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We investigate theoretically the stability of thermo-capillary convection within a droplet
when heated by a point source from below. To model the droplet, we use a mathematical
model based on lubrication theory. We formulate a base-state droplet profile, and we examine
its respect to small-amplitude perturbations in the azimuthal direction. Such linear stability
analysis reveals that the base state is stable across a wide parameter space. We carry
out transient simulations in three spatial dimensions: the simulations reveal that when the
heating is slightly off-centered with respect to the droplet center, vortices develop within the
droplet. The vortices persist when the contact line is pinned. These findings are consistent
with experimental studies of point-heated sessile droplets.

I. INTRODUCTION

When the surface tension of a droplet or a film varies inhomogeneously, surface-tension gradients
occur, which induce a flow inside the fluid. Such surface-tension gradients can arise due to differ-
ential evaporation of different components in a binary fluid [1], or the presence of surfactants [2].
Similarly, the presence of a temperature gradient along the surface of the droplet or film [3] may
drive such a flow, in which case the result is referred to as a thermo-capillary flow. Often, a con-
vective flow is the result of such surface-tension gradients, in which the fluid flows in tesselated
convection cells, in a phenomenon referred to as Bénard–Marangoni convection [4]. The role of
surface tension and surface-tension gradient in the production of such flows (as opposed simply to
buoyancy-driven convection) was first identified by Marangoni in his PhD thesis in 1865 [5]. Since
then, the study of such eponymous Marangoni flows – driven by gradients in surface tension –
has been a source of much scientific interest, motivated by the fundamental physics of capillarity
and wetting, as well as the practical industrial applications. The focus of the present work is on
Marangoni flows driven by temperature gradients, the understanding of which is important for
welding, crystal growth, and electron-beam melting [6].

In this work, we are concerned with the theoretical modelling of the flow inside a sessile droplet
heated at the substrate by a point source. Such local heating causes a difference in the surface
tension on the droplet surface, which drives a Marangoni current. The creation of such flows inside
droplets can greatly enhance the heat transfer across the droplet. Hence, understanding these flows
is important for optimizing various industrial processes where droplets play a role, for instance,
spray cooling [7], and the operation of electronic and rheological devices in microgravity conditions
where buoyancy effects are negligible [8].
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A. Aim of the Paper

Thermo-capillary flows induced by point heating been observed experimentally in millimeter-
sized water droplets [9, 10]. In particular, these experiments reveal that when such droplets are
heated from below by a point heat source targeted at at the droplet center, a vortex pair perpendic-
ular to the substrate is observed. The aim of this work is to obtain some theoretical understanding
to explain the onset of such vortices. A schematic description of the vortex pair is shown in
Figure 1.

Substrate
Contact line

Droplet

Horizontal
slice

FIG. 1. Schematic description of the experimentally observed flow in a point-heated sessile droplet

The experimental results in References [9, 10] concern hydrophobic substrates, where the equi-
librium contact angle is around 110◦. This particular setup is difficult to model analytically.
Therefore, as a first attempt to understand theoretically the origin of the vortex pair, we inves-
tigate hydrophilic substrates, where the equilibrium contact angle is small, and where lubrication
theory can be used for the analytical modelling. As such, the aim of the present work is to gain
qualitative insights into the formation of the vortex pair in the point-heated droplet, rather than
precise quantitative insights. In particular, we seek to determine if, given a radially-symmetric
equilibrium solution for the point-heated droplet in lubrication theory, can linear stability analy-
sis explain the onset of thermo-capillary flows in the azimuthal direction? In other words, is the
radially-symmetric equilibrium solution susceptible to symmetry-breaking, via linear instability?
The answer to this question – at least in the lubrication theory – turns out to be in the negative.
Hence, in this work, we also investigate other mechanisms to break the radial symmetry of the
equilibrium base state.

We focus in this work solely on thermo-capillary effects: as such, we do not consider evaporation,
although this could be considered in future work. The motivation for doing so is based on the
experimental results, where the onset of vortices in the azimuthal direction is an extremely fast
process, taking place on the timescale of seconds, whereas the timescale for significant evaporation
to occur is of the order of minutes.

B. Literature Review

Lubrication theory is a key tool in analysing thermo-capillary flows in thin films and droplets –
provided the latter possesses a sufficiently small equilibrium contact line. Lubrication theory refers
to a particular limiting geometry where the lengthscale of flow variations in the film (or droplet)
in the lateral direction greatly exceeds that in the vertical direction. In such a scenario, there is a
natural small parameter, being the ratio of these two lengthscales, which enables an expansion of
the Navier–Stokes equations [11]. At lowest order in the expansion, one obtains a single equation
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for the height of the film (or droplet) as a function of the lateral variations and time. The flow
inside the film (or droplet) is Stokes flow, for which analytical expressions can be obtained.

Following this approach, Ehrhard and Davis [3] have studied the spreading of 3D axisymmetric
droplets on a homogeneously heated substrate. The heating from below induces a classical, ax-
isymmetric Marangoni current such as the one shown schematically in Figure 2. Erhard and Davis
further found that the Marangoni current impedes the spreading of the droplets. For fixed droplet
volume and contact angle, increasing the Marangoni number results in a lower equilibrium droplet
radius. The theoretical predictions agreed well with experiments. Similarly, Tan et al. [12] and
Van Hook et al. [13] studied the rupturing of 2D and 3D thin films respectively on a substrate
subjected to a spatially periodic heat source. An attractive van-der Waals potential ϕ = Ah−3 is
used to model the dewetting. Local dewetting of the film is observed in high-temperature regions.
A critical Marangoni number is found to which the deformed steady-state becomes unstable and
rupturing occurs. Gravity is found to be stabilizing and delays the onset of rupture. Film rupture
driven by Marangoni flows in case of uniformly heated substrates has also been investigated [14].
Bostwick [15] extended the work in Reference [3] to account for temperature variations in the
substrate in the radial direction; both linear and logarithmic temperature profiles were looked at,
allowing for both cooling and heating as one moves away from the droplet center. Multiple stable
equilibrium droplet solutions exist in the case of cooling of the droplet core; on the other hand,
when the droplet is heated at the core, no such bi-stability is found. The present work extends
this analysis by considering highly localized point heating at the droplet core.

