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Abstract

In this thesis we study integrable systems known as spin chains and their applications to
the study of the AdS/CFT duality, and in particular to N = 4 supersymmetric Yang-Mills
theory (SYM) in four dimensions.

First, we introduce the necessary tools for the study of integrable periodic spin chains,
which are based on algebraic and functional relations. From these tools, we derive in detail
a technique that can be used to compute all the observables in these spin chains, known as
Functional Separation of Variables. Then, we generalise our methods and results to a class
of integrable spin chains with more general boundary conditions, known as open integrable
spin chains.

In the second part, we study a cusped Maldacena-Wilson line in N' = 4 SYM with
insertions of scalar fields at the cusp, in a simplifying limit called the ladders limit. We
derive a rigorous duality between this observable and an open integrable spin chain, the
open Fishchain. We solve the Baxter TQ relation for the spin chain to obtain the exact
spectrum of scaling dimensions of this observable involving cusped Maldacena-Wilson line.

The open Fishchain and the application of Functional Separation of Variables to it form
a very promising road for the study of the three-point functions of non-local operators in
N =4 SYM via integrability.
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Introduction

This thesis is dedicated to the description of new techniques developed for the study of
integrable systems, and in particular for the study of spin chains appearing in the special
type of quantum field theories known as gauge theories.

Integrability is a property of some dynamical systems, known as integrable systems.
The characteristic defining integrable systems is that they admit solutions for their dynamics
that can be obtained through algebraic methods. Integrable systems describe real physical
phenomena: thus, in spite of their solvability, their dynamics can still be quite complicated.

Integrable systems can be either classical or quantum, and the precise definition of
integrability in these two cases is different. The main subject of this thesis are quantum
integrable models, and their applications to the study of Quantum Field Theories. However,
we will also briefly discuss classical integrability.

Quantum Field Theories (QFTs) describe a wide variety of real-world phenomena,
with the most famous example being undoubtedly the Standard Model: computing ob-
servables in QFTs allows us to make predictions about the behaviour of the universe at
microscopic scales. Unfortunately, performing such computations is an extremely hard
task: in many cases, only perturbative methods can be used, and these are only applicable
when the interactions in the QFT are weak.

Given that integrability lets us obtain solutions for theories, finding integrable structures
in a QFT can drastically improve our ability to comprehend its dynamics, in particular in
the strongly coupled regime.

Until the end of last century, integrability was not found in any 4-dimensional QFT.
This fact changed dramatically thanks to the seminal papers [1, 2], where high energy
hadron scattering in QCD was linked to a quantum integrable model, a spin chain. A few
years later, the authors of [3] found that the perturbative corrections to some observables in
maximally supersymmetric Yang-Mills theory (N = 4 SYM) also correspond to the energy
levels of a spin chain.

N = 4 SYM is a 4-dimensional, supersymmetric, non-abelian QFT possessing conformal
symmetry and SU(N) gauge symmetry, which plays a pivotal role in modern Theoretical
Physics. The observables of interest in A/ = 4 SYM are its conformal data, i.e. the

15
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scaling dimensions, or spectrum, A of local and non-local operators and their three-point
structure constants. If we are able to compute them, the theory is said to be solved, as any
other correlation function is fixed in terms of the conformal data by conformal symmetry.
Solving N/ = 4 SYM would provide invaluable insights into the properties and behavior of
gauge theories, including the Standard Model, and a new way to probe quantum gravity,
since N = 4 SYM constitutes the Conformal Field Theory (CFT) side of the AdSs;/CFT,
duality [4].

The results of [3] sparked a renewed interest in the study of N' = 4 SYM, exploiting
the integrable spin chains appearing in it, see [5] for a review. These spin chains are
often quite special, and many known methods for quantum integrability, such as the Bethe
Ansatz, are not always adept for their study'. The existence of these technical challenges
served as a catalyst for the development of new techniques for the analysis of quantum
integrable models.

One extremely successful example of this story is the Quantum Spectral Curve (QSC),
a method based on integrability that has been developed to solve the spectral problem for
N =4 SYM in the large N (planar) limit2. The QSC lets us compute the scaling dimen-
sion of every local operator with extremely high numerical precision at any coupling [14].
Computing the three-point structure constants has proven to be a harder problem. Many
new techniques have been developed in order to tackle it [15-22], but to this day it remains
unsolved.

While local operators in N' = 4 SYM have received a lot of attention, the application
of integrability to QFTs is not limited to them. For example, integrable spin chains also
describe non-local operators in N = 4 SYM - such as supersymmetric Wilson-Maldacena
loops [23]. They also have been found in other high-dimensional QFTs, with one exam-
ple being the Fishnet theory [24], an important toy model for holographic dualities and
integrability.

These results underline the power of integrability - it lets us compute many observables
in CFTs, to a level of precision never seen before. In particular, we hope that integrability,
and the techniques that come from its study, can lead us to obtain the first complete solution
of a non-abelian gauge theory in the planar limit.

As we have already mentioned, the calculation of three-point structure constants is the
missing step to do in the road to the solution of N' = 4 SYM via integrability. We can
identify two open questions, which are critical for making progress in this research program:

e Can we rigorously build a non-perturbative duality between a spin chain model and
N =4 SYM?

e Once we have established such duality, can we build a general method that lets us
compute all observables in this integrable spin chain, including those that are dual to

I This is especially true if we want to do higher loops or non-perturbative calculations.
2The Quantum Spectral Curve has also been extended to other theories, see for example [6-13].
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the three-point structure constants of N' =4 SYM?

The main goal of this thesis is to expose some recent progress towards the solution of these
two problems. We aim to do so in a self-contained manner, assuming no prior knowledge
of integrability and spin chains.

A promising method to solve the second problem is Functional Separation of Vari-
ables (FSoV). This framework can be applied to a wide range of spin chains, and in partic-
ular can already be used to compute some three-point functions in N' = 4 SYM [21, 25]. We
will explore recent progress in this approach, and prove that using FSoV we can compute
a complete set of observables for a large class of periodic integrable spin chains, even in
those cases found in N/ = 4 SYM. These are given in terms of the same building blocks
of the QSC, the Baxter Q-functions, a fact that makes the applicability of this method to
CF'Ts much more natural. From these observables, it is in principle possible to compute any
physical quantity in the spin chain. Furthermore, we expand the range of applicability of
FSoV to spin chains with open boundary conditions, which are dual to non-local operators
in CFTs.

To make progress with the first problem, we develop the open Fishchain. This is
an integrable spin chain with open boundary conditions, dual to non-local operators in
N = 4 SYM at all loops in a certain limit. This model represents a clear example of a
non-perturbative duality between a spin chain and a subsector of N' = 4 SYM. We will see
how the knowledge of this model lets us compute the scaling dimensions of operators in this
subsector at any coupling. We finally briefly describe how the open Fishchain can provide
a playground for the application of FSoV in the context of holographic CFTs.

Contents

This thesis is divided in two parts, each detailing one of the two topics we have described
above:

e Part 1 is dedicated to the study of integrable systems, and in particular integrable
spin chains, from a mathematical point of view. The main goal of this part consists
in showing how Functional Separation of Variables (FSoV) can be used to compute
observables in these systems. In order to do so, we first need to introduce the key
concepts on which FSoV is based. In particular, we will discuss the Yangian?, a special
symmetry group, and see how a certain class of integrable spin chains are naturally
based on the representation theory of this object. Then, we will introduce the T-
system and Q-system, which are the two fundamental functional descriptions of a
spin chain, based on the Yangian. Finally, we will explore the Separation of Variables
program, and introduce the author’s original work [26] on FSoV. In particular, we
show that Functional SoV can be used to obtain a complete set of observables for

3We will actually limit our discussion to a certain subset of Yangians, those related to the Lie algebra
gln.
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integrable spin chains built from the Yangian. We conclude this part by presenting
the author’s work in preparation [27] about the study of integrable spin chains with
open boundary conditions.

e Part 2 is dedicated to the development of connections between spin chains and High
Energy Physics, and to the applications of the techniques discussed in the first part
in this context. Basing on the author’s original work [28], we will build the open
Fishchain model, and rigorously prove its duality to non-local operators in N = 4
SYM. We will implement a method based on the Quantum Spectral Curve to com-
pute quantities in the open Fishchain that describe the scaling dimension of Wilson-
Maldacena lines in N/ = 4 SYM. We will then briefly talk about the possible applica-
tion of FSoV to this model.

Part 1 - Integrability and Spin Chains

Chapter 1: Classical Integrability The defining feature of classical integrable systems
is the existence of a large number of symmetries and conserved charges, which can be used
to obtain exact solutions for their motion. This section is not intended to give a complete
treatment of classical integrability. Rather, we will describe two special techniques, whose
quantum version is at the core of our analysis of integrable spin chains. The first one is
the Laz representation. This method, applicable only to some classes of classical integrable
systems, lets us compute all their conserved charges. The second is the Separation of
Variables, and can be used in any integrable system. It consists in the construction of a
set of special coordinates, called separated, or action-angle, variables. In these coordinates,
the equations of motion become exactly solvable.

Chapter 2: Quantum Integrability Quantum integrable systems are systems defined
by the presence of factorised scattering. This means that any scattering process can be
reduced to a series of 2 — 2 particle scatterings. Factorised scattering is naturally associated
to symmetries known as quantum groups, which are a special class of non-commutative
algebras. Quantum groups are defined in terms of a universal R-matrix satisfying the
Yang-Baxter equation, a fundamental relation which imposes factorised scattering on the
underlying integrable system. The quantum group we will analyse is the Yangian, which
arises as the quantisation of a classical Lie algebra. We will specialise our treatment to the
gly algebra, and introduce the Yangian Y (gly) in terms of a set of generators satisfying
the set of equations known as the RTT relations. Finally, we will briefly talk about the
representation theory of Y (gly).

Chapter 3: Integrable Spin Chains The quantum integrable spin chains we will anal-
yse are periodic, one-dimensional, discrete models which can be defined as a representation
of the Yangian Y (glx). In this section, we will use the generators of Y (gly) as the starting
point to compute observables in these systems. First, we will introduce the Algebraic Bethe
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Ansatz, a technique based on the RTT relations which lets us compute the eigenstates of
integrable spin chains. We will then introduce more modern approaches for the study of
spin chains, the @Q-system and the T-system. These are based respectively on the Bax-
ter Q-functions and the quantum Lax operators of the spin chain. The interplay between
these two systems gives rise to the Baxter T(Q equation, known for its use in the Quantum
Spectral Curve formalism and which constitutes the key equation for FSoV.

Chapter 4: Sklyanin’s Separation of Variables The Separation of Variables (SoV)
program, initiated by Sklyanin [29], is the quantum version of the classical separated vari-
ables. We will show how we can use the T-system to build the so-called SoV basis for the
Hilbert space of a certain class of integrable spin chains. The SoV basis is a special basis in
which the spin chain states have a simple, separated form entirely given in terms of their
Baxter Q-functions. We will then briefly mention how to compute some physical quantities,
such as overlaps of states of the spin chain, using the SoV basis.

Chapter 5: Functional Separation of Variables The Functional Separation of Vari-
ables (FSoV) is a more direct and more powerful approach to Separation of Variables for
spin chains. FSoV lets us compute observables in terms of Q-functions without having to
know explicitly the SoV basis. This is a great advantage over Sklyanin’s SoV, since the SoV
basis cannot be easily built for a wide class of spin chains, including the ones appearing in
gauge theories. We will prove that using FSoV we can compute a complete set of observ-
ables for integrable spin chains built from the Yangian Y (gly). Furthermore, we will show
that FSoV is equivalent to other SoV constructions, in the cases where the latter can be
used, and can be used to reconstruct the SoV basis.

Chapter 6: Open Integrable Spin Chains Open integrable spin chains are a class
of models obtained by adding special boundaries to the spin chains we have analysed so
far. These boundaries do not fully break the Yangian symmetry - they preserve a subgroup
known as Twisted Yangian. We will describe how integrability techniques developed for
periodic spin chains can be adapted to this new setting, and in particular detail some initial
progress in the FSoV program for open spin chains.

Part 2 - Spin Chains in Gauge Theories

Chapter 6: Conformal Field Theory and N = 4 SYM In this section we briefly
review some basics of Conformal Field Theories, explaining why a CFT is completely de-
scribed by its spectrum and three-point structure constants. We will also review maximally
supersymmetric Yang-Mills theory in 4 dimensions, providing its Lagrangian and describing
how the spectrum of its SU(2) subsector can be described by a spin chain.
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Chapter 7: Cusps in N =4 SYM and the Open Fishchain In this section, we will
prove that cusped Maldacena-Wilson lines in a double scaling limit of planar N’ = 4 SYM
are fully dual to an open spin chain, known as the open Fishchain. We will see how using
the Baxter TQ equation for the open Fishchain we can fully compute the scaling dimension
of a class of operators involving Maldacena-Wilson lines, at any coupling and with high
numerical precision. Finally, we will mention how FSoV can be applied to this setting.

Conclusions

We will conclude by presenting other open questions and possible lines for future work.
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Chapter 1

Classical Integrability

Classical Integrability - also known as Liouville integrability - is a property of some classical
systems that allows us to find exact solutions for their motion. In particular, their time
evolution can be fully determined by solving a finite number of algebraic equations and by
computing a finite number of integrals.

Liouville integrable systems form a large class of well-known solvable models. Some ex-
amples include the Kepler problem, the multi-dimensional harmonic oscillator, the Korteweg-
de Vries equation, and so on. In this thesis, we will treat a classical integrable system in
chapter 8, the classical open Fishchain.

Roughly speaking, a classical system with N degrees of freedom is Liouville integrable
if it admits NV independent conserved charges ();; one can then treat the N independent
conservation laws Qz = 0 as the equations of motion to solve for the N degrees of freedom.

Liouville Integrability can be rigorously defined in the context of Hamiltonian systems,
which are dynamical systems admitting a description via a Hamiltonian function on a phase
space. After introducing the main definitions of Liouville integrability for Hamiltonian
systems, we will describe the Separation of Variables and the Lax representation. These two
techniques provide a direct way of solving some Liouville integrable systems. Furthermore,
their quantum analog will be at the core of our study of integrable spin chains.

This chapter is mostly based on the book by Arutyunov [30], while the discussion on
action-angle variables is taken from [31].

1.1 Hamiltonian systems

A Hamiltonian system is a dynamical system defined on a 2n-dimensional phase space H,
equipped with:

o Canonical coordinates (g;,p;), i = 1...n;
e A function H : H — R called Hamiltonian;

23
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e A Poisson bracket {, } : F(H) x F(H) — F(H), where F(H) is the space of smooth
functions on the phase space.

The Poisson bracket has the structure of an (infinite dimensional) Lie algebra, and thus
is determined on all the phase space H if we define its action on the canonical coordinates
(gi,pi), i =1...n. This action is given by:

{qi, pi} = dij, {gi,q;} = 0, {pi;pj} =0. (1.1.1)
It is easy to check that the canonical Poisson bracket

N Of 09 dg Of
= _ 1.1.2
t.9) ; 0p; 0q;  Op; 0¢; ( )

satisfies all the properties required above.

The motion of a dynamical system is described by a trajectory on the phase space
(q(t), p(t)); such trajectory can be determined (given initial conditions (¢o,pp)) by solving
the Hamilton’s equations of motion:

¢ ={H,pi},  pi={H,q}. (1.1.3)

Therefore, the dynamics of a Hamiltonian systems are embedded in its Hamiltonian and
its Poisson bracket. More generally, the time evolution of any function f on the phase space
is determined by the Poisson bracket and the Hamiltonian:

f={H,f}. (1.1.4)

The coordinates (g;, p;) are not the only ones that have Poisson brackets of form (1.1.1). In
fact, one can apply a family of transformations on (g;, p;) such that the structure (1.1.1) is
preserved. In particular, we define a canonical transformation as a change of variables on
the phase space:

a = d4i(g5,p5),  pi — Di(a5,05), (1.1.5)
that does not change the form of the Poisson bracket (1.1.1).

1.2 Liouville integrability

If a Hamiltonian system with dim(H) = 2n has n independent functions f; € F(H) (in the
sense that the one-forms df;, ¢ = 1...n are linearly independent in each local coordinate
patch of #H) such that:

{fi,fj} =0, Vi,j=1...n, and 3k such that H = fj, (1.2.1)

then the Hamiltonian system is said to be Liouwille integrable.
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The functions f; are said to be in involution with respect to the Poisson bracket {, }.
Since they commute with the Hamiltonian, these functions are conserved in time, and we
will refer to them as conserved charges or Integrals of Motion (IoMs).

The Arnold-Liouville theorem, whose formal statement and proof can be found in [30],
ensures that any Liouville integrable system can be solved via quadratures, i.e. by solving
algebraic equations and computing a finite number of one-variable integrals. In particular, it
states that the motion of a Liouville integrable system can be described using the coordinates
(fis i), i = 1...n, for which the equations of motion are linear in time. These coordinates
however are in general not canonical.

In a Liouville integrable system it is always possible to build another set of canonical
coordinates, called action-angle variables, in which Hamilton’s equations of motion split
into a set of 2n ordinary differential equations. This is why action-angles variables are also
called Separated Variables.

1.2.1 Action-angle variables

One of the statements of the Arnold-Liouville theorem [30] is that we can foliate H via a
set of surfaces, each isomorphic to an n-dimensional torus, where the conserved charges f;
take the constant values c;.
To simplify our treatment, we will use the following shorthand notation: @ = (a; . ..ay,).
On each torus, we can invert the equations f;(p,q) = ¢; to obtain p; = p;(¢,¢). The
action variables are then defined by:

QL fj; i (d@,8)da: (1.2.2)

where 7, is the j-th cycle of the n-torus. Given that I; are functions only of the constants
¢;, the action variables are clearly time-independent, hence their Hamilton’s equation are:

I;=0. (1.2.3)

We may then define the angle variables 6; by requiring that the transformation
(gi,pi) — (0;,I;) is canonical, i.e. it preserves the canonical Poisson bracket (1.1.1).
Doing so results in the following definition of angle variables:

q
0;= 25 where S = | milds T)dd,. (1:2.4)
alj q0

An important feature of action-angle variables is that the Hamiltonian in these coordi-
nates only depends on I; variables. In fact, we have that:

I; :{H,Ij}:oa‘LH =0 (1.2.5)
00,
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=

Therefore, H = H(I). The dynamics of the angle variables are therefore given by:

: oH ~
0; ={H.,0;} = oL = w;(1), (1.2.6)

where w; are constants since they only depend on the constants I.
The equations of motion in action-angles variables are evidently separated and can be
solved by direct integration, yielding:

I(t) =17 0;(t) = w;(I")t + 67, (1.2.7)

where I]Q and 9? are integration constants which are determined from the initial conditions.

Clearly this procedure can be done in any Liouville integrable system, i.e. whenever
we have as many integrals of motion ¢; as half of the dimension of the phase space. Since
the construction of (f, 5) only involves algebraic operations and integrals, and solving the
resulting equations of motion can be done by direct integrations in one variable, it follows

that any Liouville integrable system can be solved via quadratures!.

1.2.2 Lax representation

Due to the existence of the action-angle variables, classical integrable systems can always
be solved via quadratures. However, in order to establish Liouville integrability and build
action-angle variables, we need to know all the conserved charges of the integrable system.
Their construction is in general a nontrivial problem.

In this section, we will introduce the so-called Lax representation for integrable systems.
If a Hamiltonian system admits a Lax representation, it is a Liouville integrable system,
and we can automatically build all its conserved charges.

A Hamiltonian system is said to possess a Lax representation if it is possible to recast
its equations of motion as the Lax equation:

L=[M1], (1.2.8)

where L, M are two square matrices called respectively the Lax matrix and the auxiliary
matrix, and [., .] is the usual commutator between matrices. (L, M) are known as a Lax
pair for the Hamiltonian system.

The dimension of the matrices L, M is not fixed a priori, and in general the Lax Pair
for an integrable system is not unique. Furthermore, even a given Lax pair possesses gauge
freedom: the d—dimensional Lax pair (L, M) is equivalent to the Lax pair (L', M') where:

L'=fLf !, M' = fMf'+ ff~',  f=anyd x d invertible matrix.  (1.2.9)

The construction of the action-angle variables is quite hard to do explicitly, especially for high dimen-
sional systems. A few detailed examples of it can be found in [31].
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It is always possible to build d independent conserved charges from the Lax matrix.
This can be done by taking the trace of products of the Lax matrix:

Io=trLF, k=1...d. (1.2.10)

I}, are (power sum) symmetric polynomials in the eigenvalues of L, and the number of
independent symmetric polynomials is equal to the dimension of the Lax Matrix dim(L) = d.
Hence we can only build up to d independent conserved charges from a d-dimensional Lax
matrix.

