

King's Research Portal

DOI: 10.1111/cen.14594 10.1111/cen.14594

Document Version Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):

Williams, S. T., Chatzikyriakou, P., Carroll, P. V., McGowan, B. M., Velusamy, A., White, G., Obholzer, R., Akker, S., Tufton, N., Casey, R. T., Maher, E. R., Park, S. M., Porteous, M., Dyer, R., Tan, T., Wernig, F., Brady, A. F., Kosicka-Slawinska, M., Whitelaw, B. C., ... Izatt, L. (2021). SDHC phaeochromocytoma and paraganglioma: A UK-wide case series. *Clinical endocrinology*, *96*(4). https://doi.org/10.1111/cen.14594, https://doi.org/10.1111/cen.14594

Citing this paper

Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.

General rights

Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
You may not further distribute the material or use it for any profit-making activity or commercial gain
You may freely distribute the URL identifying the publication in the Research Portal

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

This is a repository copy of SDHC phaeochromocytoma and paraganglioma: A UK-wide case series.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/180578/</u>

Version: Accepted Version

Article:

Williams, S.T., Chatzikyriakou, P., Carroll, P.V. et al. (34 more authors) (2022) SDHC phaeochromocytoma and paraganglioma: A UK-wide case series. Clinical Endocrinology, 96 (4). pp. 499-512. ISSN 0300-0664

https://doi.org/10.1111/cen.14594

This is the peer reviewed version of the following article: Williams, ST, Chatzikyriakou, P, Carroll, PV, et al. SDHC phaeochromocytoma and paraganglioma: a UK-wide case series. Clin Endocrinol (Oxf). 2022; 96: 499- 512, which has been published in final form at https://doi.org/10.1111/cen.14594. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley's version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

SDHC phaeochromocytoma and paraganglioma: a UK-wide case series

Journal:	Clinical Endocrinology
Manuscript ID	CEN-2021-000450.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	04-Aug-2021
Complete List of Authors:	 Williams, Sophie; The University of Sheffield Medical School, Department of Oncology and Metabolism; King's College London, Department Medical Molecular Genetics Chatzikyriakou, Prodromos; King's College London, Department Medical Molecular Genetics Carroll, Paul; Guy's and St Thomas' NHS Foundation Trust, Department of Endocrinology McGowan, Barbara; Guy's and St Thomas' NHS Foundation Trust, Department of Endocrinology Velusamy, Anand; Guy's and St Thomas' NHS Foundation Trust, Department of Endocrinology White, Gemma; Guy's and St Thomas' NHS Foundation Trust, Department of Endocrinology White, Gemma; Guy's and St Thomas' NHS Foundation Trust, Department of Endocrinology Obholzer, Rupert; Guy's and St Thomas' Hospitals NHS Trust, Department of Otolaryngology Akker, Scott; St Bartholomew's Hospital, Department of Endocrinology; Dates and The London School of Medicine and Dentistry, Centre for Endocrinology Casey, Ruth; Cambridge University Hospitals NHS Foundation Trust, Diabetes and Endocrinology; University of Cambridge, Medical Genetics Maher, Eamonn R; University of Cambridge, Medical Genetics Park, Soo-Mi; Addenbrooke's Hospital, Department of Clinical Genetics Porteous, Mary; Western General Hospital, South East Scotland Genetic Service Dyer, Rebecca; Western General Hospital, South East Scotland Genetic Service Tan, Tricia; Imperial College Healthcare NHS Trust, Imperial Centre for Endocrinology Wearing, Florian; Imperial College Healthcare NHS Trust, Imperial Centre for Endocrinology Brady, Angela; Northwick Park Hospital, North West Thames Regional Genetics Service Wasita-Slawinska, Monika; Northwick Park Hospital, North West Thames Regional Genetics Service Whitelaw, Benjamin; King's College Hospital, Department of Endocrinology Dorkins, Huw; Leicester Royal Infirmary,

	Medicine Brennan, Paul; Newcastle Upon Tyne Hospitals NHS Foundation Trust, Northern Genetics Service Carlow, Joseph; Newcastle Upon Tyne Hospitals NHS Foundation Trust, Northern Genetics Service Martin, Richard; Newcastle Upon Tyne Hospitals NHS Foundation Trust, Northern Genetics Service Mitchell, Anna; Newcastle University, Institute of Genetic Medicine; Newcastle Upon Tyne Hospitals NHS Foundation Trust, Department of Endocrinology Harrison, Rachel; Nottingham University Hospitals NHS Trust, Department of Clinical Genetics Hawkes, Lara; Churchill Hospital, Department of Clinical Genetics Newell-Price, John; The University of Sheffield, Academic Unit of Diabetes, Endocrinology & Metabolism; Sheffield Teaching Hospitals NHS Foundation Trust, Department of Endocrinology Kelsall, Alan; Sheffield Teaching Hospitals NHS Foundation Trust, Department of Endocrinology Igbokwe, Rebecca; Birmingham Women's Hospital, Department of Clinical Genetics Adlard, Julian; Leeds Teaching Hospitals NHS Trust, Leeds Centre for Diabetes and Endocrinology Schirwani, Schaida; Chapel Allerton Hospital, Yorkshire Regional Genetics Service Davidson, Rosemarie; Queen Elizabeth University Hospital, Department of Clinical Genetics Morrison, Patrick; Belfast City Hospital, Department of Medical Genetics Chung, Teng-Teng; University College London Hospitals NHS Foundation Trust, Endocrinology Bowles, Christopher; Royal Devon and Exeter Hospital, Exeter Genomics Laboratory Izatt, Louise; Guy's Hospital, Clinical Genetics Dept
Key Words:	Paraganglioma < Conditions: < Adrenal, Phaeochromocytoma < Conditions: < Adrenal, Gastrointestinal Tumour, Rare Diseases, Succinate Dehydrogenase

SCHOLARONE[™] Manuscripts

1 SDHC phaeochromocytoma and paraganglioma: a UK-wide case series

Short title: SDHC variants: a UK-wide case series

4 Authors:

Sophie T Williams^{1,2}, Prodromos Chatzikyriakou², Paul V Carroll³, Barbara M McGowan³, Anand Velusamy³, Gemma White³, Rupert Obholzer⁴, Scott Akker⁶, Nicola Tufton⁶, Ruth T Casey^{7, 8}, Eamonn R. Maher⁸, Soo-Mi Park⁹, Mary Porteous¹⁰, Rebecca Dyer¹⁰, Tricia Tan¹¹, Florian Wernig¹¹, Angela F Brady¹², Monika Kosicka-Slawinska¹², Benjamin C Whitelaw¹³, Huw Dorkins¹⁴, Fiona Lalloo¹⁵, Paul Brennan¹⁶, Joseph Carlow¹⁶, Richard Martin¹⁶, Anna L Mitchell¹⁷, Rachel Harrison¹⁸, Lara Hawkes¹⁹, John Newell-Price²⁰, Alan Kelsall²⁰, Rebecca Igbokwe²¹, Julian Adlard²², Schaida Schirwani²², Rosemarie Davidson²³, Patrick J Morrison²⁴, Teng-Teng Chung²⁵, Christopher Bowles²⁶ and Louise Izatt ^{2,5} §

14 Author affiliations:

15 1. Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.

Department Medical Molecular Genetics, King's College, London, Guy's Hospital, London, UK.

 Department of Diabetes and Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, UK.

Department of Ear, Nose, Throat Surgery, Guy's and St Thomas' NHS Foundation Trust, London, UK.

22 5. Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust,
23 London, UK.

6. Department of Endocrinology. St Bartholomew's Hospital. Barts Health NHS 7 7 7 7 7 8 7 7 8 7 7 8 7 8 7 8 8 9 7 8 8 9 8 9 8 9 9 8 9 8 9

1 2		
2 3 4	26	7. Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust,
5 6	27	UK
7 8	28	8. Department of Medical Genetics, University of Cambridge, Cambridge, UK.
9 10 11	29	9. Department of Clinical Genetics, Cambridge University Hospital NHS Foundation
12 13	30	Trust, UK
14 15	31	10. South East Scotland Genetic Service, Western General Hospital, Edinburgh, Scotland,
16 17 18	32	UK.
19 20	33	11. Imperial Centre for Endocrinology, Imperial College Healthcare NHS Trust, London,
21 22	34	UK
23 24 25	35	12. North West Thames Regional Genetics Service, Northwick Park Hospital, London, UK.
26 27	36	13. Department of Endocrinology, King's College Hospital, London, UK.
28 29	37	14. Department of Clinical Genetics, Leicester Royal Infirmary, Leicester, UK.
30 31 32	38	15. Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK.
32 33 34 35 36	39	16. Northern Genetics Service, Newcastle Hospitals NHS Foundation Trust, Newcastle,
	40	UK.
37 38	41	17. Department of Endocrinology, Newcastle upon Tyne NHS Hospitals Foundation Trust,
39 40 41	42	Newcastle, UK.
42 43	43	18. Department of Clinical Genetics, Nottingham University Hospitals NHS Trust,
44 45	44	Nottingham, UK.
46 47 48	45	19. Department of Clinical Genetics, Churchill Hospital, Oxford, UK.
48 49 50 51 52 53 54	46	20. Department of Oncology and Metabolism, University of Sheffield and Sheffield
	47	Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
	48	21. Department of Clinical Genetics, Birmingham Women's Hospital, Birmingham, UK.
55 56 57 58 59 60	49	22. Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK

