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Abstract

Forward-looking analysis is valuable for policymakers as they need effective strategies

to mitigate imminent risks and potential challenges. Panel data sets contain time

series information over a number of cross-sectional units and are known to have

superior predictive abilities in comparison to time series only models. This PhD thesis

develops novel panel data methods to contribute to the advancement of short-term

forecasting and nowcasting of macroeconomic and environmental variables. The two

most important highlights of this thesis are the use of cross-sectional dependence in

panel data forecasting and to allow for timely predictions and ‘nowcasts’.

Although panel data models have been found to provide better predictions in many

empirical scenarios, forecasting applications so far have not included cross-sectional

dependence. On the other hand, cross-sectional dependence is well-recognised in large

panels and has been explicitly modelled in previous causal studies. A substantial

portion of this thesis is devoted to developing cross-sectional dependence in panel

models suited to diverse empirical scenarios. The second important aspect of this work

is to integrate the asynchronous release schedules of data within and across panel units

into the panel models. Most of the thesis emphasises the pseudo-real-time predictions

with efforts to estimate the model on the data that has been released at the time of

predictions, thus trying to replicate the realistic circumstances of delayed data releases.

Linear, quantile and non-linear panel models are developed to predict a range of

targets both in terms of their meaning and method of measurement. Linear models

include panel mixed-frequency vector-autoregression and bridge equation set-ups which

predict GDP growth, inflation and CO2 emissions. Panel quantile regressions and
i



latent variable discrete choice models predict growth-at-risk and extreme episodes

of cross-border capital flows, respectively. The datasets include both international

cross-country panels as well as regional subnational panels. Depending on the nature of

the model and the prediction targets, different precision criteria evaluate the accuracy

of the models in out-of-sample settings. The generated predictions beat respective

standard benchmarks in a more timely fashion.
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Chapter 1

Introduction

Econometric data analysis has been historically used by policymakers to inform the

decision-making process. The key aim of this PhD thesis is to understand and contribute

to the advancement of research on econometric predictions useful for central banks and

other policymakers focusing on issues such as monetary policy, financial stability or

climate issues. The thesis focuses on two central ideas of econometric modelling: Cross-

sectional Dependence (CSD) in panel data analysis and timely predictions accounting

for delays in the publication of major time series. Based on the timing of prediction,

we distinguish between the three terms: forecasting, nowcasting and backcasting and a

substantial part of the thesis is devoted to nowcasting. The thesis is organised into six

chapters: this introductory chapter is followed by four core chapters and the final sixth

chapter concludes with some directions for related future research. The remainder of

this chapter familiarise the reader with the main econometric concepts on which the

thesis is based and then moves on to briefly introduce the core chapters.

The first main concept is panel data analysis – a growing field within econometrics

with diverse applications. Panel data combines the advantages of time series and cross-

sectional data and allows researchers to jointly investigate several cross-sectional units

over time. A central concern of longer panels for a large number of cross-sectional units

is CSD among the various units. As Chudik and Pesaran (2015b) and Pesaran (2016)

describe, several real-life economic circumstances, such as omitted common effects,
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1. Introduction

spatial correlation or interactions between the panel units, may potentially cause CSD

in panel datasets, even after explicitly modelling unit-specific regressors. The concept

of CSD is becoming an increasingly important concern in modern macroeconometrics

(see Breitung 2015) not only because of increased data availability but also due to

greater economic transmission and spillovers beyond national boundaries. Some of the

important examples of CSD in macroeconomics are: the impact of common shocks have

been found to explain the Feldstein–Horoika puzzle (Bai 2009); the relationship between

public debt expansion and economic growth (Chudik et al. 2017); propagation of global

financial spillovers from Advanced Economy (AE) to Emerging Market Economy (EME)

(Ahmed 2023), and so on. As the focus on regional economic data grows, econometric

analysis of long panels of regional data (for example subnational data) also has received

interest and it is important to account for CSD in such panels as well.

Turning now to the second principal issue – delayed release of important data series –

the econometric nowcasting literature has always stressed the issue of publication lags in

important data series and the consequent ‘ragged edge’ problem faced by policymakers.

While in theory, the econometric models can be estimated with all data available, in

reality, there are delays in data availability and policymakers often have to base their

decisions on incomplete datasets. To illustrate the extent of lags, the advanced estimate

of U.S. Gross Domestic Product (GDP) for Q2:2023 (April–June 2023) was released on

27 July,1 the Harmonised Index of Consumer Prices (HICP) data for the EU for April

2023 was published on 17 May2 and the data for Carbon Dioxide (CO2) emissions for

the U.S. states pertaining to the year 2018 were released at the beginning of March

2021.3 This results in asynchronous release calendars and a ‘ragged edge’ in panel

datasets.

Let us now turn to nowcasting. This is a term that originated in meteorological

forecasting (WMO 2017) and then was adapted to economics. Historically, the term
1See https://www.bea.gov/news/schedule[Last accessed: 10/05/2023]
2See https://ec.europa.eu/eurostat/news/release-calendar?start=1684101600000&

type=dayGridWeek[Last accessed: 10/05/2023]
3See https://www.eia.gov/environment/emissions/state/ [Last accessed: 11/11/2021]
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nowcasting is used to define short-term and near-term weather predictions. In eco-

nometrics, nowcasting refers to the prediction of the variable in the current period,

such as predicting the GDP of Q2:2023 while in Q2:2023, i.e. between the months of

April and June of 2023. Forecasting specifically means predicting at a time prior to

the target quarter – i.e., predicting Q2:2023 GDP growth in Q4:2022. Backcasting

refers to predicting after the target quarter. Typically macroeconomic data have

publication lags and are usually not released until a significant number of days have

elapsed after the reference period. Therefore, predicting Q2:2023 GDP in July 2023

will be backcasting. Nowcasting and the staggered flow of macro data releases have

gained ground in econometric literature due to their policy relevance. Policymakers

need timely information which can be based only on the data that has been released

and is available on the day of prediction.

Although panel data methods have been historically prevalent in the forecasting

literature, they have found a place in the nowcasting and real-time econometric forecast-

ing literature only recently. CSD, though recognised to be relevant and important has

not yet been incorporated into the panel forecasting literature. This thesis contributes

both to the CSD and the real-time prediction literature in the following ways. First,

we develop a method to include CSD in linear Mixed-Frequency Panel Vector Autore-

gression (MF-PVAR) nowcasting models. Second, we extend a similar CSD framework

to a panel bridge equation set-up. Subsequently, we turn our focus to panel quantile

regression models and introduce CSD to a forward-looking panel quantile regression

model. Finally, we propose a non-linear panel discrete choice model with a proxy to

represent CSD and evaluate the model for real-time predictions. Our models target

the prediction of a range of important macroeconomic and environmental variables.

Specifically, we target GDP, inflation and Growth-at-Risk (GaR) which are of key

importance to central banks and other economic policymakers. We also look into CO2

emissions relevant to environmental policymakers to fulfil their carbon reduction plans.

Finally, we target cross-border capital flows which are of central concern to a number

of policies such as fiscal, monetary and macroprudential. In the following paragraphs,

3
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we briefly introduce each model along with the corresponding target(s) of prediction

and an indication of the key result from each of the subsequent chapters.

Chapter 2 builds a mixed-frequency panel data model for nowcasting economic

variables across many countries. The model extends the MF-PVAR to allow for

heterogeneous coefficients and a multi-factor error structure to model CSD. We propose

a modified Common Correlated Effects (CCE) estimation technique to accommodate

CSD and it performs well in simulations. The model is applied in two distinct settings:

nowcasting GDP growth for a pool of advanced and emerging economies, and nowcasting

inflation across many European countries. Our method is capable of beating standard

benchmark models and can produce updated nowcasts whenever data releases occur in

any country in the panel.

Chapter 3 proposes panel nowcasting methods to obtain timely predictions of CO2

emissions and Energy Consumption (EC) growth across all U.S. states. This is of

crucial importance not least because of the increasing role of sub-national low-carbon

policies but also due to the very delayed publication of the data. Since the state-level

CO2 data are constructed from EC data, we propose a new panel bridge equation

method. We use a mixed-frequency set-up where economic data are first used to predict

EC growth. This is then used to predict CO2 emissions growth while also allowing

for CSD across states using estimated factors. We evaluate the model’s performance

using an out-of-sample forecasting study, finding gains in using timely economic data to

nowcast and backcast state-level EC growth. These gains are sizeable in many states,

even around two years before the data are eventually released. In predicting CO2

emissions growth, nowcast accuracy gains are more focused on a few states although

accurate nowcasts can be obtained across all states if they are made after the current

year’s EC data are released.

Chapter 4 re-examines the relationship between macro-financial vulnerability in-

dicators and GaR – i.e., the tail quantiles of GDP growth and proposes an explicit

incorporation of data-driven CSD using the CCE technique, with necessary modifica-

tions. Specifically, the model is an unobserved factor augmented multi-country panel
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quantile regression framework. Thus, we directly account for the rising importance of

international macroeconomic co-movements and commonalities. Using a long quarterly

panel dataset for 24 countries, we find that including CSD enhances the model perform-

ance in both in-sample and out-of-sample evaluations. In a unique finding we note that

in the presence of CSD, the indicators commonly associated with GDP catastrophes

have limited significance on 5% GaR. Encouraged by superior out-of-sample perform-

ance, we analyse predicted GaR and estimate a range of measures to quantify risks.

We find several meaningful signals of risk and GDP slowdowns which are relatable to

observed data at various points in time. We additionally find that the factors which are

used to represent the CSD determine the direction of GaR. Also, these factors have a

time-varying impact – i.e., a positive role in normal times and exert further downward

pull in times of distress.

Chapter 5 develops a new forecasting approach for the extreme episodes of cross-

border capital flows and proposes a mixed-frequency binary choice model in a panel

framework. The model predicts quarterly event probabilities using higher-frequency

macro-financial predictors which are available daily and monthly. We generate a

time series of out-of-sample predictions generated for each country and assess them

using formal forecast verification techniques and statistical tests. We then construct a

pseudo data release calendar and generate country-level sequences of predictions, each

with an updated underlying information set incorporating a new data release into the

mixed-frequency model. The panel model predicts with significant forecast skill 4 with

respect to a random classifier – noticeably for two of the four episodes and marginally

for the other two in the full information set-up. The pseudo-real-time analysis shows

that the predictions can beat the random classifier and thus generate meaningful early

warnings a quarter in advance of the target quarter. Accuracy remains stable as time

elapses and more information becomes available.

Finally, Chapter 6 concludes the thesis with a summary of the findings and an
4The term forecast skill refers to accuracy of the forecasts of interest relative to suitable reference

forecasts, common in the weather forecasting literature; see Murphy (1988).
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exploration of potential related research ideas useful for future studies.
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Chapter 2

Nowcasting from Cross-sectionally

Dependent Panels

2.1 Introduction

Nowcasting has emerged as an important tool for timely policy-making, particularly by

central banks who need to track key variables like GDP and inflation in real time. This

is important as there is often a delay before the publication of economic data such as

these. The main idea is to predict the variable of interest in a timely fashion leading

up to its data release, using related available information from other higher-frequency

variables. Nowcasting models have typically been developed and applied with single

countries in mind using time series methods. On the other hand, this chapter builds a

panel data nowcasting model when the aim is to produce nowcasts for many countries

which may include both developed and emerging economies. The use of panel data can

be very important in empirical settings where the number of time series observations

is too low for a meaningful forecast evaluation exercise. It has also been argued that

the use of pooled panel forecasts can provide accuracy gains over the use of individual

time series forecasts (Baltagi 2008; Wang et al. 2019) which we look to develop in a

nowcasting context.

The focus of this chapter is to develop tools for simultaneously making nowcasts of
7
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economic series for as large a set of countries as possible, while allowing for potential

heterogeneity as well as cross-country spillovers. In looking at large sets of different

countries it is often necessary to focus attention on a handful of select predictor

variables which are common across all countries, especially when including developing

economies. Nevertheless, in our approach we can exploit the staggered flow of data

releases (the ‘ragged edge’) across countries and across variables in updating our panel

nowcasts. This differs from existing empirical nowcasting studies which have exploited

the flow of data for a larger set of variables but only for an individual country or a

very small number of similar countries (see Cascaldi-Garcia et al. 2023, and references

therein). In making nowcasts for individual countries, our approach can also deliver

more information than existing studies which have targeted global aggregate variables

like GDP (Kindberg-Hanlon and Sokol 2018; Ferrara and Marsilli 2019). We can also

model the inter-linkages across countries which builds on existing work which finds

that international variables can improve nowcast accuracy (for example Bragoli and

Fosten 2018).

We make three distinct contributions. First, we propose a mixed-frequency panel

nowcasting set-up which is new to the literature and allows for errors to be dependent

over the individuals in the panel. We address the mixed-frequency issue using a

Mixed Data Sampling (MIDAS) approach, particularly the Unrestricted Mixed Data

Sampling (UMIDAS) model (Foroni et al. 2015). We adapt this model to a potentially

heterogeneous and CSD panel framework with a multi-factor error structure (Chudik

and Pesaran 2015a), while also allowing for different lag structures across countries

based on their ragged edge of data availability. Our method allows for full parameter

heterogeneity across cross-sectional units but we can also shut down heterogeneity and

pool across the panel dimension which can yield improvements in nowcast accuracy

as we display in our empirical application. Among the prevalent mixed-frequency

nowcasting methods (see Ghysels 2018, for a recent review), we focus on MIDAS-type

nowcasting models as they have already been extended to a panel framework with

encouraging results (Babii et al. 2020; Fosten and Greenaway-McGrevy 2022). We

8
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build upon these studies by further allowing for heterogeneous parameters to reflect

diverse macro-dynamics, and a factor error structure to account for CSD. The resultant

model is a panel extension of the observation-driven Vector Autoregression (MFVAR)

model of Ghysels (2016).

Secondly, we propose a method for obtaining feasible nowcasts given the unknown

factor error structure, by suggesting a novel modification of the CCE factor estimation

technique of Chudik and Pesaran (2015a) which allows it to be used for nowcasting.

We use a lagged CCE approach which estimates the factors only based on the data

available at the time of making the nowcast. This moves away from the original CCE

method, developed with the use of contemporaneous variables in estimating the factors,

which is widely used in applied causal studies but cannot be used for forecasting

or nowcasting applications. The method is simple to implement using least squares

estimation, and can be adapted to pooled panel least squares in cases where coefficient

heterogeneity is not permitted. Simulation studies find that the Lagged Common

Correlated Effects (LCCE) method performs well in terms of estimation accuracy and

out-of-sample prediction, which motivates its use for estimating Panel Mixed Data

Sampling (PMIDAS) nowcasting models with different lag structures determined by

the ragged edge.

The third contribution is to apply our method in two distinct empirical settings:

nowcasting the real GDP growth of a large set of developed and emerging economies,

and nowcasting the inflation rate of European countries. In the first application we

construct a panel dataset of more than 30 countries’ real GDP as well as some key

predictors like business surveys (manufacturing and services) and Industrial Production

(IP). To assess how nowcasts evolve as we add information from across the panel,

we perform a pseudo out-of-sample experiment making use of a doubly asynchronous

calendar of macroeconomic releases: the data releases are staggered both across variables

and across countries. This means that we end up with more nowcast updates than in

many studies with single countries or only a few countries. The out-of-sample analysis

uses a relatively short initial estimation time span which further motivates the panel

9
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approach over time series methods. We make several interesting findings. Firstly,

we find that our proposed PMIDAS model performs better than a simple time series

autoregressive benchmark when we pool the coefficients across countries and only allow

heterogeneity through fixed effects. Secondly, we find that a single business survey

variable is able to deliver as good a nowcast as when using one or more other predictors.

This is potentially due to their timeliness and providing good economic signal (see

also Bańbura et al. 2013; Cascaldi-Garcia et al. 2023). Finally, we find that nowcasts

monotonically improve across the panel as we add information across countries and

variables. This shows that findings of nowcast monotonicity also hold in the panel data

context in a similar way to those seen in the time series nowcasting literature (Giannone

et al. 2008; Aastveit et al. 2014; Marcellino et al. 2016; Fosten and Gutknecht 2018).

Our results also hold after investigating their robustness to the choice of evaluation

sample and the addition of extra predictor variables.

Our second contrasting empirical application assesses how the PMIDAS model

performs in nowcasting monthly inflation across a large set of European countries. We

use weekly energy prices to provide a timely signal for tracking movements in inflation

as in Modugno (2011, 2013). We therefore offer a new approach by nowcasting a panel

of countries’ inflation instead of single countries. This study is a useful contrast to

the global GDP example as in this case the nowcast updating does not come from

the staggered release of information across countries, it only comes from the higher

frequency of the predictor. This demonstrates how our method can be applied in a

variety of settings. Our findings mirror those of the GDP application, showing that our

proposed method is capable of nowcasting inflation well, beating a benchmark model

on average across all countries in the sample.

In relating this chapter more widely to the literature, the PMIDAS model we propose

brings together two distinct strands of literature: mixed-frequency methods and panel

data models with CSD. Mixed-frequency methods are widely used in macroeconometrics

with various models and estimation techniques proposed (Kuzin et al. 2011; Schorfheide

and Song 2015; Ghysels 2016). The literature on panel data methods has also grown

10
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significantly over time. In particular, the large heterogeneous panel data model with

a CSD multi-factor error structure has become an important tool. Pesaran (2006)

introduced the CCE method of factor estimation, further developed by Chudik and

Pesaran (2015a) for dynamic panel models which allows for: heterogeneous coefficients,

CSD, factor error structure, and feedback between target and predictor variables. We

bring these aspects together in our mixed-frequency panel nowcasting model with CSD.

This chapter also connects two related empirical strands of literature, namely cross-

country macroeconomic forecasting and nowcasting. Inter-country linkages have been

admitted in the forecasting literature for the past few decades; see, for instance, Canova

and Ciccarelli (2004), Gavin and Theodorou (2005), Chen and Ranciere (2019) and

Garnitz et al. (2019) for panel data; Chudik et al. (2016) for Global Vector Autoregres-

sion (GVAR); and Caselli et al. (2020) for density forecasting. Additionally, the recent

empirical nowcasting literature has also recognised the importance of international

data. Several studies find that the inclusion of international macro-data improves

accuracy, for instance Schumacher (2010), Eickmeier and Ng (2011), Bragoli and Fosten

(2018) and Cepni et al. (2019). Separately, inter-linkages have been incorporated

into New Keynesian type macroeconomic models, which are now used extensively by

policy-makers and private institutions for nowcasting as well (Hantzsche et al. 2018).

The prevalence of these studies all highlight the importance of using cross-country

effects in our panel nowcasting model.

The rest of the chapter is organised as follows. Section 2.2 introduces the main

nowcasting model and the estimation technique. The Monte Carlo simulation is

presented in Section 2.3. Sections 2.4 and 2.5 display the two different empirical

applications to GDP nowcasting and inflation nowcasting. Section 2.6 concludes the

chapter. Appendix A contains some of the simulation results, other charts, various

additional technical details as well as and empirical results which are not included in

the main chapter.
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2.2 Set-up

In this section, we introduce the PMIDAS set-up for panel nowcasting allowing for

heterogeneity and CCE, using mixed-frequency data with a ragged edge. We base the

model on the dynamic CSD panel data model of Chudik and Pesaran (2015a) with

crucial modifications for the nowcasting case as we outline below. As the model is

based on unknown factors, we then set out how to obtain a feasible model which can

be estimated and used for nowcasting.

2.2.1 The Nowcasting Model

We will set up the model using the case of a quarterly target variable with monthly

predictors as is the case with real GDP nowcasting. However, as we show in our

simulations and empirical illustrations, our set-up can easily be generalised to allow for

other mixed-frequency combinations such as annual to quarterly, or monthly to weekly.

Suppose we have data on the quarterly target variable of interest yi,t for cross-sectional

units i = 1, 2, . . . , N and quarters t = 1, 2, . . . , T . We also have a vector of k predictor

variables measured at a higher monthly frequency which we denote xM
i,t . We follow

Ghysels (2016) and stack the three months of quarter t into the following vector for

each i:

XM
i,t =


xM

i,t

xM
i,t− 1

3

xM
i,t− 2

3

 (2.1)

which will allow us to combine the quarterly and monthly data in a MIDAS-type model.

When other frequency combinations are considered, one can modify the notation and

the stacked vector in equation (2.1) accordingly.

In nowcasting it is of crucial importance to take account of the ragged edge, in

other words using only the recent observations available at the time of making the

nowcast, which may differ across individual units, i, and across variables. Suppose we

12
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are making a nowcast on day v of the nowcast period.1 Then we denote div to be the

latest available quarterly lag of the target variable yi,t for the cross-section i on the vth

day of the nowcast quarter.2 Similarly, we denote miv as the latest available monthly

lag (relative to the last month of quarter t) for xM
i,t for cross-section i on the vth day of

the nowcast quarter. The value miv = 0 corresponds to the case where all three months

of the quarter are available for the predictor variable. In other words, the date v is

varied at a daily frequency in order to capture the staggered release of new monthly

and quarterly information which can be used to update the nowcasts. We therefore

use this notation to allow for a fully asynchronous calendar of data releases across all

entities in the cross section. We also allow for the release to be staggered across the

k variables in xi,t though we suppress this additional dependence of the lags on k to

avoid notational clutter.

The main nowcasting model we consider uses this lag structure in a PMIDAS model

with a multi-factor error assumption:

yi,t = cvi + ϕviyi,t−div
+ β′

viXi,t− miv
3

+ uv,i,t (2.2a)

uv,i,t = γ′
vift + εv,i,t (2.2b)

where cvi are individual fixed effects, ϕvi is the coefficient on the autoregressive lag,

and in this quarterly to monthly example βvi is a 3k × 1 vector of individual-specific

slope coefficients on the lag of the vector described in equation (2.1).3 The term ft is

an m × 1 vector of unobserved common factors which are used to model the CSD in

the error term uv,i,t and has loadings γvi. The parameters and error terms of the model

depend on nowcast date v as the model variables are dependent on the lag structure

determined by v. We specify the model with full heterogeneity of coefficients (across i)
1For more details on the notation used for nowcast updating, see Bańbura et al. (2013).
2As an example with two countries i = 1, 2, if d1,25 = 1 and d2,25 = 2, this implies that on day 25

of the nowcast period, the previous quarter’s observation for yi,t has already been released for country
1 but not yet for country 2.

3We could, of course, include more lags of yi,t and more than three monthly lags of xi,t by adding
additional terms to the right hand side of equation (2.2a). We do not write this down here to save
introducing additional notation.
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and note that, even with fully heterogeneous coefficients, the model still retains a panel

structure through the assumed error dependence.4 The model can be modified to have

homogeneous coefficients which do not change across i. This would reduce the number

of parameters to estimate and can yield forecast accuracy gains in certain scenarios

(see Wang et al. 2019). This is something we will consider in our empirical study.

The model in equation (2.2a) therefore builds on the original model of Chudik and

Pesaran (2015a) in two distinct ways. We firstly build in the mixed-frequency aspect

which results in the panel equivalent of an unrestricted MIDAS model. This choice

of model is motivated by Foroni et al. (2015) who conclude that UMIDAS performs

better as compared to more complex nonlinear MIDAS models in the case that the

difference in frequencies is not too high. The second key difference is the lag structure

which is determined by the availability of the data, or the ragged edge. In Appendix

A we provide step-by-step detail on how these modifications are made to the original

set-up of Chudik and Pesaran (2015a).

Our model choice is targeted towards situations in which a relatively small number

of k predictors are available in making the nowcasts. As mentioned before, this is the

main focus of our first empirical application where we aim to have a large coverage of

global economies for which only a few common predictors are available for a reasonable

time span. Other examples of the applicability of this model include GDP nowcasting

at the sub-national level where relatively few usable regional predictors are typically

available (see for example Fosten and Greenaway-McGrevy 2022). Our methods

therefore align more closely with the small-dimensional nowcasting literature such as

bridge and MIDAS models, see Schumacher (2016) for a survey. This is in contrast

to studies where a larger number of predictors are available for an individual country

or a handful of developed countries (see, for instance, Cascaldi-Garcia et al. 2023)

where it has become common to extract factors from those variables. This may soon
4These heterogeneous coefficients are assumed in Chudik and Pesaran (2015a) to follow a random

coefficient model with independently and indentically distributed (i.i.d.) errors when they derive the
theoretical properties of the model. In practice, we estimate these heterogeneous coefficients using an
Ordinary Least Squares (OLS) regression for each cross-sectional unit.
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become applicable in our context once harmonised macro datasets become available for

a large range of developed and developing countries. Additionally, the modification of

heterogeneous panel data models with CSD to allow for high-dimensional predictors

requires theoretical development and is something which we leave for further study.

2.2.2 Estimation and Nowcasting

We firstly note that equations (2.2a) and (2.2b) can be combined to write down a

model for yi,t as follows:

yi,t = cvi + ϕviyi,t−div
+ β′

viX
M
i,t− miv

3
+ γ′

vift + εv,i,t (2.3)

However, we do not directly use equation (2.3) for nowcasting due to the presence of

the unobserved factors ft which we must estimate. To do so, we propose a lagged

version of the CCE estimation technique of Chudik and Pesaran (2015a). We specify

that the predictor variable Xi,t− miv
3

is also influenced by the common factor and lags

of yi,t:

XM
i,t− miv

3
= κvi + αviyi,t−div

+ Γ′
vift + ϵv,i,t (2.4)

where, recalling from before, a value of miv = 0 corresponds to the last month of the

current quarter. The terms κvi, αvi and ϵv,i,t are vectors and Γvi is a matrix to match

the dimensions of XM
i,t .

The role of equation (2.4) is not for use in nowcasting, as it models the high-

frequency variable as a function of the low-frequency variable. Instead, it is used as

a device to cast equation (2.3) into a Vector Autoregression (VAR) form based on a

stacked vector:

zM
i,t,v =

 yi,t−div

XM
i,t− miv

3

 (2.5)

which resembles the approach of Ghysels (2016) where low-frequency and high-frequency
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variables are stacked together. In most applications, the primary focus is on the equation

for the low-frequency variable which matches what is already done in traditional single-

equation MIDAS models.

Once the mixed-frequency and ragged edge are accounted for in the stacked vector

in equation (2.5), the set-up becomes similar to the original Chudik and Pesaran (2015a)

which also stacks the target variable with a vector of predictors. The full steps of this

procedure are given in Section A.1 of Appendix A and mirror those of Chudik and

Pesaran (2015a), which we omit here for the sake of brevity. Intuitively, the steps start

by writing down a VAR for zM
i,t,v as a function of the unknown factors ft. This VAR

can be averaged cross sectionally and inverted to move between the factors themselves

and cross-sectional averages of the zM
i,t,v variable. We show how this is done below, after

making some important comments about zM
i,t,v.

We note that the vector zM
i,t,v in equation (2.5) resembles the vector zi,t used in the

CCE estimation method of Chudik and Pesaran (2015a) except for a very important

difference. In our case, zM
i,t,v only includes the lags of the target and predictor variables

which are actually available at nowcast date v. This means that zM
i,t,v can be used

to estimate the factors in a way which is feasible on the day the nowcast is made.

The original paper of Chudik and Pesaran (2015a) used contemporaneous yi,t and xi,t

variables in estimating the factors which is not suitable for prediction. We therefore

refer to this as lagged CCE (LCCE) estimation.

In obtaining the feasible nowcasting model for yi,t, we use a cross-sectional (weighted)

average of zM
i,t,v using a weight vector w = (ω1, ω2, . . . , ωN)′. We define the cross-

sectionally weighted average of equation (2.5) as:

zM
t,v =

N∑
i=1

ωiz
M
i,t,v (2.6)

and we can use the following representation of equation (2.3):

yi,t = c∗
vi + ϕviyi,t−div

+ β′
viX

M
i,t− miv

3
+ δ′

vi(L)zM
t,v + εv,i,t + Op(N−1/2) (2.7)
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where δvi(L) is an infinite-order lag polynomial with a form depending on the parameters

of equations (2.3) and (2.4), and the Op(N−1/2) term is an asymptotically negligible

remainder term resulting from using zM
t,v in place of the factors.5

The final feasible nowcasting equation is based on a finite approximation of the

infinite number of lags of zM
t,v used in equation (2.7):

yi,t = c∗
vi + ϕviyi,t−div

+ β′
viX

M
i,t− miv

3
+

pT∑
l=0

δ′
vilz

M
t−l,v + ev,i,t (2.8)

where the overall error term ev,i,t in this feasible nowcasting equation contains the

approximation from the lag truncation as well as from replacing the factors with zM
t,v.6

The choice of the lag truncation is suggested to be pT = T 1/3 by Chudik and Pesaran

(2015a).

We finally have a model for yi,t which is linear in variables which are available on

day v of the nowcast period. The model can be estimated by OLS and nowcasts can be

feasibly obtained using the estimated coefficients and the latest available data. In the

most general model described earlier with full parameter heterogeneity, OLS estimation

amounts to performing one regression per cross-sectional unit. However, researchers

may wish to restrict the amount of allowed heterogeneity, in which case the model

can be estimated by pooled panel OLS.7 We explore this in the empirical applications

where we first obtain results under full heterogeneity using equation-by-equation OLS

and then we shut down all heterogeneity except for individual-specific constants and

use pooled OLS for estimation.

We can use the OLS parameter estimates to obtain a nowcast of quarter T for every

cross-sectional unit i on day v of the nowcast period by estimating the conditional
5We note that the main interest of Chudik and Pesaran (2015a) is in demonstrating the equivalence

of equations (2.3) and (2.8) and they are not per se concerned with consistency in estimating the ‘true’
factors as in studies like Bai and Ng (2002) and Stock and Watson (2002).

6The use of zM
t,v in equation (2.8) bears resemblance to ‘factor-augmented’ type models, where in

our case the factors are estimated across countries.
7In the full heterogeneity case when the number of lags is large, or if we use very high-frequency

data for xi,t, one may consider using a shrinkage estimator like ridge or Least Absolute Shrinkage and
Selection Operator (LASSO) in obtaining the nowcasts.
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mean of yi,t given all available information on day v as:

ŷi,T,v = ĉ∗
vi + ϕ̂viyi,T −div

+ β̂′
viX

M
i,T − miv

3
+

pT∑
l=0

δ̂′
vilz

M
T −l,v (2.9)

where, as written here, if one decides to impose some homogeneity on the coefficients

and pool the model, then pooled panel OLS estimates can be used in equation (2.9) to

obtain the nowcasts.

2.3 Monte Carlo Simulations

In this section, we carry out Monte Carlo simulations using the model described so

far to assess the performance of our LCCE estimation strategy where we modify the

CCE estimation approach of Chudik and Pesaran (2015a) for use in nowcasting. Our

simulations are based on the model described in equations (2.3) and (2.4). However,

for simplicity and tractability in the simulations, we ignore the presence of the ragged

edge in the data and assume there is only a single nowcast date for which the available

lags are div = 1 and miv = 0. In other words, we assume that the previous lag is

available for the target variable along with the current period for the higher frequency

predictor. We will maintain the quarterly-to-monthly frequency mix (we denote the

ratio of high to low frequency as q = 3) in the baseline simulations but we will also

check how the results hold with a frequency mix of q = 4 which could represent an

annual-to-quarterly or monthly-to-weekly frequency mix.

2.3.1 Set-up

We generate a panel dataset of dimensions N × T from model equations (2.3) and (2.4)

with div = 1 and miv = 0.8 We choose the parameter values to make the simulated

series resemble macroeconomic growth rates, as well as being guided by the parameter
8Equations (2.3) and (2.4) with div = 1 and miv = 0 in fact match equations (A.1a), (A.1b) and

A.1c in Appendix A where we abstract from the ragged edge.
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choices used by Chudik and Pesaran (2015a). We fix the number of regressors to be

k = 1 and let the regression coefficients in βi be i.i.d.U [0, 0.4] across i. The fixed-effects

terms ci and κi are assumed to be i.i.d.U [−1, 1]. The values of ϕi and αi are chosen as

i.i.d.U [0, 0.4] and i.i.d.U [0, 0.25] respectively. The error component εi,t in equation (2.3)

(now without a v subscript due to the absence of the ragged edge in the simulations)

is generated as i.i.d.N(0, 1) and the unobserved common factors ft are generated as

independent stationary Autoregressive (AR)(1) processes as below:

ftl = ρfft−1,l + ξtl, (2.10)

where ρf = 0.25, ξtl ∼ N(0, 1) for l = 1, 2, . . . , m and t = 1, 2, . . . , T and we consider

m = 2 factors here. The loadings on both factors are generated as i.i.d.N(0.25, 0.1) for

y and i.i.d.N(−1, 0.1) and i.i.d.N(1, 0.1) for x for the first and second factor respectively.

The error component ϵi,t in equation (2.4) is also generated as a stationary AR(1)

process as:

ϵi,t = ρεϵi,t− 1
q

+ ηi,t, (2.11)

where ρϵ = 0.22 and ηi,t is i.i.d.N(0, 1). We use an initial 100 observations as burn-in.

The value of pT , the lag truncation parameter is selected at T
1
3 , as recommended by

Chudik and Pesaran (2015a). We will look at results over a variety of sample sizes

N, T ∈ {50, 100, 150, 200}. We let M denote the number of Monte Carlo replications,

which is set at M = 1000.

We focus on two different aspects of results based on this data generating process.

We firstly assess the estimation of the parameters in the main nowcasting equation

(in other words ϕi and βi), where we compare our LCCE method to the original CCE

method where contemporaneous yi,t is used in estimating the factors. This is to verify

that we do not lose a lot of estimation accuracy by using LCCE rather than CCE,

which we have to do in order to make nowcasting feasible. Since we allow heterogeneity

19



2.3. Simulations 2. Nowcasting from Cross-sectionally Dependent Panels

in the parameters across i, we first define the following mean group parameters:

ϕ = 1
N

N∑
i=1

ϕi , β(j) = 1
N

N∑
i=1

β
(j)
i (2.12)

where the superscript j on β
(j)
i indexes the element of the vector βi and we recall that

the parameters no longer depend on v as we abstract from the ragged edge here. We

will analyse the average (over the replications) absolute deviation of the estimated mean

group parameters from the actual parameter value. The use of the absolute bias is

slightly different to the criterion used in the literature on CCE estimation (see Pesaran

2006; Chudik and Pesaran 2015a), where the actual value of the bias is used and the

exact sign is analysed. However, in this chapter the main focus is on nowcasting, so

the forecast efficiency is of primary interest and the sign of any bias is not important.

The second aspect of the results we focus on is the out-of-sample performance

of the PMIDAS model. In this regard, we wish to see if the additional complexity

of the PMIDAS model (in terms of parameters and factors to estimate) introduces

unwarranted forecast uncertainty over a simpler benchmark time series AR(1) model

which may also be a good approximation for the serially dependent data we generate.

To analyse out-of-sample performance we split the dataset into two parts in the time

dimension, the first being used for model estimation and the latter for out-of-sample

forecasting. Let R and P denote the window length for estimation and evaluation

samples respectively. The entire time period covered by the panel is therefore split

as T = R + P . We use a recursive window starting with R estimation observations,

producing the nowcast and then increasing the estimation window by one observation

at a time (see West 1996). As in Hansen and Timmermann (2012), the split point can

sometimes affect the out-of-sample results. To mitigate the issue, three different splits

are considered: P = 0.2T , P = 0.3T and P = 0.5T . Thus, we ensure that our forecast

evaluation results are not dependent on the choice of split points.

The measure of accuracy we use is the Root Mean Square Forecast Error (RMSFE)
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as defined below:

RMSFE = 1
N

N∑
i=1

√√√√ 1
P

T∑
t=R

ê2
i,t (2.13)

where the forecast error êi,t is the difference between yi,t and the forecast defined in

equation (2.9). The statistic in equation (2.13) used in this panel setting gives us a

single statistic for the average RMSFE across all individuals in the panel.

2.3.2 Results

Table 2.1 summarises the results for the absolute bias for the two estimation techniques

under consideration. The figures represent the mean absolute bias. The panels from

top to bottom summarise the results for ϕ followed by the individual parameters in the

vector β. The results show that absolute biases in both the CCE and LCCE estimates

are very small and diminish further towards zero at higher panel dimensions. For

smaller panels, the bias in the autoregressive parameter ϕ is marginally higher in both

CCE and LCCE when compared with those of the β coefficients.9

The difference in bias from the two estimation methods is negligible for all panel

dimensions and converges to zero for larger panels. This is confirmed graphically by

Figures A.1 to A.4 in Appendix A.2 which depict the distribution of the difference in

the bias between the two methods, showing that it vanishes to zero with the panel

size. Overall this means that the modification to use LCCE estimation does not have a

substantial impact on the parameter estimates in the model, while the advantage of the

lag structure we deploy in LCCE is that it can be used for forecasting and nowcasting.

The bias results remain similar when we move from the frequency mix q = 3 to q = 4

which can be seen from Table A.1 and Figures A.5 to A.9 in Appendix A.

Turning now to the forecast performance of the PMIDAS model estimated by LCCE.