Proving that I are conserved is easy, in fact:

Iy = kte(L* VL) = ktr(LF1 [M, L]) = tr [M, L’f] ~0 (1.2.11)

where we have used (1.2.8) in the first passage.

Of course, the conserved charges I of an integrable model need also to be in Poisson
involution, i.e. {I;, I;} = 0. Proving that this is the case for the charges (1.2.10) requires
an ulterior condition on the Lax operators, given by the Babelon-Viallet theorem.

This theorem states that the eigenvalues of the Lax matrix are in involution if and only
if there exist a tensor r15 over Mat,;C ® Mat,;C with entries on H such that:

{L1, Lo} = [r12, L1] — [r21, L2] (1.2.12)

where L1 = L®1gand Ly =15 L.
The tensor r;; is known as the classical R-matriz. It also satisfies the Jacobi identity:

[Ll, [7‘12,T13] + [7“12, 7‘23] + [T’32,’I”13] + {LQ, 7“13} — {Lg,’l“lz}] + Cyclic perm. =0 (1.2.13)

which becomes, in the case where the entries of  are constants in the phase space (i.e. they
Poisson commute with the Lax matrices):

[r12,713] + [r12,723] + [732,713] = 0 (1.2.14)

which is also known as the Classical Yang-Bazter Equation.

As we have discussed, from the Lax representation one can only build a total of d = dimL
independent integrals of motion. Thus, it seems that we might be forced to look for very
big Lax matrices when dealing with high-dimensional integrable systems.

We can circumvent this limitation via the introduction of a spectral parameter v € C in
the Lax representation. A Hamiltonian system admits a Lax representation with a spectral
parameter if its equations of motion are equivalent to:

L(u) = [M(u), L(u)] , (1.2.15)

where now both the Lax matrix and the auxiliary matrix are functions of the spectral
parameter; in general, we may assume that they are polynomials? in u. The conserved
quantities are given by:

I(u) = trL¥ (u) . (1.2.16)

2Depending on the notation, they can also be assumed to be rational functions of .
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These are also polynomials in u, and we can think of them as generating functions for
the conserved charges of the model. This implies that the conserved charges are coefficients
of powers of w in I;;3. Given that in principle we can set the degree in u of L to any number,
we can generate as many integrals of motion as needed, independently from the dimension
of the Lax Matrix.

We will use the Lax representation with spectral parameter in chapter 8 to build the
classical open Fishchain, starting from its equations of motion. The quantum version of the
Lax representation will play a fundamental role throughout the rest of this work, and will
constitute one of the main tools that we use to study integrable spin chains.

31f we take I to be rational functions of u, the conserved charges will be defined as the coefficients of
their Laurent expansion around u = 0.



Chapter 2

Quantum Integrability

In the previous chapter, we have defined the concept of classical integrability in terms of the
existence of a certain number of independent conserved charges in an Hamiltonian system.

Quantum models can be constructed from classical Hamiltonian system via a procedure
known as quantisation. A quantisation is a map between classical and quantum observables,
defined in the following way:

« classical observables consists of the functions f on the phase space H. These functions
are commutative: fg = gf, Vg, f;

« quantum observables are the set of Hermitian operators! O acting on the Hilbert space
H. These operators are not commutative: AB — BA # 0 for generic A, B € H.

A quantisation procedure consists in finding a one-to-one map Q5 from classical to quantum
observables, depending on a parameter h, with the requirements that i — 0 is a classical
limit [30]:

lim S Q7 (Qu(F)Qula) + Qo)) = fa (20.1)
1 @7 (5 (@A)~ @@AD) = 1) (202)

This implies that as A — 0 the quantum system reduces to a classical Hamiltonian system,
and in particular the quantum commutators %[A, B] reduce to classical Poisson brackets.

The most used quantisation map is the canonical quantisation, which maps canonical
phase space variables (g;,p;) (having canonical Poisson brackets (1.1.1)) to Hilbert space
operators (g;, p;) satisfying the Heisenberg commutation relations:

[@i,3;] =0, [pi,D;] =0, [pi,q;] = —ihdy; (2.0.3)

In some cases, observables may be not Hermitian, see for example [32]. Another such example is the
fishnet theory [24], where the dilatation operator has complex eigenvalues [33].

29
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In addition to this quantisation map, one needs to choose a prescription for the ordering of
non-commutative operators whenever we quantise products of classical observables.

Using a quantisation map, we can obtain quantum integrable models from Liouville
integrable systems, provided that there are no anomalies. In particular, the conserved
charges of the latter are functions on a phase space, and the quantisation map Q) will give
their quantum version as operators on a Hilbert space. We will see an example of this
procedure with the Fishchain model in chapter 8.

However, the general definition of quantum integrability is non-trivial. We might in fact
be tempted to define quantum integrability using the same requirements as the classical
case, i.e. the presence of a sufficient number of mutually commuting conserved charges,
which are a set of Hilbert space operators commuting with the quantum Hamiltonian.

The problem with this definition lies in the fact that any quantum system has an infinite
number of independent conserved quantities, given by the Hermitian projectors on the
eigenstates of the quantum Hamiltonian.

Formally, if Pje; = d;jej, where e; are eigenstates of H, i.e. He; = hje;, then:

[P, H]e; = (Pjhi — Hdij)e; = 0, Vi,j — [P, H] =0, Vj (2.0.4)
[P;, Pj] ey = (03501 — 0ji0ix)e; =0 — [P, Pj] =0, Vi,j (2.0.5)

Therefore any quantum system has many conserved charges in involution, and this phe-
nomenon is not a sign of quantum integrability.

Quantum integrability is in fact characterised by a different feature: factorised scatter-
ing, the property that any multiparticle process in a infinite-volume quantum integrable
theory can be always decomposed into a series of 2 — 2 scattering processes. This property
is encoded in the so-called Yang-Baxter equation, which is in turn a manifestation of the
symmetries encoded in a quantum group. In fact, the existence of at least two higher-spin
conserved charges is needed for factorised scattering [34]. The quantum group of interest
for the type of systems analysed in this thesis is known as Yangian.

In this chapter, we will define and study the main properties of quantum groups and
Yangians. In particular, we will define them in terms of their generators ¢;; and an R-matrix
which imposes restrictions on them via the RT'T relations.

The discussion of this chapter is based on [30, 35].

2.1 Hopf algebras and quantum groups

The algebras defined by the quantum operators on a Hilbert space are non-commutative?.
Therefore, non-commutative algebras feature in any quantum theory.

Non-commutative algebras play an even bigger role in quantum integrable systems.
In fact, quantum integrability can be traced to the presence of symmetries, which are
deformations of Hopf algebras, a special type of non-commutative algebra.

2 Although they are designed to reduce to a commutative algebra in the classical limit.
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Hopf Algebras

A Hopf algebra is an associative algebra A, possessing a unit 1 and a non-commutative
product - : A® A — A, with extra structures imposed on it. In particular, it possesses:

e acoproduct A: A — A-A;
e a counit € : 4 — C, which associates a complex number to each element of the algebra.
e an antipode S : A — A, which is an algebra anti-homomorphism.

These operations must be compatible with each other, and this fact imposes a series of
relations on them. They will not be used in this thesis, and the interested reader can find
them in [30].

A well known example of a Hopf algebra is the Universal Enveloping Algebra (UEA)
of a Lie algebra g, denoted as U(g). A UEA is an associative algebra generated by the
elements:

{xi}giT(g) subject to the relations z;x; — x;2; = c;jpr, (2.1.1)

where c¢;;, are the structure constants of the Lie algebra g, and x; can be thought of as
the generators of g. Thus, a UEA is constituted by the polynomials in the generators of g,
modulo the commutator between its elements?.

For a UAE, the Hopf algebra structure is the following: the product and the unit are
the usual product and unit of the Lie algebra g, while the coproduct, the counit and the
antipode are defined as:

Alz) =2@1+1®ux, S(z) = —s, e(z) = 0. (2.1.2)

Quantum groups

The special symmetries that define quantum integrable systems are deformations of Uni-
versal Enveloping Algebras by a parameter /. Such symmetries reduce to the UAE in the
classical limit 4 — 0, and are known as quantum groups.

The definition of quantum group we will use is based on the existence of an Universal
R-matrix, R € A® A, that satisfies the Yang-Baxter Equation:

R12R13R23 = RazR13R12 - (2.1.3)

Here we have introduced a notation that we will use in the remainder of this thesis:
Rij, 1,7 € {1,2,3} is an operator defined on the triple tensor product A® A® A, which

3In particular, the Poincare-Birkhoff-Witt theorem states that a basis of U(g) is composed of all such
polynomials.
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acts trivially on the factor corresponding to the missing number in the set {1,2,3}. For
example, we have that:
Riz2=R®1, Ros=1RR. (2.1.4)

Using the R-matrix we have introduced, we can define a quantum group as an algebra
over C generated by polynomials in the generators ¢;;, 4,7 = 1... N modulo the relations:

R12T1 T, = T5T1 Ryo, (2.1.5)

where T' is a matrix whose entries are (T)z = ti;, and R is the R-matrix, an invertible
complex matrix which is a realisation of the universal R-matrix defined in (2.1.3) acting on
A = C". The equations (2.1.5) are known as the RT'T relations.

The requirement that in the classical limit # — 0 the quantum group reduces to a
Universal Enveloping Algebra can be imposed by assuming that R = 1 + ar + O(h?), where

r is known as the classical r-matrix and satisfies the classical YBE (1.2.14).

Quantum affine groups By introducing a spectral parameter u € C to a quantum group,
we obtain a quantum affine group (QAG) [30]. In a QAG, the R-matrix will be a function
of u and the generators 7" will be a formal Laurent series in u, T'(u) = Y, . Tinu™. The
Yang-Baxter equation for a quantum affine group will depend on 3 complex parameters
u, v, w and reads:

ng(u, U)ng (u, w)R23 (U, UJ) = R23 (’U, w)R13 (u, w)ng (’LL, U) (2.1.6)

Furthermore, R will satisfy the unitarity condition Ris(u,v)Ra21(v,u) = a(u), where a(u)
is a scalar function of wu.
To conclude, a quantum affine group is generated by the coefficients of T'(u) modulo the

relations:
ng(u, U)Tl (U)Tz (U) = T2 (U)Tl (U)ng (u, ’U) s (2.1.7)

which are still known as the RTT relations.

2.2 Yangians

The Yangian is the quantum (affine) group that is the symmetry of the so-called rational
integrable spin chain models, that are the main subject of this thesis. The Yangian Y (g) is
based on the Lie algebra g; in this work, we will only consider the case where g = gly for
simplicity.

There are three equivalent ways in which the Yangian can be defined, called Drinfeld’s
first, second and third realisation [36, 37].

The first realisation defines the Yangian in terms of commutation relations between the
generators of g, J;, ¢ = 1...dim(g) and some further generators J;. In particular one has:

i, J;] = cijrde, (2.2.1)
[Jz‘, Aj] = Cijkjk; (2.2.2)
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where c¢;;, are the structure constants of g and Ji = uJi + O(h). This set of generators
satisfies all the properties of a quantum group, as detailed in [35].

The second realisation is given in terms of Serre-Chevalley relations between a different
set of generators of the Yangian, and we will not discuss it in this thesis.

Finally, the third realisation, also known as RT"T" formulation, is the most important for
our scopes. It is very close in spirit to the definition of quantum groups we have introduced
in the previous chapter, and we will discuss it in detail in the next section.

2.2.1 Drinfeld’s third realisation of the Yangian

Drinfeld’s third realisation of the Yangian is based on the definition of the rational R-matrix,
a complex matrix which is one of the possible solutions of the Yang-Baxter equation (2.1.3).

Rational R-matrix The rational R-matrix R € Matn2C, acting on the tensor product
cVN® (CN, is:
R(u,v) = (u—v)1l + hP, (2.2.3)

where 1 is the identity operator and P is the permutation operator on CY ® CV:
l(z®yYy) =2y, P(z®y) =y®z, Yr,yeCV. (2.2.4)

The rational R-matrix is said to be of difference form, since it only depends on u and v via
the combination u — v. It is also invariant under GL(NN) group transformations:

[R(u,v),GRG] =0, VYGeGL(N). (2.2.5)

Yangian Y (gly) the Yangian Y (gly) is the associative algebra over C with generators
Ti(jl), Ti(j?) ..., 1,5 =1...N satisfying the following defining relations:
(r+1) p(s) (r)
|0 1] - [T

ij ij

| = ha@ T - THTY) (2.2.6)

r
7 i

valid for ;s = 0,1,2... if we set TZ»(JQ) = 0jj.

These defining relations can be written in a compact form using the rational R-matrix.
By introducing the generating series:

1y

Ty = > u"T{" (2.2.7)
n=0

we may write (2.2.6) as:
(u = 0) [T35(u), Tha(v)] = 7(Thj (w)Ta(v) = Ty (0) T () (2.2.8)

Equivalently, we can define the monodromy matrix:

N
T(u)= Y. e; ®Tij(u), (2.2.9)

ij=1
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where e;; are the elements of the standard basis of N x N matrices; in this formula, and
for the rest of this thesis, the first factor in the tensor product is called auziliary space, and
corresponds to the space of N x N complex matrices. The second factor is called quantum
or physical space, and is the representation space of the Yangian generators Tj;.

Using the rational R-matrix, we may write (2.2.6) as an equation on the tensor product
Auzri ® Auxo ® Phys:

ng(u,v)Tl (U)TQ(U) = TQ(U)Tl (u)ng(u, ’U) (2.2.10)

where: N N
Ti(u) = Y e @1@Ty(u), To(u) = D 1®e; ®Tij(u). (2.2.11)

i,j=1 i,j=1

Following our usual notation, the subscripts on 7' indicate that the monodromy matrix acts
non-trivially only on the i-th copy of the auxiliary space.

Due to the form of the defining relations (2.2.10), Drinfeld’s third realisation of the
Yangian is also known as RTT realisation.

Since a Yangian is a quantum group, it is also a Hopf algebra. Therefore it possesses a
coproduct, counit and antipode defined as:

N
A(Ty(u) = Y, Tin(w) @ Tij(w),  e(T(w) =1,  S(T(w)=T""(u), (22.12)
k=1

where T~ !(u) is the matrix inverse of the monodromy matrix.

2.2.2 Representations of the Yangian

The integrable systems we will analyse in this thesis arise as representations of the Yangian
Y (gln). Hence, knowing the representation theory of the Yangian is crucial to study them.
This is quite similar to the representation theory of the classical Lie algebra giy.

It is possible to classify all highest weight representations of Y (gl ) using the generators
T;i(u). In particular, a irreducible representation of Y (gly) on a vector space V is called
highest weight if exist |0) € V such that:

Ti;(w)]0) = 0, ¥i>j, (2.2.13)
Ti(w)|0) = N(u)|0), Vi=1...N. (2.2.14)

Thus Tj;(u), i > j are the Yangian analog of raising operators, while Tj;(u) are the analog of
a Cartan subalgebra. The weights of the Yangian representation are given by A;(u), which
are polynomials in u.

Just like simple Lie algebras, all finite dimensional, irreducible representations of Y (glx)
are of highest weight type.
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Finite-dimensional, highest weight representations of Y (gly) can be classified uniquely
by their Drinfeld polynomials P;(u) [38], which are monic polynomials in u satisfying:

Aiv1(u) — Pi(u+h)

ORI , Vi=1...N. (2.2.15)

Drinfeld polynomials play a similar role to the weights of the Lie algebra gl .

For the representations of the Yangian found in finite dimensional integrable spin chains,
there is a simple isomorphism between Yangian weights and the weights of gln representa-
tions, as we will see in the next chapter.
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Chapter 3

Integrable Spin Chains

Integrable spin chains are quantum models defined on a discrete one dimensional lattice.
On each site of this lattice lives a Hilbert space. In this chapter and in the next few ones,
we will assume that the lattice is periodic. The resulting spin chains are known as periodic
or closed.

The first integrable spin chain model - known as the Heisenberg XXX spin chain - was
proposed in the early 20th century, representing a one dimensional magnet. The Hilbert
space at each site represents the spin of an electron in the magnet, and therefore is two-
dimensional. This model was first solved by Bethe via his celebrated ansatz [39], who
obtained its energy spectrum and the eigenstates of its Hamiltonian. We will see how to solve
the same spectral problem in a more modern form, relying on the RTT relations (2.2.11),
known as the Algebraic Bethe Ansatz (ABA) [40].

Integrable spin chains can be built from the Yangian via the so-called evaluation rep-
resentation, which assigns a quantum Lax operator to each site of the spin chain. From
the Lax operator, it is possible to immediately build the monodromy matrix (2.2.9). In
particular, the Heisenberg XXX spin chain is built from the Yangian Y'(gl2) in the fun-
damental representation. In general, we can define other integrable spin chains using the
Yangian Y (gl ) in any representation. Via the ABA, one can compute the eigenstates (and
even correlation functions) of the spin chain from the monodromy matrix. However, this
technique becomes computationally heavy for higher ranks, and it is not applicable to spin
chains in non-highest weight representations of the Yangian.

These facts led to the development of alternative techniques to compute observables in
a spin chain, such as the Separation of Variables program, which will be introduced in the
next chapters. In the rest of this chapter we will introduce the main tools for the modern
description of integrable spin chains:

e The Q-system, composed of the Baxter Q-functions and the functional relations be-
tween them, encoded in the QQ-relations.

e The T-system, composed of the transfer matrices and the functional relations between
them, encoded in the Hirota and Cherednik-Bazhanov-Reshetikhin (CBR) equations.

37



38 CHAPTER 3. INTEGRABLE SPIN CHAINS

These two systems, together with the Baxter T(Q equation, have been at the core of many
advances in the study of integrable spin chains, and in particular form the basis of Separation
of Variables.

This chapter is based on [40-43], with adaptations in terms of the notation used. For
simplicity, we will consider as the reference model for this chapter spin chains in the fun-
damental representation of the Y (gly) Yangian.

3.1 Evaluation representation of Y (gly)

The evaluation representation is a way to construct representations of Y (gl ) starting from
representations of the gly Lie algebra, and naturally gives rise to integrable spin chains.
Using this method, we can build spin chains using the well known representation theory of
gl N-

Concretely, the evaluation representation of Y (gly) consists in picking up a represen-
tation 7 of gly, acting on the vector space V, and assigning to the Yangian generators
Tij(u) (2.2.7) the values:

T%j (u) — (u — 9)51']'1 + ﬁ?T(Eji) (3.1.1)

where 7(Ej;) are the generators of gl in a representation m, 1 is the identity operator on
the representation space V', and 6 are some complex-valued constants.

The Yangian weights A;(u) (2.2.13) of the evaluation representation are related to the
weights of the gly representation 7. In fact, if 7 has highest weight vector |0) and weights
Ai, then m(E;;)|0) = A\;]0) and therefore:

T3 (w)]05 = (u — 0 + EA)|0) — Ai(u) = u — 6 + h); (3.1.2)

So |0) is also an highest weight for the evaluation representation of Y (gly), and the Yangian
weights depend linearly on the gly weights.

The evaluation representation of Y (gly) is how we define rational integrable gly spin
chains: for a spin chain of length L, we can use the coproduct of Drinfeld’s third presenta-
tion (2.2.12) to tensor product L evaluation representations (3.1.1); each copy will represent
a site of the spin chain.

We will now introduce some notation that will be used throughout the rest of this thesis.
We define the quantum Lax operator at the site o as a matrix Lf\ﬁ(u) having components:
(L%)U(U) = (u — Ha)dijl + hﬂ'x(Eji), ,7=1...N (3.1.3)
where X are the N weights of the gl representation 7 and 6, are constants called inhomo-
geneities. The Lax operator is evidently a generator of the Yangian Y (giy) built via the
evaluation representation; therefore, it will satisfy the RT'T relations (2.2.11).
The quantum Lax operator in the classical limit 7 — 0 becomes the classical Lax matrix,
and the RTT relations become the Lax pair equations (1.2.12). Therefore, the quantum
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Lax operator can be naturally viewed as the quantisation of a Lax matrix of a classical
model.