Substrate
Contact line

Droplet
Vertical slice

FIG. 2. The classical axisymmetric Marangoni current observed in prior works, in case of uniform heating
of the substrate

Beside the lubrication theory, direct numerical simulations (DNS) have been used to study the
dynamics of droplet on heated substrate. Sáenz et al. [16] simulated 3D asymmetric droplets on
a homogeneously heated substrate. The asymmetry of the droplet shape is imposed by contact-
line pinning. For highly asymmetrical droplets, a vortex pair perpendicular to the substrate was
observed. Shi et al. [17] investigated a thin droplet on a homogeneously heated substrate with a
spherical-cap interface. They observed the development of multiple hexagonal Bénard–Marangoni
convection cells above a critical Marangoni number. Lu et al. [18] studied evaporating droplets in
an axisymmetric setting. The free surface is modelled as a spherical cap with constant radius and
decreasing volume depending on the evaporation flux. For millimeter-sized droplets, they found
that the Marangoni convection is dominant over the natural convection by about three orders of
magnitude. Lee et al. [19] used similar method to study the effect of localised heating. When the
droplet is heated at the center, they observed a reversal of the convection flow compared to the
homogeneously heated droplet where the fluid falls at the center of the droplet.
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C. Plan of the paper

The work is organized as follows. In Section II we present the theoretical model along with the
key assumptions. In Section III we look at the radially symmetric base state and its linear stability.
We also use transient numerical simulations to explore droplet rupture driven by the Marangoni
flow. Having concluded from from these investigations that the radially symmetric base state is
stable to small-amplitude disturbances, in Section IV we look at a second possible mechanism for
the generation of Marangoni currents in the azimuthal direction – namely a small perturbation of
the heating point source away from the droplet center. We show such currents persist only in the
case of pinned droplets. The implications of our findings for the experimental knowledge already
in the literature is discussed and concluding remarks given in Section V.

II. THEORETICAL FORMULATION

In this section we introduce the mathematical model to describe point-heated droplets. We use
standard lubrication theory in three spatial dimensions. We emphasize that such an approach is
only valid for droplets with a small equilibrium contact angle (that is, droplets on a hydrophilic
surface). Another approach may be required for droplets on a hydrophobic surface. The setup is
shown schematically in Figure 3. We first of all derive an equation for the height h(x, y, t) of the
droplet and then derive an equation for the temperature inside the droplet.

z = h(x, y, t)

x

z
y

u

w
v

r0

h0

FIG. 3. Schematic description of the fluid mechanical problem of droplet spreading, as derived from the
Navier–Stokes equations in the lubrication limit.

A. Expression for droplet height

To derive an expression for the droplet height h(x, y, t), we use standard lubrication theory
in three spatial dimensions. This involves the use of a small parameter ϵ, being the ratio of the
vertical length-scale to the horizontal length-scale. The meaning of ϵ in the context of droplets is
shown schematically in Figure 3, where ϵ is defined as h0/r0. In this context, the droplet sits on
a substrate at z = 0 and experiences localized point heating. No-slip boundary conditions apply
at the substrate; interfacial conditions at the interface between the liquid and the surrounding
atmosphere will be developed herein.

The starting-point for the derivation is then the incompressibility condition:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (1)
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Following standard integration steps [11], Equation (1) can be recast as:

∂h

∂t
+

∂

∂x
(⟨u⟩h) + ∂

∂y
(⟨v⟩h) = 0, (2)

where ⟨u⟩ and ⟨v⟩ are the depth-averaged velocities,

⟨u⟩ = 1

h

∫ h

0
udz, ⟨v⟩ = 1

h

∫ h

0
v dz. (3)

To constitute the depth-averaged velocities, we assume Stokes flow in the droplet; this assumption
is valid provided ϵ is sufficiently small. In this case, the following momentum balance conditions
are obtained:

−∂p
∂x

+ µ
∂2u

∂z2
− ∂Φ

∂x
= 0, (4a)

−∂p
∂y

+ µ
∂2v

∂z2
− ∂Φ

∂y
= 0, (4b)

−∂p
∂z

− ∂Φ

∂z
= 0. (4c)

Here, p is the fluid pressure and Φ is the potential function associated with the Van der Waals
forces between the droplet and the substrate; these forces in turn fix the precursor-film thickness
and the equilibrium contact angle.

Following a standard sequence of steps [11], Equation (4) can be integrated once to produce:

µ
∂2

∂z2
(u, v) = ∇(p+Φ) = ∇(−γ0∇2h+Φ|h). (5)

Here, ∇ = (∂x, ∂y) and ∇2 = ∂2x + ∂2y are the gradient and Laplacian operator in the xy-plane,
and γ0 is a constant reference value of the surface tension. The right-hand side of Equation (5) is
independent of z. As such, Equation (5) can be integrated twice to yield expressions for u and v.
We use the no-slip boundary condition at z = 0, and we further use the interfacial condition:

µ
∂

∂z
(u, v) = ∇γ, at z = h, (6)

where ∇γ is the surface-tension gradient (independent of z). Hence, Equation (5) integrates to:

µ(u, v) = z∇γ +
(
1
2z

2 − hz
)
∇(−γ0∇2h+Φ|h). (7)

The expressions for u and v in Equation (7) depend on x and z. These can be depth-averaged to
give:

µ⟨u⟩ = 1
2h
∂γ

∂x
− 1

3h
2 ∂

∂x
(−γ0∇2h+Φ|h),

µ⟨v⟩ = 1
2h
∂γ

∂y
− 1

3h
2 ∂

∂y
(−γ0∇2h+Φ|h).

