
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1007/JHEP01(2024)041

Document Version
Publisher's PDF, also known as Version of record

Link to publication record in King's Research Portal

Citation for published version (APA):
Downing, M., & Watts, G. M. T. (2024). Free fermions, KdV charges, generalised Gibbs ensembles, modular
transforms and line defects. Journal of High Energy Physics, 2024(1), Article 41. Advance online publication.
https://doi.org/10.1007/JHEP01(2024)041

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 25. Dec. 2024

https://doi.org/10.1007/JHEP01(2024)041
https://kclpure.kcl.ac.uk/portal/en/publications/1d76f254-a229-40a4-be4c-d655151e72e0
https://doi.org/10.1007/JHEP01(2024)041


J
H
E
P
0
1
(
2
0
2
4
)
0
4
1

Published for SISSA by Springer

Received: November 17, 2023
Accepted: December 29, 2023

Published: January 9, 2024

Free fermions, KdV charges, generalised Gibbs
ensembles, modular transforms and line defects

Max Downing and Gérard M.T. Watts

Department of Mathematics, King’s College London,
Strand, London WC2R 2LS, United Kingdom

E-mail: max.downing@kcl.ac.uk, gerard.watts@kcl.ac.uk

Abstract: In this paper we return to the question of the modular properties of a generalised
Gibbs ensemble of a single free fermion. We extend our previous proposals to a GGE
containing an arbitrary number of conserved charges and provide a physical interpretation
of the result in terms of a line defect. The defect description perfectly explains the product
formula for the modular transformation we found previously. We also give a proposal for
a Hamiltonian approach to the line defect.

Keywords: Field Theories in Lower Dimensions, Integrable Hierarchies, Conformal and W
Symmetry, Integrable Field Theories

ArXiv ePrint: 2311.04564

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP01(2024)041

mailto:max.downing@kcl.ac.uk
mailto:gerard.watts@kcl.ac.uk
https://arxiv.org/abs/2311.04564
https://doi.org/10.1007/JHEP01(2024)041


J
H
E
P
0
1
(
2
0
2
4
)
0
4
1

Contents

1 Introduction 1

2 Summary of previous results 2

3 Physical interpretation in terms of defects 4

4 Fermion quantisation condtion 7

5 Extending the result to more charges 7

6 Infinite collection of charges 9

7 The “(R, −)” sector 11

8 Defect Hamiltonian 13
8.1 Inserting I1 18
8.2 Arbitrary finite collection of I2n−1 21

9 Summary and outlook 21

A Massless defect TBA 23

B TBA equations for a GGE and a defect 23

1 Introduction

In this paper we return to the interpretation and generalisation of the results we obtained
in [1]. In that paper we proposed an exact formula for the modular transform of a generalised
Gibbs ensemble (GGE) of a single massless free fermion in the presence of a single extra
conserved quantity. In this paper we provide a physical interpretation for this formula
(which was lacking in [1]) and we extend the results to an arbitrary finite combination of
conserved charges. The physical interpretation is given by introducing a defect into the
system. The presence of this defect can be seen in the TBA equations which were used in [1]
to derive our conjecture for the modular transform of the GGE and provides an explanation
for the peculiar product form of the modular transform. This defect can also be constructed
explicitly in a Hamiltonian formalism.

We also note that a specialisation of our results to the case q = 1 and a single conserved
quantity had already been proven in the mathematical literature [2], and that a complete
proof of these results for a finite collection of charges can be found in the companion paper [3].
For the background to and motivation for this work, we refer the reader to [1].

We start in section 2 with a quick recap of the main result in [1] and in section 3 we
explain its interpretation in terms of a system with a defect. This leads to an interpretation of
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the modular transform formulae in terms of an altered quantisation condition on the fermion
modes which we explain in section 4. In section 5 we then generalise the results in [1] for
a single charge of spin 3 to an arbitrary but finite combination of charges. In section 6 we
extend the conjecture to the case with an infinite number of charges and in section 7 to
the “(R,-)” sector which generalises the modular properties of the eta function. Finally, in
section 8, we present a construction of the defect in a Hamiltonian formalism based on the
methods of [4], and then conclude with some conjectures and observations.

2 Summary of previous results

Our previous paper [1] was concerned with the partition function for a free massless chiral
fermion in the presence of a generalised Gibbs ensemble (GGE). The GGE was composed of
two commuting quantities which can be thought of as the first two conserved charges of the
KdV hierarchy in this model. If the fermion has modes ψk then the KdV charges are

I2n−1 =
∑
k>0

k2n−1ψ−kψk − c
NS/R
2n−1 , (2.1)

where n is a positive integer, the sum is over k = 1, 2, . . . in the Ramond (R) sector and over
k = 1/2, 3/2 . . . in the Neveu-Schwarz (NS) sector. The constant terms cNS/R

2n−1 take values

c
NS/R
2n−1 = − (−1)n

(2π)2n

∫ ∞

0

t2n−1

1 ± et
dt =


1
2(21−2n − 1)ζ(1 − 2n) NS,
1
2ζ(1 − 2n) R,

(2.2)

where ζ(s) is the Riemann zeta function and the NS sector is given by + and R by −. The
fundamental quantities we considered were traces over the NS and R Fock spaces

χNS/R,±(τ, α) = TrNS/R,±
(

(±1)F qI1zI3
)

= TrNS/R,±
(

(±1)F e2πi I1eα I3
)
, (2.3)

where F is the fermion number operator that has eigenvalue 1 on the ground state and
anticommutes with ψk, and z = eα is some complex parameter.

These traces can be evaluated explicitly to obtain χR,−(τ, α) = 0 and the others given by

χNS,±(τ, α) = q−1/48z7/1920 ∏
n=1/2

(
1 ± qnzk3)

, (2.4)

χR,+(τ, α) = 2 q1/24z−1/240 ∏
n=1

(
1 + qnzk3)

. (2.5)

Setting α = 0 in (2.3) we recover the standard expressions for free fermion characters.1 If
we consider a rectangular torus given by identifying the ends of a cylinder of circumference
L and length R, then the usual partition function is

Z(L,R) = 1
2 |χ

NS,+(τ, 0)|2 + 1
2 |χ

NS,−(τ, 0)|2 + 1
4 |χ

R,+(τ, 0)|2, (2.6)

q = exp(2πiτ), τ = iR

L
.

