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Abstract
A central computational task in database theory, finite model theory, and computer science at large
is the evaluation of a first-order sentence on a finite structure. In the context of this task, the
width of a sentence, defined as the maximum number of free variables over all subformulas, has
been established as a crucial measure, where minimizing width of a sentence (while retaining logical
equivalence) is considered highly desirable. An undecidability result rules out the possibility of
an algorithm that, given a first-order sentence, returns a logically equivalent sentence of minimum
width; this result motivates the study of width minimization via syntactic rewriting rules, which is
this article’s focus. For a number of common rewriting rules (which are known to preserve logical
equivalence), including rules that allow for the movement of quantifiers, we present an algorithm
that, given a positive first-order sentence ϕ, outputs the minimum-width sentence obtainable from
ϕ via application of these rules. We thus obtain a complete algorithmic understanding of width
minimization up to the studied rules; this result is the first one—of which we are aware—that
establishes this type of understanding in such a general setting. Our result builds on the theory
of term rewriting and establishes an interface among this theory, query evaluation, and structural
decomposition theory.
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1 Introduction

The problem of evaluating a first-order sentence on a finite structure is a central computational
task in database theory, finite model theory, and indeed computer science at large. In database
theory, first-order sentences are viewed as constituting the core of SQL; in parameterized
complexity theory, many commonly studied problems can be naturally and directly formulated
as cases of this evaluation problem. In the quest to perform this evaluation efficiently, the
width of a sentence—defined as the maximum number of free variables over all subformulas
of the sentence—has become established as a central and crucial measure. A first reason for
this is that the natural bottom-up algorithm for sentence evaluation exhibits an exponential
dependence on the width [21]; this algorithm runs in polynomial time when restricted to any
class of sentences having bounded width, meaning that there exists a constant bounding their
width. In addition, there are a number of dichotomy theorems [17, 16, 10, 12] showing that,
for particular fragments of first-order logic, a class of sentences admits tractable evaluation
if and only if the class has bounded width, up to logical equivalence. These theorems are
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16:2 Optimally Rewriting Formulas and Database Queries

shown under standard complexity-theoretic assumptions, and concern relational first-order
logic, which we focus on in this article.

These results all point to and support the desirability of minimizing the widths of logical
sentences. However, an undecidability result [7, Theorem 19] immediately rules out the
existence of an algorithm that, given a first-order sentence ϕ, returns a sentence of minimum
width among all sentences logically equivalent to ϕ; indeed, this undecidability result rules
out an algorithm that performs as described even on positive first-order sentences. Despite
this non-computability result, given the importance of width minimization, it is natural to
seek computable methods for reformulating sentences so as to reduce their width. In this
article, we show how to perform width minimization, in an optimal fashion, via established
syntactic rewriting rules known to preserve logical equivalence. The study of such rules is
strongly relevant:

In database theory, such rules are studied and applied extensively to reformulate database
queries with the aim of allowing efficient evaluation [1, Chapter 6].
Well-known tractable cases of conjunctive query evaluation admit logical characterizations
via such rules, such as those of bounded treewidth [18] and bounded hypertreewidth [15].
Such rules play a key role in obtaining the tractability results of some of the mentioned
dichotomy theorems [10, 12].

This article focuses on a collection of common and well-known rewriting rules, which
includes rules that are well-established in database theory [1, Figures 5.1 and 6.2]. Our main
result is the presentation of an algorithm that, given a positive first-order sentence ϕ, outputs
a minimum-width sentence obtainable from ϕ via application of the considered rules. We
thus obtain a complete algorithmic understanding of width minimization up to the studied
rules. Our main result is the first result—of which we are aware—to obtain a comprehensive
characterization of width up to syntactic rules in the general setting of positive first-order
logic.

In order to obtain our main result, we use the theory of term rewriting; in particular,
we make use of basic concepts therein such as termination and confluence. We view this
marriage of term rewriting and query rewriting as a conceptual contribution of our work.
We gently augment the basic theory of term rewriting in two ways. First, we define the
notion of a gauged system, which is an abstract reduction system along with a gauge, a
function mapping each element of the system to a number; the gauge represents a quantity
that one wants to minimize. In this article our focus is on systems whose elements are
first-order formulas, and where the gauge is the width. Second, we define a notion of
division of a system by an equivalence relation. This notion allows us to consider equivalence
classes w.r.t. a subset of the considered rules, in a sense made precise. In particular, we
consider equivalence classes w.r.t. a set of rules that correspond to the computation of tree
decompositions (see Theorem 23). This will make precise and transparent the role of tree
decomposition computations in our algorithm; this also opens up the possibility of applying
procedures that approximate treewidth in a black-box fashion, or decomposition methods
that are designed for unbounded-arity query classes, such as those associated with hypertree
width [14]. Relatedly, we mention here that for any conjunctive query, the minimum width
obtainable by the studied rules is equal to the query’s treewidth, plus one (see Corollary 24);
thus, this measure of minimum width, when looked at for positive first-order logic, constitutes
a generalization of treewidth.

All together, the presented framework and theory initiate a novel interface among term
rewriting, query rewriting, and structural decomposition theory. In our view, the obtention of
our main theorem necessitates the development of novel ideas and techniques that draw upon,
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advance, and fuse together these areas. We believe that further development of this interface
has the potential to further unite these areas via asking new questions and prompting new
techniques—of service to efficient query evaluation. We wish to emphasize, as a conceptual
contribution, the marriage of term rewriting and query rewriting, which is (to our knowledge)
novel, despite an enduring overlap in names!

We wish to add two technical remarks. First, although our results are presented for
positive first-order logic, our width minimization procedure can straightforwardly be applied
to general first-order sentences by first turning it into negation normal form, i.e., pushing
all negations down to the atomic level, and then treating negated atoms as if they were
atoms. Second, our main result’s algorithm straightforwardly gives rise to a fixed-parameter
tractability result: on any class of sentences that have bounded width when mapped under our
algorithm, we obtain fixed-parameter tractability of evaluating the class, with the sentence as
parameter, via invoking our algorithm and then performing the natural bottom-up algorithm
for sentence evaluation.