Here our aim is to verify that the estimation of the additional factors and parameters
9We note that the bias in ϕ does not improve substantially with N , only with T , which mirrors the

findings of Chudik and Pesaran (2015a).
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Table 2.1: Simulation Results – Absolute Bias in LCCE and CCE – q = 3

CCE LCCE

N/T 50 100 150 200 50 100 150 200

ϕ

50 0.0589 0.0266 0.0179 0.0127 0.0519 0.0243 0.0167 0.0118
100 0.0607 0.0255 0.0168 0.0120 0.0534 0.0238 0.0155 0.0112
150 0.0612 0.0272 0.0172 0.0122 0.0548 0.0251 0.0161 0.0114
200 0.0598 0.0265 0.0173 0.0121 0.0533 0.0245 0.0162 0.0113

β(0)

50 0.0217 0.0134 0.0106 0.0085 0.0215 0.0148 0.0128 0.0109
100 0.0155 0.0093 0.0072 0.0063 0.0159 0.0108 0.0087 0.0081
150 0.0128 0.0073 0.0061 0.0049 0.0126 0.0082 0.0076 0.0062
200 0.0111 0.0067 0.0054 0.0043 0.0113 0.0072 0.0064 0.0056

β(1)

50 0.0229 0.0136 0.0108 0.0092 0.0227 0.0156 0.0132 0.0114
100 0.0160 0.0096 0.0075 0.0065 0.0161 0.0107 0.0092 0.0082
150 0.0133 0.0080 0.0061 0.0051 0.0135 0.0090 0.0074 0.0068
200 0.0121 0.0067 0.0053 0.0045 0.0121 0.0074 0.0065 0.0058

β(2)

50 0.0226 0.0136 0.0108 0.0087 0.0227 0.0148 0.0133 0.0113
100 0.0164 0.0096 0.0077 0.0063 0.0166 0.0109 0.0092 0.0083
150 0.0129 0.0075 0.0061 0.0051 0.0129 0.0086 0.0072 0.0065
200 0.0109 0.0069 0.0054 0.0044 0.0111 0.0078 0.0065 0.0057

Notes: The numbers in this table are the absolute biases in the estimates of the key model parameters
estimated using two methods, LCCE and CCE, across different sample sizes.

in our panel nowcasting model does not harm forecast performance relative to a smaller

naïve time series AR(1) model in this simulated set-up. The results are summarised in

Table 2.2 which displays the RMSFE of the PMIDAS model relative to the time series

AR(1) benchmark. Figures less than one indicate superior forecast performance of the

PMIDAS model. Here we present results for the frequency mix q = 3 which represents

the most common scenario of GDP nowcasting, as in our first empirical application,

where the objective is to nowcast quarterly GDP using monthly information. However

we also have results for q = 4 in Appendix A, which is the frequency mix we use in our

second empirical application on monthly inflation nowcasting using weekly data.

The main conclusion is that the out-of-sample RMSFE is of our PMIDAS model is

clearly lower than that of the time series AR(1) benchmark across sample sizes and
22
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sample splits. We also see that the gain against the benchmark grows with the sample

size T , even in fairly modest sample sizes. This indicates that the estimation of the

factors and additional parameters does not harm the predictions relative to a simple

time series AR(1) model which might be considered a good approximation in settings

such as these with serial dependence. The findings remain very similar across the

different sample splits we consider, with the exception of the lowest sample size T = 50

and a sample split of 50% where the AR(1) has similar RMSFE, which is due to the

very low number of in-sample periods used for model estimation. We also show that

the results are similar when we change the frequency mix from q = 3 to q = 4 which

can be seen in Table A.2 in Appendix A.
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2.4 Empirical Application I:

Global GDP Nowcasting

In this section, we apply the panel nowcasting techniques developed in this chapter to

predict the quarterly real GDP growth rate of a large panel of advanced and emerging

economies using timelier monthly economic activity. The main advantage of our study

relative to the existing literature is that we make nowcasts for a large number of

individual countries and not just of aggregate global GDP as in studies such as Ferrara

and Marsilli (2019). Our study also looks at a wider spread of countries than the

related study of Cascaldi-Garcia et al. (2023) which focusses on a handful of European

countries.

2.4.1 Data and Set-up

Data

The target variable is the annual year-on-year (y-o-y) growth rate of quarterly GDP in

constant national prices. The y-o-y growth rate is widely used by many policymakers

both in developed and emerging economies and is also useful for those countries which

do not report seasonally adjusted quarterly figures. However we will also compare our

results when using quarter-on-quarter (q-o-q) growth rates which are widely used in

academic studies. We predict real GDP growth using a business survey (manufacturing)

index in our baseline model, and will also explore the results using various combinations

of other predictors including business survey (services) and an IP index. The focus on

survey indicators is important due to their timeliness in capturing near-term economic

outlook. These types of predictors are commonly used in existing nowcasting studies

(for instance Marcellino and Schumacher 2010; and Schumacher 2016, for MIDAS and

bridge equation models; and Giannone et al. 2008, for dynamic factor models). These

particular series are also chosen for their availability for a large number of countries.

The dataset is sourced from the Organisation of Economic Co-operation and
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Development (OECD) Main Economic Indicators (MEI), covering 37 member countries

and selected non-member partners. We consider the final vintage for the historical

data as the real time data are not available for most of the countries we consider. The

dataset covers a large share of global GDP, with member countries accounting for

almost 50% (OECD 2020) and includes some emerging economies with large global

GDP shares such as India and China. The list of countries included in our sample can

be found in Table 2.3.

There is some variation in the availability of data series across countries. The

balanced panel database for GDP with manufacturing business surveys starts from

January 2001 and ends in March 2020, which totals T = 77 quarters, i.e. 231 months of

data. There are 34 available countries consisting of 23 AEs and 11 EMEs.10 The business

survey for services, however, is only available for 21 European economies (including the

the U.K.) which starts in 2003 as this enables the inclusion of 8 additional countries

into the panel. Other components of the business surveys have even lower availability.11

For IP there are 35 countries, with 22 AEs and 13 EMEs. After examining all series

for stationarity, the business survey variables are left in levels and IP is transformed

using growth rates.12

Figure 2.1 summarises the distribution in GDP growth and the monthly predictors

across the OECD countries for the last two decades. There is evidence of a broad

common time pattern as well as some variation across countries. The dispersion of

growth rates among countries increased during the Global Financial Crisis (GFC) years

(2008–10) and continued for some time. This was followed by a period of very low

variation in growth among countries. For the monthly predictors IP and business

surveys also we notice a dispersion within the countries along with a broadly common
10The classification of AE and EME is as per IMF (2021).
11It is challenging to obtain other high-frequency indicators harmonised across countries that are

available in a timely fashion. Other variables such as building permits and commercial vehicle sales
were explored. However, there are significant publication lags of more than a year in many countries
and so we focus our attention on the series mentioned previously.

12Until December 2018, the OECD used to publish seasonally adjusted figures for all series and
countries. Most of the series are taken directly into the final dataset, as they are seasonally adjusted
from the source entirely. IP data for India and Chile are adjusted using the X-13 algorithm.
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Table 2.3: Country Coverage

Variable N Country Names

Business Surveys –
Manufacturing

34 Australia, Austria, Belgium, Canada, Czech Republic, Den-
mark, Finland, France, Germany, Greece, Hungary, Ireland,
Italy, Japan, Luxembourg, Mexico, Netherlands, New Zeal-
and, Norway, Poland, Portugal, Spain, Sweden, Switzerland,
Turkey, United Kingdom, United States, Brazil, Estonia, In-
dia, Israel, Slovenia, Latvia, Lithuania

Business Surveys –
Services

21 Austria, Belgium, Czech Republic, Denmark, Finland, France,
Germany, Greece, Hungary, Ireland, Italy, Netherlands, Po-
land, Portugal, Spain, Sweden, United Kingdom, Estonia,
Slovenia, Latvia, Lithuania

Industrial
Production

35 Austria, Belgium, Canada, Czech Republic, Denmark, Fin-
land, France, Germany, Greece, Hungary, Ireland, Italy, Ja-
pan, Korea, Luxembourg, Mexico, Netherlands, Norway, Po-
land, Portugal, Slovak Republic, Spain, Sweden, Turkey,
United Kingdom, United States, Brazil, Chile, Estonia, India,
Israel, Slovenia, Latvia, Lithuania, Costa Rica

Notes: The table lists the countries taken in the sample for each predictor variable.

time path. These monthly variables seem to track the time path of GDP, which

reinforces their suitability as GDP predictors.

Pseudo Out-of-Sample Set-up

To evaluate the performance of the PMIDAS model using real GDP and the monthly

predictors detailed earlier, we perform a pseudo out-of-sample experiment using a

recursive estimation scheme. As in the simulation section, we split the full sample into

T = R + P where the evaluation window, P , is set to be equal to P = 0.3T so that 30%

of the available sample is retained for evaluation. For each quarter in the evaluation

sample, the nowcasts are computed for each day during a time window of 155 days

from the start of the nowcast quarter. Consequently, this includes backcasting from

the 91st day of the quarter onward. By the end of the window of 155 days, official

GDP figures are available for the majority of the countries under consideration.

We construct a pseudo-calendar to track the releases for all variables in the dataset.

For the GDP and IP variables, this is constructed by replication of the average release

day in the four quarters of 2018. Similarly, for the survey data the approximate release
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Figure 2.1: Cross-country Distribution of Real GDP Growth and Predictors Across
Time
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Notes: For each year on the horizontal axis, the cross-country distribution is displayed, with colours
shaded from yellow to blue in order of low to high occurrence probability.

date was analysed at the end of the sample and replicated for all of the years in the

evaluation window. All months are assumed to have 30 days and accordingly the

quarters consist of 90 days uniformly. Figures A.10a, A.10b and A.10c in Appendix A.4

present the average lags considered for GDP, Business Survey Manufacturing (BSM)

and IP respectively. The services survey data are assumed to be available uniformly on

day 21 of the previous month.

At each period in the nowcast evaluation exercise, we first use the pseudo-calendar

to assess which lags are available for every country. This determines the exact lag

specification of the nowcasting model in equation (2.8).13 Then the model is estimated
13The number of lags is also as in equation (2.8) where we do not consider further lags of yi,t−div

28
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and the nowcasts are obtained for every country. This is done for each of the 155 days

of the nowcast and backcast period, for each of the P evaluation quarters we consider.

For every day v in the nowcast period, we can obtain the RMSFE by individual country

i as follows:

RMSFEv,i =

√√√√ 1
P

T∑
t=R

ê2
v,i,t (2.14)

where êv,i,t denotes the prediction error from the PMIDAS model on nowcast day v for

country i in quarter t (with a similar statistic being used for the benchmark model).

We will assess the distribution of these individual RMSFEs as well as using the average

across all countries in a similar way to equation (2.13) from the simulation section.

2.4.2 Main Results

In this section, we present the nowcast performance of the PMIDAS model for both the

y-o-y and q-o-q target variables using the BSM variable as the baseline case. Although

we allow for possibly heterogeneous coefficients in the nowcasting model in equation

(2.8), an interesting empirical question is whether pooling can produce better nowcasts.

We therefore also produce results where we impose homogeneity on all of the slope

coefficients in equation (2.8) while we still have individual-specific fixed effects to

allow heterogeneity. We will compare the results of these methods to the time series

AR(1) benchmark model. As mentioned, we compute the nowcasts on a daily basis for

155 days from the beginning of the nowcast period and we will track how the model

performance changes as we add new information.

The main results using the BSM data are presented in Tables 2.4 and 2.5 which

and XM
i,t− miv

3
and where the lag truncation of the factors is pT = T 1/3 as detailed before. Although

some methods have proposed panel forecast lag selection methods in the presence of fixed effects
nuisance parameters (Lee and Phillips 2015) and CSD (Greenaway-McGrevy 2019), these are not
applicable in the current context with potential parameter heterogeneity and factors. In previous
versions of the chapter we also experimented with the use of machine learning methods like LASSO
and the Elastic Net in order to perform shrinkage and lag selection, motivated by other studies using
this in the MIDAS context (Siliverstovs 2017; Xu et al. 2018; Babii et al. 2020).
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display the y-o-y and q-o-q results. The numbers represent the quantiles (across

countries) of the RMSFE of each model on different nowcast days. Starting with

the y-o-y results in Table 2.4, the most striking finding is that the model which has

uniformly lowest RMSFE across all nowcast dates is the proposed PMIDAS model when

pooling is used with equal slopes across countries. In particular, we see gains relative

to the time series AR model, which holds across the 25%, 50% and 75% quantiles. On

the other hand, the fully heterogeneous model does not perform as well as the AR

model. This indicates that the question of to ‘pool or not to pool’, as put by Wang

et al. (2019), is that nowcast performance is improved when pooling across this sample

of global economies. This result is mirrored when looking at the q-o-q results in Table

2.5 where we see that the best method across nowcast days and quantiles is the pooled

PMIDAS model, whereas allowing full parameter heterogeneity leads to worsening

even relative to an AR benchmark. Overall, these results lend evidence in favour of

the mixed-frequency panel data approach, in a similar way to findings of Fosten and

Greenaway-McGrevy (2022) and Babii et al. (2020) although with different applications.

The findings are also in favour of the use of panel models for forecasting in general, see

Baltagi (2008), where in this case the panel dimension is especially useful when the

model is pooled across countries.
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Table 2.4: GDP Nowcast RMSFE by Quantile – y-o-y

PMIDAS Benchmark (BM)

Pooled Not Pooled Time Series AR

Days 25% 50% 75% 25% 50% 75% 25% 50% 75%

1 0.7850 1.0568 1.3127 1.0785 1.3658 1.6879 0.9865 1.1307 1.4636
16 0.7956 1.0440 1.3373 1.0785 1.3658 1.6879 0.9865 1.1307 1.4636
31 0.7265 1.0124 1.3647 1.0657 1.3525 1.5683 0.9082 1.0642 1.3018
46 0.6570 0.9127 1.1834 1.0088 1.2610 1.4927 0.8866 1.0487 1.2867
61 0.6146 0.8146 1.0767 0.9293 1.1573 1.4804 0.8115 0.9249 1.2867
76 0.5597 0.7427 1.0269 0.7460 0.9618 1.2776 0.7627 0.9077 1.2550
91 0.5512 0.7323 1.0013 0.7376 1.0246 1.2659 0.7327 0.8952 1.2550

106 0.5443 0.7293 1.0273 0.7376 1.0246 1.2659 0.7327 0.8952 1.2550
121 0.4043 0.6249 0.9947 0.4600 0.7054 1.0614 0.4745 0.7627 1.0487
136 0.0000 0.0000 0.7990 0.0000 0.0000 1.0470 0.0000 0.0000 0.8324
151 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: The table reports the quantiles across countries of RMSFE for each method.
We display two nowcasts per month of the nowcast period. The single predictor variable
used is the BSM indicator. The RMSFE drops to zero after a country’s GDP data are
released, so all displayed quantiles have a value of zero on day 151 of the nowcast period.
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Table 2.5: GDP Nowcast RMSFE by Quantile – q-o-q

PMIDAS BM

Pooled Not Pooled Time Series AR

Days 25% 50% 75% 25% 50% 75% 25% 50% 75%

1 0.4310 0.5448 0.7014 0.7127 0.8975 1.2539 0.5950 0.7355 1.0317
16 0.4386 0.5425 0.7223 0.7127 0.8975 1.2539 0.5950 0.7355 1.0317
31 0.4457 0.5446 0.7284 0.7317 0.8897 1.2474 0.5950 0.7323 1.0317
46 0.3966 0.5494 0.6674 0.6824 0.8863 1.2466 0.5885 0.7323 0.9823
61 0.4006 0.5463 0.6619 0.7200 0.9313 1.2460 0.5885 0.7394 0.9823
76 0.3816 0.5416 0.6728 0.6466 0.7207 1.1244 0.5885 0.7416 0.9823

91 0.4215 0.5777 0.7000 0.6327 0.7477 1.0849 0.5885 0.7416 0.9823
106 0.4239 0.5713 0.7007 0.6327 0.7477 1.0849 0.5885 0.7416 0.9823
121 0.3166 0.5137 0.6673 0.3224 0.6433 0.8061 0.3797 0.6138 0.8046
136 0.0000 0.0000 0.5729 0.0000 0.0000 0.7314 0.0000 0.0000 0.7416
151 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: See notes for Table 2.4.

In order to visualise the behaviour of the RMSFE across all days of the nowcast

period, Figures 2.2 and 2.3 plot the mean of the RMSFE across all countries for each

of the 155 nowcast days, for the same models as in Table 2.5. These results confirm

that, on average, the pooled version of the PMIDAS model has better performance

than the AR model and the version of the model with fully heterogeneous coefficients.

Importantly, the plots help to reveal how the methods behave as we sequentially add

more information across countries and variables. Indeed, from Figure 2.2 it seems

that the average RMSFE for the y-o-y GDP growth target is monotonically falling

as we add information. Therefore this panel model, like with the time series studies

mentioned before, improves as we take into account more information as it becomes

available during and beyond the nowcast quarter. For the q-o-q target, the results are

slightly weaker, showing only moderate improvements in the pooled PMIDAS approach

at the beginning of the nowcast period before RMSFE flattens until near the end of

the nowcast period.
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Figure 2.2: GDP Nowcast Average RMSFE – y-o-y
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Notes: The figure plots the mean of RMSFE across all countries on each of the 155 days in the
nowcast period. The single predictor variable used is the BSM indicator.

Figure 2.3: GDP Nowcast Average RMSFE – q-o-q
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Notes: See notes for Figure 2.2.

2.4.3 Further Results

The results in the previous section focussed on the PMIDAS model when using the

BSM variable as the sole predictor. It is important to assess how the PMIDAS model

performs when changing to use other monthly predictors, and to allow for multiple

predictor variables. To do this we employ the two other variables mentioned earlier:
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Business Survey Services (BSS) and IP. In order to obtain a common sample across

all variables we have to drop the number of countries to 19 so the results are based

on a smaller sample than those in the previous section. We obtain results for the

single-variable models as well as the other combinations of two and three variables.

Figures 2.4 and 2.5 display the RMSFE for the pooled PMIDAS model across the

various combinations of variables in the model. The results show that, while the three

single-variable models all perform quite similarly, as soon as the number of variables

included in the model increases the nowcast performance worsens.14 This is likely due

to the additional burden of parameter estimation.

Figure 2.4: GDP Nowcast Average RMSFE, y-o-y – Additional Predictors
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Notes: The figure plots the mean of RMSFE across all countries on each of the 155 days in the
nowcast period. The pooled PMIDAS model results are displayed for various combinations of ‘BSM’,
‘BSS’ and ‘IP’.

To further explore the robustness of the results to our chosen set of predictor
14When looking at individual countries there is some evidence that the performance does change

with different predictors. The fact that there is some difference in accuracy gains of MIDAS models
when using different variables has also been documented in earlier studies (see Clements et al. 2008;
Clements and Galvão 2009; Foroni et al. 2015; Schumacher 2016).
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Figure 2.5: GDP Nowcast Average RMSFE, q-o-q – Additional Predictors

0.005

0.010

0.015

0 50 100 150

Days

R
M

S
E

No. of Predictors 1 2 3

Models
BSM

BSS

IP

BSM_BSS

BSM_IP

BSS_IP

BSM_BSS_IP

Notes: See notes for Figure 2.4.

variables, we also experimented with adding further surveys available in the OECD

MEI database (additional business surveys from retail, trade and construction as well

as a consumer confidence survey). This further reduces the number of countries in the

sample to 18. However, in searching over many possible combinations of models up

to three variables, we find that it is always the case that RMSFE is increasing in the

number of variables. The results can be found in Figures A.11 and A.12 in Appendix

A. We therefore conclude that a single well-chosen predictor variable can dominate

larger models in this PMIDAS context.15

We also explore the robustness to the choice of sample split in terms of the in-sample

and out-of-sample observations. The results in Figures A.13 to A.16 in Appendix A

show that the results are qualitatively similar when we vary the sample split from

P = 0.2T to P = 0.4T . While the magnitude of the RMSFE changes slightly as we

alter the split fraction, the ranking of the models remains very stable across all of the
15An alternative way to include additional predictors would be to use a dynamic factor model as in

Cascaldi-Garcia et al. (2023) which we do not explore in this chapter.
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nowcast dates. We therefore believe the results are not affected by this choice.

2.5 Empirical Application II: Euro Area Inflation

Nowcasting

In this section, we present an additional contrasting empirical application to the

previous one, where we predict the monthly inflation rate of a set of European countries.

Although inflation data are monthly, they are published with a two to three week

delay which makes timely nowcasts important to short-term policymakers and market

participants. We will exploit data from weekly energy prices which follows the approach

of Modugno (2013).16 The set-up differs from the previous section on global GDP

nowcasting as here the data are released at the same time across countries with the

timeliness coming from the use of high-frequency weekly data, whereas in the GDP

context the data releases were staggered across countries. There are few, if any, studies

looking to use panel approaches to nowcast inflation so this application may be of

stand-alone interest.

2.5.1 Data and Set-up

We will target the annual (y-o-y) growth rate of inflation as this is what tends to be

monitored most closely by market participants and news agencies. However, as in the

previous section, we will also present results for the month-on-month (m-o-m) inflation

target which is also of interest. The data we use are the Eurostat HICP for which

monthly data are available around three weeks after the end of the reference month.

We transform the HICP data as annual and monthly log differences (for y-o-y and

m-o-m respectively). As a predictor variable we use consumer prices of petroleum

products, net of duties and taxes, which are taken from the European Commission’s

Weekly Oil Bulletin (WOB). We use data for automotive gas oil, heating gas oil and
16The earlier version of the paper (Modugno 2011) analysed both U.S. and Euro area inflation

whereas Modugno (2013) focusses only on U.S. inflation.
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Euro Super 95 gasoline, which we average together as in Modugno (2011). We use the

same transformations as in the case of inflation, i.e. the annual (52 week) and weekly

log differences (for y-o-y and m-o-m respectively).

Our dataset runs from July 2004 and ends in December 2019 which gives us a total

of T = 186 months and 812 weeks of data. The dataset covers all major countries

in the European Union, including the largest Euro area countries Germany, France

and Italy.17 In performing the out-of-sample evaluation, as in the previous empirical

application, we will retain 30% of the sample for evaluating the nowcasts, so P = 0.3T .

This means that we start nowcasting in May 2015 and continue until we reach the end of

the sample. We will evaluate the performance of the PMIDAS model with four weekly

lags (both with pooled and non-pooled coefficients) and compare the performance to a

time series AR benchmark.

We will make a sequence of inflation nowcasts on different dates, v, throughout the

month. We start on day one of the reference month and then make four subsequent

nowcasts on days 7, 14, 21 and 28. Using information on the HICP release schedule, we

always attribute the inflation release to occur when we update the model on nowcast

day 21. This means that at the beginning of the nowcast month, we do not have the

past month’s inflation data; this only becomes available when we update the model on

day 21. Regarding the weekly WOB data, on each nowcast date we will use the most

recent weekly data point which has been released before the nowcast date. We always

use the four most recent weeks’ data to make the nowcast. In the same way as the

previous empirical application, we will summarise the nowcast performance for each of

the countries on each nowcast date using the quantiles and average of the RMSFEav,i

statistic described in equation (2.14).
17The full set of countries is: Austria, Belgium, Cyprus, Denmark, Estonia, Finland, France,

Germany, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland,
Portugal, Slovenia, Spain and Sweden.
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2.5.2 Results

We now present the nowcast evaluation results for the y-o-y and m-o-m inflation

nowcasting exercise. In a similar way as before, Tables 2.6 and 2.7 display the quantiles

of the RMSFE across countries, for the pooled and non-pooled PMIDAS model and the

time series AR benchmark. The results are similar to the previous empirical application

in the sense that we find the pooled-PMIDAS model outperforms the time series AR

benchmark for the reported quantiles for both y-o-y and m-o-m targets.

Table 2.6: Inflation Nowcast RMSFE by Quantile – y-o-y

PMIDAS BM

Pooled Not Pooled Time Series AR

Days 25% 50% 75% 25% 50% 75% 25% 50% 75%

1 0.3684 0.3920 0.4424 0.3657 0.4912 0.6628 0.3552 0.4272 0.5734
7 0.3436 0.3841 0.4428 0.3602 0.4789 0.6702 0.3552 0.4272 0.5734

14 0.3090 0.3706 0.4198 0.3699 0.4540 0.6094 0.3552 0.4272 0.5734
21 0.2149 0.2721 0.3297 0.2900 0.3576 0.4286 0.2645 0.3277 0.4013
28 0.2103 0.2830 0.3366 0.2762 0.3446 0.4819 0.2645 0.3277 0.4013

Notes: The table reports the quantiles across countries of RMSFE for each method,
for each of the five nowcast days under consideration. The RMSFEs have been scaled
up by 100 from the log-difference transformation.

Table 2.7: Inflation Nowcast RMSFE by Quantile – m-o-m

PMIDAS BM

Pooled Not Pooled Time Series AR

Days 25% 50% 75% 25% 50% 75% 25% 50% 75%

1 0.0756 0.0828 0.1178 0.0869 0.1212 0.1556 0.0781 0.0886 0.1256
7 0.0697 0.0795 0.1083 0.0826 0.1085 0.1390 0.0781 0.0886 0.1256

14 0.0688 0.0804 0.1039 0.0844 0.1122 0.1434 0.0781 0.0886 0.1256
21 0.0451 0.0514 0.0644 0.0405 0.0676 0.1169 0.0474 0.0556 0.0747
28 0.0430 0.0502 0.0663 0.0433 0.0757 0.1078 0.0474 0.0556 0.0747

Notes: Please see the notes for Table 2.6.

Figures 2.6 and 2.7 graphically display the nowcast performance on average through-

out the nowcast period on the five different nowcast dates. Likewise from the figures

we can again validate the superiority of the pooled PMIDAS model relative to the

benchmark. We also see that the nowcasts tend to improve as the weekly information
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is added, especially when we nowcast the y-o-y inflation rate. We note that, as is

common in nowcasting studies involving an autoregressive term, there is a sharper drop

in the RMSFE on the date when the previous period’s inflation is released, in other

words on day 21 of the nowcast period.

Overall, we find encouraging results for the use of PMIDAS type models in the

context of nowcasting a panel of European countries’ inflation. Coupled with the

previous section’s results on global GDP nowcasting, there is evidence that this method

can usefully be applied in a variety of different settings.

Figure 2.6: Inflation Nowcast Average RMSFE - y-o-y
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Notes: The figure plots the mean of RMSFE across all countries on each of the 5 dates in the nowcast
period. The single predictor variable used is the oil price.
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Figure 2.7: Inflation Nowcast Average RMSFE - m-o-m
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Notes: See notes for Figure 2.6.

2.6 Conclusion

In this chapter, we build a mixed-frequency panel data nowcasting model that can

simultaneously make predictions of a large number of countries, regions or sectors. Our

approach is based on a panel version of a UMIDAS type nowcasting model, which we

extend to allow for heterogeneous coefficients and cross-sectionally dependent errors

with a factor structure. We base our estimation approach on the CCE estimation

method of Chudik and Pesaran (2015a), which must be adapted to the nowcasting

setting. This requires us to use only the lags of the data which are available on

the date which we make the nowcast, unlike existing CCE approaches which use

contemporaneous variable for estimation which is suitable for causal studies but not

for forecasting.

We provide two contrasting empirical applications of our methodology: nowcasting

a large amount of global countries’ GDP, and nowcasting European countries’ inflation.

The first main conclusion from both of our empirical studies is that our proposed

PMIDAS approach is capable of beating a simple benchmark model, when we switch

off heterogeneity and pool the coefficients of the model with heterogeneity only coming

through the fixed effects. The results imply evidence in favour of pooling in the
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debate of whether ‘to pool or not to pool’ (Wang et al. 2019), though our model can

flexibly allow for more heterogeneity if required in other empirical settings. From the

contrasting nature of our applications, we conclude that our method has the potential

to work well in nowcasting other types of economic variables. Finally, our results

also show that adding new releases of data across variables and countries is able to

improve nowcast accuracy in a roughly monotonic fashion. From this we conclude that,

although existing studies typically assess nowcast performance as new data arrives for

a single country across several variables, there is also benefit in incorporating timely

data releases which occur across different countries in a panel data context.
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Chapter 3

Nowcasting U.S. State-Level CO2

Emissions and EC

3.1 Introduction

The growing climate emergency has rapidly expanded the need for policies on abating

CO2 emissions due to fossil fuel energy production and consumption. The importance

of using environmental variables in economic modelling is now well accepted since

the seminal Dynamic Integrated Climate-Economy model (DICE) model of Nordhaus

(1992). This has led to significant recent debate amongst economic policymakers on

tracking the social cost of carbon (Rennert et al. 2021) as well as the widespread use

of environment-economic models by international institutions such as the OECD and

the United Nations.1 In turn, this has placed increasing importance on the ability

to forecast and monitor both short-term and long-term EC and CO2 emissions. Our

focus will be on near-term prediction, or ‘nowcasting’ of these environmental variables,

which has only recently received attention by Bennedsen et al. (2021) in the context of

nowcasting national U.S. CO2 emissions.
1See: https://www.oecd.org/environment/indicators-modelling-outlooks/

modelling.htm and https://www.unep.org/explore-topics/green-economy/what-we-do/
economic-and-trade-policy/green-economy-modelling [Last accessed: 01/09/2022]
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In this chapter, we propose new models for jointly nowcasting multiple regions’ EC

and CO2 emissions, specifically for states in the U.S., which has not yet been studied

in the existing literature. This improves upon studies which look only at the national

context by allowing a more granular overview of regional environmental degradation.

The focus on sub-national variables is important for several reasons. Firstly, there

is growing evidence that sub-national efforts to reduce emissions can accelerate the

achievement of national abatement targets (see Hultman et al. 2020, and the references

therein). Secondly, the discussion of local-level environmental action has gained a stage

in the largest climate meetings, such as the dedicated ‘Cities, Regions and the Built

Environment’ day at Conference of Parties (COP)26. Finally, there are already many

sub-national environmental initiatives in the U.S., where around half of all U.S. states

currently have greenhouse gas emissions targets,2 and more than ten states which

participate in the Regional Greenhouse Gas Initiative (RGGI), a market-based program

to reduce emissions. For these reasons, it is crucial that policymakers have access to

up-to-date data on regional CO2 emissions and EC. However, it is very challenging to

monitor the movements in these variables in real time as the data are only available

annually and with very long publication lags. This challenge has not been addressed

by existing academic studies.

This chapter aims to fill this gap in the literature by providing a novel nowcasting

methodology for U.S. state-level EC and CO2 emissions growth. This allows us to

obtain timely predictions of these variables before the data are published. This builds

on existing academic studies in several ways. Firstly, our study is unique in nowcasting

state-level EC and CO2 emissions, where only the recent study of Bennedsen et al.

(2021) looks at nowcasting national CO2 emissions and not at state level. Secondly,

our chapter provides a novel application of recently-emerging panel data nowcasting

methods which have typically been used only for predicting macroeconomic variables

like real GDP (Fosten and Greenaway-McGrevy 2022) and not environmental variables.

More broadly, panel data nowcasting is a relatively new and increasing field (Babii
2See: https://www.c2es.org/content/state-climate-policy/ [Last accessed: 29/03/2022]
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et al. 2020; Koop et al. 2020; Larson and Sinclair 2022) relative to the long history

of time series nowcasting (see the surveys of Bańbura et al. 2013; Bok et al. 2018).

Finally, our chapter is different from traditional nowcasting studies of real GDP where

publication lags may be only one or two months. In our setting, there is even stronger

motivation for the use of nowcasting due to the annual frequency and the abnormally

large publication lags in the U.S. state-level EC and emissions data. The CO2 data are

only available over two years after the end of the relevant year, while EC data have

a delay of around a year and a half. These publication lags make the problem more

interesting than existing studies and require methods which are capable not just of

nowcasting but also backcasting.

The first contribution of the chapter is to propose a panel data nowcasting method-

ology for state-level EC and CO2 emissions growth. Motivated by the fact that the

emissions data are calculated directly from EC data, we propose a two-step bridge

equation approach adapted to the case of panel data. We first use a mixed-frequency

panel MIDAS model to obtain nowcasts of annual state-level EC growth using higher

frequency quarterly economic activity data. This model we use is adapted from the

mixed-frequency approach of Ghysels (2016), which we extend from the time series to

the panel data context, and the model’s predictions can be updated every time new

information arrives. We then employ a panel bridge equation approach to transform

the nowcasts of EC growth into nowcasts of CO2 emissions growth. In doing so, we

use a multi-factor error structure to allow for CSD across states in the style of Chudik

and Pesaran (2015a). Our panel bridge equation model is similar to the well-known

time series bridge equation approach (see for example Baffigi et al. 2004; Foroni and

Marcellino 2014; Schumacher 2016) with the difference that we extend this to allow

the modelling of panel data, which is an improvement in contexts where regional data

are available. The CSD structure we use is similar to the panel nowcasting approach of

Chapter 2, which in this chapter we adapt to the case of bridge equation models.

The second contribution of the chapter is the empirical part where we perform

a detailed pseudo out-of-sample forecasting study using our models to predict EC
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and CO2 emissions growth over a period of history. We mimic the release schedule of

the variables in real time and make multiple nowcasts and backcasts for every period

under consideration. This allows us to assess how the performance of these methods

changes as we add new information into the nowcasting model, as is commonly done in

empirical nowcasting studies (see, for instance, Giannone et al. 2008; Bańbura et al.

2013; Bok et al. 2018). For the predictions of EC growth, we use real GDP or real

personal income growth. Since these economic series have a much lower publication lag,

we first of all consider restricting the data flow to only use the year-end annual growth

rate of these series in predicting annual EC growth, before turning to assess whether

incorporating the mixed-frequency quarterly data can make further improvements. We

finally use the bridge equation method to feed in these EC predictions and arrive at

predictions of CO2 emissions growth.

We make several interesting findings. We find that the predictions of EC growth im-

prove across states when current economic data are used for nowcasting and backcasting,

relative to a naïve benchmark. There are particularly sizeable gains in several states,

which we assess by looking at the across-state distribution of the gain in predictive

accuracy of our model relative to the benchmark. Even when using the economic data

at the annual frequency, gains in predictive accuracy occur around a year ahead of

the release of the EC data. This highlights the gain from using timely information in

prediction, even if there is no difference in the frequency of the series. Furthermore,

when we increase the frequency to use quarterly economic data we find that nowcast

improvements are possible even within the nowcast year itself, around two years before

the release of the data for the target variable. With regard to the CO2 predictions,

the gains are less notable when adding economic data although still sizeable in some

states, and the biggest gains come when we add in the current year’s EC. This is still

important as these accurate predictions come many months before the release of the

data by the statistical authorities, and we use a much simpler methodology than that

used in constructing the data. We find some additional but marginal gain from using

factors estimated to pick up common correlated effects in the CO2 bridge equation
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method. We also provide various robustness checks such as the use of per capita EC

and emissions growth as target variables.

Our empirical study builds on an increasing body of empirical work in nowcasting.

While only the aforementioned study of Bennedsen et al. (2021) looks at nowcasting

environmental variables, there have been a vast amount of studies using nowcasting for

macroeconomic monitoring. The majority of studies look at nowcasting real GDP and

have done so in a variety of different contexts: developed economies (Bok et al. 2018;

Anesti et al. 2022), EMEs (Dahlhaus et al. 2017; Bragoli and Fosten 2018) global GDP

(Ferrara and Marsilli 2019) and so on. Nowcasting has also been applied to several

other macroeconomic series such as the GDP components (Fosten and Gutknecht

2018), inflation (Modugno 2013; Knotek and Zaman 2017) and unemployment claims

(Larson and Sinclair 2022). Our chapter helps to shift this focus from macroeconomic

to environmental nowcasting, which we believe will be a fruitful area of future research.

The rest of the chapter is organised as follows. Section 3.2 describes the data sources

used in the study. Section 3.3 contains the models we propose and Section 3.4 details

the pseudo out-of-sample methodology we use in evaluating these models. Section 3.5

discusses the results of the pseudo out-of-sample experiment and Section 3.6 concludes

the chapter. Appendix B houses additional sets of results not included in the main

text.

3.2 Data

3.2.1 CO2 Emissions

State-Level CO2 emissions data are available from the U.S. Energy Information Admin-

istration (EIA).3 The data are available on an annual basis with observations from 1980

onwards. The data cover the CO2 emissions from direct fuel use across various sectors:

commercial, industrial, residential and transportation. We focus on the total emissions
3See: https://www.eia.gov/environment/emissions/state/ [Last accessed: 11/11/2021]
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by state but we will also consider per-capita CO2 emissions as this has been the target

variable of other studies (Bennedsen et al. 2021). Of crucial importance to this study is

that the publication lag for the CO2 emissions data is very large, around two years and

three months after the end of the reference year. For instance, the data for 2018 were

released at the beginning of March 2021. This lag is considerably larger than other

types of state-level data such as the economic variables mentioned below. This lack of

timeliness will mean that both nowcasting and backcasting are appropriate.

In producing the data, the EIA estimate state-level CO2 emissions based on under-

lying EC data from the State Energy Data System (SEDS).4 Knowing this aspect of the

data construction is what motivates the use of a bridge equation where total state-level

CO2 emissions data are directly linked to total state-level EC data.5 We note that this

approach will be like an approximation to the more disaggregated way in which the

EIA computes the state-level CO2 data. To be more precise, according to the EIA’s

methodology documentation,6 the conversion to CO2 emissions from EC is first made

at a very granular level by fuel type and sector, using different emissions factors and

proportions of fuel used in fuel combustion. After conversion, the total CO2 emissions

are summed up from the disaggregates. An alternative approach to ours would be a

bottom-up approach to mimic the EIA’s calculation by nowcasting the disaggregate

EC series, converting them and then aggregating them afterwards. However, we do

not pursue this approach as it would entail a large amount of additional nowcast

uncertainty: (i) the nowcast errors from a large number of individual disaggregates

summed up to get the total, (ii) the errors from predicting the emissions factors which

are themselves estimated and would require nowcasting, (iii) some estimation of the

proportions of each fuel type that is used in combustion, which the EIA bases on

various sources. We prefer a direct top-level approach, much in the same way that GDP
4See: https://www.eia.gov/state/seds/ [Last accessed: 11/11/2021]
5This is instead of modelling CO2 emissions directly as a function of, say, economic variables. We

tried this latter approach in our empirical investigations but found it to perform worse than modelling
using EC.

6See: https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf [Last ac-
cessed: 31/08/22]
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nowcasters target the aggregate GDP series and not the very granular disaggregated

output series which are also available.

3.2.2 EC

The data for state-level EC are also available on an annual basis. The data are available

from the SEDS, mentioned earlier, also produced by the EIA. The annual time series

for each state are available from 1960 onwards. As with CO2 emissions, we will consider

both the raw and per-capita EC in our analysis. Regarding the timeliness of the data,

although the data frequency is the same as that of CO2 emissions, the SEDS data

are published in a more timely fashion. Here, the publication lag is around one year

and six months, which is roughly nine months quicker than for the CO2 data. For

instance, the data for 2019 were published at the end of June 2021. Although the data

are more timely, if we want to use the current year’s EC in predicting CO2 emissions,

this would constitute a backcast and not a nowcast. In order to obtain nowcasts of

EC and therefore CO2 emissions, we require data which are available in a much more

timely fashion, such as the economic indicators outlined next.

