

King’s Research Portal

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Zhang, F., Xuan, C., & Lam, H.-K. (in press). An Obstacle Avoidance-Specific Reinforcement Learning Method
Based on Fuzzy Attention Mechanism and Heterogeneous Graph Neural Networks. ENGINEERING
APPLICATIONS OF ARTIFICIAL INTELLIGENCE.

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 26. Dec. 2024

https://kclpure.kcl.ac.uk/portal/en/publications/c802f097-8e65-48a0-aea8-8aed35bf3dea

An Obstacle Avoidance-Specific Reinforcement Learning

Method Based on Fuzzy Attention Mechanism and

Heterogeneous Graph Neural Networks

Feng Zhanga, Chengbin Xuana, Hak-Keung Lama,∗

aDepartment of Engineering, King’s College London, Strand, London, WC2R
2LS, London, United Kingdom

Abstract

Deep reinforcement learning (RL) is an advancing learning tool to handle robotics
control problems. However, it typically suffers from sample efficiency and effective-
ness. The emergence of Graph Neural Networks (GNNs) enables the integration of
the RL and graph representation learning techniques. It realises outstanding train-
ing performance and transfer capability by forming controlling scenarios into the
corresponding graph domain. Nevertheless, the existing approaches strongly depend
on the artificial graph formation processes with intensive bias and cannot propa-
gate messages discriminatively on explicit physical dependence, which leads to re-
stricted flexibility, size transfer capability and suboptimal performance. This paper
proposes a fuzzy attention mechanism-based heterogeneous graph neural network
(FAM-HGNN) framework for resolving the control problem under the RL context.
FAM emphasises the significant connections and weakening of the trivial connections
in a fully connected graph, which mitigates the potential negative influence caused
by the artificial graph formation process. HGNN obtains a higher level of relational
inductive bias by conducting graph propagations on a masked graph. Experimen-
tal results show that our FAM-HGNN outperforms the multi-layer perceptron-based
and the existing GNN-based RL approaches regarding training performance and size
transfer capability. We also conducted an ablation study and sensitivity analysis to
validate the efficacy of the proposed method further.

Keywords: Graph Neural Networks, Fuzzy Logic System, Reinforcement Learning,

∗Corresponding Author
Email addresses: feng.1.zhang@kcl.ac.uk (Feng Zhang), chengbin.xuan@kcl.ac.uk

(Chengbin Xuan), hak-keung.lam@kcl.ac.uk (Hak-Keung Lam)

Preprint submitted to Engineering Applications of Artificial Intelligence December 22, 2023

Mobile Robot, Obstacle Avoidance Navigation Control

1. Introduction

Effective and efficient collision-free navigation is critical to ensure the safety of
the mobile robot and its surrounding environment, as collisions or other types of
interference can damage equipment, injure individuals, or disrupt critical processes.
Therefore, obstacle avoidance navigation control is a paramount functionality for mo-
bile robots. However, the existing conventional obstacle avoidance techniques such
as D* (Stentz, 1994), reactive obstacle avoidance (Lalish and Morgansen, 2012) and
artificial potential field (Khatib, 1986) typically emanate inferior performance due
to the dynamic or rapidly changing environments.

The advent of deep reinforcement learning signifies an advancing controller de-
sign strategy that frames the control problem as the optimisation of policies. RL can
handle highly dynamic and complex environments through massive amounts of in-
teractions with trial and error. The efficacy of this paradigm has been substantiated
through its successful application to a diverse array of decision-making challenges
(Vinyals et al., 2019; Mnih et al., 2013; Silver et al., 2016; Zhao et al., 2018), achieving
performance levels that rival human intelligence. RL is also a promising alternative
for developing automatic controllers for extensive robotics applications. To obtain
the predictions for conducting interaction with the environments and learning, the
conventional RL structures typically construct their corresponding policy networks
and value networks with multi-layer perceptrons (MLPs). However, some impercep-
tible defects under this default setting hinder the RL involving real-world robotics
applications. First, even though the underlying structural information is naturally
plentiful within complicated RL environments, MLPs tend to neglect them, leading
to suboptimal sample efficiency and effectiveness (Dulac-Arnold et al., 2021). Second,
the intrinsic fixed MLP input size restricts the size transfer capability of the learned
policies, impeding the application towards robotics applications that are supposed
to work in a complex and varied environment.

One of the effective integrations with RL to mitigate the above issues is graph neu-
ral networks. GNNs are designed to capture the structural information from graph-
structured data. Moreover, they can naturally generalise different input sizes over
similar tasks without network modifications. Researchers typically introduce GNNs
as part of the policy networks to conduct graph representation learning and extract
problem-independent structural information to increase the efficiency of information
utilisation.

2

Table 1: List of notations.

Notations For Reinforcement Learning

S state space of the observations
A action space of the robot
P transition probability function
r reward function
R return; or discounted accumulated reward
π, πθ, π

∗ policy, policy function under parameter θ, optimal policy
s, s′, st state, next state, state at time t
γ discount factor

Notations For Fuzzy Attention System

Ri the ith rule of the TS-FIS
f i(·) the ith subsystem function
x, xj input vector, the jth scalar within the input vector
M i

j fuzzy set with respect to the ith rule and the jth input

mi set of membership values with respect to the ith rule
wi(x) truth value with respect to the ith rule
y the final crispy output

Notations For Graph Neural Network

G graph
V set of nodes of the graph
E set of edges of the graph
v a node within the graph
(v, u) a directed edge from node v to node u
pu, P the node type of the node u, the number of node type
c(v,u), C edge type of the edge (v, u), number of the edge type

N (u) neighbourhood node sets of the node u
hlu node features of the node u in layer l
M l

c(v,u)
message function with respect to edge type c(v,u) in layer l

ml
(v,u) the message from node v to node u in layer l

Al aggregation function in layer l
ml

u the aggregated message of node u in layer l
U l
pu update function with respect to node type pu in layer l

READOUT readout function
Vout the set of specific nodes to be applied in the readout function
H(t) readout output

3

Nervenet (Wang et al., 2018) formed the multi-joint agent as a graph based on its
morphology and applied GNNs as part of the policy networks for conducting RL. De-
centralised multi-robot collision-free path planning is another prominent application
that benefited from GNNs thanks to the natural graph formed by robot-communica-
tion networks (Li et al., 2020; Tolstaya et al., 2020; Blumenkamp et al., 2022; Tzes
et al., 2023). Even though superior training performance and salient generalisation
capability are demonstrated in these approaches, two deficiencies potentially lead to
suboptimal graph information extraction. First, connections are treated equally im-
portant even though different neighbourhoods could impose disparate influences on
graph propagation. Taking the obstacle avoidance scenario as an example, the mobile
robot should focus more on the closer obstacles than the spatial-distant obstacles.
This philosophy is reflected in GNN as information from different node neighbour-
hoods should have different weights. Second, human bias and manual graph forma-
tion are immensely dependent. This priori assumption could result in redundancy
connections and the disappearance of the essential edges.