Related work

Some of the previous characterizations and studies of width, for example [10, 12, 8], focused
on subfragments of positive first-order logic defined by restricting the permitted quantifiers
and connectives; as mentioned, we here consider full positive first-order logic. Width measures
for first-order logic have previously been defined [2, 11]. While the measure of [11] makes use
of syntactic rewriting rules, and the work [2] studies the relationship of width to syntactic
rewriting rules, the present work shows how to optimally minimize formulas up to the set of
studied syntactic rewriting rules, a form of result that (to our knowledge) is not entailed
by the theory of either of these previous works.1 In our view, this situation gives our width
measure a clear interpretation. This situation also renders some of the previously defined
width measures as having, in retrospect, an ad hoc character: as an example, the width
measure of [12] has the property that, when a formula has measure w, it is possible to apply
rewriting rules to the formula so that it has width w, but the optimal width achievable via
these rules is not addressed; the considered rule set from [12] is encompassed by the rule set
studied here.

2 Preliminaries

We assume basic familiarity with the syntax and semantics of relational first-order logic,
which is our logic of focus. We assume relational structures to have nonempty universes. In
building formulas, we assume that conjunction (∧) and disjunction (∨) are binary. When ψ is
a first-order formula, we use free(ψ) to denote the set of free variables of ψ. By a pfo-formula,
we refer to a positive first-order formula, i.e., a first-order formula without any negation.
We use PFO to denote the class of all pfo-formulas. The width of a first-order formula ϕ,
denoted by width(ϕ), is defined as the maximum of |free(ψ)| over all subformulas ψ of ϕ. We
will often identify pfo-formulas with their (syntax) trees, that is, trees whose internal nodes
are labeled with the operations of first-order logic or labeled with atoms. We also sometimes
refer to a node of a syntax tree labeled by an connective ⊕ ∈ {∧,∨} simply as a ⊕-node. We

1 We also mention that the class of formulas in this article’s Example 5 has unbounded width under the
width measure of [2] (see their Proposition 3.16), but has bounded width under the width notion of the
present article. Thus, insofar as the work [2] exploits syntactic rewriting rules, it does not exploit the
ones used in Example 5.

ICDT 2024



16:4 Optimally Rewriting Formulas and Database Queries

make the convention that in syntax trees quantifiers and the variables that they bind are in
the label of a single node.

2.1 Hypergraphs and tree decompositions
A hypergraph is a pair (V,E) where V is a set called the vertex set of the hypergraph, and
E is a subset of the power set of V , that is, each element of E is a subset of V ; E is called
the edge set of the hypergraph. Each element of V is called a vertex, and each element of E
is called an edge. In this work, we only consider finite hypergraphs, so we tacitly assume
that V is always a finite set. We sometimes specify a hypergraph simply via its edge set
E; we do this with the understanding that the hypergraph’s vertex set is

⋃
e∈E e. When H

is a hypergraph, we sometimes use V (H) and E(H) to denote its vertex set and edge set,
respectively. We consider a graph to be a hypergraph where every edge has size 2.

A tree decomposition of a hypergraph H is a pair (T, {Bt}t∈V (T )) consisting of a tree
T and, for each vertex t of T , a bag Bt that is a subset of V (H), such that the following
conditions hold:

(vertex coverage) for each vertex v ∈ V (H), there exists a vertex t ∈ V (T ) such that
v ∈ Bt;
(edge coverage) for each edge e ∈ E(H), there exists a vertex t ∈ V (T ) such that e ⊆ Bt;
(connectivity) for each vertex v ∈ V (H), the set Sv = {t ∈ V (T ) | v ∈ Bt} induces a
connected subtree of T .

We define the bagsize of a tree decomposition C = (T, {Bt}t∈V (T )), denoted by bagsize(C),
as maxt∈V (T ) |Bt|, that is, as the maximum size over all bags. The treewidth of a hypergraph
H is the minimum, over all tree decompositions C of H, of the quantity bagsize(C) − 1.
A minimum width tree decomposition of a hypergraph H is a tree decomposition C where
bagsize(C)− 1 is the treewidth of H.

2.2 Term rewriting
Basics

We here introduce the basic terminology of term rewriting to be used; for the most part, we
base our presentation on [3, Chapter 2]. A system is a pair (D,→) where D is a set, and
→ is a binary relation on D; the binary relation → will sometimes be called a reduction.
Whenever → is a binary relation, we use ← to denote its inverse (so a → b if and only if
b← a), and we use ↔ to denote the union → ∪ ← which is straightforwardly verified to be
a symmetric relation. We use ∗→, ∗←, and ∗↔ to denote the reflexive-transitive closures of →,
←, and ↔, respectively. Note that ∗↔ is an equivalence relation.

We will use the following properties of elements of a system. Let (D,→) be a system,
and let d, e ∈ D.

d is reducible if there exists d′ ∈ D such that d→ d′.
d is in normal form if it is not reducible.
e is a normal form of d if d ∗→ e and e is in normal form.
d and e are joinable, denoted d ↓ e, if there exists an element f such that d ∗→ f

∗← e.
Relative to a system (D,→), an element d ∈ D, and a binary relation →′, we say that →′ is
applicable to d or can be applied to d if there exists an element e ∈ D such that d→′ e.

We next define properties of a system Y = (D,→); in what follows, d, e, e′, di, etc.
denote elements of D.

Y is confluent if e ∗← d
∗→ e′ implies e ↓ e′.
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Y is locally confluent if e← d→ e′ implies e ↓ e′.
Y is terminating if there is no infinite descending chain d0 → d1 → · · · of elements in D.
Y is convergent if it is confluent and terminating.

The property of being terminating immediately implies that of being normalizing, meaning
that each element has a normal form.

We will use the following properties of convergent systems.

▶ Proposition 1 (see [3], Lemma 2.1.8 and Theorem 2.1.9). Suppose that (D,→) is a convergent
system. Then, each element d ∈ D has a unique normal form. Moreover, for all elements
d, e ∈ D, it holds that d ∗↔ e if and only if they have the same normal form.

Whenever an element d ∈ D has a unique normal form, we denote this unique normal
form by d ↓. The last part of Proposition 1 can then be formulated as follows: for every
convergent system (D,→) we have for all elements d, e ∈ D that d ∗↔ e if and only if d↓= e↓.