1Note that χR,+(q) = 2q1/24 + . . . has a factor of two for the doubly degenerate ground state.
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Since this should not depend on the parametrisation of the torus, we have Z(L,R) = Z(R,L).
The individual functions χNS/R,± are not invariant but satisfy

χ
NS,+(τ̂ , 0)
χNS,−(τ̂ , 0)
χR,+(τ̂ , 0)

 =

1 0 0
0 0 1√

2
0
√

2 0


χ

NS,+(τ, 0)
χNS,−(τ, 0)
χR,+(τ, 0)

 , q̂ = exp(2πiτ̂), τ̂ = −1/τ. (2.7)

This is a modular S transformation: the maps S : τ → −1/τ and T : τ → τ + 1 generate the
modular group SL(2, Z). It was a natural question to ask if the functions (2.3) have similarly
nice modular properties. The result we found in [1] is “no”, but instead

χ
NS,+(τ̂ , α)
χNS,−(τ̂ , α)
χR,+(τ̂ , α)

 =

1 0 0
0 0 1√

2
0
√

2 0


χ̂

NS,+(τ, α)
χ̂NS,−(τ, α)
χ̂R,+(τ, α)

 , q̂ = exp(2πiτ̂), τ̂ = −1/τ. (2.8)

where

χ̂NS,+(τ, α) = qhNS
0 (τ,α) ∏

k=1/2

(
1 + eτx1(k)

) (
1 + eτx2(k)

) (
1 + e−τx3(k)

)
, (2.9)

χ̂NS,−(τ, α) = qhNS
0 (τ,α) ∏

k=1/2

(
1 − eτx1(k)

) (
1 − eτx2(k)

) (
1 − e−τx3(k)

)
, (2.10)

χ̂R,+(τ, α) = 2 qhR
0 (τ,α)

(
1 + eτx2(0)

) ∏
k=1

(
1 + eτx1(k)

) (
1 + eτx2(k)

) (
1 + e−τx3(k)

)
. (2.11)

The ground state eigenvalues hNS/R
0 (τ, α) are defined by

hNS
0 (τ, α) = − 1

4π2

∫ ∞

0

t

et + 1f
(
−ατ

3t2

4π2

)
dt, hR

0 (τ, α) = 1
4π2

∫ ∞

0

t

et − 1f
(
−ατ

3t2

4π2

)
dt,

(2.12)

where

f(z) = 2F1

(1
3 ,

2
3; 3

2; 27
8πiz

)
, (2.13)

and the roots xi(n) satisfy

x− ατ3
2

8π3 x
3 = 2nπi, (2.14)
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where n ∈ Z for the R sector and n ∈ Z+ 1
2 for the NS sector. The roots of equation (2.14) are

x1(n) = 2nπi F
(1

3 ,
2
3; 3

2;−n2γ

)
(2.15)

= 2nπi
(

3
2F
(1

3 ,
2
3; 1

2; 1+n2γ

)
−
√

3
2

√
1+n2γF

(5
6 ,

7
6; 3

2; 1+n2γ

))
,

x2(n) = −2nπi
(

1
2F
(1

3 ,
2
3; 3

2;−n2γ

)
− 1

2n

√
−27
γ
F

(
−1

6 ,
1
6; 1

2;−n2γ

))
(2.16)

= −6nπi F
(1

3 ,
2
3; 1

2; 1 + n2γ

)
,

x3(n) = −2nπi
(

1
2F
(1

3 ,
2
3; 3

2;−n2γ

)
+ 1

2n

√
−27
γ
F

(
−1

6 ,
1
6; 1

2;−n2γ

))
(2.17)

= 2nπi
(

3
2F
(1

3 ,
2
3; 1

2 ; 1+n2γ

)
+
√

3
2

√
1+n2γ F

(5
6 ,

7
6 ; 3

2; 1+n2γ

))
,

where
F (a, b; c; z) ≡ 2F1(a, b; c; z), and γ = 27ατ3

2
8π . (2.18)

Note that −x3(k) = x1(k) + x2(k) = x2(−k), so there are three different ways to write
the expressions (2.9)–(2.11). Also, since x1(0) = 0 we have (1 + xτx1(0)) = 2 and also
x2(0) = −x3(0) , which is why we only include this term once in (2.11).

This result, (2.8), which was conjectured in [1] has now been proven by one of us [MD] in
the companion paper [3]. Having presented the result, we now turn to a physical interpretation.

3 Physical interpretation in terms of defects

In our original paper we did not have a satisfactory physical understanding of the modular
transformed formulae. We now have one proposal which is both simple and elegant, which is to
consider the original GGE not as a change in the action or Hamiltonian of the free fermion, but
instead as due to the insertion of a line defect. We now present evidence for this interpretation.

The original picture as envisaged in [1] was that the GGE could be considered as the
partition function for some system on a torus, expressed as a trace, as in figure 1. The
Hamiltonian H ′ was unknown, as was the space on which it acts. All that is known are
the ground state eigenvalues. From equations (2.9), (2.10) and (2.11), the ground state
eigenvalues of H ′ in the various sectors must be

E
NS/R
0 = 2π

L
h

NS/R
0 (τ, α)

= − 1
2πL

∫ ∞

0

t

1 ± et
f(−ατ3t2/4π2) dt

= − 1
2πL

∫ ∞

0
log

(
1 ± exp

(
−u+ αR3u3

8π3L3

))
du, (3.1)

where again R is given by − and NS by +. The last change of variables t = u+ ατ3u3/8π3i

uses τ = iR/L and the fact that f(z) satisfies

f − z

2πif
3 = 1. (3.2)

– 4 –
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I #

I
↑* - AII -

I ↑

L E = it
--

R
T=

E I ↓

↓ --

<-R->

8

Z = Tr(e−LH) Z = Tr(e−RH′)

H = 2π
R

(L0 − c/24) − α

L
I3 H ′ = ?

Figure 1. Original interpretation of the modular transformed GGE traces. We call (I) the direct
channel and (II) the crossed channel.

This last integral (3.1) has the standard TBA form

LE
NS/R
0 = −

∫ ∞

0
log

(
1 ± e−ϵ(u)

) du
2π (3.3)

for a system of non-interacting massless particles with momentum p = u/L and pseudo-energy

ϵ(u) = u− αu3
(

R3

8π3L3

)
, (3.4)

corresponding to the dispersion relation

E = p− α

L

p3R3

8π3 . (3.5)

The minus sign in the R sector comes from introducing a “twist” (see, for example [5]), or,
equivalently, a defect line with a transmission factor of −1.

This interpretation of the system on the torus (I) in figure 1, (which we call the direct
channel) doesn’t give any insight into the system on the torus (II) (which we call the crossed
channel) except that it should be some system with the opposite dispersion relation, swapping
the roles of E and p (often called the mirror theory, [6]).

There is, however, an alternative way to understand the ground state energies as TBA
expressions, which is to read them as

LE0 = −
∫ ∞

0
log

(
1 + T (iu) e−ϵ(u)

) du
2π . (3.6)

– 5 –



J
H
E
P
0
1
(
2
0
2
4
)
0
4
1

I #

It -A
I ↑

L E = it
--

R =
iR

E I ↓ I

↓ --

<-R->

8

Z = Tr( D̂ e−LH) Z = Tr(e−RH′)

H = 2π
R

(L0 − c/24) H ′ = 2π
L

(L0 − c/24) +D(0)

Figure 2. Revised interpretation of the modular transformed GGE traces: on torus (I), the defect is
inserted as an operator D̂ in the trace; on torus (II) it is given by the addition of an operator D(0) to
the Hamiltonian.

This is a system of non-interacting massless particles with the free massless pseudo-energy
and dispersion relations

ϵ(u) = u, E = p = u/L, (3.7)

in the presence of a defect with transmission factor T (u), as in figure 2.
The TBA equations for a theory of a single massive particle with a defect insertion

were first derived in [7]. It is very easy to derive the massless limit of these equations to
get (3.6), which we do in appendix A.

In the original calculation (the direct channel, torus (I)), this defect is placed along
a line of constant time and corresponds to the insertion of an operator D̂ in the trace; in
the opposite (crossed) channel (torus (II)) it is placed along a line of constant position and
its effect is instead to change the quantisation condition on the fermion momenta while
leaving the dispersion relation unchanged. Formally we can consider the Hamiltonian in
the crossed channel as

H ′ = 2π
L

(L0 − c/24) +D(0), (3.8)

where D(0) is a local operator, or field, inserted at the location of the defect such that the
spectrum of H ′ agrees with the fermion quantisation condition. This is shown in figure 2.