The depth-averaged velocities can now be substituted back into Equation (2) to give:

µ
∂h

∂t
+∇ ·

{
1
2h

2∇γ − 1
3h

3∇
(
−γ0∇2h+Φ|h

)}
= 0. (8)
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B. Expression for the Temperature Profile

Quite generally, the droplet temperature T satisfies an advection-diffusion equation. However,
given the small parameter ϵ = h0/r0, the standard scaling arguments [11] in lubrication theory
apply, and the advection-diffusion equation reduces to:

∂2T

∂z2
= 0, (9)

with solution:

T = A(x, y, t)z +B(x, y, t). (10)

Here, A and B are determined from boundary conditions.
We first of all address the boundary condition at the substrate at z = 0. We assume that the

substrate is heated in an inhomogeneous fashion, such that the substrate temperature Ts is given
by:

Ts(x, y) = ⟨Ts⟩+ (∆Ts)T̃s(x, y), (11)

where ⟨Ts⟩ denotes the mean temperature and ∆Ts = maxTs−minTs is the maximum temperature
difference across the substrate. Thus T̃s is a dimensionless temperature fluctuation. We similarly
re-write the temperature inside the droplet as:

T (x, y, z) = ⟨Ts⟩+∆Ts

[
T̃s(x, y) + T̃ (x, y, z)

]
. (12)

Continuity of temperature at the interface between the liquid film and the substrate means that
T = Ts at z = 0, hence T̃ = 0 at z = 0. We furthermore assume that the film temperature satisfies
a Robin boundary condition at z = h(x, y, t); this corresponds to the application of Newton’s Law
of Cooling at the interface:

−kth
∂T

∂z
= αth(T − Tg), z = h(x, y, t). (13)

Here, kth is the thermal conductivity of the film, αth is the heat-transfer coefficient, and Tg is the
temperature of the gas surrounding the film. Substituting Equation (12) into Equation (13) gives:

−kth
∂T̃

∂z
= αth

[
T̃ + T̃s(x, y) +

⟨Ts⟩ − Tg
∆Ts

]
, (14)

at z = h. Rearranging, this reads:

−∂T̃
∂z

=
Bi

h0

[
T̃ + T̃s(x, y) + Θ

]
, z = h, (15)

where Θ = (Ts − Tg)/∆Ts is the scaled temperature difference between the substrate and the
surrounding gas, h0 is the vertical length scale of the system, and Bi = αthh0/kth is the Biot
number.

By linearity, the fluctuation T̃ satisfies the advection-diffusion equation (9) also. Hence, T̃ also
has the form Ãz+ B̃. Applying the boundary condition T̃ = 0 at z = 0, the temperature profile T̃
becomes:

T̃ = Ã(x, y, t)z. (16)
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Applying the boundary condition (15), we obtain:

A = −
Bi

[
T̃s(x, y) + Θ

]
1 + Bih̃

1

h0
, (17)

hence

T̃ (x, y, z, t;h) = −
Bi

[
T̃s(x, y) + Θ

]
1 + Bih̃

z̃, (18)

where z̃ = z/h0 and h̃ = h/h0 are in their dimensionless form. We also explicitly denote the
dependence on the interface height h. The complete temperature profile in the film therefore
reads:

T (x, y, z, t;h) = ⟨Ts⟩+∆Ts

[
T̃s(x, y)−

Bi(T̃s(x, y) + Θ)

1 + Bih̃
z̃

]
. (19)

The temperature on the surface of the film is therefore

T |z=h = ⟨Ts⟩+ (∆Ts)ψ(x, y, t;h), (20)

where ψ is the non-dimensional temperature variation at the interface given by

ψ(x, y, t;h) =
T̃s(x, y)−ΘBih̃

1 + Bih̃
. (21)

C. Final Model and Non-dimensionalization

Equation (8) for the droplet height involves the temperature implicitly, via the surface-tension
gradient ∇γ. We now make this dependence explicit, thereby reducing the model down to a
single equation. To do this, we assume an explicit linear dependence for the surface tension on
temperature:

γ = γ0 −
γ1
∆Ts

(T − Tref ), z = h(x, y, t), (22)

where γ0 is the reference level of surface tension, γ1 > 0 is a positive constant, and Tref is a
reference temperature. Hence,

∇γ = − γ1
∆Ts

∇T, z = h(x, y, t). (23)

Using Equation (20), this becomes:

∇γ = −γ1∇ψ(x, y, t;h). (24)

Substitution into Equation (8) yields:

µ
∂h

∂t
+∇ ·

[
−1

2γ1h
2∇ψ − 1

3h
3∇

(
−γ0∇2h+Φ|h

)]
= 0. (25)

We non-dimensionalize Equation (25), using r0 and h0 as length-scales. For the meaning of these
length-scales, see Figure 3; the ratio ϵ = h0/r0 is much less than one, corresponding to the limiting
case where lubrication theory is valid. We introduce corresponding non-dimensional variables:

x̃ =
x

r0
, ỹ =

y

r0
, z̃ =

z

h0
, h̃ =

h

h0
, ∇̃ = r0∇.
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Hence, Equation (25) becomes:

µh0
∂h̃

∂t
+ ∇̃ ·

[
−1

2γ1ϵ
2h̃2∇̃ψ − 1

3ϵ
2h0h̃

3∇̃
(
−γ0h0

r20
∇̃2h̃+Φ|h

)]
= 0. (26)

We divide by γ0ϵ
4 to obtain:

µh0
γ0ϵ4

∂h̃

∂t
+ ∇̃ ·

[
−1

2

γ1
γ0ϵ2

h̃2∇̃ψ − 1
3 h̃

3∇̃
(
−∇̃2h̃+

h0
γ0ϵ2

Φ|h
)]

= 0. (27)

Thus we are motivated to scale the time and the potential by

t̃ =
γ0ϵ

4

µh0
t, ϕ̃ =

h0
γ0ϵ2

Φ|h, (28)

and the dimensionless Marangoni number is identified as

Ma =
γ1
γ0ϵ2

.