As we have already mentioned, we can use the Yangian coproduct (2.2.12) to tensor
copies of the Lax operator (which may have different inhomogeneities and/or be in different
representations) to obtain the guantum monodromy matriz of the gly spin chain, whose
elements are given by:

Ti(w) = ) (L§1)ikl () <L§2>klk2 (u)...(L§L>kLilj(u), ij=1...N (3.1.4)
Eikoo kr_1=1

By definition, the monodromy matrix is a N x N matrix, with entries being operator on the
tensor product of L quantum spaces, each being the representation space of T 1=1...L.
For simplicity, we will assume that all sites of the spin chain have the same representation,
and we will drop the labels X

The elements of the quantum monodromy matrix are the Yangian generators (2.2.7)
and therefore (3.1.4) satisfies the RT'T relations:

ng(u, U)Tl (U)T2 (U) = T2 (U)Tl (U)R12 (u, ’U) (315)

where T} and T were introduced under (2.2.11), and R is the rational R-matrix (2.2.3).
By construction, the monodromy matrix 7'(u) is a monic polynomial in u of degree L.
The action of its matrix elements on the highest weight state |2) = ®iL=1 |0)5, is given by:

L

Ty =0, Vi>j,  Tu(u)|Q) = [ [(u—0a + kA (3.1.6)

a=1

Finally, we notice that T'(u) is GL(IN) covariant, meaning that we have for any G € GL(N):
[GRI(G), T(u)] =0 (3.1.7)

where II(G) denotes the action of G on the physical Hilbert space.

3.2 Diagrammatic rules

In this section, we introduce a set of diagrammatic rules that will help us in depicting some
algebraic equations we will use.
For the periodic spin chains that we analyse in this section, they are quite simple:

o We depict auxiliary spaces as horizontal, solid lines, equipped with a spectral param-
eter and an arrow. We follow the direction of the arrows to write equations.

o We depict physical spaces as vertical, double lines, equipped with inhomogeneities 6.
We follow the double lines from the top and go down to write equations.
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e R-matrices are pink dots at crossings of two auxiliary spaces. If A, B are the auxiliary
spaces we get Rap. The spectral parameter of R depends on the arrow directions on
the auxiliary spaces.

o Lax operators L 4(u—#0,) appear at the crossing of an auxiliary space A and a physical
space 0.

Using them, we draw the Lax operator and the R-matrix as:

Lij(u— 9) = ]

The monodromy matrix (3.1.4) is drawn as:

01 0o 0L

Tij(u) = - -
2 ky k... kp—1 J

As an example, we can easily draw the RTT relations (3.1.5) as follows:

01..1 01..1L

da v a
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where we assumed that the monodromy matrix is represented by one vertical line with
multiple inhomogeneities.

3.3 Conserved charges from the monodromy matrix

Given an integrable spin chain with monodromy matrix (3.1.4), there is a natural procedure
that allows to build a tower of quantum operators in involution with each other, which is
very similar to the method we have described in section 1.2.2.

We start by defining the transfer matriz for the gl spin chain as:

t(u) = tr(T(u)) (3.3.1)

where T is the monodromy matrix, and tr is the trace on N x N matrices. Due to (3.1.7),
it is immediate to see that the transfer matrix is GL(NN) invariant.

Since T'(u) is a monic polynomial in w, t(u) is also a monic polynomial in u, whose
coefficients are operators acting on the tensor product of L quantum spaces. We will
now prove that these operators commute with each other; in fact, multiplying the RTT
relation (3.1.5) by Ry (u,v) on the left and taking the trace on the auxiliary spaces 1 and
2, we get:

tI‘l’g (T1 (U)TQ(’U)) = tr172 ((RIQI (u, U)TQ (U)Tl (u)ng(u, U)) = tI‘LQ (TQ(’U)Tl (u)) -
— tl (u)tg(v) - tQ(’U)tl (’LL) = O,

where in the first line we have used cyclicity of the trace and in the second line the fact
that try 2(A1A2) = tri(A;)tra(Asz). Therefore, the RTT relation for the Monodromy matrix
implies that:

[t(u),t(v)] =0, Yu,veC. (3.3.2)

Due to the fact that ¢(u) is a polynomial in w, this relation implies that the coefficients of u
in t(u) commute with each other. Explicitly, we define the L — 1 integrals of motion (IoMs):

1 dk;—l
L= {(Wlueo, k=1...L. 3.
FE - D) dFTy (=0 (3.3.3)

These operators are in involution with each other:
[Ix, ;] =0, Yk,i=1...L. (3.3.4)

In this way, we can generate L — 1 commuting independent operators, which will share the
same basis of eigenstates. Since t(u) = ul + Zé;ll uF~11;, the eigenstates of I; are also
eigenstates of the transfer matrix. Furthermore, if we interpret one of the I as the quantum
Hamiltonian H of the spin chain, we can say that I are also conserved charges, since they
commute with H!,

n general defining which integral of motion is the Hamiltonian is just a convention. In some cases, such
as the Heisenberg XXX spin chain, there is a natural choice due to the fact that the quantum Hamiltonian
is known from the corresponding physical model.
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In general, the integrals of motion (3.3.3) do not represent all the conserved quantities
in an integrable spin chain. As pointed out in the introduction to this chapter, this is not
an issue since in a quantum model we can always build as many IoMs as needed. In any
case, for a Y (gly) spin chain there exists a procedure, called fusion, that allows to build
more integrals of motion from the so-called N antisymmetric fused transfer matrices. We
will see this in detail in section 3.7.1.

3.4 Algebraic Bethe Ansatz

The Algebraic Bethe Ansatz is a technique that lets us obtain eigenstates and eigenvalues
of the Hamiltonian of an integrable spin chain from its transfer matrix (3.3.1). These
eigenstates, which are also known as Bethe states, are obtained by diagonalisation of the
transfer matrix, given that it commutes with the Hamiltonian and therefore they share a
complete set of eigenstates.

For simplicity, we will examine in detail the rank N = 2 case where Y (gly) is in
fundamental representation. This model corresponds to the aforementioned Heisenberg
XXX spin chain. We will then briefly discuss the generalisation to the ranks NV > 3.

3.4.1 Heisenberg XXX spin chain

The Heisenberg spin chain is a model describing a 1-dimensional magnet. It is composed of
L spin %—Vectors placed on a periodic lattice, which represent the spins of the electrons in

the magnet. Each spin vector S, interacts with only its nearest neighbors via the electro-
magnetic interaction Sy - Sq+1, where S = £ and & = (01, 09, 03) is the vector containing
the Pauli matrices:

01=<(1)(1)>, 02=<?_0i>, 03=<(1)_01). (3.4.1)

The Hamiltonian governing this model is therefore given by:

SIS

L L

. 1 ) _, =

Hxxx = Z Ha7a+1 = Z <Sa - Sat1 + > , with Sy =957 (3.4.2)
a=1 a=1 4

The second term, corresponding to the vacuum energy level, has been chosen for simplicity:
in fact, it is quite easy to see that

1

(5; - Sas1 + 4) = Paja+1, (3.4.3)

where P is the permutation operator between the sites & and o + 1. Thus, an alternative
form of (3.4.2) that will be very useful is:

L
Hxxx = Z Po,a+1- (3.4.4)

a=1
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We would like to obtain the energies and the eigenstates associated with this Hamilto-
nian?, who will organise themselves into irreducible representations of gl(2) given that H
commutes with the components of the total spin vector, S? = Z£=1 Si.

The Heisenberg XXX spin chain Hamiltonian was first diagonalised by Bethe [39], by
virtue of a clever ansatz for the wavefunctions associated to the eigenstates of (3.4.2). This
solution is known as the Coordinate Bethe Ansatz, and, given the form (3.4.4), consists in
finding wavefunctions that are invariant under all L permutation operators.

In this section, we will present a different technique to diagonalise (3.4.2), that is inti-
mately connected to the Yangian symmetry of the Heisenberg model, and heavily relies on
the RTT relations. This technique was created by the Leningrad school in the '80s [40] and
is known as the Algebraic Bethe Ansatz.

The Algebraic Bethe Ansatz for the Yangian Y (gly) starts from the Monodromy Ma-
trix (3.1.4), which we write in matrix form for convenience:

_( Tu(uw) Tix(u)
T(u) = < Ti () TZ () ) . (3.4.5)

The transfer matrix is then ¢(u) = T11(u) + Tha(u).

Hamiltonian from the transfer matrix

The transfer matrix contains integrals of motion of the model, and in particular the Hamil-
tonian of the Heisenberg spin chain. To retrieve the explicit form of the Hamiltonian (3.4.2),
we need to tune the free parameters in the monodromy matrix (3.1.4), 6, and A. In partic-
ular, we need to set A =i and 0, = %, Ya=1...L.

In terms of the Pauli matrices, the glo algebra generators are given by:

1 1
Fi1 = 5 + % Eyy = 5 — % (346)
By = % + % By = % . % (3.4.7)

Therefore, the Lax operators read:

o u+iS3 i(SL —iS2)
Lafu) = < i(SL+4S2) u—iS? ' (3:4.8)
It is immediate to see that:
La<i/2) = Pa,a ) (349)

where P, , is the permutation operator between vectors in the site o and vectors in the
auxiliary space.

20f course, for small L this can be done via direct diagonalisation of Hx x x. This becomes impractical
very fast as L grows, even using a computer. This problem is exacerbated for higher rank models.
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From this, we see that the transfer matrix evaluated at u = % is given by:

L
t<2/2) = tr H Pa,a = PL—l,L ... Py3sPio. (3410)

a=1

Taking the logarithmic derivative with respect to u we obtain:

d (i/2) S Prp..-Pisi... P
loo(HuN| o — _ Zui=111L, , 3.4.11
du og( (U)NU_Z/Q t(i/2) Pr_1p...P3Pro ( )

where Pij means that the permutation operator P;; is missing. It is trivial to check that:

d
%log( Nu=ij2 = ZPaa-H Hxxx. (3.4.12)

So, we have proven that we can indeed retrieve the Hamiltonian of the Heisenberg XXX
spin chain from the monodromy matrix (3.4.5), albeit in a homogeneous limit where we set
all parameters 6, to be the same.

Diagonalization of transfer matrix

Since the Hamiltonian of the Heisenberg XXX spin chain is contained in the transfer matrix,
the two quantities have a common basis of eigenvectors. The Algebraic Bethe Ansatz
(ABA) [40, 44] allows to easily find eigenvectors of #(u), mapping this problem to a set
of algebraic equations known as Bethe equations. Knowing them, we can easily compute
the eigenvalues of H: therefore, the ABA can be used to diagonalise the Hamiltonian of
the Heisenberg XXX spin chain. In appendix (A.1l), we give a complete derivation of this
procedure. In this section, we will simply write the results.
Formally, the goal of the ABA is to solve the spectral problem:

)| W) = 7(u) Y, (3.4.13)

where 7 are the eigenvalues of the transfer matrix (3.3.1) and |¥) are its eigenvectors, known
as Bethe states. We write the monodromy matrix (3.4.5) as:

T(u) = < Alu) - B(u) ) : (3.4.14)

where A, B, C, D are operators on the quantum space of the spin chain. The transfer matrix
in this notation is t(u) = A(u) + D(u).
As detailed in appendix A.1, we can prove that the eigenstates of ¢(u) take the form:

) = B(u1)B(us) ... B(w;)|Q), (3.4.15)
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where |2) is the vacuum state for the spin chain, composed of spin ups in all the sites, and
u; are parameters known as the Bethe roots, solutions of the Bethe equations:

<“k+Z/2>L _ ﬁ up — U+ (3.4.16)

up — /2 ik Uk — U

The eigenvalues of the transfer matrix on the Bethe states (3.4.15) are:
Mou— g — Mo — oy +i
T =] —2—@+i/2"+ @w-i2)" [ [ —L—, (3.4.17)

Now that we have obtained the spectrum of the transfer matrix, we may compute the
energy eigenvalues of our Hamiltonian using (3.4.12). Indeed, since the second term in
(3.4.17) drops out when evalutated at u = /2, we obtain:

((zilogt( )>u_i/2 f( —uj — /2 —uj1+z'/2) ' (3.4.18)

]:

Hence:

M .
g — /4 (3.4.19)

To summarise, the Algebraic Bethe Ansatz lets us create eigenstates of the Hamiltonian
|¥) via repeated applications to the ground state of a B operator, evaluated at the Bethe
roots uy. The energy levels of these states are then given by equation (3.4.19).

3.4.2 Rank N = 3 spin chains and Nested ABA

It is possible to extend the ABA to spin chains based on the Yangian Y (gly), N = 3. In
these cases, the method is known as Nested Algebraic Bethe Ansatz (NABA). The higher
rank models do not have the same simple physical interpretation as the Heisenberg XXX
spin chain, however they appear in the context of High Energy Physics and in particular
they are at the core of integrability in AdS/CFT dualities. Studying them is therefore of
fundamental importance.

For simplicity, in this section we will focus on the case where at each site of the chain
we have the fundamental representation of the gls algebra. We will also introduce the
shorthand notation f(u) = f(u1...ur), where f is any function.

In the N = 3 case, the monodromy matrix is given by:

T11 (u) T12(u) T13 (u)

T(u)z Tgl(u) TQQ(U) ng(u) . (3.4.20)
Ts1(u) Ts2(u) Tis(u)
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To simplify our treatment, we consider the case where the highest weight state is annihilated
by Ta3(u); the final form of eigenvectors of ¢(u) will not depend on this assumption, as only
the explicit form of the Bethe equations will be modified. The general case is treated in [41].
We will also assume that the ground state |§2) is composed of spin up states in all the sites
of the chain.

We now define a parametrisation of 1" in terms of A, B, C, D operators as:

A(u)  Bi(u)  Ba(u)
Cl(u) Dn(u) Dlg(u) . (3.4.21)
CQ (u) D21 (u) D22 (u)

Given that we have assumed Dia(u)|2) = |Q2), the candidates for the role of creation
operators for our states are By (u) and Ba(u).
Notice that now B, C are vectors and D is a matrix; the gls RTT relations imply that:

r12(u — v)Dq (u)D2(v) = Da(v)Dy (uw)ri2(u — v), (3.4.22)

where r is the gls rational R-matrix: D is therefore the monodromy matrix of an auxiliary
spin chain of symmetry Y (gl2), i.e. of an Heisenberg XXX chain.
The transfer matrix of the model is:

t(u) =trT(z) = A(2) + D11(2) + Daa(2) = A(z) + trD(2) . (3.4.23)

In appendix A.2, we derive the eigenstates of (3.4.23) via the Nested Algebraic Bethe
Ansatz. To summarise, they are built from the application of some operators to the vacuum
state; these operators are built from the scalar product between two vectors:

M
@ ar(i)y = [ [Biui)F(w)[€). (3.4.24)
=1

e The first vector is composed of B operators - the vectorial B operators of the gls
spin chain - evaluated at the Bethe roots (uj...ups) satisfying the Bethe equa-
tions (A.2.12).

e The second vector F is an eigenvector of an auxiliary gl spin chain with transfer
matrix (A.2.6). It is built via the B operators of the auxiliary spin chain, evaluated at
the auziliary Bethe roots (v; ... vy ), solutions of the auxiliary Bethe equations (A.2.8).

We have a set of M + N equations for the M + N total Bethe roots. The problem is that
these equations are not separated - each of them depends on the full set of Bethe roots
(u,v). This nesting of the Bethe roots is the origin of the name Nested Algebraic Bethe
Ansatz.

Of course, given the states and the Bethe roots we may try to extract the Hamiltonian
of the spin chain and compute its eigenvalues; this can be done but it is quite a lengthy
calculation. We refer the interested reader to the review [41].
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3.4.3 Higher rank models

In this section, we will briefly talk about how the NABA works for ranks N > 4. For a full
treatment, we refer again to the review [41].

The procedure is iterative and quite similar to the rank N = 3 case: to build the
eigenstates of the transfer matrix, we act with a linear combination of N—1 gln B-operators.
Simlarly to the N = 3 case, the coefficients F need to be eigenstates of an auxiliary gly_1
spin chain. To build the eigenstates of this gly_1 spin chain, we need an auxiliary gly_o
spin chain, and so on until we reach a glo auxiliary spin chain, whose eigenstates we can
build via the gls Algebraic Bethe Ansatz.

Throughout this procedure, we will need to impose exactly N —1 sets of Bethe equations
for the N — 1 sets of Bethe roots 7 ...ux_1. Each set of Bethe equations depends on all
the Bethe roots. Solving this system is therefore extremely non-trivial even for very small
spin chain lengths.

The transfer matrix eigenstates are built as combinations of the B-operators of all the
nested spin chains gls...gly, evaluated at the corresponding Bethe roots. From these
states, it is possible to compute the spectrum of the Hamiltonian by extracting it from the
transfer matrix.

3.4.4 Scalar products and form factors from the ABA

Having obtained the states of spin chains via the Algebraic Bethe Ansatz, we can use them
to compute observables in the spin chain. These are either overlaps of these states, which
we call scalar products, or matrix elements of operators acting on the spin chain Hilbert
space, which we call form factors.

In order to compute these quantities, we need to build dual Bethe states (¥[; this can
be done in a similar fashion to the Bethe states |¥), as detailed in [45].

Bethe states are orthogonal, hence overlaps between different states are trivial. Non-
trivial observable that we can compute include the norms of Bethe states [46], and the
overlaps of the so-called off-shell Bethe states, which are built via the same B operator as
the Bethe states, but with B being evaluated at gemeric spectral parameter u:

M
‘\I]>offfshell = HB(U)|Q> (3425)
=1

Bethe States (both on-shell and off-shell) can be also used to compute form factors of various
operators in the spin chain [47]. Most literature is focused on local operators, i.e. operators
who act non-trivially only on one site of the spin chain: for example, one might be interested
in computing the form factor of the spin-flipping operator S;" at the site i of an Heisenberg
XXX spin chain.

Norms of Bethe states and form factors of local operators computed via the ABA have
been shown to take the form of determinants [48-55]. These determinants expressions are
valid both for overlaps of on-shell states and off-shell states, but are quite complicated.
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An in-depth review can be found in [41]. In the next section, we will briefly discuss some
limitations of this approach. In chapter 5, we will compute a similar, but wider class of
observables using Funcional Separation of Variables. In particular, in section 5.7 we will
make an explicit comparison between FSoV and the NABA.

3.4.5 Problems of the Bethe Ansatz techniques

From a computational point of view, the Bethe Ansatz is quite heavy - we need to solve
many coupled algebraic equations to find all the Bethe roots. However, if we manage to
do so, we have expressions for all the eigenstates and eigenvalues of the transfer matrix
t(u), starting from a vacuum eigenstate |0). Although we have seen the procedure for
the defining representation of the Yangian Y (gly), the NABA can be generalised to other
finite-dimensional representations - only the explicit form of the Bethe equations will be
modified.

There are still several difficulties that the Algebraic Bethe Ansatz can encounter. Al-
though some can be solved (for example, via the introduction of twist in the spin chain, as
we will see in section 3.5), others cannot. In particular:

e Not all the states that we obtain from the ABA are physical. In particular, some
Bethe roots will give states that have non-polynomial in u eigenvalues 7(u)3. There
is no general method to distinguish a priori such solutions.

e There is no guarantee that the ABA gives us all physical states. This problem is
known as the problem of completeness, and has only been solved via the ABA for a
few finite-dimensional representations of the Yangian?.

o Finally, the ABA is based on the existence of a vacuum state |2). If the representation
of Y(gly) is highest-weight, we can use the highest weight vector as the vacuum
state. However, for non-highest weight representations, such vacuum is not available.
Therefore the ABA is not applicable in these cases, which are of crucial importance
since they are extensively found in the study of integrable spin chains appearing in
QFTs.

3.5 Twist

A twist in a Y (gly) spin chain is equivalent to the application of two global GL(N) trans-
formations to the transfer matrix:

t(u) = trT(u) — t'(u) = tr Ht(u)G, VH,G e GL(N). (3.5.1)

Adding a twist changes the physics of the model: in particular, it modifies the form of the
Bethe equations, that will now include a twist-dependent term.

3Recall that in our construction t(u) is a polynomial in u, so its eigenvalues should also be polynomial.
4This problem has been solved [56] via the QQ-relations of the Q-system, that we introduce in section 3.6.
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Only one of the two matrices H,G in (3.5.1) is actually needed. In fact, since the
transfer matrix is invariant under global GL(N) similarity transformations, we can always
set H = 1 while leaving G generic. In the rest of this work, we will always take H to be
trivial.