3.2.3 Economic Indicators

Since the aim is to produce state-level EC nowcasts, it is natural to use state-level

economic indicators. We consider two different variables: real GDP and real Personal

Income (PI). Both of these series are available from the Bureau of Economic Analysis

(BEA).7 The quarterly PI data are available at a quarterly frequency for all states

from 1950 onwards, which we deflate by the GDP deflator for the U.S. to obtain real

figures. The real GDP data have a much shorter history than PI. Annual data are

available from 1997, and are published separately from the quarterly data which are

only available from 2005. We will therefore consider both annual and quarterly versions

so that we can compare GDP and PI as predictors in the annual case. In the quarterly
7See: https://www.bea.gov/data/gdp/gdp-state and https://www.bea.gov/data/

income-saving/personal-income-by-state [Last accessed: 12/02/2022]
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case we will focus on PI data only as the time span of the quarterly GDP data is not

long enough for a meaningful pseudo out-of-sample reconstruction.

There are two factors which make these economic series appropriate for nowcasting

EC and therefore CO2 emissions. Firstly, their quarterly frequency makes them anyway

more timely than the annual data. Secondly, for both PI and GDP, the publication

lag is around three months after the end of the reference quarter.8 This implies that

already in the middle of the nowcast year, the first quarter of that year’s economic

data are available for making predictions of EC for that same year.

It is difficult to expand on the set of economic predictor variables we use due to the

limited availability of state-level data. For instance, Bennedsen et al. (2021) note that

the IP index is useful in nowcasting national CO2, but IP data are not available by

state. However, we will instead show some additional results using the Philly Fed’s

State Coincident Indices.9 These indices are available in a timely fashion at the monthly

level and are constructed using a dynamic factor model on four state-level employment

type series, which bears resemblance to the factor model methods used in nowcasting

with many predictors.

3.3 PMIDAS and Bridge Equation Methodology

In this section we describe the models we use to predict the annual growth of EC

and subsequently of CO2 emissions growth.10 As mentioned earlier, the CO2 data are

released in March over two years after the reference year, whereas the EC data are

published in June each year, a year and a half after the reference year. The economic
8We will assume the same publication lags for GDP and PI, as these data are generally released

in the same month, often on the same date. See: https://www.bea.gov/news/schedule/full [Last
accessed: 12/02/2022]

9See: https://www.philadelphiafed.org/surveys-and-data/
regional-economic-analysis/state-coincident-indexes [Last accessed: 12/02/2022]

10We focus on the growth rates of these series as is standard in the macroeconomic nowcasting
literature when analysing trending unit root processes. Since there is little existing evidence on unit
roots in the state-level EC and CO2 emissions data we performed a battery of panel unit root tests
(the Levin et al. (2002) (LLC) test, the Im et al. (2003) test (IPS) and the Choi (2001) test). As
expected, these tests confirm non-stationarity in levels and stationarity in growth rates. We do not
present the results in the text for the sake of brevity.
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data are available in a more timely fashion. Our approach is therefore to use a bridge

equation to compute predictions of CO2 emissions growth for the target year by first

obtaining predictions of EC using economic indicators. Therefore, while CO2 emissions

are the ‘target’ variable of the bridge equation, we also obtain timely predictions of EC

which is of separate interest in itself.

We differ from the prevalent bridge equation models (see Foroni and Marcellino

2014; Schumacher 2016, and the references therein) in several important ways. Firstly,

we use a panel data set-up instead of a time-series approach that is common in economic

nowcasting. Secondly, the EC variable we predict in the first step is not available at a

higher frequency but has lesser publication lags as compared to our final target variable,

CO2 emissions. Lastly, we do not restrict ourselves to AR models for predicting EC as

is typical of economic bridge equation set-ups. Instead, we also use panel data models

and incorporate mixed-frequencies to use higher frequency quarterly PI or real GDP

growth.

3.3.1 PMIDAS Model for EC

We now describe the panel model for nowcasting EC growth using economic data.

Since the economic data are both more timely and available at a higher frequency,

we will try out two different approaches. In the first approach we simply use annual

data for both the EC and economic variables, in order to assess whether the timeliness

of economic data is useful even when using annual data. In the second approach we

check whether inserting quarterly economic data in a mixed-frequency approach brings

further benefits. This is also motivated by the data constraint mentioned earlier, that

the quarterly real GDP figures do not have sufficient history to be used in a pseudo

out-of-sample experiment whereas the annual GDP data do have sufficient history. The

annual version will therefore give results both when using GDP and PI whereas the

quarterly version will only yield results when using PI.
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Annual Frequency Model

We start out with the model which predicts EC using the available autoregressive lags

on day v of the nowcast period as well as the annual lags of the economic indicator:

ci,t = αvi + ϕvci,t−dcv + βvXi,t−dXv
+ uv,i,t (3.1)

where t denotes the annual time index and ci,t is a generic notation indicating the

annual growth rate in EC. In the main results this is simply the percentage change in

actual EC for state i in year t, in other words the growth rate of ECi,t. Alternatively,

we also explore the results where ci,t is the growth rate of per capita consumption, in

other words the growth rate of ECi,t

popi,t
, where popi,t is the state population. In a similar

way, Xi,t is a generic notation for the annual growth rate of the economic indicator,

either GDP or PI, and could be actual or per-capita according to the target variable.

The model in equation (3.1) takes account of the ragged edge problem in the

following way. Denoting v to be the date of prediction, we define dcv as the available lag

of ci,t at the time of prediction, based on its publication lag. Similarly, dXv is used to

denote the available lag of Xi,t used in the model at time v. As we change the nowcast

date v, the available lags of each variable may change and the model lag structure is

updated to accommodate new information. Since the model variables change on each

date, v, the parameters of the model and the error term are also indexed by v. To

give an example, in nowcasting year t, if v is the start of year t, based on the data

flow described in Section 3.2 earlier, the model will use ci,t−3 and Xi,t−2. After March

of year t, the economic data are updated and Xi,t−2 is replaced with Xi,t−1 and so

on. The full updating procedure will be described later when we introduce the pseudo

out-of-sample set-up.

Mixed-Frequency Model with Quarterly Data

We now re-state equation (3.1) so that the quarterly frequency of the economic data is

fully utilised in a mixed-frequency model. This model is a panel version of the UMIDAS
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model (see Foroni et al. 2015; Schumacher 2016) which takes on the following form:

ci,t = αvi + ϕvci,t−dcv + β(m)′
v xi,t− qv

4
+ uv,i,t (3.2)

where xi,t− qv
4

= (xi,t−qv/4, xi,t−(qv−1)/4, xi,t−(qv−2)/4, xi,t−(qv−3)/4)′ denotes the generic

stacked skip-sampled PI or GDP growth which is inserted into the model with a

quarterly lag of qv at nowcast date v. Note that a lag of one quarter is denoted in

annual terms as t − 1
4 . In equation (3.2), the slope coefficient β(m)

v is a vector of length

four, corresponding to the stacked skip-sampled process xi,t− q
4

consisting of the four

quarters in a year. The nowcast updating works in the same way as for equation (3.1).

When we change the nowcast date, v, we update the lag structure to incorporate any

newly-available annual data for ci,t and quarterly data for xi,t.

Equations (3.1) and (3.2) are panel versions of the Autoregressive with an exogenous

regressor (ARX) model and we refer to it as the ARX model subsequently. We will

also use a naïve benchmark method to compare with the predictions from the panel

ARX model. For this benchmark we will use a simple historic mean prediction using all

available data at the time of making the nowcast.11 Later on, we use the EC predictions

from both the panel ARX and the benchmark model to predict CO2 emissions and

compare the results.

3.3.2 Bridge Equation for CO2 Emissions

Here we describe the main nowcasting bridge equation for CO2 emissions growth, where

we plug in the predictions for EC obtained from the previous equations (3.1) or (3.2).

We define ĉv,i,t generically as the predicted value of ci,t on day v of the nowcast period.

The main equation is a panel bridge equation model with a multi-factor error structure:

ei,t = θvi + ρvei,t−dev + δv ĉv,i,t + λvft + εv,i,t (3.3)

11In previous version of the chapter we also considered using an autoregressive benchmark but the
results are qualitatively similar.
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where we define emissions growth, ei,t, which either represents the growth of CO2i,t, the

CO2 emissions in state i in year t, or the growth of per-capita emissions Ei,t = CO2i,t

popi,t
.

In a similar way to before, the autoregressive lags included in the model depend on the

publication lag, which at prediction time v is denoted by dev. As earlier, the parameters

and error term in equation (3.3) also depend on v as the model variables change with v.

The variable ft denotes unknown factors with loadings λv which are common across

all states and are used to model the CSD in the error terms. In order to estimate

these factors, in a similar way to Chudik and Pesaran (2015a) they are also assumed

to influence the ĉv,i,t in the following way:

ĉv,i,t = ζvi + κvei,t−dev + Γvft + ϵv,i,t (3.4)

We note that equations (3.3) and (3.4) assume away heterogeneity (across i) in the

factor loadings λ and Γ, which was permitted in the original paper of Chudik and

Pesaran (2015a). This is partly because pooling coefficients is often seen to be preferable

to heterogeneous coefficients in panel forecasting (Wang et al. 2019), and also because

our relatively small number of annual time periods makes it less desirable to add

coefficient heterogeneity. Thus, the common factors ft could also be regarded as time

fixed-effects; see Pesaran (2016, Ch. 31, p. 833).

Equations (3.3) and (3.4) jointly create a set-up that can be estimated through

the CCE method. Since the original method of Chudik and Pesaran (2015a) was

not designed to use for forecasting, we use the LCCE approach developed in Chapter

2 which ensures that only the available lags of the predictor variables are used in

estimating the factors. In this way, the final prediction equation replaces the unknown

factors in equation (3.3) as follows:

ei,t = θvi + ρvei,t−dev + δv ĉv,i,t +
pT∑
l=0

γ′
vlzv,i,t−l + εv,i,t + Op(N− 1

2 ) (3.5)

where zv,i,t are the factor estimates used to pick up CCE in the errors and pT is a lag

truncation parameter. The factor estimates are obtained by taking a state-weighted
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average of the vector zv,i,t = [ei,t−dev , ĉv,i,t]′. Chudik and Pesaran (2015a) and Chapter 2

discuss the equivalence of least squares estimation of equation (3.5) and the system of

equations (3.3) and (3.4). We therefore use panel least squares estimation of equation

(3.5) in our out-of-sample forecasting exercise.

We will compare the results with those from a simple panel ARX model, where we

simply estimate equation (3.3) without the factors ft. This will allows us to observe

any effects from allowing CSD. As a naïve benchmark, in the same way as earlier, we

will use the historic mean using the data available at the time of making the nowcast.

3.4 Pseudo Out-of-Sample Set-up

We perform pseudo-out-of-sample experiments for nowcasting annual EC and CO2

emissions growth across the N = 51 individual states plus the District of Columbia.

We start our out-of-sample nowcasts in 2009 and finish in 2018. As is common in the

nowcasting literature (dating back to Giannone et al. 2008) we will make multiple

nowcast and backcast updates at different dates, v, for every year in the out-of-sample

evaluation period. We do this to replicate the ragged edge in the data using a calendar

of releases as they would have occurred in real time. This allows us to see how the

nowcasts and backcasts behave, on average, as we add more information whenever it

becomes available. For every data release we take into account the new lag of data

available, adjust the model lag structure as detailed earlier, re-estimate the models and

obtain first the EC predictions and then the CO2 predictions from the bridge equation

in equation (3.5). Once we have finished making nowcasts and backcasts of a given

year, we move on to the next year by expanding the information set as in the recursive

out-of-sample scheme of West (1996).

To be more specific on the nowcast updating procedure, we will start by making a

nowcast at the beginning of the reference year, at the end of January. This can be seen

as the first date in Tables 3.1 and 3.2 which detail the release calendar in the annual

and quarterly data set-up. We then move through the nowcast year, updating in March
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and then June in both the annual and quarterly set-ups. In the quarterly set-up, there

are two further releases in the nowcast year in September and December as additional

quarterly lags of the economic data become available as seen in Table 3.2. This gives

a total of three nowcasts in the annual set-up and five in the quarterly set-up. We

then move into the next year and start backcasting. For EC this gives a further two

updates in both the annual and quarterly set-ups, as we stop updating the economic

data after the observation for the target nowcast year has been released (in other words

we do not use ‘future’ economic data to predict current EC). This gives a total of five

predictions (three nowcasts and two backcasts) for EC in the annual set-up and seven

(five nowcasts and two backcasts) in the quarterly set-up. When it comes to making

the CO2 predictions, we have the same number of predictions made as in the case of

EC but there are two additional updates: in March of the second backcast year when

the first lag of CO2 data is released, and in June when the current year’s EC data is

released. In other words, the last bridge equation nowcast we make of CO2 will replace

the predicted EC with its actual realised value.

Table 3.1: Release Calendar for the Annual Set-up

Month Year EC GDP/PI CO2

Nowcast 1 January 0 3 2 4
2 March 0 3 1 3
3 June 0 2 1 3

Backcast 4 March 1 2 0 2
5 June 1 1 0 2

6 March 2 1 0 1
7 June 2 0 0 1

Notes: Month and Year denote when the prediction is
made, with Year being the number of years after the now-
cast year (so Year 0 is the nowcast year itself).
The columns EC, GDP/PI and CO2 display the available
lags of that variable in years, relative to the nowcast year.
The horizontal line after release 5 denotes the point at
which we stop predicting EC in the annual set-up. Releases
6 and 7 are only used for predicting CO2.

We will therefore have multiple nowcasts and backcasts made per year for a total

of nine evaluation years from 2009 to 2018. Since all of the data series have slightly
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Table 3.2: Release Calendar for the Quarterly Set-up

Month Year EC GDP/PI CO2

Nowcast 1 January 0 3 5* 4
2 March 0 3 4* 3
3 June 0 2 3* 3
4 September 0 2 2* 3
5 December 0 2 1* 3

Backcast 6 March 1 2 0* 2
7 June 1 1 0* 2

8 March 2 1 0* 1
9 June 2 0 0* 1

Notes: The same as for Table 3.1 except the publication lags
for GDP/PI (*) are in quarters relative to the last quarter of
the nowcast year. A value of 0* means that all quarters of the
nowcast year are already available).
The horizontal line after release 7 denotes the point at which
we stop predicting EC in the quarterly set-up. Releases 8 and 9
are only used for predicting CO2.

different sample sizes, it is useful to consider the proportion of the sample which is

being used for evaluation. In predicting EC, given that annual state-level GDP data

begins only in 1997, starting our evaluation in 2009 implies we use around a half of

the sample for evaluation of the EC predictions using GDP. Since the data span for

PI is much longer we use about 17% of the sample for evaluating the EC predictions

using PI. In predicting CO2, given that the data runs from 1980 to 2018, we assess the

accuracy of our predictions for about a quarter of the total length of our time sample.

To compare the accuracy of the predictions from the various competing methods,

we will use the average RMSFE as the criterion. This will be the square root of the

time-averaged squared prediction errors, averaged across all states i = 1, ...., N . The

RMSFE will be tracked across multiple nowcast dates, v, and is defined as follows,

denoting that T is the last year in the sample and we have P out-of-sample predictions

made:

RMSFEv = 1
N

N∑
i=1

√√√√ 1
P

T∑
t=T −P +1

ε̂2
v,i,t (3.6)

where ε̂v,i,t generically stands for the prediction error of a model on nowcast date v for
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state i and year t.

We will also perform some analysis of the RMSFE for each state, where we do not

average over the states. In other words we take the RMSFE for state i on nowcast date

v as:

RMSFEvi =

√√√√ 1
P

T∑
t=T −P +1

ε̂2
v,i,t (3.7)

where, of course, these results are only indicative as they are based on rather a small

time series sample size and will be treated with some caution.

3.5 Results

In this section, we discuss the results of the pseudo-out-of-sample experiment described

in the previous section. We first discuss the accuracy of the EC predictions before

then turning to the accuracy of the bridge equation method results for CO2 emissions.

For these accuracy assessments for EC and CO2, we analyse both the annual data

set-up and the quarterly data set-up as described earlier. We present results only for

the original EC and CO2 growth series, with the per-capita growth being reported in

Appendix B.12 The findings are very similar between the main results and the per-capita

results.

3.5.1 EC Results

EC Predictions with the Annual Data Flow

Figure 3.1 displays the RMSFEs obtained from predicting the growth rates of EC

according to the release schedule in Table 3.1, where the economic data are used at the

annual frequency. In all figures, the RMSFEs have been normalised by the RMSFE of

the benchmark in the first nowcast period so that any figures lower than 1 are gains
12In arriving at the per-capita figures for the quarterly series, the population is assumed to remain

constant for all four quarters of any year and is equal to the annual number.
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relative to the benchmark in the first period. These results show that, on average

across all states, there is a drop in the RMSFE from the ARX model when the model

also includes current economic data, both for GDP and PI. From Table 3.1, we noted

earlier that there are only two annual economic data releases, which occur in releases

two and four. While release two, corresponding to the year lagged economic data, is

not able to improve the RMSFE of the ARX model in comparison to the benchmark,

release four shows that the ARX model improves over the benchmark on the release

of the up-to-date economic data. We see a sharper drop in the RMSFE based on the

PI data relative to the GDP data. We note that the GDP data only have a relatively

short history, starting in 1997, so the results based on PI appear to be more reliable.

Figure 3.1: RMSFE – EC, Annual Data Flow
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Notes: The RMSFE figures are normalised by the BM at the first release date. Therefore any points
below 1 indicate that the RMSFE is lower than that of the benchmark in the first nowcast period.

While the average RMSFE results across states show a quantitatively modest

improvement over the benchmark after economic data have been released (gains of 5-6%

in both cases), when we dig into the individual states we see much more substantial

improvements of our method in some of the larger states such as Florida, with gains of

up to 30%. To summarise the results across states, Table 3.3 presents the quantiles of
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the state-specific RMSFEs for the ARX model relative to the benchmark model. In

general the table confirms what is seen in Figure 3.1 and we see that at releases 4 and

5 there are gains from the ARX model relative to the benchmark across the majority

of states. Additionally, we see that gains at the later nowcast updates are as large as

20% over the benchmark in several states at the 10th percentile, both for the GDP and

PI models. The gain is in the region of 10% to 15% at the 25th percentile.

Table 3.3: Distribution of Relative RMSFE Across States – EC – Annual Data Flow

Release 10% 25% 50% 75% 90%

1 0.9918 1.0128 1.0332 1.0590 1.0949
2 0.9499 0.9880 1.0056 1.0336 1.0582
3 0.9419 0.9609 0.9927 1.0245 1.0552
4 0.8476 0.8872 0.9365 0.9882 1.0488
5 0.8337 0.8854 0.9418 0.9974 1.0833

(a) Predictor – GDP

Release 10% 25% 50% 75% 90%

1 0.9810 0.9879 0.9961 1.0058 1.0142
2 0.9185 0.9790 1.0007 1.0233 1.0531
3 0.9392 0.9826 1.0088 1.0310 1.0495
4 0.7974 0.8757 0.9331 0.9969 1.0163
5 0.7999 0.8806 0.9351 0.9979 1.0195

(b) Predictor – PI

Notes: The numbers represent the quantiles of the
distribution of relative RMSFE across states, where
we take the RMSFE of the ARX model relative to the
benchmark. Figures lower than 1 indicate that the
RMSFE of the ARX model was lower than that of the
benchmark for all of the countries below the relevant
quantile.

The naïve benchmark method, on the other hand, does not improve even as newer

relevant information is added in calculating the historic mean. If anything, the results

seem to worsen as the data for EC gets released and is included in the predictions.

This is more evident from Figure 3.1b where we use the entire available history of EC

growth rates since 1961.
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In summary, we find that releases of current economic data yield improvements

in predicting growth rates of EC. The improvement is modest on average across all

states, and rather large in some of the most energy-consuming states. Looking at the

performance across all states indicates that the proposed method is capable of delivering

nowcast accuracy gains in a non-trivial number of states once relevant economic data

are included in the model. We find that the backcast made in March of the year after

the reference year (release four) is of particular use. This is available well over a year

in advance of the release of the EC data, and so we are able to make timeliness gains

even using this example with annual economic data.

EC Predictions with the Quarterly Data Flow

Now we present an assessment of the nowcast and backcast predictions of EC growth

using the mixed-frequency version of the model in equation (3.2). In this case we

update the dataset following Table 3.2 using quarterly frequency PI data. The quarterly

state-level GDP data starts only in 2005 and hence leaves us with too few observations

for estimating and evaluating the models. Therefore, we do not include state-level

GDP in the mixed-frequency analysis.

Figure 3.2 shows the average RMSFE across states from the mixed-frequency panel

ARX model, in contrast to the naïve benchmark. As in the annual case earlier, we find

a noteworthy drop in RMSFE once the PI data for successive quarters of the target

year starts to get released and is included in the model. The RMSFE gains relative

to the benchmark are as much as 10% on average across states, which is somewhat

larger than that when using annual data. Furthermore, in the annual model the drop

in RMSFE could be observed only after all four quarter’s data have been released. In

the mixed-frequency case we notice falling RMSFE right from the release of the first

quarter of data (release date 3 in Table 3.2). By the end of the prediction period, while

the benchmark does not improve at all, the mixed-frequency ARX model has shown

improvements using economic data.

As with the annual results, we also display the distribution of the relative RMSFE
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Figure 3.2: Average RMSFE Across States – EC – Quarterly Data Flow
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Notes: The same as Figure 3.1 but we note that only PI data are used in the quarterly data flow
set-up due to the short time span of quarterly state-level GDP data.

Table 3.4: Distribution of Relative RMSFE Across States – EC – Quarterly Data Flow

Release 10% 25% 50% 75% 90%

1 0.9227 0.9556 0.9841 1.0133 1.0643
2 0.8808 0.9218 0.9705 1.0010 1.0568
3 0.8527 0.8997 0.9605 0.9930 1.0422
4 0.7896 0.8746 0.9315 0.9845 1.0316
5 0.7839 0.8681 0.9033 0.9616 1.0392

6 0.8128 0.8946 0.9568 0.9892 1.0363
7 0.8138 0.8945 0.9619 0.9916 1.0224

Notes: The same as for Table 3.3.

across quantiles, which can be seen in Table 3.4. Here we see that there are nowcast

accuracy gains of up to 20% in the best 10th percentile of states, which is even larger

that in the annual case, with the added benefit that the quarterly predictions can be

derived in a more timely fashion. Even at the 25th percentile, there are gains of around

15% from using the ARX model relative to the benchmark, once sufficient data have

been added into the model.

Overall, these quarterly results show an improvement over the annual results both

in terms of the relative gain of the ARX compared to the benchmark, but especially

due to their additional timeliness. Since we start to get the quarterly information on
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the nowcast year in around June of the same year, we can see improvements in RMSFE

around two years before the EC data are published.

3.5.2 CO2 Emissions Results

Now having the predictions of the EC for the target year, we can proceed to predict the

CO2 emissions growth rate using the bridge equation model in equation (3.3). We do

this in two parts as earlier, first evaluating the nowcasts when only the annual economic

data are incorporated into the EC nowcasts, and then allowing for quarterly economic

data to be used. As before, both PI and GDP are used in the annual frequency results

whereas only PI is used in the quarterly results.

CO2 Emissions Predictions with the Annual Data Flow

Figure 3.3 displays the results of the bridge equation method based on EC nowcasts

from either the ARX or benchmark method (as in Figure 3.1). In a similar way to before,

there is improvement in predictive accuracy from the fourth data release onwards, in

other words when the economic data for the target year is released. However, these

gains are less obvious than in the case of EC. Some gains of up to 10% on average can

be seen when bridging using the predictions of EC including GDP data (‘EC.GDP’)

which improves more than when predicting EC with the benchmark method (‘EC.BM’)

and no economic data. We note that the addition of factors in the bridge equation

model (displayed with dashed lines) does yield some minor improvements but these are

somewhat marginal.

The most striking finding is the very sharp drop of almost 75% at the final release

date when we incorporate the actual observed EC data into the bridge equation model.

This clearly makes sense as the CO2 data are derived from EC, however it is noteworthy

that we are able to generate good predictions many months before the CO2 data are

released, even when using a simple panel data regression model which is far simpler

than the methodology used to construct the actual CO2 data.
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Figure 3.3: Average RMSFE Across States – CO2 Emissions – Annual Data Flow
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Notes: Dashed lines indicate that factors were used in the CO2 model. EC.BM: bridge equation
predictions for CO2, benchmark model for EC; EC.GDP/EC.PI: bridge equation predictions for CO2,
GDP/PI model for EC. The RMSFE is normalised on the benchmark in the first nowcast period as in
previous figures.

Tables 3.5 and 3.6 present the relative RMSFE distributions across states, for all of

the models considered in Figure 3.3. As before, these tables reveal more information

about the performance of the bridge equation method than looking at the average

across all states. For instance, in the case where the EC nowcasts used in the bridge

equation have been derived from GDP data (Tables 3.5a and 3.5b), we see gains of

around 20% relative to the benchmark in the top 10th percentile at nowcast point

four when recent economic data are available. We also notice a similar pattern to the

average results before when looking across all percentiles, with a sudden drop in the

RMSFE of the bridge equation method (relative to the benchmark) at the end of the

prediction period when the current year’s EC data are released.

CO2 Emissions Predictions with the Quarterly Data Flow

Finally, we perform the evaluation of the CO2 predictions where the quarterly data

were used in the EC predictions. These are, again, only performed with PI as the

economic indicator as in Figure 3.2. The results of the pseudo-out-of-sample experiment
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Table 3.5: Distribution of Relative RMSFE Across States – CO2 Emissions – Annual
Data Flow (Predictor: GDP)

Release 10% 25% 50% 75% 90%

1 0.9168 0.9694 1.0000 1.0286 1.0579
2 0.8763 0.9242 0.9744 1.0118 1.0641
3 0.8706 0.9349 0.9625 0.9980 1.0273
4 0.8277 0.8804 0.9186 0.9650 1.0481
5 0.8266 0.8733 0.9300 1.0038 1.0949
6 0.8526 0.8790 0.9413 0.9960 1.0766
7 0.1732 0.2101 0.2704 0.3241 0.3958

(a) Model: EC.GDP

Release 10% 25% 50% 75% 90%

1 0.9034 0.9720 1.0143 1.0481 1.1228
2 0.9520 1.0073 1.0483 1.0979 1.1239
3 0.9251 0.9956 1.0311 1.0755 1.1119
4 0.7765 0.8298 0.8743 0.9371 1.0394
5 0.7715 0.8127 0.8933 1.0009 1.1013
6 0.8439 0.8846 0.9381 0.9985 1.1116
7 0.1757 0.2003 0.2470 0.3114 0.3955

(b) Model: EC.GDP with Factors
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Table 3.5: (cont’d...)Distribution of Relative RMSFE Across States – CO2 Emissions –
Annual Data Flow (Predictor: GDP)

Release 10% 25% 50% 75% 90%

1 0.9038 0.9305 0.9572 1.0023 1.0237
2 0.9167 0.9438 0.9646 0.9953 1.0220
3 0.8903 0.9479 0.9812 1.0097 1.0486
4 0.9400 0.9645 0.9861 1.0062 1.0418
5 0.9309 0.9597 0.9816 1.0097 1.0311
6 0.9376 0.9777 0.9941 1.0129 1.0305
7 0.1732 0.2101 0.2704 0.3241 0.3958

(c) Model: EC.BM

Release 10% 25% 50% 75% 90%

1 0.8929 0.9428 0.9766 1.0138 1.0882
2 0.9622 1.0093 1.0439 1.0829 1.1180
3 0.9653 1.0048 1.0643 1.1019 1.1253
4 0.8890 0.9151 0.9411 0.9788 1.0364
5 0.8656 0.8939 0.9618 1.0095 1.0403
6 0.9479 0.9787 0.9923 1.0252 1.0633
7 0.1757 0.2003 0.2470 0.3114 0.3955

(d) Model: EC.BM with Factors

Notes: The numbers represent the quantiles of the distribution of relative RMSFE across states,
where we take the RMSFE of the bridge equation model relative to the benchmark. Figures lower
than 1 indicate that the RMSFE of the bridge equation model was lower than that of the benchmark
for all of the countries below the relevant quantile. Results are presented for different methods of
computing the EC forecasts (EC.GDP and EC.BM) as well as with and without factors.
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Table 3.6: Distribution of Relative RMSFE Across States – CO2 Emissions – Annual
Data Flow (Predictor: PI)

Release 10% 25% 50% 75% 90%

1 0.9656 0.9817 1.0097 1.0516 1.0992
2 0.9598 0.9887 1.0184 1.0400 1.1080
3 0.9487 0.9961 1.0310 1.0542 1.1459
4 0.8608 0.9257 0.9648 1.0172 1.0416
5 0.8710 0.9281 0.9742 1.0201 1.0443
6 0.8963 0.9482 0.9843 1.0196 1.0455
7 0.1732 0.2101 0.2704 0.3241 0.3958

(a) Model: EC.PI

Release 10% 25% 50% 75% 90%

1 0.9862 1.0067 1.0363 1.0818 1.1786
2 1.0157 1.0630 1.1330 1.1867 1.2624
3 1.0003 1.0826 1.1457 1.2005 1.2699
4 0.8231 0.9067 0.9496 1.0154 1.1015
5 0.8430 0.8827 0.9751 1.0322 1.1459
6 0.8901 0.9449 0.9821 1.0124 1.0389
7 0.1757 0.2003 0.2470 0.3114 0.3955

(b) Model: EC.PI with Factors

Release 10% 25% 50% 75% 90%

1 0.9765 0.9918 1.0095 1.0394 1.1251
2 0.9774 0.9906 1.0071 1.0503 1.1216
3 0.9787 0.9972 1.0108 1.0526 1.1242
4 0.9903 1.0019 1.0154 1.0648 1.1165
5 0.9935 1.0052 1.0178 1.0600 1.1245
6 0.9962 1.0026 1.0320 1.0767 1.1570
7 0.1732 0.2101 0.2704 0.3241 0.3958

(c) Model: EC.BM

Release 10% 25% 50% 75% 90%

1 1.0005 1.0198 1.0487 1.1041 1.1710
2 1.0421 1.0792 1.1285 1.1959 1.2561
3 1.0367 1.0795 1.1327 1.1872 1.2777
4 0.9499 0.9747 1.0062 1.0908 1.1965
5 0.9102 0.9488 0.9733 1.0475 1.0966
6 0.9988 1.0126 1.0327 1.0694 1.1337
7 0.1757 0.2003 0.2470 0.3114 0.3955

(d) Model: EC.BM with Factors

Notes: The same as Table 3.5 but with EC.PI instead of EC.GDP. The estimation sample is larger
for the PI results compared with the GDP results due to the data availability. See text for further
details.
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(Figure 3.4) are comparable to those of the annual results discussed earlier. As with

the annual CO2 results using the PI model for the EC nowcasts, the gains on average

are not very large until the release of the current year’s EC data which improves the

predictive accuracy remarkably.

Figure 3.4: Average RMSFE Across States – CO2 Emissions – Quarterly Data Flow

0.4
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0.8

1.0

1 2 3 4 5 6 7 8 9
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RM
SE

Model BM EC.BM EC.PI

Notes: The same as for Figure 3.3.

Table 3.8 shows, in a similar way to earlier results, that if we dig down into the

quantiles of the relative RMSFE across states, then there are some sizeable RMSFE

gains relative to the benchmark even when quite early on in the nowcast period. These

gains are as large as 15% in the case where the EC.PI bridge model is used with factors

3.8b. However, in general the findings tend to show that is fairly difficult to improve

much over the benchmark in predicting CO2 emissions until the point at which EC

data become available.13 As mentioned before, this still presents an opportunity to

obtain reliable CO2 nowcasts several months before the statistical authority releases the

actual data. The numbers represent the quantiles of the distribution of relative RMSFE

across states, where we take the RMSFE of the bridge equation model relative to the

benchmark. Figures lower than 1 indicate that the RMSFE of the bridge equation

model was lower than that of the benchmark for all of the countries below the relevant

quantile. Results are presented for different methods of computing the EC forecasts
13We note that formal statistical testing of the relative predictive accuracy is not available in our

context with only 10 out-of-sample observations, where the power of Diebold–Mariano type tests will
be very low.
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(EC.GDP and EC.BM) as well as with and without factors.

Table 3.8: Distribution of Relative RMSFE Across States – CO2 Emissions – Quarterly
Data Flow

Release 10% 25% 50% 75% 90%

1 0.9477 0.9795 1.0014 1.0494 1.0961
2 0.8998 0.9433 0.9880 1.0356 1.0777
3 0.8912 0.9402 0.9803 1.0179 1.0770
4 0.8654 0.9111 0.9603 1.0092 1.0427
5 0.8470 0.8974 0.9431 0.9841 1.0141
6 0.8708 0.9463 0.9857 1.0188 1.0500
7 0.8907 0.9361 0.9920 1.0231 1.0471
8 0.9101 0.9644 0.9962 1.0234 1.0481
9 0.1732 0.2101 0.2704 0.3241 0.3958

(a) Model: EC.PI

Release 10% 25% 50% 75% 90%

1 0.9671 0.9939 1.0302 1.0840 1.1427
2 0.9790 1.0340 1.1034 1.1570 1.2390
3 0.9779 1.0260 1.0803 1.1478 1.2663
4 0.9424 0.9967 1.0873 1.1245 1.1594
5 0.9308 0.9905 1.0430 1.0916 1.1287
6 0.8472 0.9299 0.9666 1.0135 1.0966
7 0.8461 0.9094 0.9818 1.0265 1.1407
8 0.8955 0.9631 0.9895 1.0148 1.0351
9 0.1757 0.2003 0.2470 0.3114 0.3955

(b) Model: EC.PI with Factors

3.5.3 Further Results

We also explored the robustness of these empirical results to a number of additional

checks, the results of which we display in Appendix B. Firstly, we re-ran all results

of the chapter using the per capita EC and CO2 data. The results in Appendix B.1

and B.2 demonstrate very little difference to the results reported in the main text

which indicates that the same results hold if we use the per capita or level figures

when computing the growth rates. Secondly, we performed an additional set of results

to explore the robustness to the sample split used in generating the out-of-sample

predictions. In Figure B.5 in Appendix B.3, the evaluation sample 2000–2018 is
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Table 3.8: (cont’d...) Distribution of Relative RMSFE Across States – CO2 Emissions –
Quarterly Data Flow

Release 10% 25% 50% 75% 90%

1 0.9765 0.9918 1.0095 1.0394 1.1251
2 0.9774 0.9906 1.0071 1.0503 1.1216
3 0.9787 0.9972 1.0108 1.0526 1.1242
4 0.9787 0.9972 1.0108 1.0526 1.1242
5 0.9787 0.9972 1.0108 1.0526 1.1242
6 0.9903 1.0019 1.0154 1.0648 1.1165
7 0.9935 1.0052 1.0178 1.0600 1.1245
8 0.9962 1.0026 1.0320 1.0767 1.1570
9 0.1732 0.2101 0.2704 0.3241 0.3958

(c) Model: EC.BM

Release 10% 25% 50% 75% 90%

1 1.0005 1.0198 1.0487 1.1041 1.1710
2 1.0421 1.0792 1.1285 1.1959 1.2561
3 1.0367 1.0795 1.1327 1.1872 1.2777
4 1.0367 1.0795 1.1327 1.1872 1.2777
5 1.0367 1.0795 1.1327 1.1872 1.2777
6 0.9499 0.9747 1.0062 1.0908 1.1965
7 0.9102 0.9488 0.9733 1.0475 1.0966
8 0.9988 1.0126 1.0327 1.0694 1.1337
9 0.1757 0.2003 0.2470 0.3114 0.3955

(d) Model: EC.BM with Factors

Notes: The same as Table 3.5.
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compared to that of 2009–2018, showing that the results are indeed stable over time.

In terms of the models we run and the variables used, we attempted several additional

checks. Figure B.6 displays results using the Philly Fed’s state coincident index which

is like a principal component from a set of state-level employment series. The results

are no better than the main results where we use GDP or PI as predictors. Figure B.7

shows that the CO2 nowcasts are worse when we use the economic variables directly

instead of through the EC bridging variable, and this direct model cannot pick up the

large drop in RMSFE we see at the end of the sample on the release of the EC data.

Finally, Figure B.8 shows that the results are not improved by combining both GDP

and PI in the same model instead of using them individually.

3.6 Conclusion

This chapter has proposed methods for obtaining timely predictions of U.S. state-level

EC and CO2 emissions growth. Motivated by the very long publication lags for these

variables, we use the flow of more timely economic data to make nowcasts and backcasts.

Our contribution is a first step in the direction of making real time predictions of

sub-national variables related to environmental degradation. We have moved the focus

of existing panel nowcasting studies away from the classic GDP and macroeconomic

nowcasting setting.

Our empirical study produces historic out-of-sample nowcasts of state-level EC

growth and CO2 emissions growth, from which we draw the following conclusions.

Firstly, we conclude that the use of timely economic data can give important improve-

ments in predicting EC growth on average across all states, and can deliver especially

large gains in a smaller group of states including larger ones such as Florida. These

predictive gains can occur almost two years before the EC data are released. On the

other hand, we conclude that the CO2 predictions are less affected by the release of

economic data and that it is better to wait until the release of the current year’s EC

data, at which point a very accurate prediction can be made. This is, nevertheless,
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able to produce a reliable CO2 prediction many months before the statistical authority

releases the data and using a method which is far simpler.

There is still much more work to be done on state-level energy and CO2 nowcasting.

With the ‘big data’ revolution increasing the granularity of available data, it would

be useful to see our method perform with a more complete dataset. An interesting

example would be to assess whether firm-level emissions data can be aggregated in a

timely fashion for the purpose of predicting state-level emissions.
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Chapter 4

Cross-sectional Dependence in

Growth-at-Risk

4.1 Introduction

Monetary policy remained accommodative after the GFC, to revive growth and restore

the financial systems. Continuation of such policy support confronted policymakers

with a key challenge – the build-up of financial vulnerabilities and consequent worsening

of the medium term risks. Highlighting this inter-temporal trade-off, the International

Monetary Fund (IMF), introduced the concept of GaR as a surveillance tool (IMF

2017). GaR quantifies downside risks to GDP growth and is measured as the lower

quantiles of the GDP growth distribution.