A common methodology for addressing the above issues is the attention mecha-
nism (Vaswani et al., 2017). Several attention-based methods have been proposed in
the GNNs community to resolve classification tasks conditioned on node degree im-
portance (Kipf and Welling, 2016), edge-wise self-attention (Veličković et al., 2017),
motif-based attention (Peng et al., 2018), etc. The attention mechanism can generate
edge-wise attention based on information from a pair of nodes. The attention works
as a weighting mask that endows the edge-wise messages with different importance.
Therefore, it can emphasise the important connections and understate negligible
edges. MAGAT (Li et al., 2021) exploits an edge-wise self-attention paradigm to
resolve the decentralised path planning problem. Despite outperforming the GNN-
based methods that exclude an attention mechanism, MAGAT still fails to consider
the communication between obstacles. Contrarily, G2ANet (Liu et al., 2020) proposes
to introduce a two-stage learnable attention network into the multi-agent reinforce-
ment learning problems that take all components into a fully connected graph. It
first discards unrelated edges through hard attention in a fully connected map and
then applies soft attention to discriminate the importance of different edges. How-
ever, both hard and soft attentions are conditioned on black-box learnable networks,
lacking indispensable interpretability for real-world robotics applications. Yuying et
al. proposed a gaze-modulated GCN-based RL (Chen et al., 2020) to resolve the
navigation problem in crowds. The method determines the inter-human connections
by attention learnt from the human gaze data. However, a shared weight for comput-
ing messages among edges fails to discriminate relationships such as robot-human
and human-human, leading to suboptimal data efficiency. Zhe et al. proposed han-

4

dling a similar problem with graph relational networks considering obstacle-robot,
object-robot and obstacle-obstacle relationships (Liu et al., 2023). They also exploit
trainable attention kernels for weighing different connects. However, their attention
system lacks explicit physical meaning, leading to vulnerable credibility and limited
interpretability.

A literature categorisation is provided in Table 2 to demonstrate the research gap
intuitively. In summary, the existing GNN-based RL methods fail to handle the col-
lision-free navigation control by satisfying the following features at the same time: 1)
lightly or no reliance on artificial rules for graph formation, 2) the ability to propagate
messages according to different relationship types, 3) able to distinguish the diverse
contribution of the neighbourhood through an explainable attention mechanism with
explicit physical meanings.

Table 2: A comparison of the surveyed papers.

Method Adjacency Attention Relational Interpretability
Nervenet
(Wang et al., 2018)

structural bias No Yes No

CNN-GNN
(Li et al., 2020)

local field-of-view No Yes No

MAGAT
(Li et al., 2021)

inter-robot local field-of-view self-attention No No

G2ANet
(Liu et al., 2020)

fully connected graph hard & soft attention No No

Gaze-Modulated GCN
(Chen et al., 2020)

fully connected graph learned from gaze data No Yes

Relational GNN
(Liu et al., 2023)

local field-of-view trainable attention kernel Yes No

Inspired by the works above and to address these research gaps, this study com-
bines the fuzzy attention mechanism with heterogeneous graph neural network ar-
chitecture as an RL integrating methodology. In this work, a fully connected graph
that involves all components within the horizon is formed to introduce the FAM-
HGNN algorithm. The antecedent knowledge is then fed into the T-S fuzzy system
for generating physically explicit attention that weighs connections between differ-
ent components. These fuzzy attention masks introduce the relational inductive bias
concerning nodes’ spatial similarity in a cybernetic way. The HGNN is finally ex-
ploited for excavating the structural information from the established graph. The
overall structure of FAM-HGNN is illustrated in Fig. 1. The main contributions are
summarised as follows:

• A fuzzy attention mechanism is combined with the heterogeneous graph neu-
ral network to improve the data efficiency under obstacle avoidance navigation
control. We demonstrate the superiority regarding training return and success
rate of our model on a customised obstacle avoidance control scenario.

5

Figure 1: RL-based obstacle avoidance control based on Fuzzy Attention Mechanism and Hetero-
geneous Graph Neural Network.

• By testing the trained model on obstacle avoidance navigation control with
different obstacle numbers with its training and comparing its performance
with the baseline artificial potential filed method, the significant size transfer
capability of our model is verified.

• We conduct an ablation study regarding FAM structure and demonstrate its
efficacy.

• We perform sensitivity analysis for both MLP and GNN components regarding
their network size, validating the robustness of our model structure regarding
network size.

The rest of the paper is organised as follows: Section 2 provides the preliminaries
of RL in continuous control, the T-S fuzzy system and the heterogeneous graph
neural networks. Section 3 explains the proposed method with an obstacle avoidance
instance. Experimental details are presented in Section 4. Results evaluations and
analysis are discussed in Section 5.

6

2. Preliminaries

In this section, the notations and the necessary background knowledge are pro-
vided to support the development of the proposed method.

2.1. Markov Decision Process and Continuous Control

The continuous control problem can be formulated as a Markov decision process
(MDP). MDP is defined as tuple (S,A,P , r), where S is the state space of the
observations, A denotes the action space of the robot, P : S × A → S is the
transition probability function which takes as input state-action pair and output the
next state. r represents the reward by transferring system from current state s into
the next state s′ through action a. π is the policy that generates instructive action
based on the state st at time instant t. By denoting γ as the discount factor, the
goal of RL is to obtain an optimal policy π∗ that maximises expected discounted
accumulative reward (Sutton and Barto, 2018):

R = max
πθ

E[
∞∑
t=0

γtr(st)] (1)

To investigate the effectiveness of graph representation learning, policy proxi-
mal optimisation (PPO) (Schulman et al., 2017) is chosen in this work as the RL
algorithm for addressing the continuous control problem.

2.2. Takagi-Sugeno Fuzzy Inference System

The Fuzzy inference system (FIS) employs an evaluation methodology based on
fuzzy rules that draw inspiration from the human decision-making process (Zadeh,
1965). In particular, this work focuses only on the Takagi-Sugeno (T-S) type fuzzy
system (Takagi and Sugeno, 1985).

A T-S fuzzy system can typically be depicted as Fig. 2. The working principle
of the TS-FIS can be interpreted as a rule-based piecewise aggregation of multi-
subsystems. Each subsystem is determined by its own linguistic rule as the following:

Ri : IF x1 is M i
1 AND . . . AND xI is M i

I THEN y = f i(x) (2)

where Ri denotes the ith rule of the overall TS-FIS and f i(·) is the ith subsystem
function. xj is the jth crispy input of the system and M i

j ∈ [0, 1] represents the
fuzzy sets with respect to the ith rule and the jth input, typically for linguistically
describing the input variables. In the above fuzzy rule, TS-FIS firstly take as inputs
crisp numerical values x = [x1, . . . , xI] ∈ RI to their rule-based membership func-
tions to generate a set of membership values mi(x) = [M i

1(x1), . . . ,M
i
N(xN)]. The

7

Figure 2: Block Diagram of the Takagi-Sugeno Fuzzy Inference System (Mehran, 2008).

membership values indicate the matching degrees between inputs and fuzzy sets.
The above process is so-called fuzzification.

To obtain a rule-based truth value wi(x), TS-FIS exploits AND operations for
aggregating the membership values, which is equivalent to the minimum operation
over ith rule-based membership values set mi(x):

wi(x) = min(mi(x)) (3)

where wi(x) ∈ [0, 1], indicates the rule firing strength and can be regarded as a
relative weight of this rule. A defuzzification methodology is finally applied to extract
a crisp final output y(x) from the rule-based subsystems’ outputs f i(x) and their
corresponding truth values wi, which is a softmax summation process as follows:

y(x) =

∑n
i=1 w

i(x)f i(x)∑n
i=1w

i(x)
(4)

Generally, a TS-FIS can be regarded as an epistemic non-linear function construc-
tor. Unlike the obscureness of neural networks, the membership functions within FIS
are endowed with explicit physical or logical meaning based on different systems’ con-
texts, thereby enhancing interpretability.

