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Abstract: The integration of sensors into garments has paved the way for human activity recognition
(AR), enabling users to engage in extended human motion recordings. The inherent fluidity of loose
clothing allows it to mirror the wearer’s movements. From a statistical standpoint, clothing captures
additional valuable insights beyond rigid body motions, improving AR. This work demonstrates
how fabric’s orientation, layering and width contribute to the enhanced performance of AR with
clothing in periodic motion. Experiments are reported in which a scotch yoke and a KUKA robot
manipulator are used to induce the periodic motion of fabric cloth at different frequencies. These
reveal that clothing-attached sensors exhibit higher frequency classification accuracy among sensors
with an improvement of 27% for perpendicular-oriented fabric, 18% for triple-layered fabric, and 9%
for large-width fabric, exceeding that seen with rigid attached sensors.

Keywords: e-textile; human activity recognition; fabric movement; clothing-attached sensors

1. Introduction

Human activity recognition (AR) is the process of interpreting human motion based
on data [1]. In other words, it is the ability to classify human movements into discrete
categories. For instance, basic movements can be categorised into walking, running, sitting,
and standing. Motion data acquisition for human AR can be either vision-based via video
recordings, or sensor-based via the attachment of sensors [1]. Activity recognition with
loose clothing may hold potential for accelerating the deployment of e-textile technology.
For instance, extended-period-of-motion recordings outside the lab could be possible with
loose clothing while preserving the comfort of ordinary textile garments [2]. Loose hospital
gowns could be facilitated with sensors for human AR to monitor the physical activity of
patients [3]. This may help in the detection of Parkinson’s disease and Essential Tremor via
changes in balance [4] and rhythmic movements [5], respectively.

Numerous studies [6] focusing on sensor-based human AR involve on-body wearables
that are fixed with straps, tape, or tight clothing. Loosely attaching sensors on clothing for
human AR is uncommon as it is perceived to be accompanied with undesirable artefacts of
fabric motion that corrupt actual body recordings [7]. Yet, textile garments are not limited
to tight clothing and frequently consist of loose clothing in a variety fabric materials and
styles due to their added comfort over tight-fitting clothing.

The few studies [2,8] that have been conducted using data recorded from loose clothing
with sensors have reported a surprising degree of success in human AR. Among those
is a recent study [9] that expressed motion via a probabilistic model composed of rigid
body motion and an offset due to fabric movement. That offset appeared to improve AR,
revealing higher accuracy in distinguishing between different movements of an object via
sensors loosely attached on cloth compared to rigidly attached ones.
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The probabilistic model incorporated the length of the fabric as a contributing factor
in the predicted accuracy of AR [9]. However, several other factors may play a role
in the introduction of the added fabric offset that are as-yet unexplored. For instance,
environmental factors including air currents and humidity could affect AR. Factors arising
from the fabric itself include its weight, length, width, orientation, layering, stiffness, and
elasticity. The latter affects the movement of cloth during its interaction with air, which in
turn may affect the performance of activity recognition. This paper investigates the impact
of the fabric’s orientation, layering, and width on accuracy when classifying movements
of different frequencies. Moreover, it analyses how these factors can be tuned to enhance
activity recognition with loose clothing.

2. Materials and Methods
2.1. Experimental Setup

The experiment setup of this study is shown in Figure 1a. It was composed of a scotch
yoke, woven cotton fabric cloth, a magnetic tracking device, and development computers.
The scotch yoke is a reciprocating mechanism that converts rotary motion into linear motion
and is used to induce simple harmonic motion on a single axis. It consists of laser-cut acrylic
sheets assembled into the design shown in Figure 1a, and is driven by a DC motor (30:1,
37D gear-motor, Pololu Corporation, Las Vegas, NV, USA). The motor is operated by an
L298N driver, which is provided with input of 10 V from a DC power supply, and outputs a
voltage that drives the motor at a constant velocity as commanded by an Arduino Uno via
pulse width modulation. The motor angular velocity signalled from the built-in encoder
is monitored via a serial interface, such that it is fixed at 3.1 rad/s for low-frequency and
4.4 rad/s for high-frequency movement, respectively.
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Figure 1. (a) Scotch yoke experiment setup. (b) Attachment of motion tracking sensors. Fabric in
(c) perpendicular and (d) parallel orientation. (e) KUKA robot manipulator experiment setup.