Adding a twist G to the monodromy matrix 7'(u) does not change the RTT relations:
in particular, any G € GL(N) satisfies the RTT relations, and so we can view the twist
matrix as a Lax operator in an extra site of the spin chain acting on a trivial physical space.
In particular, we define the twisted monodromy matrix as T'(u) = T'(u)G.

Notice that, while not breaking the Yangian symmetry, a twist G with distinct eigen-
values A;, i = 1...N does break the global GL(N) symmetry of the transfer matrix to
the group @Z]\i 1 U(1). Therefore, it breaks the degeneracy of its states: this fact will be
fundamental for the SoV construction.

For now, we will use a diagonal twist matrix:

G = diag(A\1 ... \n), Ai # N, Vi # g (3.5.2)

In section 4.3, we will introduce a different type of twist matrix that is fundamental for the
Functional SoV construction.

3.6 Q-system

In this section, we will introduce one of the main concepts of this thesis - the Q-system. It
is based on an alternative description of the states of an integrable spin chain, which are
encoded in the Baxter Q)-functions. These are polynomials in the spectral parameter u that
can be defined in terms of the Bethe roots. The Baxter Q-functions are not independent, and
the relations between them are encoded in a set of functional relations, the QQ-relations.

The full set of Baxter Q-functions and the QQ-relations form the Q-system of the inte-
grable spin chain. While the rank of the symmetry of the spin chain is encoded in the form
of the QQ-relations, all other details (such as the specific representation, inhomogeneities,
twist etc.) only appear in the large u asymptotics of the Q-functions and in some simple
extra factor in the QQ-relations. Therefore, the Q-system is quite general, and can be
applied to any rational integrable spin chain.

Due to this universality, the Q-system has been used extensively to investigate vari-
ous properties of spin chains. For example, it was used to solve the completeness problem
for many spin chains [56]. Furthermore, it forms the backbone of the Quantum Spectral
Curve [57], which is a Q-system for supersymmetric spin chains with non-trivial require-
ments on the analytic structure of its Q-functions.

Conventions From now on, we will assume that at each site of the spin chain there
are generic inhomogeneities ¢; such that 0; # 0;, Vi # j, and we will keep on using the
convention h = i.
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3.6.1 Baxter Q-functions

In this section, we will define the Baxter Q-functions. The Q-functions describe a state of an
integrable spin chain in terms of the Bethe roots u; that are associated to it. In particular,
for each solution of the Bethe equations, we can form a set of Q-functions describing a
certain state by packaging the Bethe roots into monic polynomials in u.

3.6.2 Rank N =2 Q-system

For the Heisenberg XXX spin chain that we have introduced in section 3.4.1, any state is
described by the set of Bethe roots ug, 7 = 1... M, solution of the Bethe equations with
inhomogeneities 6;:

ﬁuk—ei%-i/Z QHuk UJ-I-Z (361)
; ' LUk — U e

- up — 0 —1/2 —i

We may define the Q-function associated to an eigenstate of t(u) characterised by the set
of Bethe roots {uy}iL, as the twisted Bazter polynomial:

M

qu(u) = A" ] [(w — wp) (3.6.2)

k=1

The same state can also be described by another Q-function in terms of a different set of
Bethe roots 1 as:

M
g2(u) = A5 | [ (u — i) (3.6.3)
k=1
There is a simple physical interpretation for this phenomenon: ¢; are associated to the
Bethe roots needed to build states starting from the reference vacuum with all spin ups
) = ®L,| i g2 are associated to the Bethe roots needed to build the same state
starting from the other possible vacuum with all spin downs, |Q) = ®iL:1 | )i
While this simple interpretation only makes sense for the fundamental representation,
we always have two possible sets of ¢ functions ¢; and ¢y for any representation of Y (gl2).
For a general non-compact representation, they will not be polynomials in u, nor will they
be defined in terms of Bethe roots. However, for the type of representations that we will
consider in this work, ¢; will always be a polynomial.
The two Q-functions introduced here are not fully independent; in fact, they must satisfy
the following QQ-relation or Wronskian relation:

(7! = ATOMNFRE () = @ (wah ™ ) — g () ga(w) (3.64)

where we have introduced the following notation:

Qo(u) = H(u —0,), ) = f <u + n> . (3.6.5)



3.6. Q-SYSTEM o1

Assuming that ¢, are twisted Baxter polynomials, the QQ relations (3.6.4) can be used
to determine the Bethe roots without the need to resort to the Bethe ansatz. A simple
example of how this work can be found in [14].

3.6.3 Rank N > 3 Q-system

As we have seen from the Nested Bethe Ansatz in section 3.4.3, for higher ranks the states
of a spin chain in the defining representation of Y (gly) are characterised by exactly N — 1
sets of Bethe roots, that we will denote as {{u§1)}§\4:11 e {ug-N_l)}jj\gfl}. We can therefore
naturally define a set of N — 1 Q-functions associated to a given state that will package

these Bethe roots. Explicitly we define the Baxter polynomials:
M; ‘
qiz.j(u) = [ [u—ul”), j=1...N—1 (3.6.6)
i=1
Once again, since in the fundamental representation of gl there is not a unique vacuum,
the Q-functions (3.6.6) are not the unique way of describing a state of the gl spin chain.
Recall that the Bethe roots come from building states using nested auxiliary spin
chains Y (gla) < Y(gls) < ...Y(gln-1) < Y(gly). Intuitively, we may think that the
Q-functions (3.6.6) correspond to a state built by choosing the gly vacuum with all spins
in the 1 direction, the gly_; auxiliary vacuum with all spins in the 2 direction (i.e. the first
of the remaining ones), and so on. We may however pick such vacua in any order we like
- this will give us different Q-functions describing the same state, but built with different
Bethe roots just like in the Y (gl2) case.
We can denote all the Q-functions associated to a given state in a Y (gly) spin chain as:

ga(u), Ac{l...N}, where ¢o(u) =1 and ¢ . y=1. (3.6.7)

These Q-functions are totally antisymmetric in their indices. By counting them and includ-
ing the trivial Q-functions gg and ¢1.n, the total number of Q-function for a gly state is
given by fo\io (1) = 2N,

More generally, for spin chains in any highest weight representation of Y (gly), it is
possible to prove that there are always 2V Q-functions. Their structure will have the
following form:

|A]

Qa(u) = <H AZ“) Naga(u) [ [ Fj(u), (3.6.8)
acA j=1

where \; are the twist matrix eigenvalues, N4 is a constant, g4(u) is a monic polynomial

and Fj(u) are some functions of the spectral parameter. We will refer to the quantities

ga(u) as the Bazter polynomials, and to [ [, 4 Aq 4 as the twisted Baxter polynomials.

The Q-functions are not all independent - they will be subject to the QQ-relations:

QurcQL ™ = QL — QacQy?  be=1...N-15. (3.6.9)

5p and ¢ can be contained in A, but in this case the QQ-relations are trivial since both sides are 0 due to
the antisymmetricity of the Q-functions.
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The set of 2V Q-functions and the QQ-relations form the so-called gl Q-system.

3.6.4 Dual Q-functions and symmetries of the Q-system

Since @ 4 is antisymmetric in its indices, we can define its Hodge dual, that we will denote
Q%, by: ]
_ Q4w
B -2

Qi n(w)
where A is the complement of the set A in {1... N}. The dual Q-functions are the solution
of the Dual Baxter T(Q equation that we will see in section 3.8, and form the natural building

blocks for the Functional Separation of Variables that we will see in chapter 5.
The Q-system is invariant under gauge transformations:

Qa(u) = fla(u)Qa(u), (3.6.11)

where f are generic analytic function of u that need to satisfy the set of finite difference

Q" (u) , (3.6.10)

equations f‘A\+1f|[A_|i]2 = f\A|+2f|[A_|2]. Using this gauge freedom, the functions Fj in (3.6.8)
can be fixed to different forms while mantaining the Q-system invariant. While it is possible
to set such functions to be 1, it is not always the most convenient choice, as we will see
later.

3.6.5 Quantum eigenvalues and transfer matrix from the Q-functions

From the knowledge of the Q-functions for a given state, it is possible to derive the eigenvalue
of the transfer matrix t(u) on that same state. As a byproduct of this process, we will
compute the so-called quantum eigenvalues, Aj(u). These are defined in terms of the Q-
functions (3.6.8) as:

_ QE].]'A(U) QE_QJ] (u)
Q1..j-1(u) Q1..5(u)’

Notice that this definition only involves a subset of the Q-functions, those where A is
an ascending-ordered subset of {1...N}.

The eigenvalue 7(u) of the transfer matrix ¢(u) corresponding to the state described by
the given set of Q-functions can be expressed in terms of the quantum eigenvalues as:

Aj(u)

j=1...N. (3.6.12)

N
T(u) = Z Ai(u) . (3.6.13)

=1

3.7 T-system

We have seen that the Q-system contains information about the transfer matrix. The
opposite is also true: we can obtain the Q-functions from the knowledge of the transfer
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matrix, or more specifically the T-system, without needing to solve the Bethe equations.
This is done via the so-called Baxter TQ equation, a central concept for this thesis which
we define in section 3.8.

In this section we describe the T-system, composed of an extended set of transfer ma-
trices, which includes the fundamental transfer matrix (3.3.1), and two functional relations
between them, the Hirota [58] and CBR equations [59-61]. These functional relations are
not fundamental for the scopes of this thesis, and we leave their discussion to the ap-
pendix A.3.1.

The transfer matrices in the T-system can all be built starting from the monodromy
matrix (3.1.4), using a procedure known as fusion [62]. Fusion is the Yangian equivalent of
the procedure that lets us build irreducible representations of gl from the tensor product
of multiple copies of its fundamental representation. In particular, fusion can be described
in terms of the Young tableaux appearing in the representation theory of gly. For the
scopes of this thesis, we only need a subset of the fused transfer matrices, corresponding
to the Young tableaux with a single column and known as fused antisymmetric transfer
matrices. We describe how to build them from the so-called quantum minors in the next
section, while leaving the general description of the fusion procedure to the appendix A.3.

3.7.1 Quantum minors and quantum determinant

In this section, we will introduce the quantum minors and quantum determinant of a spin
chain. These are a special case of the fusion procedure, but are fundamental for the scopes
of this thesis so we will describe them separately from the general case, which can be found
in appendix A.3. We will not give formal proofs for most of the statements of this section;
the interested reader can find them in [43].

We will use the convention that objects with low indices A; ;.. are tensors acting non-
trivally on the 4, j .. .-th copies of the auxiliary space, while objects with the same number of
up and down indices Tkg will always be intended as matrix elements of the corresponding
tensor.

To define the quantum minors, we first need to introduce the generalised R-matrix,
acting on m copies of the auxiliary space CV:

R(Ul e um) = (R12 e le) e (RmfgjmflRmfzym)(Rm,Lm) 5 (371)

where u; ... u,, are generic complex parameters, R; ; = R;;(u; — u;) is the usual rational
R-matrix (2.2.3) acting non-trivially on the auxiliary spaces i,j. We can easily represent
the matrix elements of the generalised R-matrix using the diagrammatic rules. As a simple
example, in fig. 3.1, we depict the matrix elements of R(uj,ug,us), which are given by:

202, 5 k?, k 7]{,‘
Ry (unug,us) = 0 R (un —u) RS (i —us) R (ua —us) . (3.72)
k1,k2,k3

The generalised R-matrix (3.7.1) satisfies the following relation:
Ruy .. um)Th(u1) -« Ton(um) = T () - - T1(ur) R(uq - . .t (3.7.3)
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iz k2
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i J3

Figure 3.1: Matrix elements of the generalised R-matrix R(uj,ug,u3), acting on ®3_;C".

where T; is the monodromy matrix for Y (gly) acting on m copies of the auxiliary space
R, CN as:

Ti(u)=1®...19 T(u) ®1---®1. (3.7.4)
——
i-th space
If we take the parameters u; in (3.7.1) to be u; = u + ji — ¢, then u; — uj41 = —i and:
R(uy ... Upm) ~ Am, (3.7.5)

where A,, is the totally antisymmetric projector (or antisymmetriser) over )", C"; the
proportionality constant can be fixed by rescaling R(uj ... u,,) and imposing that the re-
sulting projector is idempotent, i.e. A2 = A,,. As an example, we use our diagrammatic
rules to depict the antisymmetriser A3 in figure 3.2. Its matrix elements can be obtained
by setting u; = u + ji — i in (3.7.2).

Note that if we choose uj —uj41 = 4, then R(u ... um) = Symy,, the totally symmetric
projector over @, CV.

Setting uj = w + ji — i in the generalised RTT relation (3.7.3), the R-matrices become
antisymmetrisers over m copies of the auxiliary space of the monodromy matrix, and we
get the following relation:

T™(u) = ApTi(u) ... T(u+im —i) = T (u+im —i) ... T1(u) Am (3.7.6)

The matrix elements of this equation are known as the quantum minors, and are explicitly
given by: ' ‘
i1.0m Ip(1 Ip(m . .
Ti i (u) = 2 sgnp~Tﬁ()(u)...Tﬁi>(u+zm—z)
pEGm

— LT im — 4§ im
= Z sgnp ij(l)(u +im —1). ST (u).
PEGm

(3.7.7)



3.7. T-SYSTEM 95
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Figure 3.2: Antisymmetriser on ®g’:1 CV built via the R-matrices.

where p is a permutations of m elements and Tij are the monodromy matrix elements (3.1.4).

The quantum minors are still a representation of the Yangian Y (gly). In particular,
they satisfy the RT'T relations (with the R-matrix being given by an antisymmetrised tensor
product of the usual rational R-matrix), and they have coproduct given by:

N
ATir) = D) T () @ TR (). (3.78)
kikm=1

This means that we can build the m-th quantum minors of a spin chain of length L by
taking the coproduct of L m-th fused Lax operators, whose matrix elements are defined in
terms of the matrix elements of the Lax operator (3.1.3) by:

Lot (w) = N sgnp - L' (w) ... L (w+ i — ). (3.7.9)
pEGSm

This construction is convenient because we can easily depict the fused Lax operators using
the diagrammatic rules introduced in section 3.2, where the antisymmetriser A,, built from
the R-matrices will be represented as a rectangle passing through all the copies of the
auxiliary space.

As an example, we depict the fused Lax operator that can be used to define the quantum
minor T2 (u):
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0

Uu
o
(5] bl
A .
al,a2 _ : U+ 1
Lbl b2 ( 0) - @
as b2
Its matrix elements are given by:
Lzll’gj( u) = L% (w) LG (u+14) — L (u) LY, (u+ ). (3.7.10)
Using the fused Lax operators, the m-th quantum minor of a spin chain of length L is then:
T () = DL, (u = 0) . (LE) o (u = 0 (3.7.11)
k;

.. ’Lm

where the fused Lax operator (L*)’ o

1®...1Q L™ ®1..-®1.
—

J1e-Im

acts on the tensor product of L physical spaces as

k-th copy

If I,J c {1...N} are m dimensional and i € I,j € J, then the following commutation
relation for the quantum minors is satisfied:

[T (u), T7(v)] =0 (3.7.12)

This implies that the N-th quantum minor 74 (u) commutes with all elements of the
monodromy matrix T}:

[T%(u), T4 (v)] =0, Vi,je{l...N}. (3.7.13)

Therefore, T1& (u), also known as the quantum determinant, is a central element of Y (gly).
This name comes from the fact that, in the classical limit ¢ — 0, the quantum determinant
becomes the determinant of the monodromy matrix (3.1.4).

From the quantum minors, we can define the N fused antisymmetric transfer matrices:

to(u) = try(T%u)), a=1...N (3.7.14)

These quantities commute with each other, as we prove in appendix A.3, and provide the
integrals of motion for the spin chain that we mentioned in section 3.3. In particular, we
have the expansion:

ta(u) = ub + Y u o, (3.7.15)

where Iy o, a =1...N —1,a=1...L are the integrals of motion®.

%The quantum determinant does not contain ToMs since it is a central element of Y (gly) and therefore
proportional to the identity operator.
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3.8 Baxter T(Q equation

The Q-system and the T-system are two equivalent ways to describe a rational integrable
spin chain. These two systems are not completely independent; they are connected by the
Baxter TQ equation [63-65]. This equation, and its dual version, form the foundation of
the Functional Separation of Variables method described in section 5. For now, we will
introduce them, and see how we can exploit them to obtain all the Q-functions from the
T-system.

We define the Baxter TQ equation (or Baxter equation) as the eigenvalue equation
for the Baxter operator O, which is constituted by fused antisymmetric transfer matri-
ces (3.7.14) and finite shift operators D, and whose eigenfunctions are the Q-functions.

Similarly, the Dual Baxter equation is the eigenvalue equation for the dual Baxter
operator OF, whose eigenfunctions are the dual Q-functions (3.6.10).

We define the Bazter Operator as:

0= i (—=1)%7,(u)D?, (3.8.1)
a=0

where 7, are the eigenvalues of the antisymmetric transfer matrices ¢,, and Df(u) =
f(u+1i/2). We define the Dual Bazter operator as:

ot = Zn] (—1)%74 (v — ia)D ™2 . (3.8.2)
a=0

The Baxter and Dual Baxter equations are given by:
=2\ —
0Q; “(u)=0 (3.8.3)
O1Qi(u) =0, (3.8.4)

where Q; are the Q-functions (3.6.8) with a single index, and @ are the dual Q-functions (3.6.10)
with a single index. Explicitly:

Qi(u) = Ni Fi(u) \i" ¢s(u),  Q'(u) = [72]"'A"" : (3.8.5)

For these equations to hold, we need to choose the factors Fj(u) in the Q-functions appro-
priately - in particular, the Q-functions have to be compatible with the T-system in the
sense we explain now.

The Baxter operator can be expressed in terms of quantum eigenvalues (3.6.12):

O=(1-A(w)D?)... (1= Ay (u)D7?) . (3.8.6)

By comparing this expression with (3.8.1), one can immediately read off the expression of
Ta(u) in terms of the quantum eigenvalues and therefore in terms of the Q-functions. For
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example for a gls spin chain we have:

T1 (u) = A (u) + Ay (U) + Ag(u) R (387)
Tg(u) = Al(u + Z)AQ(U) + A (u + Z)Ag(u) + Ag(u + Z)Ag(u) , (388)
m3(u) = Ai(u+20)As(u+1)Az(u). (3.8.9)

We say that the Q-functions are compatible with the T-system if these 7, are the eigenvalues
of the antisymmetric transfer matrices ¢, built via fusion in (3.7.14). This fixes completely
the functions Fjj(u) in the Q-functions (3.6.8).

Since Fj(u) do not depend on the state of the spin chain, we can fix them by choosing
the simplest possible state. For compact representations, this will be the ground state,
where the Q-functions in (3.6.12) have Baxter polynomials g4(u) of degree 0.

Once the functions F} are fixed using the ground state, we can use the other eigenvalues
of the T-system as a set of N — 1 equations for each excited state, where the unknowns are
the Bethe roots of the corresponding Q-functions. Even though such equations will involve
polynomials in w of degree proportional to L, at least for low lengths they can be solved
explicitly to obtain all the Q-functions of the spin chain, establishing the full equivalence
between T and Q systems.



Chapter 4

Separation of Variables for
Integrable Spin Chains

In this chapter, we will discuss Separation of Variables (SoV) for integrable spin chains.
This technique can be used to compute a variety of observables in the spin chain, and
constitutes a modern alternative to the Bethe Ansatz described in section 3.4.

The approach to SoV we will describe in this section was first proposed by Sklyanin [29,
66—68], and is based on the introduction of a special basis for the Hilbert space of the spin
chain, known as SoV basis. The SoV basis is an analog of the action-angle variables of
chapter 1: in it, the wavefunctions corresponding to the Bethe states are separated, i.e.
they become a product of functions of one variable. These building blocks turn out to
be the Baxter Q-functions, evaluated at a special set of points that we call the separated
variables x.

To build the SoV basis, we follow Sklyanin’s recipe. It is based on a quantisation of
the separated variables for classical spin chains, which we define as the limit A — 0 of
the quantum integrable spin chains treated so far. The quantum separated variables x are
defined as the zeros of a special operator in the spin chain, the B operator. The SoV basis
is defined as the set of eigenstates of the B operator.

This construction was first worked out for rank N = 2 spin chain [29], and was then
generalised to any rank [69], and we will review it in this chapter. We will describe the
correspondance between the separated variables for compact spin chains and the so-called
Gelfand-Tsetlin (GT) patterns, introduced in Appendix B.1.