– 6 –
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4 Fermion quantisation condtion

Comparing the ground state energy (3.1) found in [1] with the TBA expression in the presence
of a defect (3.6) we see that the defect has transmission factor (with p = u/L)

T (u) = ± exp(iαu3R3/8π3L3) = ± exp(iαR3p3/8π3). (4.1)

We consider the unperturbed system (without the defect) to be the fermion in the NS sector
for which the momentum pn = (2π/L)kn of the modes ψ−kn satisfy

eipnL = e2πikn = −1, kn = 1
2 ,

3
2 , . . . . (4.2)

When the defect with transmission factor T (u) is introduced into the system, the quantisation
condition is altered to

eipLT (u) = ±eipL+iαR3p3/8π3 = −1 (4.3)

so that

ipnL+ iα(Rpn/2π)3 = 2nπi,

n ∈ Z + 1
2 NS,

n ∈ Z R.
(4.4)

In terms of x = ipL this is precisely the condition (2.14)

xn − α

(
Rxn

2πL

)3
= 2nπi,

n ∈ Z + 1
2 NS,

n ∈ Z R,
(4.5)

and the condition that the fermion is actually right-moving is that the real part of p is
positive, so that the imaginary part of x is positive.

This means that in the presence of the defect, the fermion is quantised with modes ψ−kn

for each solution of (2.14) with positive imaginary part. Taking the standard expression for
the partition function where each mode of energy En contributes a factor

(1 + e−REn) = (1 + e−Rpn) = (1 + eiRxn/L) = (1 + eτxn) (4.6)

to the partition function Z = Tr(e−RH), we get exactly the results (2.9), (2.10) and (2.11).
These formulae do not represent the trace over the product of three separate sets of

fermion modes, as we conjecture in [1], but instead the trace over the set of modes of a single
fermion subject to the deformed quantisation condition (4.3).

5 Extending the result to more charges

In [1] we gave a conjecture for the exact transformation of the GGE with only the I3 KdV
charge inserted. Here we first extend the transformation results to the case of a single charge
I2m−1 and then with a arbitrary but finite collection of I2m−1 in the GGE. These conjectures
have been proved in the companion paper [3]. Finally in section 6, we extend the conjecture to

– 7 –
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the case with an infinite number of charges inserted. Here there are issues of convergence for
the GGE so the result is more speculative but it is a natural generalisation from the finite case.

The starting point of the derivation of the formulae (2.8)–(2.11) in the case of a GGE
with the single charge I3 was the expression (2.12) for the ground state eigenvalue of H ′ in
the crossed channel. This formula was found by summing over the ground state energies
in a putative expression for the transformed GGE -

TrNS,R(q̂L0−c/24eαI3) ∼ Tr(qL0−c/24e
∑∞

n=1 α′
2n+1I2n+1) = qh−c/24 e

∑∞
n=1 α′

2n+1c
NS/R
2n+1 (1 + . . .).

(5.1)

While (5.1) is only asymptotically true, it is possible to find the α′
2n+1 relatively easily and,

using the integral representation (2.2) for c2n−1, find the expressions

h
NS/R
0 = h− c/24 +

∞∑
n=1

α′
2n+1

2πiτ c
NS/R
2n+1

= c
NS/R
1 +

∞∑
n=1

α′
2n+1

2πiτ c
NS/R
2n+1

= − 1
4π2

∫ ∞

0
du log

(
1 ± e−u−α(iuτ/2π)3)

, (5.2)

leading to the excited state energies being found either from analytic continuation of (5.2),
or from the quantisation condition in the presence of the defect with transmission factor
T (iu) = ± exp(−α(iuτ/2π)3)

It is straightforward to use the results of [1] to repeat these calculations for a GGE
with a single higher charge I2m−1. The corresponding ground state energies hNS/R

0 can be
found from equations (6.15) and (6.16) in [1], as

h
NS/R
0 = h− c/24 +

∑
n=1

α′
2n+1

2πiτ c
NS/R
2n+1

= − 1
4π2

∫ ∞

0
dx log

(
1 ± e−x−α(ixτ/2π)2m−1)

, (5.3)

which again can be interpreted as due to a defect with transmission factor

T (iu) = ± exp(−α(iuτ/2π)2m−1). (5.4)

We can now make an obvious conjecture for the general case: if the GGE is composed of
a finite set of charges,

α3I3 + . . . α2m+1I2m+1 =
m∑

p=1
α2p+1I2p+1 (5.5)

then it is equivalent to a defect with transmission factor

T (iu) = ± exp

− m∑
p=1

α2p+1(iuτ/2π)2p+1

 . (5.6)

– 8 –
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We can now repeat all the previous arguments on fermion mode quantisation and end
up with the following transformation formulae. We denote the set of chemical potentials
{α3, . . . , α2m+1} by α and define the polynomial

p(α)(x) =
m∑

p=1
α2p+1x

2p+1. (5.7)

The GGE traces are then

χNS,±(τ,α) = q−1/48e
−
∑m

p=1 α2p+1cNS
2p−1

∏
n=1/2

(
1 ± qnep(α)(n)

)
, (5.8)

χR,+(τ,α) = 2 q1/24e
−
∑m

p=1 α2p+1cR
2p−1

∏
n=1

(
1 + qnep(α)(n)

)
, (5.9)

and their modular transforms areχ
NS,+(τ̂ ,α)
χNS,−(τ̂ ,α)
χR,+(τ̂ ,α)

 =

1 0 0
0 0 1√

2
0
√

2 0


χ̂

NS,+(τ,α)
χ̂NS,−(τ,α)
χ̂R,+(τ,α)

 , q̂ = exp(2πiτ̂), τ̂ = −1/τ. (5.10)

where

χ̂NS,±(τ,α) = qhNS
0 (τ,α) ∏

k∈Z+ 1
2

∏
xj(k)

Im(xj(k))>0

(
1 ± eτxj(k)

)
, (5.11)

χ̂R,+(τ,α) = 2qhR
0 (τ,α) ∏

k∈Z

∏
xj(k)

Im(xj(k))>0

(
1 + eτxj(k)

)
. (5.12)

The ground state eigenvalues hNS/R
0 (τ, α) are given by

h
NS/R
0 (τ, α) = − 1

4π2

∫ ∞

0
du log

(
1 ± e−u−p(α)(iuτ/2π)

)
, (5.13)

and the roots xi(k) satisfy

x+ p(α)(iτx/2π) = 2nπi, (5.14)

where n ∈ Z for the R sector and n ∈ Z + 1
2 for the NS sector. This transformation formula

has been proven in [3].
Equation (5.14) is the quantisation condition for the one particle energies in the presence

of the line defect. In section 8 we reproduce the quantisation condition (5.14) by constructing
the defect Hamiltonian explicitly.

6 Infinite collection of charges

We can extend the conjectured transform even further to the case where we have an infinite
number of charges inserted. This case was also commented on in [3] but the transformation
was not proved there. We will discuss the issues involved with proving these transforms
at the end of this section.
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Formally the GGE with all charges inserted is

TrNS/R,±
(
e
∑∞

n=2 α2n−1I2n−1qI1
)

= e−
∑∞

n=2 α2n−1c
NS/R
2n−1 q−c

NS/R
1

∏
k≥0

(
1 ± e

∑∞
n=2 α2n−1k2n−1

qk
)
.