50	23. Department of Clinical Genetics, Queen Elizabeth University Hospital, Glasgow,
51	Scotland, UK.
52	24. Department of Medical Genetics, Belfast City Hospital, Belfast, Northern Ireland, UK.
53	25. Department of Endocrinology, University College London Hospital NHS Foundation
54	Trust, London, UK
55	26. Exeter Genomics Laboratory, Royal Devon and Exeter Hospital, Exeter, UK
56	§ Corresponding author: Louise Izatt, louise.izatt@gstt.nhs.uk
57	
58	Acknowledgements
59	Ms Alessandra Bisquera for statistical advice and Aklima Khatun for research assistance. All
60	members of the Neuroendocrine Multidisciplinary Team at Guy's and St Thomas' NHS
61	Foundation Trust. Professor Rebecca Oakey, supervisor to STW and PC. The research was
62	supported by the National Institute for Health Research (NIHR) Biomedical Research Centre
63	based at Guy's and St. Thomas' NHS Foundation Trust and King's College London (via a PGR
64	scholarship to PC) and King's Health Partners (institutional support to STW). This research
65	was supported by the NIHR Cambridge Biomedical Research Centre (to ERM) (BRC-1215-
66	20014). The University of Cambridge has received salary support (ERM) from the NHS in the
67	East of England through the Clinical Academic Reserve. The views expressed are those of the
68	authors and not necessarily those of the NHS or Department of Health.
69	

70 Conflicts of Interest Statement

71 No conflicts of interest to declare.

73 Funding

1 2		
2 3 4	74	This research did not receive any specific grant from any funding agency in the public,
5 6	75	commercial or not-for-profit sector.
7 8	76	
9 10 11	77	Data availability statement
12 13	78	The data that support the findings of this study are available on request from the corresponding
14 15	79	author. The data are not publicly available due to privacy or ethical restrictions.
16 17	80	
18 19 20	81	Ethics statement
21 22	82	This study was approved by the Guy's and St Thomas' Trust Clinical Audit Team (Service
23 24	83	Evaluation 9649). The study conforms to the Declaration of Helsinki.
25 26 27	84	
27 28 29 30 31 32 33 34 35 36 37 38	85	Summary
	86	Objective: Phaeochromocytomas (PCC) and paragangliomas (PPGL) are rare, but strongly
	87	heritable tumours. Variants in succinate dehydrogenase (SDH) subunits are identified in
	88	approximately 25% of cases. However, clinical and genetic information of patients with SDHC
	89	variants are under-reported.
39 40	90	Design: This retrospective case series collated data from 18 UK Genetics and Endocrinology
41 42 43	91	departments.
44 45	92	Patients: Both asymptomatic and disease-affected patients with confirmed SDHC germline
46 47	93	variants are included.
48 49	94	Measurements: Clinical data including tumour type and location, surveillance outcomes and
50 51 52	95	interventions, SDHC genetic variant assessment, interpretation, and tumour risk calculation.
53 54	96	Results: We report 91 SDHC cases, 46 probands, and 45 non-probands. Fifty-one cases were
55 56	97	disease-affected. Median age at genetic diagnosis was 43 years (range:11-79). Twenty-four
57 58	98	SDHC germline variants were identified including six novel variants. Head and neck
59 60		

2	
3 4	99
5 6	100
7 8	101
9 10	102
11 12 12	103
15 14 15	104
16 17	105
18 19	105
20 21	106
22 23	107
24 25	108
26 27	109
28 29	110
30 31	111
32 33	112
34 35	113
36 37	11/
38 39	114
40 41 42	115
42 43	116
44 45 46	117
40 47 48	118
49 50	119
51 52	120
53 54	121
55 56	127
57 58	100
59 60	123

paraganglioma (HNPGL, n=30, 65.2%), extra-adrenal paraganglioma (EAPGL, n=13, 28.2%)) and PCC (n=3, 6.5%) were present. One case had multiple PPGLs. Malignant disease was ٦ reported in 19.6% (9/46). Eight cases had non-PPGL SDHC-associated tumours, six gastrointestinal stromal tumours (GIST) and two renal cell cancers (RCC). Cumulative tumour risk (95% CI) at age 60 years was 0.94 (CI:0.79-0.99) in probands, and 0.16 (CI:0-0.31) in nonprobands respectively. Conclusions: This study describes the largest cohort of 91 SDHC patients worldwide. We confirm disease-affected SDHC variant cases develop isolated HNPGL disease in nearly 2/3 of patients, EAPGL and PCC in 1/3, with an increased risk of GIST and RCC. 1/5 developed malignant disease, requiring comprehensive lifelong tumour screening and surveillance. L PP PP I P

SDHC phaeochromocytoma and paraganglioma: a UK-wide case series

Introduction

Phaeochromocytoma and paragangliomas (PPGL) are rare, but strongly heritable neuroendocrine tumours that are associated with a number of hereditary syndromes. European studies suggest the incidence is approximately 0.6 cases per 100,000 person years.¹ The WHO guidelines use anatomical location to classify PPGL tumours into adrenal-gland phaeochromocytoma (PCC), accounting for 80% of PPGL disease and extra-adrenal paraganglioma (EAPGL) accounting for 20%.^{2,3} EAPGL are subdivided into sympathetic paraganglioma (PGL), associated with catecholamine secretion, and parasympathetic derived head and neck PGL (HNPGL) that rarely exhibit catecholamine secretion.

Over 40% of PPGL patients who undergo genetic testing are found to have a germline heterozygous pathogenic variant in a PPGL susceptibility gene.⁴ Germline loss-of-function variants affecting genes encoding subunits of succinate dehydrogenase (SDH), which also functions as Complex II in the electron transport chain, are identified in 25% of PPGL cases, resulting in different autosomal dominant syndromes.⁵ Loss of SDHB expression is detectable when any component of the SDH complex is inactivated, but no specific, validated SDHC-specific immunohistochemistry (IHC) exists.⁶

In the UK, patients with PPGLs are recommended to be referred for genetic counselling. Genomic testing is available if they fulfil National Genomic Test Directory criteria.^{7,8} Eligible patients are currently offered an 11 PPGL panel genomic test (SDHA, SDHB, SDHC, SDHD, SDHAF2, FH, MAX, MEN1, RET, TMEM127 and VHL). Variants of unknown significance (VUS) are reported in approximately 10% of PPGL diagnostic tests. If a pathogenic variant is

identified, familial cascade genetic screening testing can be offered. Surveillance of asymptomatic relatives includes Magnetic Resonance Imaging (MRI) and biochemical testing for catecholamine secretion, to aid early detection of tumours.⁷ The optimal surveillance programme is debated and numerous protocols exist.^{9,10}

SDHx-associated disease characteristics vary according to the pathogenic SDH-subunit. SDHB variants are most prevalent, accounting for 10% of PPGL cases, SDHD variants 5%-9%, SDHC 1-2% and SDHA <1%.9 SDHB variants are most common in patients with PCC or EAPGL. while SDHD variants frequently present with multifocal HNPGL.¹¹ The risk of aggressive, malignant disease is highest in patients SDHB pathogenic variants.¹² SDHC PPGL-associated pathogenic variants are less frequent than SDHD or SDHB, predominantly presenting with HNPGL disease at a younger age.^{11,13,14} Less is known about SDHC-associated disease, with respect to clinical behaviour, disease penetrance, non-PGL associated pathology and optimal surveillance.

There are three objectives of this nationwide series: First to describe the demographic, clinical and treatment data for both proband and non-proband individuals. Secondly to report genetic variants implicated in SDHC-associated PPGL disease and use structural analyses to evaluate pathogenicity in novel variants. Thirdly, to evaluate current surveillance practice and make recommendations for future care, based on the data presented.