This chapter re-examines the relationship of GaR for 24 countries with seven

macro-financial and uncertainty indicators in a multi-country panel quantile regres-

sion framework. A growing range of papers contribute to the understanding of the

relationship of financial conditions and the tail quantiles of GDP growth, and two

main perspectives emerge. One set of papers finds that financial conditions play a

critical role in the future distribution of GDP growth and particularly influence the

lower quantiles (Adrian et al. 2019a; Aikman et al. 2019; Carriero et al. 2020; Adrian

et al. 2022; Iseringhausen 2023). On the other hand, Plagborg-Moller et al. (2020) find
72



4.1. Introduction 4. Cross-sectional Dependence in Growth-at-Risk

that financial variables have no additional predictive information for the distributional

forecasts of GDP growth. Brownlees and Souza (2021) find that models using vulner-

ability indicators rank low in terms of out-of-sample forecast performance. Reichlin

et al. (2020) show that among financial condition indicators, price variables such as

spreads have limited advanced information on growth vulnerability, while non-financial

leverage provides leading signals for the left tail of the GDP distribution.

In an interlinked global economy, increased trade and financial integration with

time and the strong co-movement of key macroeconomic indicators across countries are

recognised as stylised facts (Ca’ Zorzi et al. 2020). Foreign financial conditions have

been found to have important contributions to domestic financial conditions over the

last two decades and the speedy transmission of spillover impacts challenges timely

policy action to control the domestic financial conditions (Arregui et al. 2018). While

spillovers may arise from multiple sources, our framework allows natural data-driven

spillovers in the form of CSD. Therefore, we do not need to assume any specific source,

channel or structure of the spillover effects. Among the GaR studies to date, Lloyd et al.

(2023) explicitly include foreign variables and find significant impact and improved

model performance.

We differ in our method from the existing panel quantile models (for instance

Aikman et al. 2019; Adrian et al. 2022; Iseringhausen 2023; Lloyd et al. 2023) and

incorporate the CSD panel framework. To construct the CSD panel quantile model

for GaR, the closest related study is that of Harding et al. (2020), which extends

the CCE technique of Pesaran (2006) and Chudik and Pesaran (2015a) to quantile

regressions. The CCE approach has the unique advantage that it simplifies the entire

estimation process and enables direct estimation of the factor-augmented panel model,

without the requirement to explicitly estimate any additional quantities, such as, the

number of factors, the factors themselves or their loadings. Despite using a long enough

panel dataset, there are constraints as the GDP is measured at most quarterly. We

address this issue by allowing heterogeneity through the country specific fixed effects

and pooling the regression coefficients and factor loadings. The homogeneous loadings
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allow us to include ‘time-effects’ in addition to cross-sectional fixed effects, which have

not so far been included in panel quantile models due to complications in estimation

and asymptotics (Chernozhukov et al. 2020).

From a forecasting perspective, we also implement another important modification

in the factor estimation technique. Harding et al. (2020) estimate the factors using the

CCE method in a panel quantile setting, which is based on contemporaneous cross-

sectional averages of the variables. In a purely forecasting scenario, the contemporaneous

GDP growth is not available. So, we use the LCCE estimation technique, developed

in the previous chapter, extended to the panel quantile regression framework. This is

our main panel quantile model with CSD. A panel fixed-effects model not including

the CSD component (no-CSD) (as in Aikman et al. 2019; Adrian et al. 2022) and

unconditional quantiles (as in Brownlees and Souza 2021) are the benchmarks.

We estimate projected GaR up to 12 quarters using the local projections method of

Jordà (2005), and subsequently evaluate the models in-sample and recursive out-of-

sample set-ups for each vulnerability indicator. A graphical analysis of a time series

of predicted GaR from each model follows. A fitted skew-t distribution (Azzalini and

Capitanio 2003) in turn generates four time-varying conditional moments and the entire

predictive distribution. Finally, a decomposition of the predicted GaR from the CSD

panel model separates the two components – the panel component consisting of the

fixed-effects and the effect of the vulnerability indicator, and the combined effect of

the factor and the loadings.

We emphasise four main findings. Firstly, in the presence of the factors characterising

CSD, all the seven indicators have a limited impact on the 5% GaR for almost all

horizons up to 12 quarters. However, certain predictors, such as Term Spread (TS),

Credit to GDP Gap (CG) and Economic and Polictical Uncertainty (EPU), have

significant and interpretable impact in the medium term for higher GaR thresholds

(10–15%). The factors have dual interpretation as proxies for unobserved common

shocks and international inter-linkages. We conclude that the commonly accepted

vulnerability indicators associated with crisis, do not have any significant marginal
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predictive power for the lower quantiles of GDP growth. This relates to the findings of

Plagborg-Moller et al. (2020) and Brownlees and Souza (2021). Alternatively, exclusion

of the factors makes all the vulnerability indicators significant as documented in other

GaR studies such as Adrian et al. (2022).

Our second key finding is the superior performance of the CSD panel model in

both in-sample and out-of-sample evaluations, using Tick-Loss (TL), also known as the

quantile score function. Our findings are robust in different sub-samples, including and

excluding the GFC of 2007–09.

In the third main finding, we note that out-of-sample GaR predictions from the CSD

panel model have interpretable economic patterns over time for most countries. The

predicted higher moments, especially variance and kurtosis, provide important early

warning signals for volatility and tail–risks. From the moment analysis, we conclude

that the risk emanates from a combination of a leftward shift of the entire distribution

and rising tail–risks. We complement the findings from the moments and the predictive

density by Expected Shortfall (ES) – another well-accepted measure of tail–risk.

Finally, our results demonstrate that the unobserved factors have a strong influence

and a mitigating role in normal economic times, whereas in times of economic distress

the factors further worsen the situation.

This chapter relates to three important strands of literature. Firstly, and most

directly, it relates to the GaR literature. Although the term GaR was originated by

the IMF (2017), the use of quantile regressions for GDP growth existed even before

(Manzan 2015). GaR is studied in the context of individual countries or regions (Adrian

et al. 2019a; Ferrara et al. 2022) and multi-country frameworks (Aikman et al. 2019;

Brownlees and Souza 2021; Adrian et al. 2022; Iseringhausen 2023; Lloyd et al. 2023).

This chapter is closer to the latter strand of literature. The closest to this chapter

is that of Lloyd et al. (2023) who, in a panel framework, establish the significant

impact of international inter-linkages and GDP tail–risks. Carriero et al. (2020),

Plagborg-Moller et al. (2020) and Ferrara et al. (2022) estimate GaR in a Bayesian

framework. The quantile regression framework to identify tail–risks has also been
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applied to other important macro-financial variables, such as unemployment, inflation

(Adams et al. 2021), exchange rates (Eguren-Martin and Sokol 2022), house prices

(Alter and Mahoney 2020) and capital flows (Martin et al. 2020; Gelos et al. 2022).

Secondly, this chapter relates to the literature on CSD in panel quantile regressions.

CSD has been established as an important characteristic of panels. It can be estimated

with the CCE technique of Pesaran (2006), which was further developed for dynamic

heterogeneous panels by Chudik and Pesaran (2015a). An alternative estimation

technique is that of Bai (2009). Quantile regression was introduced by the seminal

work of Koenker and Bassett (1978). The first panel quantile model was that with

fixed-effects of Koenker (2004), and the literature expanded thereafter (Lamarche 2010;

Canay 2011; Galvao and Wang 2015). Harding and Lamarche (2014) first introduced

the interactive fixed-effects (CSD) in panel quantile models. This has been further

developed for dynamic heterogeneous panels by Harding et al. (2020). Ando and Bai

(2020) provide an alternative iterative estimation technique similar to Bai (2009).

Thirdly, this chapter relates to GDP catastrophe and early warning literature, as

we include four vulnerability indicators in addition to the aggregate financial conditions

index which is commonly used in GaR literature. We mention papers that link various

indicators to recession: credit boom (Schularick and Taylor 2012; Jordà et al. 2013,

2015, 2016; Krishnamurthy and Muir 2017, and others); TS (Rudebusch and Williams

2009; Garcia Alvarado 2020, and others), CG (Drehmann and Juselius 2014) and

uncertainty (Bloom 2014; Ahir et al. 2018).

The rest of the chapter is organised as follows. Section 4.2 describes the econometric

framework of cross-sectionally dependent panel quantile regressions we use to model and

predict GaR. Section 4.3 presents the empirical application – i.e., assess the significance

of the predictors, quality of fit and analyses the time series of predicted GaR in an

out-of-sample setting. Section 4.4 concludes the chapter.
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4.2 Econometric Framework

In this section, we describe the quantile regressions used to model the distribution of

real GDP growth and its relationship with different vulnerability indicators. With the

quantile regression technique of Koenker and Bassett (1978), we can analyse the impact

of changes in a set of conditioning variables on the entire conditional distribution of

the dependent variable, i.e. GDP growth. Optimal estimates of a range of conditional

quantiles are obtained instead of estimating only the mean.

We denote Yi,t as the quarterly growth rates of seasonally adjusted GDP and xi,t as

the selected indicator from the set of the different vulnerability indicators detailed in

Section 4.3. Time is denoted by t = 1, 2, . . . , T and the countries for which we estimate

the GaR – i.e., the cross-sectional units are labelled with i = 1, 2, . . . , N .

We develop our panel framework for the conditional quantiles of GDP growth

following Harding et al. (2020) and adapt it to the specifics of our data-set. First, let

us consider the following panel data model for the forecast horizon of h quarters:

Yi,t+h = αi + βhxi,t + ϵi,t (4.1a)

ϵi,t = λft + ζi,t (4.1b)

xi,t = αxi + γft + vi,t (4.1c)

The CSD represented by the factor error structure of equation (4.1b) is estimated by

the CCE method of Chudik and Pesaran (2015a) and adapted to quantile regressions

by Harding et al. (2020). We want to estimate the factor-augmented panel quantile

regression in equation (4.2) which is obtained by combining equations (4.1a) and (4.1b).

The primary role of equation (4.1c) is to estimate the factors using the CCE technique

and has no direct role in predictions.

QYi,t+h
(τ |xi,t) = αi(τ) + βh(τ)xi,t + λ(τ)ft (4.2)
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where τ is the quantile in the interval (0, 1) and:

θi(τ) =
(
αi(τ), βh(τ)

)
is the set of parameters to be estimated and, (4.3)

QYi,t+h
(τ |xi,t) = inf {y : P (Yi,t+h ≤ y|xi,t)} (4.4)

We use LCCE with lagged dependent variables in the cross-sectional averages as the

LCCE technique has been shown to be consistent and asymptotically unbiased in panel

regressions (Chapter 2). This is a necessary modification for a forward-looking analysis

where we do not assume the knowledge of the target quarter GDP growth. Thus, we

define our vector of cross-sectional averages as in equation (4.5) and minimise the

asymmetric quantile loss function given by equation (4.6):

zt =

Y t−1

xt

 (4.5)

where

Y t = 1
N

N∑
i=1

Yi,t, xt = 1
N

N∑
i=1

xi,t,

ρτ (u) = u [τ − I (u ≤ 0)] (4.6)

where I(.) is the indicator function – i.e.,

I(u ≤ 0) =


1, if u ≤ 0

0, otherwise

Hence, the final equation we estimate is:

QYi,t+h
(τ |xi,t) = α(τ) + xi,tβ

h(τ) +
pT∑
l=0

zt−l∆l(τ) (4.7)
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Harding et al. (2020) demonstrate the asymptotic equivalence of the two optimization

problems – i.e., the one with unknown factors as in equation (4.2) and the one where

the factors are substituted by cross-sectional averages. The CCE approach has the

unique advantage that it simplifies the entire estimation process and enables direct

estimation of the factor-augmented panel model, without the requirement to explicitly

estimate any additional quantities, for example, the number of factors, the factors or

their loadings.

The data set we use is large. However, with the highest frequency of GDP growth

being quarterly, we still face data limitations. Accordingly, we allow heterogeneity

through country-specific fixed-effects coefficients and pool the other parameters. In

addition to the advantages of pooling in panel model, the homogeneous factor loadings

also, in a way, let us include time fixed effects, which have not so far been included in

panel quantile models due to complications in estimation and asymptotic (Chernozhukov

et al. 2020).

We benchmark the performance of the CSD panel model against the panel model

which does not incorporate CSD. This is similar to the model implemented in a number

of recent GaR and other ‘at-risk’ papers (for instance Aikman et al. 2019; Adrian et al.

2022):

QYi,t+h
= αi(τ) + βh(τ)xi,t (4.8)

All models are estimated for up to 12 quarters ahead using local projections (Jordà

2005) which gives us the estimated quantile of GDP growth distribution for the specified

horizon. This enables us to understand how the left tail of the GDP develops over the

forecast horizons. For inference we use bootstrap. Various forms of block bootstrap and

tapered block bootstrap (Gregory et al. 2018) were tried, but they failed to improve

results. For that reason, we keep to i.i.d. bootstrap. The coefficients βh(τ) quantifies

the association between the vulnerability indicator and the quantiles τ of the predicted

GDP growth distribution at horizon h.
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4.3 Empirical Application

In the empirical application, we estimate the LCCE panel quantile model as described

in Section 4.2. We then assess the fit of the model, evaluate the significance of several

vulnerability indicators and establish prediction accuracy. Thereafter, we recover the

entire predicted density by fitting a skew-t density and arrive at an estimated time

series of risk-quantification measures.

4.3.1 Data

Our empirical application is based on the cross-country data-set of Brownlees and

Souza (2021) consisting of 24 OECD countries covering largely the period Q1:1973 to

Q4:2016. We use seven indicators as predictors. These broadly belong to two groups

– macro-financial and uncertainty indicators. Five of our macro-financial indicators

used in modelling GDP catastrophes could be further grouped into financial conditions

and macro-financial imbalance indicators as per the practical guidance on GaR by

Prasad et al. (2019). Representing financial conditions, we have the National Financial

Conditions Index (NFCI) and TS indicating the price of risks embedded in asset prices;

CG and Credit to GDP Growth (CR) represent macro-financial imbalances due to

credit boom–bust cycles. We also include House Prices (HP) representing both macro-

financial imbalances through housing market disequilibrium and financial conditions as

HP also reflect ease of obtaining finance.

Although NFCI has received the maximum attention in GaR studies, the other

predictors also have a long history of association with economic downturns. The

predictive content of TS for future growth and recession is known for a long time (see

Rudebusch and Williams 2009; Garcia Alvarado 2020, and others). The forecasting

power of TS for future GDP is one of the most robust stylised facts in macroeconomics

(Adrian et al. 2019b). Measured by the deviation of credit to GDP ratio from its

long-run trend, CG is often associated with leverage and financial cycles. It measures

the build-up of systemic leverage that poses risk to the banking sector (Drehmann
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et al. 2011). The Basel Committee of Banking Supervision (BCBS) recommends its

use to track excess credit and vulnerability to the banking sector (BIS 2010). A series

of empirical studies document the link between HP and the real economy. Claessens

et al. (2012) find that recessions following housing busts are weaker and recoveries

associated with rapid growth in credit and housing tend to be stronger. Movements in

both HP and CR are jointly noted to precede crisis and are important as early warning

indicators (see Aikman et al. 2019, and the references therein).

Additionally, we also model GaR on two indicators of uncertainty – EPU and

World Uncertainty Index (WUI).1 The literature examining the relationship between

uncertainty and real economic activity has expanded rapidly after the GFC (see Jo

and Sekkel 2019, and the references therein). Ahir et al. (2018) define WUI using

the frequency of the word ‘uncertainty’ in the quarterly Economist Intelligence Unit

country reports. The index generally spikes around the occurrences of major disruptions

originating from economic, political or health issues. Baker et al. (2016) develop the

EPU index as a text-based indicator capturing general uncertainty based on newspapers.

WUI and EPU are conceptually different yet have a lot in common and co-move over

time (Ahir et al. 2018) and tend to precede declines in growth. While the previously

stated macro-financial group of indicators has already been studied in the context of

GaR, the uncertainty indicators have only very recently been studied by Brownlees

and Souza (2021).

The importance of modelling CSD is already evident from the literature and stylised

facts. Further from our data, Figure 4.1 shows the results of a systematic examination of

international macro-financial synchronisation using correlations patterns over time. We

study the degree of co-movement between the different indicators within countries using

simple pair-wise correlations. We compare the distribution of the bilateral correlations

for all possible country pairs for each indicator, over two different sub-periods, to

identify the changes in the nature of association among countries. The first sub-period

ends in Q4:1999 and the second sub-period starts at Q1:2000.
1The uncertainty indices have a relatively shorter time-span starting on 1985 and 1996 respectively.
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Figure 4.1: Distribution of Bilateral Correlations
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Figure 4.1: (cont’d...) Distribution of Bilateral Correlations
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Notes: The figures show the distribution of all possible pairwise correlations among countries for the
selected indicator over time. We split the time series into two parts to identify the changing nature
of synchronisation among the countries. Excluding Greece, Israel, Portugal, Ireland and Belgium.
Figure 4.1d is based on 12 countries for which long time-series data were available.
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The plots (Figure 4.1) reveal a general shift of the distribution towards the right.

This is most striking for the NFCI (Figure 4.1g) and is also very distinct for GDP

growth (Figure 4.1h). Especially from 2003 onwards, we see that the financial condition

indices of all the countries move remarkably along the same path, excepting a few

countries. The credit variables do not show a rightward shift in distribution but show a

higher peakedness of the density function around the positive modal values (Figures 4.1a

and 4.1b). TS remain equally synchronised before and after 2000. Surprisingly, the

pair-wise correlation for HP seems to have declined indicating less synchronisation

post-2000 (Figures 4.1d and 4.1e). These initial indications of increased synchronisation

of macro-financial data in recent times suggest a greater impact of spillovers and

common shocks in recent times. We now proceed to the actual estimation of the CSD

panel models in the subsequent sections.

4.3.2 In-Sample Results

The results of the in-sample analysis of the different models are presented in this section

in two parts. Firstly, we assess the significance of the various vulnerability indicators

and identify the determinants of GaR at different forecast horizons. Subsequently, we

evaluate the quality of fit of the benchmark models stated in Section 4.2.

We begin by reporting the estimation results of a set of quantile regressions used

to gauge the explanatory power of each predictor. For each country, forecast horizon

h = 1, 2, 3, . . . , 12 and predictor, we estimate the 5% quantile regression for the

equations (4.2) and (4.8) – i.e., the panel with and without CSD respectively. We

estimate the GaR up to 12 quarters ahead as this is the time range considered by

Adrian et al. (2022) as it is common while framing policies. Models with and without

CSD are presented in Figure 4.2, where we show the relationship between the 5% GaR

and different vulnerability indicators across horizons.

We also use additional GaR levels: 10 and 15%. Most of the GaR literature mentions

a 5% worst-case scenario. But 5% GaR leaves very few actual occurrences of such

events, even with advanced economies which have a large history of macroeconomic
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data. The size of the testing window must increase as we increase the severity of the

GaR measure. With quarterly GDP being the dependent variable, there is limited

scope to increase the number of observations. While it is important for policymakers to

know and possibly influence the conditional response of the 5% GaR, modelling higher

levels of GaR can also provide useful signals. Thus, to ensure the dual objectives of

the robust analysis and usefulness to policy, we use several levels of GaR.

We focus on the impact of each vulnerability indicator on GaR estimated from

the quantile regressions. We examine the relationship between one standard deviation

change in the vulnerability indicator and the corresponding adjustment in GaR at

different horizons (Adrian et al. 2018; Aikman et al. 2019; Lloyd et al. 2023, and others).

The coefficients are interpreted as impact on estimated GaR, due to one standard

deviation change in the vulnerability indicator. Since we directly model the quantiles of

quarterly percentage changes in GDP, the figures directly correspond to the quarterly

changes in GaR for the respective horizon. We also look at the one standard deviation

bootstrap confidence bands of the estimated coefficients.

Surprisingly, from the CSD panel model (Figure 4.2), we see very little impact of any

of the seven vulnerability indicators on 5% GaR. There is an initial negative impact of

tightening financial conditions, which ease out and become insignificant as we increase

the forecast horizon. This finding is contrary to the observations from cross-sectionally

independent panels. The no-CSD panel corroborates the earlier findings of Adrian et al.

(2022), who note that financial conditions have a negative impact on GaR in the near

term and have a positive impact on farther horizons. The 5% GaR from the no-CSD

panel seems to benefit from tighter financial conditions in the longer term. This effect

disappears once we account for the CSD in panels.

At higher GaR levels (results in Appendix C.1.1), we find TS, CG and EPU to be

significant in the medium term. Brownlees and Souza (2021) also find TS to be the

second most important variable in predicting GaR in the in-sample analysis of up to

four quarters prediction horizon for half of the sample of countries. The significance of

TS is in line with the literature on early warning signals and the yield curve inversion
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Figure 4.2: Impact of Variables on 5% GaR
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the two panel models. Shaded areas represent one standard deviation bootstrap confidence intervals.

86



4.3. Empirical Application 4. Cross-sectional Dependence in Growth-at-Risk

phenomenon. The inverse relationship, i.e. association of larger CG with declining GaR,

is consistent with Drehmann and Juselius (2014) who establish CG as an important

early warning indicator up to five years preceding a crisis. Other variables we consider

remain insignificant for all GaR levels.

These results partially corroborate the findings of Aikman et al. (2019), who find

financial conditions insignificant in the medium term and in the presence of other

determinants of GaR. The findings also resonate with those of Reichlin et al. (2020)

who conclude that there is limited value in financial variables for detecting GDP risk

in advance and that of Plagborg-Moller et al. (2020) who find no marginal power of

financial variables to predict GaR, in addition to macroeconomic data. In general,

therefore, it seems that the strength of the relationship between GaR with the NFCI

as revealed by a panel model without CSD is overstated. The reason for the difference

in results may be inferred from the interpretation of the CSD factor error structure.

The multi-factor error structure could be interpreted as natural data-dependent cross-

country spillover impacts. These could also be regarded as proxies for common shocks

not directly observed. While each of the seven vulnerability indicators has been known

to forewarn of a crisis, our findings suggests that there are common underlying factors

that contribute to GaR projections and these variables do not have any noteworthy

predictive content beyond the aforementioned common factors.

Next, we compare the in-sample goodness-of-fit measure for the panel models, one

with the CSD and one without CSD. We use the metric developed by Koenker and

Machado (1999), which is a quantile-specific relative measure of the goodness-of-fit of

two conditional quantile functions. This measure of in-sample fit has been recently

used in ‘at-risk’ studies by Eguren-Martin and Sokol (2022) and Lloyd et al. (2023).

We define the goodness-of-fit measure R1 for GaR level τ and forecast horizon h as:

R1
h(τ) = 1 − V̂ (τ)

Ṽ (τ)
(4.9)

where V̂ (τ) denotes the sum of weighted absolute residuals from the respective model
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that we are trying to evaluate. Ṽ (τ) denotes the sum of weighted absolute residuals of

the historical unconditional quantiles. The interpretation is similar to the standard R2

in linear regression. We can therefore attribute any difference in R1(τ) estimated from

the CSD and no-CSD panels as the incremental contribution of the multi-factor error

structure to the goodness-of-fit of the estimated τ th quantile of the h–quarter-ahead

real GDP growth.

The results in Table 4.1 reveal an improved in-sample fit from the CSD panel

models as compared to the ones without CSD for 5% GaR. Similar results for other

GaR levels are presented in Appendix C.1.2. The measures are comparable to that of

Lloyd et al. (2023). R1(τ) nearly doubles due to the inclusion of the CSD. Also, R1(τ)

remains at similar levels across all horizons and is elevated in the CSD models for all

the vulnerability indicators. The improvement in goodness-of-fit further strengthens

the importance of modelling CSD.

4.3.3 Out-of-Sample Assessment

In this section, we back-test the proposed CSD panel model and assess it relative to the

benchmark models in a pseudo-out-of-sample framework. We generate out-of-sample

GaR forecasts in an h–step-ahead recursive window scheme. The time dimensions

of the panel are split up into estimation and evaluation windows. If we denote the

total number of periods by T , then T is split as T = R + P where we estimate the

model using the first R periods and evaluate the model by computing the recursive

predictions for the following P periods. For the out-of-sample analysis presented below,

we consider R = 0.25T .

Coverage

We define the average empirical coverage for the predicted GaRs as the mean (over

time and cross-sections) number of realisations of GDP growth that are higher than the

predicted GaR – equation (4.10a). Coverage of accurate GaR predictions is expected not
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to deviate very far from the nominal coverage. If GaRi,t|t−h denotes the h–quarter-ahead

100 × τ% GaR, then its coverage can be expressed as:

Cτ,h = 1
N

N∑
i=1

 1
T

T∑
t=h+1

1Yi,t>GaRi,t|t−h

 (4.10a)

Figure 4.3 and Appendix C.2.1 contain the plots of average empirical coverages across

various quantile levels. We find that the coverage is quite close to the nominal expected

coverage for the majority of the CSD models2 as compared with the benchmark or

no-CSD panel model. It is hard to arrive at the best performing model based on

coverage alone, therefore we substantiate these findings with additional out-of-sample

performance indicators below.

Figure 4.3: Coverage
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Notes: These figures plot the coverage for the different models with NFCI as predictor considered
over different prediction horizons. The GaR levels are indicated in the panel headers. The other
predictors can be found in Appendix C.2.1.

DQ Test

Dynamic Quantile (DQ) of Engle and Manganelli (2004) tests ascertain the optimality

of the estimated conditional quantiles and hence the underlying model by testing the

predictability of the hit sequence using specific regressors. We define the hit sequences
2The coverage does not appear adequate for the EPU and WUI models which are estimated on

shorter data spans.
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as the series of binary variables equalling 1 − p, when we observe a violation of the p%

GaR and −p otherwise as:

Hi,t = 1Yi,t<GaRi,t|t−h
− p (4.10b)

We report two versions of the DQ tests of Engle and Manganelli (2004). First we present

unconditional tests with no auxiliary predictors. The second one tests optimality in the

presence of lagged hit sequences as regressors. We consider a suitably tailored Wald

test statistic as in Brownlees and Souza (2021). We define the DQ regressions as:

Ht+h = c0 +
K∑

k=1
ckWkt + ut+h (4.10c)

Wkt is assumed to be constant and lagged hits respectively for DQunc and DQhits. We

test the following null hypothesis:

H0 : c0 = c1 = · · · = ck = 0 (4.10d)

Finally, we report the number of countries for which we fail to reject the null hypothesis

at the 5% level of significance – i.e., the countries for which the hit sequences of the

violations of predicted GaR are optimal. We consider the DQ tests for 12 horizons.

Table 4.2 shows that the panel models using NFCI as predictor can generate optimal

sequences of predicted GaR for majority of the countries in our sample. The uncon-

ditional quantile benchmark shows a minor improvement in the conditional DQ test

results in Table 4.2b but the same does not hold when we run the robustness results in

Appendix C.2.4 Table C.5. The DQ tests for other models using different indicators are

placed in Appendix C.2. Appendix C.2.4 contains the results for DQ tests excluding

the GFC. These conclusions remain unchanged.
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Table 4.2: DQ Tests – NFCI

GaR 5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 18 14 16 12 16 15 14 17 12
2 18 20 20 14 19 19 14 17 17
3 18 21 20 14 18 20 14 18 16
4 17 20 20 14 18 20 14 20 18
5 18 19 20 14 17 20 14 16 18

6 18 18 21 14 19 19 15 17 17
7 18 18 22 15 19 20 16 17 17
8 17 19 21 16 18 20 16 17 19
9 18 19 21 17 19 19 16 17 18

10 18 19 20 18 19 19 15 18 19

11 18 20 20 18 18 19 14 18 18
12 18 19 20 18 17 19 14 17 18

(a) Unconditional

GaR 5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 8 13 8 6 11 5 6 10 6
2 18 18 15 15 18 13 7 12 12
3 21 20 20 13 15 13 13 17 11
4 21 20 20 18 18 17 13 18 16
5 21 20 21 18 19 18 17 14 18

6 20 19 21 20 14 19 17 11 18
7 21 19 23 19 17 21 17 15 18
8 22 22 20 19 17 20 17 18 18
9 19 22 20 21 17 20 14 17 17

10 19 20 22 22 19 18 21 18 17

11 19 19 20 20 19 21 17 18 20
12 19 18 20 21 20 20 18 18 19

Notes: These tables compare the results of the DQ tests across the three different panel
models under consideration. The figures count the countries (out of 24) for which we are not
able to reject the null hypothesis, i.e. we have an optimal predicted GaR sequence at 5%
level of significance.

(b) Hit
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TL

TL, also referred to as the quantile score, is a standard loss function to formally

evaluate the conditional quantile estimates and is used in several recent GaR and

density prediction studies (see Manzan 2015; Carriero et al. 2020; Brownlees and Souza

2021; Iseringhausen 2023). It is the asymmetrically weighted average of the difference

between observed and h–quarter-ahead predicted quantile (the GaR). equation (4.10f)

is the sample estimate of the expected h-step ahead loss defined as (see Clements and

Galvão 2008):

TLτ,h = E
[
ρτ

(
Yi,t − GaRi,t∥t−h

)]
(4.10e)

We compare the performance of each model by TL. We define the out-of-sample

average TL for a forecast horizon of h quarters as:

TLτ,h = 1
N

N∑
i=1

 1
T

T∑
t=h+1

ρτ

(
Yi,t − GaRi,t|t−h

) (4.10f)

where ρτ (u) = u(τ − 1u≤0) (4.10g)

Table 4.3 displays the TL and shows that the CSD panel model stands out in

terms of larger gains in TL against the benchmarks. For lower quantiles (5, 10 and

15%) that are considered as measures of GaR, the CSD panel model emerges as the

best-performing model, across all the 12 horizons under consideration. We show only

NFCI here and to complete the analysis, TL with all other predictors are presented in

Appendix C.2.3. The same results hold for other indicators as well, except WUI.

We ensure robust out-of-sample performance by repeating with other GaR levels

and different sub-sample, excluding the GFC around 2008 (see Appendix C.2.4)3. Our

conclusions about the superior performance of the CSD panel model remains unchanged

for NFCI and HP as predictors.
3We had to exclude WUI and EPU due to shorter data spans
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Table 4.3: TL – NFCI

5% 10% 15%

Horizon CSD No-CSD CSD No-CSD CSD No-CSD

1 11.66 7.48 8.02 4.92 5.35 3.05
2 9.92 5.19 6.36 3.27 3.37 1.98
3 6.94 3.88 4.82 2.46 3.35 1.37
4 5.00 3.27 4.29 1.82 2.92 1.02
5 4.71 2.88 4.07 1.46 2.93 0.97

6 3.69 2.46 3.87 1.63 2.50 1.42
7 3.16 2.17 3.16 1.03 1.90 1.08
8 3.44 2.08 3.71 1.53 2.64 1.24
9 2.58 2.48 3.42 1.59 2.34 1.11

10 2.13 2.36 3.21 1.62 2.29 1.30

11 0.67 2.22 2.54 1.68 1.93 1.24
12 -0.07 1.46 1.31 1.22 1.84 0.60

Notes: This table compares the out-of-sample prediction accuracy for
the two panel models across forecast horizons. The figures show relative
gain in TL with respect to the unconditional quantiles BM. NFCI is
the predictor here. Similar tables for other predictors can be found in
Appendix C.2.3.

Combining the findings of the in-sample and out-of-sample performance, our results

are generally in line with Brownlees and Souza (2021) – i.e., the models that generate

superior out-of-sample forecast performance, are not able to establish a direct relation-

ship of GaR with financial conditions, or other vulnerability indicators, at least for

the 5% GaR. However, we differ in our findings as the predictors have an indirect role

through the unobserved factors – i.e., the CSD.

4.3.4 Estimated GaR

Having established the out-of-sample accuracy of the CSD panel model, in this sub-

section we analyse the time series characteristics of projected GaR for individual

countries in our panel. Figure 4.4 compares the estimated GaR at 12 quarter horizons

for six major countries in our sample – i.e., Australia, Japan, South Korea, Germany,

the the U.K. and the U.S.. We illustrate the GaR with NFCI as the vulnerability

indicator. Other forecast horizons are presented in Appendix 5.
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Figure 4.4: Estimated GaR (5%) at 12 Quarter Horizons, Predictor – NFCI
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Notes: These figures compare the time series of out-of-sample GaR predictions from the two panel
models and the unconditional quantiles benchmark. We display six major countries from our sample
of 24, i.e. Australia, Germany, the the U.K., Japan, South Korea and the U.S. respectively.

The GaR predictions from different models turn out to be quite distinct. The CSD

panel model has sharper characteristics and is able to provide more distinct signals as

compared to the no-CSD panel model. The no-CSD panel model, although replicates

most of the directions, is not able to capture the magnitude as well as the CSD panel

model. This is due to the better explanatory power we saw in the in-sample analysis

and improved out-of-sample predictive accuracy in terms of TL. As a result, we see

distinct and meaningful characteristics in the series of estimated GaR from the CSD

panel.

With the CSD model, we are able to reproduce distinct patterns for different

countries. Japan displays a decline in pattern while Korea shows an increase. The U.S.,

the the U.K., and Germany exhibit an upward trend until the GFC. We see a sharp

fall around the GFC and the sharpest decline is for Korea, among the six countries.

Post GFC, there is stronger co-movement. In the following sections, we explore further
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the properties of the out-of-sample forecasts of the GaR.

4.3.5 Risk and Higher Moments

In addition to the GaR analysis, several studies (Adrian et al. 2019a; Plagborg-Moller et

al. 2020; Lloyd et al. 2023) predict higher moments of GDP. But there is no consensus

on the findings. While Plagborg-Moller et al. (2020) do not find any meaningful

interpretation of moments other than the conditional mean, Lloyd et al. (2023) find

that quantiles conditioned on additional foreign variables are able to generate relatable

patterns of time-varying higher-order moments. Adrian et al. (2019a) find that higher

moments of GDP growth are correlated with financial conditions. Delle-Monache et al.

(2020) also find that conditional on large financial information sets, there is marked

negative skewness and downside risk in the recovery path, in the past decade. In this

section, we explore the conditional moments using the estimated panel quantile models

considered in this chapter.

To arrive at the time-varying moments, we follow the method of Adrian et al.

(2019a), by smoothing the predicted quantiles using the skew-t distribution of Azzalini

and Capitanio (2003). Hence, we arrive at the entire conditional distribution of future

GDP growth. The skew-t probability density function takes the following functional

form:

f(y; µ, σ, α, ν) = 2
σ

t
(

y − µ

σ
; v

)
T

α
y − µ

σ

√√√√√ ν + 1
ν +

(
y−µ

σ

)2 ; ν + 1

 (4.11)

where t(.) and T (.) respectively denote the probability density function (pdf) and

cumulative density function (cdf) of the Student t-distribution. The distribution is

characterised by four parameters: the location µ, scale σ, fatness ν and shape α. For

each quarter, we choose these parameters to minimise the squared distance between

our estimated conditional quantiles (5th, 25th, 75th and 95th) and the quantiles of the
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skewed t-distribution. This is a non-linear least-squares problem as follows:

{µ̂t=h, σ̂t=h, α̂t=h, ν̂t=h} = arg min
µ,σ,α,ν

∑
τ

[
Q̂yt+h|xt(τ |xt)F −1(τ ; µ, σ, α, ν)

]
(4.12)

The estimated smooth quantiles from the models have very distinct features. This

is also evident in the moments computed. We generate the moments of all orders for all

countries to analyse risk signals. Here we exclusively focus on one country, i.e. the U.S.

only (Figure 4.5) for brevity. Moments of six major countries are in Appendix C.5.

Figure 4.5: Moments of U.S. GDP, Conditional on NFCI
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Notes: The figures compare the time series of conditional moments from the two panel models and
the unconditional quantiles benchmark. We display the moments for the U.S. here and five other
major countries in Appendix C.5.

The moment analysis indicates the GFC 2008–09 with higher variance and spiking

kurtosis. Additionally, we are able to identify from the moments other known episodes

of macroeconomic risk. For example, for the U.S., we can relate to the end of 1980s’

and the early 1990s’ recession, characterised by the then rapid growth in the U.S. credit

and HP, accompanied by weak bank capital and further enhanced by monetary policy
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tightening in the late 1980ss (Aikman et al. 2019). This is followed by a few years

of relatively lower risk. Subsequently, we can identify the period in the late 1990’s

decade, when the U.S. experienced a series of macro-financial challenges – i.e., the

telecom-media-technology (TMT) bubble and the onset of a recession, worsened further

by the terrorist attacks of September 2001 (IMF 2002).

Although both panel models are able to indicate risk, signals from the CSD panel

are sharper, specifically in the latter part of our sample. For instance, the post-GFC

restoration of the financial systems and the consequent low-risk period is captured only

by the time-varying moments of the CSD panel model. Further analysis of the entire

predictive density (Appendix C.4) and skewness of the CSD panel model indicates that

the risks emanate not from the negative skewness, but more from a shift of the entire

distribution to the left and higher variance due to fatter tails.

We compute ES as an additional measure of tail–risk quantification, to quantify

the signals generated by the higher moments. ES is a classic quantification of tail–risk,

measuring the expected value, conditional on violation of a threshold. It is the officially

endorsed measure of risk by the Basel Committee and has renewed emphasis in the

Third Basel Accord (Patton et al. 2019). GaR studies (Adrian et al. 2019a; Reichlin

et al. 2020; Iseringhausen 2023) have also computed and compared ES. In this context,

ES is the expected GDP growth conditional on the violation of GaR.

For a chosen target probability π, ES is defined for the ith cross-section as:

SFi,t+h = E(Yi,t+h|Yi,t+h ≤ GaRπ) (4.13)

Figure 4.6, shows the estimated ES measures from the different models using

the NFCI as the vulnerability indicator. We note the flexibility of the ES measure

constructed from the CCE panel models, in terms of the strength of the signals in times

of distress. The lowest estimated ES is during the GFC. In addition to the periods

of risk we identified in the moment analysis, we see a low ES around 2013, when the
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Figure 4.6: ES Conditional on NFCI
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Notes: The figures compare the time series of conditional ES from the two panel models and
the unconditional quantiles benchmark. We display six major countries from our sample of 24, i.e.
Australia, Germany, the the U.K., Japan, South Korea and the U.S. respectively.

growth outlook was bleak, with the recovery from the financial crisis slowing down. The

important attributed reasons were weaker demand due to fiscal consolidation and weak

financial systems. Apart from these, a general sentiment of uncertainty and the then

ongoing European turmoil were some of the key factors that exerted a downward pull

on the GDP growth of the major advanced economies (IMF 2012). As the outlook on

growth gradually improved thereafter (IMF 2013a,b), we see a corresponding movement

in ES too. As in predicted GaR, we recognise distinct ES time series for the different

countries.