(6.1)
Since this contains both infinite series and products there are potential convergence issues.
We must restrict the domain of the chemical potentials, α2n−1, so that the right hand side
of (6.1) is well defined. We have to consider the convergence of the two series

2πiτk +
∞∑

n=2
α2n−1k

2n−1 and 2πiτcNS/R
1 +

∞∑
n=2

α2n−1c
NS/R
2n−1 , (6.2)

and the convergence of the product. Since the product in (6.1) is over all k ∈ Z or Z + 1
2

with k ≥ 0, the radius of convergence of the series 2πiτk+
∑∞

n=1 α2n−1k
2n−1 must be infinite.

Additionally, as k increases, the value of the exponential of the series must decay sufficiently
fast for the product to converge. We also need the series 2πiτcNS/R

1 +
∑∞

n=1 α2n−1c
NS/R
2n−1 to

converge. These conditions together constrain the allowed values of the chemical potentials
if we want (6.1) to be well defined.

Alternatively if the right hand side is not well defined for our choice of α2n−1 we can
obtain a well defined expression through a regularisation process. We first define the function
fτ,α(k) as the power series expansion

fτ,α(k) = 2πiτk +
∞∑

n=2
α2n−1k

2n−1, |k| < R, (6.3)

which has radius of convergence R. If R is finite then as we take the product over k in (6.1)
there is a point where k > R so the power series will no longer converge. However if the
function fτ,α(k) is defined for all k > 0 when we can replace the power series with f in the
product. We still need to check that the product converges.

There is also the series 2πiτcNS/R
1 +

∑∞
n=2 α2n−1c

NS/R
2n−1 to consider. If this series does not

converge for our choice of chemical potentials we can again regularise this series as follows.
Using the integral representation (2.2) for cNS/R

2n−1 the series can be written as

∞∑
n=1

α2n−1c
R
2n−1 =

∫ ∞

0

dt

2πi
fτ,α

(
t

2πi

)
et − 1 ,

∞∑
n=1

α2n−1c
NS
2n−1 = −

∫ ∞

0

dt

2πi
fτ,α

(
t

2πi

)
et + 1 .

(6.4)

Again this is a formal relation since if the power series of fτ,α(t) has a finite radius of
convergence and we are integrating over t > 0 there will be a point where the expansion is no
longer valid and the integral and sum cannot be swapped. We need the integrals to converge for
the GGE to be defined but this is a weaker condition then the convergence of the original sum.
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Using these regularisations we will take the GGEs to be defined as

χR,+(τ,α) = TrR,+
(
e
∑∞

n=2 α2n−1I2n−1qI1
)

= exp
(
−
∫ ∞

0

dt

2πi
fτ,α

(
t

2πi

)
et − 1

) ∏
k=0

(
1 + efτ,α(k)

)
,

χNS,±(τ,α) = TrNS,±
(
e
∑∞

n=2 α2n−1I2n−1qI1
)

= exp
(∫ ∞

0

dt

2πi
fτ,α

(
t

2πi

)
et + 1

) ∏
k= 1

2

(
1 ± efτ,α(k)

)
.

(6.5)

We can now extend the transformation for the finite case (5.10) to a conjectured transform
for the infinite caseχ

NS,+(τ̂ ,α)
χNS,−(τ̂ ,α)
χR,+(τ̂ ,α)

 =

1 0 0
0 0 1√

2
0
√

2 0


χ̂

NS,+(τ,α)
χ̂NS,−(τ,α)
χ̂R,+(τ,α)

 , q̂ = exp(2πiτ̂), τ̂ = −1/τ, (6.6)

where

χ̂NS,±(τ,α) = qhNS
0 (τ,α) ∏

k∈Z+ 1
2

∏
xj(k)

Im(xj(k))>0

(
1 ± eτxj(k)

)
, (6.7)

χ̂R,+(τ,α) = 2NqhR
0 (τ,α) ∏

k∈Z

∏
xj(k)

Im(xj(k))>0

(
1 + eτxj(k)

)
. (6.8)

The ground state eigenvalues hNS/R
0 (τ, α) are given by

h
NS/R
0 (τ, α) = − 1

4π2

∫ ∞

0
du log

(
1 ± e

−f
τ̂ ,α

(iuτ/2π)
)
, (6.9)

the functions xi(k) satisfy

fτ̂ ,α

(
iτx

2π

)
= 2πik, (6.10)

where k ∈ Z for the R sector and k ∈ Z + 1
2 for the NS sector and N is the number of

xi(k) that vanish at k = 0.
Since we do not have an explicit expression for the function fτ,α(x) we cannot say much

about the solutions xi(k). When proving the transform in [3] for the finite case the xi(k) are
roots of a polynomial. This allowed us to derive several properties of the roots that were
then used in the proof. It would be interesting to consider the cases where we have a set
of the chemical potentials were infinitely many of the α2n−1 are non-zero so that we have
a known function fτ,α(x). If the xi(k) are also known functions then we can potentially
prove the transform in these special cases.

7 The “(R, −)” sector

In this section we will also consider the sector “(R,−)” in which the fermion field is periodic
on both cycles of the torus and so its contribution is calculated by taking a trace in the
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Ramond sector with the insertion of (−1)F . Since the periodicity is the same on both cycles,
the sector is invariant under τ → −1/τ which interchanges the cycles.

While this sector does contribute to correlation functions in the conformally invariant Ising
model, for example the one-point function of the energy operator, it gives zero contribution
to the partition function in the Ising model. The reason is that the full Ising model is
constructed from left- and right- moving fermions. The relevant state space is then in the
(R,R) sector, with both left- and right- moving fermions. The presence of two anticommuting
fermion zero modes {ψ0, ψ̄0} = 0 means the ground state space is two-dimensional with equal
numbers of bosonic and fermionic states. The same is true at every level in the (R,R) sector
and so the trace Tr(R,R)( (−1)F e−RH) contributes zero to the partition function.

The same equality of bosonic and fermion states also occurs when we consider just the
left-moving sector but want to include both (−1)F and ψ0. Since these also anticommute,
{ψ0, (−1)F } = 0, there must be at least a two-dimensional highest weight space with equal
numbers of bosonic and fermionic states and so

TrR
(

(−1)F qL0−c/24
)

= 0. (7.1)

We can, however, consider a restricted fermion algebra which does not include the fermion
zero mode, and a corresponding state space with a one-dimensional highest weight space R′

spanned by a bosonic state of conformal weight 1/16. In this case the traces are simply

TrR′

(
qL0−c/24

)
= q1/24 ∏

n>0
(1 + qn) = 1

2χ
R,+(q), (7.2)

TrR′

(
(−1)F qL0−c/24

)
= q1/24 ∏

n>0
(1 − qn) = η(τ), (7.3)

where η(τ) is the usual Dedekind eta function which transforms as a modular form of
weight 1/2:

η(−1/τ) =
√
−iτ η(τ). (7.4)

While this function is not invariant, as might have been hoped for from the previous discussion
of periodicities — a fact we can attribute to the omission of the fermion zero mode — it
certainly has well-defined modular properties. It is then straightforward to extend all the
considerations of the previous sections to traces in the (R′,−) sector, with the result (again
proven in [3]):

χR,−(τ̂ ,α) =
√
−iτ χ̂R,−(τ,α), (7.5)

where the functions χ and χ̂ are

χR,−(τ,α) = q1/24 ∏
n=1

(
1 − qnep(α)(n)

)
, (7.6)

χ̂R,−(τ,α) = qhR
0 (τ,α) ∏

k∈Z

∏
xj(k)

Im(xj(k))>0

(
1 − eτxj(k)

)
, (7.7)

and the roots xi(k) satisfy (5.14).
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8 Defect Hamiltonian

In section 3, we stated that formally we can consider the Hamiltonian in the crossed channel
to be the perturbation of the usual conformal Hamiltonian by a local field D(0) such that
the spectrum of the Hamiltonian matches the quantisation condition on the fermion modes.
In this section we present one construction of just such a modified Hamiltonian.