Finally, with the tildes dropped, the dimensionless thin-film equation reads:

∂h

∂t
+∇ ·

[
−1

2Mah2∇ψ − 1
3h

3∇
(
−∇2h+ ϕ

)]
= 0, (29a)

and

ψ(x, y, t;h) =
Ts(x, y)−ΘBih

1 + Bih
. (29b)

Equation (29) is the final model which forms the basis of the analysis in the rest of the paper.

D. Discussion

In formulating Equation (29), we have neglected droplet evaporation. The motivation for doing
so is based on the experimental results in References [9, 10]. In these works, the onset of vortices
in the azimuthal direction is an extremely fast process, taking place on the timescale of seconds,
whereas the timescale for significant evaporation to occur is of the order of minutes. Furthermore,
the model in Equation (29) does not account for gravity. This is again motivated by the ex-
perimental results, where the convection is Marangoni-driven, not buoyancy-driven (as confirmed
References [9], wherein the convection patterns are the same whether the droplet is upright or
pendant).

E. Methodology

We solve Equation (29) in various guises numerically to investigate mechanisms for the
symmetry-breaking of an axisymmetric time-independent base state. This calls for a number
of numerical techniques, including a shooting method for the computation of the base state, eigen-
value analysis for a linear stability analysis of the base state, and transient three-dimensional
numerical simulations to explore situations beyond linear stability analysis. As these methodolo-
gies are distinct and context-dependent, these are best described as they are required, throughout
the paper. Further technical details on the numerical methods are presented in Appendices A–B.
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III. AXISYMMETRIC BASE STATE AND LINEAR STABILITY ANALYSIS

In this section we solve Equation (29) in an axisymmetric configuration corresponding to a
droplet experiencing point heating at the substrate. We are interested both in a steady-state
configuration; we also look at a configuration amounting to a small time-varying perturbation
away from the steady state. This second configuration involves the development of a linearly
stability analysis around the axisymmetric steady state. In this context, it is possible to set ϕ = 0,
corresponding to a pinned droplet with a prescribed equilibrium contact angle.

A. Base State

We first look at equilibrium solution (∂th = 0) in an axisymmetric configuration about the
z-axis by considering surface temperature Ts = Ts(r), depending only on r =

√
x2 + y2. In this

case, Equation (29) reduces to a one-dimensional nonlinear ordinary differential equation (ODE)
given by:

1

r

∂

∂r

{
−1

2Mah2r
∂ψ

∂r
+ 1

3h
3r
∂

∂r

[
1

r

∂

∂r

(
r
∂h

∂r

)]}
= 0, (30a)

defined on the domain r ∈ [0, r∗] where r∗ is the contact-line position. The boundary conditions
are given by

∂rh = 0, ∂rrrh = 0, at r = 0, (30b)

h = 0, ∂rh = −α, at r = r∗. (30c)

Here, α is the equilibrium contact angle. The prescription of a fixed equilibrium contact angle
in this case amounts to the same thing as having a Van der Waals potential and a precursor-film
model. By integrating Equation (30) with respect to r once and asserting h(r∗) = 0, we obtain a
third-order nonlinear ODE

h′′′ = 3
2Ma

ψ′

h
− h′′

r
+
h′

r2
. (31)

Here, the primes denote derivatives with respect to r. Equation (31) is solved numerically using a
shooting method. Once the solution h(r) is obtained, the streamfunction can be computed

Ψ(r, z;h) =

∫ z

0
ur(r, z̃;h) dz̃ = −1

2Maz2ψ′ +
(
1
2hz

2 − 1
6z

3
) ∂

∂r

(
h′′ +

h′

r

)
, (32)

valid for 0 ≤ r ≤ r∗ and 0 ≤ z ≤ h(r).

A first set of results is shown in Figure 4. For these results, we have taken r∗ = 1 and α =
0.6; all other parameters (Ma,Bi,Θ) are taken to be unity. The top panel shows homogeneous
substrate heating, with Ts(r) = 0. The bottom panel shows inhomogeneous substrate heating,
with Ts(r) = e−r2/0.22 . The left-hand side of each panel shows the temperature within the droplet
T (r, z) given by Equation (19) (with ∆Ts = 1 and the ⟨Ts⟩ term dropped). The right-hand side of
each panel shows the streamfunction Ψ(r, z).

In case of homogeneous heating, a temperature gradient emerges such that the base of the
droplet is relatively hot compared to the top of the droplet. The streamfunction shows one con-
vective cell with flow in the anticlockwise direction – consistent with the classical description in
Figure 2. In contrast, in case of point heating (bottom panel), the temperature decreases both
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(a) Homogeneous heating Ts(r) = 0.

(b) Point heating Ts(r) = e−r2/0.22 .

FIG. 4. Equilibrium solutions of different heating profiles. We take r∗ = 1 and α = 0.6. All other parameters
(Ma,Bi,Θ) are taken to be unity.

with vertical distance and radial distance from the droplet center. Furthermore, the streamfunc-
tion indicates two convective cells in the droplet. The outer convective cell has a flow with the
same anticlockwise orientation as in the homogeneously heated case. However, this flow is weaker
compared to the flow in the inner cell. The flow in the inner cell is clockwise, such that the flow
near to the droplet’s axis of symmetry is upward . This consistent with direct numerical simu-
lation on point-heated droplets [19]. A further (albeit more minor) distinction between the two
panels is that the maximum height of the homogeneously heated droplet is higher than that of the
point-heated droplet.