2.3. Heterogeneous Graph Neural Networks

We focus on the heterogeneous graphs in our problem formulation. The graph
structure is defined as G = (V,E), where V represents the set of nodes and E is
the set of edges. Without losing generality and following the format of a directed
heterogeneous graph, a directed edge from node v to node u is denoted as (v, u),

8

where u, v ∈ V . The neighbourhood set of node u is denoted as N (u), which com-
prise all node has an edge with node u. Unlike homogeneous graphs, a heterogeneous
can have different node types and edge types, denoted as pu ∈ {1, 2, . . . , P} and
c(v,u) ∈ {1, 2, . . . , C}, respectively.

Although different types of nodes can have different feature dimensions in a het-
erogeneous graph, we uniformly define the dimension of the node features as D for
the sake of simplicity. Under this setting, GNN learns a function f(·) : RN×D → RO

that maps nodes’ features into a compressed embedding, where N denotes the node
number and O is the desired output dimension. The forward propagation of GNN
typically consists of three processes, i.e., message computation, message aggregation
and node embedding update. These processes can be represented in either spectrum
form or vertex-expansion form, while the latter is adopted in this work.

The input of a GNN is a set of node features h0
u which are normally assigned

from raw observation st from the environment. In a heterogeneous graph, messages
from a source node v to a destination node u are calculated based on relation-based
message functions M :

ml
(v,u) = M l

c(v,u)
(hl

v) (5)

where superscript l here denotes the current layer number. The total layer number
is L and it determines the number of times the above processes are repeated. Once
we obtain the inter-nodes messages, aggregation functions A are then applied for
synthesising messages from all incoming edges:

ml
u = Al({ml

(v,u)|v ∈ N (u)}) (6)

Node update is the final step in each propagation layer. By taking as inputs
the incoming aggregated message of each node ml

u and its current embedding hl
u,

an update function U that is dependent on the node type pu conducts the nodes’
embeddings update as follows:

hl+1
u = U l

pu(hl
u,m

l
u) (7)

A readout function is exploited after L times repeats of the above propagations.
The readout function is defined as a function that aggregates information from nodes
to output a compressed representation H(t) of the entire graph. Based on this, a
fixed-size composite output can be generated regardless of the graph’s size and the
nodes’ feature size. A readout function is mathematically represented as:

9

H(t) = READOUT
u∈V

({hL
u |u ∈ Vout}) (8)

where Vout is a set consisting of specific nodes to be applied in the readout function.
The design of the readout function is very specific to the objective. When integrating
with the RL, the readout output H(t) is fed into other MLPs for generating the final
output that satisfies the dimensional requirement of the actions and the values.

3. Methodology

In this section, the technical details of FAM-HGNN are demonstrated by instanti-
ating an obstacle avoidance navigation control scenario. The graph formation process
is first interpreted. A TS-FIS-based FAM is then applied to weigh the different edges
within the graph. A HGNN that takes as inputs the node embeddings and edge-wise
attention is finally designed to generate the actions and values.

3.1. Graph Formation

In the obstacle avoidance navigation and control problem, we consider three pri-
mary types of components on our horizon: robots, targets and obstacles. Each
element of these components is treated as a distinct node, carrying its respective
physical information. For a better interpretation of the proposed method and with-
out losing generality, an obstacle avoidance scenario with four obstacles, one mobile
robot and one target is instantiated. A fully connected heterogeneous graph involv-
ing all available components is constructed to represent this system as a graph.
The corresponding graph structure is visualised in Fig. 3. It can be expressed
as G = (V,E), where V = {nrobot, ntarget, n

1
obstacle, n

2
obstacle, n

3
obstacle, n

4
obstacle} and

E = {(v, u)|u ∈ V ∧ v ∈ ∁V u}. Specifically, the robot node nrobot is charac-

terised by a concatenated feature vector snrobot
= (−→p ,−→v ,

−→
h) ∈ R6 that consists

of three elements: positional coordinates −→p = (xposition, yposition) ∈ R2, velocity
−→v = (xvelocity, yvelocity) ∈ R2, and heading direction

−→
h = (xheading, yheading) ∈ R2.

The target node and obstacle nodes are represented solely by their respective spatial
coordinates. To guarantee consistent dimensional properties across all nodes, we em-
ploy zero padding for the target and obstacle nodes, i.e., sntarget/nobstacle

= (−→p ,
−→
0 ,

−→
0).

3.2. Fuzzy Attention Mechanism

A fully connected graph is uninformative in providing spatial independence be-
tween different components. Therefore, the challenge is obtaining an expressive graph
representation with strong cognition capability based on relational inductive biases.

10

Figure 3: In this figure, we provide a graph instance with 1 robot, 1 target and 4 obstacles. We form
a fully connected graph at this stage by taking all components. The arrows indicate the directed
edges of the graph.

The attention mechanism is an effective method for masking connections with differ-
ent weights without violating the original connectivity. However, it typically suffers
from limited explicit physical meaning. As the previous introduction, the fuzzy logic
system is a human-level reasoning framework that involves expert knowledge. This
capability enables us to design an explicable expert system that evaluates the im-
portance of connections among the given graph. Therefore, we introduce a fuzzy
attention mechanism system for emphasising strong connections and neglecting triv-
ial connections.

To evaluate the importance of connections between two nodes, the FAM generates
edge-wise attention for every edge within the graph G:

yv,u(x) = FAM(x) (9)

where x = [x1, x2] is the edge-wise vector of premise variables. x1 is the Euclidean
distance regarding the nodes’ coordinates, and x2 is the relative angular discrepancy
between the destination node and source node, respectively. To account for the effect
of both the velocity and the heading direction of the mobile robot, we define x2 as
follows:

x2 = arccos
α · β

max(|α| · |β|, ϵ)
(10)

11

To mitigate the zero-division issue, a max operation along with a small value ϵ
is applied in the denominator. The operator · employed in the numerator represents
the dot product of the vectors, whereas it denotes the multiplication of two scalar
numbers in the denominator. Specifically, α is the positional difference between the
two nodes, and β is a composite vector combining information from velocities and
heading angles. They are mathematically defined as:

α = −→p destination −−→p source

β = βvelocity + βheading

βvelocity = −→v source −−→v destination

βheading =
−→
h source −

−→
h destination (11)

where the superscript source and destination are for specifying if the vector in-
formation is from the source node or destination node in a directed edge. To
generally describe the vectors in Eq. (11) regardless of the source-destination re-
lationship, we discard the superscript in the consequent discussion. Following the
definition in Section3.1, −→p = (xposition, yposition) is the position vector of the node,
−→v = (xvelocity, yvelocity) is the velocity vector of the node and

−→
h = (xheading, yheading)

is the heading direction of the node, respectively. Figure 4 provides a graphical rep-
resentation to interpret x2. Specifically, since we apply zero padding to represent
the velocity and heading direction of target nodes and obstacle nodes in Section3.1,

their corresponding parts are equal to a zero vector, i.e., −→v =
−→
h =

−→
0 .

Figure 4: An illustration of the x2 that takes a robot node as the source node and an obstacle node
as the destination node.