Materials and methods

This retrospective study presents genetic and clinical information of germline SDHC variants (OMIM 602413, reference sequence NM 003001.3), diagnosed before March 2020, from 18 UK centres. An invitation to participate was sent to 23 UK centres in April 2019 (see

Page 9 of 35

178

1

Clinical Endocrinology

2
3
4
5
6
7
/ 0
ð
9
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
27
28
29
20
30 21
31
32
33
34
35
36
37
38
39
40
ло Л1
40 1
42 42
45
44
45
46
47
48
49
50
51
52
52
55
54 57
55
56
57
58
59

Appendix). Follow-up ended March 31st 2020, or if lost to follow up, date of last hospital
contact, or on death. The survey was registered as a service evaluation project 9649 at Guy's
and St Thomas' NHS Trust, London. A subgroup from 43 cases with *SDHC* intragenic variants
had been published previously.¹¹

179 Clinical Surveillance

Participating centres reported clinical information: age and date of diagnosis, and if affected, 180 PPGL characteristics including size, anatomical location, malignancy (defined as the presence 181 182 of disease in a lymph node or more distant site where chromaffin cells are not present, i.e. metastatic disease), required interventions and presence of other tumours. In the UK, prior to 183 March 2019, there was no consensus on the optimum surveillance programme for individuals 184 with SDHx germline variants, including SDHC for either affected individuals, or asymptomatic 185 carriers. Therefore, we asked centres to report on duration, interval between review and modes 186 of surveillance and screening outcomes. Standard biochemical tests differed by centre (24-hour 187 urine or plasma metadrenalines (MA), normetadrenaline (NMA) and/or 3-methoxytyramine 188 testing (3MT)). 189

0 190

60

191 Genetic Testing

Genetic variants were identified using standard molecular techniques (Sanger sequencing, multiplex ligase probe amplification or massively parallel sequencing via next generation sequencing or exome sequencing). Germline variants were reported according to American College of Medical Genetics and Genomics guidelines (ACMG).¹⁵ Centres reported germline variants, proband status, whether they were from a known *SDHC* kindred and additional PPGL variants, if found. Reported variants were compared against variants in NIHR ClinVar registries.¹⁶

2 3 4 5	199	
6 7	200	Structural Analysis and assessment of variant pathogenicity
8 9 10	201	Structural integrity and succinate dehydrogenase (SDH) complex formation and structural
10 11 12	202	prediction analyses were undertaken for all missense variants using IPS-3D, DUET and
13 14	203	mCSM-PPI2. ^{17–19} These are reported alongside functional (mutPred) and pathogenicity scores,
15 16 17	204	PolyPhen2 and SIFT. ^{20–22} Structural comparisons were performed using the porcine SDHC
18 19	205	ortholog 1ZOY structure, with 91.7 % sequence homology, as no human SDHC structure is
20 21	206	currently publicly available (Supplementary Figure 1).23 Disease allele frequency was
22 23 24	207	reviewed in gnomAD v3.1.1 database (https://gnomad.broadinstitute.org/).
25 26	208	
27 28 29 30 31 32 33	209	Data Analysis
	210	Data analysis and figure generation was undertaken using statistical computing language R
	211	version 4.0.3 (2020-10-10). Cumulative risk was estimated for pathogenic variants using
34 35	212	survminer (ver. 0.4.8) and cmprsk (ver. 2.2-10) packages in individuals with likely pathogenic
36 37	213	or pathogenic variants.
38 39 40	214	
40 41 42	215	Results
43 44	216	Demographic features
45 46	217	A total of 91 SDHC variant cases from 18 UK centres were included. See Table 1. There were
47 48 49	218	41 males (45%) and 50 females (55%), median age at genetic diagnosis 43 years (range: 11-
49 50 51	219	79). Forty-six (51%) cases were probands, 45 (49%) were relatives identified through cascade
52 53	220	testing from 22 kindreds. Fifty-one cases (56%) were disease-affected, 40 (44%) were
54 55 56	221	unaffected. The 51 disease-affected cases median age at diagnosis was 43 years (range: 12-79).
57 58 59 60	222	Unaffected cases (n=40) were younger with a median age at genetic diagnosis of 38 years

Clinical Endocrinology

(range: 11-79). Three non-probands had *SDHC*-associated disease (HNPGL (n=2) and PA
(n=1)) diagnosed prior to predictive testing.

226 Clinical features

There were 46 PPGL tumours diagnosed in 45 SDHC variant cases (Table 1), 65.2% were HNPGL, 6.5% thoracic PGL, 21.7% abdominal PGL and 6.5% PCC. HNPGLs were most frequent (n=30), located as follows: six carotid body (CBT), nine jugular, six vagal, one nasopharyngeal and eight HNPGL (site unspecified). Eleven cases (21.6%) developed SDHC-associated tumours: GIST (n=6, all female), Pituitary Adenoma (PA, n=3) and RCC (n=2). Of these, five cases presented with associated tumours, but no PPGL (GIST n=3, RCC n=1, PA n=1). Three GIST tumours showed SDHB immunonegativity and another was confirmed as wild-type. Eleven patients had multiple tumours: HNPGL and PA (n=2), HNPGL and thoracic PGL, thoracic PGL and adrenal adenoma, multiple RCCs, and GIST with either EAPGL (n=3), pulmonary chondroma (n=2) or oesophageal leiomyoma. Additional tumours include meningioma and bilateral breast cancer (see Supplementary Table 1 and Supplementary Table 2).

Malignant disease was identified in 19.6% (9/46) PPGL cases (Table 1). Where tumour sizes were recorded, all malignant HNPGL were >50mm, including two vagal tumours. Two cases had malignant EAPGLs, the youngest with a 45mm tumour aged 12, another aged 30 with a 78mm tumour, who died from metastatic disease aged 36. There were eight malignant *SDHC*related tumours (six GISTs, two RCCs).

In the disease-affected group, fifty interventions were recorded from 1977 to 2019 across 37
cases (Table 1). Main treatment modalities included surgical resection (n=33), radiotherapy

intervention (n=8) and active surveillance (n=13). Radiotherapy interventions included external beam radiotherapy, stereotactic radiotherapy and gamma knife radiosurgery. Nine HNPGL (30% of HNPGLs), two thoracic PGL, and two GIST cases remain on active surveillance.

Tumour incidence

Tumour incidence for probands with PPGL or GIST (n=37) and non-proband SDHC pathogenic variant cases (n=45) is shown in Figure 1. SDHC tumour incidence at age 40 and 60 years was 40.5% and 94.6% in probands, and 4.4% and 6.7% in non-probands respectively. Cumulative risk (95% CI) at age 20, 40 and 60 years was 0.05 (CI:0-0.12), 0.4 (CI:0.22-0.54) and 0.94 (CI:0.79-0.99) in probands, and 0, 0.08 (CI:0-0.18) and 0.16 (CI:0-0.31) in non-probands respectively (see Supplementary Figure 2). Age of diagnosis comparison between probands and non-probands (unpaired Student's t-test with two-tailed p value) p value = 0.178. 95% C.I. = 0 to 27.01. Difference between means (non-probands - probands) \pm SEM = 10.91 21.C \pm 7.957.

Surveillance

Screening information dates from 2006, with centres reporting imaging and biochemistry according to local protocols, (biochemical monitoring and imaging every 12-36 months). See Table 2. Imaging modalities included whole body (WB-)MRI from skull base-pelvis, abdominal Ultrasound scan. Information regarding Computed Tomography and sequence/nature of imaging protocols was not gathered. Biochemical modalities included either 24-hour urine or plasma metanephrines measurement. Chromogranin A data was not collected unless additionally reported by the centre.

Page 13 of 35

Clinical Endocrinology

Across the whole cohort, 68 (75%) had at least two rounds of surveillance screening using cross-sectional imaging, predominantly WB-MRI. Forty-two (46%) individuals had at least two rounds of biochemical testing. Seven of 51 disease-affected cases (13.7%, two HNPGL, five EAPGL) had raised biochemistry at diagnosis (elevated MA, or NMA or 3-MT). The overall median length of surveillance was 42 months (3.5 years, range: 4-107 months).

Surveillance data for 40 out of 45 non-proband asymptomatic individuals was available for a median period of 45.5 months (3.8 years). Five individuals were awaiting screening. Two individuals had tumours detected at baseline screen (5%), whereas 38 individuals had no tumours identified (95%). Twenty individuals had at least two rounds of cross-sectional imaging, 23 had at least two rounds of biochemical testing, without additional tumours identified (Table 2).

The eldest non-proband, diagnosed aged 79, had raised NMA and an EAPGL and GIST identified on MRI. After EAPGL surgery, the individual had annual MRI surveillance, with the GIST remaining stable. Another non-proband aged 60 had a CBT and thoracic PGL diagnosed on MRI and fully characterised by ¹⁸FDG-PET scan. The CBT was excised and the thoracic PGL has been monitored by MRI. Their PGLs showed no malignant features, with sizes smaller than average in this cohort: thoracic PGL 21mm; EAPGL 38mm (EAPGL and PCC tumour size average 45.5 + 25.1mm); HNPGL 22mm (HNPGL tumour size average 32.9 + 16.9mm) (Supplementary Table 1 and Supplementary Table 2).

Surveillance data for 46 proband individuals (following diagnostic investigations) was
available for a median period of 26 months (2.17 years, range: 4-107 months). Thirty-five
probands had at least one subsequent surveillance screen: 34 individuals had at least one screen

with cross-sectional imaging, 34 individuals had at least one screen including biochemical
testing. Twenty-four individuals underwent at least two rounds of cross-sectional imaging. No
new PPGLs were identified.

302 Genetic Variants

Twenty-four genetic *SDHC* variants were identified, including four single exon deletions, 19 intragenic variants and one intronic variant distributed along the entire coding sequence of the gene (see Table 3 and Figure 2). Eighteen *SDHC* variants have previously been described. Six *SDHC* variants are novel: three exon deletions (exon 4 deletion, c.371_372del. p.(Leu124fs), and exon 5 deletion), two missense variants (*SDHC*:c.200T>A, p.(Met67Lys) and *SDHC*:c.257G>A, p.(Gly86Asp)), and an intronic variant *SDHC*:c.(241+9)-(241+10)del.