4.3.6 Forecast Decomposition

The results so far indicate superior in-sample and out-of-sample performance when

we include the multi-factor error structure in the panel model. In this section, we

try to understand the contribution of the different components to the total predicted
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GaR by the CSD panel model only (we do not compare models in this section). We

decompose the predicted GaR and segregate the role played by the global factors. A

similar breakdown of estimated GaR into different sub-components has been done by

Aikman et al. (2019) to identify the drivers of GaR and create a risk monitoring tool.

Figure 4.7: Decomposition of Predicted GaR (5%) – Predictor: NFCI
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Notes: The figures explicitly decompose the predicted GaR into two components, the CSD and the
rest. We display six major countries from our sample of 24, i.e. Australia, Germany, the the U.K.,
Japan, South Korea and the U.S. respectively. Prediction horizon is 12 quarters ahead.

The black solid line in Figure 4.7 represents the predicted GaR (5%), 12 quarters

ahead with NFCI as the vulnerability indicator. Although the magnitude of GaR is

driven by the panel components, the direction is influenced by the CSD. The panel

components (excluding the multi-factor error structure) have a negative impact and

lower GaR. The common factors have a mitigating effect and generally pull up GaR.

However, in times of extreme distress, for example, around the GFC, we see that

both the panel components and the global factors together pull GaR down. The

country-specific dynamics are quite distinct. The non-inclusion of these mitigating

global factors in the no-CSD panel may be the reason for signalling elevated risks in
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terms of higher kurtosis post-GFC in the period 2013–2016. Similar findings for other

forecast horizons are displayed in Appendix C.6.

4.4 Conclusion

In this chapter, we provide evidence that modelling CSD is important and useful to

forecast GaR in a multi-country panel quantile set-up. The factors used to model

the CSD, have dual interpretations as common shocks or as international spillover

impacts. When augmented with CSD, the results of our panel quantile regressions

suggest that important vulnerability indicators are rendered insignificant for 5% GaR,

up to a forecast horizon of 12 quarters. However, we find that three indicators namely

CG, TS and EPU are significant in the medium term for higher GaR levels. These

conclusions were obtained using a panel of 24 countries. We also find that the CSD

panel models have superior out-of-sample performance in terms of TL. Thus, though

the CSD models have the best in-sample fit and out-of-sample accuracy, cannot relate

5% GaR with macro-financial vulnerability indicators. We demonstrate the practical

relevance of CSD panel models by generating out-of-sample GaR, complete predictive

distribution and its moments. We quantify tail–risk by ES. The analysis suggests

signals obtained from these are able to replicate the state of the economy at various

low points in time and is consistent with the published IMF outlooks around similar

times. In addition, a breakdown of the forecasts into the panel components and the

interactive fixed-effect terms indicate that the CSD part of the panel has a mitigating

effect in normal times and exerts a further downward pull at crisis times.
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Chapter 5

Timely Predictions of Capital Flow

Episodes

5.1 Introduction

Cross-border capital flows are recognised to be highly episodic and the episodes

often turn out to be disruptive to the concerned economies. Such episodes attract

a lot of policy-attention as they can impact economies through multiple channels,

such, as substantial fluctuations in the asset markets or the exchange rate or high

inflation rates (Ghosh et al. 2016). Therefore, understanding and anticipating such

episodes is of importance to policymakers so as to put effective measures (monetary,

fiscal or macro-prudential) in place, in a timely fashion, to mitigate the adverse

consequences. IMF (2020) recommended several crisis-specific measures, including

foreign currency interventions, capital flow management, sovereign debt management

and macro-prudential policies. Further, international coordination, global safety nets,

and IMF policies can also aid to alleviate the impact of these events (Scheubel et al.

2019). For more information on policy measures, we refer to BIS (2021).

In this chapter, we develop a panel model that uses higher frequency data to

produce and update the real-time predictions of the probabilities of extreme episodes

in cross-border capital flows and also provide techniques to assess the quality of the
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predictions in an out-of-sample context. We find that our model can beat a random

classifier and produce better quality projections than a naïve benchmark. There is

no material difference between the three link functions that we compare. The quality

of predictions remains steady, as we update the model in real-time as new data are

released. Thus, we obtain stable satisfactory performance right from a quarter in

advance of the target quarter.

This adds to the existing body of literature which focusses on identifying the various

drivers of capital flow episodes and corresponding mitigating measures. Given the high

level of global financial integration, the transmission of shocks through cross-border

capital flows can be particularly quick. A very recent example is COVID-19-triggered

disruptions (IMF 2020). However, it is surprising that studies to date did not focus at

all on the timeliness of predictions. Further, there is no assessment of the effectiveness of

identified factors in terms of out-of-sample accuracy of the predicted event probabilities.

Also, though the literature has identified daily and monthly variables that impact the

quarterly episodes, all studies to date temporally aggregate the higher frequency data

to quarterly frequency, thus potentially missing out on important information that

could have been obtained from direct modelling of the higher frequency data.

In this chapter, we address these gaps with three main contributions. The first of

our main contribution is the mixed-frequency discrete choice panel model, which is

novel to capital flows context. We introduce country-specific fixed effects and cross-

sectional averages in this model, which has not been considered in the closely related

literature (Forbes and Warnock 2012; Ghosh et al. 2016; Forbes and Warnock 2021).

Our empirical model brings together three different frequencies – quarterly, monthly and

daily. Therefore, we use daily and monthly data to arrive at high-frequency predictions

of important extreme events. Additionally in a pseudo-real-time framework, we also

take into account the publication delays in the capital flows data and the monthly

macro-financial series. We use MIDAS techniques building on the recent studies by

Audrino et al. (2019) and Galvão and Owyang (2022). We compare three link functions:

the logit, probit and the complementary log–log; instead of a predetermined link
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function that is most commonly used in the capital flows literature. We estimate the

model using maximum likelihood. Our model can be updated on real-time basis as

and when new data are released.

Our second contribution is the empirical application where we obtain simultaneous

pseudo-real-time predictions for 27 countries in mixed-frequencies. Closely mimicked

versions of the release calendar of the IMF Balance of Payments (BoP) database and

the high-frequency indicators give us a pseudo-real-time capital flow database, which is

the first one of its kind to be used in episode predictions, to the best of our knowledge.

Our redefined episodes reflect the ‘ripples’ instead of ‘waves’ as found by Forbes and

Warnock (2021). Although the predictions can be updated daily, for brevity we update

on major monthly data releases.

The BoP database of the IMF provides a long time series of relevant data with

comprehensive coverage of countries. The data are published at annual and quarterly

frequencies. However, as with most macro data, it has significant publication lags.

There are higher–frequency proxy databases like that from the Emerging Portfolio Fund

Research (EPFR) and the Institute of International Finance (IIF). Although several

studies have analysed these data, there are important differences when compared to the

IMF BoP database and a list of caveats is needed (Koepke and Paetzold 2022). Besides,

these databases largely proxy the portfolio flows and investment funds. Although

the importance of portfolio flows has generally increased over time, as Forbes and

Warnock (2021) demonstrate, bank-debt-flows led about half and a third of the surges

and stops during the pre- and post-GFC periods respectively while the bank flows led

around 41% and 36% of the retrenchments in their pre- and post-crisis samples. Also,

these databases are expensive to obtain, which precludes their widespread use and the

replication of empirical results. Thus, we focus directly on high-frequency modelling of

the quarterly IMF BoP database using publicly available macro-financial indicators,

and therefore our results are directly interpretable and replicable.

Our third contribution is a rigorous out-of-sample prediction accuracy assessment

framework using a number of forecast verification techniques. We use the Receiver
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Operating Characteristic Curve (ROC), and the Area Under Receiver Operating Char-

acteristic Curve (AUROC) to compare predictions from different model specifications

at various points in time. The bootstrapped distribution is used in formally testing for

statistical significance. The results are also substantiated by the Brier Score (BS) and

the Kuiper’s Score (KS) which have a very long history in forecast verification.

Following are our three main findings. Firstly, we find that all predictions are

significantly better than the random classifier. Therefore, our mixed-frequency predict-

ors have statistically significant forecasting skills.1 Secondly, we find that there is no

significantly quantifiable difference between the various link functions and all link func-

tions for all episodes can produce skilled predictions. Thirdly, in our pseudo-real-time

exercise, which is perhaps the most relevant in terms of decision-making, we find the

prediction accuracy remains steady and robust to the flow of new information that is

absorbed by the model. The AUROC measures in the pseudo-real-time assessment turn

out to be significantly skilled as early as 90 days prior to the start of target quarter.

The subsequent sequence of predictions reveals a steady performance, as newer data

are added to the model.

This chapter brings together various strands of literature. First and most directly,

we relate to the capital flows literature. Their episodic nature, volatility and adverse

consequences are all well-studied. So far, there are two approaches. The first one

is to discretise the flows into binary events and to study their probabilities, causal

factors and consequences (see Forbes and Warnock 2012; Ghosh et al. 2016; Forbes

and Warnock 2021). The second approach is to model the tail quantiles as in IMF

(2020), Martin et al. (2020) and Gelos et al. (2022) in line with the seminal paper of

Adrian et al. (2019a) on GDP GaR. The push and pull factors of capital flows have

been investigated and identified (see Koepke 2019, for a comprehensive survey; also

see Kaminsky 2019, for an extensive survey on latest trends and directions on capital

flows research). Recent literature has also recognised the issue of publication lags in
1As in the meteorological literature, the term skilled forecasts indicate predictions that outperform

the random classifier.
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the official IMF BoP database and tried several higher frequency proxies (for example

Friedrich and Guérin 2020; Crescenzio and Lepers 2021).

We also directly relate to and extend the nowcasting literature. Particularly, we

relate to the two very new strands of nowcasting. Firstly, the approach of this chapter

is in similar spirit as that of event probability nowcasting studies such as that of bank

defaults in Audrino et al. (2019) or recession probabilities in Galvão and Owyang (2022).

Secondly, we also take forward the panel data nowcasting (Babii et al. 2020; Fosten

and Greenaway-McGrevy 2022) literature. Thus, we relate closely to mixed-frequency

modelling, which goes hand in hand with the nowcasting literature. Specifically, we

relate to the MIDAS methods (see Clements and Galvão 2008; Schumacher 2016;

Ghysels 2018; Ghysels and Qian 2019). Additionally, we also link with the long thread

of literature on discrete choice modelling and forecast verification techniques (see Mason

and Graham 2002; Bouallègue et al. 2018). These approaches are increasingly getting

used in macroeconomics as well – (for example, Berge and Jordà 2011; Liu and Moench

2016; Galvão and Owyang 2022; Garratt and Petrella 2022; McCracken et al. 2022).

The rest of the chapter is organised as follows. Section 5.2 introduces the data

along with the event definitions and constructions for our target events. Section 5.3

details our empirical framework by introducing our mixed-frequency model and the

pseudo-out-of-sample set-ups and the accuracy assessment framework. Section 5.4

presents the main empirical application and Section 5.5 concludes.

5.2 Data and Definitions

5.2.1 Capital Flows

There has been several shifts in the pattern of capital flows over time and these have

been particularly noted and discussed post GFC. As highlighted Figure 5.1 from BIS

(2021) some of the key changes are: i) gross capital flows shifted towards lower levels

that is yet to recover; ii) flows to AE has remained below 7% of GDP ever since;
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iii) flows to EME were relatively more resilient, although with temporary slowdowns;

iv) emerging Asia maintained a steady rising trend of capital flows. We source our

Figure 5.1: Capital Flows by Type and Region

Notes: This figure is sourced from BIS (2021) and highlights some of the important changes in
pattern of capital flows.

data from the comprehensive database created by Forbes and Warnock (2021) as it

is updated until 2020 and takes into account the recent shift in focus from net to

gross capital flows. We construct a balanced panel of 27 countries for 136 quarters

(Q1:1985: to Q4:2019). Although the Forbes and Warnock (2021) database consists of

59 countries, only 28 of them start in Q2:1978, while other countries are added to the

database at later starting dates (see Table 5.1). We keep all of the countries starting

in Q1:1978 in our final balanced panel2. Hence, we have a panel of 27 countries and

Figure 5.2 shows that this panel still retains most of the features of the entire data set.

5.2.2 Re-defining Capital Flow Episodes

The capital flow episodes considered in this chapter are based on now nearly standardised

definitions from the seminal paper of Forbes and Warnock (2012), where they made

the classic move from net to gross capital flows, primarily because a focus on gross

flows allows to distinguish between foreign and domestic origins of the flows. This

differentiation is important because of several reasons: (i) Domestic investors have
2except Argentina which did not have complete data in the original database
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Table 5.1: Starting Dates and Countries of Forbes and Warnock (2021) Database

Starting
Point

Count Names of Countries

1978 Q2 28 U.S., U.K., Austria, BelLux, Denmark, France, Germany, Italy, Neth-
erlands, Norway, Sweden, Canada, Japan, Finland, Iceland, Portugal,
Spain, Australia, Argentina, Brazil, Guatemala, Israel, Bangladesh, Sri
Lanka, India, Korea, Philippines, Thailand

1979 Q1 1 Mexico
1980 Q1 1 New Zealand
1981 Q1 2 Ireland, Indonesia
1984 Q1 2 Turkey, Taiwan

1985 Q1 2 South Africa, Poland
1988 Q1 1 Bolivia
1989 Q4 1 Hungary
1991 Q1 3 Chile, Peru, Romania
1992 Q1 2 Estonia, Slovenia

1993 Q1 5 Czech Republic, Slovak Rep, Latvia, Lithuania, Croatia
1994 Q1 2 Venezuela, Russia
1995 Q1 1 Singapore
1996 Q1 1 Colombia
1998 Q1 2 Panama, China
1999 Q1 5 Switzerland, Greece, Costa Rica, HongKong, Malaysia

Notes: The table shows the starting dates for the different countries in the Forbes and
Warnock (2021) capital flows database.
BelLux: Belgium and Luxembourg combined, as in Forbes and Warnock (2021).

gained importance over time, and therefore unlike historically, gross and net flows no

longer mimic each other (ii) In the recent decades, gross flows have been much more

volatile than net flows (iii) Foreign and domestic investors have distinct motivations for

the investments they make and consequently do not react in the same way to shocks

and policy measures (iv) Different policy actions might be effective in mitigating the

impacts of extreme capital flows originating from domestic and foreign investors.

There are four types of extreme episodes defined as sudden and sharp increases

or declines in inflows and outflows respectively and Table 5.2 presents a condensed

representation. Sharp increases in inflows are defined as surges whereas sharp declines

are defined as stop episodes. Similarly, rises and falls in outflows are classified as flight

and retrenchment episodes respectively.

Further, Forbes and Warnock (2021) find important shifts in the nature of capital
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Figure 5.2: Total Flows
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Notes: This figure compares the total gross flows by category for the countries selected in our panel
viz all in the database of Forbes and Warnock (2021). The black lines display the flows of the selected
countries as a percentage of all countries in the database. The red dotted line is the 100% mark.

Table 5.2: Classification Capital Flows Episodes

Event Inflow (foreigners) Outflow (domestic)

Sharp Increase Surge Flight
Sharp Decrease Stop Retrenchment

Notes: The table shows the categorisation of different
types of capital flows into four extreme episodes
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flows and also their drivers after the GFC. In a key finding, they record that the

incidence rates of capital flow episodes have declined post-GFC. Before the crisis, the

capital flow episodes impacted a large number of countries. For instance, they find

that pre-GFC, around 80% and 63% of countries experienced retrenchments and stop

episodes respectively. In contrast, the corresponding post-GFC incidence rates were

found to be substantially lower at 27% and 22% respectively. The fall in the incidence

rates is particularly prominent for the AEs. The EMEs, however, continued witnessing

higher incidence rates, especially during the uncertain times around 2015 that are more

commonly known as the ‘taper tantrum’ following the announcement of reduction of the

quantitative easing programme of the U.S. Federal Reserve. Considering this important

transition in the pattern of capital flows, we redefine the episodes as described below.

Let us introduce some notation now. Let:

K,i,t = Capital Inflow/Outflow (5.1)

Ci,t =
3∑

l=0
Ki,t−l (5.2)

∆Ci,t = Ci,t − Ci,t−4 (5.3)

We recognise an episode when ∆Ci,t exceeds (or falls short of) its five-year rolling

mean by one standard deviation (five-year rolling). The method remains the same for

other countries. To compute five-year rolling means and standard deviations, we lose

some data points at the start of the sample. Our final data set thus starts at Q1:1985.

Figures 5.3a and 5.3b illustrate the process graphically for four sample countries. Thus,

our redefined episodes relax two of the original identification criteria of Forbes and

Warnock (2021) i.e, we do not require any violation of the two-standard deviation bands

of the rolling means and the episodes need not last for any minimum period. Besides

illustrating the identification of episodes, Figures 5.3a and 5.3b can also validate the

stylised fact of expanding volatility, recorded earlier by Broner et al. (2013). Table 5.3

110



5.2. Data and Definitions 5. Timely Predictions of Capital Flow Episodes

−2000

−1000

0

1000

2000

19
78

Q
1

19
80

Q
1

19
82

Q
1

19
84

Q
1

19
86

Q
1

19
88

Q
1

19
90

Q
1

19
92

Q
1

19
94

Q
1

19
96

Q
1

19
98

Q
1

20
00

Q
1

20
02

Q
1

20
04

Q
1

20
06

Q
1

20
08

Q
1

20
10

Q
1

20
12

Q
1

20
14

Q
1

20
16

Q
1

20
18

Q
1

20
20

Q
1

20
22

Q
1

Time

In
flo

w
s

US

−3000

−2000

−1000

0

1000

2000

19
78

Q
1

19
80

Q
1

19
82

Q
1

19
84

Q
1

19
86

Q
1

19
88

Q
1

19
90

Q
1

19
92

Q
1

19
94

Q
1

19
96

Q
1

19
98

Q
1

20
00

Q
1

20
02

Q
1

20
04

Q
1

20
06

Q
1

20
08

Q
1

20
10

Q
1

20
12

Q
1

20
14

Q
1

20
16

Q
1

20
18

Q
1

20
20

Q
1

20
22

Q
1

Time

In
flo

w
s

UK

−100

0

100

19
78

Q
1

19
80

Q
1

19
82

Q
1

19
84

Q
1

19
86

Q
1

19
88

Q
1

19
90

Q
1

19
92

Q
1

19
94

Q
1

19
96

Q
1

19
98

Q
1

20
00

Q
1

20
02

Q
1

20
04

Q
1

20
06

Q
1

20
08

Q
1

20
10

Q
1

20
12

Q
1

20
14

Q
1

20
16

Q
1

20
18

Q
1

20
20

Q
1

20
22

Q
1

Time

In
flo

w
s

Austria

−1000

−500

0

500

1000

19
78

Q
1

19
80

Q
1

19
82

Q
1

19
84

Q
1

19
86

Q
1

19
88

Q
1

19
90

Q
1

19
92

Q
1

19
94

Q
1

19
96

Q
1

19
98

Q
1

20
00

Q
1

20
02

Q
1

20
04

Q
1

20
06

Q
1

20
08

Q
1

20
10

Q
1

20
12

Q
1

20
14

Q
1

20
16

Q
1

20
18

Q
1

20
20

Q
1

20
22

Q
1

Time

In
flo

w
s

BelLux

(a) Changes in 4-qtr MA of capital inflows

Notes: The blue line plots the ∆Ci,t. The red dotted line shows the one-standard-deviation bands.
The green dotted line shows the two-standard-deviation bands. The orange shaded bands indicate
stops and the blue bands show the surge episodes. There are similar figures for other 23 countries.

111



5.2. Data and Definitions 5. Timely Predictions of Capital Flow Episodes

Figure 5.3: Construction of Capital Flow Episodes
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(b) Changes in 4-qtr MA of capital outflows

Notes: The orange shaded bands indicate retrenchment and the blue bands show the flight episodes.
The rest are same as in Figure 5.3a.
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summarises the data and presents the incidence rates for each type of episode and

country during the entire period under consideration.

Table 5.3: Count of Episodes

Country Surge Stop Retrench Flight

U.S. 35 29 27 32
U.K. 37 27 25 35
Austria 28 29 25 33
Belgium-Luxembourg 33 28 28 31
Denmark 35 35 28 38

France 36 26 24 33
Germany 32 24 33 33
Italy 28 32 31 32
Netherlands 37 26 29 41
Norway 33 27 30 35

Sweden 35 23 27 42
Canada 29 28 22 31
Japan 33 31 32 30
Finland 38 30 31 32
Iceland 39 29 27 42

Portugal 32 27 24 27
Spain 35 27 27 37
Australia 30 30 29 25
Brazil 28 25 27 30
Guatemala 26 29 25 27

Israel 25 27 30 37
Bangladesh 30 28 32 40
Sri Lanka 27 26 33 25
India 36 29 26 34
Korea 32 28 29 41

Philippines 34 19 18 29
Thailand 32 29 35 36

Notes: This table shows country-specific counts of differ-
ent episodes across 27 countries for 143 quarters (Q1:1985 to
Q3:2020). In this table we have additional data for the first
three quarters of 2020 which were not used in modelling as the
data for Q4:2020 were not available.

5.2.3 Predictors

Following Forbes and Warnock (2012, 2021), our predictors can be broadly classified

into three groups: global, contagion and domestic. The predictors are, however, suitably
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modified. The old VXO (Volatility Index) calculated by the Chicago Board Options

Exchange (CBOE) measures global risk.3Following the stationarity transformations

that are standard in the GDP nowcasting literature (see Giannone et al. 2008; Bańbura

et al. 2012, and others), we calculate global money supply as the average of M2 in the

U.S., EU, Japan and M4 for the U.K., converted to U.S. dollars and then transformed to

y-o-y log differences. The average of the daily m-o-m differences from the U.S., the U.K.,

Japan and Germany indicate global interest rates. Our metric for measuring global

growth is the monthly global economic activity index, first proposed by Kilian (2009)

and further developed by Kilian and Zhou (2018). This is a more timely measure of

economic activity compared to the quarterly global GDP growth, which was previously

used in studies on capital flow episodes. Besides being available monthly, Kilian’s index

has a number of other advantages such as a long history, global coverage and is also

robust to structural change (Kilian and Zhou 2018). Recognising the significance of

oil prices as found by Forbes and Warnock (2021), we include daily global crude oil

prices by transforming the West Texas Intermediate (WTI) crude prices as m-o-m log

differences. The non-oil commodity prices are constructed as the m-o-m log differences

of monthly non-energy commodity price series published by the World Bank. Table 5.4

presents the summary of all data series along with their frequencies and transformations.

Figure 5.4 displays the time series of our transformed high-frequency data.

The contagion variable remains the same regional binary indicator indicating the

occurrence or absence of an episode in a geographical region as defined by Forbes

and Warnock (2012, 2021). In the pseudo-real-time exercise instead of assuming the

availability of full information, we compute a real-time4 version of the contagion variable,

considering the pseudo-calendar of capital flow data releases.

Additionally, we introduce a new variable which we construct as the cross-sectional

averages of lagged capital flows along with its pseudo-real-time version. It is an average
3Old VXO is highly correlated with the current index CBOE Volatility Index (VIX). We retain old

VXO as a measure of risk in line with Forbes and Warnock (2021).
4We have used final vintages as we have sourced our data from https://www.dropbox.com/s/

hcwz96okzpem8nl/ForbesWarnock_flows_dataset.dta?dl=1[Last accessed:20/07/2022]
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Figure 5.4: High-Frequency Data
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Notes: These figures display the time series of the high-frequency predictors after suitable stationarity
transformation as in Table 5.4. The high-frequency predictors are taken up to December 2019.
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of the inflows for the surges and stops and an average outflows when modelling the

flights and retrenchments. This is expected to proxy the international transmission

of shocks across countries as well as account for the possible interdependence of the

events. It is worth noting that while our model explicitly includes the global ‘push’

factors, the novel fixed effects parsimoniously proxy the country-specific ‘pull’ factors.

Table 5.4: Data Details

Sl No Series Frequency Transformation

1 VXOa Daily Replace NA with the last available
2 M2 Monthly ∆(log) in USD
3 10Y Gsec Yields Daily Daily m-o-m
4 Global Economic Activityb Monthly Nil
5 Crude Oil (WTI Spot) Daily ∆(log)
6 Commodity Prices (Non-

Energy)c
Monthly ∆(log)

7 Capital Flows Episodes Quarterly Forbes and Warnock (2021)

Notes: This table shows the frequencies and the transformations of all variables in
the mixed-frequency panel database. All data are sourced from Macrobond, unless
indicated otherwise below

a Sourced from https://fred.stlouisfed.org/series/VXOCLS [Last accessed: 28–11-
2022]. Assumed to start on Jan 1, 1986, with the same value as on Jan 2, 1986.

b See https://www.dallasfed.org/research/igrea [Last accessed: 02–5-2023]
c See https://thedocs.worldbank.org/en/doc/5d903e848db1d1b83e0ec8f744e55570-0350012021/

related/CMO-Historical-Data-Monthly.xlsx [Last accessed: 28–11-2022]

5.3 Empirical Approach

5.3.1 A Mixed-Frequency Panel Binary-Choice Model

The mixed-frequency model considered in this chapter is based on the standard binary-

choice models where the target of prediction can take two discrete values only. Since

some macroeconomic time series, for example capital flows, in this context, are available

only at a quarterly frequency and the predictors are available at higher frequencies, we

extend the binary choice model to incorporate mixed-frequencies. To cope with the

mixed-frequencies, we use MIDAS methods.

Throughout this chapter, the quarterly events of interest are denoted by binary
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variable E
(e)
i,t ; E

(e)
i,t = 1 indicates a realisation of the event e - a surge, stop, flight or

retrenchment – for the ith cross-sectional unit and the tth time-point; conversely, E
(e)
i,t = 0

indicates the non-realisation of the event. Assume π
(e)
i,t denotes the corresponding

probability. To express as the analogous latent variable threshold model, let Y
∗(e)

i,t =

η
(e)
i,t + ϵ

(e)
i,t denote the underlying unobserved latent variable such that when Y

∗(e)
i,t ≥ 0,

we realise the event – i.e., E
(e)
i,t = 1 and vice versa. ϵ

(e)
i,t are independent observations

from the cdf F . Therefore, for prediction horizon h and given information set Ωt, we

have the following prediction equation:

π
(e)
i,t+h = Pr

[
E

(e)
i,t+h = 1|Ωt

]
= Pr

[
Y

∗(e)
i,t+h ≥ 0|Ωt

]
= F

[
η

(e)
i,t+h|Ωt

]
(5.4)

We let F , i.e. the cdf, assume the following functional forms:

F (z) =


1 − exp [−exp (z)] , clog–log

Φ(z) probit
1

1+exp(−z) , logit

(5.5)

Let us assume that the high-frequency variables are sampled Mk times more frequently

than the events E
(e)
i,t , where k = 1, 2. For the empirical application, there are two

distinct high-frequency predictors – daily and monthly; the main events are quarterly.

The predictions are performed on day v, which is crucial to determine data availability.

We assume the monthly data are available with a lead of wv, quarterly data are available

with lag dv and the daily data are published on the day of prediction without any lag.
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Following is the main model we estimate5:

π
(e)
i,tv+h = Prob(E(e)

i,tv+h = 1|Ωtv)

= F

αi +
J∑

j=1
βM1,j

B
(M1)
j

(
L

1
M1 , θM1,j

)
g

(M1)
tv ,j

+
K∑

k=1
βM2,kB

(M2)
k

(
L

1
M2 , θM2,k

)
g

(M2)
tv+wv ,k + γci,tv−dv + δgtv−dv

] (5.6a)

that is:

η
(e)
i,tv

= αi +
J∑

j=1
βM1,j

B
(M1)
j

(
L

1
M1 , θM1,j

)
g

(M1)
tv ,j +

K∑
k=1

βM2,kB
(M2)
k

(
L

1
M2 , θM2,k

)
g

(M2)
tv+wv ,k

+ γci,tv−dv + δgtv−dv

(5.6b)

The αi are the country-specific fixed effects. B
(Mk)
j are the exponential Almon MIDAS

polynomials with the following generalised functional form:

B(L 1
m , θ) =

K∑
q=1

b(q; θ)L
q−1
M (5.7a)

L
s

M xt = xt− s
M

(5.7b)

b(q, θ) = exp(θ1q + θ2q
2)

exp(∑Q
q=1 θ1q + θ2q2)

(5.7c)

where g
(M1)
t,j denotes the daily variables; g

(M2)
t+wm

denotes the monthly variables, ci,t−dv

denotes the contagion variables and gt−dv
denotes the global cross-sectional averages of

capital flows generically – i.e., it represents the global average inflows when predicting

the surges and stops whereas it indicates average outflows when predicting flights and

retrenchments. The model can be easily further generalised to include other frequency

mixes or other variables.

Estimation is carried out by the maximum likelihood method using numerical
5Regression coefficients depend on the day of prediction, denoted as v. It’s not explicitly stated to

avoid clutter in notation.
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techniques. We use the Nelder–Mead algorithm and iterate until convergence. As

demonstrated by Ghysels and Qian (2019) with the beta lag polynomial, we find

that even with one parameter fixed, the Almon polynomial in equation (5.7c) still

can assume different shapes (see Figure 5.5) to suit empirical applications. This can

partially reduce the number of parameters to estimate and thereby bring down the

computational process. Therefore, we fix the second parameter of the Almon-lag

polynomial – i.e., equation (5.7c) – and estimate the other.

Figure 5.5: Shapes of the Almon Polynomial
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Notes: This figure plots the different shapes of the Almon polynomial in equation (5.7c) when we
keep θ2 = 0.05 and vary θ1 as in equation (5.7c).

5.3.2 Out-of-Sample Accuracy Measures

AUROC

We use AUROC to measure prediction accuracy. The term ROC originated in the field

of radar signal-detection theory (Peterson et al. 1954) and has been extensively used in

medical sciences, meteorology and psychology. The ROC is now a standard measure of

evaluating binary predictions and has been considered in recent macroeconometrics,
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particularly in the last decade, mostly to evaluate recession probabilities (see Berge

and Jordà 2011; Liu and Moench 2016; Galvão and Owyang 2022; McCracken et al.

2022).

Very briefly, the ROC curve is a forecast verification tool that characterises the

accuracy of the forecasting system in anticipating the event under consideration. To

construct ROC curves, the predicted event probabilities are converted to binary form,

i.e. when they exceed or fall short of a chosen threshold the event is to occur or not to

occur. The correspondence between a series of such transformed binary predictions

and actual event realisations can be summarised using two metrics – hit rates and

false alarms. The hit rates are also known as sensitivities and the false alarms as 1−

specificity. Specifically, for one sample contingency table as in Table 5.5, we define hit

rates and false alarms as in equations (5.8). We construct several such contingency

tables for each point in a grid of cut-off points. Given a set of event realisations,

predicted probabilities and a grid of cut-off values, the ROC curve traces out the locus

of all possible hit and false alarm rates6.

Table 5.5: Sample Contingency Table

Observed

P
re

di
ct

ed Yes No
Yes a b
No c d

Notes: This table
is an illustration of
a hypothetical con-
tingency table in
a binary classifica-
tion problem

Hit Rate/Sensitivity = a

a + c
(5.8a)

False Alarm = b

b + d
(5.8b)

6We refer to Robin et al. (2011) for computational details.
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Therefore, if we have an ideal model which always classifies correctly, we can expect

all hit rates to be one and all false alarms to be zero. In contrast, if we have a model

which is no better than a simple random guess, we expect all hit rates and false alarms

to be around 0.5. The AUROC is a standard measure to summarise and compare

ROC curves. In the case of an ideal perfect prediction, the AUROC measure should be

equal to one. The closer it is to one, the better the predictions are. If the predictions

have some skill (accuracy) with respect to a random classifier, we expect the AUROC

to be greater than 0.5. Thus we borrow the term ‘forecast skill’ from Murphy (1988)

to indicate such AUROC scores. Formal testing methods, based on the standard

asymptotic normality property of the AUROC, assess if the forecast skills exceed 0.5

using and distinguish between different ROC curves.

We use bootstrapped distributions as standard in the forecast verification literature

and also used in macroeconometrics, for instance, Liu and Moench (2016). The

bootstrap method consists of cross-sectional and temporal block resampling (such as

that suggested in Kapetanios 2008) to account for autocorrelation in time and across

countries. The block length (b) are selected as N
1
3 and T

1
3 for the time-series and the

cross-sectional dimensions respectively. The resampled panel dimensions are ensured

to be equal to that of the original panel dataset.

BS

We corroborate the results obtained from AUROC with BS (Brier 1950), the most

commonly used scalar summary performance measure of probabilistic predictions (Wilks

2010). As defined in equation (5.9), BS is computed as the mean square probability

forecast error and is closely relatable to the RMSFE used in other chapters of this

thesis.

BS = 1
NT

N∑
i=1

T∑
t=1

[Ei,t − πi,t]2 (5.9)
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BS is a negatively oriented score, ranging from zero to one – i.e., BS declines with

improvement in prediction accuracy.

KS

The results are further substantiated with KS, also known as Peirce Skill Score, which

is widely used for contingency tables and has been prevalent as a measure of forecast

verification since 1884 (Wilks 2019). It is calculated as the difference between hit rates

and false alarms. Unlike AUROC and BS used so far, KS applies to deterministic

predictions and is specific to contingency tables. Therefore, we convert our probabilistic

predictions to deterministic event predictions by recognising the occurrence of an event

if the predicted probabilities exceed a chosen threshold. Instead of restricting the

analysis to a specific threshold, we select a range of thresholds at various points of

the distribution of the predicted probabilities, in such a way that we cover their entire

distribution.

5.4 Results

The empirical application proceeds in two parts as we present the out-of-sample predic-

tion results on the actual capital flow data using the high-frequency macro-financial

data we described earlier. First, we will focus on the hypothetical full-information

scenario. Then we will turn our attention to the pseudo-real-time application.

5.4.1 Full-Information Results

Our first set of results aims to examine the performance of the mixed-frequency models

in an out-of-sample context. Here, we assume that at the time of prediction, all relevant

information is accessible to the forecaster. Thus, we do not account for the data

publication lags and assume that the IMF BoP data are available to the forecaster

for all countries in the panel until a quarter before our target quarter. In our mixed-

frequency approach, all the relevant higher–frequency (i.e., daily and monthly) data
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are also taken to be at our disposal at the time of prediction. We choose J = 40

daily and K = 3 monthly lags. Therefore, we extend the current related (Forbes and

Warnock 2012; Ghosh et al. 2016; Forbes and Warnock 2021) literature to out-of-sample

mixed-frequency analysis, from the present temporally aggregated in-sample analysis

and thus can investigate important aspects of the model performance.

AUROC

We adopt the following approach for accuracy assessment. Our targets are one-quarter-

ahead probabilities for the four possible extreme episodes defined earlier – i.e., surge,

stop, flight and retrenchment. We model each one of the episodes separately. The

cross-sectional averages of the respective capital flows (i.e., inflows for surges and

stops, and outflows for flights and retrenchments) act as a link between episodes. The

pseudo-out-of-sample design splits the time dimension into two halves – i.e., T = R + P

observations. We estimate the model parameters using the first R quarters and predict

one step at a time using the subsequent P quarters using a recursive estimation scheme

– i.e., an expanding sequence of estimation samples. Hence, our evaluation sample starts

in Q3:2002 and ends in Q4:2019 – a total of 69 quarters. The ROC diagram shows

the correspondence between the predictions and the actual event occurrences. The

combined AUROC score summarises the performance by pooling together all countries

in the panel. Subsequently, we also turn our focus to the AUROCs for individual

countries in our panel.

Figure 5.6 presents the overview of assessment in the form of the ROC curves for

different episodes and the three link functions – clog–log, probit and logit. Generally,

the predictions from our models are better than random classifier lines. For each episode

and link function, Figure 5.7 presents the mean and 95% Confidence Interval (CI) of

the bootstrapped AUROC distribution and the results differ across episodes. Although

the ROC curves of flights and surges outperform the random classifier universally across

link functions, the performance of stop and retrenchment episodes are weaker at overall

level. However as Figure 5.8 demonstrates, stops and the retrenchment predictions are

123



5.4. Results 5. Timely Predictions of Capital Flow Episodes

relatively better when we analyse the AUROC scores for countries separately. The CIs

in Figure 5.7 show that almost all of the link functions generate significantly better

results than the random classifier for flights and surges, whereas the differences are

only marginally significant different from a random classifier for the other two episodes

– namely, stops and retrenchments. It is further evident from the overlapping CIs

in Figure 5.7 that the differences between the three link functions are statistically

indistinguishable.

Figure 5.6: AUROC for the Full-Sample Full-Information Model

0.00

0.25

0.50

0.75

1.00

0.000.250.500.751.00
specificity

se
ns

iti
vi

ty

Surge

0.00

0.25

0.50

0.75

1.00

0.000.250.500.751.00
specificity

se
ns

iti
vi

ty
Stop

0.00

0.25

0.50

0.75

1.00

0.000.250.500.751.00
specificity

se
ns

iti
vi

ty

Retrench

0.00

0.25

0.50

0.75

1.00

0.000.250.500.751.00
specificity

se
ns

iti
vi

ty

Flight

Link cloglog probit logit

Notes: ROC curves for the different combinations of episodes and link functions. The ROC curves
are computed after pooling the predictions and the observed across all countries. The 45°dotted black
line represents a random classifier – the benchmark.

Figure D.1 in the Appendix plots the AUROC scores for a intercept only benchmark

model, i.e. for each country we model the latent variable by historical means and

then apply the appropriate link function. A comparison of Figures 5.7 and D.1 clearly

reveals distinguishable gains in prediction accuracy from our mixed-frequency panel
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models, while the benchmark model appears inseparable from the random classifier.

Figure 5.8 shows that there is variation in the quality of estimation across the 27

countries in the panel. The cloglog link outperforms for the flights and the retrenchment

episodes at a country-level. Generally, the model predictions are better than the random

classifier and there are some countries with excellent AUROC scores, around 0.8. Most

countries have an AUROC between 0.6 and 0.7, across episodes and link functions.

Countries such as Sweden, the Netherlands, Iceland, the U.S., the U.K. and India have

better overall AUROC scores. In contrast, Finland, Japan, Portugal, Bangladesh, and

Australia have the lowest prediction accuracy across episodes, in that order.