12

By recalling the preliminaries in Eq. (3), this FAM system can be mathematically
represented as:

FAM(x) =

∑n
i=1 min([M i

1(x1),M
i
2(x2)])f

i(x)∑n
i=1 min([M i

1(x1),M i
2(x2)])

(12)

Each subsystem is described by its own fuzzy rule Ri and function f i(x). All fuzzy
rules are listed Ri in Eq. (14). To explicitly indicate the relative scale of premise vari-
ables according to antecedent knowledge under the given environment, premise vari-
ables x1 and x2 are linguistically delineated by ”Small”, ”Medium” or ”Large”. The
corresponding unnormalised Gaussian membership functions with respect to both
inputs are illustrated in Fig. 5. Their mathematical models are uniformly described
as:

M i
j = e

−(x−µ)2

2σ2 (13)

where µ is the mean and σ is the variance. Specifically, for ”Small”, ”Medium” and
”Large” of x1, σ = 0.75, µ = 0, 2, 4, respectively. For ”Small”, ”Medium” and ”Large”
of x2, σ = 30, µ = 0, 90, 180, respectively.

Each subsystem within the FAM is a linear function f i(x) = Aix⊺ + bi, which is
described by the corresponding subsystem parameters Ai, bi. The exact values of all
subsystem parameters are given in Eq. (15).

R1 : IF x1 is Small AND x2 is Small THEN y = f 1(x) = A1x⊺ + b1

R2 : IF x1 is Small AND x2 is Medium THEN y = f 2(x) = A2x⊺ + b2

R3 : IF x1 is Small AND x2 is Large THEN y = f 3(x) = A3x⊺ + b3

R4 : IF x1 is Medium AND x2 is Small THEN y = f 4(x) = A4x⊺ + b4

R5 : IF x1 is Medium AND x2 is Medium THEN y = f 5(x) = A5x⊺ + b5

R6 : IF x1 is Medium AND x2 is Large THEN y = f 6(x) = A6x⊺ + b6

R7 : IF x1 is Large AND x2 is Small THEN y = f 7(x) = A7x⊺ + b7

R8 : IF x1 is Large AND x2 is Medium THEN y = f 8(x) = A8x⊺ + b8

R9 : IF x1 is Large AND x2 is Large THEN y = f 9(x) = A9x⊺ + b9 (14)

13

Figure 5: Unnormalised Gaussian antecedent membership functions f two premise inputs x1 and x2

.

A1 = [−0.2, 0] A2 = [−0.1,−0.002] A3 = [−0.05,−0.001]

A4 = [−0.05,−0.001] A5 = [−0.05,−0.001] A6 = [−0.01,−0.0002]

A7 = [−0.055, 0.0008] A8 = [−0.01,−0.0002] A9 = [0, 0]

b1 = 1 b2 = 0.7 b3 = 0.275

b4 = 0.4 b5 = 0.25 b6 = 0.07

b7 = 0.2225 b8 = 0.07 b9 = 0 (15)

The T-S system outputs are designated as the coupling degrees or graph edges-
wise attentions, signifying the physical and logical interdependence of the two nodes.
Fig. 6 illustrates the ultimate input-output attention value surface. Specifically,
the coupling degree exerted on the edges between the robot and the target node,
i.e., ynrobot, ntarget and yntarget, nrobot

, is always set to 1 for manifesting the global goal
of reaching the target. Essentially, these attention weights demonstrate the spatial
similarity of the nodes in the context of navigation and obstacle avoidance problems.
FAM is a transparent rule-based system synthesising the effect of ”IF/THEN” rules
and subsystems. All of these are designed by conditioning on prior knowledge with
artificial inference towards the environment. These characteristics contribute to its
high interpretability compared with the concurrently learned style attention system
(Veličković et al., 2017; Vaswani et al., 2017).

Under this framework, the graph connection attentions {yv,u(xt)|(v, u) ∈ E} are
dynamically updated to indicate the variable relationships between different compo-
nents over time. Despite the methodology conditioned on a naive fully connected
graph with limited spatial structural bias, the introduction of FAM significantly
magnifies its expressiveness by converting hard edges into soft connections. This

14

transformation alleviates the difficulty of forming a graph artificially while simulta-
neously retaining the relational inductive bias through soft connections. It also avoids
the possible sparsity adjacency under the hard connection setting, which leads to in-
efficient representation and learning (Abadal et al., 2021).

Figure 6: 3D surface plot with two independent inputs x1 and x2, and attention output y. A
high coupling degree is designated only when both x1 and x2 are tiny, indicating a strong spatial
similarity.

3.3. Heterogeneous Graph Neural Networks as Policy and Value Network

To exploit the structural information and thereby increase the data efficiency, A
HGNN is introduced as a spatial information extractor. Conditioned on the graph
G as Fig 3, HGNN extracts expressive node embeddings through graph propagation
processes. The HGNN structure involves edge-relationship-based message propaga-
tion, attention-based message aggregation and node-type-based feature update. The
overall FAM-HGNN is described as Algorithm 1.

At every timestep interacting with the environment, an amalgamated state vector
st = srobot ∥ starget ∥ s1obstacle ∥ . . . ∥ s

no
obstacle is generated from the physical simulator as

the environmental observation, where ∥ denotes the concatenation. This state vector

15

Algorithm 1 Fuzzy Attention Mechanism Heterogeneous Graph Neural Network

1: Build a fully connected graph G based on the environment settings.
2: for Each timestep encountering with the environment do
3: Disassemble the observation vector st into N different parts, which corre-

sponding to the N nodes’ features h0
u.

4: Take raw node features as input to the T-S fuzzy system and generate the
edge-wise attentions:

yv,u(x) = FAM(x)

5: for l = 0, 1, . . . , L− 1 do
6: For (v, u) ∈ E, compute the message from node v to node u:

ml
(v,u) = M l

c(v,u)
(hl

v) = W l
c(v,u)

hl
v + Bl

c(v,u)
(16)

7: Aggregate the messages for each node u ∈ V according to their incoming
edges (v, u) ∈ E:

ml
u = A({ml

(v,u)|v ∈ N (u)}) =
∑

v∈N (u) y(v,u)m
l
(v,u) (17)

state Update the node features for each node within the graph u ∈ V :

hl+1
u = U l

pu (hl
u,m

l
u) = σ(ml

u + W l
puh

l
u + Bl

pu) (18)

8: end for
9: Output the concatenation H(t) through a readout function:

H(t) = READOUT
u∈V

({hL
u |u ∈ Vout})

= hL
robot ∥ hL

target ∥ mean({hL
o }) ∥ max({hL

o }) ∥ min({hL
o }) (19)

10: end for

16

indicates the physical variables associated with the robot, target, and obstacles.
This consolidated tensor is then partitioned into N sub-tensors and allocated to the
corresponding N nodes. The set of node features is denoted as {h0

u|u ∈ V }.
Following the convention in Section 2, each layer of the HGNN consists of three

steps of operations, i.e., message calculation M (5), message aggregation A (6) and
node embedding update U (7). In FAM-HGNN, the message function M is depen-
dent on the edge type c(v,u). Specifically, each edge type is assigned with an individual
instance of linear transformation message function (16) for computing the message
from a source node v to a destination node u. To emphasise the strong connections
and weaken the influence of trivial connections, the message aggregation is defined
as a weighted summation that takes the precalculated attention yv,u as the weighting
coefficients (17). The node embedding for each node u ∈ V is finally updated based
on the aggregated extraneous message ml

u and a self-loop message W l
puh

l
u + Bl

pu

(18). σ denotes the nonlinear activation, and the self-loop linear transformation
holds distinct instances dependent on node type pu. The above processes constitute
a one-layer operation within the HGNN, executed for L times, where L is the total
layer number. Notably, the aforementioned functions (16) (17) (18) are all dependent
on the layer number, i.e., function instances are distinct across different layers. The
above is designed on account of the inherent characteristics of the obstacle avoidance
problem. Specifically, each component within the problem should exhibit a diverse
range of physical representations, resulting in the presence of distinct physical mes-
saging mechanisms.