The 5'-UTR variant *SDHC*:c.-38G>A initially reported as a VUS, was reclassified as benign (Table 3). Three cases had additional *SDHx* variants, none classified as pathogenic. One individual with PCC aged 39 had two pathogenic variants, *SDHC*:c.148C>T, p.(Arg50Cys) and *RET*:c.2410G>A, p.(Val804Met). They underwent adrenalectomy and thyroidectomy, where no C-cell hyperplasia or medullary thyroid cancer was found. PCC occurs rarely in RET V804M cases.²⁴ LOH analysis of PCC tumour showed normal *SDHC* results, indicating RET V804M may have driven PCC development.

All 11 missense coding variants were assessed according to ACMG guidelines, five (45.4%) met criteria for likely pathogenic variants, whilst five (45.4%) are VUSs and one is considered likely benign (Table 4). Overall, 16 out of 24 *SDHC* variants identified are considered pathogenic or likely pathogenic, six are VUSs and two are benign. Genotype-phenotype correlations are included in the appendix.

323	
324	Structure-phenotype correlation
325	All missense variants are predicted to have a destabilising effect on SDHC complex formation
326	(Table 4). The two novel variants SDHC:c.200T>A, p.(Met67Lys) and SDHC:c.257G>A,
327	p.(Gly86Asp) are predicted to destabilise protein structure and SDH complex formation. Both
328	variants are predicted to be 'damaging' and 'pathogenic' by PolyPhen2 and SIFT scores.
329	HNPGL tissue from c.257G>A, p.(Gly86Asp) showed SDHB immunonegativity. The
330	missense mutation most disruptive to complex formation (c.148C>T, p.(Arg50Cys)) disrupts
331	the N-terminus flexible loop, which is critical for the for both the assembly and stability of
332	Complex II. ²³ The most destabilising missense mutation (c.377A>G, p.(Tyr126Cys)) results in
333	a switch of bulky, hydrophobic tyrosine for a polar cysteine and interrupts strong stacking
334	interactions within a hydrophobic pocket, which are important for the stability of the helical
335	membrane anchor. ²³ The two missense mutations predicted to not affect protein structure
336	stability (c.214C>T, p.(Arg72Cys) and c.380A>G, p.(His127Arg)) both correspond to heme
337	complex binding residues, with the latter being directly coordinated to the iron centre. The fact
338	that the variant residues retain a degree of polarity, and that other coordinating residues remain
339	intact, may explain the relative redundancy in protein stability in these variants. One variant
340	SDHC:c.490A>T, p.(Met164Leu) was predicted to have a stabilising effect on protein
341	structure, predicted to be 'tolerated'/'benign' by structural analysis and classified as 'likely
342	benign' by ACMG guidelines. In this case, the PCC tumour showed SDHB immunopositivity.
343	

344 Discussion

This multi-centre, nationwide UK case-series describes the largest *SDHC* cohort to date. The median age of genetic diagnosis for disease-affected cases was 43 years (range: 12-79), similar to that reported by Schiavi *et al.* (median 46 years, range: 13-73), younger than cases with
sporadic HNPGL (median 53 years, range: 15-83).¹³

> As reported previously, we recorded a wide spectrum of tumours in SDHC-associated disease.¹¹ We confirm the majority of SDHC cases develop isolated HNPGL (65.2%), with EAPGL in 28.2%, and PCC in 6.5%. HNPGL are more common in SDHD (85%) than SDHC but less common in SDHB (35%). ⁹ Previous studies reported 36% SDHC cases had multiple PPGLs, however only one UK SDHC case had multiple PPGLs.⁹ While SDHC cases have been described as developing benign HNPGLs, six cases developed malignant HNPGLs (20%), >50mm at diagnosis.^{13,25} Two metastatic EAPGL cases presented young (12 and 30 years), with tumours >45mm. These features are all predictors of aggressive disease. In a recent meta-analysis, patients with SDHC tumours were reported to have a metastatic risk of 23% (CI: 0.10-0.45) over an averaged follow-up period of 4.8 years.²⁶ Our marginally lower overall metastatic PPGL rate of 19.6%, may reflect our slightly shorter follow-up period, averaged at 3.1 years. The risk of malignant disease at 19.6% remains lower than the pooled risk in SDHB (31%), but higher than in SDHD (8%).²⁶

) 363

Our case series identified rarer tumours associated with *SDHC*: GIST, PA and RCC in 21.5% of cases.²⁷ GIST was the second most common tumour after PPGL. Interestingly, five of the six cases with GIST had related tumours, e.g. EAPGL (confirming Carney-Stratakis syndrome), or pulmonary chondroma and oesophageal leiomyoma, evidence of incomplete Carney's Triad. Unfortunately, there was no *SDHB* IHC testing in RCC or PA cases, so SDHdeficiency remains unconfirmed. Whilst PA have been reported in *SDHC* cases, they occur commonly in the general population at a frequency of 1 in 1,064 cases.²⁸ The association of

pituitary tumours as a feature of SDHC-related disease may therefore represent an incidental finding. We describe six novel germline SDHC variants: Three pathogenic exon deletions, two missense VUS and one intronic variant. In silico structural analyses of all missense variants correlated with pathogenicity classification for previously identified variants and demonstrated disruption of key structural and functional elements of the SDH complex. Structural analyses predict novel variants SDHC:c.200T>A, p.(Met67Lys) and SDHC:c.257G>A, p.(Gly86Asp) to be pathogenic, correlating with SDHB immunonegativity in the *SDHC*:c.257G>A, p.(Gly86Asp) case.

Reclassification of variants is a dynamic process and can have important implications for clinical practice. One patient with an EAPGL has the non-coding variant SDHC:c.-38>A, designated a VUS in 2008, but reclassified as a benign variant in 2018. SDHC:c.148C>T, p.(Arg50Cys), and c.377A>G, p.(Tyr126Cys) were initially reported as VUSs, but recently reclassified (in 2018 and 2021) as 'likely pathogenic', affecting nine probands. Reclassification events are increasing, with one commercial laboratory reporting 7.7% of unique VUS being reclassified over 10 years.²⁹ Upgrades from a VUS to a pathogenic variant will have clinical consequences. Downgrades may be helpful in releasing patients from unnecessary surveillance. Overall, 16 out of 24 SDHC variants identified are currently considered pathogenic or likely pathogenic, with six remaining as VUSs and two now considered benign.

393 Screening outcomes were reported for all *SDHC* variant cases. Relatively few cases with 394 disease had a positive biochemical result (13.7%). This is unsurprising, reflecting the 395 propensity for *SDHC* patients to develop HNPGL, which are often non-secretory, underlining the importance of imaging in PPGL detection. During follow-up, no metachronous tumours
were identified in probands, but tumour growth and progression of metastatic disease was
observed.

All tumours found in asymptomatic non-proband cases were identified at initial work-up: three PGLs and a GIST in two cases, detected by MRI. Reassuringly their PGL tumour sizes were smaller than the averages across the cohort, indicating surveillance had detected disease earlier, with possible beneficial outcomes. However, with only one GIST case in non-probands, the penetrance of this tumour remains unclear. The range of treatments employed reflects the changing practice for treating HNPGL disease. HNPGLs are slow-growing tumours with a doubling time of 5.8 years.³⁰ Many patients with HNPGLs are now being considered for nonsurgical therapy instead of operative intervention, which risks increased morbidity to achieve surgical cure.³¹ The broadened range of radiation techniques available and their success, for example ablative stereo-tactic radiosurgery, has led to increased use of these interventions. Discussion via a National MDT for managing HNPGLs in SDHC, in view of the 20% HNPGL malignancy risk, could provide a mechanism to enhance practice and outcomes.

This study reports SDHC tumour incidence at age 40 and 60 years was 40.5% and 94.6% in probands, and 4.4% and 6.7% in non-probands respectively. This is in keeping with the published findings of Benn et al., who report predicted lifetime penetrance of 8.3% (95% CI 3.5% to 18.5%), among patients selected for known SDHC pathogenic or likely pathogenic variants.³² This study highlights low cumulative tumour risk in non-probands, 16% (95% CI:0-0.31) at 60 years compared to a previous estimate of 25% (95% CI 0-0.57).¹¹ This may reflect the younger average age of non-probands at 38 years, compared to the average age of affected cases at 43, with tumours yet to develop in non-probands. Certainly, for proband cases, tumours

Clinical Endocrinology

presented throughout life and metastatic disease was seen at all ages, emphasizing lifelongtumour susceptibility.

The aim of any surveillance programme in *SDHC* patients at risk of PPGL, GIST and RCC is to detect early disease and reduce the chance of metastatic spread.¹¹ However, with low tumour incidence in non-probands and lower metachronous tumour risk in probands than previously documented, surveillance frequency might safely be lengthened from recommended biennial cross-sectional imaging, thus reducing costs and the burden to patients of frequent scans.⁷ Recent screening studies also confirm low tumour rates in asymptomatic SDHC carriers with 4% (1/28) having PPGL diagnosed at baseline,³³ matching our experience of 5% (2/40) cases identified.