The fabric used in the experiments consisted of woven cotton cloth cut into strips of
fixed length (30 cm) and different widths: small (5 cm), medium (10 cm), and large (15 cm).
Double- and triple-layered fabric strips were formed by joining fabric strips together with
basting stitches around their perimeter using a sewing machine. The cloth was attached to
the movement device by means of a hanger mounted on the yoke (see Figure 1a).

To measure the fabric motion, an NDI Aurora Magnetic Tracking Device (Waterloo,
ON, Canada) was set up with four sensors (R1, F2, F3, and F4). These were mounted along
the cloth at 0, 10, 20, and 30 cm, respectively, as shown in Figure 1b. The rigidly attached
sensor (R1) was mounted on the hanger and the clothing-attached sensors (F2, F3, and F4)
were mounted on the loose fabric cloth. The sensors recorded the absolute position of the
mechanism and cloth at a frequency of 40 Hz.

2.2. Experiments

Three experiments were executed (summarised in Table 1) to study the effect of
fabric orientation, layering, and width on activity recognition. Following [9], the activity
recognition task was simply to distinguish between low- versus high-frequency movements
of the yoke. Figure 1c,d show the fabric cloth in perpendicular and parallel orientation to
the scotch yoke, respectively.
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Table 1. Experimental variables.

Independent Variable Dependent Variable Controlled Variables

Experiment 1 Fabric Orientation (perpendicular, parallel)
Frequency

Classification

Single layer, small width
Experiment 2 Fabric Layering (single, double, triple) Perpendicular orientation, small width
Experiment 3 Fabric Width (small, medium, large) Perpendicular orientation, single layer

2.3. Data Collection

While the device was in motion, positional tracking data were recorded for 10 s at a
sampling rate of 40 Hz using the Aurora Software (NDI Toolbox 5.002.022), resulting in
400 datapoints recorded per trajectory. This was repeated such that 30 trajectories were
recorded for each movement type (low and high frequency) in each experimental condition.
A total of 120 trajectories were collected for Experiment 1, and 180 trajectories were collected
for each of experiments 2 and 3.

2.4. Frequency Classification

Frequency classification was made using Support Vector Machines (SVMs) and was
implemented with LIBSVM library (version 3.31) [10] in MATLAB R2022 (MathWorks,
Natick, MA, USA) following the approach reported in [9]. The default SVM configuration
and parameters were used, with non-linearity in the dataset accommodated through the
Gaussian radial basis kernel (RBF). As in [8,9], the classification model was trained based
on the mapping ϕi → li such that

ϕ := (ϕ1, ϕ2, ϕ3, . . .) =
[
(d1, d2, . . . dn)

T , (d2, d3, . . . dn+1)
T , (d3, d4, . . . dn+2)

T , . . .
]

(1)

where ϕi denotes a segment of the motion trajectory ϕ, li denotes the corresponding class
label {0, 1}, d denotes a datapoint in the trajectory (in time-ordered sequence), and n
denotes the segment size. Each trajectory is sliced into overlapping segments of size n
(40 Hz × window size). The first segment is initially passed to train the classifier and make
decisions. The window is then shifted forward by one time step for the second segment
to be passed for training, and the process repeats until the end of the trajectory is reached.
This is repeated for 100 trials while varying the sample of trajectories chosen for testing.

3. Results

Figure 2a–c show frequency classification accuracy plots with error bars of one stan-
dard deviation for the four sensors at a selected window size (1.0 s) when using different
fabric orientations, layering, and widths, respectively. Clothing-attached sensors (F4, F3,
and F2) demonstrate higher classification accuracies than the rigidly attached sensor (R1)
in most of the experimental conditions shown in Figure 2.
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Figure 2. Scotch yoke classification accuracy plots at window 1.0 s for different fabric (a) orientations,
(b) layering, and (c) widths. KUKA manipulator classification accuracy across different window sizes
for fabric in (d) perpendicular and (e) parallel orientation. Shown are mean +/− s.d. over 100 trials.