Figure 5 shows the equilibrium droplet volume for varying values of Marangoni number Ma and
equilibrium contact angle α. The equilibrium droplet volume and height are positively correlated
to both α and Ma. For small droplet volume and fixed Ma, there is a critical α value where the
point heating causes the droplet to rupture and the equilibrium solution ceases to exist. This ‘ring
rupture’ is explored in more detail below. The plots also shows that there is a lower bound for the
possible equilibrium droplet size at fixed Ma.

B. Linear Stability Analysis

In this section we investigate the linear stability of the base state h0(r) with respect to small-
amplitude perturbations in the azimuthal direction. For this purpose, we consider a solution
h(r, φ, t) to Equation (29) made up of the base state plus a perturbation:

h(r, φ, t) = h0(r) + δh(r, φ)eσt. (33)

We again work with the pinned contact-line boundary conditions, given by Equation (30c). This
enables us to set ϕ = 0 in Equation (30c), as the interaction forces between the liquid and the sub-
strate are now accounted for in the boundary conditions. We substitute the trial solution h(r, φ, t)
into Equation (30c). We assume the perturbations δh(r, φ)eσt are small, such that Equation (30c)
can be linearized. The linearized equation for δh is then given by:

σδh+∇ ·
{
−1

2Ma
[
2h0δh∇ψ0 + h20∇(Gδh)

]
+ 1

3h
3
0∇∇2δh+ h20δh∇∇2h0

}
= 0, (34a)
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(a) Ts(r) = e−r2/0.22 . (b) Ts(r) = e−r2/0.32 .

FIG. 5. Contour plot of the equilibrium droplet volume as a function of equilibrium contact angle α and
Marangoni number Ma. The two plots show the behaviour for two different Gaussian substrate temperature
profiles. The contact line is fixed at r∗ = 1. Other physical parameters are (Bi,Θ) = (1, 1). Empty regions
correspond to cases where the droplet ruptures. The broken-line curves in Panel (a) indicate different paths
through the parameter space used in the linear stability analysis: a constant-α path, and a constant-volume
path.

where ψ0(r) = ψ(r;h = h0) and

G(r) = −Bi(ψ0 +Θ)

1 + Bih0
. (34b)

The boundary condition (30c) becomes

δh(r∗, φ) = ∂rδh(r∗, φ) = 0. (34c)

This is an eigenvalue problem where the eigenvalue σ represents the growth rate: Given a base
state, if any of the eigenvalues has a positive real part ℜ(σ) > 0, then the corresponding eigenmode
δh grows exponentially and the base state is unstable, otherwise, the base state is stable.

We seek separable solutions of the form δh(r, φ) = h1(r)e
ikφ. For the purpose of studying

symmetry-breaking, we investigate the stability of perturbation with wavenumber k = 1, 2, 3, . . . .
Equation (34a) then becomes a fourth-order linear ODE

L(h1) = σh1, L =

4∑
i=0

Ai(r)
∂i

∂ri
, (35a)
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where the coefficients are given by

A4(r) =
1

3
h30, (35b)

A3(r) =
2h30
3r

+ h20h
′
0, (35c)

A2(r) =− 2k2 + 1

3

h30
r2

+
h20h

′
0

r
− Ma

2
h20G, (35d)

A1(r) =
2k2 + 1

3

h30
r3

− (k2 + 1)
h20h

′
0

r2
+ h20(∇2h0)

′ − Ma

2

(
h20G

r
+ 2h20G

′ + 2h0h
′
0G+ 2h0ψ

′
0

)
,

(35e)

A0(r) =
k4 − 4k2

3

h30
r4

+ 2k2
h20h

′
0

r3
+∇ · (h20∇∇2h0)−

Ma

2

[
−k2h

2
0G

r2
+∇ · (h20∇G+ 2h0∇ψ0)

]
.

(35f)

The boundary conditions at r = 1 is given by

h1(1) = h′1(1) = 0, ∀k, (36a)

and the parity theorem in polar coordinates [20] dictates the boundary conditions at the pole

h1(0) = h′′1(0) = 0, if k = 1, (36b)

h1(0) = h′1(0) = 0, if k ≥ 2. (36c)

A Chebyshev tau method is used to solve the eigenvalue problem (35), the full details of which
are provided in Appendix A. The results of the stability analysis are summarized graphically, for
two distinct paths through the parameter space. These different paths are shown using broken-line
curves in Figure 5(a). Results are shown in Figures 6–7:

• Figure 6 shows the largest growth rate maxnℜ(σk,n), where σk,n is the (k, n)-th eigenvalue,
for wavenumber k = 1, 2, 3, 4 as a function of the Marangoni number. The figure corre-
sponds to a constant-contact-angle path in parameter space along which an increase in the
Marangoni number has a stabilizing effect.

• In Figure 7, a constant-volume path in parameter space is taken, along which an increase in
the Marangoni number is destabilizing.

The abrupt termination of the curves in Figure 7 is due to the existence of the critical Marangoni
number below which the base-state solution ceases to exist and a ring rupture occurs. Summarizing,
for both paths through the parameter space, maxnℜ(σk,n) remains negative for all considered
parameter values. Hence, the axisymmetric base state is stable with respect to small-amplitude
perturbations.

C. Transient Simulations and Ring Rupture

To understand the vanishing of the axisymmetric solution in the low-Ma, low-α part of the
parameter space (Figure 5), we carry out transient numerical simulations. So far we have only
considered droplets in equilibrium. Before attaining equilibrium, the droplet undergoes spreading
in which the liquid-gas interface deforms dynamically. In particular, the triple-phase contact line
moves relative to the solid substrate. It is well known that Equation (29) with ϕ = 0 fails to
describe a moving contact line and the contact-line motion needs further modelling. Reviews of
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FIG. 6. Dispersion curves for different values of Bi, Θ, and α, for fix radius droplet r∗ = 1. Increasing Bi,
Θ going across the rows, and increasing α going down the middle column.