Differences in the quality of predictions can be noted among the four episodes, within

each country. With the cloglog link function, 44% of countries show the best prediction

accuracy for the retrenchment episodes followed by 41% of countries exhibiting the

most accurate results for the stop episodes; further, in 11% of the countries flights

are predicted with the highest accuracy while in only 4%7 of countries, predictions for

surges are the most precise. The U.K., BelLux8, Korea, Italy and India show the highest

variation in accuracy among the different episodes. For example, predictions for the

U.K. are extremely precise for retrenchments and stops, while they are distinctly worse

for flights and surges. On the other hand, we notice a very high accuracy for flights

and stops in India and weaker performances for retrenchments and stops. Similarly,

there are disparities when we focus on other link functions and into countries.

Robustness to different modelling choices is established from Figures D.2 and D.3

in the Appendix, with a few alternatives such as excluding the cross-sectional averages

and including dummy for the GFC. Our conclusions remain unchanged.

BS

The figures in Table 5.6 show the BS for the full-information analysis. We find that

the scores are closer to the perfect BS of zero and farther away from the worst BS of
7This is actually only one country, Norway, where a high level of precision is observed for all four

episodes.
8Belgium and Luxembourg combined
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Figure 5.7: 95% CI for AUROC
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Notes: AUROC for the different episodes and link functions. The blue dots indicate the point
estimate of the AUROC and the whiskers indicate the 95% CI obtained from 1, 000 block bootstrap
replications.
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Figure 5.8: Distribution of AUROC Across Countries
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Notes: These figures show the distribution of AUROC scores across the 27 countries of the panel for
the full-information set-up.
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one. There is no quantifiable difference noted among the episodes and link functions.

Improvements are evident when compared to similar BS reported for the benchmark

model in Table D.1 of Appendix D.1.1. Therefore, these complement the findings of

the AUROC scores earlier.

Table 5.6: BS - Full Sample Assessment

Episodes cloglog probit logit

Surge 0.1629 0.1616 0.1616
Stop 0.1592 0.1515 0.1515
Retrench 0.1624 0.1558 0.1555
Flight 0.1692 0.1682 0.1672

Notes: This table shows the Brier
Scores for the different events and link
functions for the full sample assessment.

KS

The results displayed in Table 5.7 demonstrate improved KS from the full-information

mixed frequency set-up than those from the benchmark model, as reported in Table D.2

of Appendix D.1.1. KS are generally higher when the threshold is set at either the

50th or 75th percentiles of the predicted probability distribution, compared to higher or

lower percentiles.

5.4.2 Pseudo-Real-Time Application

In this section, as prevalent in the nowcasting literature, we will make multiple predic-

tions, while continuously updating our information set to reflect new data releases. This

is achieved in two steps. We first construct a pseudo-calendar mimicking the actual

data release schedule for the different series under consideration. Then we generate

a sequence of predictions consisting of forecasts, nowcasts and backcasts. Finally, we

assess the predictions using the same verification framework as earlier. We also examine

the monotonicity of the scores – i.e., whether the scores improve over time as more

recent data are absorbed by the model.
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Table 5.7: KS for the full-information analysis

Thresholds

Episodes Link 5% 25% 50% 75% 95%

Surge cloglog 0.0409 0.1385 0.1496 0.1130 0.0259
Stop cloglog -0.0851 -0.0606 0.0463 0.1747 -0.0005
Retrench cloglog -0.0637 -0.1141 -0.0071 0.1034 0.0173
Flight cloglog 0.0334 0.1550 0.1811 0.1611 0.0495

Surge probit 0.0409 0.1289 0.1846 0.1576 0.0641
Stop probit -0.0351 -0.0642 0.0962 0.1782 0.0209
Retrench probit -0.0245 -0.1212 0.0250 0.0998 0.0316
Flight probit 0.0303 0.1581 0.1749 0.1949 0.0495

Surge logit 0.0346 0.1321 0.1846 0.1830 0.0514
Stop logit -0.0280 -0.0499 0.0642 0.1854 0.0565
Retrench logit -0.0316 -0.1141 0.0285 0.1069 0.0351
Flight logit 0.0334 0.1550 0.1719 0.1887 0.0464

Notes: This table displays the KS for the full-information results over
a range of thresholds covering the entire distribution of probabilistic
predictions across episodes and different link functions.

Data Releases and Calendar

The IMF BoP data archives9 preserve the actual country-level release dates for the

quarterly capital flows. Typically, the data are released on Wednesdays of the last

whole week of the month. The pseudo-calendar averages the publication lags in days

from the quarter-end-date for each country over a period of 20 quarters during the five

years spanning from Q2:2017 to Q2:2022. Table 5.8 and Figure 5.9 present the summary

statistics of the publication lag for the 27 countries we consider. Publication lags are

enormous, with the minimum being 86 days and many countries having publication lags

of more than 100 days. The shortest average publication lags are for Brazil, followed

by Turkey and Indonesia.

We have daily and monthly data as high-frequency predictors. The daily data are

assumed to be available on the day of prediction with no lags. Table 5.9 presents the

exact lags for the several monthly series we consider. Among these, the shortest lag is

for the M2 series in Japan, which is available after 14 days. and other monthly series
9See https://data.imf.org/?sk=7a51304b-6426-40c0-83dd-ca473ca1fd52&sid=

1542634807764 [Last accessed: 15-11-2022].
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are usually published within 30 days. We assume that there is a 30-day lag for all

monthly series.

Table 5.8: Summary of Publication Lags Across Countries

No. of Countries Min Q1 Median Mean Q3 Max

27 86 138 146 157 153 346

Notes: This table shows the distribution of publication lags for
the capital flows data in the IMF BoP database. The average (from
Q2:2017 until Q2:2022) of publication lags presented as the difference
in days from the quarter end date until the date of data release.

Figure 5.9: Publication Lags Across Countries
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Notes: See Table 5.8

Table 5.9: Monthly Data Release Calendar

No. Series Publication Lagsa Source

1 M2 (EUR) 30 European Central Bank
2 M2 (U.S.) 30 The Federal Reserve
3 M4 (U.K.) 30 Bank of England
4 M2 (Japan) 14 Bank of Japan
5 World Economic Activity 30 Federal Reserve bank of Dallas
6 Commodity Prices 30 World Bank

Notes: This table shows the publication lags in days and the sources of the monthly
data.

a In days, approx.
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Prediction Sequences and Monotonicity Assessment

For each episode, we consider monthly updates of predictions. The sequence of out-

of-sample predictions consists of 10 updates, starting at the beginning of the quarter

preceding the target quarter and ending 90 days after the end of the quarter. Every

update of the predictions incorporates new releases of the monthly series and includes

the latest daily data. Even after 90 days, all of the countries in our panel, except Brazil,

await the release of the BoP actual data, as seen earlier in Table 5.8. By the end of

the quarter, the first lags are usually available for all except Guatemala, Sri Lanka

and Thailand. Thus, the chain of prediction consists of three forecasts, four nowcasts

and three backcasts. The actuals for the accuracy assessment are constructed from the

latest available vintage of the IMF BoP database.

AUROC

Figure 5.10 shows the AUROC scores for the different prediction days for each of the

three link functions and the four episodes. The AUROC from the panel models beat

the random classifier from the starting point of our prediction sequence. Also, the

results are distinctly better than a naïve constant-only benchmark (see Figure D.4) The

AUROC scores are comparable to the full-sample results presented earlier in Figure 5.7.

Therefore, the predictions from our mixed-frequency model display forecast skills as

early as the beginning of the quarter before the target quarter. Thereafter, the accuracy

of the predictions as measured by the AUROC remains steady with fluctuations in a

low band as new information becomes available and are passed on to the model.

We formally test the sequence of AUROC scores to identify if there is any significant

gain from additional information being absorbed by the model. For every prediction

date, starting from the second date, we test if the current AUROC is different from the

previous AUROC – i.e., if AUCi denotes the AUROC for the ith prediction date, we

test for H0 : AUCi = AUCi−1 vs H0 : AUCi ̸= AUCi−1 for i = 2, 3, . . . 1010. Table 5.10
10We assume normality of the AUROC scores and compute the standard deviation using bootstrap.
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Figure 5.10: AUROC at Different Prediction Dates
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Notes: This figure shows the sequence of AUROC scores for different episodes and link functions.
Prediction days are referenced from the start of quarter. Therefore, minus 90 means the starting day
of the previous quarter.

displays the p-values for the sequences of these tests. We find that excepting a few

prediction dates towards the end of our sequence, the majority of the AUROC scores are

statistically significantly different from the AUROC scores of the previous prediction

date. Thus, although our AUROC sequences display a variation in a low range and do

not exhibit monotonicity, they can significantly absorb new information. These results

further strengthen the finding that the sequence of AUROC are stable and indicate

satisfactory performance of our model up to two quarters ahead of the target quarter

end.
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Table 5.10: Tests of Significance of AUROC sequences

Prediction Day Surge Stop Retrench Flight

cloglog
2 0.0029 0.0002 0.0036 0.0116
3 0.0040 0.3680 0.3153 0.0109
4 0.1093 0.0001 0.0000 0.0841
5 0.0000 0.0283 0.0000 0.0000
6 0.0000 0.0000 0.0001 0.0006
7 0.0019 0.0935 0.8932 0.0003
8 0.7159 0.6493 0.9561 0.2517
9 0.1351 0.6422 0.0484 0.0234
10 0.0106 0.0001 0.5553 0.0110

probit
2 0.0027 0.0009 0.0001 0.0614
3 0.0052 0.4908 0.0493 0.0172
4 0.1372 0.0000 0.0000 0.1025
5 0.0000 0.0062 0.0000 0.0000
6 0.0041 0.0000 0.0000 0.0053
7 0.0004 0.7805 0.0009 0.0001
8 0.3071 0.0009 0.0123 0.3987
9 0.7160 0.3453 0.0205 0.0546
10 0.0736 0.0000 0.5196 0.0259

logit
2 0.0116 0.0054 0.0048 0.0198
3 0.0135 0.1381 0.1598 0.0895
4 0.5481 0.0003 0.0000 0.3836
5 0.0000 0.3008 0.0001 0.0000
6 0.0004 0.0000 0.0000 0.0438
7 0.0000 0.7097 0.1274 0.0000
8 0.9698 0.0011 0.0041 0.1701
9 0.4127 0.3706 0.0130 0.1203
10 0.7687 0.0000 0.4983 0.0301

Notes: This table shows the pairwise test of the AUROC
scores for the pseudo-real-time analysis. This is relatable to
Figure 5.10. Each row of the table displays the p-value for
testing the null hypothesis that the AUROC score obtained
on the prediction day is statistically significantly different
from the AUROC score on the previous prediction day. We
have nine rows for each link function as we have 10 predic-
tion days in total. The test uses bootstrapped standard
errors.

133



5.4. Results 5. Timely Predictions of Capital Flow Episodes

BS

Table 5.11 presents the BS for the pseudo-real-time analysis and the figures reveal

similar conclusions as earlier – i.e., (i) the BS are relatively closer to zero than one

(ii) improvements are noticeable when compared with the BS from the benchmark

model as reported in Table D.3 of Appendix D.2.1 (iii) there is a very low range of

variation among different episodes and the link functions. Additionally, the sequence of

BS exhibits signals of monotonicity – i.e., improvement of prediction accuracy indicated

by a declining pattern of BS over the horizons as our model absorbs more information

from newer data releases. Monotonicity was not evident from the analysis of AUROC

scores previously.

KS

Analysing the results presented in Table 5.12, we find that KS varies more across choice

of thresholds and episodes, but not much across link functions. Among the episodes,

surges and flights show a better range of KS as compared to retrenchments and stops,

over the sequence of prediction horizons under consideration. While the KS values are

positive right from the start for flights and retrenchments, they become positive later

on for stops and surges. Improvements are evident when compared to the KS of the

predictions from the benchmark model, as reported in Table D.3 in Appendix D.2.1.

Similar to BS, we also note a monotonic improvement of KS across all events.
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Table 5.11: BS for Pseudo-Real-Time Analysis

Prediction Day Surge Stop Retrench Flight

cloglog
1 0.1590 0.1774 0.1731 0.1660
2 0.1599 0.1764 0.1713 0.1669
3 0.1592 0.1731 0.1697 0.1651
4 0.1607 0.1664 0.1636 0.1673
5 0.1593 0.1698 0.1689 0.1651
6 0.1618 0.1574 0.1584 0.1680
7 0.1614 0.1587 0.1602 0.1682
8 0.1621 0.1600 0.1602 0.1677
9 0.1612 0.1519 0.1557 0.1664
10 0.1555 0.1484 0.1529 0.1615

probit
1 0.1598 0.1727 0.1707 0.1665
2 0.1605 0.1713 0.1684 0.1663
3 0.1595 0.1669 0.1675 0.1647
4 0.1618 0.1621 0.1605 0.1672
5 0.1588 0.1667 0.1664 0.1647
6 0.1611 0.1535 0.1546 0.1675
7 0.1602 0.1563 0.1583 0.1663
8 0.1602 0.1580 0.1576 0.1667
9 0.1607 0.1467 0.1503 0.1665
10 0.1547 0.1416 0.1477 0.1605

logit
1 0.1597 0.1697 0.1666 0.1655

2 0.1600 0.1690 0.1665 0.1663
3 0.1597 0.1680 0.1650 0.1655
4 0.1601 0.1618 0.1600 0.1666
5 0.1581 0.1655 0.1639 0.1650
6 0.1611 0.1527 0.1541 0.1673
7 0.1594 0.1556 0.1565 0.1663
8 0.1596 0.1559 0.1575 0.1655
9 0.1589 0.1463 0.1501 0.1658
10 0.1559 0.1415 0.1471 0.1603

Notes: This table displays the BS for all the 10 prediction
dates we consider in the pseudo-real-time analysis. The
different link functions are grouped together in blocks for
all of the four episodes.
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Table 5.12: KS for Pseudo-Real-Time

(a) KS for Surges

Prediction Day 5% 25% 50% 75% 95%

cloglog
1 0.0431 0.0655 0.1271 0.2183 0.0493
2 0.0431 0.0919 0.0677 0.1721 0.0559
3 0.0431 0.0886 0.1535 0.1820 0.0658
4 0.0530 0.0787 0.1205 0.1622 0.0790
5 0.0497 0.1579 0.2030 0.1754 0.0592
6 0.0002 0.1051 0.1370 0.1193 0.0361
7 0.0497 0.1249 0.2096 0.1127 0.0361
8 0.0530 0.1315 0.2228 0.1391 0.0295
9 0.0497 0.1513 0.1700 0.1490 0.0460
10 0.0530 0.1711 0.1766 0.1523 0.0823

probit
1 0.0332 0.0490 0.1502 0.2150 0.0592
2 0.0530 0.0358 0.0776 0.1457 0.0460
3 0.0398 0.0919 0.1007 0.1952 0.0592
4 0.0167 0.0226 0.1271 0.1556 0.0559
5 0.0563 0.1480 0.2030 0.2051 0.0526
6 0.0332 0.1216 0.0974 0.1325 0.0526
7 0.0530 0.1282 0.2261 0.1589 0.0559
8 0.0530 0.1447 0.2426 0.1688 0.0559
9 0.0530 0.1381 0.1931 0.2150 0.0526
10 0.0596 0.1513 0.2294 0.2084 0.0823

logit
1 0.0332 0.0424 0.1370 0.2150 0.0493
2 0.0530 0.0193 0.1238 0.1820 0.0592
3 0.0431 0.1183 0.1238 0.1820 0.0460
4 0.0398 0.0721 0.1502 0.1787 0.0724
5 0.0563 0.1447 0.1700 0.2117 0.0592
6 0.0464 0.1348 0.1073 0.1226 0.0559
7 0.0563 0.1348 0.2294 0.1820 0.0658
8 0.0530 0.1249 0.2096 0.1688 0.0559
9 0.0497 0.1282 0.2096 0.2282 0.0592
10 0.0530 0.1612 0.1964 0.2117 0.0559

Notes: This table displays the KS for the prediction of surge episodes using a number of thresholds
covering the distribution of predicted probabilities.
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Table 5.12: KS for Pseudo-Real-Time

(b) KS for Stops

Prediction Day 5% 25% 50% 75% 95%

cloglog
1 -0.0961 -0.3176 -0.3142 -0.1392 -0.0391
2 -0.1181 -0.2006 -0.2412 -0.1465 -0.0354
3 -0.0413 -0.2043 -0.2010 -0.1355 -0.0281
4 -0.0998 -0.2299 -0.1169 -0.0624 0.0158
5 -0.0925 -0.2445 -0.1571 -0.0771 0.0267
6 -0.0633 -0.1568 -0.0548 0.0581 0.0486
7 -0.0523 -0.1605 -0.0438 0.0472 0.0596
8 -0.0961 -0.1714 -0.0073 -0.0076 0.0596
9 -0.0523 -0.0874 0.0512 0.0874 0.0559
10 0.0354 -0.0508 0.0548 0.1860 0.0267

probit
1 -0.1108 -0.2993 -0.2740 -0.1465 -0.0354
2 -0.1181 -0.1751 -0.2119 -0.1465 -0.0464
3 -0.0267 -0.2043 -0.1973 -0.1282 -0.0354
4 -0.0961 -0.2043 -0.1096 0.0070 0.0158
5 -0.0633 -0.2299 -0.1352 -0.0588 0.0267
6 -0.0559 -0.0947 -0.0548 0.0399 0.1144
7 -0.0450 -0.1568 -0.0219 0.0545 0.0596
8 -0.0377 -0.0947 -0.0256 0.0508 0.0706
9 -0.0158 -0.0070 0.0402 0.1678 0.0559
10 0.0354 0.0186 0.0877 0.1933 0.1254

logit
1 -0.0815 -0.3030 -0.2667 -0.1392 -0.0464
2 -0.1144 -0.1239 -0.2412 -0.1794 -0.0391
3 -0.0413 -0.2116 -0.1535 -0.1319 -0.0354
4 -0.0925 -0.2080 -0.1242 -0.0149 0.0194
5 -0.0961 -0.2335 -0.1535 -0.0624 0.0304
6 -0.0596 -0.1568 -0.0475 0.0399 0.1144
7 -0.0779 -0.1129 -0.0438 0.0545 0.0633
8 -0.0523 -0.0874 -0.0110 0.0508 0.0669
9 -0.0194 -0.0033 0.0438 0.1495 0.0559
10 -0.0121 0.0222 0.0658 0.2153 0.1034

Notes: This table displays the KS for the prediction of stop episodes using a number of thresholds
covering the distribution of predicted probabilities.
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Table 5.12: KS for Pseudo-Real-Time

(c) KS for Retrenchments

Prediction Day 5% 25% 50% 75% 95%

cloglog
1 -0.1067 -0.2977 -0.2533 -0.1726 -0.0319
2 -0.1468 -0.1592 -0.2169 -0.1398 -0.0428
3 -0.0775 -0.2503 -0.2388 -0.1252 -0.0209
4 -0.1140 -0.1701 -0.1112 -0.0778 0.0155
5 -0.1103 -0.2612 -0.1768 -0.0814 -0.0027
6 -0.0739 -0.1409 -0.1002 -0.0122 0.0301
7 -0.0848 -0.1810 -0.0893 0.0170 0.0556
8 -0.0702 -0.1810 -0.0820 0.0133 0.0520
9 -0.0666 -0.1446 -0.0091 0.0097 0.0593
10 0.0282 -0.1191 0.0310 0.0935 0.0228

probit
1 -0.1249 -0.2722 -0.2533 -0.1726 -0.0391
2 -0.1468 -0.1336 -0.2060 -0.1325 -0.0464
3 -0.0848 -0.2503 -0.2752 -0.1288 -0.0282
4 -0.1176 -0.1227 -0.1440 -0.0486 0.0155
5 -0.0702 -0.2357 -0.1914 -0.1033 0.0192
6 -0.0702 -0.0534 -0.0674 0.0316 0.0921
7 -0.0702 -0.1300 -0.0747 0.0133 0.0629
8 -0.0411 -0.0899 -0.1039 0.0170 0.0483
9 0.0027 -0.0790 -0.0273 0.0863 0.0593
10 0.0464 -0.1045 0.0091 0.1118 0.0775

logit
1 -0.0739 -0.2175 -0.2205 -0.1580 -0.0319
2 -0.1030 -0.1373 -0.2096 -0.1252 -0.0501
3 -0.0848 -0.2357 -0.2242 -0.1179 -0.0282
4 -0.1140 -0.1154 -0.1258 -0.0486 0.0228
5 -0.0848 -0.2175 -0.1732 -0.0997 -0.0136
6 -0.0739 -0.1045 -0.0930 -0.0122 0.0957
7 -0.0666 -0.1264 -0.0674 0.0206 0.0556
8 -0.0666 -0.1191 -0.0565 0.0133 0.0556
9 -0.0411 -0.0644 -0.0310 0.1008 0.0556
10 0.0282 -0.0826 0.0346 0.1081 0.0848

Notes: This table displays the KS for the prediction of retrenchment episodes using a number of
thresholds covering the distribution of predicted probabilities.
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Table 5.12: KS for Pseudo-Real-Time

(d) KS for Flights

Prediction Day 5% 25% 50% 75% 95%

cloglog
1 0.0222 0.0617 0.1578 0.1934 0.0575
2 0.0381 0.0266 0.1228 0.1679 0.0607
3 0.0286 0.0681 0.1483 0.1838 0.0480
4 0.0190 0.0585 0.1196 0.1742 0.0544
5 0.0477 0.1095 0.1770 0.2253 0.0544
6 0.0094 0.0713 0.1323 0.1392 0.0512
7 0.0477 0.1510 0.1865 0.1328 0.0703
8 0.0477 0.1382 0.1897 0.1392 0.0703
9 0.0445 0.1510 0.1993 0.1742 0.0639
10 0.0541 0.1574 0.2248 0.1838 0.1054

probit
1 0.0126 0.0458 0.1642 0.1519 0.0607
2 0.0381 0.0075 0.1036 0.1647 0.0639
3 0.0286 0.0617 0.1387 0.2189 0.0544
4 0.0349 0.0426 0.1164 0.1519 0.0512
5 0.0477 0.1191 0.1770 0.2093 0.0416
6 0.0413 0.0745 0.1323 0.1551 0.0448
7 0.0413 0.1191 0.1770 0.1902 0.0639
8 0.0445 0.1319 0.1961 0.1838 0.0607
9 0.0445 0.1478 0.1993 0.2380 0.0767
10 0.0541 0.1574 0.1961 0.2316 0.0703

logit
1 0.0126 0.0681 0.1578 0.1615 0.0575
2 0.0381 -0.0148 0.1068 0.1742 0.0448
3 0.0286 0.0745 0.1451 0.1774 0.0575
4 0.0254 0.0585 0.1291 0.1838 0.0607
5 0.0477 0.1191 0.1738 0.2093 0.0448
6 0.0413 0.1000 0.1451 0.1360 0.0352
7 0.0413 0.1414 0.1961 0.1902 0.0607
8 0.0445 0.1159 0.2152 0.2125 0.0416
9 0.0413 0.1414 0.2057 0.2285 0.0512
10 0.0541 0.1606 0.2089 0.2253 0.0830

Notes: This table displays the KS for the prediction of flight episodes using a number of thresholds
covering the distribution of predicted probabilities.
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5.5 Conclusion

In this chapter, we propose and estimate a novel binary choice model to predict the

probabilities of extreme episodes in cross-border capital flows in a timely fashion. Our

model is in a mixed-frequency panel framework and predicts the probabilities for the

quarterly target events with monthly and daily predictors. To handle the mixed-

frequency nature of the data, we used a non-linear MIDAS set-up with Almon lag

polynomials. The model is estimated with a modified maximum likelihood technique

which reduces the number of parameters. In the empirical application, the model

generates predictions for 27 major countries from the IMF BoP database using high-

frequency macro-financial predictors in full-information and pseudo-real-time setups.

We rigorously evaluated predictions using formal forecast verification tools and statistical

tests.

Our main findings indicate skilled model projections which can significantly out-

perform a random classifier and a naïve benchmark as by AUROC and complemented

by BS and KS. There is no material difference between the three link functions we

examined. Our pseudo-real-time version of the database resembles the actual publica-

tion lags. The predictions exhibit statistically significant forecast skill from the start of

our prediction exercise which is 90 days prior to the beginning of the target quarter.

The predictions change significantly when newer data releases become available. There

are indications of monotonic improvement of accuracy, as seen from the declining BS

and KS metrics. Overall, we conclude that accuracy remains steady and satisfactory,

with negligible variations within a low range as new data releases are absorbed by the

model.
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Chapter 6

Conclusions and Outlook

To summarise, this thesis has made distinct contributions to four different areas of the

panel forecasting literature. Firstly, we have extended the panel nowcasting literature

by incorporating CSD in a MF-PVAR. Secondly, we augmented a panel bridge equation

framework with a similar CSD structure. Thirdly, we have built up the panel GaR model

with CSD factors. Finally, we have enhanced the panel discrete choice framework with

CSD, ragged edges and a rigorous out-of-sample assessment. These models predict a

number of important macroeconomic and environmental variables. In the linear setting,

we modelled GDP growth, inflation and CO2 emissions. In the quantile regression

framework, we focused on GaR and finally we turn to non-linear models predicting

extreme episodes of cross-border capital flows. Our datasets include international and

regional panels. The following paragraphs sum up the core chapters of the thesis and

highlight some of potential research ideas.

In Chapter 2 we proposed a method to incorporate CSD in panel nowcasting models

with mixed-frequencies. CSD is well-recognised in large panels and has been explicitly

modelled in previous causal studies. The model is applied to nowcast GDP and inflation

– two of the key variables tracked for monetary policymaking – for large panels of

countries. New information is added to the model as they become available and the

predictions are updated. The series of predictions out-perform standard benchmarks

and also improves monotonically as more information is incorporated.

141



6. Conclusions and Outlook

The following research questions arise from this chapter. A natural progression

of this work will be to implement the other forms of non-linear lag polynomials in

the MIDAS part of the model. A further study could compare the results with the

Dynamic Factor Model (DFM) which is widely applied in nowcasting studies. To enable

this comparison, we would require an extension of the DFM to the panel data set-up.

Another limitation we faced was the lack of harmony for published macroeconomic

data among various countries. With more and more data being available for research,

we hope that at some future point, we will be able to implement DFMs in panel

frameworks. The CCE is one of the methods to approach CSD in panel data. It would

be interesting to compare the results with the other methods of incorporating CSD

such as in panel data models like that of Bai (2009) and related chapters. Another

fruitful area for further work could be a fully-fledged non-linear panel extension to the

MFVAR model with impulse response analysis. More broadly, future related studies

could connect the forecasting literature with panel aggregation (such as Pesaran and

Chudik 2014) for comprehensive predictions.

Chapter 3 develops and estimates a CSD panel bridge equation framework to predict

state-level CO2 emissions. Timely predictions of U.S. subnational CO2 emissions

can play a key role in the recent regional abatement policies as there are enormous

publication lags. The bridge equation model predicts emissions with EC and in turn uses

the quarterly real personal income to predict EC. The series of generated predictions

show sizeable gains in prediction accuracy in select U.S. states as early as two years

before the release of the official estimates. The overall accuracy improves remarkably

once the model absorbs the actual releases of EC data.

Given the international recognition of the climate crisis, reducing greenhouse gases

and decarbonisation have gained unprecedented priority in recent times across the

globe. While the road to decarbonisation and achieving global climate goals has

multiple challenges, future predictions could be an important tool in policymaking.

The mixed-frequency panel model would be particularly useful in this case because

policies need to focus on several layers such as sub-national, national, regional and
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global. The methods developed here could be applied to other regions of the world. We

have earlier mentioned possible applications for the prediction aggregation of firm-level

emissions. Research on nowcasting CO2 emissions is still very nascent and there are a

lot of possibilities both in terms of choice of target of prediction and development of

new econometric methods.

Chapter 4 proposes to incorporate CSD in a forward-looking panel GaR framework.

The IMF introduced the concept of GaR modelling with quantile regressions, and it is

now a well-accepted methodology to quantify macroeconomic tail–risks. The in-sample

analysis of the model reveals a different nature of the relationship of GaR with a series

of well-known vulnerability predictors, relative to existing studies. The predictions

from the model turn out to be superior in out-of-sample comparison.

GaR is a key concept linking the real and the financial sectors of the economy and

future research could have manifold implications for several policymakers including

monetary policymaking, financial stability monitoring and others. Further studies need

to be carried out to understand whether the panel GaR model excluding CSD was

possibly misspecified. The present GaR methodology using quantile regression is a very

data-intensive procedure and this very nature of the method restricts the framework to

countries with a reasonably rich history of macro-financial data. Moving forward, a

greater understanding of the phenomenon across a wider range of countries needs to be

developed. Quantile regressions with shrinkage estimation could be one of the options

to explore, which has not found applications in the GaR literature so far. The issue of

timeliness of macroeconomic data also applies to the GaR framework. Higher-frequency

or mixed-frequency set-ups have been proposed for GaR modelling for single time series

such as the Euro Area (Ferrara et al. 2022) or the U.S. (Castelnuovo and Mori 2022).

Panel extensions could be an area to explore and would be useful for policymakers from

a risk-management perspective. International transmission of shocks is a key concern

to policymaking and their explicit accounting in tail–risks modelling could be useful.

Another aspect relevant to policy yet to be investigated is the link between national

GaR and individual firm-level risk metrics which could be facilitated in aggregation in
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a panel framework.

Chapter 5 proposes a mixed-frequency panel data model to predict the extreme

episodes of cross-border capital flows in a timely fashion. Cross-border capital flows

are volatile and can have extreme economic impacts. Although the existing literat-

ure recognises the episodic nature of these flows as well as their determinants and

mitigating policies, surprisingly there is little focus on data release schedules and the

timeliness of predictions. Therefore, the non-linear panel model makes provisions for

the asynchronous calendars. The target of prediction is binary and indicates either the

occurrence or the non-occurrence of the event. The model is updated on every release

of relevant data and the sequence of predictions is seen to beat a standard benchmark

much ahead of the event realisation.

Further research might explore different ways to include CSD in discrete choice

panel models. Recently Gao et al. (2023) have provided a way to estimate similar

models. Alternatively, the score-driven methods such as those of Creal et al. (2014)

which have been used for credit risk modelling could be adapted. Methodologically,

another important direction would be inference from mixed-frequency binary choice

models. As noted in Ghysels et al. (2007) and more recently by Khalaf et al. (2021),

inference for MIDAS models run into the well-known incidental parameter problem

(for instance, see Davies 1977; Davies 1987; Andrews and Ploberger 1994; Hansen 1996;

Teräsvirta et al. 2010; Hurn et al. 2016) and hence the usual inference using Wald or

Score tests do not apply. Similarly, inference methods in this context also requires a

way to deal with the incident parameter problem. There could be many interesting

directions in empirical research as capital flows and extreme episodes can generate both

extreme possibilities and distress and hence are keenly monitored by policymakers,

especially when trying to attract steady streams of foreign investment. In this context,

narrowing the focus of prediction down to particular types of flows or flows from and

to specific regions could be of interest. Extending to multi-way panel models in the

line of gravity models (such as that of Kapetanios et al. 2021) and expanding gravity

models to include binary targets and mixed-frequencies could be interesting extensions
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both methodologically and empirically.

In general, this thesis did not touch upon Bayesian estimation methods which

have a long history and significant applications in panel VARs, and macroeconomics.

These methods could be explored further in connection with the estimation of models

discussed here. Overall, this thesis has attempted to extend the panel macroeconomic

forecasting literature with distinct contributions. There remain numerous possibilities

for future research as the challenges of forecasting for policymaking in an uncertain

world are enormous.
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Appendix A

Appendix to Chapter 2

In support of Chapter 2, this appendix contains additional tables, figures, and deriva-

tions. The appendix is organised as follows. Section A.1 contains the derivations of the

LCCE technique from the CCE method of Chudik and Pesaran (2015a). We present

the additional results on the Monte Carlo simulations in Section A.2. Subsequently,

further Monte Carlo results on different frequency mixes are included in the Section A.3

to complement the results presented earlier in the main chapter. Pseudo data release

calendars in Section A.4 substantiate the main results of the chapter. Finally, we

display a range of robustness results in Sections A.5 and A.6.
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A.1 Details on Model Estimation and Derivation

In the main chapter we present the full mixed-frequency PMIDAS nowcasting model

with a ragged edge. In this section, we go back and construct the PMIDAS model step-

by-step in two phases, starting from the dynamic CSD panel data model of Chudik and

Pesaran (2015a). As in the main chapter, we have a target variable of interest yi,t for

the ith cross-sectional unit and tth time point, where i = 1, 2, . . . , N and t = 1, 2, . . . , T .

Let xi,t be a predictor which, for the sake of simplicity in this Appendix, we assume is a

single variable. This is easily generalised to the case of many predictors as in the main

text. In this first step we consider xi,t and yi,t to be of the same frequency. This allows

us to directly modify the CCE estimation method of Chudik and Pesaran (2015a) to

the lagged version, i.e. LCCE, which permits the model to be used for forecasting. In

the second step, the model is further extended to incorporate the mixed-frequency data

as in general nowcasting frameworks. Here the predictor variable xi,t is assumed to be

of a higher frequency than that of the target yi,t. Finally we add in the ragged edge

where lag structures and model parameters depend on the nowcast day, v.

A.1.1 The Nowcasting Model: Single Frequency, no Ragged

Edge

Set-up

The main framework for the dynamic heterogeneous panel model with multi-factor

error structure follows the format of Chudik and Pesaran (2015a):

yi,t = ci + ϕiyi,t−1 + β0ixi,t + β1ixi,t−1 + ui,t (A.1a)

ui,t = γ′
ift + εi,t (A.1b)

xi,t = κi + αiyi,t−1 + Γ′
ift + ϵi,t (A.1c)
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In equations (A.1), ci and κi are individual fixed effects. The term ft is an m × 1

vector of unobserved common factors which impact both the target and the predictor

through loadings γi and Γi which are of orders m × 1 respectively. The coefficient

αi characterises the relation between the predictor and lagged target variables, εi,t

represents the idiosyncratic errors and ϵi,t is assumed to follow a general linear covariance

stationary process distributed independently of εi,t.

In the original formulation of the CCE approach, the common factors, ft, are

estimated using the cross-sectional averages of zi,t = (yi,t, xi,t)′. The presence of yi,t

in the estimates of the factors clearly makes the model unsuitable for forecasting or

nowcasting applications. Therefore, we propose the following modifications.

Estimation and Nowcasting

We define zi,t to contain lagged y and the current information on the predictor variable

x, i.e.:

zi,t =

yi,t−1

xi,t


Combining this with equations (A.1a), (A.1b) and A.1c we obtain:

A0izi,t = czi + A1izi,t−1 + A2izi,t−2 + CiFt + ei,t (A.2a)

=⇒ zi,t = Kzi + B0izi,t−1 + B1izi,t−2 + A−1
0i CiFt + A−1

0i ei,t (A.2b)
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where:

czi =

ci

κi

 , A0i =

 1 0

−αi 1

 , A1i =

ϕi β0i

0 0

 , A2i =

0 β1i

0 0


Kzi = A−1

0i czi, B0i = A−1
0i A1i, B1i = A−1

0i A2i

Ci =

 0 γ′
i

Γ′
i 0

 =
(

C0i C1i

)
C0i =

 0

Γ′
i



C1i =

γ′
i

0

 , Ft =

 ft

ft−1

 and ei,t =

εi,t−1

ϵi,t


Assumption 1. The eigenvalues of the following augmented matrix are less than one

in absolute value:
B0i B1i

I 0


Next, we derive the large-N representation of the factors, ft, in terms of the cross-

sectional averages of zi,t. With Assumption 1, zi,t is an invertible covariance stationary

process and can be written as:

(I − B0iL − B1iL
2)zi,t = Kzi + A−1

0i CiFt + A−1
0i ei,t (A.3a)

=⇒ zi,t = K1zi
+ Ψi(L)A−1

0i CiFt + Ψi(L)A−1
0i ei,t (A.3b)

=⇒ zi,t − K1zi
= Ψi(L)A−1

0i CiFt + Ψi(L)A−1
0i ei,t (A.3c)

where:

K1zi
= (I − B0iL − B1iL

2)−1Kzi

Ψi0 = I, Ψi1 = B0i

Ψiv = B0iΨi,v−1 + B1iΨi,v−2, v ≥ 2
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Assumptions 3–5 of Chudik and Pesaran (2015a) ensure that the Ψi(L) coefficient

matrices are independently distributed of each other and also over the cross-sections.

We take weighted cross-sectional averages of equation (A.3c), using a weight vector

w = (ω1, ω2, . . . , ωN)′. Assuming the granularity conditions and using similar steps as

in Chudik and Pesaran (2015a), the terms on the right-hand side (RHS) of equation

(A.3c) give:

N∑
i=1

[ ∞∑
l=0

ωiΨilA
−1
0i CiFt−l

]
=

∞∑
l=0

E
[
ΨilA

−1
0i Ci

]
Ft−l + Op(N− 1

2 )

= Λ(L)CFt + Op(N− 1
2 )

(A.4a)

and
N∑

i=1

[ ∞∑
l=0

ωiΨi(L)A−1
0i ei,t

]
= Op(N− 1

2 ) (A.4b)

where:

Λ(L) =
∞∑

l=0
ΛlL

l =
∞∑

l=0
E

[
ΨilA

−1
0i

]
Ll

C = E[Ci] = E

 0 γ′
i

Γ′
i 0

 =
(

C0 C1

)

E(C0i) = C0 and E(C1i) = C1

Assumption 2. The inverse of the matrix Λ(L) = ∑∞
l=0 ΛlL

l = ∑∞
l=0 E

[
ΨilA

−1
0i

]
Ll

exists and has exponentially decaying coefficients.