We will finally discuss how the Q-functions appear as wavefunctions in the SoV basis,
and briefly describe how to compute observables using them.

It is worth mentioning that Sklyanin’s procedure, based on the SoV operator, is not the
unique way to build the SoV basis. Another method was proposed in [70], and does not
use a B operator. While these two techniques have slightly different ranges of application,
they have been proved to be equivalent in the cases where they are both applicable [42],
including the spin chains in compact representations that we describe in this chapter.

For the classical SoV, the main reference used in this chapter is [71]. The quantum

99
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SoV discussion is a simplified version of the one found in [42], with a small inclusion of the
author’s publication [26] that extends it to the non-compact spin-s representations that we
will use in the next chapter.

4.1 Separation of variables for classical spin chains

Sklyanin’s quantum SoV is based on a quantisation of the separated variables for a classical
spin chain. Therefore, in this section we will briefly review how to build these classical
separated variables.

To obtain classical separated variables, we need to find 2n canonical coordinates x;, p;
who satisfy the canonical commutation relations:

{.%'Z',.Z'j} =0 {pi,l'j} = 5z’j {pi,pj} =0 i,j =1...n (4.1.1)

and n functions ¢;, that will play the role of the separated equations of motion, such that:

¢j (.%'j,pj, fl; ...... 7fn) = 07 (] = 1, oo ,n) (412)

where f; are the n integrals of motion.

To do so, we use the algebraic spectral curve. If T is the classical monodromy matrix
built from the classical limit A — 0 of the Lax operators (3.1.3), then the algebraic spectral
curve is the solutions to the eigenvalue equation for 7"

det(l;(u) — T(u)) = 0, (4.1.3)

where [; are the eigenvalues of T'(u).
For simplicity, we focus on the rank 2 case in the fundamental representation, for which
T is a 2 x 2 matrix. Expanding equation (4.1.3), we obtain:

I(u)? — t(u)l(u) —det T(u) =0, t(u)=trT(u). (4.1.4)

The two solutions to this quadratic equation are Iy (u) = 3 (t(u) + /t(u)? — 4 det T(u))7

and define the algebraic spectral curve.
Now we build separated variables from the spectral curve. This can be done via the
eigenvectors of 7', which we define as the two-component vector QF such that:

T(uw)QF =1 (uw)Q*. (4.1.5)
Choosing the normalisation such that QI—r =1, the eigenvalue equation (4.1.5) is solved by:

Qi _ —T11 (u) + li (u) _ To (u)
2 Tia(u) Too(u) — 1+ (u)

(4.1.6)

So the eigenvectors 21 become singular at the points x, where Ti2(x,) = 0, or z, where
li (Za) — TQQ(ZQ) = 0.
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At the points z,, T12 = 0 and T'(z) is triangular. Thus the spectral curve equation
becomes:

(Z(I‘a) - Tn(xa))(l(xa) - TQQ(LEa)) =0— ll = T11 and lQ = T22. (417)

In the equations (4.1.6) evaluated at x,, the one on the left has no poles and the only
remaining ones are those for which Iy (z,) = Tha(zq).

We will now define the A and B operators as A(u) = T11(u) and B(u) = Ti2(u); in this
notation, x, are the zeros of the B operator.

Using the classical RT'T relation, it is possible to prove that the coordinates defined
by x, and logp,, where p, = A(z,), are canonically conjugated. Furthermore, these
coordinates can be used to separate the equations of motion of the classical spin chain as in
equation (4.1.2). For this reason, z,, and logp, form the separated variables for a classical
spin chain. We will not be describing in detail how this procedure works: we invite the
interested reader to check [71].

Finding the separated variables for higher rank cases can be done in a similar fashion.
One needs to find a similarity transformation that makes the monodromy matrix triangular,
and look for zeroes of the non-diagonal entries, which will define the A and B operators. x
will be the zeros of the B operator, while p will be given by A(z).

As an example, in the N = 3 case the A and B operators are given by:

T11 (U)ng (u) — T12 (U)Tgl (u)

A(u) = T (a0 , (4.1.8)
B(u) = Tog(u) (To1(u)T32(u) — Too(u)Ts1(u)) — (4.1.9)
7T13(u) (T12 (U)Tgl (’LL) - Tn(u)ng(u)) . (4110)

4.2 Sklyanin’s quantum separation of variables

Sklyanin’s quantum SoV is based on a direct quantisation of the procedure we have just
presented. The central tool to this construction is the quantum B operator: its zeros will
form the separated variables, while its eigenstates are the so-called SoV basis.

The construction is slightly different for Y (gl2) and higher ranks, so we will review them
separately.

4.2.1 Rank N =2

For the rank 2 case, the quantisation of the classical separated variables is straightforward.
We define the A and B operators as:

A(U) = Tn(u) B(u) = Tlg(u) (4.2.1)

where T is the quantum monodromy matrix (3.1.4).
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We need two properties from the B operator [69]. The first is that it needs to commute
with itself:
[B(u), B()] =0, (122)

which is ensured from the RTT relations. The second is that B can be used to construct
the eigenvectors of the quantum transfer matrix ¢(u); as we have seen in section 3.4, this
can be done via the Algebraic Bethe Ansatz, obtaining the Bethe states:

M
| = H B(u;)|2),  wu; are the Bethe roots. (4.2.3)

Just like the classical case, the zeroes of B are the separated variables. In particular, if we
could write B as a polynomial in u with zeros at z:

= ﬁ (u—zq), (4.2.4)

then the left eigenvectors of B, labelled by the set {z,}?_; and denoted as (x; ...z, would
form the SoV basis.

The SoV basis forms a basis of the Hilbert space in which the wavefunctions of the Bethe
states separate - i.e. they become products of functions of a single separated variable z,,.
In fact, we have that:

(1 .. 2|0 = (z1 .. wn]HBuZ Q) = BOHH i — T )T | (4.2.5)

a=1i=1

Choosing a normalisation of the SoV basis such that Bo{(z; ...x,|Q) = 1, we see that:

Ty | ) = H Q(za) (4.2.6)

where we have used the definition of Baxter Q-functions associated to the state |¥) (3.6.2):

M

Qu) = [ [ (v —ua). (4.2.7)

a=1

To compute observables, such as the form factors of operators, using SoV, we also need a
right SoV basis. For rank N = 2, it can be simply defined as the right eigenvectors of the
B operator |zg ...z [42].

Since the SoV bases are complete bases, we have the completeness relation 1 = > |z )(z|u(z),
where y is the SoV measure defined as u(x) = ((z|z))~!. As an example, we show how to
compute the scalar product of two Bethe states using the SoV basis:

(1) = OlB(w) - Blun) 0) 5 fe)elutz) S [T e (29

To m=1a=1
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However, there is a problem in this procedure: the B operator is nilpotent [69], and cannot
be diagonalised to build the SoV basis. This is expected for any compact representation of
Y (gla): B creates states from the highest weight vector, so by applying it repeatedly we
must end at some point on the lowest weight vector, which is annihilated by the action of
B (recall that B = Tjo is the Yangian raising operator).

Not everything is lost: the B operator can be made diagonalisable by introducing a
special twist in the spin chain [69].

4.3 Companion twist frame

We have seen in section 3.5 that the addition of a twist to the spin chain breaks the
global symmetry of the transfer matrix, and thus makes the Bethe states non-degenerate.
However, even for a gls spin chain, a diagonal twist is not sufficient to make the B operator
diagonalisable. It is possible to act with further global transformations on (3.5.2) to solve
this issues, as was argued in [69]. In this thesis, we will instead introduce a non-diagonal
twist matrix, the companion twist matriz, which by itself makes B diagonalisable, and has
other useful features.

The companion twist matrix, introduced in [72], has the following form in the Y (gl2)

case:
_ [ X1 —X2
Ge = < 1 0 ) (4.3.1)
where x; are the characters associated to the diagonal twist (3.5.2):
X1 = tr(G) =X + Xy X2 = det(G) = A1 )\2 (4.3.2)

It is possible to check that G¢ is related to (3.5.2) by a similarity transformation: this
implies that transfer matrices built with G and G¢ are physically equivalent and have
the same eigenvalues A1, Ao. Furthermore, the Q-functions are the same for the two twist
matrices.

The usefulness of this choice of twist in the SoV framework has now been extensively
demonstrated [72-74]:

o The transfer matrix ¢(u) = tr(7'(v)G¢) is linear in the characters x;, and in particular
t(u) = Tiz(u) + xaTh1(w) — x2To1(u);

o the B operator B(u) is explicitly diagonalisable and with non-degenerate spectrum;

e The SoV basis is independent of the twist eigenvalues.

With a diagonalisable B operator, we can obtain the SoV basis for any highest-weight
representation as seen in the previous section. The SoV basis will depend on the length
and the specific representation of Y (gly) we are using. For example, for a representation of
weights (s, 0), it will have the form:

L
xIb(u) = &| [ J(u—xa), (4.3.3)
a=1
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B
where b(u) = —% and:
Qg
Xo =04 +i(s+mnq), a=1...L. (4.3.4)

Here 6, are the inhomogeneities of the spin chain, while n, are non-negative integers which
are in one-to-one correspondence with the SoV basis states. A systematic description of how
to obtain these numbers involves the Gelfand-Tsetlin patterns, defined in the Appendix B.1.

Notations Due to the presence of the non-diagonal companion twist matrix, we need to
introduce some new notation. The monodromy matrix elements 7;; will always refer to
the untwisted monodromy matrix, while the B operator is defined in terms of the twisted
monodromy matrix T'(u) = T'(u).Gg, i.e. B(u) = Tia(u) = Ti1(u).

Thus, the name ’B operator’ will be reserved for the twisted SoV B operator, which is
different from the ABA B operator introduced in section 3.4!

4.4 Rank N > 3 SoV

4.4.1 The B and C operators

In the case N = 3, Sklyanin managed to obtain the quantum B operator by direct quanti-
sation of the classical case. Sklyanin’s expression is given by:

B(u) = Tos(u)Ta3 P(u) + Tys(u) T3 P (w) (4.4.1)

where T,:{ are the quantum minors matrix elements defined in (3.7.7). It was shown ana-
lytically [75] that for the fundamental representation, Sklyanin’s B operator, evaluated at
the Bethe roots of 01, creates Bethe states i.e. eigenstates of the transfer matrix:

) = HB(uj)|O>. (4.4.2)

This fact can be generalised to any rank [69], by defining the B operator as:

Bu)= Y. T T, BT, W) . r Pt (4.4.3)

Jin Jan T Jp—2,n
J1odn—1

where J = (j,i . ]ka) and we sum over configurations such that 1 < j,i <0 < j,’cC < n.
Just like the NV = 2 case, Sklyanin’s B operator is nilpotent, and therefore not diago-
nalisable.
This problem can again be solved by twisting. We can introduce a diagonal twist
G = diag(A1, A2, A3) and act with a similarity transformation on the twisted spin chain to
get a 'good’ B operator, as argued in [69].
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We will instead use again the companion twist matrix. Note that both procedures are
generalisable to any rank. We start by definining the GL(N) companion twist matrix:

Gij = (=1)7"'xg0i + dijian (4.4.4)
where x; are the elementary symmetric polynomials in the twist eigenvalues \;:

N

N
[TE+X2)=> """ . (4.4.5)
r=0

J=1

Xr are also the characters of the totally anti-symmetric representations of GL(N). We
remark that the companion twist matrix has the same eigenvalues (A; ... Ay) as the usual
diagonal twist matrix.

For example, in the N = 3 case the Companion Twist Matrix is:

X1 —X2 X3
G = 1 0 0 . (4.4.6)
0 1 0

The twisted transfer matrix t(u) = tr(7'(v)G) is linear in the characters. In particular, we
can see that:

N-1 N
t(u) = te(T(W)G) = > x0Tjge1(u) + Y, xr(=1)" " T (w), (4.4.7)
j=1 r=1

where we have defined xg = 1.
In the companion twist frame, the B operator becomes:

T e
B(u)= > T w71 Plw).. 175 P (). (4.4.8)
J1odn—1

This B operator is diagonalisable, and its eigenvectors constitute the left SoV basis (z|.

This SoV basis factorises right Bethe states |¥) in terms of products of the corresponding
Q-functions; however, if we were to use it to try to factorise left Bethe states (¥|, we would
not get a simple expression. It is possible to factorise (¥| nicely by introducing a right SoV
basis |y), who is defined as the eigenvectors of the SoV C operator [73], which for Y (gln)
reads: p

n— J J
Clu)y= > Ti5' ). T ()T (u). (4.4.9)
J1.In—1

The C operator can be used to generate Bethe states in the antifundamental representation
of gly [73]:

M
(@ =] [, (4.4.10)
=1

where u;‘ is a certain set of Bethe roots for this representation.
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The B and C operators are related by the so-called * anti-automorphism of the Yangian:

Tii(u) = Ty(—u) (4.4.11)
Tij(u)Tkl(U) S Tii(—v) Ty (—u) (4.4.12)

In particular, B(u) = C(u), and thus we can use most of the technology developed for the
B operator to treat C' as well.

4.4.2 Building the SoV basis

In this section, we will review how to obtain the explicit expression for the separated
variables x, o and ¥y, labelling the left and right SoV bases.

The starting point is a slightly different construction for the SoV bases, due to Maillet
and Niccoli [70, 76-80]. The SoV basis can be obtained via the action on some reference
vector (S| of the transfer matrix ¢(u) evaluated at the inhomogeneities of the spin chain 6,.
For example, for a Y(gl2) chain in the fundamental representation, we have:

L
ny...ng| = (S]] t0)™, na=0,1. (4.4.13)
a=1

For higher ranks, to build the SoV basis we also need to apply fused transfer matrices to
(S|, and we also need to shift the inhomogeneities by multiples of i.

It is evident that this SoV basis automatically factorises Bethe states, since the latter are
defined as eigenvectors of ¢(u). The Maillet-Niccoli SoV basis is supplemented with some
closure relations. These ensure that we can obtain SoV basis vectors with lower n, from
those with higher n, by application of transfer matrices evaluated at some special points.
Such closure relations are based on the Hirota and the CBR, equations of the T-system.

Although the Maillet-Niccoli method requires the arbitrary choice of a vector (S|, which
is not natural in non-compact cases, it can give a good insight on the spectrum of the
separated variables for compact spin chains. In particular, it can be proven [73] that the
eigenvectors of the B operators can be built by successive action of fused transfer matri-
ces evaluated at some special point, who constitute the values of the separated variables
Zqq. These special points can be determined by the so-called Gelfand-Tsetlin patterns for
the Yangian Y (gly), which we introduce in Appendix B.1. We also point out that the
Gelfand-Tsetlin basis and patterns are fundamental to prove the link between the SoV ba-
sis construction via the B-operator of [69] and the Maillet-Niccoli one [70]. We refer the
interested reader to [42] for a detailed explanation.

4.4.3 Separated variables and factorised wavefunctions

We now come to the main point of this section - given a compact Y (gly) spin chain in
a representation with weights 7,, a = 1...L, the Gelfand-Tsetlin patterns label the SoV
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bases |z) and (y| as follows [73]:

|z) is labelled by — xf; =0, +i(ug; —Jj+1) (4.4.14)
(yl islabelled by yg; =04 +i(vy_ —pg; +J5—1) (4.4.15)

where fi; ; are the (finite) possible values in the dual diagonals of the GT patterns and I
measures how much the element of the dual diagonal has been excited above its minimum
value allowed by the branching rules (B.1.6), and is defined by pf ; = puf; — vi'y;. Note
that the number of these states is finite and corresponds to the dimension of the Hilbert
space of the spin chain.

Furthermore, the same x% j and y,‘j’ ; appear in the factorised wavefunctions. We define
as factorised wavefunctions the overlaps between the SoV bases and the Bethe states.

Factorised wavefunctions are built as follows: first, we build eigenvectors of B (C) by
applying transfer matrices in the T-system evaluated at zj; ; (yg‘j) [73], in a similar way

s (4.4.13). Then, we take the overlap between these eigenvectors and Bethe states. But

Bethe states by definition diagonalise the transfer matrices we use to build the SoV bases,
so we end up with transfer matrices eigenvalues 7 evaluated at Ty (y,ﬁ‘ j). Finally, we write
the transfer matrix eigenvalues in terms of @-functions, as delined in section 3.8.

The final result is given in terms of products of Q-functions evaluated at the separated
variables x‘,j’j (y,‘j]) In particular, after an appropriate normalisation one obtains the
following expressions for left and right wavefunctions:

L N-1

U(z) = {(z|¥)= 1‘[ ]‘[ det a(xfy) (4.4.16)
a=1k=1"

L N-1
U(y) = (Ply)= H ]_[ et ¢'(v;) (4.4.17)

where ¢; are twisted Baxter polynomials with a single index introduced in (3.6.8), and ¢’
are the twisted dual Baxter polynomials.

We also mention that in the case of gly representations of weights (s,0,...,0), it is
always possible to normalise the SoV basis so that the right wavefunction ¥(x) becomes a
product of Q-functions [42]. In particular we get the following simple expression:

L N
=[]]]a (=) (4.4.18)
a=1j=1

Non-compact spin chains

The SoV basis can also be introduced for non-compact spin chains. In the next chapter,
we will consider a spin-s highest-weight representation of Y (gly), with highest-weight state
|0) satisfying

E50) =0, i<j

i (4.4.19)
E510) = w;|0),
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where E are generators of gly and w; = —s and w; = +s for ¢ > 2. This is the simplest
non-compact representation which can be considered and we have chosen it for simplicity
to illustrate our main results, but we believe all the main statements can be easily extended
to more general representations. In this representation, the wavefunctions are given by:

L N-—
V() := <x|\11>—l_[1_[ 1(Ta.a) (4.4.20)

a=1 a=1
L N-1 ;
1\ = (Uly) = det a+l ~(N-2)) . 4.4.21
W = =TT, e @7 (oot 5V -2) - )
The separated variables are labelled by:
a=0ba+i(s+n0a): Yaa=0a+i(s+mae+1—a) (4.4.22)
where n,, and mq, are non-negative integers subject to the constraints n,; > --- >

Na,N—1 = 0and mqa1 = -+ - = mq n—1 = 0, with each possible configuration corresponding to
a basis state. Note that these restrictions give infinite dimensional SoV bases, in agreement
with the fact that the Hilbert space of this non-compact spin chain is infinite dimensional.

4.4.4 SoV charge operator

From the knowledge of the SoV bases it is possible to compute the so-called SoV measure:

My = {ylz). (4.4.23)

For Y (gl2), where the left and right SoV bases are the same, this measure is diagonal. For
higher ranks it is non-diagonal and highly nontrivial. An example of it for a Y (gl3) spin
chains of short length in the fundamental representation can be found in [69].

A useful object proposed in [81] is the so-called SoV charge operator N. It commutes
with the B and C operators and is diagonalised in both SoV bases |y) and (x| and counts
the number of “excitations” above the SoV ground state. More precisely:

Nly) = (Z ma,a) ly), XN = (x| (Z na,a> . (4.4.24)

The SoV charge operator can be obtained as the first non-trivial coefficient in the large u
expansion of B or C', and imposes useful selection rules on the SoV measure, as we will see
in the next section.
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4.4.5 SoV measure

The explicit form of the measure for Y (glx) spin chains in the spin-s representations defined
above, worked out in [74], is given by!

N-1 A L N-1 r
. Q,Na,a
My =51 Y sien(e) | [ 524) T T (4.4.25)
k a=1 =0 /) 6421 a=1 a0 =k - —
Oa,a=FRa,a—Ma,at+a

In Appendix C.1, we derive a more general formula that also gives this expression. We will
now summarise the notations we use, following [74]. s, is a simple sign factor

sp = (—1)TC- DI HN=2) (4.4.26)
o denotes a permutation of L copies of the numbers {1,2,..., N — 1}
(Lo N-L. N-1) (4.4.27)
L L

with 04, denoting the number at position a + (o — 1)(N — 1). ¢% denotes the identity

permutation on this set and so ¢, = a. The signature of the permutation sign(o) is

a,a
+1 depending on the number of elementary permutations needed to bring the ordered set
Ug—1(1) Y Us-1(2) Y Ug—1(n_1) tO the canonical order uy 1, u1,2,...,ur, N—1 Where u,-1(q) =
{uap : 0ap = a}. Whereas sign(o) could be ambiguous due to different possible orderings
inside o~!(a), the combination with the Vandermonde determinants A, is well defined.
There are (127;\]1_)% ! possible permutations ¢, and if o is not such a permutation we define
sign(o) = 0.