In 2016, the European Society for Endocrinology published a clinical practice guideline for patients operated on for PPGL tumours, including any genetic variants. It recommended assaving plasma or urinary MN and 3MT every year, and performing imaging tests every 1-2 years in patients with biochemically inactive PPGL, to screen for local or metastatic recurrence or new tumours.³⁴ While this has been broadly adopted for patients with other *SDHx* variants (i.e. *SDHB*)⁹, evidence from our surveillance data suggests this was not routinely achieved for SDHC cases across the UK prior to 2020. Following the results of this study, we recommend: 1. Lifelong tumour specific follow-up (to monitor recurrent or metastatic disease, as determined by specialist multidisciplinary teams) for affected patients. 2. For metachronous PPGL and RCC detection, annual clinical review with plasma metanephrines, and WB-MRI (skull base, neck, thorax, abdomen and pelvis) 3-5 yearly.

444 To identify GISTs, gastric symptoms should be enquired of at clinical review and a full 445 blood count (FBC) measurement taken to assess for anaemia. For patients with **Clinical Endocrinology**

1 2		
2 3 4	446	suggestive symptoms or anaemia, Oesophageal-Gastro-Duodenoscopy (OGD) should
5 6	447	be considered.
7 8 9 10 11 12 13 14 15 16 17 18	448	3. Non-probands commence annual clinical review with biochemistry and FBC from 10
	449	years, and WB-MRI, as above, from 15 years.
	450	4. Patients with a SDHC VUS and PPGL continue tumour specific follow-up. For their
	451	potential metachronous tumour risk, annual clinical review with biochemistry and FBC
	452	for 10 years, and WB-MRI, as above. Assessment of SDHC VUS status to determine if
19 20	453	lifelong WB-MRI surveillance is indicated after 10 years (provided there are no high-
21 22	454	risk features, e.g. multiple PPGLs or familial disease).
23 24 25 26 27 28 29 30 31 32	455	5. SDHB immunohistochemistry, molecular analysis (LOH studies or somatic testing),
	456	histopathological review and consideration of tumour methylome and metabolomics
	457	profiling in PPGL and additional tumours, to aid variant classification and determine
	458	whether tumours are truly <i>SDHC</i> -related. ²⁷
33 34	459	
34 35 36 37 38	460	Despite this study being the largest SDHC patient cohort reported, we recognise its limitations,
	461	including retrospective data collection, incomplete clinical information and the challenge of
40 41	462	case ascertainment. Our short follow-up period may not have captured all tumour occurrences
42 43	463	or metastatic disease and the small numbers in the cohort may have insufficient power for some
44 45	464	differences to be realised. At present, there is no UK register for patients with SDHx disease,
46 47 48	465	their surveillance outcomes or impact of surveillance on morbidity and mortality. Such a
49 50	466	register would also benefit from access to centralised genomics data and cancer registration,
51 52	467	which would provide a richer overview of SDHC-associated disease.
53 54 55	468	
56 57	469	In summary, this UK multi-centre study reports the largest dataset of 91 affected and unaffected
58 59	470	SDHC germline variant carriers to date, with six novel SDHC variants out of 24 identified. The

Page 21 of 35

Clinical Endocrinology

1			
2 3 4	471	clinic	al manifestations of disease in this cohort have increased our understanding of SDHC
5 6	472	diseas	se and demonstrate the importance of lifelong surveillance of these patients, who have a
7 8 9	473	1/5 ris	sk of metastatic disease. It is imperative that prospective data is collected to help tailor
10 11	474	survei	illance programmes for the benefit of asymptomatic SDHC patients and to provide
12 13	475	accura	ate information for genetic counselling of patients about their lifetime risk of disease.
14 15 16	476		
17 18	477	Refer	rences
19 20	478		
21 22 23	479	1.	Berends AMA, Buitenwerf E, de Krijger RR, et al. Incidence of pheochromocytoma and
24	480		sympathetic paraganglioma in the Netherlands: A nationwide study and systematic review. Eur
25 26 27	481		J Intern Med. 2018;51:68-73. doi:10.1016/j.ejim.2018.01.015
28 29	482	2.	Lam AK. Update on Adrenal Tumours in 2017 World Health Organization (WHO) of
30 31 32	483		Endocrine Tumours. Endocr Pathol. 2017;28(3):213-227. doi:10.1007/s12022-017-9484-5
33 34	484	3.	Whalen RK, Althausen AF, Daniels GH. Extra-adrenal pheochromocytoma. J Urol.
35 36 37	485		1992;147(1):1-10. doi:10.1016/S0022-5347(17)37119-7
38 39	486	4.	Dahia PLM. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic
40 41 42	487		heterogeneity. Nat Rev Cancer. 2014;14(2):108-119. doi:10.1038/nrc3648
42 43 44	488	5.	Buffet A, Venisse A, Nau V, et al. A Decade (2001-2010) of Genetic Testing for
45 46	489		Pheochromocytoma and Paraganglioma. Horm Metab Res. 2012;44:359-366. doi:10.1055/s-
47 48 49	490		0032-1304594
50 51	491	6.	Gill AJ. Succinate dehydrogenase (SDH)-deficient neoplasia. Histopathology. 2018;72(1):106-
52 53	492		116. doi:https://doi.org/10.1111/his.13277
54 55 56	493	7.	Lenders JWM, Duh QY, Eisenhofer G, et al. Pheochromocytoma and paraganglioma: An
57 58	494		endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99(6):1915-1942.
59 60	495		doi:10.1210/jc.2014-1498

Clinical Endocrinology

3 4	496	8.	NHS England. National Genomic Test Directory Testing Criteria for Rare and Inherited
5 6	497		Disease. https://www.england.nhs.uk/wp-content/uploads/2018/08/Rare-and-Inherited-
7 8 9	498		Disease-Eligibility-Criteria-November-2020-21.pdf. Published 2020.
10 11	499	9.	Tufton N, Sahdev A, Drake WM, Akker SA. Can subunit-specific phenotypes guide
12 13	500		surveillance imaging decisions in asymptomatic SDH mutation carriers? Clin Endocrinol
14 15 16	501		(Oxf). 2019;90(1):31-46. doi:10.1111/cen.13877
17 18	502	10.	Daniel E, Bull M, Newell-Price J. Rapid-sequence MRI for long-term surveillance for
19 20	503		paraganglioma and phaeochromocytoma in patients with succinate dehydrogenase (SDHx)
21 22 23	504		mutations. Eur J Endocrinol. 2016;175:EJE-16. doi:10.1530/EJE-16-0595
24 25	505	11.	Andrews KA, Ascher DB, Pires DEV, et al. Tumour risks and genotype-phenotype
26 27	506		correlations associated with germline variants in succinate dehydrogenase subunit genes
28 29	507		SDHB, SDHC and SDHD. J Med Genet. 2018;55(6):384-394. doi:10.1136/jmedgenet-2017-
30 31 32	508		105127
33 34	509	12.	Amar L, Baudin E, Burnichon N, et al. Succinate Dehydrogenase B Gene Mutations Predict
35 36	510		Survival in Patients with Malignant Pheochromocytomas or Paragangliomas. J Clin
37 38	511		Endocrinol Metab. 2007;92(10):3822-3828. doi:10.1210/jc.2007-0709
39 40 41	512	13.	Schiavi F, Boedeker CC, Bausch B, et al. Predictors and prevalence of paraganglioma
42 43	513		syndrome associated with mutations of the SDHC gene. J Am Med Assoc. 2005;294(16):2057-
44 45 46	514		2063. doi:10.1001/jama.294.16.2057
47 48	515	14.	Burnichon N, Rohmer V, Amar L, et al. The succinate dehydrogenase genetic testing in a large
49 50	516		prospective series of patients with paragangliomas. J Clin Endocrinol Metab.
51 52 53	517		2009;94(8):2817-2827. doi:10.1210/jc.2008-2504
54 55	518	15.	Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence
56 57	519		variants: a joint consensus recommendation of the American College of Medical Genetics and
58 59 60	520		Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424.