To attain the transfer capability and incorporate it with the consequent MLPs, a
novel readout function is defined as Eq. (19). Where {hL

o } = ({hL
u |pu = pobstacle}) is

the set comprise all obstacle node embedding in the output layer. The output from
the readout function is a mixture of structural inductive bias and high-dimensional
embeddings obtained by propagating the original observation on a graph. The out-
put concatenation is fed into conventional MLP and generates the readable output
of action at and value vt. For a better interpretation of the FAM-HGNN structure,
based on the graph in Fig. 3, an instance that only refers to the propagation of the
robot node is illustrated in Fig. 7.

The whole FAM-HGNN block can be regarded as a shared network of the policy
and value networks that extract the graph features. When the RL agent generates the
prediction of actions and values, the FAM-HGNN will work as an auxiliary graph
representation learning layer for extracting spatial information. The parameters
within the FAM-HGNN block will be concurrently learned when conducting the RL-
based backpropagation and parameter update (1).

17

Figure 7: Schematic representation of the FAM-HGNN. Note that the graph structure here is the
same as in Fig. 3, but we only illustrate the edges that are connected with the robot node for a
simpler interpretation.

18

Figure 8: An illustration of the customised environment. The grey plane is the horizon of the map.
The dark grey component is the Turtlebot3 Burger, the red cylinders are the obstacles and the
green cylinder denotes the target point.

4. Implementation

In this section, a customised obstacle avoidance environment is exploited to eval-
uate the proposed FAM-HGNN method. The customised obstacle avoidance envi-
ronment and simulation details are introduced in Section 4.1. Its reward setting is
introduced in Section 4.2. The choice of baselines is given in Section 4.3. The hyper-
parameter settings for RL and GNN candidates are provided in Section 4.4.

4.1. Environment and Simulation

The simulations were conducted on an 8-core, 2.2Ghz i7-10870 CPU with 16 GB
memory and an Nvidia GeForce RTX 3060 GPU with 6 GB memory. All models
were implemented in PyTorch v1.13 and accelerated through CUDA 11.7. GNNs
were constructed and accelerated using the same PyTorch backend with the assis-
tance of Deep Graph Library (DGL) 1.0.2 Wang et al. (2019) APIs. To validate the
proposed FAM-HGNN method, a customised OpenAI gym (Brockman et al., 2016)
environment is designed based on Pybullet physical simulation engine (Coumans and
Bai, 2016–2022), which is illustrated in Fig. 8.

This environment has three primary components, i.e., robot, target and obstacles.
At each time instant t in this environment, the RL agent will receive an observation

19

state vector st = srobot∥starget∥s1obstacle∥. . .∥s
no
obstacle. The state vector is fed into a pol-

icy model to output a control signal at for controlling the behaviour of the robot. The
robot follows all the dynamics and kinematics of the differential mobile robot. Specifi-
cally, for the differential mobile robot in this environment, at = [vleft wheel, vright wheel],
denotes the velocity control command for left wheel and right wheel. The physical
model of the differential mobile robot is chosen as Turtlebot3 Burger (Robotis, 2017).
The actual implementation of the environment is a transplant version of its original
model file without the lidar components. Additionally, The wheel speed is amplified
proportionally to expedite the environmental interaction process. The target and
the obstacles are defined as cylinder areas with a radius equal to 0.05m and 0.17m,
respectively. Notably, the obstacle areas are free of physical collision. All compo-
nents are placed in a 4.5m× 4.5m square plane with a lateral friction feature. The
experiments were conducted by assuming that the agent can perceive the location
information of all the components within the map.

Based on this environment, a fully connected graph that is analogous to the
graph in Fig. 3 can be generated. The graph has three node types (P = 3) for indi-
cating robots, targets and obstacles. It has seven edge types (C = 7), indicating the
relationships of robot-target, target-robot, robot-obstacle, obstacle-robot, target-ob-
stacle, obstacle-target and obstacle-obstacle.

4.2. Reward Settings

Reward function r plays a prominent role in reinforcement learning problems
(1). In the customised environment, the reward function can be categorised into
two parts: terminal rewards and non-terminal rewards. Specifically, the episode will
terminate only in three situations: 1) reach the target 2) run out of the map 3) reach
the predefined timestep limitation for each episode. For each of the aforementioned
circumstances, the agent will receive a +50, −10 and 0 instant reward, respectively.

Unlike other obstacle avoidance environment settings, the collision in this envi-
ronment is set as a non-terminal state. This setting expedites the global exploration
by enabling the agent to explore the transitions after the collision. In summary, the
reward function rt in non-terminal timesteps is comprised of four parts as follows:

rt = rg + ro + rc + rp (20)

The first term rg is an incentive-guiding reward that encourages the robot to
minimise the distance between its current position and the target:

rg =

{
cdedt if edt ≥ 0

κcdedt if edt < 0
(21)

20

where edt denotes the distance variation between the robot and the target. cd is a scal-
ing factor mapping it to rg. It should be noted that the reward function incorporates
a discount factor κ when edt is negative. This adjustment avoids large negative
rewards for behaviours like avoiding obstacles or taking circuitous routes to reach
the target. Reducing the penalty for such behaviours encourages effective obstacle
avoidance navigation in complex and dynamic environments. The second term ro is
a guiding penalty concerning the obstacle avoidance functionality, mathematically
defined as:

ro =
n∑

i=1

{
cdoediot if diot ≤ ρ

0 if diot > ρ
(22)

where edot represents the distance variation between the robot and the obstacles. cdo
is its corresponding coefficient. ρ denotes the influential area of the obstacle. Only if
the distance between the robot and one of the obstacles is under this certain range
will the term ro work. To further prevent collision behaviours, a collision-trigger
penalty rc is introduced as follows:

rc =
n∑

i=1

{
pc if collision

0 otherwise
(23)

The agent will receive a penalty pc when the robot overlaps the region of obstacles.
Otherwise, this term equals to 0. The last term rp = p is a constant time penalty
for facilitating the robot to reach the target as soon as possible. The overall reward
function parameters are given in Table 3.

Table 3: Reward function parameters

Parameter Value
Target guiding coefficient cd 20
Obstacle guiding coefficient cdo −40
Collision penalty pc −0.2
Time penalty p −0.01
Avoiding coefficient κ 0
Obstacle penalty range ρ 0.6

4.3. Baselines

We choose the Baselines3 PPO implementation (Raffin et al., 2021) as the basic
RL architecture for breeding methods that rely on either MLPs or GNNs. Considering

21

the attribute of obstacle avoidance, the relationships between components (robots,
targets and obstacles) and their relative importance could make a significant impact.
In this case, the following baselines are chosen:

GCN: Graph Convolutional Network (GCN) (Kipf and Welling, 2016) is a clas-
sical GNN model that perform graph aggreagation.

RGCN: Relational Graph Convolutional Network (RGCN) (Schlichtkrull et al.,
2018) is similar to GCN but takes different relationships into account.

GAT: Graph Attention Network (GAT) (Veličković et al., 2017) integrate graph
aggregations with the self-attention mechanism.