Since the SoV charge operator (4.4.24) commutes with both B and C, M, is only
non-zero if the states (x| and |y) have the same SoV charge eigenvalue. Furthermore, M, 4

is only non-zero if there exists a permutation o of the number (4.4.27) such that

ma,a = na,a - O-a,a + a (4428)

for each a,a. There are distinct dual basis states |x) with the same value of nq,, and
hence there are multiple permutations satisfying (4.4.28). We denote such inequivalent
permutations (within each «) by k which we then sum over. The sum over k is needed only
in a limited number of cases, for example in the gl3 case only k = n is possible.

In (4.4.25), Ay, which depends on o, denotes the Vandermonde determinant constructed
from all x4, for which 04, = b and Ag denotes the Vandermonde determinant built from
0’s

Ap =[]0 —05). (4.4.29)

a<f

YThere is a typo in [74] where the sign factor s, does not appear. However, it is correctly included in
the Mathematica code contained in that paper.
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Finally, the function r, , is defined as

1 & o
Tan = =5 51_121 (n+1—ibs +i63)s 4 , (4.4.30)

where (2)s = F%‘S(J;)Z ) is the Pochhammer symbol.

4.4.6 Computing observables using the SoV basis

We now have all the tools to compute observables using Separation of Variables. Suppose,
for example, we want to compute the overlap of two Bethe states. Since Bethe states are
orthogonal, this should be a trivial calculation. However, obtaining the explicit result via
SoV is not simple, especially for high rank spin chain. In fact, we have to compute the
following expression:
(TA[TB) = > Taly) My, Tp(x). (4.4.31)
Xy

while we do in principle know all the elements on the RHS, this is indeed a hard calculation
to perform in most cases. This is especially true for spin chains in non-compact, non-highest
weight representations, such as the ones found in A = 4 SYM.

In the next section, we will introduce an alternative SoV construction, that allows to
bypass these problems and is particulary adapt for applications to integrable CFTs, the
Functional SoV.



Chapter 5

Functional Separation of Variables

The operator-based SoV (OSoV) construction (i.e. based on the B and C operators) that
we analysed in the previous chapter has recently been supplemented with a functional SoV
(FSoV) construction [82] allowing us to compute highly non-trivial quantities such as scalar
products and form factors directly in separated variables, bypassing the explicit operator-
based construction of the SoV bases. While being completely equivalent for spin chains in
compact representations, the functional approach is particularly attractive in settings where
an explicit construction of the SoV bases is complicated. For example, this is the case for
non-compact spin chains without a highest-weight state, that are commonly found in High
Energy Physics. Functional SoV has been already used to compute non-trivial observables
in these systems despite its recent concoction [21, 25].

The functional SoV approach allows one to naturally compute the overlaps of Bethe
states in terms of a determinant of the corresponding Q-functions. These observables can
be immediately enhanced to a family of diagonal form factors (¥|d,I|¥), where p is some
parameter of the model and I is an integral of motion, via the simple use of quantum
mechanical perturbation theory [74, 82]. From this, we can extract the form-factors of
some [ocal operators.

The study of correlators via the FSoV approach has been advanced in [26] by the
character projection technique and by identifying a set of (N — 1) x (N + 1) distinguished
operators P, ,(u) acting on the spin chain Hilbert space, which we call principal.

The main feature of the principal operators is that their off-diagonal matrix elements can
be computed in a simple determinant form in terms of the Q-functions, similarly to overlaps
of Bethe states. Even more generally, we show that the same determinant form holds true
for the form factor (W 4|P,,(u)|¥p), where |Up) and (¥,4| are two general factorisable
states, a class that includes both on-shell and off-shell Bethe states.

Furthermore, the form-factors of certain anti-symmetric combinations of the principal
operators also take a determinant form. A particular case of such combinations is the SoV
B and C operators that are used to build the SoV bases. Thus the FSoV construction
allows to derive from first principles the form of the B and C operators.

71
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Finally, we also compute the SoV basis representation of all the principal operators,
which allows one to construct arbitrary combinations of these operators (not only anti-
symmetric). In particular we show that those operators generate the complete set of the
spin chain Monodromy matrix elements 7;;(u). Note that at least in the finite dimensional
case, this implies, via the “quantum inverse transform” [83] that we have access to all local
symmetry generators Efj‘) from which one can in turn build any physical observables in this
system. We also believe this to be the case in general but we do not have a simple proof of
this.

In this chapter, we will assume that the spin chain is of length L and is in the spin-s
representation defined in (4.4.19). However, the FSoV formalism can also be easily adapted
to study spin chains in any highest-weight representations, although some expressions would
become more complicated. Therefore, we choose the spin-s representation for simplicity’s
sake.

This chapter is based on the author’s work [26].

5.1 Principal operators

A major goal in this chapter will be to compute the matrix elements of (sums of) certain
monodromy matrix entries between two transfer matrix eigenstates and their generalisation
to arbitrary factorisable states. We will refer to these particular monodromy matrix entries
as principal operators.

The principal operators are defined as follows. It is easy to check that the fused compan-
ion twist matrices G(%), obtained by doing fusion on the companion twist matrix introduced
in section 3.5, are linear in the characters x,. As such, each of the totally antisymmetric
transfer matrices t,(u) admits the expansion:

N
ta(u) = Z Xr Pa,r(”) . (5.1.1)
r=0

We call the operators P, ,(u) principal and the reason for their importance will become
clear in section 5.3. Note that they are independent of the twist eigenvalues \; as all twist
dependence of the transfer matrices is contained in the characters ;..

For example, the transfer matrix ¢;(u) can be expanded as

N—-1 N
ti(u) = > XoTjjr1(w) + Y. xe(—1)" T (w), (5.1.2)
j=1 r=1

where xo = 1.
Similar expansions can be performed for the totally antisymmetric transfer matrices
to(u), built from the quantum minors (3.7.7). These are given by:
ta(u) = Z Tj]lll;: (U)Gjlil e Gjaia , (513)

1<ip < <iq<N
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where G;; are matrix elements of the companion twist matrix. As a result of the summation
condition 1 <41 < --- <5 < N the coefficient of each y, is a sum of quantum minors with
distinct upper indices which cannot cancel each other and as a result the coefficient of each
Xr is non-zero as long as 1 <a < N — 1.

While most principal operators are given by large sums over quantum minors things
simplify for a = N — 1 as the N — 1-th anti-symmetric representation monodromy matrix
is simply equal to the quantum-inverse matrix of T'(u) divided by a trivial factor [43]. We
introduce the notation 7% for these operators, defined by

N-1 5 ;
T(u) [] QP ) =179 ( 5= 2>) ’ o1
k=1

where the notation 7, ; means that the corresponding index is missing, and we multiply
the LHS by Qg (defined in (3.6.5)) to remove the non-dynamical factors. It is then easy to
derive that:

N-1 N-1
tno1(u) = DO xe TV (W) = xn Y T9 M (u). (5.1.5)
r=0 j=1

We will write out explicitly the principal operators in terms of monodromy matrix
elements T;; for the special cases of gla and gl3.

glo case. In this case we have already seen in section 3.5 that:

t1(u) = Tia(u) + x1T11(w) — x2T21 () (5.1.6)

and hence
Pio(u) = Tia(u), Pri(u) =Ti(u), Pia(u)=—Ton(u). (5.1.7)

gls case. For the special case of glg there are only two antisymmetric transfer matrices
t1(u) and to(u) which in the notations described above admit the expansions of Table 5.1,
where to is written both in terms of the original monodromy elements 7;; and the elements
T% defined in (5.1.4).

Since the transfer matrices ¢,(u) admits the expansion (3.7.15) into integrals of motion
I, it clearly follows that each I, , also admits a linear expansion into characters x,. We

will denote the coefficients of the characters in this expansion Ifﬁ{ and so
N
Too = Y xe 157, (5.1.8)
r=0

Finally, since the transfer matrices commute for different values of the spectral param-
eters [tq(u),tp(v)] = 0 we see that by expanding into principal operators we obtain the
relation

D X Xs[Par (1), Py ()] = 0. (5.1.9)
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Pio(u) = | +T12 + T3

Pri(u)=| +T1

Pio(u) = | =T

Pis(u) = | +T3

Poo(u) = | (TieTss — TisTay ) /QY° 2 +713/QLs ]

Poi(u) = | (TiTy — TisTs ) /Q92S 2 +T23/Q [22-2]

Poo(u) = | (TnTs — TiaTy ) QY +783 QL]

Pog(u) = | (-T1uTy + TiaTy — TonToy + TosTyy ) /QY 72 | —(721 4 132) QI

Table 5.1: gls Principal Operators in terms of Monodromy Matrix elements.

As this should hold for arbitrary twist eigenvalues \ it is easy to see! that the above
expression implies [P, (u),Pp,(v)] = 0, that is principal operators corresponding to the
same character index r form a commutative family.

As a final note, we show that the B and C operators can be written in terms of Prin-
cipal operators. For the Y(gl3) case, using the RTT relations it is possible to rewrite the
expressions for B (4.4.1) and C' (4.4.9) in a slightly different form:

B(u) = —Tll(TllTii — T22T2717) — (T11T2737 — T13T2717)T21 s (5.1.10)
—Tll(TﬁJrng — T2J§+T21) — (TﬂJrng — T$+T21)T21 . (5.1.11)

2
S
I

This simple rewriting allows us to express the B and C operators in terms of the principal
operators (after removing the trivial non-dynamical factor) in an ordering which will be
convenient later

B C
- [2(:?2] =b(u) =P11P22 —P21P12 —% =c(u) =P11P35 —P3{P1a. (51.12)
Qe 0

5.2 Functional Separation of Variables method

In this section we review the key idea of the functional separation of variables method of [82].
We will then extend this method in section 5.3 by introducing the character projection tool.

'For example one can change variables from \;, i = 1,...,N to xs, i = 1,..., N. The Jacobian of such
transformation is simply a Vandermonde determinant of A’s so this is always possible for generic \’s. After
that (5.1.9) becomes a quadratic polynomial in /N independent variable x;, ¢ = 1,..., N which is identically
zero, which is only possible if all coefficients vanish.
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We will use slightly different conventions compared to chapter 3. First, we will use the

Q-functions:
A

Qa(u) = [[Nrga(w),  qa~uM, MjeN. (5.2.1)
j=1
These Q-functions are analytic in all the complex plane and will render the calculations in
this chapter much simpler.
With this choice for the Q-functions, the Baxter and Dual Baxter operators are:

N
ot = Z(—l)aTa(u)DN_Qa , 0= Z 1)2D?* N7, (u)e(u) (5.2.2)

a=0

where D is the shift operator satisfying D f(u) = f(u + %), Ta, @ = 1,...,N — 1 are the
eigenvalues of the totally antisymmetric transfer matrices ¢, and we have denoted:

L
) = QP () = @5, Qo(w) = [[(u—0a). (5.2.3)
a=1

Here, xn = det(G), where G is the twist introduced in section 3.5. Finally (u) is the
function

L
B (s—1i u—@B))
_ |:| g o (5.2.4)

5.2.1 Functional orthogonality and scalar product
The key relation in the FSoV approach is the adjointness condition [74, 81, 82]

((fOTg))a = ((gMaOf>)a, (5.2.5)

where O and O are the Baxter and the dual Baxter operators defined in (5.2.2), the bracket
((f(w))) is defined by

0

(1), = | dwpa)fw), (5.2.6)

—00

the measure factor p, is given by [74]

L (s —i(w —#6p))

fa(w) = 1_627r(w 0o —is) H Nl—-s—i(w-— 95))

(5.2.7)

and M, is some unimportant factor which does not depend on the functions f and g that
can be set to 1 by changing our conventions.

We will be interested in particular in the case where the functions f and g are the
twisted Q-functions @Q; (5.2.1) and the dual Q-functions Q?,..., Q" (defined in (3.6.10)),
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or functions with similar analytic properties. The way to compute these integrals is to close
the contour in the upper half plane and write them as a sum of residues. However, we need
to ensure that the integrals actually converge and that the contour can be closed in this
way without changing the result. In order to do so, it is sufficient to impose constraints on
the twist eigenvalues that we find inside the Q-functions, as in [74], which read

0 <argh, —argh; <2m, a=2,...,N. (5.2.8)

Once we do this, we can replace the integral by the sum of the residues in the upper
half-plane. Since the Q-functions (5.2.1) are analytic everywhere, the only contribution
comes from the simple poles of the measure factor (5.2.7). These poles are situated at
w = 0y +is + in, n € Z=p. As such we can write the bracket as an infinite sum of the
residues at the poles of the measure:

((f(w)))a = i LOn (0 + is + in) | (5.2.9)

n=0 T'a,0

with 74, being the residue of p, at the pole 0, + is + in:

L
1
Tan=—7— | | (n+1—1i04 +ibp)2s—1 , (5.2.10)
27
B=1
where (z)s = Fff(;”)z ) denotes the Pochhammer symbol and we have included the overall

normalisation 74,0 for convenience.

5.2.2 Basic idea of Functional SoV
To demonstrate the basic idea of the FSoV notice that the adjointness condition (5.2.5)

implies in particular

((fOTQ”a))a:oz((QlOTg))a:o, a=1,....L, a=1,....N—1  (5.2.11)

and so if we pick Qiﬁ“ and Q¥ to be the Q-functions associated to two transfer matrix

eigenstates |¥ 4) and |¥p) we have:
((Q?(OL ~oh) }4+a>> —0,a=1,....L,a=1,...,N—1. (5.2.12)

(6
Now if we insert the explicit form of O (5.2.2) for the two states A and B we obtain

the following system of equations:

—1

L N
2 (QFw Q) BF =00 =1, La=1,.. . N-1  (5213)
B=1 b=1
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where we have defined I{'7 5= (—l)b(Ig‘}B - Ifﬂ). Here Ig‘}ﬁ (Ilfﬁ) are the eigenvalues of the

integrals of motion I, 3 (defined in (3.7.15)) evaluated on the state [U4) (|¥p)). All other
terms of the dual Baxter operator cancel out since they do not depend on the state. Since
the collection of integrals of motion Ij 3 has non-degenerate spectrum at least one of the
differences I, g‘}g must be non-zero for the two distinct states and so in order for the linear
system (5.2.13) to have a non-trivial solution we must have?

" )(bﬂ (Q? B— 1Q1+a ])aocéAB, (5.2.14)

This is the functional orthogonality relation, and is the cornerstone of the Functional SoV
program. It reproduces a crucial feature of the scalar product between two Bethe states,
namely that it vanishes for two distinct states. In fact, it can be shown [74] to be exactly
identical to the scalar product (4.4.31) by including a state-independent normalisation A/
which should be chosen to ensure that Moo = 1 and so we have

_ 1 B, —11+a [N—20b]
Wallp) = 7 et ((Q1 u’TQ, ))a, (5.2.15)
where the normalisation factor N is given by
N = T80~ 85"t = (1) 7E-DO-DAN- (5.2.16)
a>f

where Ay is the Vandermonde determinant in the spin chain inhomogeneities:

Agi=]](6a —05). (5.2.17)

a<f3

5.2.3 Scalar product between arbitrary factorisable states

The functional orthogonality relation (5.2.14), together with the orthogonality conditions
for the SoV vacuum states Mo x = dgx and M, g = dy o, allows one to completely determine
all matrix elements My , of the SoV measure (4.4.25) from the knowledge of the determinant
form of the scalar product (5.2.15). In fact, by considering all possible pairs of different
Bethe states A and B, we obtain a system of linear equations for every matrix element. A
rigorous counting can even be carried out in the infinite-dimensional case, as detailed in
[74].

As was noticed in [74] the fact that the determinant (5.2.15) reproduces the sum (4.4.31)
is independent of whether or not the functions @ and Q'™® actually solve the Baxter
equation. As a result, we can consider any so-called factorisable states |®) and (©| with
wave functions

L

L N-1 .
1
= | | | | Fo(Xaa), ©Oly) = | | 1<a%gtN—1 GlLta <ya,b + 2(N—2)> , (5.2.18)
a=1 a=1 a=1""""7

2A row in this matrix is labelled by the pair (a,) and a column is labelled by the pair (b, 3). The pairs
of indices (a, @) and (b, ) are ordered lexicographically.
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where F, and GL*® can be any functions (chosen such that the infinite sum over SoV states
converges) and their scalar product will still be given by the determinant (5.2.15), where
the bracket is understood as the sum over residues (5.2.9).

A useful and non-trivial example to consider is the case of the scalar product between
eigenstates of two transfer matrices built with different twists. Concretely, we consider a
family of transfer matrices ¢, of twist G’ and another family of transfer matrices ¢, with G
replaced by G, obtained by replacing the twist eigenvalues \; of G with a new set \;. In fact
as we mentioned in section 3.5, the SoV bases are independent of the twist parameters A;.
As a result, the same SoV bases serve to factorise the wave functions of transfer matrices
built with any twist matrix of the form (4.4.4) such as G and so we have

(Wa|Up) = Z WA(y)MyxTp(x), (5.2.19)
X?y
where we have denoted a right eigenstate of the transfer matrices #, by |\i/ B- This means
that we can easily compute scalar products between eigenstates of transfer matrices with
different twists via determinants of Q-functions. In particular we get:

(W AT ) = N (Q?uﬁ QY (5.2.20)

a

where QF are the Q-functions associated to the state |¥g) and the transfer matrices &, (u).

5.2.4 Correlators from variation of spin chain parameters

The functional SoV approach allows one to extract a host of diagonal form-factors by varying
the integrals of motion with respect to some parameter p of the spin chain, such as twists
Aj or inhomogenities 0, or even the local representation weights. The construction is based
on standard quantum mechanical perturbation theory and we review it here.

The starting point is the trivial relation ((Ql(QTQ1+a> = 0 with Q'+ being on-shell

Q-function, i.e. satisfying the dual Baxter equation OTQ'*® = 0. This obviously remains
true if we consider a variation p — p + dp of the parameter p in Q'** and O resulting in:

(@0 + 5,00 @ + 5,0 ) =0 (5.2.21)

Expanding to first order in ¢, using the adjointness property of Of and also assuming that
0OQ1 = 0 we obtain at the leading order in perturbation theory:

((Qﬂ?pOTQ”“))a =0. (5.2.22)

By expanding out ﬁp(’)T, this relation allows one to obtain an inhomogeneous linear system
for the derivatives 0,1y g of the integral of motion eigenvalues Iy g. As a result we have the
relation, following from Cramer’s rule,

- det m/
Hoply 5% (@0)(p) @O

<\l]’\l]> = apr/7B/ - (5.2.23)

det M(g.0 )
(), (B.b)  (0)(0:B)
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where m(q.0),0,3) = ((QluB*lDN*%Q”a) and m/’ is obtained from m by replacing the

column (', 8') with y4 ) = ((Qlff}) o Q”“)) , where f@ is the part of 9,07 which does not

depend on the integrals of motion, given by:
N 9 9 N-1
Y, =— (apQ([; SlpN 4 (—1)Na,QL* S]D+N) =Y (1)t D BN | (5.2.24)
b=1

We introduce the short-hand notation for the determinants as follows

A A
opsl = det ((QBob, 0 ) , 5.2.25

onp] = 8%, L QT 0801 (5:2.25)
where oy g is some finite difference operator. Since the LHS makes no reference to the twists
or indices A and B used on the Q-functions these should be inferred from context. As such
the scalar product in this notation is given by

~ 1
(W4T pR) = N[wﬁ—lzﬁ—?b] : (5.2.26)
We will also use the replacement notation

[, 8) — o], (5.2.27)

which corresponds to replacing w® ~1D3~2 in the determinant [wP~1D372%] with the finite
difference operator o. For instance the numerator of (5.2.23) becomes

wdet | Miaaypm = [F.5) = Y. (5.2.28)

Since the scalar product (¥|¥) in our normalisation is proportional to the denominator of
the right hand side (see (5.2.19)) we have

~ 1 N
(W|oply ) = 7 57) — YT (5.2.29)

It is appealing to assume that the operator 6pfb/75/ can be characterised by this particular
modification of the structure of the determinant as compared to the identity operator given
by (5.2.19). One can also notice that for the identity operator in (5.2.19) we managed to
obtain a more general relation with the left and right states corresponding to two different
eigenvalues of the transfer matrix or, even more generally, to the transfer matrices with
different twists. It is thus very tempting to upgrade the relation (5.2.29) by replacing (V|
and Q'T® accordingly by those corresponding to a different state. Whereas this does give
the right result in some cases, as was noticed in [25], in general this strategy, unfortunately,
fails as we verified explicitly for some small length cases. However, for the case when the
parameters p are the twist angles this naive approach gives the correct result as we prove
in the next section where we also provide generalisations of this result.
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However, we noticed that for the case of p = A, the equation (5.2.29) survives a series of
upgrades. Firstly, it works for two arbitrary left and right factorisable states. Secondly, and
probably the most surprising, it still works for multiple derivatives in the twist parameters:

N—
(TADr,, - O Ty | W) = N v, Z 1Yoy, - 0n,, xou DTN

(5.2.30)
In the next section we will derive this identity using character projection. We will also see
more explicitly that the operators of type (5.2.30) are closely related with the principal
operators introduced earlier.