The following lemma, often called Newman’s Lemma, was first shown in [19] and will be
used to establish convergence. See also [3, Lemma 2.7.2] for a proof.

▶ Lemma 2 ([19]). If a system is locally confluent and terminating, then it is confluent, and
hence convergent.

Gauged systems

We next extend the usual setting of term rewriting by considering systems having a gauge,
which intuitively is a measure that one desires to minimize by rewriting. To this end, define
a gauged system to be a triple (D,→, g) where (D,→) is a system, and g : D → R is a
mapping called a gauge. A gauged system is monotone if for any pair of elements d, e ∈ D
where d→ e, it holds that g(d) ≥ g(e), that is, applying the reduction cannot increase the
gauge. We apply the terminology of Section 2.2 to gauged systems; for example, we say that
a gauged system (D,→, g) is convergent if the system (D,→) is convergent.

▶ Proposition 3. Let (D,→, g) be a gauged system that is monotone and convergent. Then,
for any elements d, e ∈ D, it holds that d ∗↔ e implies g(d↓) ≤ g(e). That is, for any element
d, its normal form d↓ has the minimum gauge among all elements e with d ∗↔ e.

Proof. First note that, by a simple induction using the monotonicity of g, we have for all
elements e′, e′′ ∈ D that e′ ∗→ e′′ implies g(e′) ≥ g(e′′). Next, since (D,→) is convergent, we
have by Proposition 1 that d↓= e↓. But then g(e) ≥ g(e↓) = g(d↓). ◀

Systems and division

We here define a notion of dividing systems by equivalence relations. Let D be a set and
let ≡ be an equivalence relation on D. Let D/≡ denote the set containing the ≡-equivalence
classes. We define (D,→)/≡ as the system (D/≡,→), where we extend the definition of →
to D/≡ by positing that for ≡-equivalence classes C,C ′, it holds that C → C ′ if and only if
there exist d ∈ C and d′ ∈ C ′ such that d→ d′.

Suppose that G = (D,→, g) is a gauged system. We extend the definition of g so that,
for each set S ⊆ D, we have g(S) = inf{g(d) | d ∈ S}. We define G/ ≡ as the system
(D/≡,→, g).

ICDT 2024
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3 Rewriting rules

We here define well-known transformation rules on first-order formulas, which are all known
to preserve logical equivalence. We define these rules with the understanding that they can
always be applied to subformulas, so that when ψ1 is a subformula of ϕ1 and ψ1 → ψ2, we
have ϕ1 → ϕ2, where ϕ2 is obtained from ϕ1 by replacing the subformula ψ1 with ψ2. In
the following F1, F2, etc. denote formulas. It will be convenient to formalize these rules as
rewriting rules in the sense defined before.

The rule →A is associativity for ⊕ ∈ {∧,∨}:

(F1 ⊕ (F2 ⊕ F3))→A ((F1 ⊕ F2)⊕ F3), ((F1 ⊕ F2)⊕ F3)→A (F1 ⊕ (F2 ⊕ F3)).

The rule →C is commutativity for ⊕ ∈ {∧,∨}:

(F1 ⊕ F2)→C (F2 ⊕ F1).

The pushdown rule →P↓ applies when F2 is a formula in which x is not free:

∃x(F1 ∧ F2)→P↓ (∃xF1) ∧ F2, ∀x(F1 ∨ F2)→P↓ (∀xF1) ∨ F2.

The pushup rule →P↑ is defined as the inverse of →P↓.
The reordering rule →O is defined when Q ∈ {∀,∃} is a quantifier: QxQyF →O QyQxF .

The renaming rule →N allows QxF →N QyF ′ when y /∈ free(F ) and F ′ is derived from F

by replacing each free occurrence of x with y.
Collectively, we call the above rules the tree decomposition rules, since, as we will see in

Section 8, they allow, in a way that we will make precise, optimizing the treewidth of certain
subformulas.

The splitdown rule distributes quantification over a corresponding connective:

∃x(F1 ∨ F2)→S↓ (∃xF1) ∨ (∃xF2), ∀x(F1 ∧ F2)→S↓ (∀xF1) ∧ (∀xF2).

The splitup rule →S↑ is defined as the inverse of →S↓.
The removal rule →M allows removal of a quantification when no variables are bound

to the quantification: when Q ∈ {∀,∃}, we have QxF →M F when F contains no free
occurrences of the variable x, that is, when x /∈ free(F ).

We tacitly use the straightforwardly verified fact that when the given rules are applied
to any pfo-formula, the formula’s set of free variables is preserved. We denote these rules
via the given subscripts. We use T to denote the set of all tree decomposition rules,
so T = {A,C, P ↓, P ↑, O,N}. We use A to denote the set of all presented rules, so
A = T ∪ {S ↓, S ↑,M}.

When we have a set R of subscripts representing these rules, we use →R to denote
the union

⋃
R∈R →R. For example, →{A,C,O} denotes →A ∪ →C ∪ →O. In this context,

we sometimes denote a set by the string concatenation of its elements, for example, we
write →ACO in place of →{A,C,O}. We apply these conventions to ←,↔, ∗→, ∗←, ∗↔, and so
forth. When R is a set of rule subscripts and ϕ is a formula, we use [ϕ]R to denote the
∗↔R-equivalence class of ϕ. So, for example, [ϕ]T denotes the ∗↔T -equivalence class of ϕ, and

[ϕ]ACO denotes the ∗↔ACO-equivalence class of ϕ.

▶ Example 4. Let ϕ = ∃x∃y∃t(R(x, t) ∧ S(t, y)); this sentence has width 3. We have

ϕ
∗→O ∃t∃x∃y(R(x, t) ∧ S(t, y)) ∗→P↓ ∃t((∃xR(x, t)) ∧ (∃yS(t, y))).
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The last formula has width 2; the rules we used were in T . It can, however, be verified that,
using the rules in T \ {O}, this formula ϕ cannot be rewritten into a width 2 formula: using
these rules, any rewriting will be derivable from ϕ via commutativity and renaming.