If we consider, as before, just the insertion of I3, then we meet the immediate problem
that the line defect in the original (direct) channel can be considered as the integral of
an irrelevant field,

eαI3 , I3 =
(
L

2π

)3 ∫ L

0

1
2(ψ′′′(x)ψ(x)) dx

2π =
(
L

2π

)3 ∫ L

0

6
7(T (x)T (x)) dx

2π . (8.1)

Our first guess for the perturbing field D(x) will be that same irrelevant field. However,
perturbations by irrelevant fields are well known to be plagued by divergences and so we have
used an approach which seems to avoid such problems: this is the method of G.Zs. Tóth [4]
which proved very effective for the boundary perturbation of the free fermion by the irrelevant
field T (x) without the need for any further explicit regularisation or renormalisation. The
effect of the perturbation was to induce a boundary reflection factor which (as with the defect
transmission factor here) modified the fermion quantisation condition. The construction
of [4] added a boundary field to the Hamiltonian which led to altered equations of motion
for the fermion which in turn led to altered boundary conditions and reproduced precisely
the correct quantisation condition. In this section we attempt to repeat that idea for the
defect transmission factor.

Throughout this section we will be working with space, x, and time, t, coordinates rather
than the complex coordinates (z, z̄) used previously.

We start with a free right moving fermion ψ(x, t). The field ψ is defined on the cylinder
with x ∈ [0, L] and t ∈ R. We impose either periodic (+) or anti periodic (−) boundary
conditions in the spatial direction

ψ(0, t) = ±ψ(L, t), (8.2)

and the equal time anti-commutator between two fields is

{ψ(x, t), ψ(y, t)} = −2πi δ(x− y). (8.3)

Recall that the Hamiltonian for the free fermion is

H0 = − 1
4π

∫ L

0
dx ∂xψ ψ = −

∫ L

0

dx
2πT (x) = (L0 − c/24). (8.4)

We could introduce the line defect directly into the right-moving fermion on the line
at x = L/2, but instead we use the folding trick to map it to an equivalent system of a
left- and a right-moving fermion on a strip with a trivial boundary condition at x = 0 and
a non-trivial boundary condition at L/2. We do this since it enables us to use precisely
the same method as [4], as follows.
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First, fold the line L
2 < x < L over onto the line 0 < x < L

2 , so the point x is identified
with L − x. Now we define two new fermion fields Φi(x, t), i = 1, 2, that both live on the
line 0 < x < L

2 , in terms of the original field ψ(x, t)

Φ1(x, t) =

√
iL

π
ψ(x, t), Φ2(x, t) =

√
iL

π
ψ(L− x, t). (8.5)

We have chosen the normalisation of Φi to match the conventions in [4]. Note that in [4] the
fields Φi(x, t) are defined on the cylinder (x, t) ∈ [0, L] × R while our Φi(x, t) are defined on
(x, t) ∈ [0, L/2] × R so the commutators and Hamiltonian differ from those in [4] by factors
of 2. Since ψ is right-moving on the full line, after the folding Φ1 is right-moving and Φ2
is left-moving. From (8.2) the new fields have the boundary conditions

Φ1(0, t) = ±Φ2(0, t), Φ1

(
L

2 , t
)

= Φ2

(
L

2 , t
)
. (8.6)

Additionally the anti-commutator (8.3) becomes

{Φ1(x, t),Φ1(y, t)} = {Φ2(x, t),Φ2(y, t)} = 2Lδ(x− y),
{Φ1(x, t),Φ2(y, t)} = 2L(δ(x+ y − L) ± δ(x+ y)).

(8.7)

The second anti-commutation relation comes from the two boundaries where the fermion
fields are identified as in (8.6). The Hamiltonian for the free fermions is now

H0 = − i

4L

∫ L/2

0
dx (Φ1∂xΦ1 − Φ2∂xΦ2). (8.8)

We will use the Hamiltonian formalism to compute the equations of motion

∂tΦi(x, t) = i[H0,Φi(x, t)]. (8.9)

However before we do this we introduce our conventions for the Dirac delta function and the
Heaviside step function. When integrated against a test function the Dirac delta function
gives the following results for a > 0∫ a

−a
dx δ(x)f(x) = f(0),

∫ a

0
dx δ(x)f(x) =

∫ 0

−a
dx δ(x)f(x) = 1

2f(0). (8.10)

The Heaviside step function is defined as the integral of the Dirac delta function

Θ(x) =
∫ x

−∞
dx′ δ(x′), (8.11)

so it takes the values

Θ(x) =


0, x < 0,
1
2 , x = 0,
1, x > 0.

(8.12)

Hence if we integrate δ(x− y) against a test function f(x) in the interval [a, b] then∫ b

a
dxf(x)δ(x− y) = f(y)(1 − Θ(a− y) − Θ(y − b)), (8.13)
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and if we integrate δ′(x − y) against a test function then∫ b

a
dxf(x)δ′(x−y) = δ(y−b)f(b)−δ(y−a)f(a)−f ′(y)(1−Θ(a−y)−Θ(y−b)). (8.14)

We use these results and the anti-commutators (8.7) to compute the equations of motion (8.9)

∂tΦ1(x,t) =−∂xΦ1(x,t)− 1
2δ(x)(Φ1(0, t)∓Φ2(0, t))+ 1

2δ
(
x−L

2

)(
Φ1

(
L

2 , t
)
−Φ2

(
L

2 , t
))

+Θ(−x)(∂xΦ1(0, t)±∂xΦ2(0, t))+Θ
(
x−L

2

)(
∂xΦ1

(
L

2 , t
)

+∂xΦ2

(
L

2 , t
))

,

(8.15)

and

∂tΦ2(x,t) =∂xΦ2(x,t)+ 1
2δ(x)(Φ2(0, t)∓Φ1(0, t))+ 1

2δ
(
x−L

2

)(
Φ1

(
L

2 , t
)
−Φ2

(
L

2 , t
))

−Θ(−x)(∂xΦ2(0, t)±∂xΦ1(0, t))−Θ
(
x−L

2

)(
∂xΦ1

(
L

2 , t
)

+∂xΦ2

(
L

2 , t
))

,

(8.16)

The delta function terms δ(x) and δ
(
x− L

2

)
in the above equations vanish by the boundary

conditions (8.6). So we have

∂tΦ1(x, t) = − ∂xΦ1(x, t) + Θ(−x)(∂xΦ1(0, t) ± ∂xΦ2(0, t))

+ Θ
(
x− L

2

)(
∂xΦ1

(
L

2 , t
)

+ ∂xΦ2

(
L

2 , t
))

,

∂tΦ2(x, t) =∂xΦ2(x, t) − Θ(−x)(∂xΦ2(0, t) ± ∂xΦ1(0, t))

− Θ
(
x− L

2

)(
∂xΦ1

(
L

2 , t
)

+ ∂xΦ2

(
L

2 , t
))

,

(8.17)

Solving these equations will give the usual free fermion solution and quantisation condition
(as we will see below).