FIG. 7. Dispersion curves for fix equilibrium droplet volume and radius r∗ = 1, where α is allow to vary.
Other parameters are (Bi,Θ) = (1, 1).

the numerous models of the wetting dynamics include References [21–23]. In the present work, we
model the droplet spreading by including a precursor film [11] extending beyond the droplet core.
For this purpose, we use a two-term Lennard-Jones potential:

ϕ(x, y, t;h) = A
[( ε
h

)m
−
( ε
h

)n]
, (37)

with 0 < m < n. Here, ε is the precursor-film thickness. The parameter A is related to the
equilibrium contact angle via the formula [24]

cosα = 1− εA(n−m)

(n− 1)(m− 1)
. (38)

The contact-line region has a scale of ε. Therefore, to to resolve the contact-line region, the
simulation resolution should be of the same scale as the precursor-film thickness. With the available
computing resources, we are limited to ε = 0.01 which we will use throughout the paper.
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We solve Equation (29) with the disjoining pressure (37) using a finite-difference scheme on a
rectangular grid. The simulation is performed on the domain (x, y) ∈ [−Lx, Lx] × [−Ly, 0] with
symmetric boundary condition on all 4 sides, and equally spaced in both directions ∆x = ∆y =
0.01. The second-order centered-difference scheme is used to discretize the space domain, and the
Crank–Nicolson method is used to discretize the time domain with a step size of ∆t = 0.01 or
less. A grid-refinement study has been carried out in the context of off-centerd heating, which
we describe below in Section IV. The discretization produces a system of nonlinear equations for
each time step which is solved using a Newton’s method [25, 26]. The initial condition is radially
symmetrical with the form

h(r, t = −100) =

{
A(1− r2)2 + ε, r ≤ 1,

ε, otherwise.
(39)

We first evolve the system with an homogeneous temperature profile (i.e. Ts = 0) for 100 non-
dimensional time units until t = 0 before turning on the localised heating.

A first set of results involves time-marching the numerical solution of Equation (29) to equilib-
rium. Results are shown in Figure 8. This figure shows the equilibrium droplet profile for various
values of A with ε = 0.01. The profile which matches the closest to the equilibrium contact angle
of α = 0.6 used in previous section is given by A = 50, which we also use throughout the paper.
Secondly, in order to illustrate the vanishing of the axisymmetric solution in the low-Ma, low-α

FIG. 8. Equilibrium droplet profile for different A values without the Marangoni effect (Ma = 0). The
dashed line corresponds to the equilibrium solution without the precursor film with an equilibrium contact
angle of α = 0.6. The droplets are chosen to have the same volume of 0.471. The other parameters are
m = 2, n = 3, and ε = 0.01.

part of the parameter space, we solve Equation (29) to equilibrium with (Ma,Bi,Θ) = (1, 1, 1).
The parameter values of the Lennard-Jones potential are given as (A, ε,m, n) = (50, 0.01, 2, 3),
which corresponds to α = 0.6. Finally, the hotspot profile is taken Ts(r) = e−r2/0.42 . With these
values, the system is in Region I of the parameter space in Figure 5. The evolution towards rupture
is shown in Figure 9. The internal temperature and streamfunction are plotted. Figure 10 shows
the height of the droplet at r = 0 throughout the rupturing process. The ring rupture is reminis-
cent of thin-film rupture driven by thermo-capillary instability [27], which is seen in uniform thin
films subjected to heating from below: such films break under the destabilizing influence of the
Marangoni force and form more stable droplets [28]. The tendency of the growth rates in Figure 7
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FIG. 9. Evolution of the ring rupture process with axisymmetric heating profile Ts(r) = e−r2/0.42 . Relative
temperature is shown on the left and the streamfunction is shown on the right. The scale is maintained trough
the snapshots. The precursor film parameters are (A, ε,m, n) = (50, 0.01, 2, 3) and all other parameters
(Ma,Bi,Θ) are taken to be unity. At t = 0, the localised heating is turned on and the droplet is no longer
at equilibrium, hence the streamlines intersecting with the droplet surface.

to become less negative with increasing Marangoni number may be indicative of such instability.
However, the ring rupture still results in an axisymmetric droplet configuration and for this reason
and does not explain the onset of the vortical motions sketched in Figure 3 and for that reason we
explore other mechanisms for triggering such motions.

IV. OFF-CENTERED HEATING

In this section we consider a temperature hotspot whose center is slightly offset from that of
the droplet. As such, we solve solve Equation (29) with

Ts(x− x0, y) = e−(x2+y2)/s2 , (40)

where x0 ≪ 1 is the perturbation, measuring the amount by which the hotspot is off-center. In this
scenario, and motivated by References [9, 10], we investigate potential symmetry-breaking in the
axisymmetric base state by looking at the vorticity inside the droplet. To calculate the vorticity,
we first of all introduce the velocity field in the xy-plane:

(u, v)(x, y, z, t;h) = −Ma z∇ψ +
(
1
2z

2 − hz
)
∇(−∇2h+ ϕ). (41)

Hence, the z-component of the vorticity is given by:

ωz(x, y, z, t;h) =
∂v

∂x
− ∂u

∂y
. (42)



16

FIG. 10. The height of the droplet at r = 0 for the ring rupture process in Figure 9.

A. Transient Simulations

We solve Equation (29) in a transient mode, using the numerical simulation method and the
initial conditions introduced already in Section III. The grid resolution is the same as in Section III,
with ∆x = ∆y = 0.01. A grid-refinement study with a smaller values of ∆x and ∆y indicated that
the presented results are robust to changes in the grid resolution. Figure 11 shows a plot of ωz at
the mid-height of the droplet at t = 100 when heated at (x, y) = (−0.01, 0). Two vortices in the
z-direction develop within the droplet. The hotspot size s is varied between the two panels. The
larger hotspot size in Panel (b) produces a vortex pair of lesser strength but also, more spatially
extended.