Considering orientation, as can be seen in Figure 2a, the classification accuracy for
sensor F4 on perpendicular-oriented fabric had, on average, 5% greater accuracy than R1,
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while the parallel-oriented fabric revealed almost no difference. Looking at Figure 2b, the
triple-layered fabric resulted in a difference in accuracy of 18%, followed by the double-
layered (15%) and the single-layered fabric (5%). The unforeseen increase in the accuracy
of R1 in the triple-layered fabric experiment, despite maintaining fixed frequencies, may be
due to the added weight of layering impacting the movement of the scotch yoke, in turn
increasing the overall accuracy for all sensors.

Considering fabric width (Figure 2c), the greatest difference in accuracy was seen
between F3 and R1. For the large-width fabric, the difference was 9%, followed by the
medium-width (4%) and the small-width fabric (1%). It is noticeable that F4 no longer
gave the highest accuracy among the sensors using medium- and large-width fabric. This
suggests that larger-width fabrics exhibit more complex dynamics, which shifts the optimal
sensor position to an intermediate point on its surface.

To extend the analysis, Experiment 1 was repeated with the KUKA LBR iiwa robot
manipulator (Augsburg, BY, Germany) in place of the scotch yoke (Figure 1e) to determine
the effect of a different movement pattern. The robot manipulator was programmed
with basic spline linear (SLIN) motion commands in KUKA Sunrise Workbench (KUKA
Sunrise.OS 1.11) to induce the periodic motion with a trapezoidal velocity profile. The peak
velocity was set to 150 mm/s for the low frequency and 300 mm/s for the high frequency.

Figure 2d,e show the classification accuracy across different window sizes for the
two fabric orientations. Both graphs reveal increases in sensor accuracies with greater
window sizes until converging to 100% accuracy at window size 2.5 s (100 datapoints).
The rate at which sensors reached maximum accuracy varied in an ascending order of
R1, F2, F3, F4; this is in support of the findings in [9], with clothing-attached sensors
exhibiting higher accuracies compared to rigidly attached ones. Moreover, similar to the
case of simple harmonic motion, the difference was more pronounced when the fabric was
oriented perpendicularly to the motion (Figure 2d) than parallelly (Figure 2e). At window
size 1.0 s, the difference in classification accuracy between R1 and F4 was 27% using fabric
with a perpendicular orientation, compared to 10% using parallel-oriented fabric.

4. Discussion

The improved classification accuracy of perpendicular-oriented fabric over parallel-
oriented fabric may be explained via their interaction with air. Perpendicular-oriented
fabric is “head on” to the direction of airflow, such that incoming air pushes against it
rather than sliding past. Similarly, enlarging fabric width exposes more surface area to
contact with air. Hence, a greater range of motion is achieved in both cases, improving AR.

The increased classification accuracy of multi-layered fabric may be due to the added
weight in motion. An object’s momentum is the product of its mass and velocity. Given the
same velocity, the triple-layered fabric exhibited higher momentum in periodic motion than
the single-layered fabric due to its tripled mass, making it swing further. In turn, this enlarged
the separation between high- and low-frequency data for clothing-attached sensors.

These findings may be used in the design of garments considering the desired AR
task. For instance, garments constructed of heavier textiles may perform better if sensors
are positioned away from the extremities.

5. Conclusions

In conclusion, tuning fabric parameters such as orientation, layering, and width can
contribute and enhance AR with loose clothing. It is speculated that fabric that is perpen-
dicularly oriented, triple-layered, and of large width demonstrates higher classification
accuracy since this set of parameters allow the fabric to experience more air turbulence
during motion. These findings may help refine the probabilistic model of fabric motion
introduced in earlier studies, contributing to the development of human AR with loose
electronic textiles.
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