Now we add a line defect at x = L
2 . We do this by adding terms H(2n−1)

D , n = 1, 2, . . . ,
to the Hamiltonian H0 to get the full Hamiltonian for the system with a line defect:

H = H0 +
∑
n=1

λ2n−1H
(2n−1)
D , (8.18)

and the equations of motion for the full system are

∂tΦi(x, t) = i[H,Φi(x, t)]. (8.19)

We take the additional terms H(2n−1)
D to be

H
(2n−1)
D = i

(
Φ1

(
L

2 , 0
)

+ Φ2

(
L

2 , 0
))

lim
y→L

2

∂2n−1
y (Φ2(y, 0) − Φ1(y, 0)). (8.20)

The limit regularises later expressions that would otherwise contain delta function singularities.
It removes these singularities by using the prescription

lim
y→L

2

δ(n)
(
y − L

2

)
= 0, n = 0, 1, . . . . (8.21)
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Throughout the calculation we will keep the limit explicit and only take it at the end. The
equations of motion of the full system contain the commutator of the defect terms H(2n−1)

D

with the fields Φi

[H(2n−1)
D ,Φi(x, t)] = −4iLδ

(
x− L

2

)
lim

y→L
2

∂2n−1
y (Φ2(y, t) − Φ1(y, t)), i = 1, 2. (8.22)

This means the equations of motion for Φi are now

∂tΦ1(x, t) + ∂xΦ1(x, t)
= Θ(−x)(∂xΦ1(0, t) ± ∂xΦ2(0, t)) + Θ(x− L/2)(∂xΦ1(L/2, t) + ∂xΦ2(L/2, t))

+ 4Lδ(x− L/2)
∑
n=1

λ2n−1 lim
y→L/2

∂2n−1
y (Φ2(y, t) − Φ1(y, t)),

(8.23)

∂tΦ2(x, t) − ∂xΦ2(x, t)
= −Θ(−x)(∂xΦ2(0, t) ± ∂xΦ1(0, t)) − Θ(x− L/2)(∂xΦ1(L/2, t) + ∂xΦ2(L/2, t))

+ 4Lδ(x− L/2)
∑
n=1

λ2n−1 lim
y→L/2

∂2n−1
y (Φ2(y, t) − Φ1(y, t)).

(8.24)

We will use the equations of motion (8.23) and (8.24) to derive the quantisation condition
for the single particle energies. Since the Hamiltonian is quadratic in the fields this is still
a “free” fermion and hence the full spectrum is composed from the sum of multiple single
particle states. Hence if we know the quantisation condition on the single particle states
we know the full spectrum.

To find the one particle energies start with the eigenstates |E1⟩ and |E2⟩ of the full
Hamiltonian H (8.18). We will derive the quantisation condition from the matrix elements

⟨E1|Φi(x, t)|E2⟩, i = 1, 2. (8.25)

In the Heisenberg picture, the time evolution of the fields is

Φi(x, t) = eitHΦi(x, 0)e−itH . (8.26)

Since the two states are eigenstates of H we find

⟨E1|Φi(x, t)|E2⟩ = ⟨E1|Φi(x, 0)|E2⟩eikt = fi(x)eikt, (8.27)

for single particle energies.
We now solve the equations of motion and derive the quantisation condition (8.34).

Plugging (8.27) into the equations of motion we get two coupled differential equations

ikf1(x) = − f ′1(x) + Θ(−x)(f ′1(0) ± f ′2(0)) + Θ
(
x− L

2

)(
f ′1

(
L

2

)
+ f ′2

(
L

2

))
+ 4Lδ

(
x− L

2

)∑
n=1

λ2n−1 lim
y→L

2

(f (2n−1)
2 (y) − f

(2n−1)
1 (y)),

(8.28)

ikf2(x) =f ′2(x) − Θ(−x)(f ′2(0) ± f ′1(0)) − Θ
(
x− L

2

)(
f ′1

(
L

2

)
+ f ′2

(
L

2

))
+ 4Lδ

(
x− L

2

)∑
n=1

λ2n−1 lim
y→L/2

(f (2n−1)
2 (y) − f

(2n−1)
1 (y)),

(8.29)
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with boundary conditions from (8.6)

f1(0) = ±f2(0), f1

(
L

2

)
= f2

(
L

2

)
. (8.30)

In the interval x ∈ [0, L/2) the solution (up to an overall multiplicative constant) is

f1(x) = e−ikx, f2(x) = ±eikx. (8.31)

Since the first order differential equations contain a delta function supported at the boundary
x = L

2 , the solution will have a finite discontinuity there. Hence the solutions on the interval
x ∈ [0, L/2] take the form

f1(x) = e−ikx + Θ
(
x− L

2

)
D1(E1, E2),

f2(x) = ±eikx + Θ
(
x− L

2

)
D2(E1, E2).

(8.32)

The prescription (8.21) means the defect terms in the equations of motion don’t contain addi-
tional delta functions. The equations of motion reduce to a finite term and one proportional
to a delta function. The finite piece fixes D1 and D2

D1(k) = −D2(k) = ±eikL/2 − e−ikL/2, (8.33)

which is compatible with the boundary conditions (8.6). The term proportional to the delta
function gives the quantisation condition

±eikL/2 − e−ikL/2 = −4iL(±eikL/2 + e−ikL/2)
∑
n=1

(−1)nλ2n−1k
2n−1. (8.34)

More explicitly if we have periodic fermions (+) we find

D1(k) = −D2(k) = 2i sin
(
kL

2

)
, (8.35)

sin
(
kL

2

)
= 4L cos

(
kL

2

)∑
n=1

(−1)n−1λ2n−1k
2n−1, (8.36)

and if we have anti periodic fermions (−)

D1(k) = −D2(k) = −2 cos
(
kL

2

)
, (8.37)

cos
(
kL

2

)
= 4L sin

(
kL

2

)∑
n=1

(−1)nλ2n−1k
2n−1. (8.38)

Note that if we set λ2n−1 = 0 for all n then the quantisation conditions (8.36) and (8.38)
become sin

(
kL
2

)
= 0 and cos

(
kL
2

)
= 0 respectively which lead to the one particle spectra

k = 2π
L n and k = 2π

L

(
n+ 1

2

)
, n ∈ Z. Hence the quantisation condition (8.36) corresponds

to the R sector and (8.38) corresponds to the NS sector.
In order to obtain the quantisation conditions (8.36) and (8.38) we inserted the defect at

the point x = L
2 . However if we insert the defect at any other point then we would obtain
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the same quantisation conditions. We can write the defect operators (8.20) in terms of the
original fermion field ψ(x, t) using (8.5)

H
(2n−1)
D = −2L

π
ψ

(
L

2 , 0
)

lim
ϵ→0+

(
ψ(2n−1)

(
L

2 + ϵ, 0
)

+ ψ(2n−1)
(
L

2 − ϵ, 0
))

, (8.39)

where ψ(n)(x, t) = ∂n
xψ(x, t). If we want to place the defect at x = aL, a ∈ [0, 1] rather

than at x = L
2 the defect operators are

H
(2n−1)
D = −2L

π
ψ (aL, 0) lim

ϵ→0+

(
ψ(2n−1) (aL+ ϵ, 0) + ψ(2n−1) (aL− ϵ, 0)

)
. (8.40)

We can again fold the line x ∈ [0, L] at the point where the defect has been placed and
introduce the new fields

Φ1(x, t) =

√
iL

π
ψ(2ax, t), Φ2(x, t) =

√
iL

π
ψ(L− 2(1 − a)x, t), x ∈ [0, L/2]. (8.41)

If the free Hamiltonian (8.4) and the defect operators (8.40) are written in terms of Φ1 and
Φ2 we can again find the equations of motion and solving the equations of motion will lead
to the same quantisation conditions (8.36) and (8.38).