(a) s = 0.2 (b) s = 0.3

FIG. 11. An xy-slice of the z-vorticity ωz in an off-center heated droplet using the precursor film description
with different hotspot size. The precursor parameters are (A, ε,m, n) = (50, 0.01, 2, 3), heating location at
(x, y) = (−0.01, 0), and all other parameters (Ma,Bi,Θ) are taken to be unity.

To understand this effect further, we have plotted the vorticity strength over time in Figure 12a.
The figure shows the maximum vorticity first increasing as the externally-prescribed asymmetric
droplet heating takes effect. This occurs on an O(1) scale in the dimensionless time variable.
Thereafter, the vorticity strength rises to a maximum before decaying again to zero. The decay



17

(a) (b)

FIG. 12. Droplet characteristics for two different heating locations: x0 = −0.2 and x0 = −0.3. (a) Time-
evolution of ωz at the mid-height of the droplet; (b) Time-evolution of the droplet center. Aside from the
heating location, all parameters are the same as Figure 11(a).

of the vorticity strength corresponds to a ‘thermotaxis’ event where the droplet moves so that its
center coincides with the hotspot center (Figure 12b), and resumes a radially-symmetric equilibrium
shape. Thus, the asymmetry vortex pair is only transient event.

B. Pinned Droplet

The previous transient results reveal that the symmetry breaking is only a transient effect in
cases where the droplet contact line can move – in such a case the droplet moves via thermotaxis
so as to resume a radially symmetric state. Therefore, to investigate a mechanism for persistent
symmetry-breaking, we consider numerical solutions of the basic droplet model (29) with slightly
off-centerd heating, and with a pinned contact line.

For these purposes, we seek an equilibrium solution as t→ ∞ of Equation (29) for fixed contact
line. Hence, we again look at the time-independent equation

∇ ·
{
−1

2Mah2∇ψ + 1
3h

3∇∇2h
}
= 0, (43a)

with boundary condition

h(r∗, φ) = 0, ∂rh(r∗, φ) = −α. (43b)

For off-centered heating, the solution h = h(r, φ) is no longer axisymmetric. Hence, Equation (43a)
must be solved on the disk with (r, φ) ∈ [0, r∗]×[0, 2π). A spectral method on the disk is used which
gives higher resolution solution compared to the previously-introduced finite-difference method.
Additionally, using a polar grid removes any spurious four-fold symmetry-breaking which can arise
in such simulations due to numerical discretization errors associated with a Cartesian grid. The
full details of the numerical method are given in Appendix B. Once the equilibrium solution h is
found, the velocity field is computed as:

ur(r, φ, z;h) = −Maz
∂ψ

∂r
+
(
hz − 1

2z
2
) ∂

∂r
∇2h, (44)

uφ(r, φ, z;h) =
1

r

[
−Maz

∂ψ

∂φ
+

(
hz − 1

2z
2
) ∂

∂φ
∇2h

]
. (45)
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The z-vorticity is given by

ωz(r, φ, z;h) =
1

r

[
∂

∂r
(ruφ)−

∂

∂φ
ur

]
. (46)

Results are shown in Figure 13. Panel (a) shows the vorticity in case of off-centerd heating. The
vortex pair can be seen clearly. In contrast, in panel (b) the vorticity in case of centerd heating
is shown, this is zero, up to numerical error. These results establish two necessary criteria for the
existence of persistent symmetry-breaking – off-centerd heating and a pinned contact line. We

(a) Off-centered heating (b) Centered heating

FIG. 13. The z-component of the vorticity ωz in an off-center heated droplet with pinned circular contact
line at r∗ = 1 and α = 0.6. Heating location at (x, y) = (−0.001, 0). Dashed line represents the level-zero
contour, which divides the droplet into four circulation regions. All other parameters (Ma,Bi,Θ) are taken
to be unity.

FIG. 14. Relative surface temperature profile ψ(x, y;h) of Figure 13(a)

emphasize finally that the vorticity in Figures 11–13 is only observed after visualizing the flow
inside the droplet. The temperature at the droplet surface does not exhibit any vorticity signature
(e.g. Figure 14). This is consistent with the experimental findings [29], where the authors observed
a vorticity signature in the surface temperature profile at higher values of contact angle (100◦) but
not at the lower values of contact angle. The temperature profile in Figure 14 further makes sense
in view of the scaling of the heat equation in the lubrication theory, which reduces to ∂2T/∂z2 = 0
(cf. Equation (9)), such that diffusion dominates over advection.
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V. DISCUSSION AND CONCLUSIONS

In this work, we have developed a descriptive model for the generation of azimuthal flows
in point-heated droplets. We have drawn inspiration from the experiments in Reference [10],
wherein vortical flows in the azimuthal direction were observed to form spontaneously after the
application of localized point heating on the substrate. Throughout, we have emphasized the
limited applicability of the present analytical model, focused as it is to small equilibrium contact
angles. However, an advantage of this approach is the resulting simplified mathematical model
which is analytically tractable and does not require large-scale three-dimensional direct numerical
simulation. In spite of these limitations, the model does provide some insights into the vortical flows
in point-heated droplets. First, the radially-symmetric base state is revealed to be linearly stable
with respect to small-amplitude perturbations in the azimuthal direction. Thus, linear stability is
ruled out as a mechanism for the generation of vortical flows in the azimuthal direction.

This paper has explored a second mechanism for the generation of such flows: namely a small
perturbation of the heat source from the droplet center. Such perturbations do give rise to az-
imuthal vortical flows, qualitatively similar to those observed in the experiments in Reference [10].
Our simulations reveal that such vortices die out in the case of depinned droplets: in this case,
the droplet moves so as to resume a radially-symmetric equilibrium configuration. Our simulations
further reveal that the vortices are persistent when the droplet contact line is pinned. Thus, a
potential mechanism for the generation and maintenance of such flows is twofold: very slightly
off-centerd heating, combined with contact-line pinning.