4.4. Hyperparameters

PPO hyperparameters are determined by grid search, which is provided in table
4. Specifically, for the MLP-based PPO, the input features first fed into a [64, 64] size
shared network. After which, the output from the shared network is fed into policy
and value function networks to obtain the action and value prediction, respectively.
The embedding size of both policy and function networks is [64]. The term n steps
indicates the number of steps to run for each environment per update. For each en-
vironment, once 20480 transitions are collected, the simulation is paused and then
moved to the training. The training uses the Adam optimiser with a fixed learning
rate of 3 × 10−4. The epoch number is 40 and the batch size is 2048. To mitigate
the randomness led by a highly stochastic environment, for each model, we run 6
experiments with different seed settings. To further mitigate the environmental ran-
domness and increase the sample efficiency, 4 parallel environments with different
seeds are run for each experiment. For each experiment, the agent is learned with
300 iterations, namely 24576000 = 300 × 20480 × 4 timesteps.

Hyperparameters of the GNN candidates are provided in Table 5. Similar to
the structure of the MLP-based method, the network structures of all GNN-based
blocks consist of two parts: 1) a shared network with two GNN layers, which take as
inputs the node features and output a condensed graph output. 2) Two individual
MLP networks that take as input condensed graph output to predict policies and val-
ues, respectively. Note that only RGCN and FAM-HGNN are relational GNNs. Node
type is only applicable in FAM-HGNN. Besides, GAT is the only self-attention-based
method that needs multi-head (Vaswani et al., 2017).

5. Simulation Results

To fully investigate the effectiveness of the proposed FAM-HGNN method, the
following four experiments are conducted in this section:

22

Table 4: PPO Hyperparameters

Hyperparameter Value
Shared network size [64, 64]
Policy network size [64]
Value function network size [64]
Learning rate 3 × 10−4

n steps 20480
Batch size 2048
Number of epochs 40
Discount factor γ 0.99
GAE parameter λ 0.97
Value function coefficient 0.5
PPO clip range 0.2
Gradient clip range 0.5
Target KL 0.005

Table 5: GNNs Hyperparameters

GAT GCN RGCN FAM-HGNN
Num. GNN layers 2 2 2 2
GNN embedding sizes [6, 10, 8] [6, 10, 8] [6, 10, 8] [6, 10, 8]
Num. relationships N/A N/A 7 7
Num. node types N/A N/A N/A 3
Num. heads 3 N/A N/A N/A
MLP network sizes [64] [64] [64] [64]

23

• To evaluate the training performance concerning the episodic return and suc-
cess rate, we conduct the training of FAM-HGNN and other GNN-based struc-
tures under the customised obstacle avoidance navigation control environment.
(Section 5.1)

• To reconfirm the effectiveness of the FAM structure, an ablation study is con-
ducted as follows: 1) incorporate the FAM structure with other GNN-based
methods. 2) Abandon the FAM structure from FAM-HGNN and implement
the HGNN component solely. (Section 5.2)

• To investigate the size transfer capability, the trained models are exploited in
similar scenarios with diverse numbers of obstacle settings. We further imple-
ment an artificial potential field as a baseline for investigating the effectiveness
of the transferred models. (Section 5.3)

• To investigate the sensitivity of the proposed model to different hyperparame-
ters, a sensitivity analysis is conducted in Section 5.4.

5.1. Training Performance

Training is conducted on the customised obstacle avoidance environment with 7
obstacles to evaluate the performance of all structures. We design two measurement
indices as follows:

• Average Episodic Return: The episodic return is computed using Eq. 1. The
average episodic return is the mean value of the episodic returns in the latest
100 episodes.

• Success Rate: A success episode is when the mobile robot is driven from its
initial position to the target without any collision and boundary violation
under the episodic timestep limitation. When calculating the success rate,
the latest 100 episode is considered. Success rate equals nsuccessful episode/100,
where nsuccessful episode is the number of successful episodes within the latest
100 episode.

The result plots shown in Fig. 9 are generated based on means and standard devi-
ations from all experiments. The results show that in the training cases, the episodic
return and success rate of the FAM-HGNN method can reach about 100 and 80%,
respectively. The MLP-based method can only achieve about 40 episodic return and
15% success rate, while the other GNN methods demonstrate worse performance.
Note that the random exploration process is likely to cause a collision when the

24

Figure 9: Training performance of all algorithms on customised obstacle avoidance environment
with 7 obstacles setting.

robot is near an obstacle, significantly reducing its success rate in training cases.
This assumption is validated by the results in the test stage (Section 5.3). Overall,
the above result validates the superiority of the proposed FAM-HGNN structure.

5.2. Ablation Study

An ablation study is conducted in this section to investigate the influence of the
FAM structure. Specifically, for FAM-HGNN, we compare its training results with
the HGNN, which is the version without the FAM structure. For GCN and RGCN,
we implemented them with an additional FAM component. GAT is already an atten-
tion method and is mutually exclusive with the FAM. Note that the hyperparameters
of FAM-GCN, FAM-RGCN and HGNN are the same as those of GCN, RGCN and
FAM-HGNN, respectively. By setting the MLP-based method as a baseline, Fig.
10 demonstrates the comparison results of all FAM-based methods and their corre-
sponding non-FAM-based methods. The following conclusions are drawn according
to the results:

1) The results demonstrate an obvious gap between all FAM-based GNN struc-
tures (FAM-HGNN, FAM-RGCN, FAM-GCN) and their corresponding GNN meth-
ods without FAM components (HGNN, RGCN, GCN). FAM can considerably pro-
mote the training performance of all GNN methods, which validates the effectiveness

25

of the FAM structure. This is because the FAM evaluate the relative importance of
different edges, thereby providing a strong reference to determine which connections
should be focused on in graph propagation processes.

2) The results also show that the outperformance of the FAM-HGNN method is
mainly attributed to the FAM components. This is validated through the compari-
son between HGNN and other non-FAM GNN methods, as well as the comparison
between FAM-based and non-FAM methods. Even though the FAM-HGNN method
overperforms the other methods, the HGNN structure exhibits an average level of
performance compared with other GNN candidates. Moreover, all FAM-based meth-
ods show a significant improvement compared with non-FAM structures. These phe-
nomenons indicate the FAM structure’s efficacy.

3) The MLP-based method outperforms all non-FAM methods while inferior to
FAN-based methods. This phenomenon indicates two conclusions. First, the induc-
tive bias is missing since all non-FAM methods work on a fully connected graph. It
leads to an invalid graph propagation process and fails to learn the structural infor-
mation. Second, the promising results of the FAM-based methods justify that FAM
could transform a fully connected graph into a soft-connected graph with abundant
relational inductive bias through an attention mechanism.

Figure 10: FAM-HGNN and APF test results with diverse obstacles setting.

26

5.3. Size Transfer Comparison

Size transfer promotes reusing the knowledge from the trained models to resolve
tasks with variant input sizes. It is the crux of applying the RL control method to
practical control problems. Most of the benchmark RL algorithms neglect this issue
due to the limitation caused by default MLP network structures. GNN can generate
a dimension-invariant output regardless of the number of nodes without rectifying the
network structure. This saliency brings its potential for extending transfer capability
into the conventional RL algorithm. The size transfer under the customised obstacle
avoidance environment is defined as applying the aforementioned trained models in
different numbers of obstacle scenarios without any additional training and tuning.
We investigate the transfer capability of FAM-GNN by comparing it with other
GNN methods. We further implement artificial potential field (APF) (Khatib, 1986)
as a learning-free benchmark for indicating the environmental difficulty. Notably,
as the training performance of the MLP-based model is already unsatisfactory and
whose implementation with size transfer capability requires additional dimensionality
reduction layers such as TreeNet (Wang et al., 2018), we exclude its size transfer
from this work. We obtain the average episodic return and success rate results by
exploiting the learned models to different scenarios with 100 episodes run, as shown
in Table 6. Besides, more detailed FAM-HGNN and APF performance curves to
different obstacle number settings are shown in Fig. 11.