Continuing from equation (A.4a) we have:

N∑
i=1

[ ∞∑
l=0

ωiΨilA
−1
0i CiFt−l

]
= Λ(L) [C0 + C1L] ft + Op(N− 1

2 ) (A.5)

Defining the de-trended weighted cross-sectional averages from the left-hand side

(LHS) of equation (A.3c) as z̃wt = ∑N
i=1 ωi(zi,t − K1zi

) = ∑N
i=1 ωizi,t − czw, where

czw = ∑N
i=1 ωiK1zi

, we obtain the following large-N representation of the detrended
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cross-sectional averages z̃wt:

z̃wt = Λ(L) [C0 + C1L] ft + Op(N− 1
2 ) (A.6)

=⇒ Λ−1(L)z̃wt = [C0 + C1L] ft + Op(N− 1
2 ) (A.7)

Assumption 3. C0 has full column rank.

Assumption 4. The eigenvalues of (C ′
0C0)−1C ′

0C1 are less than unity in absolute

value.

Assumptions 3 and 4 are crucial for the estimation of the unit-specific coefficients.

From equation (A.6) we have:

ft = G(L)z̃wt + Op(N− 1
2 ) (A.8)

where:

G(L) =
[
I + (C ′

0C0)−1C ′
0C1L

]−1
[C ′

0C0]−1C ′
0Λ−1(L)

Substituting the large-N representation of the unobserved common factors from

equation (A.8) into equation (A.1a), in a similar way to Chudik and Pesaran (2015a)

we obtain an expression for yi,t as a function of the cross-sectional weighted averages

zwt = ∑N
i=1 ωizi,t as follows:

yi,t = c∗
i + ϕiyi,t−1 + β0ixi,t + β1ixi,t−1 + δ′

i(L)zwt + εi,t + Op(N− 1
2 ) (A.9a)

= c∗
i + ϕiyi,t−1 + β0ixi,t + β1ixi,t−1 +

pT∑
l=0

δ′
ilzw,t−l + ei,t (A.9b)

where:

ei,t = εi,t +
∞∑

l=pT +1
δ′

ilzw,t−l + Op(N− 1
2 )

c∗
i = ci − δ′

i(1)czw
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and:

δi(L) =
∞∑

l=0
δilL

l = γ′
iG(L) (A.9c)

and pT is the truncation used for the infinite lag polynomial of equation (A.9c).

The nowcasting approach is now based on least squares estimation of equation

(A.9b), under Assumptions 1–4 and 7 of Chudik and Pesaran (2015a), in addition

to the ones stated here. As in the main text, if one wishes to shut down parameter

heterogeneity, the model can be estimated by pooled OLS. These steps show how the

contemporaneous CCE estimation of the CSD panel models can be modified to LCCE

which uses the lagged target variable and henceforth can be used for forecasting or

nowcasting applications.

A.1.2 The Nowcasting Model: Mixed-Frequency, No Ragged

Edge

Set-up

To extend the this nowcasting framework to include mixed-frequency data (though still

no ragged edge, so no dependence on v), consider the single predictor variable to be of

a higher frequency relative to the target variable. As in the main text, we take the

example where yi,t is of quarterly frequency, and let the predictor variable be monthly

and denoted by xM
i,t . The ratio of frequencies can be easily generalised. We use the

stacked high-frequency process XM
i,t :

XM
i,t =


xM

i,t

xM
i,t− 1

3

xM
i,t− 2

3


which was defined in the main text in equation (2.1).

To extend the panel model to mixed-frequency, the lags of the high-frequency process
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are directly included in equations (A.1a), (A.1b) and (A.1c) in line with UMIDAS-type

models of Foroni et al. (2015) and others. Hence, we adapt the previous model to get the

following mixed-frequency dynamic heterogeneous panel data model with multi-factor

error structure:

yi,t = ci + ϕiyi,t−1 + β0ix
M
i,t + β1ix

M
i,t− 1

3
+ β2ix

M
i,t− 2

3
+ ui,t (A.10a)

ui,t = γ′
ift + εi,t (A.10b)

XM
i,t = κi + αiyi,t−1 + Γ′

ift + ϵi,t (A.10c)

where we adopt the same notation as in the previous section for simplicity, noting that

the parameters κi and αi and the errors ϵi,t are now vectors and Γi is a matrix, in order

to match the dimension of XM
i,t in the mixed-frequency set-up.

Equation (A.10a) is the panel equivalent of a UMIDAS model with no functional

distributed lag polynomials. Foroni et al. (2015) conclude that UMIDAS performs

better as compared to other functional lag MIDAS in case the difference in frequencies

is not too high, particularly in the quarterly to monthly frequency mix, as in the

empirical application later. This also suits the linear estimation framework of LCCE

described earlier as UMIDAS models, unlike other MIDAS specifications, do not have

to be estimated by non-linear least squares.

The entire system of equations can be cast into an MFVAR representation construc-

ted using stacked skip-sampled processes (Ghysels 2016). In our case, the MFVAR

is already in a reduced form, with restricted parameter space as in Ghysels (2018).

Additionally, the MFVAR here is extended to the case of panel data (the MF-PVAR)

and with a multi-factor error structure. To see this explicitly, construct the stacked

compact expression of the equations (A.10a), (A.10b) and (A.10c) as below:

hi,t =

 yi,t

XM
i,t


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K0ihi,t = ci + K1ihi,t−1 + Cift + ei,t (A.11)

Equation (A.11) gives the panel extension of the reduced form MIDAS-VAR model.

where:

K0i =

1 −β0i −β1i −β2i

0 I

 , ci =

ci

κi

 , K1i =

ϕi 0

αi 0



Ci =

γ′
i

Γ′
i

 , ei,t =

εi,t

ϵi,t


Estimation and Nowcasting

To estimate the factors in the mixed-frequency set-up, the process, in essence, remains

quite similar to that in Section A.1.1. We redefine the stacked vector, zM
i,t , of the lagged

target variable and the stacked predictor variable, as well as the β parameters, as

follows:

zM
i,t =

yi,t−1

XM
i,t

 βi =


β0i

β1i

β2i


Lagging equations (A.10a), and (A.10b) and writing the system in a stacked compact

matrix notation:
 1 0

−αxi I


yi,t−1

XM
i,t

 =

ci

κi

 +

ϕi β′
i

0 0


 yi,t−2

XM
i,t−1



+

 0 γ′
i

Γ′
i 0


 ft

ft−1

 +

εi,t−1

ϵi,t


(A.12)
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This gives the reduced form MFVAR expression and rest of the estimation process can

now be carried out as described in A.1.1 with the stacked skip-sampled high-frequency

predictor variable XM
i,t . The final mixed-frequency panel nowcasting equations are:

yi,t = c∗
i + ϕiyi,t−1 + β′

iX
M
i,t + δ′

i(L)zM
wt + εi,t + Op(N− 1

2 ) (A.13a)

= c∗
i + ϕiyi,t−1 + β′

iX
M
i,t +

pT∑
l=0

δ′
ilz

M
t−l + ei,t (A.13b)

where zM
t = ∑N

i=1 ωiz
M
i,t is the equivalent cross-sectionally weighted average as in the

previous section, this time modified for the mixed-frequency set-up. We note that, as

in Chudik and Pesaran (2015a), an additional set of variables (for instance gi,t) may be

used in the cross-sectional averages to estimate the factors. The idea here is that the

variables gi,t are also impacted by the same common factors. This is quite common in

macroeconomic databases, where a handful of factors capture the information contained

in large sets of indicators. Thus, the model can be further enriched by the information

contained in other high-frequency macro-series, which do not enter the main nowcasting

equation.

A.1.3 The Nowcasting Model: Mixed-Frequency, Ragged Edge

Finally, we now turn our attention to the main nowcasting approach with mixed-

frequencies and the ragged edge, as outlined in the main text. As described there, the

incorporation of country-level calendar effects requires additional notation:

1. The nowcast is performed on the vth day of the nowcast quarter;

2. miv: The monthly lag available for the high-frequency variable for the cross-section

i on the vth day of the nowcast quarter;1

3. div: The quarterly lag available for the high-frequency variable for the cross-section

i on the vth day of the nowcast quarter.
1Recall that, for simplicity, we use a single predictor variable in the model. With multiple predictors,

miv would also potentially be different across variables.
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The PMIDAS model equations (A.10a, A.10b and A.10c) in this set-up are then

modified as follows (taking again the single variable case, unlike the multiple variable

case in the main text), with a lag structure which depends on div and miv, as well as

model parameters that depend on v:

yi,t = cvi + ϕviyi,t−div
+ β′

viX
M
i,t− miv

3
+ γ′

vift + εv,i,t (A.14a)

XM
i,t− miv

3
= κvi + αviyi,t−div

+ Γ′
vift + ϵv,i,t (A.14b)

where XM
i,t , as before, is the stacked vector defined in equation (2.1) in the main text.

Lagging equation (A.14a) by div periods, and manipulating equation (A.14b) gives the

following:

yi,t−div
= cvi + ϕviyi,t−2div

+ β′
viX

M

i,t− miv−div
3

+ γ′
vift−div

+ εv,i,t−div

(A.15a)

−αviyi,t−div
+ XM

i,t− miv
3

= κi + Γ′
vift + ϵv,i,t (A.15b)

Stacking this into one system yields the following:

 1 0

−αvi I


 yi,t−div

XM
i,t− miv

3

 =

cvi

κvi

 +

ϕvi β′
vi

0 0


 yi,t−2div

XM
i,t− miv

3 −div



+

 0 γ′
vi

Γ′
vi 0


 ft

ft−div

 +

εv,i,t−div

ϵv,i,t


(A.16)

Finally, we modify the stacked vector from before to get:

zM
i,t,v =

 yi,t−div

XM
i,t− miv

3

 (A.17)
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as in equation (2.5) of the main text. So the MFVAR is written as:

A0iz
M
i,t,v = czi + A1iz

M
i,t−div ,v +

[
C0i + C1iL

div

]
ft + ev,i,t (A.18a)

=⇒ zM
i,t,v = Kzi + B0iz

M
i,t−div ,v + A−1

0i

[
C0i + C1iL

div

]
ft + A−1

0i ev,i,t

(A.18b)

=⇒ (I − B0iL
div)zM

i,t,v = Kzi + A−1
0i

[
C0i + C1iL

div

]
ft + A−1

0i ev,i,t (A.18c)

where:

ev,i,t =

εv,i,t−div

ϵv,i,t


and the rest of the matrices (A0i, B0i and others, suppressing dependence of these on

v to avoid further notational clutter) have the similar definitions as earlier. Further

manipulation yields:

zM
i,t,v = K1zi

+ Ψi(Ldiv)A−1
0i

[
C0i + C1iL

div

]
ft + Ψi(Ldiv)A−1

0i ev,i,t (A.18d)

To estimate the factors, we take the weighted cross-sectional averages of equation

(A.18d). The first term of the RHS gives:

N∑
i=1

[
ωiΨi(Ldiv)A−1

0i

{
C0i + C1iL

div

}
ft

]
=

∞∑
l=0

N∑
i=1

ωiΨilA
−1
0i Lldiv

[
C0i + C1iL

div

]
ft

(A.18e)

The following generalised assumption replaces the Assumptions 2–4 stated earlier

to estimate the factors using the cross-sectional averages of zM
i,t,v as defined in equation

(2.5) – i.e., ft can be approximated by a finite number of lags of ∑N
i=1 ωiz

M
i,t,v.

Assumption 5. The weighted average of the lag polynomials on the RHS of equation
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(A.18e) is invertible and the inverse polynomial has exponentially decaying coefficients:

∞∑
l=0

[
N∑

i=1
ωiΨilA

−1
0i

] [
C0i + C1iL

div

]
Lldiv

Given that div typically only takes on a handful of values, with {0, 1, 2} being the

exhaustive set in the GDP nowcasting example, we may have a weighted average of a

maximum of two polynomials in Assumption 5. Taking the example of the U.S. and

Germany, if we nowcast Q1 on the 2nd of February, div takes values 1 and 2 respectively

for the U.S. and Germany, i.e. v = 33, dU.S.,33 = 1, for the U.S. and dGER,33 = 2 for

Germany. So, in this case, we have a weighted average of two lagged polynomials,

which is assumed to be invertible by Assumption 5.
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A.2 Additional Simulation Results q = 3

Figure A.1: Bias in ϕ – q = 3
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Notes: The panels display the distribution of the difference in absolute biases of the parameter ϕ for
the estimation methods LCCE relative to CCE. Figures lower than zero mean that LCCE has lower
absolute bias than CCE. The panel header shows the number of cross-sections.
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Figure A.2: Bias Comparison in β(0) – q = 3
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Notes: The panels display the distribution of the difference in absolute biases of the parameter β(0)

for the estimation methods LCCE relative to CCE. Figures lower than zero mean that LCCE has
lower absolute bias than CCE. The panel header shows the number of cross-sections.
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Figure A.3: Bias Comparison in β(1) – q = 3
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Notes: The panels display the distribution of the difference in absolute biases of the parameter β(1)

for the estimation methods LCCE relative to CCE. Figures lower than zero mean that LCCE has
lower absolute bias than CCE. The panel header shows the number of cross-sections.
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Figure A.4: Bias Comparison in β(2) – q = 3
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Notes: The panels display the distribution of the difference in absolute biases of the parameter β(2)

for the estimation methods LCCE relative to CCE. Figures lower than zero mean that LCCE has
lower absolute bias than CCE. The panel header shows the number of cross-sections.
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A.3 Additional Monte Carlo Results: q = 4

In this section we present the additional Monte Carlo results when the frequency mix is
changed from q = 3 to q = 4 which is relevant for annual-quarterly or monthly-weekly
panel nowcasting exercises.

Table A.1: Simulation Results – Absolute Bias in LCCE and CCE (q = 4)

CCE LCCE

N/T 50 100 150 200 50 100 150 200

ϕ

50 0.0638 0.0275 0.0185 0.0141 0.0545 0.0250 0.0175 0.0134
100 0.0641 0.0277 0.0177 0.0126 0.0557 0.0255 0.0163 0.0119
150 0.0646 0.0281 0.0175 0.0125 0.0565 0.0258 0.0161 0.0115
200 0.0648 0.0278 0.0177 0.0125 0.0563 0.0256 0.0164 0.0117

β(0)

50 0.0262 0.0143 0.0106 0.0088 0.0237 0.0159 0.0125 0.0111
100 0.0183 0.0100 0.0075 0.0062 0.0171 0.0106 0.0085 0.0080
150 0.0149 0.0081 0.0061 0.0052 0.0140 0.0087 0.0071 0.0065
200 0.0124 0.0069 0.0054 0.0044 0.0118 0.0077 0.0065 0.0055

β(1)

50 0.0259 0.0152 0.0114 0.0089 0.0243 0.0170 0.0133 0.0111
100 0.0177 0.0102 0.0076 0.0065 0.0168 0.0111 0.0089 0.0082
150 0.0150 0.0082 0.0063 0.0053 0.0140 0.0091 0.0074 0.0068
200 0.0123 0.0068 0.0054 0.0045 0.0120 0.0079 0.0064 0.0057

β(2)

50 0.0257 0.0147 0.0109 0.0090 0.0242 0.0162 0.0132 0.0111
100 0.0181 0.0101 0.0076 0.0063 0.0173 0.0112 0.0089 0.0081
150 0.0144 0.0081 0.0064 0.0055 0.0138 0.0089 0.0077 0.0068
200 0.0125 0.0074 0.0057 0.0044 0.0116 0.0080 0.0066 0.0057

β(3)

50 0.0267 0.0151 0.0113 0.0091 0.0261 0.0160 0.0130 0.0115
100 0.0178 0.0103 0.0078 0.0065 0.0171 0.0112 0.0094 0.0083
150 0.0145 0.0085 0.0062 0.0052 0.0137 0.0094 0.0075 0.0065
200 0.0125 0.0071 0.0055 0.0045 0.0118 0.0081 0.0063 0.0057

Notes: The numbers in this table are the absolute biases in the estimates of the key model parameters
estimated using two methods, LCCE and CCE, across different sample sizes.
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Figure A.5: Bias in ϕ – q = 4
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Notes: The panels display the distribution of the difference in absolute biases of the parameter ϕ for
the estimation methods LCCE relative to CCE. Figures lower than zero mean that LCCE has lower
absolute bias than CCE. The panel header shows the number of cross-sections.
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Figure A.6: Bias Comparison in β(0) – q = 4
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Notes: The panels display the distribution of the difference in absolute biases of the parameter β(0)

for the estimation methods LCCE relative to CCE. Figures lower than zero mean that LCCE has
lower absolute bias than CCE. The panel header shows the number of cross-sections.
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Figure A.7: Bias Comparison in β(1) – q = 3
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Notes: The panels display the distribution of the difference in absolute biases of the parameter β(1)

for the estimation methods LCCE relative to CCE. Figures lower than zero mean that LCCE has
lower absolute bias than CCE. The panel header shows the number of cross-sections.
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Figure A.8: Bias Comparison in β(2) – q = 4
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Notes: The panels display the distribution of the difference in absolute biases of the parameter β(2)

for the estimation methods LCCE relative to CCE. Figures lower than zero mean that LCCE has
lower absolute bias than CCE. The panel header shows the number of cross-sections.
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Figure A.9: Bias Comparison in β(3) – q = 4
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Notes: The panels display the distribution of the difference in absolute biases of the parameter β(3)

for the estimation methods LCCE relative to CCE. Figures lower than zero mean that LCCE has
lower absolute bias than CCE. The panel header shows the number of cross-sections.
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A.4 Empirical Application I – Release Calendars

Figure A.10: Publication Lag Across Different Countries
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(a) Pseudo Calendar for the First Release of Quarterly GDP (Source: Bloomberg Finance
L.P.).
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A.4. Release Calendars A. Appendix to Chapter 2

Figure A.10: (cont’d) Publication Lag Across Different Countries
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aNegative lag indicates the data are available before the start of the month.
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A.4. Release Calendars A. Appendix to Chapter 2

Figure A.10: (cont’d) Publication Lag Across Different Countries
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A.5. Empirical Application I A. Appendix to Chapter 2

A.5 Empirical Application I:

Robustness to Additional Predictor Results

Figure A.11: Additional Predictors – Target y-o-y
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Notes: Each line represents the minimum RMSFE across all models with the specified number of
predictors.

Figure A.12: Additional Predictors – Target q-o-q
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Notes: The same as for Figure A.11.
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A.6. Empirical Application A. Appendix to Chapter 2

A.6 Empirical Application I:

Robustness to Sample Split Results

Figure A.13: 20% Split – Target y-o-y
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Figure A.14: 40% Split – Target y-o-y
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A.6. Empirical Application A. Appendix to Chapter 2

Figure A.15: 20% Split – Target q-o-q
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Notes: The same as for Figure 2.2.

Figure A.16: 40% Split – Target q-o-q
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Notes: The same as for Figure 2.3.
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Appendix B

Appendix to Chapter 3

This appendix contains additional plots to substantiate the results of Chapter 4. The

appendix is organised as follows: Section B.1 contains the prediction results for per

capita EC results and Section B.2 comprises of the results for per capita CO2 prediction.

Finally, Section B.3 presents a bunch of robustness results.
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B.1. Per Capita EC Results B. Appendix to Chapter 3

B.1 Per Capita EC Results

B.1.1 Per Capita EC Predictions with the Annual Data Flow

Overall Results

Figure B.1: Average RMSFE Across States – Per Capita EC, Annual Data Flow
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Notes: See Figure 3.1.
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B.1. Per Capita EC Results B. Appendix to Chapter 3

State-Level Results

Table B.1: Distribution of Relative RMSFE Across States – Per Capita EC, Annual
Data Flow

Release 10% 25% 50% 75% 90%

1 0.9863 1.0121 1.0357 1.0671 1.0968
2 0.9832 0.9944 1.0167 1.0441 1.0614
3 0.9452 0.9590 0.9948 1.0133 1.0435
4 0.8578 0.8945 0.9369 0.9895 1.0358
5 0.8577 0.8949 0.9467 0.9984 1.0786

(a) Predictor – Per Capita GDP

Release 10% 25% 50% 75% 90%

1 0.9885 0.9970 1.0082 1.0167 1.0363
2 0.9693 0.9914 1.0031 1.0188 1.0348
3 0.9847 0.9946 1.0100 1.0175 1.0337
4 0.8169 0.9019 0.9560 0.9994 1.0500
5 0.8125 0.9090 0.9623 1.0004 1.0474

(b) Predictor – Per Capita PI

Notes: See Table 3.3.
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B.1. Per Capita EC Results B. Appendix to Chapter 3

B.1.2 Per Capita EC Predictions with the Quarterly Data

Flow

Overall Results

Figure B.2: Average RMSFE Across States – Per Capita EC, Quarterly Data Flow

0.95

0.97

0.99

1 2 3 4 5 6 7
Release

R
M

S
E

Model ARX BM

Notes: See Figure 3.2.

State-Level Results

Table B.2: Distribution of Relative RMSFE Across States – Per Capita EC, Quarterly
Data Flow

Release 10% 25% 50% 75% 90%

1 0.9608 0.9734 0.9965 1.0195 1.0559
2 0.9220 0.9532 0.9746 1.0014 1.0267
3 0.8730 0.9209 0.9652 1.0109 1.0341
4 0.8257 0.9032 0.9478 0.9924 1.0635
5 0.8439 0.8919 0.9364 0.9772 1.0284
6 0.8519 0.9212 0.9747 1.0084 1.0559
7 0.8590 0.9357 0.9719 1.0079 1.0443

Notes: See Table 3.4.
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B.2. Per Capita CO2 Emissions Results B. Appendix to Chapter 3

B.2 Per Capita CO2 Emissions Results

B.2.1 Per Capita CO2 Predictions with the Annual Data Flow

Overall Results

Figure B.3: Average RMSFE Across States – Per Capita CO2 Emissions, Annual Data
Flow
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Notes: See Figure 3.3.
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B.2. Per Capita CO2 Emissions Results B. Appendix to Chapter 3

State-Level Results

Table B.3: Distribution of Relative RMSFE Across States – Per Capita CO2 Emissions,
Annual Data Flow (Predictor: GDP)

Release 10% 25% 50% 75% 90%

1 0.8979 0.9761 1.0059 1.0307 1.0691
2 0.9100 0.9357 0.9870 1.0177 1.0634
3 0.8706 0.9296 0.9766 1.0018 1.0496
4 0.8448 0.8858 0.9303 0.9744 1.0528
5 0.8390 0.8842 0.9476 1.0146 1.0756
6 0.8609 0.8933 0.9539 0.9955 1.0809
7 0.1754 0.2102 0.2693 0.3264 0.4007

(a) Model: EC.GDP

Release 10% 25% 50% 75% 90%

1 0.9243 0.9797 1.0286 1.0591 1.0881
2 0.9475 1.0054 1.0485 1.1001 1.1244
3 0.9401 0.9673 1.0267 1.0599 1.1276
4 0.7574 0.8176 0.8628 0.9369 1.0497
5 0.7486 0.8095 0.8936 0.9941 1.0850
6 0.8589 0.9130 0.9679 1.0283 1.1120
7 0.1820 0.2144 0.2641 0.3268 0.3976

(b) Model: EC.GDP with Factors

Notes: See Table 3.5.
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B.2. Per Capita CO2 Emissions Results B. Appendix to Chapter 3

Table B.3: (cont’d...)Distribution of Relative RMSFE Across States – Per Capita CO2
Emissions, Annual Data Flow (Predictor: GDP)

Release 10% 25% 50% 75% 90%

1 0.8812 0.9303 0.9606 1.0091 1.0394
2 0.8885 0.9419 0.9735 1.0041 1.0349
3 0.8992 0.9528 0.9866 1.0088 1.0444
4 0.9231 0.9624 0.9893 1.0085 1.0577
5 0.9152 0.9647 0.9854 1.0129 1.0347
6 0.9290 0.9790 0.9912 1.0120 1.0333
7 0.1754 0.2102 0.2693 0.3264 0.4007

(c) Model: EC.BM

Release 10% 25% 50% 75% 90%

1 0.8900 0.9445 0.9779 1.0176 1.0925
2 0.9377 0.9956 1.0370 1.0723 1.1378
3 0.9398 0.9917 1.0517 1.0905 1.1452
4 0.8761 0.8992 0.9255 0.9893 1.0292
5 0.8288 0.8830 0.9307 0.9985 1.0439
6 0.9482 0.9917 1.0106 1.0325 1.0820
7 0.1820 0.2144 0.2641 0.3268 0.3976

(d) Model: EC.BM with Factors

Notes: See Table 3.5.
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B.2. Per Capita CO2 Emissions Results B. Appendix to Chapter 3

Table B.4: Distribution of Relative RMSFE Across States – Per Capita CO2 Emissions,
Annual Data Flow (Predictor: PI)

Release 10% 25% 50% 75% 90%

1 0.9739 0.9905 1.0123 1.0451 1.0756
2 0.9529 0.9945 1.0170 1.0370 1.0712
3 0.9490 0.9982 1.0223 1.0522 1.0954
4 0.8878 0.9276 0.9689 1.0239 1.0638
5 0.8867 0.9262 0.9698 1.0194 1.0753
6 0.9070 0.9462 0.9787 1.0118 1.0671
7 0.1754 0.2102 0.2693 0.3264 0.4007

(a) Model: EC.PI

Release 10% 25% 50% 75% 90%

1 0.9867 1.0118 1.0330 1.0735 1.1586
2 1.0153 1.0582 1.1081 1.1621 1.2123
3 0.9983 1.0670 1.1210 1.1642 1.2311
4 0.8358 0.8782 0.9326 0.9856 1.0974
5 0.8074 0.8772 0.9458 1.0041 1.1089
6 0.9095 0.9463 0.9923 1.0321 1.0540
7 0.1820 0.2144 0.2641 0.3268 0.3976

(b) Model: EC.PI with Factors

Notes: See Table 3.6.
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B.2. Per Capita CO2 Emissions Results B. Appendix to Chapter 3

Table B.4: Distribution of Relative RMSFE Across States – Per Capita CO2 Emissions,
Annual Data Flow (Predictor: PI)

Release 10% 25% 50% 75% 90%

1 0.9738 0.9864 1.0035 1.0255 1.0766
2 0.9710 0.9925 1.0042 1.0264 1.0673
3 0.9653 0.9940 1.0095 1.0354 1.0781
4 0.9871 0.9995 1.0084 1.0291 1.0824
5 0.9808 0.9994 1.0091 1.0381 1.0959
6 0.9949 1.0019 1.0130 1.0525 1.1055
7 0.1754 0.2102 0.2693 0.3264 0.4007

(c) Model: EC.BM

Release 10% 25% 50% 75% 90%

1 0.9814 1.0129 1.0345 1.0737 1.1460
2 1.0221 1.0581 1.1107 1.1518 1.1803
3 1.0192 1.0570 1.1071 1.1468 1.1967
4 0.9325 0.9517 0.9818 1.0306 1.0951
5 0.8902 0.9249 0.9606 1.0001 1.0388
6 1.0028 1.0133 1.0321 1.0691 1.0983
7 0.1820 0.2144 0.2641 0.3268 0.3976

(d) Model: EC.BM with Factors

Notes: See Table 3.6.
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B.2. Per Capita CO2 Emissions Results B. Appendix to Chapter 3

B.2.2 Per Capita CO2 Predictions with the Quarterly Data

Flow

Overall Results

Figure B.4: Average RMSFE Across States – Per Capita CO2 Emissions, Quarterly
Data Flow
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Notes: The same as for Figure 3.3.
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B.2. Per Capita CO2 Emissions Results B. Appendix to Chapter 3

State-Level Results

Table B.5: Distribution of Relative RMSFE Across States – Per Capita CO2 Emissions,
Quarterly Data Flow

Release 10% 25% 50% 75% 90%

1 0.9614 0.9846 1.0055 1.0284 1.0896
2 0.9203 0.9497 0.9851 1.0182 1.0677
3 0.9129 0.9321 0.9778 1.0181 1.0899
4 0.8793 0.8982 0.9670 1.0178 1.0720
5 0.8662 0.8944 0.9516 1.0001 1.0339
6 0.8877 0.9492 0.9844 1.0247 1.0691
7 0.9100 0.9532 0.9848 1.0288 1.0546
8 0.9255 0.9681 0.9963 1.0265 1.0478
9 0.1754 0.2102 0.2693 0.3264 0.4007

(a) Model: EC.PI

Release 10% 25% 50% 75% 90%

1 0.9743 0.9986 1.0313 1.0719 1.1342
2 0.9782 1.0364 1.0813 1.1273 1.1956
3 0.9636 1.0215 1.0667 1.1273 1.1909
4 0.9586 0.9872 1.0514 1.0932 1.1520
5 0.9431 0.9794 1.0229 1.0713 1.1414
6 0.8647 0.8958 0.9551 0.9980 1.0652
7 0.8246 0.8932 0.9432 1.0135 1.0959
8 0.9322 0.9723 1.0098 1.0346 1.0492
9 0.1820 0.2144 0.2641 0.3268 0.3976

(b) Model: EC.PI with Factors
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B.2. Per Capita CO2 Emissions Results B. Appendix to Chapter 3

Table B.5: (cont’d...)Distribution of Relative RMSFE Across States – Per Capita CO2
Emissions, Quarterly Data Flow

Release 10% 25% 50% 75% 90%

1 0.9738 0.9864 1.0035 1.0255 1.0766
2 0.9710 0.9925 1.0042 1.0264 1.0673
3 0.9653 0.9940 1.0095 1.0354 1.0781
4 0.9653 0.9940 1.0095 1.0354 1.0781
5 0.9653 0.9940 1.0095 1.0354 1.0781
6 0.9871 0.9995 1.0084 1.0291 1.0824
7 0.9808 0.9994 1.0091 1.0381 1.0959
8 0.9949 1.0019 1.0130 1.0525 1.1055
9 0.1754 0.2102 0.2693 0.3264 0.4007

(c) Model: EC.BM

Release 10% 25% 50% 75% 90%

1 0.9814 1.0129 1.0345 1.0737 1.1460
2 1.0221 1.0581 1.1107 1.1518 1.1803
3 1.0192 1.0570 1.1071 1.1468 1.1967
4 1.0192 1.0570 1.1071 1.1468 1.1967
5 1.0192 1.0570 1.1071 1.1468 1.1967
6 0.9325 0.9517 0.9818 1.0306 1.0951
7 0.8902 0.9249 0.9606 1.0001 1.0388
8 1.0028 1.0133 1.0321 1.0691 1.0983
9 0.1820 0.2144 0.2641 0.3268 0.3976

(d) Model: EC.BM with Factors

Notes: The same as Table 3.5.
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B.3. Further Results B. Appendix to Chapter 3

B.3 Further Results

B.3.1 Robustness to Sample Split

Figure B.5: Sample Split – Average RMSFE Across States – CO2 Emissions, Quarterly
Data Flow
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Notes: The same as for Figure 3.3.

B.3.2 Using the Philly Fed’s State Coincident Indices (Quarterly)

Figure B.6: Average RMSFE Across States – CO2 Emissions, Quarterly Data Flow
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Notes: The same as Figure 3.4 with the addition of the model EC.CI which uses the Philly Fed’s
State Coincident index as a predictor.
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B.3. Further Results B. Appendix to Chapter 3

B.3.3 Targeting CO2 Emissions Directly Instead of Bridging

Figure B.7: Targeting CO2 Emissions Directly – Average RMSFE Across States,
Quarterly Data Flow
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Notes: The same as Figure 3.4 with the addition of the models D.PI and D.CI which directly predict
CO2 using PI or Coincident index instead of through the bridging method.

B.3.4 Using Both GDP and PI in the Model (Annual Only)

Figure B.8: Average RMSFE Across States – CO2 Emissions, Annual Data Flow
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Notes: The same as Figure 3.3 with the addition of the model EC.BOTH which uses both PI and
GDP in making the EC predictions for the bridge equation.

190



Appendix C

Appendix to Chapter 4

This appendix consists of a number of additional supportive tables and figures support-

ing Chapter 4. These primarily contain addition GaR levels and different prediction

horizons to substantiate the results in the main chapter. Both in-sample and out-of-

sample supplemental results along with predicted densities and prediction decomposition

are included. The appendix is organised as follows: Section C.1 presents the in-sample

results with two additional GaR levels for both assessing the significance of the coeffi-

cients and the goodness-of-fit; Section C.2 displays the out-of-sample validation, i.e.

DQ tests and TL for the full sample and a subsample excluding the GFC; Section

C.3 presents the time-series of estimated out-of-sample GaR for different prediction

horizons; Section C.4 presents the entire predicted density for three different points in

time that are distinct in terms of macroeconomic significance; Section C.5 consists of

supplemental plots on predicted moment time series and finally Section C.6 presents

substantiates the decomposition of the predicted GaR series.
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C.1. In-Sample Analysis – Other Levels C. Appendix to Chapter 4

C.1 In-Sample Analysis – Other Levels

C.1.1 Vulnerability Indicators
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Notes: See Figure 4.2.
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Notes: See Figure 4.2.

193



C.1. In-Sample Analysis – Other Levels C. Appendix to Chapter 4

C.1.2 Goodness-of-Fit

Table C.1: R Squared
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Table C.1: (cont’d...) R Squared
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C.2 Out-of-Sample Assessment

C.2.1 Coverage – Other Predictors

Figure C.2: Coverage
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Figure C.2: (cont’d...) Coverage
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Notes: These figures plot the coverage for the different models with different predictors considered
over different prediction horizons. The GaR levels are indicated in the panel headers.
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C.2.2 DQ Tests – Other Predictors

Table C.2: DQ Tests – CG

GaR 5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 18 17 18 12 16 14 14 16 15
2 18 20 21 14 19 20 14 18 16
3 18 19 20 14 18 19 14 20 17
4 17 21 21 14 18 19 14 16 17
5 18 18 20 14 18 19 14 18 17
6 18 17 19 14 17 19 15 17 18
7 18 18 20 15 17 20 16 15 18
8 17 18 20 16 18 20 16 17 18
9 18 17 20 17 17 20 16 16 18

10 18 17 20 18 18 19 15 16 18
11 18 17 18 18 17 19 14 18 19
12 18 19 19 18 18 19 14 16 18

(a) Unconditional

GaR 5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 8 12 9 6 9 5 6 9 5
2 18 18 16 15 16 13 7 9 12
3 21 17 20 13 19 16 13 17 14
4 21 18 19 18 18 18 13 20 17
5 21 19 21 18 16 19 17 14 18

6 20 18 21 20 13 18 17 18 16
7 21 17 21 19 19 20 17 18 16
8 22 20 21 19 20 20 17 14 15
9 19 19 21 21 20 18 14 19 16

10 19 20 22 22 18 21 21 17 19

11 19 20 21 20 17 21 17 19 20
12 19 21 20 21 17 19 18 16 22

(b) Hit

Notes: See Table 4.2.
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Table C.2: DQ Tests – CR

GaR 5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 18 17 18 12 16 14 14 14 15
2 18 20 20 14 19 20 14 17 17
3 18 20 20 14 18 19 14 19 17
4 17 20 20 14 18 19 14 19 16
5 18 20 20 14 18 19 14 17 17

6 18 19 20 14 17 20 15 18 18
7 18 19 20 15 17 20 16 19 17
8 17 18 20 16 18 20 16 17 18
9 18 19 20 17 18 19 16 16 18

10 18 19 20 18 18 20 15 19 20

11 18 18 19 18 17 19 14 18 18
12 18 20 19 18 18 19 14 17 18

(c) Unconditional

GaR 5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 8 12 9 6 9 5 6 11 6
2 18 20 17 15 15 12 7 11 14
3 21 18 20 13 18 14 13 18 14
4 21 19 20 18 17 17 13 19 17
5 21 21 21 18 18 20 17 13 17

6 20 21 21 20 19 18 17 17 15
7 21 20 22 19 19 21 17 16 16
8 22 21 21 19 18 20 17 15 14
9 19 21 22 21 18 21 14 15 15

10 19 21 22 22 18 19 21 21 20

11 19 19 22 20 19 19 17 20 18
12 19 20 20 21 18 22 18 18 19

(d) Hit

Notes: See Table 4.2.
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Table C.2: DQ Tests – EPU

GaR 5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 19 9 20 13 11 18 10 14 17
2 21 14 21 18 15 20 13 17 22
3 21 15 21 18 14 20 13 18 21
4 21 17 21 18 14 20 13 17 21
5 20 15 21 18 15 20 13 15 21

6 20 17 22 18 15 20 13 15 21
7 20 16 20 19 16 21 14 15 21
8 20 14 22 19 16 21 17 16 20
9 20 15 22 19 16 21 17 14 21

10 20 14 21 19 16 21 17 16 20

11 20 14 19 19 14 21 17 15 19
12 20 14 20 19 15 20 17 16 20

(e) Unconditional

GaR 5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 4 5 8 8 9 7 10 8 9
2 16 20 17 11 17 17 11 16 16
3 21 19 16 19 17 18 14 14 17
4 21 19 20 19 20 22 15 16 17
5 20 16 19 21 18 19 18 14 16

6 22 16 22 23 19 16 15 16 14
7 22 19 21 21 17 18 15 13 15
8 21 18 23 21 16 17 16 17 17
9 22 17 23 22 13 21 16 18 17

10 22 15 21 21 16 16 19 18 17

11 20 15 22 21 17 15 19 16 19
12 20 17 22 19 14 16 19 14 16

(f) Hit

Notes: See Table 4.2.
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Table C.2: DQ Tests – HP

GaR 5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 18 21 18 12 16 15 14 14 14
2 18 20 21 14 19 20 14 17 16
3 18 20 20 14 18 19 14 18 17
4 17 19 20 14 19 19 14 18 17
5 18 18 20 14 19 19 14 18 17

6 18 19 20 14 19 18 15 18 18
7 18 18 20 15 17 20 16 19 18
8 17 18 20 16 19 20 16 19 20
9 18 19 20 17 19 18 16 17 17

10 18 19 19 18 18 19 15 19 19

11 18 19 19 18 19 19 14 19 19
12 18 19 19 18 17 19 14 16 19

(g) Unconditional

GaR 5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 8 14 11 6 8 5 6 8 5
2 18 20 17 15 17 15 7 14 11
3 21 18 20 13 13 14 13 17 13
4 21 19 22 18 16 15 13 17 13
5 21 21 21 18 18 19 17 15 18

6 20 20 21 20 14 19 17 14 16
7 21 20 21 19 18 20 17 15 16
8 22 19 20 19 16 20 17 16 18
9 19 22 20 21 18 20 14 18 19

10 19 23 21 22 21 17 21 19 19

11 19 22 18 20 18 21 17 19 20
12 19 21 21 21 21 19 18 19 18

(h) Hit

Notes: See Table 4.2.
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Table C.2: DQ Tests – TS

GaR 5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 18 16 18 12 13 14 14 16 17
2 18 19 20 14 18 19 14 20 17
3 18 20 20 14 18 19 14 18 20
4 17 20 20 14 17 18 14 18 18
5 18 18 20 14 16 18 14 18 17

6 18 18 19 14 17 18 15 17 18
7 18 20 19 15 18 19 16 18 19
8 17 19 20 16 18 19 16 16 18
9 18 19 20 17 18 19 16 19 18

10 18 17 20 18 18 19 15 15 18

11 18 18 19 18 17 19 14 18 18
12 18 19 19 18 17 19 14 16 17

(i) Unconditional

GaR 5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 8 12 9 6 12 6 6 10 5
2 18 17 16 15 17 13 7 16 12
3 21 20 19 13 17 16 13 17 15
4 21 19 19 18 17 15 13 16 16
5 21 21 22 18 20 18 17 12 15

6 20 18 19 20 16 17 17 11 15
7 21 20 19 19 18 18 17 16 15
8 22 19 22 19 19 19 17 13 14
9 19 19 22 21 17 19 14 14 11

10 19 21 22 22 20 15 21 20 15

11 19 21 21 20 17 20 17 19 20
12 19 19 20 21 20 21 18 20 15

(j) Hit

Notes: See Table 4.2.