Before describing how to reproduce the quantisation condition (5.14) from the defect
quantisation conditions (8.36) and (8.38) we show that this formalism can be used to formally
reproduce the spectrum of the transformed theory under the usual modular transform of
the characters i.e. the GGE with only the I1 charge inserted.

8.1 Inserting I1

We first check that this defect Hamiltonian reproduces the energy spectrum for the transformed
GGE with just an additional I1 charge inserted. Adding just an additional I1 charge is
equivalent to changing the length of the system. In appendix B we show via the TBA
equations that a change in the system length can naturally be interpreted as a defect. This
is just the usual partition functions so the modular transform is known exactly. We will
first look at the case

TrNS,+
(
e2πi(α+τ)I1

)
= TrNS,+

(
e−

2πi
α+τ

I1
)
. (8.42)

Consider a rectangular torus with side lengths R and L so the modular parameter is τ = iL
R .

We also take α to be pure imaginary and set α = iLβ
R . Hence the energies in the transformed

theory satisfy

cos
(
L(1 + β)

2π k

)
= 0 (8.43)

and take the form
2π
L

1
1 + β

(
n+ 1

2

)
, n ∈ N. (8.44)

The question is: how to reproduce this from the quantisation condition (8.38)?
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The initial guess would be that including just I1 ought to correspond to only λ1 being
non-zero. If we set λ1 = −β

8 and λ2n−1 = 0 for n > 1, then the perturbing operator is

D = −β8H
(1)
D = Lβ

2π ψ(L/2)ψ′(L/2) = −Lβ4π T (L/2), (8.45)

and the quantisation condition is

cos
(
kL

2

)
= Lβ

2 sin
(
kL

2

)
k. (8.46)

This is not the desired relation (8.43). Instead, it matches (46) in [4], and we see that the
perturbation cannot just be T (0).

However we will see below that we need to add an infinite set of irrelevant operators of
higher weight to our Hamiltonian in order to reproduce the required spectrum (8.44). In [4]
these higher weight operators aren’t added because they are considering a different physical
systems where the spectrum is reproduced without including them.

We now assume k has a power series expansion in β with constant term 2π
L

(
n+ 1

2

)
.

Solving the quantisation condition perturbatively gives

k = 2π
L

(
n+ 1

2

)(
1 − β + β2 −

(
1 − (1 + 2n)2π2

12

)
β3 +

(
1 − (1 + 2n)2π2

3

)
β4 + . . .

)
.

(8.47)
We want to remove the additional terms that start at order β3 to reproduce (8.44). We do
this by adding a term of the form β3k3 to the quantisation condition. This corresponds to
adding an H

(3)
D term to the Hamiltonian. The new quantisation condition is

cos
(
kL

2

)
= sin(πk)

(
Lβ

2 k + 1
3

(
Lβ

2

)3
k3
)
, (8.48)

which has solutions

k = 2π
L

(
n+ 1

2

)(
1 − β + β2 − β3 + β4 −

(
1 − (2n+ 1)4π4

120

)
β5 + . . .

)
. (8.49)

We can continue to add β2n−1H
(2n−1)
D terms to the Hamiltonian to get the required solution

for k. If we do this order by order the quantisation condition becomes

cos
(
Lk

2

)
= sin

(
Lk

2

) ∞∑
n=1

(−1)n−122n(22n − 1)B2n

(2n)!

(
Lβk

2

)2n−1
, (8.50)

where B2n are the Bernoulli numbers. For |Lβk| < π this series converges

∞∑
n=1

(−1)n−122n(22n − 1)B2n

(2n)!

(
Lβk

2

)2n−1
= tan

(
Lβk

2

)
, (8.51)

and the quantisation condition becomes

cos
(
Lk

2

)
= sin

(
Lk

2

)
tan

(
Lβk

2

)
, (8.52)
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or equivalently

cos
(

L(1+β)k
2

)
cos

(
Lβk

2

) = 0, (8.53)

which is in turn equivalent to the desired relation (8.43) with the desired spectrum

k = 2π
L

1
1 + β

(
n+ 1

2

)
, n ∈ Z. (8.54)

Recall that the series in the quantisation condition (8.50) converges for |Lβk| < π. For a
fixed n this requires β to be in the interval

β ∈
( −1
|2n+ 1| + 1 ,

1
|2n+ 1| − 1

)
. (8.55)

But if we want the series to converge for all n then the radius of convergence is 0. This means
that our result for the quantised energies (8.54) is a formal result.

We now return to the Hamiltonian (8.18). In order to get the required quantisation
condition, the λ2n−1 in (8.18) are

λ2n−1 = −2(22n − 1)B2n

(2n)! L2n−2β2n−1. (8.56)

Hence the defect Hamiltonian can be written as

∑
n=1

λ2n−1H
(2n−1)
I = − i

L

(
Φ1

(
L

2 , 0
)

+ Φ2

(
L

2 , 0
))

lim
y→L

2

tanh
(
Lβ

2 ∂y

)
(Φ2(y, 0) − Φ1(y, 0)).

(8.57)
This is an infinite sum of irrelevant operators which means the Hamiltonian may not be
well defined.

We can also reproduce the energies for the Ramond sector as well using the quantisation
condition (8.36). Again the coefficients in the defect Hamiltonian are

λ2n−1 = −2(22n − 1)B2n

(2n)! L2n−2β2n−1, (8.58)

so the quantisation condition becomes

sin
(
Lk

2

)
= − cos

(
Lk

2

)
tan

(
Lβk

2

)
⇒

sin
(

L(1+β)k
2

)
cos

(
Lβk

2

) = 0 (8.59)

and hence the one particle energies are

k = 2π
L

n

1 + β
, n ∈ Z. (8.60)

These again match the results coming from the modular properties of the characters.
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8.2 Arbitrary finite collection of I2n−1

We can also use this defect formalism to reproduce the polynomial quantisation condition (5.14)
we get from transforming a GGE with multiple charges inserted. Recall that we have the
two quantisation conditions for the energy differences k, depending on if we are in the NS
or R sectors respectively

cos
(
Lk

2

)
= 4L sin

(
Lk

2

)∑
n=1

(−1)nλ2n−1k
2n−1,

sin
(
Lk

2

)
= 4L cos

(
Lk

2

)∑
n=1

(−1)n−1λ2n−1k
2n−1.