Page 23 of 35

1 2			
2 3 4	521		doi:10.1038/gim.2015.30
5 6 7	522	16.	Landrum MJ, Kattman BL. ClinVar at five years: Delivering on the promise. Hum Mutat.
, 8 9	523		2018;39(11):1623-1630. doi:10.1002/humu.23641
10 11	524	17.	Savojardo C, Fariselli P, Martelli PL, Casadio R. INPS-MD: a web server to predict stability
12 13	525		of protein variants from sequence and structure. <i>Bioinformatics</i> . 2016;32(16):2542-2544.
14 15 16	526		doi:10.1093/bioinformatics/btw192
17 18	527	18.	Pires DEV, Ascher DB, Blundell TL. DUET: A server for predicting effects of mutations on
19 20 21	528		protein stability using an integrated computational approach. Nucleic Acids Res.
21 22 23	529		2014;42(W1):314-319. doi:10.1093/nar/gku411
24 25	530	19.	Rodrigues CHM, Myung Y, Pires DE V, Ascher DB. mCSM-PPI2: predicting the effects of
26 27	531		mutations on protein-protein interactions. Nucleic Acids Res. 2019;47(W1):W338-W344.
28 29 30	532		doi:10.1093/nar/gkz383
31 32	533	20.	Mort M, Sterne-Weiler T, Li B, et al. MutPred Splice: Machine learning-based prediction of
33 34 25	534		exonic variants that disrupt splicing. Genome Biol. 2014;15(1):1-20. doi:10.1186/gb-2014-15-
36 37	535		1-r19
38 39	536	21.	Adzhubei I, Jordan DM, Sunyaev S. Predicting Functional Effect of Human Missense
40 41	537		Mutations Using PolyPhen-2. Curr Protoc Hum Genet. 2013;2.
42 43 44	538		doi:10.1002/0471142905.hg0720s76.Predicting
45 46	539	22.	Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes.
47 48	540		Nat Protoc. 2015;11(1):1-9. doi:10.1038/nprot.2015-123
49 50 51	541	23.	Sun F, Huo X, Zhai Y, et al. Crystal Structure of Mitochondrial Respiratory Membrane Protein
52 53	542		Complex II. Cell. 2005;121:1043-1057. doi:10.1016/j.cell.2005.05.025
54 55	543	24.	Recasens M. Oriola J. Fernádnez-Real JM. et al. Asymptomatic bilateral adrenal
50 57 58	544	-	pheocromocytoma in a patient with a germline V804M mutation in the RET protooncogene.
59 60	545		<i>Clin Endocrinol (Oxf)</i> . 2007;67:29-33.

3 4	546	25.	Niemann S, Muller U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3.
5 6 7	547		Nat Genet. 2000;26(3):268-270.
7 8 9	548	26.	Lee H, Jeong S, Yu Y, et al. Risk of metastatic pheochromocytoma and paraganglioma in
10 11	549		SDHx mutation carriers: A systematic review and updated meta-analysis. J Med Genet.
12 13 14	550		2020;57(4):217-225. doi:10.1136/jmedgenet-2019-106324
15 16	551	27.	MacFarlane J, Seong KC, Bisambar C, et al. A review of the tumour spectrum of germline
17 18	552		succinate dehydrogenase gene mutations: Beyond phaeochromocytoma and paraganglioma.
19 20 21	553		Clin Endocrinol (Oxf). 2020;93(5):528-538. doi:10.1111/cen.14289
22 23	554	28.	Daly AF, Rixhon M, Adam C, Dempegioti A, Tichomirowa MA, Beckers A. High prevalence
24 25	555		of pituitary adenomas: A cross-sectional study in the province of Liège, Belgium. J Clin
26 27 28	556		Endocrinol Metab. 2006;91(12):4769-4775. doi:10.1210/jc.2006-1668
29 30	557	29.	Mersch J, Brown N, Pirzadeh-Miller S, et al. Prevalence of variant reclassification following
31 32	558		hereditary cancer genetic testing. JAMA - J Am Med Assoc. 2018;320(12):1266-1274.
33 34 35	559		doi:10.1001/jama.2018.13152
36 37	560	30.	Michałowska I, Ćwikła JB, Michalski W, et al. Growth rate of paragangliomas related to
38 39	561		germline mutations of the SDHx genes. <i>Endocr Pract.</i> 2016;23(3):342-352.
40 41 42	562		doi:10.4158/EP161377.OR
43 44	563	31.	Lloyd S, Obholzer R, Tysome J. British Skull Base Society Clinical Consensus Document on
45 46	564		Management of Head and Neck Paragangliomas. Otolaryngol Neck Surg. 2020;163(3):400-
47 48 49	565		409. doi:10.1177/0194599820915490
50 51	566	32.	Benn D, Zhu Y, Andrews KA, et al. Bayesian approach to determining penetrance of
52 53	567		pathogenic SDH variants. J Med Genet. 2018;55(11):729-734. doi:10.1136/jmedgenet-2018-
54 55 56	568		105427
57 58	569	33.	Greenberg SE, Jacobs MF, Wachtel H, et al. Tumor detection rates in screening of individuals
59 60	570		with SDHx-related hereditary paraganglioma-pheochromocytoma syndrome. Genet Med.

1			
2 3	571		2020.22(12).2101.2107. doi:10.1038/s41436.020.0021.3
4	571		2020,22(12).2101-2107. doi:10.1058/841450-020-0921-5
5 6 7	572	34.	Plouin PF, Amar L, Dekkers OM, et al. European Society of Endocrinology Clinical Practice
, 8 9	573		Guideline for long-term follow-up of patients operated on for a phaeochromocytoma or a
10 11 12	574		paraganglioma. Eur J Endocrinol. 2016;174(5):G1-G10. doi:10.1530/EJE-16-0033
12 13 14	575	35.	Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new
15 16	576		generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389-3402.
17 18	577		doi:10.1093/oxfordjournals.molbev.a026201
19 20 21	578	36.	Bayley JP, Bausch B, Rijken JA, et al. Variant type is associated with disease characteristics in
22 23	579		SDHB, SDHC and SDHD-linked phaeochromocytoma-paraganglioma. J Med Genet.
24 25	580		2019:jmedgenet-2019-106214. doi:10.1136/jmedgenet-2019-106214
26 27 28	581		
29 30 31	582		
32 33 34	583		
35 36 37	584		
38 39	585		
40 41 42	586		
43 44 45	587		
46 47 48	588		
49 50	589	Table	es (included as editable excel files within the submission)
51	590		
52 53	591	Table	e 1: Clinical characteristics of 91 SDHC variant cases, tumour diagnoses, treatments
54 55	592	and o	utcomes.
56 57	593		
58 59 60	594	Table	21:

1 2									
2 3 4	595	^a Other includes skull base, glomus, HNPGL site not clearly specified.							
5 6	596	^b SDHB IHC or LOH studies were not performed on PA or RCC tumours.							
/ 8 9	597	^c Some cases had multiple tumours - see Supplementary Table 1.							
10 11	598								
12 13	599	Table 2: Screening modalities and results, for proband and non-proband individuals.							
14 15 16	600	Table 2:							
17 18	601	^a Definitions of disease status: Positive indicates new diagnosis or new focus of metastatic							
19 20	602	disease. Stable indicates radiologically stable disease. Negative indicates no evidence of							
21 22 23	603	disease in screen, whether biochemically or radiologically.							
23 24 25	604	^b See main text for description of imaging and biochemical modalities. For non-probands,							
26 27	605	investigations undertaken within 6 months are considered within a single screen.							
28 29	606	^c One patient had undergone screening in 2012, but results were not available.							
30 31 32	607	^d Other forms of investigation included: Computed Tomography with biochemical testing							
33 34	608	(CT/B), Bronchoscopy (Br), I123/I131 metaiodobenzylguanidine (MIBG) imaging with MRI							
35 36	609	(MIBG/MRI) or Ultrasound scan with biochemical testing (US/B) and with MRI							
37 38	610	(US/B/MRI).							
39 40 41	611								
42 43	612	Table 3: List of all intragenic or regulatory site variants in SDHC [reference sequence]							
44 45	613	NM_003001.3].							
46 47 48	614	Table 3:							
49 50	615	Additional co-variants in SDHB, SDHD have also been annotated. Variants listed as 'novel',							
51 52	616	have, to the best of our knowledge, not been published elsewhere.							
53 54 55	617	^a One patient with <i>SDHC</i> c.148C>T variant has a concurrent pathogenic low penetrance <i>RET</i>							
56 57	618	protooncogene variant, c.2410G>A, p.(Val804Met).							
58 59 60	619	^b This is an intronic variant. Its possible effect on splicing has not been investigated further.							

1 2		
3 4	620	
5 6 7	621	Table 4: Structural and pathogenicity prediction scores for all SDHC missense variants
7 8 9	622	described in this cohort.
10 11	623	Table 4:
12 13	624	^a The coexisting <i>SDHD</i> variant c.34G>A is registered on ClinVar as likely benign.
14 15 16	625	^b The coexisting <i>SDHB</i> variant c.8C>G is registered on ClinVar as a benign variant.
17 18	626	^c The coexisting <i>SDHD</i> variant c.319C>T is registered on ClinVar as a VUS.
19 20 21	627	^d Allele frequencies are as reported in gnomAD v3.1 (accessed via
21 22 23	628	https://gnomad.broadinstitute.org/ Nov 2020). Variants reported from position chr
24 25	629	1.161328466.
26 27	630	
28 29 30	631	Figure Legends (Figures included as separate files within the submission)
31 32	632	
33 34	633	Figure 1: Tumour incidence of SDHC-associated disease across proband and non-
35 36 37	634	proband groups.
38 39	635	
40 41 42	636	Figure 2: Lollipop plot depicting the distribution of SDHC variants. Diagram illustrating
43 44	637	71 germline <i>SDHC</i> variants along the amino acid sequence, colour-coded by the mutation class:
45 46	638	start loss (11), truncating (24) and missense (36) genetic variants. The Y axis represents the
47 48 49	639	number of occurrences for each SDHC variant in our cohort. The variant SDHC:c.397C>T,
50 51 52	640	p.(Arg133Ter) is the most prevalent variant displayed, occurring 14 times.
52 53 54 55	641	
56 57	642	Supporting information and Appendix (Supporting tables and figures included as
58 59 60	643	editable excel files within the submission)