Our theoretical results are limited to the hydrophilic case where the equilibrium contact angle is
small. Our results in this case are consistent with the experimental findings [29], where the authors
observed a vorticity signature in the surface temperature profile at higher values of contact angle
(100◦) but not at the lower values of contact angle. This work and other works in the series [9, 10]
used the surface temperature profile to infer the flow structure inside the droplet. The present
work, which is consistent with recent DNS results on point-heated droplets [19] suggests that there
is a rich flow structure inside such droplets, beyond that which can be inferred by thermal imaging
of the droplet surface.
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Appendix A: A Chebyshev tau method for the eigenvalue problem

In this section we describe the numerical Chebyshev tau method used to compute the eigenvalue
problem (35) together with the boundary conditions (36). The eigenvalue problem is recalled here
in general terms as:

L(h1) = σh1, L =

4∑
i=0

Ai(r)
∂i

∂ri
, (A1)
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We start by approximating the solution of Equation (A1) as a truncated series of Chebyshev
polynomials Tn(x) defined on the domain x ∈ [−1, 1], with coefficients an to be determined:

h1(r) =

N∑
n=0

anTn (2r − 1) . (A2)

However, it is known that the round off error can be severe when evaluating higher order derivatives
of the Chebyshev polynomials [30]. To address this, we introduce a new function g(r) := h′′1(r) and
rewrite Equation (A1) as a system of two coupled second-order ODEs{

h′′1 − g = 0,

A4g
′′ +A3g

′ +A2g +A1h
′
1 +A0h1 = σh1.

(A3)

This avoids the fourth-order derivatives, but we do this at the cost of introducing an additional
N + 1 unknowns. Hence, we have:

g(r) =

N∑
n=0

bnTn (2r − 1) , (A4)

and 2N+2 equations are now needed to solve the system. The boundary conditions in Equation (36)
gives four equations. Further 2N − 2 equations are obtained by evaluating Equation (A3) at the
Chebyshev nodes

ri = cos(i∆x), ∆x =
π

N
, i = 1, . . . , N − 1. (A5)

The generalized eigenvalue problem is then solved using the QZ algorithm with the eig function
in MATLAB.

Appendix B: The Spectral Method on the Disk

In this section we sketch out the numerical method used to solve Equation (43a) with the
given boundary conditions (43b) (Section IV). Because this problem is no longer axisymmetric due
to the off-centerd heating, the previously-introduced shooting method (Section III) is no longer
applicable. Instead, we use a spectral method on the disk [31, 32]. For these purposes, we use a
numerical grid based on equal grids spacings in the φ-direction and Chebyshev grid spacing in the
r-direction. A sketch of the grid is shown in Figure 15. The equilibrium solution is found using an
iterative method using the expression

∇ ·
[
1
3(h

n)3∇∇2
]
hn+1 = ∇ ·

[
1
2Ma(hn)2∇ψn

]
. (B1)

Starting with an initial guess h0, we solve for hn+1 in Equation (B1) along with boundary condi-
tions (43b) in a least-squares sense until the solution converges. The converged solution is then
substituted back into Equation (43a) to ensure the error is small. We emphasize that this method
can only be used to solve for droplets with a circular contact line.
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[25] K. E. Pang and L. Ó Náraigh, A mathematical model and mesh-free numerical method for contact-line

motion in lubrication theory, Environ. Fluid Mech. 22, 301 (2022).
[26] T. Witelski and M. Bowen, Adi schemes for higher-order nonlinear diffusion equations, Applied Nu-

merical Mathematics 45, 331 (2003).
[27] A. Oron, Nonlinear dynamics of three-dimensional long-wave marangoni instability in thin liquid films,

Physics of Fluids 12, 1633 (2000).
[28] U. Thiele and E. Knobloch, Thin liquid films on a slightly inclined heated plate, Physica D: Nonlinear

Phenomena 190, 213 (2004).
[29] Y. Kita, H. Zhang, A. Askounis, Y. Takata, and K. Sefiane, Water drops evaporating on hot-spots:

Influence of contact angle on marangoni instabilities, 2nd Pacific Rim Thermal Engineering Conference
(2019).

[30] J. Dongarra, B. Straughan, and D. Walker, Chebyshev tau-qz algorithm methods for calculating spectra
of hydrodynamic stability problems, Applied Numerical Mathematics 22, 399 (1996).

[31] L. N. Trefethen, Spectral Methods in MATLAB (Society for Industrial and Applied Mathematics, USA,
2000).

[32] H. Wilber, A. Townsend, and G. B. Wright, Computing with functions in spherical and polar geometries
ii. the disk, SIAM Journal on Scientific Computing 39, C238 (2017).

https://doi.org/https://doi.org/10.1007/s10652-021-09827-0
https://doi.org/https://doi.org/10.1016/S0168-9274(02)00194-0
https://doi.org/https://doi.org/10.1016/S0168-9274(02)00194-0
https://doi.org/https://doi.org/10.1016/S0168-9274(96)00049-9
https://doi.org/10.1137/16M1070207

	Symmetry-Breaking in Point-Heated Droplets
	Abstract
	Introduction
	Aim of the Paper
	Literature Review
	Plan of the paper

	Theoretical Formulation
	Expression for droplet height
	Expression for the Temperature Profile
	Final Model and Non-dimensionalization
	Discussion
	Methodology

	axisymmetric Base State and Linear Stability Analysis
	Base State
	Linear Stability Analysis
	Transient Simulations and Ring Rupture

	Off-Centered Heating
	Transient Simulations
	Pinned Droplet

	Discussion and Conclusions
	Acknowledgements

	A Chebyshev tau method for the eigenvalue problem
	The Spectral Method on the Disk
	References