▶ Example 5. Consider the formulas (ϕn)n≥1 defined by ϕn = ∃x1 . . . ∃xn∀y(
∧n

i=1 Ei(xi, y));
the formula ϕn has width n+ 1. (Although formally we consider conjunction as a binary
connective, we allow higher-arity conjunctions due to the presence of the associativity rule.)
We have

ϕn
∗→S↓,A ∃x1 . . . ∃xn(

n∧
i=1
∀yEi(xi, y)) ∗→P↓,A

n∧
i=1

(∃xi∀yEi(xi, y)).

The last formula has width 2, and hence the rules we consider suffice to convert each formula
ϕn into a width 2 formula.

Justification of the rule choice

Before stating our main result in the next section, let us take some time to discuss why we
have chosen the above rules for study, in this paper. First, as suggested in the article, these
rules appear in a number of textbooks and well-known sources. In addition to being in the
standard database book [1], one can find some of the crucial ones in [20, page 99], and many
of the crucial ones also appear in the Wikipedia entry on first-order logic.2 We can remark
that these rules are generally used when showing that first-order formulas can be rewritten
into prenex normal form.

Indeed, apart from distributivity (discussed in the conclusion), we are not aware of any
other syntactic rewriting rules (apart from combinations of the rules that we study); in
particular, we did not find any others in any of the standard sources that we looked at.

As alluded to in the introduction, the study of many of these rules is strongly established
in the research literature. They are studied in articles including [2, 7, 12, 10, 11, 13, 15, 18].
As mentioned, subsets of the rule set are used crucially, in the literature, to obtain the
positive results of dichotomy theorems. In particular, there are precise contexts where a
subset of the rule set is sufficient to give a tractability result (for example, in [12]). The
tractability result of the present article strengthens these previous tractability results since it
optimally minimizes width with respect to the considered rules, and thus provides a wider
and deeper perspective on these previous tractability results.

Let us emphasize that a subset of the considered rules corresponds to treewidth com-
putation in a very precise sense (see Theorem 23 and Corollary 24). The correspondence
between rewriting rules and computation of tree decompositions was also studied, for example,
in [18, 13, 15].

4 Main theorem and roadmap

In this section, we first state our main theorem, then we give the intermediate results that
we will show in the remainder of the paper to derive it; at the end of the section, we prove
the main theorem using the intermediate results. Our main theorem essentially says the
following: there is an algorithm that, given a pfo-formula ϕ, computes a formula ϕ′ that
is derived from ϕ by applying the defined rules A and that has the minimum width over

2 https://en.wikipedia.org/wiki/First-order_logic#Provable_identities

ICDT 2024

https://en.wikipedia.org/wiki/First-order_logic#Provable_identities
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formulas derivable by these rules. Moreover, up to computation of minimum width tree
decompositions, the algorithm computing ϕ is efficient.

▶ Theorem 6. (Main theorem) There exists an algorithm A that, given a pfo-formula ϕ,
computes a minimum width element of [ϕ]A. Moreover, with oracle access to an algorithm
for computing minimum width tree decompositions, the algorithm A can be implemented in
polynomial time.

Here, we say that an algorithm computes minimum width tree decompositions if, when
given a hypergraph H, it outputs a minimum width tree decomposition of H.

In order to establish our main theorem, we study and make use of the systems

Y = (PFO,→{P↓,S↓,M}) / ∗↔ACO, Y ′ = (PFO,→{S↓,M}) / ∗↔T .

We also make use of the gauged system

G′ = (PFO,→{S↓,M},width) / ∗↔T ,

where, as defined before, width is the function that maps a formula to its width. We show
that for the system Y , normal forms can be computed in polynomial time, and moreover,
that a normal form of Y directly yields a normal form of Y ′.

▶ Theorem 7. The system Y is terminating; moreover, there exists a polynomial-time
algorithm that, given a pfo-formula ϕ, returns a pfo-formula ϕ+ such that [ϕ+]ACO is a
normal form of [ϕ]ACO in the system Y .

▶ Theorem 8. Suppose that ϕ is a pfo-formula where [ϕ]ACO is a normal form of the
system Y ; then, [ϕ]T is a normal form of the system Y ′.

We then prove that the system Y ′ is convergent, and that its corresponding gauged
system G′ is monotone. Together, these results allow us to leverage Proposition 3 and allow
us to compute minimum-width equivalence classes in G′.

▶ Theorem 9. The system Y ′ is convergent.

▶ Theorem 10. The gauged system G′ is monotone.

The remaining piece needed is to show that minimization can be performed within a
∗↔T -equivalence class, which is what the following theorem supplies.

▶ Theorem 11. There exists an algorithm that, given a pfo-formula θ, outputs a pfo-formula
θ+ having minimum width among all formulas in [θ]T . With oracle access to an algorithm
for computing minimum width tree decompositions, this algorithm can be implemented in
polynomial time.

Proof of the main theorem—Theorem 6. Given a pfo-formula ϕ, the algorithm first applies
the algorithm of Theorem 7 to obtain a pfo-formula θ where [θ]ACO is a normal form of
[ϕ]ACO in Y , and then applies the algorithm of Theorem 11 to obtain a pfo-formula θ+

having minimum width among the formulas in [θ]T ; θ+ is the output of the algorithm.
We justify this algorithm’s correctness as follows. As [θ]ACO is a normal form of [ϕ]ACO in

Y , we have [ϕ]ACO
∗→{P↓,S↓,M} [θ]ACO, and thus [ϕ]T

∗→{S↓,M} [θ]T , because all applications
of P ↓ can be simulated by choosing a representative in the equivalence class w.r.t. T . It
follows from Theorem 8 that [θ]T is a normal form of [ϕ]T in Y ′. From Theorems 9 and 10,
we have that the gauged system G′ is convergent and monotone, so by Proposition 3, we
have that, in the gauged system G′, the element [θ]T has the minimum gauge among all
elements that are ∗↔{S↓,M}-related to [ϕ]T . Thus, a minimum width element in [θ]T is a
minimum width element in [ϕ]T ∪{S↓,S↑,M}. ◀
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5 Formulas

In this section, we define a few types of formulas to be used in our development, and show
some basic properties thereof.