202



C.2. Out-of-Sample Assessment C. Appendix to Chapter 4

Table C.2: DQ Tests – WUI

GaR 5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 19 12 18 14 16 17 12 14 15
2 19 16 21 18 17 22 14 17 20
3 19 14 23 17 17 22 14 15 20
4 20 16 22 17 17 19 14 15 19
5 21 15 22 18 16 21 15 16 20

6 19 10 23 18 12 22 15 15 22
7 20 16 20 18 16 20 15 16 20
8 21 20 23 17 21 23 15 19 21
9 22 18 21 18 21 20 16 20 20

10 22 19 23 18 19 23 16 18 21

11 22 18 23 18 21 22 15 19 22
12 22 17 23 19 22 22 17 19 22

(k) Unconditional

GaR 5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 6 9 6 7 8 10 9 12 11
2 14 17 21 13 15 16 12 17 14
3 22 18 21 17 19 22 14 19 20
4 20 19 20 18 16 24 18 21 17
5 20 19 20 20 20 20 18 16 20

6 19 20 23 21 20 23 20 16 21
7 22 17 22 23 18 23 17 18 17
8 22 17 20 20 21 21 15 15 17
9 21 15 23 20 19 19 19 15 20

10 23 21 22 20 17 21 19 20 16

11 22 20 23 19 17 18 21 14 17
12 18 22 23 20 22 18 18 18 16

(l) Hit

Notes: See Table 4.2.
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C.2.3 Tick-Loss – Other Predictors

Table C.3: TL – Other Predictors

5% 10% 15%

Horizon CSD No-CSD CSD No-CSD CSD No-CSD

1 6.68 3.16 3.66 1.81 2.12 1.09
2 6.24 2.68 3.85 1.65 2.52 1.28
3 6.36 2.87 4.21 2.03 2.46 1.41
4 5.57 2.52 4.60 1.26 3.31 0.98
5 5.97 3.81 4.69 2.13 3.81 1.18

6 7.14 3.33 5.59 2.14 4.45 1.81
7 7.21 3.50 5.57 2.21 4.57 1.67
8 5.97 3.62 5.62 2.30 4.06 1.58
9 5.69 3.94 5.17 2.44 3.70 1.55

10 4.80 3.50 4.84 2.24 3.88 1.77

11 5.50 3.46 4.46 2.50 3.61 1.74
12 5.52 3.19 4.25 2.07 4.13 1.52

(a) TL: CG

5% 10% 15%

Horizon CSD No-CSD CSD No-CSD CSD No-CSD

1 5.08 2.44 2.88 1.37 1.69 0.71
2 5.35 3.01 4.46 1.84 3.23 1.55
3 6.34 3.35 4.48 1.85 3.22 1.13
4 6.91 2.98 4.69 1.43 3.71 1.09
5 7.06 4.62 5.01 2.24 3.62 1.57

6 6.84 4.44 5.51 2.29 4.20 2.05
7 6.65 3.94 5.20 2.22 4.22 1.80
8 5.61 3.71 4.69 2.39 3.33 1.84
9 4.82 4.57 3.57 2.47 2.71 1.42

10 3.77 3.58 3.88 2.41 2.66 2.04

11 5.09 3.58 3.83 2.77 3.25 1.77
12 3.92 2.87 3.71 1.88 3.31 1.21

(b) TL: CR

Notes: See Table 4.3.
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Table C.3: TL – Other Predictors

5% 10% 15%

Horizon CSD No-CSD CSD No-CSD CSD No-CSD

1 1.01 2.82 1.31 2.07 0.65 1.30
2 0.80 2.58 1.93 2.04 1.71 1.31
3 4.50 2.87 3.36 2.45 2.64 1.47
4 4.08 1.85 3.34 2.12 2.69 1.02
5 3.50 1.75 3.07 2.24 2.56 1.26

6 2.51 2.56 2.26 2.38 1.59 1.48
7 2.40 2.30 2.42 2.46 1.82 1.45
8 3.02 2.16 3.63 2.23 1.45 1.53
9 3.13 2.74 4.21 2.44 2.55 1.42

10 1.62 2.25 4.06 2.05 2.52 1.57

11 2.61 2.45 2.78 2.10 1.10 1.48
12 4.39 1.74 4.18 2.09 2.70 1.56

(c) TL: EPU

5% 10% 15%

Horizon CSD No-CSD CSD No-CSD CSD No-CSD

1 7.36 4.20 5.68 2.71 3.95 2.12
2 7.19 3.72 5.17 2.19 3.74 1.25
3 7.39 3.82 5.54 1.85 3.54 1.28
4 6.26 4.04 5.49 2.08 4.25 1.31
5 6.85 3.77 5.51 2.23 4.06 1.39

6 7.58 4.14 6.52 2.14 4.82 1.82
7 8.20 3.98 6.31 2.10 4.79 1.74
8 7.70 4.06 6.27 2.29 4.62 1.61
9 7.23 4.22 6.38 2.40 4.45 1.96

10 6.57 4.75 5.93 3.13 4.62 2.44

11 4.17 4.35 4.70 2.81 3.75 1.99
12 3.99 3.05 4.21 2.03 3.62 1.34

(d) TL: HP

Notes: See Table 4.3.
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Table C.3: TL – Other Predictors

5% 10% 15%

Horizon CSD No-CSD CSD No-CSD CSD No-CSD

1 6.65 4.80 6.30 3.09 4.67 2.05
2 7.31 4.67 6.23 2.91 4.83 1.62
3 7.09 5.82 5.61 3.42 4.67 1.10
4 4.81 6.13 5.61 3.30 4.23 1.34
5 6.03 5.42 6.23 2.50 5.09 1.63

6 5.42 4.35 5.98 2.74 5.22 1.89
7 6.27 4.30 5.50 2.40 4.58 1.52
8 6.12 4.23 4.80 2.56 4.10 1.98
9 6.14 3.65 5.01 2.39 4.02 1.92

10 4.18 3.22 4.56 2.20 3.65 1.65

11 4.37 3.08 4.15 2.12 3.52 1.72
12 4.96 2.29 3.65 1.81 3.34 1.43

(e) TL: TS

5% 10% 15%

Horizon CSD No-CSD CSD No-CSD CSD No-CSD

1 1.85 1.22 4.73 4.33 4.24 3.41
2 2.88 1.72 4.76 3.95 2.88 2.96
3 6.89 0.81 5.59 3.87 3.35 3.63
4 7.02 -0.16 6.43 3.90 3.79 3.75
5 5.15 1.65 3.62 4.62 2.96 3.92

6 0.54 2.92 0.83 5.83 0.48 4.76
7 3.24 2.90 0.04 4.37 -1.28 3.46
8 10.29 4.49 6.96 6.65 4.10 4.81
9 7.60 2.56 5.74 5.29 4.65 4.41

10 9.90 2.75 7.70 5.79 4.95 5.07

11 8.03 2.32 8.13 6.14 5.41 4.96
12 6.59 1.95 5.46 5.70 3.67 5.03

(f) TL: WUI
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C.2.4 Different Sub-sample – Q1:1990–Q4:2007

DQ Tests

Table C.4: Unconditional DQ Tests – Different Sub-samples

5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 24 22 23 14 17 14 16 16 18
2 24 22 23 15 15 15 17 17 17
3 24 22 23 15 16 15 17 18 18
4 24 22 23 15 16 14 17 18 18
5 24 22 23 15 15 16 17 17 18

6 24 22 23 15 15 16 17 17 18
7 24 21 23 15 14 17 17 16 18
8 22 20 23 15 15 16 17 17 18
9 22 20 23 15 15 16 17 17 17

10 22 22 23 15 15 15 17 16 18

11 22 21 22 15 17 15 17 17 18
12 22 20 22 15 15 16 17 19 18

(a) CG

5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 24 21 23 14 15 14 16 16 18
2 24 22 23 15 15 15 17 17 17
3 24 22 23 15 16 15 17 17 18
4 24 22 23 15 15 15 17 17 18
5 24 22 23 15 16 15 17 16 18

6 24 22 23 15 14 16 17 16 17
7 24 21 23 15 15 17 17 16 18
8 22 21 23 15 14 16 17 17 16
9 22 19 23 15 17 16 17 19 16

10 22 21 23 15 17 16 17 17 17

11 22 19 22 15 17 16 17 18 17
12 22 21 22 15 16 16 17 17 18

(b) CR

Notes: See Table 4.2.

Notes: See Table 4.3.
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Table C.4: Unconditional DQ Tests – Different Sub-samples

5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 24 22 23 14 17 14 16 17 17
2 24 22 23 15 15 17 17 15 19
3 24 22 23 15 16 17 17 16 17
4 24 22 23 15 17 16 17 16 18
5 24 23 23 15 18 15 17 15 18

6 24 22 23 15 16 16 17 14 18
7 24 22 23 15 16 16 17 18 18
8 22 22 23 15 18 16 17 17 19
9 22 22 23 15 18 14 17 18 19

10 22 22 23 15 19 15 17 19 16

11 22 22 23 15 17 17 17 19 18
12 22 22 22 15 17 15 17 16 17

(c) HP

5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 24 22 23 14 16 13 16 15 16
2 24 22 23 15 17 14 17 19 17
3 24 22 22 15 17 16 17 19 19
4 24 22 22 15 17 18 17 18 19
5 24 22 22 15 15 19 17 17 16

6 24 22 21 15 16 17 17 15 20
7 24 21 21 15 15 16 17 16 18
8 22 22 22 15 14 16 17 15 18
9 22 23 22 15 16 16 17 17 17

10 22 22 23 15 17 15 17 17 18

11 22 22 22 15 17 15 17 17 16
12 22 23 22 15 16 16 17 17 17

(d) TS

Notes: See Table 4.2.
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Table C.4: Unconditional DQ Tests – Different Sub-samples

5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 24 18 21 14 16 13 16 16 15
2 24 21 22 15 16 13 17 16 14
3 24 22 22 15 16 15 17 16 14
4 24 22 22 15 17 16 17 18 15
5 24 23 22 15 16 15 17 16 17

6 24 23 23 15 17 17 17 18 17
7 24 23 23 15 17 18 17 16 19
8 22 21 23 15 16 17 17 16 18
9 22 21 23 15 16 17 17 17 18

10 22 21 23 15 16 17 17 18 18

11 22 22 23 15 16 16 17 16 19
12 22 22 23 15 17 16 17 14 17

(e) NFCI

Notes: See Table 4.2.
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Table C.5: DQ Tests Conditional on Lagged Hits – Different Sub-Samples

5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 8 10 11 17 17 14 16 18 18
2 11 12 12 15 16 17 15 16 16
3 10 15 15 15 13 18 18 17 16
4 8 13 11 16 14 16 17 19 16
5 8 15 13 16 15 17 18 16 18

6 10 12 15 17 16 17 16 15 18
7 11 14 14 17 16 17 18 18 20
8 12 14 15 16 17 17 18 14 21
9 14 17 16 17 17 17 16 19 19

10 14 14 17 17 18 16 18 17 17

11 14 16 16 18 18 16 19 17 19
12 13 15 16 16 17 17 18 17 17

(a) CG

5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 8 11 10 17 16 17 16 18 16
2 11 14 10 15 16 17 15 15 17
3 10 14 15 15 16 17 18 19 16
4 8 11 11 16 17 16 17 18 17
5 8 15 15 16 18 16 18 15 17

6 10 14 15 17 15 17 16 16 18
7 11 15 14 17 16 18 18 15 20
8 12 16 15 16 18 17 18 18 20
9 14 17 16 17 18 19 16 19 19

10 14 15 17 17 16 17 18 18 16

11 14 15 16 18 18 16 19 18 19
12 13 16 17 16 19 17 18 17 17

(b) CR

Notes: See Table 4.2.
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Table C.5: DQ Tests Conditional on Lagged Hits

5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 8 11 10 17 16 14 16 15 18
2 11 16 12 15 18 16 15 15 16
3 10 15 15 15 17 16 18 17 16
4 8 17 14 16 16 14 17 18 16
5 8 16 15 16 20 16 18 18 16

6 10 14 14 17 15 16 16 14 18
7 11 13 13 17 16 19 18 20 19
8 12 15 14 16 14 18 18 18 20
9 14 15 14 17 17 15 16 20 19

10 14 15 17 17 15 17 18 16 17

11 14 16 15 18 18 16 19 18 18
12 13 15 17 16 18 18 18 18 16

(c) HP

5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 8 12 10 17 17 15 16 18 16
2 11 15 12 15 20 17 15 18 19
3 10 13 16 15 21 16 18 19 20
4 8 14 13 16 18 17 17 15 19
5 8 14 13 16 19 18 18 15 16

6 10 15 14 17 16 18 16 14 16
7 11 13 13 17 16 18 18 18 18
8 12 15 16 16 19 20 18 18 20
9 14 14 16 17 17 17 16 18 18

10 14 16 17 17 17 16 18 19 17

11 14 14 16 18 19 18 19 19 18
12 13 16 16 16 19 16 18 17 18

(d) TS

Notes: See Table 4.2.
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Table C.5: DQ Tests Conditional on Lagged Hits

5% 10% 15%

Horizon BM CSD No-CSD BM CSD No-CSD BM CSD No-CSD

1 8 9 10 17 11 13 16 13 16
2 11 15 13 15 15 16 15 19 15
3 10 17 15 15 17 17 18 18 16
4 8 16 13 16 17 15 17 18 18
5 8 16 13 16 16 17 18 15 17

6 10 16 13 17 18 17 16 15 19
7 11 14 12 17 18 17 18 17 20
8 12 13 14 16 16 17 18 17 21
9 14 16 16 17 19 17 16 17 19

10 14 15 17 17 17 16 18 19 18

11 14 17 16 18 20 16 19 19 20
12 13 17 17 16 19 17 18 18 17

(e) NFCI

Notes: See Table 4.2.
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TL

Table C.6: TL for Different Sub-samples

5% 10% 15%

Horizon CSD No-CSD CSD No-CSD CSD No-CSD

1 0.1287 0.1289 0.1938 0.1933 0.2437 0.2387
2 0.1281 0.1293 0.1925 0.1945 0.2410 0.2397
3 0.1275 0.1292 0.1920 0.1931 0.2408 0.2389
4 0.1283 0.1314 0.1902 0.1949 0.2378 0.2394
5 0.1268 0.1289 0.1903 0.1938 0.2372 0.2397

6 0.1278 0.1283 0.1901 0.1932 0.2379 0.2387
7 0.1280 0.1279 0.1903 0.1919 0.2369 0.2380
8 0.1282 0.1272 0.1905 0.1908 0.2382 0.2379
9 0.1279 0.1266 0.1892 0.1900 0.2368 0.2380

10 0.1286 0.1264 0.1899 0.1898 0.2363 0.2377

11 0.1280 0.1257 0.1907 0.1896 0.2359 0.2371
12 0.1261 0.1261 0.1881 0.1903 0.2323 0.2375

(a) TL: CG

5% 10% 15%

Horizon CSD No-CSD CSD No-CSD CSD No-CSD

1 0.1296 0.1288 0.1964 0.1928 0.2446 0.2389
2 0.1291 0.1289 0.1941 0.1943 0.2413 0.2399
3 0.1280 0.1290 0.1924 0.1929 0.2409 0.2391
4 0.1269 0.1298 0.1918 0.1950 0.2397 0.2398
5 0.1263 0.1283 0.1906 0.1940 0.2373 0.2399

6 0.1277 0.1278 0.1888 0.1934 0.2373 0.2383
7 0.1283 0.1276 0.1895 0.1920 0.2375 0.2380
8 0.1266 0.1272 0.1904 0.1908 0.2379 0.2382
9 0.1268 0.1262 0.1918 0.1904 0.2388 0.2377

10 0.1288 0.1265 0.1921 0.1897 0.2400 0.2371

11 0.1283 0.1265 0.1935 0.1895 0.2400 0.2369
12 0.1287 0.1264 0.1934 0.1913 0.2393 0.2385

(b) TL: CR

Notes: See Table 4.3.
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Table C.6: TL for Different Sub-samples

5% 10% 15%

Horizon CSD No-CSD CSD No-CSD CSD No-CSD

1 0.1271 0.1264 0.1914 0.1926 0.2395 0.2387
2 0.1281 0.1285 0.1916 0.1944 0.2394 0.2410
3 0.1258 0.1285 0.1900 0.1950 0.2388 0.2413
4 0.1260 0.1284 0.1894 0.1942 0.2372 0.2407
5 0.1271 0.1294 0.1903 0.1933 0.2375 0.2397

6 0.1263 0.1277 0.1882 0.1928 0.2369 0.2385
7 0.1248 0.1276 0.1895 0.1924 0.2365 0.2371
8 0.1252 0.1273 0.1888 0.1908 0.2353 0.2377
9 0.1257 0.1267 0.1883 0.1905 0.2351 0.2361

10 0.1264 0.1249 0.1886 0.1884 0.2352 0.2354

11 0.1279 0.1264 0.1897 0.1893 0.2358 0.2364
12 0.1265 0.1259 0.1885 0.1896 0.2339 0.2362

(c) TL: HP

5% 10% 15%

Horizon CSD No-CSD CSD No-CSD CSD No-CSD

1 0.1214 0.1222 0.1849 0.1852 0.2325 0.2301
2 0.1211 0.1206 0.1850 0.1841 0.2301 0.2288
3 0.1222 0.1197 0.1862 0.1847 0.2291 0.2303
4 0.1228 0.1201 0.1856 0.1850 0.2305 0.2292
5 0.1240 0.1218 0.1839 0.1866 0.2292 0.2290

6 0.1264 0.1244 0.1846 0.1858 0.2301 0.2286
7 0.1256 0.1248 0.1855 0.1866 0.2322 0.2295
8 0.1256 0.1248 0.1880 0.1865 0.2345 0.2314
9 0.1263 0.1255 0.1891 0.1871 0.2358 0.2328

10 0.1274 0.1261 0.1897 0.1876 0.2374 0.2347

11 0.1276 0.1266 0.1898 0.1882 0.2370 0.2347
12 0.1270 0.1262 0.1902 0.1890 0.2379 0.2356

(d) TL: TS

Notes: See Table 4.3.
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Table C.6: TL for Different Sub-samples

5% 10% 15%

Horizon CSD No-CSD CSD No-CSD CSD No-CSD

1 0.1218 0.1212 0.1854 0.1861 0.2333 0.2331
2 0.1215 0.1227 0.1879 0.1891 0.2375 0.2352
3 0.1230 0.1239 0.1883 0.1890 0.2351 0.2352
4 0.1246 0.1260 0.1873 0.1904 0.2360 0.2367
5 0.1241 0.1278 0.1894 0.1921 0.2373 0.2377

6 0.1253 0.1281 0.1894 0.1920 0.2385 0.2385
7 0.1260 0.1288 0.1902 0.1933 0.2384 0.2391
8 0.1261 0.1273 0.1888 0.1913 0.2364 0.2385
9 0.1247 0.1275 0.1893 0.1910 0.2366 0.2388

10 0.1264 0.1267 0.1894 0.1898 0.2363 0.2377

11 0.1271 0.1274 0.1905 0.1904 0.2369 0.2383
12 0.1270 0.1266 0.1923 0.1914 0.2379 0.2383

(e) TL: NFCI

Notes: See Table 4.3.
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C.3 Estimated GaR

Figure C.3: Estimated GaR (5%) at Different Horizons, Predictor – NFCI
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(a) 4–Quarter horizon
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(b) 8 Quarter Horizon

Notes: See Figure 4.4.
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C.4 Predicted Density

Figure C.4: Conditional Density
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(b) Conditional Density – Q4:2008
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(c) Conditional Density – Q4:2014

Notes: The fitted skew-t distribution is conditional on the NFCI for the 12 quarter-ahead forecast
horizon.
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C.5 Moments

Figure C.5: Moments Conditional on NFCI; Prediction Horizon – 4 Quarter–Ahead
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(a) Moments of AUS GDP; Conditional on NFCI
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Notes: See Figure 4.5.
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Figure C.5: (cont’d) Moments Conditional on NFCI; Prediction Horizon – 4 Quarter–
Ahead
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(c) Moments of GBR GDP
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(d) Moments of JPN GDP

Notes: See Figure 4.5.
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Figure C.5: (cont’d) Moments Conditional on NFCI; Prediction Horizon – 4 Quarter–
Ahead
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C.5. Moments C. Appendix to Chapter 4

Figure C.6: Moments Conditional on NFCI; Prediction Horizon – 8 Quarter–Ahead
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C.5. Moments C. Appendix to Chapter 4

Figure C.6: (cont’d) Moments Conditional on NFCI; Prediction Horizon – 8–Quarters
Ahead
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Notes: See Figure 4.5.
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C.5. Moments C. Appendix to Chapter 4

Figure C.6: (cont’d) Moments Conditional on NFCI; Prediction Horizon – 8–Quarters
Ahead
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C.5. Moments C. Appendix to Chapter 4

Figure C.7: Moments Conditional on NFCI; Prediction Horizon – 12 Quarter–Ahead
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(a) Moments of AUS GDP; Conditional on NFCI
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Notes: See Figure 4.5.
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C.5. Moments C. Appendix to Chapter 4

Figure C.7: (cont’d) Moments Conditional on NFCI; Prediction Horizon – 12 Quarter–
Ahead
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(c) Moments of GBR GDP
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Notes: See Figure 4.5.
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C.5. Moments C. Appendix to Chapter 4

Figure C.7: (cont’d) Moments Conditional on NFCI; Prediction Horizon – 12 Quarter–
Ahead
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(e) Moments of KOR GDP; Conditional on NFCI

Notes: See Figure 4.5.
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C.6. Forecast Decomposition – Different Horizons C. Appendix to Chapter 4

C.6 Forecast Decomposition – Different Horizons

Figure C.8: Decomposition of Predicted GaR(5%) – Predictor: NFCI
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Notes: See Figure 4.7.
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Appendix D

Appendix to Chapter 5

This appendix consists of additional empirical results in support of the findings of

Chapter 5 and is organised as follows: the full information results are corroborated in

Section D.1 with additional results on the constant-only benchmark model, a model

that omits the cross-sectional averages and a model augmented with a dummy for the

GFC. The pseudo-real-time results are substantiated and contrasted in Section D.2

with the constant-only benchmark model and other alternatives as in Section D.1.
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D.1. Additional results – Full Information D. Appendix to Chapter 5

D.1 Additional results – Full Information

D.1.1 Constant-only BM

AUROC

Figure D.1: 95% CI for AUROC for Constant-only BM; Full Information
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Notes: The figure presents the AUROC and the confidence intervals for a constant-only benchmark
model which is equivalent to historical averages of the latent variable. See Figure 5.7 for more details.
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D.1. Additional results – Full Information D. Appendix to Chapter 5

BS

Table D.1: BS for Full-Information

Episodes cloglog probit logit

Surge 0.3301 0.2436 0.2460
Stop 0.3397 0.2425 0.2450
Retrench 0.3388 0.2400 0.2466
Flight 0.3283 0.2417 0.2449

Notes: Same as Table 5.6

KS

Table D.2: KS for Full-Information

Thresholds

Episodes Link 5% 25% 50% 75% 95%

Surge cloglog 0.0155 -0.0016 -0.0095 -0.0016 -0.0027
Stop cloglog -0.0138 -0.0071 -0.0143 -0.0143 -0.0041
Retrench cloglog 0.0005 -0.0071 -0.0463 -0.0178 -0.0076
Flight cloglog 0.0180 0.0169 -0.0153 -0.0077 -0.0119

Surge probit -0.0227 -0.0271 -0.0350 -0.0334 -0.0155
Stop probit -0.0280 -0.0214 0.0000 -0.0143 -0.0183
Retrench probit 0.0326 0.0107 -0.0143 -0.0107 -0.0112
Flight probit -0.0004 -0.0199 -0.0215 0.0261 0.0188

Surge logit -0.0164 -0.0302 0.0255 -0.0048 0.0036
Stop logit -0.0066 -0.0178 -0.0285 0.0392 0.0066
Retrench logit -0.0102 -0.0036 -0.0250 -0.0392 -0.0112
Flight logit 0.0027 -0.0199 0.0153 -0.0015 0.0035

Notes: Same as Table 5.7
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D.1. Additional results – Full Information D. Appendix to Chapter 5

D.1.2 Excluding Cross-Sectional Averages

Figure D.2: 95% CI for AUROC – Excluding Cross-Sectional Averages; Full Information
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Notes: The figure presents the AUROC and the confidence intervals without modelling the cross-
sectional averages. See Figure 5.7 for more details.
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D.1. Additional results – Full Information D. Appendix to Chapter 5

D.1.3 Including Dummy for the GFC

Figure D.3: 95% CI for AUROC – Including Dummy for the GFC; Full Information
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Notes: The figure presents the AUROC and the confidence intervals when we include dummies for
the GFC, i.e. observations during and after 2009. See Figure 5.7 for more details.
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D.2. Additional Results – Pseudo-Real-Time D. Appendix to Chapter 5

D.2 Additional Results – Pseudo-Real-Time

D.2.1 Constant-only BM

AUROC

Figure D.4: 95% CI for AUROC – Constant-only BM; Pseudo-Real-Time
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Notes: The figure presents the AUROC for the constant-only benchmark model which is equivalent
to the averages of the latent variable. See Figure 5.10 for more details.
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D.2. Additional Results – Pseudo-Real-Time D. Appendix to Chapter 5

BS

Table D.3: BS for Pseudo-Real-Time

Prediction Day Surge Stop Retrench Flight

cloglog
1 0.3305 0.3388 0.3385 0.3289
2 0.3305 0.3388 0.3385 0.3289
3 0.3305 0.3388 0.3385 0.3289
4 0.3305 0.3388 0.3385 0.3289
5 0.3305 0.3388 0.3385 0.3289
6 0.3305 0.3388 0.3385 0.3289
7 0.3305 0.3388 0.3385 0.3289
8 0.3305 0.3388 0.3385 0.3289
9 0.3305 0.3388 0.3385 0.3289

10 0.3185 0.3267 0.3255 0.3166
probit

1 0.2434 0.2422 0.2399 0.2417
2 0.2434 0.2422 0.2399 0.2417
3 0.2434 0.2422 0.2399 0.2417
4 0.2434 0.2422 0.2399 0.2417
5 0.2434 0.2422 0.2399 0.2417
6 0.2434 0.2422 0.2399 0.2417
7 0.2434 0.2422 0.2399 0.2417
8 0.2434 0.2422 0.2399 0.2417
9 0.2434 0.2422 0.2399 0.2417

10 0.2340 0.2334 0.2313 0.2332
logit

1 0.2455 0.2448 0.2464 0.2457
2 0.2455 0.2448 0.2464 0.2457
3 0.2455 0.2448 0.2464 0.2457
4 0.2455 0.2448 0.2464 0.2457
5 0.2455 0.2448 0.2464 0.2457
6 0.2455 0.2448 0.2464 0.2457
7 0.2455 0.2448 0.2464 0.2457
8 0.2455 0.2448 0.2464 0.2457
9 0.2455 0.2448 0.2464 0.2457

10 0.2362 0.2364 0.2381 0.2376
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KS

Table D.3: KS for Pseudo-Real-Time

(a) KS for Surges

Prediction Day 5% 25% 50% 75% 95%

cloglog
1 0.0134 -0.0005 -0.0083 -0.0094 -0.0002
2 0.0134 -0.0005 -0.0083 -0.0094 -0.0002
3 0.0134 -0.0005 -0.0083 -0.0094 -0.0002
4 0.0134 -0.0005 -0.0083 -0.0094 -0.0002
5 0.0134 -0.0005 -0.0083 -0.0094 -0.0002
6 0.0134 -0.0005 -0.0083 -0.0094 -0.0002
7 0.0134 -0.0005 -0.0083 -0.0094 -0.0002
8 0.0134 -0.0005 -0.0083 -0.0094 -0.0002
9 0.0134 -0.0005 -0.0083 -0.0094 -0.0002

10 0.0464 0.0424 0.0347 0.0203 0.0262
probit

1 -0.0163 -0.0302 -0.0314 -0.0358 -0.0200
2 -0.0163 -0.0302 -0.0314 -0.0358 -0.0200
3 -0.0163 -0.0302 -0.0314 -0.0358 -0.0200
4 -0.0163 -0.0302 -0.0314 -0.0358 -0.0200
5 -0.0163 -0.0302 -0.0314 -0.0358 -0.0200
6 -0.0163 -0.0302 -0.0314 -0.0358 -0.0200
7 -0.0163 -0.0302 -0.0314 -0.0358 -0.0200
8 -0.0163 -0.0302 -0.0314 -0.0358 -0.0200
9 -0.0163 -0.0302 -0.0314 -0.0358 -0.0200

10 0.0266 0.0160 -0.0050 0.0038 0.0130
logit

1 -0.0163 -0.0236 0.0413 0.0005 0.0031
2 -0.0163 -0.0236 0.0413 0.0005 0.0031
3 -0.0163 -0.0236 0.0413 0.0005 0.0031
4 -0.0163 -0.0236 0.0413 0.0005 0.0031
5 -0.0163 -0.0236 0.0413 0.0005 0.0031
6 -0.0163 -0.0236 0.0413 0.0005 0.0031
7 -0.0163 -0.0236 0.0413 0.0005 0.0031
8 -0.0163 -0.0236 0.0413 0.0005 0.0031
9 -0.0163 -0.0236 0.0413 0.0005 0.0031

10 0.0332 0.0028 0.0743 0.0335 0.0328

Notes: Same as Table 5.12
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Table D.3: KS for Pseudo-Real-Time

(b) KS for Stops

Prediction Day 5% 25% 50% 75% 95%

cloglog
1 -0.0158 0.0040 -0.0073 -0.0003 -0.0025
2 -0.0158 0.0040 -0.0073 -0.0003 -0.0025
3 -0.0158 0.0040 -0.0073 -0.0003 -0.0025
4 -0.0158 0.0040 -0.0073 -0.0003 -0.0025
5 -0.0158 0.0040 -0.0073 -0.0003 -0.0025
6 -0.0158 0.0040 -0.0073 -0.0003 -0.0025
7 -0.0158 0.0040 -0.0073 -0.0003 -0.0025
8 -0.0158 0.0040 -0.0073 -0.0003 -0.0025
9 -0.0158 0.0040 -0.0073 -0.0003 -0.0025

10 0.0244 0.0332 0.0329 0.0435 0.0450
probit

1 -0.0194 -0.0253 0.0110 -0.0003 -0.0171
2 -0.0194 -0.0253 0.0110 -0.0003 -0.0171
3 -0.0194 -0.0253 0.0110 -0.0003 -0.0171
4 -0.0194 -0.0253 0.0110 -0.0003 -0.0171
5 -0.0194 -0.0253 0.0110 -0.0003 -0.0171
6 -0.0194 -0.0253 0.0110 -0.0003 -0.0171
7 -0.0194 -0.0253 0.0110 -0.0003 -0.0171
8 -0.0194 -0.0253 0.0110 -0.0003 -0.0171
9 -0.0194 -0.0253 0.0110 -0.0003 -0.0171

10 0.0244 0.0076 0.0621 0.0399 0.0158
logit

1 -0.0084 -0.0106 -0.0292 0.0362 0.0084
2 -0.0084 -0.0106 -0.0292 0.0362 0.0084
3 -0.0084 -0.0106 -0.0292 0.0362 0.0084
4 -0.0084 -0.0106 -0.0292 0.0362 0.0084
5 -0.0084 -0.0106 -0.0292 0.0362 0.0084
6 -0.0084 -0.0106 -0.0292 0.0362 0.0084
7 -0.0084 -0.0106 -0.0292 0.0362 0.0084
8 -0.0084 -0.0106 -0.0292 0.0362 0.0084
9 -0.0084 -0.0106 -0.0292 0.0362 0.0084

10 0.0464 0.0259 0.0146 0.0764 0.0450

Notes: Same as Table 5.12
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Table D.3: KS for Pseudo-Real-Time

(c) KS for Retrenchments

Prediction Day 5% 25% 50% 75% 95%

cloglog
1 0.0027 -0.0061 -0.0456 -0.0158 -0.0100
2 0.0027 -0.0061 -0.0456 -0.0158 -0.0100
3 0.0027 -0.0061 -0.0456 -0.0158 -0.0100
4 0.0027 -0.0061 -0.0456 -0.0158 -0.0100
5 0.0027 -0.0061 -0.0456 -0.0158 -0.0100
6 0.0027 -0.0061 -0.0456 -0.0158 -0.0100
7 0.0027 -0.0061 -0.0456 -0.0158 -0.0100
8 0.0027 -0.0061 -0.0456 -0.0158 -0.0100
9 0.0027 -0.0061 -0.0456 -0.0158 -0.0100

10 0.0501 0.0267 -0.0164 0.0024 0.0155
probit

1 0.0282 0.0085 -0.0164 0.0061 -0.0100
2 0.0282 0.0085 -0.0164 0.0061 -0.0100
3 0.0282 0.0085 -0.0164 0.0061 -0.0100
4 0.0282 0.0085 -0.0164 0.0061 -0.0100
5 0.0282 0.0085 -0.0164 0.0061 -0.0100
6 0.0282 0.0085 -0.0164 0.0061 -0.0100
7 0.0282 0.0085 -0.0164 0.0061 -0.0100
8 0.0282 0.0085 -0.0164 0.0061 -0.0100
9 0.0282 0.0085 -0.0164 0.0061 -0.0100

10 0.0574 0.0523 0.0128 0.0389 0.0228
logit

1 -0.0046 -0.0024 -0.0237 -0.0304 -0.0100
2 -0.0046 -0.0024 -0.0237 -0.0304 -0.0100
3 -0.0046 -0.0024 -0.0237 -0.0304 -0.0100
4 -0.0046 -0.0024 -0.0237 -0.0304 -0.0100
5 -0.0046 -0.0024 -0.0237 -0.0304 -0.0100
6 -0.0046 -0.0024 -0.0237 -0.0304 -0.0100
7 -0.0046 -0.0024 -0.0237 -0.0304 -0.0100
8 -0.0046 -0.0024 -0.0237 -0.0304 -0.0100
9 -0.0046 -0.0024 -0.0237 -0.0304 -0.0100

10 0.0428 0.0195 -0.0018 -0.0049 0.0155

Notes: Same as Table 5.12
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Table D.3: KS for Pseudo-Real-Time

(d) KS for Flights

Prediction Day 5% 25% 50% 75% 95%

cloglog
1 0.0222 0.0171 -0.0112 -0.0139 -0.0126
2 0.0222 0.0171 -0.0112 -0.0139 -0.0126
3 0.0222 0.0171 -0.0112 -0.0139 -0.0126
4 0.0222 0.0171 -0.0112 -0.0139 -0.0126
5 0.0222 0.0171 -0.0112 -0.0139 -0.0126
6 0.0222 0.0171 -0.0112 -0.0139 -0.0126
7 0.0222 0.0171 -0.0112 -0.0139 -0.0126
8 0.0222 0.0171 -0.0112 -0.0139 -0.0126
9 0.0222 0.0171 -0.0112 -0.0139 -0.0126

10 0.0509 0.0585 0.0399 0.0244 0.0225
probit

1 -0.0033 -0.0244 -0.0143 0.0276 0.0161
2 -0.0033 -0.0244 -0.0143 0.0276 0.0161
3 -0.0033 -0.0244 -0.0143 0.0276 0.0161
4 -0.0033 -0.0244 -0.0143 0.0276 0.0161
5 -0.0033 -0.0244 -0.0143 0.0276 0.0161
6 -0.0033 -0.0244 -0.0143 0.0276 0.0161
7 -0.0033 -0.0244 -0.0143 0.0276 0.0161
8 -0.0033 -0.0244 -0.0143 0.0276 0.0161
9 -0.0033 -0.0244 -0.0143 0.0276 0.0161

10 0.0317 0.0011 0.0207 0.0626 0.0512
logit

1 0.0030 -0.0212 0.0016 -0.0107 0.0001
2 0.0030 -0.0212 0.0016 -0.0107 0.0001
3 0.0030 -0.0212 0.0016 -0.0107 0.0001
4 0.0030 -0.0212 0.0016 -0.0107 0.0001
5 0.0030 -0.0212 0.0016 -0.0107 0.0001
6 0.0030 -0.0212 0.0016 -0.0107 0.0001
7 0.0030 -0.0212 0.0016 -0.0107 0.0001
8 0.0030 -0.0212 0.0016 -0.0107 0.0001
9 0.0030 -0.0212 0.0016 -0.0107 0.0001

10 0.0509 0.0075 0.0367 0.0308 0.0384

Notes: Same as Table 5.12
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D.2.2 Dummy for GFC

Figure D.5: AUROC – GFC Dummies; Pseudo-Real-Time
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Notes: The figure presents the AUROC for the model including an additional dummy variable for
the GFC. See Figure 5.10 for more details.
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D.2.3 Excluding Cross-sectional Averages

Figure D.6: AUROC – Excluding Cross-sectional Averages – Pseudo-Real-Time
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Notes: The figure presents the AUROC for the model excluding cross-sectional averages. See Figure
5.10 for more details.
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