2

)
6 Pτ (‖W T τ‖2 6 β

√
`) + e−β

2`.

As before, we let ϕ be the characteristic function of W T τ , and let g be a standard `-

dimensional Gaussian random variable with standard deviation (2π)−1/2. By Fact A.1 and

(109) we obtain

Eτ exp

(
−π‖W

T τ‖2
2

2

)
= Eg[ϕ(g)] > Eg[exp(−32µ‖Wg‖2

T)].

Similar to the proof of Lemma 4.2, we write

Eg[exp(−32µ‖Wg‖2
T)] = 32µ

∫ ∞
0

γ`(SW (u))e−32µudu > 32µγ`(SW (t))

∫ ∞
t

e−32µu du,

where we have used that γ`(SW (b)) > γ`(SW (a)) for all b > a. This completes the proof of

Lemma 6.2. �
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Appendix B. Relating A to the zeroed out matrix M .

In this section we prove Lemma 9.1 and Lemma 10.6. To prove these results, we compare

Fourier transforms (that is the characteristic functions) of the random variables Mv and

Av, for fixed v. We first record the characteristic functions of these random variables. For

ξ ∈ Rn we have

ψv(ξ) := E e2πi〈Av,ξ〉 =

(
n∏
k=1

cos(2πvkξk)

)
·

(∏
j<k

(
2π(ξjvk + ξkvj)

))
and

χv(ξ) := E e2πi〈Mv,ξ〉 =
d∏
j=1

n∏
k=d+1

(
3

4
+

1

4
cos
(
2π(ξjvk + ξkvj)

))
.

Our comparison is based on two main points. First we have that χv(ξ) > 0. Second, we have

ψv(ξ) 6 χv(2ξ) , (111)

which follows from | cos(t)| 6 3
4

+ 1
4

cos(2t) and | cos(t)| 6 1.

Fact B.1. For v ∈ Rn, and t > TL(v), we have

E exp(−π‖Mv‖2
2/t

2) 6 (9Lt)n.

Proof. Now E exp(−π‖Mv‖2
2/t

2) is at most

P(‖Mv‖2 6 t
√
n) +

√
n

∫ ∞
t

exp

(
−s

2n

t2

)
P(‖Mv‖2 6 s

√
n) ds . (112)

and since t > TL(v), we have P(‖Mv‖2 6 s
√
n) 6 (8Ls)n for all s > t, and so we may bound

√
n

∫ ∞
t

exp

(
−s

2n

t2

)
P(‖Mv‖2 6 s

√
n) ds 6

√
n(8Lt)n

∫ ∞
t

exp

(
−s

2n

t2

)
(s/t)n ds .

Changing variables u = s/t, the right hand side is equal to

t−1
√
n(8Lt)n

∫ ∞
1

exp(−u2n)un du 6 t−1
√
n(8Lt)n

∫ ∞
1

exp(−u2/2) du 6 (9Lt)n,

as desired. �

Proof of Lemma 9.1. Apply Markov’s inequality to bound

P(‖Av − w‖2 6 t
√
n) 6 exp(πn/2)E exp

(
−π‖Av − w‖2

2/2t
2
)
. (113)

Using the Fourier inversion formula in Fact A.1 we write

EA exp
(
−π‖Av − w‖2

2/2t
2
)

=

∫
Rn
e−π‖ξ‖

2
2 · e−2πit−1〈w,ξ〉ψv(t

−1ξ) dξ . (114)

Rescaling, applying (111) and non-negativity of χv yields that the RHS of (114) is at most∫
Rn
e−π‖ξ‖

2
2χv(2t

−1ξ) dξ 6 EM exp(−2π‖Mv‖2
2/t

2).
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Now use Fact B.1 along with the assumption t > TL(v) to obtain

EM exp(−2π‖Mv‖2
2/t

2) 6 (9Lt)n,

as desired. �

We prove Lemma 10.6 in a similar manner. Recall ρε(v) = maxb∈Rn P (
∑

i viεi ∈ (b− ε, b+ ε)).

Proof of Lemma 10.6. Set ε = TL(v) and let B be a n× n matrix uniformly drawn from all

matrices with entries in {±1} and apply Markov’s inequality to bound

ρε(v)n 6 max
w∈Rn

P(‖Bv − w‖2 6 ε
√
n) 6 max

w∈Rn
exp(πn/2)E exp

(
−π‖Bv − w‖2

2/2ε
2
)
. (115)

Apply Fact A.1 to write

E exp
(
−π‖Bv − w‖2

2/2ε
2
)

=

∫
Rn
e−π‖ξ‖

2
2 · e−2πiε−1〈w,ξ〉

∏
16j,k6n

cos(2πε−1vjξk) dξ (116)

and use Hölder’s inequality to bound the RHS of (116)

6

(∫
Rn
e−2π‖ξ‖22/3 dξ

)3/4
(∫

Rn
e−2π‖ξ‖22

∏
16j,k6n

cos(2πε−1vjξk)
4 dξ

)1/4

. (117)

Now use
∫
Rn e

−2π‖ξ‖22/3 dξ =
(

3
2

)n/2
and (cos(a) cos(b))4 6 3

4
+ 1

4
cos(2(a+ b)), to see (117) is

6

(
3

2

)3n/8(
2−n/2

∫
Rn
e−π‖ξ‖

2
2χv(
√

2ε−1ξ) dξ

)1/4

6

(
27

128

)n/8 (
E exp

(
−π‖Mv‖2

2/ε
2
))1/4

.

(118)

Taken together, lines (115), (116), (117), (118) tell us that

ρε(v)n 6 (3/2)3n/8(exp(π/2)/
√

2)n
(
E exp

(
−π‖Mv‖2

2/ε
2
))1/4

. (119)

Now apply Fact B.1 to bound E exp (−π‖Mv‖2
2/ε

2) 6 (9Lε)n and so ρε(v)n 6 (212Lε)n/4 ,

as desired. �
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