5.1 Holey formulas
A holey formula is intuitively defined similarly to a formula, but in lieu of atoms, there are
placeholders where further formulas can be attached; these placeholders are represented by
natural numbers. Formally, a holey pfo-formula is a formula built as follows: each natural
number i ≥ 1 is a holey pfo-formula, and is referred to as a hole; when ϕ and ϕ′ are holey
pfo-formulas, so are ϕ∧ ϕ′ and ϕ∨ ϕ′; and, when ϕ is a holey pfo-formula and x is a variable,
so are ∃xϕ and ∀xϕ. We require that for each holey pfo-formula ϕ, no natural number occurs
more than once. We say that a holey pfo-formula is atomic if it is equal to a natural number
(equivalently, if it contains no connectives nor quantifiers). A holey {∃,∧}-formula is defined
as a holey pfo-formula where, apart from atoms, only the formation rules involving existential
quantification and conjunction are permitted. A holey {∀,∨}-formula is defined dually.

When ϕ is a holey formula with holes among 1, . . . , k and we have that ψ1, . . . , ψk are
formulas, we use ϕJψ1, . . . , ψkK to denote the formula obtained from ϕ by substituting, for
each i = 1, . . . , k, the formula ψi in place of i.

▶ Example 12. Consider the holey pfo-formula ϕ = 2∧1, and the formulas ψ1 = S(x)∨S(y),
ψ2 = R(x, z). We have ϕJψ1, ψ2K = R(x, z) ∧ (S(x) ∨ S(y)).

In the sequel, we will speak of applying rewriting rules (generally excluding the rule N)
to holey formulas. In order to speak of the applicability of rules such as the pushdown
and pushup rules, we need to associate a set of free variables to each subformula of a holey
formula. We define an association for a holey formula ϕ to be a partial mapping a defined
on the natural numbers that is defined on each hole in ϕ, and where, for each number i
on which a is defined, it holds that a(i) is a set of variables. With an association a for a
holey formula ϕ, we can naturally define a set of free variables on each subformula of ϕ, by
considering free(i) = a(i) for each i on which a is defined, and then using the usual inductive
definition of free(·).

5.2 Standardized formulas
Define a standardized formula to be a formula ϕ where, for each occurrence Qx of quantifica-
tion, the following hold: (1) x is not quantified elsewhere, that is, for any other occurrence
Q′x′ of quantification, x ≠ x′ holds; (2) x /∈ free(ϕ). Intuitively, a standardized formula is one
where there is no name clash between a quantified variable x and other variable occurrences
in the formula. It is straightforward to verify that a subformula of a standardized formula is
also standardized.

It is straightforward to verify that every first-order formula can be standardized by
repeatedly applying the renaming rule. We will use the following formalization of this
observation which in effect asserts that in terms of applying the studied rules to reduce
width, one may always assume that variable renaming that leads to a standardized formula
is always performed upfront.

▶ Proposition 13. Let ϕ be a pfo-formula or a holey pfo-formula along with an association a.
Suppose ϕ = ϕ0 and ϕ0 →A1 ϕ1 · · · →At ϕt where each Ai is in T ∪{S ↓,M}. Let A′

1, . . . , A
′
s

be the sequence obtained from A1, . . . , At by removing instances of N . Then, there exists a
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standardized formula ϕ′
0 with the following property: there exist formulas ϕ′

1, . . . , ϕ
′
s where

ϕ
∗→N ϕ′

0 →A′
1
ϕ′

1 · · · →A′
s
ϕ′

s
∗→N ϕt. Indeed, for any standardized formula ϕ′

0 with ϕ ∗→N ϕ′
0,

the given property holds.

5.3 Organized formulas
We next define and study organized formulas, which, intuitively speaking, are pfo-formulas
that are stratified into regions, based on the quantifiers and connectives. The first main
property we show is that each non-atomic pfo-formula can be viewed as an organized formula.

We define {∃,∧}-organized formulas and {∀,∨}-organized formulas by mutual induction,
as follows.

When ϕ is a non-atomic holey {∃,∧}-formula and each of ψ1, . . . , ψk is an atom or a
{∀,∨}-organized formula, then ϕJψ1, . . . , ψkK is an {∃,∧}-organized formula.
When ϕ is a non-atomic holey {∀,∨}-formula and each of ψ1, . . . , ψk is an atom or an
{∃,∧}-organized formula, then ϕJψ1, . . . , ψkK is a {∀,∨}-organized formula.

An organized formula is defined to be a formula that is either an {∃,∧}-organized formula or
a {∀,∨}-organized formula.

We call the formula ϕ in the above definition a region of the organized formula. Thus,
every organized formula θ can be decomposed into atoms and different regions which are
maximal holey {∃,∧}- and {∀,∨}-subformulas of θ. Define the top operation of a pfo-formula
to be the label of the root of the formula when interpreting it as a tree.

▶ Proposition 14. Each non-atomic pfo-formula θ is an organized formula. More precisely,
each non-atomic pfo-formula θ whose top operation is ∃ or ∧ is an {∃,∧}-organized formula.
Each non-atomic pfo-formula θ whose top operation is ∀ or ∨ is an {∀,∨}-organized formula.

When the rules in T \ {N} are applied to organized formulas, they act on regions
independently, in the following formal sense.

▶ Proposition 15. Suppose that Φ = ϕJψ1, . . . , ψkK is an organized formula. Then, each for-
mula in [Φ]T \{N} has the form ϕ′Jψ′

1, . . . , ψ
′
kK, where ϕ′ ∈ [ϕ]T \{N} and ψ′

1 ∈ [ψ1]T \{N}, . . . ,

ψ′
k ∈ [ψk]T \{N}. Here, we understand the T \ {N}-rules to be applied to ϕ and holey

pfo-formulas under the association i 7→ free(ψi) defined on each i = 1, . . . , k.

6 Rule applicability

In the remainder of the paper, it will be crucial to have an understanding for when the rules
of the systems Y and Y ′ can be applied. To this end, in this section, we study the structure
of formulas that allow their application. This will in particular also lead to the normal-form
result of Theorem 8.

We start with the applicability of the removal rule →M . Remember that we say that a
rule → can be applied to a set Φ of formulas if and only if there is a formula ϕ ∈ Φ on which
→ is applicable.