Num. Obstacles 3 5 7 9 11 13

APF 100% (108.43) 96% (106.54) 87% (102.17) 82% (98.60) 75% (92.77) 63% (84.39)
GAT 22% (43.58) 8% (33.76) 5% (30.23) 6% (31.54) 2% (14.78) 3% (-1.47)
GCN 6% (27.82) 3% (20.12) 3% (15.07) 0% (6.29) 3% (-2.80) % (-17.28)
FAM-GCN 0% (13.90) 11% (39.28) 34% (60.18) 23% (48.31) 11% (38.74) 4% (25.02)
RGCN 3% (24.25) 2% (21.00) 1% (9.41) 0% (-3.40) 1% (-14.62) 0% (-31.31)
FAM-RGCN 56% (94.36) 61% (100.06) 76% (98.90) 75% (95.37) 46% (74.76) 25% (55.13)
HGNN 4% (28.70) 4% (21.55) 1% (18.25) 1% (13.73) 4% (4.10) 0% (-10.10)
FAM-HGNN 96% (107.50) 93% (107.24) 96% (109.29) 96% (109.20) 76% (97.68) 62% (87.77)

Table 6: The success rate (outside the brackets) and the average episodic accumulated discounted
rewards (inside the brackets) of the size transfer performance. The bold numbers denote the best
performance of success rate or average episodic accumulated discounted rewards under specific ob-
stacle numbers among the algorithms.

The action generation in the training stage follows a Gaussian distribution sample
process while outputting a deterministic value in the test stage. In this case, a better
performance is normally demonstrated in the test stage, even though the environment
remains the same.

The results show that FAM-HGNN successfully realised size transfer in the cus-
tomised environment with diverse obstacle number settings. For FAM class methods,
the best performance is normally shown in the same scenarios as their training. Their
performance tends to decline slightly in less obstacle scenarios while demonstrating

27

Figure 11: FAM-HGNN and APF test results with diverse obstacles setting.

significant inferiority in scenarios with more obstacles. We assume the limitation of
the size transfer capability is the cause. Furthermore, the increasing task difficulty
also results in inferior performance in large obstacle number settings. These are jus-
tified by comparing the performance of APF in different obstacle number settings
(Fig. 11). The performance of APF is as expected: the more obstacles, the worse the
performance.

5.4. Sensitivity Analysis

In this section, a sensitivity analysis is conducted to investigate the influence of
1) policy and the value function networks MLP embedding size and 2) the choice of
readout function within the FAM-HGNN method.

The training results regarding different embedding sizes are given in Fig. 12. In
Fig. 12, we can see that the FAM-HGNN performs well when the MLP embedding
size is relatively small. Notably, the readout output size is set as 40. In this case,
we assume that to order a considerable training performance, the MLP embedding
size should be smaller or similar to the readout output size. The results also indicate
that FAM-HGNN is robust to the MLP embedding size within a certain range.

Furthermore, to investigate the effect of the readout function, we conduct the
training with the same settings in Section 5.1. We defined the following 4 different
readout functions as candidates:

28

Figure 12: FAM-HGNN and APF test results with diverse obstacles setting.

• Tate robot node and target node: H(t) = hL
robot ∥ hL

target

• Mean: H(t) = mean{hL
u |u ∈ V }

• Max: H(t) = max{hL
u |u ∈ V }

• Min: H(t) = min{hL
u |u ∈ V }

where the first readout function concatenates the node embedding of the robot node
and the target node as the graph output. The remains are classic GNN readout meth-
ods, namely element-wise mean,max,min operations over all nodes, respectively.

The results in Fig. 13 show that all other readout functions have a degraded
performance compared with the readout function in Eq. (19). Specifically, the ele-
ment-wise mean,max,min readout functions fail to train the agent while the robot &
target readout function demonstrate a relative ascendant performance. This is due to
the characteristics of the GNN-RL-based control problems. Unlike typical GNN appli-
cations such as large-scale homogeneous graph classification or edge prediction prob-
lems, the discrepancy of the nodes and edges has a great impact on graph propagation
in GNN-RL-based control problems. Therefore, the resulting nodes’ embeddings in
the output layer indicate distinct representations. The element-wise mean,max,min

29

readout functions miss discriminatory treatment to the nodes and obtain an inex-
pressive graph representation. Meanwhile, even though the robot & target readout
function considers a subset of the node embedding, its graph representation is tan-
gible and results in passable performance.

Figure 13: FAM-HGNN and APF test results with diverse obstacles setting.

6. Conclusion

In this paper, we propose a novel FAM-HGNN framework for resolving the ob-
stacle avoidance navigation control problem. To the best of our knowledge, FAM-
HGNN is the first framework that exploits a fuzzy system to achieve the attention
mechanism of the GNN. It avoids artificial graph formation processes and consid-
erably promotes the performance of GNN-based RL by propagating messages dis-
criminatively on explicit physical dependence. Experimental results on a customised
obstacle avoidance environment show that the FAM-HGNN outperforms the other
GNN-based and MLP-based RL agents. Specifically, FAM-HGNN demonstrates its
superiority in success rate and episodic return, which is up to 96% and 109.29 in the
testing cases, respectively. In the size-transfer comparison, FAM-HGNN shows its
strong size-transfer capability in obstacle avoidance scenarios with different obstacle
number settings. Despite the inspiring results, FAM-HGNN demonstrates limited

30

resistance to environmental randomness. Moreover, the numerous function instances
conditioned on node types and edge types bring computational burden and increase
the training time. In future work, we will extend FAM-HGNN to real-life multi-robot
and multi-target scenarios and explore how to compress the function instances within
the GNNs.

Acknowledgement

This work was supported by King’s College London.

Disclosure statement

No potential conflict of interest is declared.

References

Abadal, S., Jain, A., Guirado, R., López-Alonso, J., Alarcón, E., 2021. Computing
graph neural networks: A survey from algorithms to accelerators. ACM Computing
Surveys (CSUR) 54, 1–38.

Blumenkamp, J., Morad, S., Gielis, J., Li, Q., Prorok, A., 2022. A framework for
real-world multi-robot systems running decentralized gnn-based policies, in: 2022
International Conference on Robotics and Automation (ICRA), IEEE. pp. 8772–
8778.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W., 2016. Openai gym. arXiv preprint arXiv:1606.01540 .

Chen, Y., Liu, C., Shi, B.E., Liu, M., 2020. Robot navigation in crowds by graph
convolutional networks with attention learned from human gaze. IEEE Robotics
and Automation Letters 5, 2754–2761.

Coumans, E., Bai, Y., 2016–2022. Pybullet, a python module for physics simulation
for games, robotics and machine learning. http://pybullet.org.

Dulac-Arnold, G., Levine, N., Mankowitz, D.J., Li, J., Paduraru, C., Gowal, S.,
Hester, T., 2021. Challenges of real-world reinforcement learning: definitions,
benchmarks and analysis. Machine Learning 110, 2419–2468.