5.3 Character projection

In this section we extend the FSoV method, introduced in the previous section, in order
to obtain form-factors of non-trivial operators between two arbitrary factorisable states.
We will use these results in the next section to extract the matrix elements of a set of
observables in the SoV bases in a similar way to the measure, which then allows us to
efficiently compute the expectation values of a complete set of physical observables. For
simplicity in this section we only analyse the gl3 case.

5.3.1 Derivation

We start from the conjugate Baxter operator OT. We define the glz dual Q-functions as
QU .= Q1,1+a- O gives 0 when applied to the Q1,1+ functions as they satisfy the dual

Baxter equation (5.2.2), which in the gl3 case becomesd:

(’)T — QEQS]D?) . TlDl + TgDil o XgQg—QS]D*?) 7 OTQl,l-{-a =0. (531)

This implies that for any g, chosen such that the integral in the scalar product is convergent,
we have:

<gOLQ{{aH)a=0 L a=1,....,L, a=12. (5.3.2)

For definiteness we take g = leg , which is a Q-function corresponding to a state of a transfer
matrix with generic twist eigenvalue \q, different from that of the state A, which we denote
as Aq. The corresponding characters are denoted as X, and x,. We consider the set of 2L
equations in (5.3.2) as equations on the 2L integrals of motion Ib b=1,2, g=1,...,L,
which are the non-trivial coefficients in 79(u) and 71 (u). More exphc1tly we have

D=1 ((QB DR )afzfﬁ = - ZSJ Xr((@fogr)Q'f‘,aH ))a : (5.3.3)
=0

B,b

3In the gl3 case, the dual Q-functions Q**! are by definition equivalent, up to a sign, to the Q-functions
with two indices Q1,q+1 for a =1, 2.
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where we introduced the following notations for the non-dynamical terms in the dual Baxter
equation (5.2.2):

Oly = QDY | Ol = —u'D | Ol =D, O}y =@ ™D, (53.4)

The solution to (5.3.3) can be written as a ratio of determinants. In the notations of
section 5.2.4 we have

3 [(V /3) — O] ]
A b,-‘rl E (r)
Ib/,ﬁ/ = (— XT B 173 2b] . (535)

At the same time, since Il;‘,‘ g is the eigenvalue of the operator fb/yﬁ/ on the left eigenstate
(T4 we have
AT B AT I B
A _ Wy e |97 (O Ly |97

Iy g = —<\I/A|\i13> =N pa-ipsa] (5.3.6)

where in the last identity we used the expression for the scalar product of two factorisable
states (5.2.20). Comparing (5.3.5) and (5.3.6) we get

b’+1

(WA Ty | BB = N Z - 0l1. (5.3.7)

The next step, which we call character projection, is quite crucial. As we discussed in
Section 5.1 the IoMs, as operators, depend non-trivially on the twist of the spin chain A,
but when expressed in terms of the characters this dependence is linear in x,, see (5.1.8). We
also notice that the RHS of (5.3.7) has explicit linear dependence on x,. However, notice
that both sides of (5.3.7) have an additional implicit dependence on the twists through
the eigenstate (¥4| and the corresponding Q-function Qfl +a- In order to remove this
dependence we use the result of section 5.2.3, which states that the determinants in the
RHS of (5.3.7) can be written in the form

(—nb+t A( V.8 G B
T[(b pr (VA () (5.3.8)

which is analogous to (5.2.19), with M;Q;ﬁ/’a/ being independent of the states A and B.
In section 5.4.2 we compute the coefficients Myy) 8. explicitly. The expression (5.3.8) is
obtained by expanding the determinant and comparing the combinations of the Q-functions
with those appearing in W5 (x) and ¥4(y) as shown in (4.4.20).

At the same time for the LHS of (5.3.7) we have

WAy, [ U7 = Uy, o o B 7) (5.3.9)

X7y
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by using completeness of SoV bases. The operator fb/ﬁ/ can be decomposed into terms

corresponding to different characters y, as fb:ﬂr = Zi:o er b(,r )6” see (5.1.8). By comparing
(5.3.8) and (5.3.9) we get

3
DAy [TF) [Z xe (I lyy = MG )] —0. (5.3.10)
X,y r=0

Note that the expression in the square brackets does not depend on the state A and only
carries the information on the twist of this state in the characters x,.. For simplicity, consider
an arbitrary finite dimensional case with representation of dimension D per site. Considering
the expression in the square bracket as a collection of DY x D numbers computed for
different x and y we get a system of linear equations on those coefficients. There are D
states (U4| and D states |¥P) so we have as many equations as unknowns and furthermore
the matrix (U4|y)x|UB) can be considered as an overlap matrix between two complete
bases (U4 ® |¥B) to (x| ® |y) in the double copy of the initial Hilbert space H ® HT, and
thus is not degenerate. In fact we have many more of the equations as |\ilB> contains its
own set of independent continuous twist parameters. We see that as a consequence of the
consistency of the linear system it should have a trivial solution and thus we should have
that the square bracket is identically zero

3
Dixe (<X\f(7,)5/\y> - Mx(fy);b"ﬁ') =0. (5.3.11)
r=0

The above equation also stays true for the infinite dimensional case and this will be argued

in Appendix C.1 where the coefficients Myy) 8 are explicitly computed.

Another way to arrive to (5.3.11) from (5.3.10) is by multiplying the LHS by {y'| WA W5 |x")

and summing over complete basis of eigenstates ¥4 and ¥ with the completeness relation?
1= WA Ty (5.3.12)
A

As a result we have Y ,{y'| U4 P¥4]y) = §,,, which removes the dependence on the wave
functions and leads to (5.3.11).

Next, the round bracket in (5.3.11) does not depend on the twists, and the only way
the above identity stays true for arbitrary values of twists is if

KIS lyy = ME)Y (5.3.13)
Thus we get a set of 4 x 2 x L observables fé’g explicitly in the SoV basis, which are precisely

the coefficients of the principal operators Py, (u)

L
Pos(u) = O It ubs,, . (5.3.14)
B=1

4See Appendix D.3 for a proof of the existence of this relation for our family of infinite-dimensional
representations.
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In section 5.6.1 we prove that this set of non-local observables is complete and we will
explicitly compute the SoV matrix elements for P, ,(u) in section 5.3.4.

Finally, after obtaining the relations (5.3.13) for the individual operators in the SoV
basis we can revert the logic and multiply (5.3.13) by Zx7y<\I/A]y><x|‘ilB> to obtain the
character projected version of the equation (5.3.7)

(_1)b’+1
N

WAL, 8Py = (¥, 8) = O], (5.3.15)

which constitutes the main result of this section. To summarise, we obtained a determinant
form of form-factors of all operators férg between two arbitrary factorisable states. It is
easy to see that (5.3.15) is equivalent to (5.2.30).

Before closing this subsection a comment is in order. A key step in our derivation relied
on the denominator in (5.3.6) being non-zero. This is indeed non-zero as long as |¥p) is
not orthogonal to (¥ 4| which is true as long as |¥p) is a generic factorisable state or as
long as the twists in |¥p) are independent from those in (¥ 4|. The expressions (5.3.15)
for the form-factors are then valid for any choice of twists or indeed any factorisable states.
However, it is possible to recast the derivation in an alternate way which avoids this step
completely and we present it in Appendix D.1: the above derivation, which may be singular
in certain degenerate cases, is presented to highlight the determinant origin of our result as
a consequence of Cramer’s rule. Finally, the counting argument presented above relied on
the representation being finite dimensional. The results remain true even when extended
to the infinite-dimensional case as is discussed in Appendix C.1.

5.3.2 Form-factors for gl3 principal operators

In the previous section we found the form-factors of the coefficients IAC(LT& of the u-expansion of
the principal operators P, ,(u). In this section we derive compact determinant expressions
for the form-factors of P, ,(u) themselves as functions of the spectral parameter u. We
will use w for the dummy spectral parameter appearing inside the determinants to avoid
confusion with u — the argument of P, ,(u).

Let us start from Py q(u) = Th1(uw). From (5.3.14) we see this principal operator is a
generating function for the set of operators f{lo)[ with o = 1,..., L. From (5.3.15) we thus

have
L
UA T (u)[BP) = uL<\IfA|¢fB>‘% Bgluﬁl‘l[u,ﬂww%]. (5.3.16)

This expression appears to be a sum over determinants. Let us show that it can be com-
pressed into a single determinant. Let us write the determinants in the sum (5.3.16) more
explicitly by introducing the notation

[Ob,,é’] = [0171, e 701,La 0271, e ,OQ’L] 5 (5317)
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obtaining
NQ@AP (w)[0F) = (5.3.18)
— WD, wD,w?D, ..., wt D, D7 wD L, L wl DY
— WD, WD, WD, .. WD, D7 wD T L wE DT
—  W[D,wD,wD,... WD, D7 wD ™ Wt D T

+ uF[D,wD, WD, ..., WD, D7 wD Wt D T

where in the last term we also wrote the overlap of the states in the determinant form
(5.2.20). By a simple rearrangement of the columns we get:

(—D) [{(w? —uw))DH | w7 D] (5.3.19)
or equivalently:
(~)[{(w — wpw? DY, I D], (5.3.20)

Hence we arrive to the following expression as a single determinant

@y @)E? = C - wu Dy DL a2

We will now introduce a very convenient shorthand notation. For ordered sets u, and 4
integers Ly, a = 0,1,2,3 we define the following object

1
[Lo;Uo‘Ll;u1‘L2;u2‘L3;u3]ql =N (5.3.22)
[{ Auouw ij3}Lofl {Auluw ijI}Llfl {Auguw ij_l}szl {AU3uw ij_3}L371]
Ay, i=0 T U Ay, =0 U Ay, j=0 U Ay, j=0 1’

where Ay for some ordered set v is a Vandermonde determinant

AV = H(U, - ’Uj) (5323)

1<j

and v U w means that we add one element w to the ordered set v at the end. For example
equation (5.3.21) can be written as

P11(w)y = 05 L | L

0;]qu . (5.3.24)

Here and below we will systematically omit ¥4 and UZ. Note that the determinant in the
RHS of (5.3.24) implicitly contains the Q-functions of the corresponding states.

Using a similar strategy as above we derived the following single determinant expressions
for the principal operators between two arbitrary factorisable states
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{dy= 0 L; L; 0; Iy
(Pro(u)) =— : 1,0 —is L—1;u L; 0; \I/
Pr(u)) = 0; Liu L; 0; \1/
(P1o(u)y = (—1)F 0; L—Tiu | L+1; 0; W
(Pra(u)y = — o L-Lu | L Lo+is | (5.3.25)
(Pao(u)) = (—1)F 1.0 —is | L L—Lu | 0 I,
Poa(w) = (1) | o L+l | L-tu | o .
(Paa(u)) = ; 0; L; L;u 0; \I/
Pog(w)) = (-F | 0 L; Lt | 1o+ |

Here we have defined 0 + is := {#; £ is,...,0 = is}. In the next section we will use

these expressions to obtain the matrix elements in the SoV basis of the principal operators.

5.3.3 Form-factors for gl;, principal operators

In order to compare with previous results in the literature we also write form-factors for
the principal operators in the case of the gls spin chain in a form similar to those of the
previous section.

We start from the gly dual Baxter operator OF = QEQS]D2 -7+ XgQg_QS]D_2. For the
glo spin chain, we only have the fundamental transfer matrix ¢1(u), so we only have the
principal operators Py ,(u), 7 = 0,1, 2. The notation (5.3.22) in the gly case becomes

1
[LosuolLl;lh‘Lz;uz e N5 (5.3.26)
[{AuOkaijQ}Lofl {Auluwwj}[/lfl {AUZUWU}J'D—?}LQil ] .
Ay, i=0 T U Ay, j=0 u j=0 "

Following exactly the same steps as for gl we find that the matrix elements for the principal
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operators and the identity operator are given by

@)= o: N
(P1o(u)y = +{Tia(u)) = — :1;9—1'5 | L-1u | 0 q] .
Pra(u)) = T (u)) = 0; | Liu | 0; Iy
(Pra(w) = ~Tn(w) = (D" |0 LT | Lo+ |

Here we used (5.1.7) to relate principal operators with the elements of the monodromy
matrix. From these equations it is already easy to see that T11(u) = B(u) is the SoV B-
operator, which acting on the factorised wave function, replaces Q(w) — (u — w)Q(w).
We will analyse the action of the remaining operators on the SoV basis in the next section.

5.3.4 Principal operators in SoV basis

The goal of this section is to convert the form factors we have derived in section 5.3.2 to
the SoV basis. The general strategy is simple: starting from a form factor (¥4|O| U5, for
some operator O, which we assume can be expressed as

(TAOBP) = [Lo;UO‘L1;U1‘L2;uz‘L3;u3]\P (5.3.28)
we insert two resolutions of the identity > |x){(x| = Zy ly)}y| = 1:

WAO[IP) = > (U y) ([P (y[Ox) . (5.3.29)
Xy
We then use (4.4.20) to write the RHS in terms of Q-functions. Since the LHS can be written
in terms of determinants of Q-functions as proven in section 5.3.2, we can treat (5.3.29) as
a linear system, where the unknowns are precisely the form factors in the SoV basis. It is
then immediate to read off the matrix elements (y|O[x).
It is straightforward to deduce a general formula, which we derive in Appendix C.1,
which reads

[Lo;uo‘L1;u1‘L2;U2‘L3;u3] Z‘IJB [LO,uO’LLul‘L%uZ‘LSauS] (5.3.30)
xy

where we have introduced the notation

2251gn H Tanaa Buyx 1)
Aj

Xy a Ta,0 ub

[Lo; UO‘LB U1‘L2; uz’L?); 113]

Ja,a:ka,a_ma,a+a

(5.3.31)
The notation used here is identical to that used for the measure (6.7.15), with the only
difference now being the sign factor sy, is defined as, for gly,

st = (—1) 7 CDW=D+300 2 (Ln=1) (5.3.32)
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and now o in (5.3.31) is a permutation of the set

{0,...,0,1,...,1,2,...,2,3,...,3} (5.3.33)
N—. —

and as before o, , denotes the number in position a + 2(a — 1).

Selection rules One can show that the SoV charge operator (4.4.24) imposes selection
rules on the states {y| and |x) for which the matrix elements (y|O|x) can be non-zero. As we
explain in Appendix C.1, the overlap can only be non-zero if there exists some permutation
p* of {1,2} such that

Maa = Napg = Capy — @ (5.3.34)

for some fixed 0. We now sum over all values of (a,a) and denote the SoV charge of the
state (y| (|x)) by Ny (INy). We obtain

Ny — N, =3L =) 0a - (5.3.35)

a,a

Since o is a permutation of (5.3.33) the sum Z Ope o sSimply equates to Ly +2L9 + 3L3 and
a,a

hence we see that (y|O|x) is only non-zero if
3
Ny, — N, =3L— Y nL,. (5.3.36)
n=0

Notice that this reproduces the observation of [74] that the measure My, = (y|x) is only
non-zero if Ny = Ny. Indeed, for the measure we have Lo = L3 = 0 and Ly = Ly = L.
Plugging into (5.3.36) we immediately find N, = N,.

glo matrix elements

Using the general formula (5.3.30) we will compute the SoV matrix elements of the gly
principal operators in order to make contact with existing results in literature.
Modifying the notation (5.3.31) to the case of gly we define

[LO; uo‘Ll; ul‘Lg; UQ]‘I/ = Z \IJB(X)\I/A(y) [Lo; u0’L1; ul‘Lg; u2] (5.3.37)
xy xy

with

Au UX
[LO%UO‘L1§U1’L2;H2]XY - Z—‘;sign(a)n Lo TT 2050 (5.3.38)
b

o Ta,0 Aub

OCa=Na—Mqg+1
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o is a permutation of the set

{0,...,0,1,...,1,2,...,2} (5.3.39)

with o, denoting the number at position o. Notice that unlike in the higher rank case there
is no sum over k as only k, = n, is possible.

We will now use this general formula to derive the SoV matrix elements of the glo
principal operators. We will begin with the operator Py ;(u) = T1;(u) for which we have

Pra) = |o:

|, (5.3.40)

In this case o is simply a permutation of {1,...,1} and the only possibility is that it is the
identity permutation with o, = 1. As a result we find that the non-zero matrix elements

{y|P1,1(u)|x) are given by

L L
y[Pra(u)fxy = H xa) [T (xa —xg) [ ] "2 (5.3.41)
= a>p a=1 Ta,0 S
We then read off that?®
L
WPy = T [ (= xa)lyx) (5.3.42)
a=1

and hence the operator P i(u) = Tii(u) is diagonalised in the basis |x). This is not
surprising as 711 (u) coincides with the Sklyanin’s B operator when the twist is taken to be
of the form (4.4.4). What is remarkable is that we derived that this operator acts diagonally
on the SoV basis directly from the FSoV construction. We will later see that this persists
at higher rank.

Next we examine Py o(u) = T12(u) and have

(P1o(u)) = —[1; 0 — is|L — 1;u|0; ]m (5.3.43)

Using the relation (5.3.37) we obtain

Ag_
. SL . 18X, —1( Ta,n
1;0—is|L—1; 0;] =L | [ Foune 5.3.44
[ ZS| U| xy AGSlgn( ) AG is uux o=t Ta,0 Ca=Na—Mma+1 ( )
where now o is a permutation of the set

{0,1,...,1}. (5.3.45)

For gla we see that the measure is diagonal and so {y|oc{x|. We keep the notation (y| in order to be
consistent with higher rank.
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We can characterise each o by the property o, = 0 for some v = 1,..., L and there are L
such permutations. Hence, we obtain

Q[2S] (%+) U — Xq Tame
YIPro(u)xy = =2 [ —= [ [xa —xa) [ [ 2= (5.3.46)
Ay Xy — Xq Ta,0
azy =7 a>f @ ' My=ny—1,ma=nq
where we have used that |o| = v — 1. The situation with Py 2(u) = —T%1(u) is identical.
We have
(Y|P 2 (u)|x) = (—1)L[0; L= 1;ul1;0 + is] . (5.3.47)
xy
Now, o, is a permutation of
{1,...,1,2} (5.3.48)

Up to the fact that now |o| = L — ~ the situation is identical to the previous case and we
find

Q) Ty v xa B Tana
WPl = = == [ ] [T0a—xs)]]

aF#Ey Xy T Xa a>pf a a0

(5.3.49)

My =N~+1,Ma=nq

which perfectly reproduces the well-known gls results [84].

gls matrix elements - explicit example

We now turn our attention to the matrix elements of the gls principal operators. Since
we have access to the general formula (5.3.30) we will not present the matrix elements
{y|Pq,r(u)|x) for each principal operator explicitly. Instead we will demonstrate an explicit
computation showing the formula (5.3.31) being used in practice.