2 3	644	
4	•••	
5 6 7	645	Supporting information:
8 9 10	646	[1] Supplementary Table 1: Patients with multiple SDHC-related tumours and their
11 12 13	647	outcomes.
14 15 16	648	Supplementary Table 1: Abbreviations: NR = No Record. GIST= Gastrointestinal tumour.
10 17 18	649	CBT= carotid body tumour. All patients with GIST are female, median age 33 (range 22-79)
19 20	650	years. ^a HNPGL average size across cohort 32.9 ± 16.9 mm, EAPGL/PCC average size across
21 22 23	651	cohort 45.5 ± 25.1 mm.
24 25 26	652	
27 28 29	653	[2] Supplementary Table 2: Tumours in Non-proband <i>SDHC</i> cases.
30 31	654	Supplementary Table 2: NR = No record. HNPGL average size across cohort $32.9 \pm$
32 33 34	655	16.9mm, EAPGL/PCC average size across cohort 45.5 ± 25.1 mm.
35 36 37	656	
38 39	657	[3] Supplementary Table 3: Clinical characteristics and disease phenotypes listed by
40 41 42	658	SDHC variant.
43 44 45	659	Supplementary Table 3: Cases with * have malignant disease. ^a Cases are separated by
46 47	660	commas. ^b One patient with SDHC c.148C>T, p.(Arg50Cys) variant has a concurrent
48 49 50	661	pathogenic low penetrance RET protooncogene variant, c.2410G>A, p.(Val804Met).
50 51 52	662	Abbreviations: HN HNPGL unknown site, LCBT left carotid body tumour, RCBT right
53 54	663	carotid body tumour, L left glomus, RG right glomus, LJ left jugulare, RJ right jugulare, LV
55 56 57	664	left vagus, RV right vagus, V vagus (site unspecified), NPG nasopharyngeal, LSB left skull
57 58 59	665	base, GIST gastrointestinal stromal tumour, RCC renal cell cancer, PA pituitary adenoma, °
60	666	Pituitary adenomas were prolactinomas.

[4] Supplementary Figure 1: BLAST alignment of Human Succinate dehydrogenase
cytochrome b560 subunit, SDHC (Q99643) and Pig SDHC (D0VWV4).³⁵ Structural prediction
analyses were based on the high-resolution 1ZOY structure of succinate dehydrogenase from *Sus scrofa* (https://www.rcsb.org/structure/1zoy, PMID: 15989954).

[5] Supplementary Figure 2: Cumulative tumour risk and 95% CI for probands and nonprobands with pathogenic variants in *SDHC* with median ages for both groups highlighted. NB:
Due to limited number of older non-probands, the final value of the corresponding line is likely
to be over-inflated (95% CI: 0-89.6%).

677 Appendix

[1] Supplementary information regarding centres approached. An invite was initially sent to 23 genetics centres in the UK and these departments linked us to relevant endocrine services involved in the care of their SDHC families. Genetic centres in Aberdeen, Bristol, Dundee, Exeter, St George's Hospital (SW London) and University Hospital Southampton NHS Trust, Wessex did not have any known SDHC variant cases. The All Wales Genetic service was able to identify SDHC cases, but unable to provide any clinical information due to difficulties in locating information from patient records. There were 28 cases from London centres (Guy's and St Thomas' NHS Trust, King's College Hospital NHS Foundation Trust, Bart's Health NHS Foundation Trust, North West London Genetic Service, including Imperial College Healthcare Foundation NHS Trust and University College London Hospital NHS Foundation Trust). Outside of London, there were 63 cases in total from the following centres: Oxford University Hospital NHS Foundation Trust, Cambridge University Hospital Foundation NHS Trust, University Hospitals Birmingham NHS Trust, Nottingham University Hospitals NHS

Trust, Sheffield Teaching Hospitals NHS Foundation Trust, Leeds Teaching Hospitals NHS Trust, University Hospitals of Leicester, Manchester University NHS Trust, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Edinburgh Royal Infirmary, Glasgow Royal Infirmary and Belfast City Hospital, Northern Ireland. The largest contributing centre in London was GSTT and outside of London was Newcastle.

[2] Supplementary information regarding genotype-phenotype evaluation. Bayley *et al.* reported that truncating SDHB and SDHD variants were significantly over-represented in affected cases, with SDHB/D truncations associated with higher risk of developing PPGLs, compared with missense variants.³⁶ In our SDHC cohort, truncating variants were not associated with PPGL over other disease sites (two-sided Fischer's exact test, p = 0.999, CI: 0.246-4.028), malignant disease (p=0.999, CI: 0.232-5.080), or development of non-PGL malignancy (GIST and RCC, p=0.683, CI: 0.069-3.637) (Supplementary Table 3). Given the small sample size per variant, it is not meaningful to associate predicted pathogenicity with tumour incidence in this cohort, although this has been demonstrated in SDHB and SDHD Y.C.M variants.11

Characteristics		SDHC cases
Mala: Fomalo		41.50
	,	41.50
Median age at genetic d	iagnosis (years, range)	43 (11-79)
Median age at tumour di	agnosis (years, range)	43 (12-79)
Total number of cases a	ffected by PPGL or SDHC-related tumours	51
Number of tumours and	site (n, %)	
Total PPGL tumours		46
Total HNPGL tumours a	nd site	30 (65.2%)
Ca	protid Body Tumour	6
	gular	9
Va	ical	6
Va	isonhan/ngeal	1
Ot		8
Me	etastatic HNPGL disease (n, %)	6 (20%)
HNPGL Tumour size (mi	m)	32.9 <u>+</u> 16.9
Number of FAPGL tumo	urs and site (n. %)	13 (28,2%)
Th	oracic PGI	3 (6.5%)
Ah	dominal and retroperitoneal PGI	10 (21 7%)
Me	astratic FAPGI	2 (4.3%)
Phaeochromocytomas (I		3 (6 5%)
Macochiomocytomas (1	etastatic PCC	1 (33%)
EAPGL/PCC Tumour siz	ze (mm)	45.5 ± 25.1
Patients with multiple PF	PGL	1
Total metastatic PPGL d	lisease (n, %)	9 (19.6%)
Type of metastases		
Ly	mph node	3
Bo	ne	4
Liv	/er	2
Lu	ng	1
SDHC-related tumours ^b		11
GDI TO TCIAICO IUMOUIS	ст	6
Dit	uitary Adenoma (BA)	3
Pit	unal Cell Cancer (PCC)	2
Total malianant SDUC r		ے (72,7%)
Total manyhant SDHC-N		0 (12.1%)
Total number of tumours	in SDHC cases °	57
Intervention/active surve	illance	
Pre	e-operative embolisation	3
Su	rgery	33
Ra	diotherapy	8
MIF	3G	3
	dianualida tharany (Vttrium ⁹⁰)	4
Ra	ulonuciue inerapy (filininit)	
Tar	geteu therapy -imatinip +/- Sunitinip (GIST treatment)	2
HN	PGL - On active surveillance	9
The	pracic PGL - on active surveillance	2
GIS	ST on active surveillance	2

 Table 1: ^a Other includes skull base, glomus, HNPGL site not clearly specified.

^b SDHB IHC or LOH studies were not performed on PA or RCC tumours.

^c Some cases had multiple tumours - see Supplementary Table 1.

Table 2: Screening modalities and results, for proband and non-proband individuals

Group		First screen	Second screen	Third screen	Fourth Screen	Fifth Screen	Total surveillanc
Non-proband	Total (n = 45)	⁴⁵ →	³⁴ →	²⁶ →	²⁰ →	16	
	Positive ^a	2	0	0	0	0	
	Stable	0	2	2	2	2	
	Negative	38	23	17	13	9	
	Not available/pending	5	9	7	5	5	
	MRI and biochemistry ^b	35	9	11	11	7	
	MRI alone	3	3	2	1	0	
	Biochemistry alone	1	14	5	1	4	
	Not available/pending	4	5	5	7	5	
	Other ^d	2	3	3	0	0	
	Other screening modalities (per case) ^d	US/B, US/B/MRI	US/B, US/B, US/B	CT, US/B, US/B			
	Median interval (months, range)		16.5 (11-27)	12 (8-26)	16 (9-32)	15 (12-63)	
	Median surveillance duration (months, range)						45.5 (12-103
Proband	Total (n = 46)	46 →	35 →	27 →	22 →	15	
	Positive ^a	14	5	1	1	1	
	Stable	1	3	5	3	2	
	Negative	19	15	12	10	4	
	Not available/pending ^b	12	12	9	8	8	
	MDL						
	MRI and biochemistry	23	15	13	8	3	
	MRI alone	23 7	15 4	13 3	8 5	3 3	
	MRI and blochemistry MRI alone Biochemistry alone	23 7 1	15 4 6	13 3 3	8 5 1	3 3 1	
	MRI and blochemistry MRI alone Biochemistry alone Not available/pending	23 7 1 11	15 4 6 8	13 3 3 8	8 5 1 8	3 3 1 8	
	MRI and blochemistry MRI alone Biochemistry alone Not available/pending Other ^d	23 7 1 11 4	15 4 6 8 2	13 3 3 8 0	8 5 1 8 0	3 3 1 8 0	
	MRI and blochemistry MRI alone Biochemistry alone Not available/pending Other ^d Other screening modalities ^d	23 7 1 11 4 CT/MRI, Br, MIBG/MRI, CT/B	15 4 6 8 2 CT/B, Br	13 3 3 8 0	8 5 1 8 0	3 3 1 8 0	
	MRI and blochemistry MRI alone Biochemistry alone Not available/pending Other ^d Other screening modalities ^d	23 7 1 11 4 CT/MRI, Br, MIBG/MRI, CT/B	15 4 6 8 2 CT/B, Br	13 3 3 8 0	8 5 1 8 0	3 3 1 8 0	

Table 2: a Definitions of disease status: Positive indicates new diagnosis or new focus of metastatic disease. Stable indicates radiologically stable disease. Negative indicates no evidence of disease in screen, whether biochemically or radiologically.