▶ Lemma 16. Let θ be a pfo-formula. Then the following statements are equivalent:
→M can be applied to θ.
→M can be applied to [θ]ACO.
→M can be applied to [θ]T .

Proof sketch. The proof is based on the simple observation that a quantifier does not bind
a variable in θ if and only if it does not bind a variable in any representative in [θ]ACO and
[θ]T . ◀
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It will be useful to consider (sets of) formulas in which the pushdown operation has been
applied exhaustively, in particular, to understand normal forms of the system Y . To this end,
we introduce the following definitions. We say that a pfo-formula ϕ is pushed-down if →P↓
cannot be applied to ϕ; we say that a set Φ of pfo-formulas is pushed-down if each formula
ϕ ∈ Φ is pushed-down.

We say that a pfo-formula is a k-fold conjunction if, up to associativity, it can be written
in the form ψ1 ∧ · · · ∧ψk. We can formalize this as follows. For each pfo-formula θ, define the
multiset conjuncts(θ) inductively, as follows. If θ is an atom, or begins with disjunction or
quantification, define conjuncts(θ) = {θ}, where θ has multiplicity 1. When θ has the form
θ1 ∧ θ2, define conjuncts(θ) as the multiset union conjuncts(θ1)∪ conjuncts(θ2). We say that
θ is a k-fold conjunction when |conjuncts(θ)| ≥ k. We define k-fold disjunctions analogously.

The notion of k-fold conjunction will be useful in the remainder as it allows us to
understand when we can apply the splitdown rule on quantifiers. The following lemma
tells us that the existence of k-fold conjunctions in our equivalence classes with respect to
{A,C,O} and T can be decided by looking at any pushed-down representative.

▶ Lemma 17. Suppose that θ is a pfo-formula with [θ]ACO pushed-down, and let k ≥ 1. Then,
there exists a k-fold conjunction in [θ]T if and only if θ is a k-fold conjunction. Similarly,
there exists a k-fold disjunction in [θ]T if and only if θ is a k-fold disjunction.

As a consequence of Lemma 17, we get that for pushed-down formulas there is a result
similar to Lemma 16 that characterizes when the pushdown rule can be applied.

▶ Lemma 18. Let θ be a pfo-formula where [θ]ACO is pushed-down. Then the following are
equivalent:
→S↓ can be applied to θ.
→S↓ can be applied to [θ]ACO.
→S↓ can be applied to [θ]T .

Proof. The implications from the first point to the second and from the second to the third
are again directly clear as in the proof of Lemma 16.

So assume now that →S↓ can be applied to [θ]T . Then, by definition, there exists a
formula θ+ ∈ [θ]T to which →S↓ can be applied. Since applicability of →S↓ to a formula and
whether or not [θ]ACO is pushed-down are preserved by variable renaming, we may assume
by Proposition 13 that θ is standardized, and that θ+ ∈ [θ]T \{N}. Clearly, the formulas θ
and θ+ are non-atomic. Observe that when →S↓ is applicable to an organized formula, the
quantification must come from a holey {∃,∧}-formula and the connective must come from a
holey {∀,∨}-formula, or vice-versa.

By appeal to the decomposition of each non-atomic pfo-formula into an organized
formula (Proposition 14), and Proposition 15, there exist organized formulas ϕJψ1, . . . , ψkK,
ϕ+Jψ+

1 , . . . , ψ
+
k K that are subformulas of θ and θ+, respectively, where (1) ϕ ∗↔T \{N} ϕ

+

and ψ1
∗↔T \{N} ψ+

1 , . . . , ψk
∗↔T \{N} ψ+

k ; and (2) →S↓ can be applied to an instance of
quantification in ϕ+ and a connective in a formula ψ+

ℓ .
We assume up to duality that ϕ+ is a holey {∀,∨}-formula and that ψ+

ℓ is a {∃,∧}-
organized formula. Viewing ϕ+ and ψ+

ℓ as trees, we have that ℓ occurs as a leaf in ϕ+, that
the parent of this leaf in ϕ+ is a universal quantification ∀x, and that ψ+

ℓ has conjunction
(∧) at its root. Thus ψ+

ℓ is a 2-fold conjunction; by Lemma 17, it follows that ψℓ is a 2-fold
conjunction. Let B be the set of holes occurring in ϕ; since ϕ ∗↔T \{N} ϕ

+, we have that B is
also the set of holes occurring in ϕ+. We have free(ψi) = free(ψ+

i ) for each i = 1, . . . , k. In
applying rules in T \ {N} to obtain ϕ from ϕ+, which of the free occurrences of x from the
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formulas ψi (i ∈ B) are bound to the mentioned quantification ∀x, is preserved. Thus, among
the formulas ψi (i ∈ B), only ψℓ can have a free occurrence bound to the corresponding
quantification ∀x in ϕ. It thus follows that, in ϕ viewed as a tree, there is no instance of
disjunction between ∀x and ℓ, for if there were, by quantifier reordering (applying →O),
∀x could be moved above a disjunction, and then →P↓ would be applicable (contradicting
that [θ]ACO is pushed-down). Thus, in ϕ viewed as a tree, the parent of ℓ is a universal
quantification, and so →S↓ can be applied to θ. ◀

With the insights on rule applicability from above, we can now show that there is a
polynomial time algorithm that decides if rules from the system Y = (PFO,→{P↓,S↓,M}

) / ∗↔ACO can be applied to an equivalence class with respect to ACO. This will be a
building block in the proof of Theorem 7 that shows that we can compute normal forms in
the system Y in polynomial time.

▶ Lemma 19. There is a polynomial time algorithm that, given a pfo-formula θ, decides if
there is a formula θ′ ∈ [θ]ACO such that a rule of Y can be applied to it. If so, it computes
such a θ′ and a formula θ′′ obtainable by applying a rule of Y to θ′.

Proof. We show this for the three rules in Y individually, starting with →M , then →P↓ and
finally →S↓.

For →M , by Lemma 16, a quantifier can be deleted in θ if and only if one can be deleted
from any θ′ ∈ [θ]ACO; we thus directly get a polynomial-time algorithm for →M .