(8.61)

The required quantisation conditions are polynomials of the form

N∑
n=1

α2n−1k
2n−1 + kL

2 = mπ, (8.62)

where m ∈ Z + 1
2 for the NS sector and m ∈ Z for the R sector. In order to get these

quantisation conditions we need to tune the λ2n−1 such that

L
∑
n=1

(−1)nλ2n−1k
2n−1 = tan

(
N∑

n=1
α2n−1k

2n−1
)
. (8.63)

Formally this can always be done, we just expand the right hand side as a power series in
k and find the coefficients λ2n−1 in terms of the α2n−1. Once we have fixed the λ2n−1 in
terms of the α2n−1 the quantisation conditions (8.61) become

cos
(
Lk

2

)
= sin

(
Lk

2

)
tan

(
N∑

n=1
α2n−1k

2n−1
)
,

sin
(
Lk

2

)
= − cos

(
Lk

2

)
tan

(
N∑

n=1
α2n−1k

2n−1
)
.

(8.64)

These then lead to the required quantisation conditions (8.62). Again, the defect Hamiltonians
that give rise to these quantisation conditions contain an infinite number of irrelevant operators
and so the question of whether they are well defined is an issue.

9 Summary and outlook

We have reconsidered the expressions for the modular transform of free-fermion GGEs we
discussed in [1]. We first showed how our original conjectures could be reinterpreted in terms
of a defect. This is not an especially new idea - it was possibly first discussed in [6] - but
does explain the exact results we have in a very appealing physical way.

The same TBA equation (3.1) has also arisen previously in [8] in a discussion of T T̄
perturbations. The context is a bit different - the transmission factor here arises there as
the reflection factor for the reflection off a boundary for a theory with a non-trivial bulk
scattering. As a result, the spectrum is not the same although formally the integrals are the
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same. Since the form of the defect transmission factor is exactly the same as the change in
the bulk S-matrix for a T T̄ perturbation and since the T T̄ field does approach the TT field
as it nears the boundary, it seems very likely that this is more than just a coincidence.

We also generalised the conjectures in [1] for the modular transform of a GGE with just
the I3 charge to an arbitrary finite number of charges. This leads to very similar expressions
over fermion modes which are given by the solutions to higher degree polynomial equations.
These, together with the original conjectures, have been proven in [3].

It is straightforward to see that this result also has the interpretation as a defect, and
this must be the case for a generic GGE on physical grounds. It is also easy to see directly
from the TBA equations - we show this in appendix B in the case of a massive purely
elastic scattering theory.

It is worth noting that this does not yet lead to an in principle closed action of the modular
group since the result of a modular transform on a system with a finite number of conserved
charges will usually lead to one with an infinite set of charges. Again the sets of infinite charges
for which the GGE transform exists and can be defined are also worth investigating further.

We have also found a formal expression for the defect operator D(0) in the crossed channel
so that the Hamiltonian H0 +D(0) reproduces the spectrum in the defect theory. However
the operator used contains an infinite number of irrelevant operators so isn’t very natural.

Having said this, in [9, 10] theories deformed by an infinite number of irrelevant operators
are considered. This irrelevant operators are the T T̄ operator and its higher weight analogues.
There it was found that in order for the theories to have a UV completion an infinite number
of irrelevant operators must be included in the deformation. This suggests that actually
it is natural that our defect Hamiltonian must include an infinite set of irrelevant terms.
Perhaps a more natural defect description can be found.

In [2] more general modular transformations τ → τ̂ = aτ+b
cτ+d were considered. These

allow an expansion as τ → i∞, that is for small q, and take a similar product form to (5.11)
and (5.12) (although the more general modular transformation formula is not explicitly given
in [2], it is contained in the results in that paper).

Here we were concerned with finding a physical interpretation for the modular S transform
τ → τ̂ = −1/τ and so didn’t consider such more general modular transformations. In this
paper the defect was placed horizontally in the original GGE and vertically in the transformed
GGE, as in figure 2, but physically one would expect a general modular transform to
correspond to placing the defect at a different angle. Understanding how a general modular
transformation acts on the GGE is obviously an interesting question and we are currently
investigating it using these ideas of defects placed at an angle.
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A Massless defect TBA

In [7], the TBA equations for a single massive fermionic particle in the presence of a defect
are presented:

E0 = −m
∫ ∞

−∞
cosh θ log

(
1 + T+

(
iπ

2 − θ

)
e−ϵ(θ)

) dθ
2π , (A.1)

ϵ(θ) = mL cosh θ −
∫ ∞

−∞
ϕ(θ − θ′) log

(
1 + T+

(
iπ

2 − θ′
)
e−ϵ(θ′)

) dθ′

2π . (A.2)

Here T+(θ) is the transmission factor for a particle passing through a defect from the right.
In this paper we are considering only right-moving particles for which the transmission
factor is T−(θ) = T+(iπ − θ), so that T+( iπ

2 − θ) = T−( iπ
2 + θ), and free particles for which

ϕ(θ) = 0. This leads to

E0 = −m
∫ ∞

−∞
cosh θ log

(
1 + T−

(
iπ

2 + θ

)
e−ϵ(θ)

) dθ
2π , (A.3)

ϵ(θ) = mL cosh θ. (A.4)

We can now take the massless limit, m → 0, θ → ∞, while keeping u = meθ/2 constant,
giving the massless defect TBA (3.6)

LE0 = −
∫ ∞

0
log

(
1 + T−(iu)e−ϵ(u)

) du
2π , (A.5)

ϵ(u) = u. (A.6)

B TBA equations for a GGE and a defect

In [1], we considered the TBA equations in the case of a single massive particle in the
direct channel (system) where a particle with rapidity θ has energy E(θ) and momentum
P(θ) and found the ground state energy in the crossed channel (system II) is given by the
following equations,

E0 = −
∫ ∞

−∞

dP(θ)
dθ log

(
1 + e−ϵ̃(θ)

) dθ
2π , (B.1)

ϵ̃(θ) = LE(θ) −
∫ ∞

−∞
ϕ(θ − θ′) log

(
1 + e−ϵ̃(θ′)

) dθ′

2π . (B.2)

where ϵ̃(θ) is the pseudo-energy. If we take the direct channel system I to be given by a GGE,
with the energy given by the regular 1-particle energy plus contributions from the conserved
charges, and the momentum by the regular 1-particle momentum,

E(θ) = m cosh(θ) + F (θ), P(θ) = m sinh(θ) (B.3)

then (B.2) takes the form

ϵ̃(θ) = mL cosh(θ) + LF (θ) −
∫ ∞

−∞
ϕ(θ − θ′) log

(
1 + e−ϵ(θ′)

) dθ′

2π , (B.4)
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which is precisely of the form [7](25) for the ground state energy in the presence of a defect
with transmission factor

T+(θ) = e−LF (iπ/2−θ). (B.5)

The TBA equations can be put in the form (A.1) and (A.2) with the substitution

ϵ̃(θ) = ϵ(θ) − LF (θ). (B.6)

If the GGE consists of a set of KdV charges,
∑

n α2n1I2n+1, where the KdV charges have
1-particle state eigenvalues q2n+1 cosh((2n + 1)θ), then

F =
∑

n

α2n+1q2n+1 cosh((2n+ 1)θ), T+(θ) = e−iL
∑

n
(−1)nα2n+1q2n+1 sinh((2n+1)θ). (B.7)

The simplest example, that of a change in the size of the system from L to L+βL, considered
in section 8.1, can be implemented in the TBA equation (B.2) by the choice F = βm cosh θ,
and so is equivalent to the insertion of a defect with transmission factor with the universal form

T+(θ) = eiβmL sinh(θ) = eiβLP (θ). (B.8)

The generalisation from a single particle to a set of particles, following [11], is straightforward,
and so a GGE is in this way always equivalent to a suitable defect for calculating the
spectrum in the crossed channel.
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