^b See main text for description of imaging and biochemical modalities. For non-probands, investigations undertaken within 6 months are considered within a single screen.

^c One patient had undergone screening in 2012, but results were not available.

^d Other forms of investigation included: Computed Tomography with biochemical testing (CT/B), Bronchoscopy (Br), 1¹²³/1¹³¹ metaiodobenzylguanidine (MIBG) imaging with MRI (MIBG/MRI) or Ultrasound scan with biochemical testing (US/B) and with MRI (US/B/MRI).

Clinical Endocrinology

Table 3: List of all intragenic or regulatory site va	ariants in SDHC [reference sequence NM_003001.3].
---	---

Gene	SDHC Exon	Variant SDHC/SDHx	Result SDHC/SDHx	Protein change SDHC/SDHx	Number of probands	Number of cases	ClinVar ID or reference	Reported effect SDHC/SDHx	Allele frequency
SDHC	Promoter	c38G>A	Does not affect function	p.=	1	1	368837	Benian	Not described
	1 (-30)	c.1A>G	Start codon lost	p.(Met1?)	3	4	407060	Pathogenic	1.32E-05
	. (,	c.1A>T	Start codon lost	p.(Met1?)	2	7	653751	Pathogenic	Not described
	2 (21)	Exon 2 deletion	Copy Number Variant	p.?	1	1	Burnichon et al. 2009.	Pathogenic	Not described
		c.43C>T	Stop gain	p.(Arg15Ter)	2	7	41776	Pathogenic	1.97E-05
	0 (70)	77.40.4					105 170		0.575.00
	3 (78)	C.78-1G>A	Acceptor splice site variant	p.=	1	1	185473	Likely Pathogenic	6.57E-06
		c.148C>1 °	Missense variant	p.(Arg50Cys)	6	12	135194	Likely Pathogenic	6.57E-06
		c.148C>1 and SDHD c.34G>A	Missense variant/Missense variant	p.(Arg50Cys)/p.(Gly12Ser)	1	1	135194; 6895	Likely Pathogenic and Likely benign	6.57E-06
		c.164A>G	Missense variant	p.(His55Arg)	1	1	239449	VUS	6.57E-06
	4 (180)	Exon 4 deletion c (179+92 180-1) (241+107 242-1)del	Copy Number Variant	n ?	1	1	Novel	Novel Pathogenic	Not described
	. (100)	c 200T>∆	Missense variant	n (Met67Lvs)	1	. 1	Novel	Novel VUS	Not described
		c.214C>T	Missense variant	p (Arg72Cvs)	0	2	653952	Likely Pathogenic	1 31E-05
		c 215G>A	Missense variant	n (Arg72His)	2	8	407044	VUS	Not described
		c 224G>A and SDHB c 8C>G	Missense variant/Missense variant	n (Glv75Asn)/n (Ala3Glv)	- 1	1	189841: 12791	Conflicting (Likely Pathogenic//US) and Benign	Not described
		c (241+9) (241+10)del ^b	Unknown	n =	1	1	Novel	Novel VUS	Not described
		0.(21110)_(211110)001		p.		•			
	5 (242)	Exon 5 deletion	Copy Number Variant	p.?	1	1	Novel	Novel Pathogenic	Not described
	. ,	c.257G>A	Missense variant	p.(Gly86Asp)	1	1	Novel	Novel VUS	Not described
		c.263C>T	Missense variant	p.(Ser88Leu)	1	1	407056	VUS	1.31E-05
		c.345dupA	Frame-shift elongation	p.(Ala116SerfsTer2)	1	1	Andrews et al. 2018	Pathogenic	Not described
		c.371 372del	Frame-shift elongation	p.(Leu124fs)	1	2	Novel	Novel Pathogenic	Not described
		c.377A>G	Missense variant	p.(Tyr126Cys)	1	1	428933	Llikely pathogenic	2.63E-05
		c.377A>G and SDHD c.319C>T	Missense variant/Missense variant	p.(Tyr126Cys)/p.(Leu107Phe) 1	1	428933; 578681	Likely pathogenic and VUS	2.63E-05
		c.380A>G	Missense variant	p.(His127Arg)	3	5	187084	Pathogenic	6.57E-06
		c.397C>T	Stop gain	p.(Arg133Ter)	7	14	183753	Pathogenic	6.58E-06
	6 (406)	Exon 6 deletion	Copy Number Variant	p.?	4	14	Andrews et al. 2018	Pathogenic	Not described
		c.490A>T	Missense variant	p.(Met164Leu)	1	1	184146	Conflicting (Likely Benign/VUS)	1.86E-04
TOTAL					46	91			

Table 3: Additional co-variants in SDHB, SDHD have also been annotated. Variants listed as 'novel', have, to the best of our knowledge, not been published elsewhere.

^a One patient with c.148C>T variant has a concurrent pathogenic low penetrance RET protooncogene variant, c.2410G>A, p.(Val804Met).

^b This is an intronic variant. Its possible effect on splicing has not been investigated further.

^c Allele frequencies are as reported in gnomAD v3.1.1 (accessed via https://gnomad.broadinstitute.org/ on 01/07/2021).

Table 4: Structural and pathogenicity prediction scores for all SDHC missense variants described in this cohort

SDHC Exon	SDHCVariant	Allele frequency d	INPS-3D Kcal/mol	mCSM-PPI2 Kcal/mol	DUET Kcal/mol	mutPred	PolyPhen HVAR rank	SIFT	Predicted pathogenicity	Effect as per ACMG guidelines	Evidence
3 (78)	c.148C>T ^a	6.57E-06	-0.297	-1.926	-2.101	0.78	0.88582	Damaging	Pathogenic	Likely pathogenic	PS3_Moderate, PS4_Moderate, PM2, PP3
	c.164A>G	6.57E-06	-0.532	-0.141	-1.456	0.933	0.84481	Damaging	Pathogenic	VUS - not enough evidence	PS4_Moderate, PM2, PP3
4 (180)	c.200T>A	Not described	-1.277	-0.256	-0.546	0.909	0.67921	Damaging	Pathogenic	VUS - not enough evidence	PM2, PP3
	c.214C>T	1.31E-05	0.146	-1.001	-0.611	0.89	0.86255	Damaging	Pathogenic	Likely Pathogenic	PS3_Moderate, PS4_Moderate, PM1_Supporting, PM2, PP3
	c.215G>A	Not described	-0.043	-0.558	-1.517	0.877	0.86255	Damaging	Pathogenic	Likely Pathogenic	PS4_Moderate, PM2, PM5, PP3
	c.224G>A ^b	Not described	-0.486	-0.058	-1.354	0.943	0.92359	Damaging	Pathogenic	VUS - not enough evidence	PS4_Moderate, PM2, PP3
									-		
5 (242)	c.257G>A	Not described	-0.164	-2.107	-2.245	0.79	0.995	Damaging	Pathogenic	VUS - not enough evidence	PM2, PP3
	c.263C>T	1.31E-05	-0.083	-0.23	0.452	0.552	0.087	Tolerated	Pathogenic	VUS - not enough evidence	BP4
	c.377A>G °	2.63E-05	-1.939	-0.563	-2.138	0.823	0.92359	Damaging	Pathogenic	Likely pathogenic	PS4 Moderate, PM1 Supporting, PM2, PP3
	c.380A>G	6.57E-06	0.873	-0.285	-1.309	0.945	0.97372	Damaging	Pathogenic	Likely pathogenic	PS4 Moderate, PM2, PP4, PP3
								5.0	0		=
6 (406)	c.490A>T	1.86E-04	-0.179	-0.15	0.207	0.476	0.01387	Tolerated	Benign	Likely benign	PS4, BP4

Table 4: Variants reported from position chr 1.161328466.

^a The coexisting SDHD variant c.34G>A is registered on ClinVar as likely benign.

^b The coexisting SDHB variant c.8C>G is registered on ClinVar as a benign variant.

^c The coexisting SDHD variant c.319C>T is registered on ClinVar as a VUS.

g/ on 01/07/2021). ^d Allele frequencies are as reported in gnomAD v3.1.1 (accessed via https://gnomad.broadinstitute.org/ on 01/07/2021).

Page 35 **T**fumor incidence in SDHC

Clinical Endocrinology

Years