Now assume that →M cannot be applied, so every quantifier binds a variable in at least
one atom in its subformula in θ. Fix one quantifier v in θ, say that quantifier is universal; the
other case is totally analogous. Let θv denote the subformula of θ rooted in v. We assume
that the quantifiers are checked inductively in a bottom-up fashion, so all quantifiers in strict
subformulas of θv have been checked before dealing with v. So we cannot apply →P↓ on any
of them for any θ′ ∈ [θ]ACO. By Proposition 14, we have that the subformula θv is organized.
Let ψ be the region of θv that v is applied on, i.e., the largest holey {∀,∨}-subformula in
θ containing the root of the subformula that v is applied on. If ψ only has one hole, then
clearly we cannot apply →P↓ on v in θ as then ψ does not contain any ∨-operation on
which we could apply the pushdown. This is also true for all formulas θ′ ∈ [θ]ACO since
the corresponding holey formula ψ′ in θ′ also contains no ∨-operation, because the rules in
→ACO cannot move them over other operators. So in particular, if we want to apply →P↓
to v, then ψ must contain a ∨-operation. After potentially applying →O several times, we
may assume that the quantification v in θ is applied on a disjunction. Then we can write ψ
as an r-fold disjunction

ψ =
r∨

i=1
ψi, (1)

for some integer r where the ψi are either holes or have a universal quantifier on top. Now
if there is i∗ ∈ [r] such that ψi∗ does not contain x in any of its holes, we can use →A to
rewrite ψ = ψi∗ ∨

∨
i∈[r]\{i∗} ψi which gives us an ∨-operation to which we can apply →P↓

for v. On the other hand, if all ϕi contain x in one of their holes, then this is the case for all
ψ′ that we get for θ′, because →ACO does not allow exchanging the positions of ∨ and any
other operators. Thus, the representation (1) for all ψ′ is the same as for ψ up to fact that
→ACO might have been used on the disjuncts ψi. But in that case, in no ψ′ and thus in no
θ′ there is a ∨-operation that v could be pushed over. This directly yields a polynomial time
algorithm for this case.
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Finally, assume that →M and →P↓ can both not be applied. Then in particular θ is
pushed-down. Then, by Lemma 18, we get that →S↓ can be applied to [θ]ACO if and only if
it can be applied to θ which directly yields a polynomial time algorithm.

Overall, we have polynomial time algorithms for all three rules of Y . Observing that if
any rule can be applied, we can compute θ′ and the result θ′′ of the rule application efficiently,
completes the proof. ◀

Finally, we give the proof of the normal form Theorem 8 which we restate for the
convenience of the reader. Remember that Y ′ = (PFO,→{S↓,M}) / ∗↔T .

▶ Theorem 8. Suppose that ϕ is a pfo-formula where [ϕ]ACO is a normal form of the
system Y ; then, [ϕ]T is a normal form of the system Y ′.

Proof. Suppose that [ϕ]ACO is a normal form of the system Y . Then, we have that [ϕ]ACO

is pushed-down, since P ↓ is a rule in Y . Since [ϕ]ACO is a normal form of Y , neither of the
rules P ↓, M can be applied to [ϕ]ACO, implying by Lemmas 16 and 18 that neither of these
two rules can be applied to [ϕ]T . Thus [ϕ]T is a normal form of Y ′. ◀

7 Termination and confluence

In this section, we will show that both systems Y and Y ′ are terminating. With Lemma 19
from the last section, this will yield Theorem 7, showing that we can efficiently compute
normal forms for the system Y . For Y ′, we will also show that it is locally confluent which
then implies Theorem 9, the convergence of Y ′.

We will start with termination for the system Y . Let us for every pfo-formula ϕ denote
by |ϕ| the number of nodes in the syntax tree of ϕ.

▶ Lemma 20. For every pfo-formula ϕ, any reduction chain in the system Y starting in
[ϕ]ACO has length at most |ϕ|3.

Proof. Consider a pfo-formula ϕ. We will show that any chain of →P↓,S↓,M -steps starting
in [ϕ]ACO is upper bounded by |ϕ|3. To this end, we define a potential function p on all
pfo-formulas as follows: let F be a subformula of ϕ whose root is labeled by a quantifier.
Then the local potential p̄(F ) of F is defined as a2 where a is the number of atoms in F .
Note that p̄(F ) is positive. Then the potential of ϕ is the sum of the local potentials of all
subformulas that have a quantifier labeling their root.

We claim that applying any operation in →P↓,S↓,M decreases the potential. So let ϕ′ be
obtained from ϕ by applying one reduction step. We consider the different possible cases:
→P↓: Let F = ∃x(F1 ∧ F2) be a sub-formula of ϕ such that in F2 the variable x is not
free, and consider the application ∃x(F1 ∧ F2)→P↓ (∃xF1) ∧ F2︸ ︷︷ ︸

:=F ′

. The only change in the

potential of ϕ when applying this rule is the change from p̄(F ) to p̄(F ′), since no other
sub-formulas of ϕ change. But F1 contains fewer atoms than F1 ∧ F2, so p̄(F ) > p̄(F ′),
so the potential of ϕ decreases. All other cases for → P ↓ follow analogously.
→S↓: Let F = ∀x(F1 ∧ F2) be a sub-formula of ϕ and consider the application ∀x(F1 ∧
F2)→S↓ (∀xF1)∧(∀xF2). Then this application changes the potential p of ϕ by p̄(∀xF1)+
p̄(∀xF2)− p̄(F ). Let a1 be the number of atoms in F1 and a2 the number of atoms in F2,
then

p̄(∀xF1) + p̄(∀xF2) = a2
1 + a2

2 < (a1 + a2)2 = p̄(F ),

so the potential of F decreases. All other cases for →S↓ follow analogously.
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→M: In the definition of p(F ), we lose one positive summand whenever applying →M

without changing any of the other summands, so the potential decreases.
So in any case, whenever applying one of the rules on ϕ, the potential p decreases.

Now consider the equivalence classes of PFO /
∗↔ACO. Note that applying →A, →C

or →O does not change the potential of any formula, so we can define the potential [p] of
every equivalence class [ϕ]ACO by [p] ([ϕ]ACO) := p(ϕ). Now, whenever applying a rule of
the system to an equivalence class [ϕ]ACO, the potential [p]([ϕ]ACO) decreases, because, as
we have seen before, it decreases for any ϕ′ ∈ [ϕ]ACO.