Khatib, O., 1986. Real-time obstacle avoidance for manipulators and mobile robots.
The international journal of robotics research 5, 90–98.

31

Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907 .

Lalish, E., Morgansen, K.A., 2012. Distributed reactive collision avoidance. Au-
tonomous Robots 32, 207–226.

Li, Q., Gama, F., Ribeiro, A., Prorok, A., 2020. Graph neural networks for decen-
tralized multi-robot path planning, in: 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), IEEE. pp. 11785–11792.

Li, Q., Lin, W., Liu, Z., Prorok, A., 2021. Message-aware graph attention networks
for large-scale multi-robot path planning. IEEE Robotics and Automation Letters
6, 5533–5540.

Liu, Y., Wang, W., Hu, Y., Hao, J., Chen, X., Gao, Y., 2020. Multi-agent game
abstraction via graph attention neural network, in: Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 7211–7218.

Liu, Z., Zhai, Y., Li, J., Wang, G., Miao, Y., Wang, H., 2023. Graph relational
reinforcement learning for mobile robot navigation in large-scale crowded environ-
ments. IEEE Transactions on Intelligent Transportation Systems .

Mehran, K., 2008. Takagi-sugeno fuzzy modeling for process control. Industrial
Automation, Robotics and Artificial Intelligence (EEE8005) 262, 1–31.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M., 2013. Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602 .

Peng, H., Li, J., Gong, Q., Wang, S., Ning, Y., Yu, P.S., 2018. Graph convolutional
neural networks via motif-based attention. arXiv preprint arXiv:1811.08270 .

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N., 2021.
Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research .

Robotis, 2017. TurtleBot3 Burger. http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/.
[Online; accessed 28-April-2023].

Schlichtkrull, M., Kipf, T.N., Bloem, P., Berg, R.v.d., Titov, I., Welling, M., 2018.
Modeling relational data with graph convolutional networks, in: European seman-
tic web conference, Springer. pp. 593–607.

32

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347 .

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al., 2016.
Mastering the game of go with deep neural networks and tree search. nature 529,
484–489.

Stentz, A., 1994. Optimal and efficient path planning for partially-known environ-
ments, in: Proceedings of the 1994 IEEE international conference on robotics and
automation, IEEE. pp. 3310–3317.

Sutton, R.S., Barto, A.G., 2018. Reinforcement learning: An introduction. MIT
press.

Takagi, T., Sugeno, M., 1985. Fuzzy identification of systems and its applications
to modeling and control. IEEE transactions on systems, man, and cybernetics ,
116–132.

Tolstaya, E., Gama, F., Paulos, J., Pappas, G., Kumar, V., Ribeiro, A., 2020. Learn-
ing decentralized controllers for robot swarms with graph neural networks, in:
Conference on robot learning, PMLR. pp. 671–682.

Tzes, M., Bousias, N., Chatzipantazis, E., Pappas, G.J., 2023. Graph neural net-
works for multi-robot active information acquisition, in: 2023 IEEE International
Conference on Robotics and Automation (ICRA), IEEE. pp. 3497–3503.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I., 2017. Attention is all you need. Advances in neural information
processing systems 30.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., 2017.
Graph attention networks. arXiv preprint arXiv:1710.10903 .

Vinyals, O., Babuschkin, I., Czarnecki, W.M., Mathieu, M., Dudzik, A., Chung, J.,
Choi, D.H., Powell, R., Ewalds, T., Georgiev, P., et al., 2019. Grandmaster level
in starcraft ii using multi-agent reinforcement learning. Nature 575, 350–354.

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou, J., Ma, C., Yu,
L., Gai, Y., et al., 2019. Deep graph library: A graph-centric, highly-performant
package for graph neural networks. arXiv preprint arXiv:1909.01315 .

33

Wang, T., Liao, R., Ba, J., Fidler, S., 2018. Nervenet: Learning structured policy
with graph neural networks, in: International conference on learning representa-
tions.

Zadeh, L., 1965. Fuzzy sets. Inform Control 8, 338–353.

Zhao, X., Xia, L., Zhang, L., Ding, Z., Yin, D., Tang, J., 2018. Deep reinforce-
ment learning for page-wise recommendations, in: Proceedings of the 12th ACM
Conference on Recommender Systems, pp. 95–103.

34

Appendix A. APF Implementation Details

APF is a robot path planning method that perfectly suits our environment formu-
lation. In our obstacle avoidance environment, APF formulates targets as attractive
fields Ua and obstacles as repulsive fields Ur. The mobile robot is driven by the
gradient direction of a compound field Utotal, which synthesises the influence of both
components. Considering the obstacle avoidance setting with one target and multiple
obstacles, the universal potential field is written as:

Utotal = Ua + Ur (A.1)

Ua =

{
1
2
ζ1∥q, qgoal∥22 if ∥q, qgoal∥22 ≤ ρt

1
2
ζ2∥q, qgoal∥2 if ∥q, qgoal∥2 > ρt

(A.2)

Ur =
n∑

i=1

U i
r =

n∑
i=1

{
1
2
η(1

∥q,qio∥2
− 1

ρo
)2 if ∥q, qio∥2 ≤ ρo

0 if ∥q, qio∥2 > ρo
(A.3)

based on which, their corresponding gradient expression is given as follows:

Ftotal = Fa + Fr = −∇Ua −∇Ur (A.4)

∇Ua =

{
ζ1∥q, qgoal∥2 if ∥q, qgoal∥2 ≤ ρt

ζ2∥q, qgoal∥2 if ∥q, qgoal∥2 > ρt
(A.5)

∇Ur =
n∑

i=1

∇U i
r =

n∑
i=1

{
η(1

ρo
− 1

∥q,qio∥2
) 1
∥q,qio∥22

∇∥q, qio∥2 if ∥q, qio∥2 ≤ ρo

0 if ∥q, qio∥2 > ρo
(A.6)

As the investigation of APF itself is beyond the scope of this work, and there is no
uniform regulation for designing potential functions, we provide effective potential
functions conditioned on our environment settings as in previous sections. Note that
the original APF is a path planning methodology rather than a motion control policy,
therefore, we implement the kinematic control by setting constant linear velocity v
while the angular velocity w is oriented by the potential force Ftotal. Furthermore,
since the direct control input of the differential mobile robot is the velocity of both
the left wheel and right wheel, we finally transfer it into the corresponding control
signal by its kinematic model:

35

v = 0.75

w = cwθθh,Ftotal

wl =
2v + wD

2r

wr =
2v − wD

2r

Considering the environment’s complexity and to comply with the theoretical
maximum linear velocity of 1.0725 associated with the learning-based method, we
have opted to adopt a constant linear velocity of 0.75 in this study. The sole control
strategy employed involves proportionally mapping the angular difference, denoted
as θϕh,ϕF

, between the heading direction ϕh and the synthetic force direction ϕF to an
angular velocity command w. Given that the direct control input for the differential
mobile robot is based on the velocities of its two wheels, it is necessary to further
translate the linear and angular velocities into corresponding wheel velocities, ac-
counting for the robot’s kinematic characteristics. The values of r and D correspond
to the wheel radius and the distance between the two wheels, respectively, and are
consistent with the model of the Turtlebot3 Burger, where r is equal to 0.033 and
D is equal to 0.22. An overview of the hyperparameters employed in the Artificial
Potential Field (APF) approach is presented in Table A.7.

Table A.7: APF parameters

Parameter Value
ζ1 5
ζ2 7.5
ρt 1.5
η 8
ρo 0.3
cw 2

36