The potential is bounded by [p]([ϕ]ACO) ≤ |ϕ|a2 ≤ |ϕ|3 where |ϕ| is the length of ϕ and
a the number of atoms. Since the potential is a positive integer, the longest descending
chain starting in [ϕ]ACO is thus of length |ϕ|3, so any chain in the system has polynomially
bounded length. ◀

The proof of Theorem 7 follows from this lemma straightforwardly.
We next turn to the termination of Y ′, which will be used to show Theorem 9 with

Lemma 2.

▶ Lemma 21. The system Y ′ is terminating.

Proof sketch. The proof follows the same idea as that of Lemma 20: we introduce a potential
for every pfo-formula and show that it is the same for all representatives of an equivalence
class. Then we show that applying rules from the system Y ′ decreases the potential of any
formula. Unfortunately, the setting is slightly more complicated such that the definition of
the potential is more involved than for Lemma 20. ◀

As the second ingredient for the proof of confluence for Y ′ with the help of Lemma 2, we
now show local confluence of Y ′.

▶ Lemma 22. The system Y ′ is locally confluent.

We now apply Lemma 2 using Lemma 21 and Lemma 22, to directly get Theorem 9.

8 Between rewriting and tree decompositions

The aim of this section is to link tree decompositions and formula width. We will then use
our development to prove Theorem 11. In what follows, we focus on {∃,∧}-formulas, but
our results apply to the corresponding dual formulas, namely, {∀,∨}-formulas.

Let ϕ be for now a standardized holey {∃,∧}-formula, and let a be an association for ϕ. We
define the hypergraph of (ϕ, a) as the hypergraph whose vertex set is

⋃
i a(i), where the union

is over all holes i appearing in ϕ, and whose edge set is {a(i) | i appears in ϕ} ∪ {free(ϕ)};
that is, this hypergraph has an edge corresponding to each hole of ϕ, and an edge made of
the free variables of ϕ.

The following theorem identifies a correspondence between the rules in T \ {N} and the
computation of minimum tree decompositions. A related result appears as [13, Theorem 7].3

▶ Theorem 23. Let ϕ be a standardized holey {∃,∧}-formula, and let a be an association for
ϕ. Let H be the hypergraph of (ϕ, a). It holds that width([ϕ]T \{N}) = tw(H) + 1. Moreover,
there exists a polynomial-time algorithm that, given the pair ϕ, a and a tree decomposition C

3 Let us remark that, in the context of the present theorem, the presence of the rewriting rule O is crucial:
Example 4 shows that absence of this rule affects the minimum width achieveable.
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of H, outputs a formula ϕ′ ∈ [ϕ]T \{N} where width(ϕ′) ≤ bagsize(C); when C is a minimum
width tree decomposition of H, it holds that width(ϕ′) = bagsize(C).

The following is a consequence of Theorem 23, and Proposition 13.

▶ Corollary 24. Let ϕ be a standardized {∃,∧}-sentence, and let H be the hypergraph of ϕ
(defined as having a hyperedge {v1, . . . , vk} for each atom R(v1, . . . , vk) of ϕ). It holds that

width([ϕ]A) = width([ϕ]T ) = width([ϕ]T \{N}) = tw(H) + 1.

Let us briefly explain how to employ Theorem 23 to prove Theorem 11. The proof relies on
the fact that, via Proposition 15, we can consider the regions of the formula θ independently.
Moreover, Theorem 23 allows us to minimize the width of the individual regions.

9 Monotonicity

In this section, we prove monotonicity of the gauged system G′. We begin by proving a
theorem concerning the width, up to rules in T \ {N}, of holey {∃,∧}-formulas that are
conjunctive. This will allow us to understand how to use these rules to minimize a formula
that permits application of the splitdown rule.

▶ Theorem 25. Let θ be a standardized holey {∃,∧}-formula having the form ϕ∧ ϕ′, and let
a be an association for θ. It holds that width([ϕ ∧ ϕ′]T \{N}) is equal to

max(width([ϕ]T \{N}),width([ϕ′]T \{N}), |free(ϕ) ∪ free(ϕ′)|).

Theorem 25 is used to show Theorem 10.

10 Conclusion

We have seen that one can optimally minimize the width of positive first-order formulas
with respect to the application of syntactic rules. The algorithm we have given runs in
polynomial time, up to the use of an algorithm computing minimum tree decompositions
of hypergraphs. While the computation of such decompositions is known to be NP-hard,
there exist FPT-algorithms parameterized by the treewidth (see for example [6, 5]) and it
follows directly that our width minimization algorithm runs in FPT-time parameterized by
the optimal width.

From our techniques, it can be seen that equivalence up to the syntactical rules that we
study can also be checked for pfo-formulas: given two pfo-formulas ϕ1, ϕ2, compute their
normal forms with the algorithm of Theorem 11. Then, ϕ1 and ϕ2 are equivalent if there is
an isomorphism of the structure of their regions—which is easy to check since the regions
are organized in a tree shape—and the regions mapped onto each other by this isomorphism
are equivalent. The latter can be verified by standard techniques for conjunctive queries [9]
which yields the algorithm for checking equivalence of pfo-formulas under our syntactical
rules and, in the positive case, also allows extracting a sequence of rule applications that
transforms ϕ1 to ϕ2.

We close by discussing an open issue: it would be interesting to extend the set of rules we
allow in the width minimization. A particularly natural addition would be the distributive
rules stating that ∧ distributes over ∨, and vice-versa. Note that allowing this operation
would necessarily change the form of the results we could hope for: it is known that there
are formulas whose width minimization leads to an unavoidable exponential blow-up in the
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formula size [4], and it is verifiable that this is also true when only allowing syntactical
rewriting rules including distributivity. Note that this is very different from our setting
where the rewriting rules that we consider may only increase the formula size by adding a
polynomial number of quantifiers by the splitdown rule. Thus, when adding distributivity to
our rule set, we cannot hope for polynomial time algorithms up to treewidth computation, as
we showed in the present article. Still, it would be interesting to understand how distributivity
changes the rewriting process beyond this and if there are algorithms that run polynomially,
say, in the input and output size.
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