We consider an gl3 spin chain of length L = 2. The bases (y| and |x) are labelled by
non-negative integers mq o and nq  respectively, with a,« € {1,2}. Hence, we will use the
notation

{y| :=={mag,mi2;mai,magl,  |X) =|n11,n12;N21,Nn22) . (5.3.50)

We will compute the following matrix element
(3,2;0,0/P1,0(u)|2,1;1,0). (5.3.51)
The starting point is the expression

(W APy o(u)|[ T ) = —[1; 6 z’s’L 1 u’L;

As a result of (5330) we see that the SoV matrix elements are given by

yIPro(u)lx) = ~[ 150 is| L — 13| L;

0;] : (5.3.53)
Y, X
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We will use the expression obtained in (5.3.31) to explicitly compute (5.3.51). Repeating it
here for convenience, (5.3.31) reads

A —1 |U| Tanag.a Au UX -1
G0k =51 ) Ag [[==== [ [—x—" : (5.3.54)
k W

a,a Ta,0 b

Ua,a:ka,a_ma,a+a

For the case at hand, we have L =2 and Ly = L1 =1, Ly = 2 and L3 = 0. Furthermore,
ug =60 —is:= {0 —is, 0 —is}, u; ={u} (5.3.55)

with both us and us empty.
First, in order to obtain a non-zero matrix element we need to check that the SoV
charges of (y| and |x) satisfy the SoV charge selection rule (5.3.36) which reads

3
Ny, —N, =3L— ) nLy, (5.3.56)
n=0

with N, = Za@ Na,a and Ny = Zma Ma,q and L = 2. We have
Ny=2+1+1=4, N,=3+2=5. (5.3.57)

For the operator P g(u) we have Ly = 1, Ly = 1 Ly = 2 and L3 = 3 and hence (5.3.56) is
satisfied. As such, o in (5.3.31) corresponds to a permutation of

{0,1,2,2}. (5.3.58)

We now need to construct permutations of the set {ni1,n12,n21,n22} for fixed a. In
general there are 4 possible permutations which read

{n1,1, ni2,n21, n2,2}, {n1,2, nii,n21, n2,2},

(5.3.59)
{ni1,n12,n22,n21}, {n1,2,n1,1,n22,M2.1}

but if there are degeneracies in n,, for fixed o there can be fewer permutations. In our
case there are no degeneracies and we have the following permutations

{2,1,1,0}, {1,2,1,0}, {2,1,0,1}, {1,2,0,1}. (5.3.60)

The formula (5.3.31) requires summing over all permutations in (5.3.60) for which o4, =
ka,a — Ma,q + @ produces a valid permutation of (5.3.58). For each of the permutations in
(5.3.60) the corresponding o, q are given by

{0,1,2,2}, {0,1,3,3}, {-1,2,2,2}, {-1,2,1,3}. (5.3.61)

Only the first set corresponds to a permutation of {0, 1, 2,2}, which has |o| = 1, and hence
the only term in the sum over permutations of n, for fixed a comes from {2,1,1,0}. Of
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course, in general there can be multiple such permutations which need to be taken into
account.
From here, for this single o, we can read off

Xo-—l(O) = X1,1, Xa—l(l) = X1,2, Xo-—l(2) = {X271,X272} (5362)
which results in
Al.l UX
[[—x—"= QP (x1,1) (= x1,2) (x2,1 — x2.2) . (5.3.63)
b up

Finally we plug everything in, obtaining

2 .
Qi (01 +i(s +2) riariara
(61 — 62)? 71,0 71,0 72,0

(3,2:0,0/Py0(w)[2,1;1,0) = —i(u—6; —i(s +1)) . (5.3.64)

or more explicitly

853(5 + 1)(25 + 1) (28 — i912) 2 (1 — 610 + 25) (2 — 610 + 2S) (2S + z’912) (1 —i01 +s + iu)/
- 2 [ - 3 - \5.3.65)
07, (i — 012) (i + b12) 2 (612 + 2i)

where we have defined 615 = 67 — 6.

5.4 Form-factors of Multiple Insertions

In the previous sections we derived various matrix elements of the principal operators. In
this section we will extend this consideration to multiple insertions of the principal operators.

The most general case can be obtained by using the matrix elements in the SoV basis,
however, this does not guarantee that the form-factor will have a simple determinant form.
We consider this general case in section 5.4.2. At the same time, for a large number of com-
binations of the principal operators we still managed to obtain determinant representations
as we explain now.

5.4.1 Antisymmetric combinations of principal operators

The set-up in this section is similar to that of section 5.3.1. We consider the gl3 case with
two factorisable states (U4| and |UP). In addition we assume that the state (¥4| is on-
shell meaning that it is an actual wave function of a spin chain and that it diagonalises the
transfer matrix with twists \,.

Let us try to extend the previous method to general multiple insertions. The starting
point is again from (5.3.3), which we write below for convenience

Y0 QP D O ) I = - > v (QFo) et ) - (5.4.1)

b,B r=0
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We rewrite the above equation by modifying one term in the sum in the LHS at b, 8 = b”, 5”.

Namely, we replace ((QB( p'—1pi— 2bﬁ)Ql a+l)) ((QBO Q7 a+1)) In order for the
equality to hold we also have to change the RHS" accordingly

%(_1)b << Q{; (wﬂ_lpg_%)‘wﬁ”11)3217”_,@2 y Qﬁa-‘rl >a]lf}ﬁ (5'4'2)

- S afop,etin), - (QF [0l - 7D Q) B

So far this is just an innocent rewriting. Next we treat the RHS as an inhomogeneous part
of the linear system on Ig‘}ﬁ and apply Cramer’s rule. As we have two terms in the RHS
of (5.4.2) we obtain a sum of two ratios of determinants. As a result, for &', 3" # b”, 3" we
have

L0787 = O] (.8 = X, 0],
lp = 07 Ot 5.4.3
v.B (1) [(b",B") — Og‘ )] ( )
(—1)P+ 1 [(v",5") — (5) (Y, B — wh'1p3—2]
- b, B" )

[(b",B") — = Of )]

Notice that the term with Ogs) in the RHS of (5.4.2) disappears as it produces a zero
determinant in the numerator. The last term in (5.4.3) can be simplified a bit as we first
replace the (b”,3") column with (’)Zs) and then insert into the column (¥, 3’) the exact

expression which was previously at the column (b”, 5”)
[0, 5) = Oy (.5 — S, 1,0}
(b, 5") = O]
VY T
1YY I g [, 5) = O]
8 [(b",8") — Ogs)]

Ity = (=1 (5.4.4)

+ (=

Next we use the previously derived (5.3.15), which in the new notations becomes [(b’ B — (’)Efr)] =
(_1)b'+1N<\IfA\IA(%,|‘i/B>. We get

I B,@Au D[Py — I (AT 0P (5.4.5)

_ Z xr )b’+b”

Then we use that Ig?ﬂ(\IIA\ = (¥4I 5 to plug the LHS under one expectation value

b”,,@”) - 025)7 (b/,ﬁ/) N Ozr)] '

<\I}A‘IA/ /]’—‘(S) —f// ”]’—‘(S) |¢/B>—Z ﬂ[(b/’ 6”)_)OT (b/ ,8/)—>OT ]
b8t g A8 Ly T L Xr™=\7 ’ (s> \¥> (i
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Finally, we apply the character projection trick to obtain

o(r . (7 . B (_1)b/+b/l
WA B — I Iy |07 = = [(6.8") — O, (0. ) — O, ]|

As before, once we have this expression we can remove the assumption that U4 is an on-shell
and replace it by a generic factorisable state following the same argument as in section 5.2.

Finally, the derivation we outlined above can be iterated to get the following general
expression for the multiple insertions of the principal operators antisymmetrised w.r.t. the
multi-indices (b, )

(_1)b1+"'+bk+k}

A, )
] WY

[b1,81 " bk7/3k]|\ilB> - [(by, B1) — 0231)’ - (bk, Br) = OZ%)] 5.4.6)

Note that the RHS vanishes if any of the character indices (s;) coincide. Thus in order to
get a nontrivial RHS we can have at most 4 antisymmetrised principal operators for the gls
case and N + 1 for general gly. The fact that the RHS is antisymmetric in the character
indices is also reflected on the LHS, where this is a consequence of the commutativity of
transfer matrices. In fact, expanding the relation (5.1.9) in v and v we immediately get that
I [(;) B,flg,‘f?ﬁﬁ] =1 [(;/) ﬁ/fé;?ﬁ,/]. Since this can be done for any consecutive pair of character
indices in the LHS of (5.4.6), it follows that this quantity is completely antisymmetric in
the character indices as a consequence of the RTT relations.

Finally, like in section 5.3.2 we can convert the expression for the form-factor of the coef-
ficients of the principal operators into the form-factor of the principal operators themselves.

For example, we have:

(—1yr (i) = Pra(0)Pra(w) _ | o L—tiuv | L+1; 0; ]

u—v 4
(P1.1(u)P22(v) — Po1(v)P12(u)) = [ 0; L;u L;v 0; ]‘1’(5 A7)
—(P1 ()P, (v) — Poo(v)P1a(u)) = | uo—is | -1 Liv 0; .
(—1)L71Py o (u)P23(v) — Pao(v)P13(u)) = [ 1;0 —is L—1;u L—-1v 1;0 +is ]\p .

For a more complicated but nice looking example of a triple insertion we get:

Eijk<P1,1(ui)P1,2(uj)P1,3(“k)>:(_1)L [ 0; ‘ L — 2;u1,us,us3 ’ L+ 1; ‘ 1;60 + is ](.5-4-8>
v

(u1—u2)(u1—u3)(uz—u3)

Notice that the second form-factor in (5.4.7) contains exactly the same combination that we
found for the expressions for B and C operators in (5.1.12)! We will discuss the implications
of this observation in section 5.4.3.

5.4.2 Via Matrix elements in SoV basis

In the above subsection we demonstrated how it is possible to write a large family of
correlation functions with anti-symmetrised insertions of principal operators. However, this
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does not exhaust all possible correlators. On the other hand, we can in principal reduce the
computation of correlators with any number of insertions to sums over products of form-
factors with a single insertion by inserting a resolution of the identity over transfer matrix
eigenstates. In practice this is not very useful as one would need to know the Q-functions
for every state and not just those appearing in the wave functions.

This issue can be resolved by using the matrix elements of the principal operators in
the SoV bases instead. Consider the double insertion

<QIA\PG,T(U)Pb78(v)|\TlB>. (5.4.9)

We now consider three resolutions of the identity

1=>1px = D yXyl = D Xyl (M ™)y« (5.4.10)

X X,y

where (M™1), denotes the components of the inverse SoV measure M (6.7.15) which
appears in the resolution of the identity

1= Jy)x|Myx. (5.4.11)
X,y

We insert the three resolutions into the above correlator, obtaining

(UalPar(uw)Prs(0)|Tp) = D0 Waly) yPasr(@)X) ' |Pos(v)x) (M )y Tp(x).

(5.4.12)
At this point we see that the computation of multi-insertions becomes quite complicated.
Indeed, for the rank 1 gls case the measure M, is diagonal and so the computation of
the inverse measure (M‘l)y/7xx is trivial. For higher rank the measure is no longer diagonal
and (./\/lfl)ygxl needs to be computed. Nevertheless, it can be computed since M, is
explicitly known (6.7.15) and furthermore My 4, in an appropriate order of x and y, is an
upper-triangular block diagonal matrix where each block is finite-dimensional even in the
case of non-compact gl [74].

5.4.3 SoV B and C operators

In this section we will demonstrate that our results allow one to derive that the SoV B and
C operators (5.1.10) are diagonalised in the SoV bases |x) and (y| respectively. Structurally,
the B and C operators are very similar. We recall the expressions (5.1.12) which read

B(u) = Plyl(u)PZg(u) — PQJ(U)PLQ(U)

C(u) = P11 (u)P22(u + i) — Po(u + )Py a(u). (5.4.13)

Both of these expressions are special cases of the general double insertion Py j(u)P32(v) —
P31(v)P12(u) appearing in (5.4.7). We will denote this operator as B(u,v), that is

B(u, ’U) = Pl,l(u)PZg(v) — P2’1(’U)P172(u) . (5414)
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By using the relation (5.3.30) we can convert its matrix elements in the ¥ basis in (5.4.7)
to matrix elements in the x,y basis. The result simply reads

SL . T Na,a
GIB 0 = 35 3 sign(o) [T Ay v, 1 (5.4.15)
0 oa a0 _
) Oa,a=kKa,a—Ma,at+a
where ¢ is a permutation of
{EJ,&,—%} (5.4.16)
——— —

L L

We now examine the special cases v = v and v = u+1, relevant for B and C respectively.

B operator The crucial point is that in (5.4.15) we have that Auuxafl(l)Avuxgq(Q) =
(u — Xo-1(1)) (v — X5-1(2)) A1Ag and hence, we see that, for v = u, we have

(= Xg1(1)) (1t = Xp-1(9) = | [(tt = Xara) (5.4.17)

a,a

which is independent of o. Hence, this factor can be pulled outside the sum over permuta-
tions and we obtain

S . Tana,a
1B, ) = [ (u = xaa) 55 3 sin(o) [ [ 720080
a,a 0 L a,a Q,

Ga,a:ka,afma,a“ra (5418)

= H(“ — Xa,a){Y[%) -

Hence the operator B(u) := B(u,u) acts diagonally on [x) with eigenvalue [ [, ,(u — Xa,a).
This coincides precisely with the spectrum of Sklyanin’s B(u) operator [74].

C operator We will now show that C' is diagonalised in the |y) basis in the same manner
as we did for B. We start again from the expression:

) SL . Tana,a
<y|B(u7 U+ 7’) |X> = Kg Z Slgn(g) H i Auuxo,_l(l) Au-‘riuxa_l@)
k

@,a ,ra’o O'(L,a:ka,a_ma,a"ra
(5.4.19)
We will now show that Auuxo_l(l)AuHux[,_l@) = ]_[a,a(u — Ya,a)A1A2. We have
Auuxg,l(l)AquiuxG,l@) = (U - ngl(l))(u +1— X071(2))A1A2 (5420)

We now examine the factor (u —x,-1(1))(u + i — X,-1(2)) which can be rewritten as

[T @w-xaa) [] @+i—xaa). (5.4.21)

,a:0q,a=1 0,0:0q,0=2
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Next, we use that xqq = 0o + i(S + Nae) and yaq = 0o + i(s + maq — a) with ngq =
Ma,a — Oa,o + a to obtain

[] @-xaa) [] Wti—xaa)=][w—0s—is—maa+1-0a). (54.22)

Q,a:0q,a=1 Q,a:0q,0=2 a,a

The final expression coincides with [], (v — Ya,.) which is independent of o. Hence we
obtain

ICW)x) = I Bluu+ )y = [ [(w = yaa)ypo, (5.4.23)

meaning that the operator C'(u) acts diagonally on the (y| basis with eigenvalue [ [, ,(u
Ya,a)-

5.5 Extension to gly spin chains

In this section we will extend our results from the previous sections to the glx case. The
construction is a simple generalisation of the results in the previous sections, where we
focused mainly on glo and gls cases. We will briefly go through the main steps of the
derivations.

5.5.1 Determinant representation of form-factors

We start again from the dual Baxter operator
N
Z wyDVN"2 olQLe=0. (5.5.1)

Now we consider the usual trivial identity, where o 4 is applied to Q1+“.

(erol Q”“)) —0, a=1,....N—1, a=1,...,L (5.5.2)

Now we first expand the Baxter operator and the eigenvalues of the transfer matrices TO‘LA

in the spectral parameter u, obtaining

Z(—l)b(Q?uﬂ_le_QbQi;*“) Ity = — Zxr (efol, Q””) , (5.5.3)

b7/8

where we have defined

O.(ro) — QEQS]DN , Ozr) - (—]_)"A’UILIZ)]\/Y*Z"7 r = ]_7 - .,N - ]_ s OgN) — (_1)NQ£—2S]D7N )

(5.5.4)
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Using Cramers’ rule, we can compute the matrix elements of the integrals of motion exactly
as in the gl3 case leading to

/s N
o LB = 2o o Oy

Iy g = (1) TR (5.5.5)

Since (W 4] is an eigenvector of fbﬁ with eigenvalue Ij 3 we can rewrite the above as

(—1)Y+L [, 8) = Lo xr O]

7 PEEERE (5.5.6)

(Vally g|VE) =

The principal operator coefficients 7, 152 are then introduced via the expansion into characters

of the integrals of motion [Abng

N
fyg =Y xedy) )y (5.5.7)
r=0
Performing character projection we then obtain the form-factors
0 gy (D
<‘I’A|I(I}3/|‘I’B> = T[(b/’ﬁl) — Ogr)] : (5.5.8)

We see that this relation is identical to that of the gl3 case (5.3.15).

In the same way as in gl3 we can assemble the operators I érg into the generating functions
Py (u) — the principal operators. The form-factor of the generating function Py ,.(u) defined
by (5.1.1) is then given by

~ L / /
WalPy ()| p) = Sy [w DV 4 3 (1)WY, B) - Of 1. (5.5.9)
=1

This result can be easily recast in determinant form using the same arguments as the gl3
case. We introduce the notation:
ol feviuv], =
;ug) ... ju = —
0, Y0 N, UN o N

X
[ A b e W

(5.5.10)

We will write explicit expression for the form factors of type (Py ,(u)). We have that:

.y 0; @ o
r I ) ( ) u :\Ij
r=0 | (1YLl 1,0 —is o= | o 59
r=N | (=1)V+HLOV=b)+N+1 _0; (L-1)";u oo 150 + s _\1;

11)



98 CHAPTER 5. FUNCTIONAL SEPARATION OF VARIABLES

r> Y| (=)L) 70; . (L-1)";u . (L+1)

Igg

dn

r<t | (1)L oo || ) @

S

Multiple insertions The expression (5.4.6) for multiple insertions generalise without
modification from the gl3 case and we have
(_1)b1+~~-+bk+k

#(sk
-y, N

A
<\II |I bkﬁk

0P — [(B1,01) = O 1, (Brs bi) = O, ]
(5.5.13)
As mentioned in the gl3, the LHS is anti-symmetric in character indices and so in order to

get a non-zero correlator we require that £ < N + 1.

bl:ﬁl

5.5.2 Matrix elements in SoV bases

We can repeat the arguments from the gl3 section to compute all form-factors of the form
{y|Pqr(u)|x). We introduce the notation

[Lo;uo‘...‘LN;uN]yX (5.5.14)
defined by the property |
[Lo; uo‘ . ‘LN; uN] Z\IIA [LO, uo‘ ‘LN; uN]yvxlifB(x) (5.5.15)
where we remind the reader that the SoV wave functions are given by
L ‘ N L N-1 ~
Valy) = U et QU (Yaw +5), n(x) = 1]1 11 QF (xaa).  (55.16)

The explicit expression for (5.5.15) is worked out to be

A _
AN i Z |0'| H Ta,na,a H ub;t;fb 1)

o Ta,0

(5.5.17)

O'a,(x:ka,a_ma,a“!‘a

The index b takes values in the set {0,1,..., N}, ae{l,...,N —1}and a € {1,...,L} and
the summation is over all permutations k of the set {nqq} for fixed a for which o defined
by 0a,a = ka,a — Ma,e + a defines a permutation of the set

{0,...,0,...,N,...,N}. (5.5.18)
N————r N—_———
Lo Ly

The matrix element (5.5.17) is only non-zero if the SoV charges N, and N, satisfy the
relation

N N
Ny =Ny = (N -1)L - donL,. (5.5.19)

The details of the derivation are exactly the same as in the gl3 case described in Ap-
pendix C.1.

12)
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B and C operators. Having access to the complete set of SoV matrix elements it is now
easy to determine which operators correspond to the SoV B and C operators. Following
the derivation in the gl3 case it is trivial to work out that B(u) corresponds to the operator
with

w=uy={}, uwu={u}, r=1,...,N—1 (5.5.20)

whereas C(u) corresponds to the operator with
w=uy=1{}, w={u+i(r—-1}, r=1,...,N—1. (5.5.21)

Indeed, by examining the matrix element (5.5.17) as in the gl3 case we immediately read off
that the operator defined by (5.5.20) ((5.5.21)) acts diagonally on |x) ({y|) with eigenvalue
given by [ [, ,(¢—Xaa) (I]4.0(2 —Ya,a)) and hence coincides with B(u) (C(u)) respectively
due to the non-degeneracy of these operators’ spectra. It is possible to work out what these
operators correspond to in terms of principal operators P, .(u). They are given by

Ne@aN=1P o g(u) ... Poy y No1(u)

= (V1) (5.5.22)
= (N — 1)!€a1...aN_1Pa171(u) .- 'PaNflvN_l(u + Z(N - 2)) : o

The fact that these operators coincide with the B and C operators of [74] is not manifest
— application of the RTT relations is required as was already demonstrated in the gl3 case.
Nevertheless, the fact that their spectra and eigenstates coincide guarantees that they are

equal.

5.6 Properties of principal operators

The main goal of this section is to demonstrate the completeness of the set of the principal
operators. We show that any element of the Yangian can be obtained as a combination
of the principal operators, which in at least finite dimensional cases guarantees that all
physical observables can be obtained in this way. In the last section we also give explicit
expressions for the principal operators in the diagonal frame — i.e. in the case when the
twist matrix becomes diagonal.

5.6.1 Completeness

In this section we will demonstrate a crucial property of the operator basis, namely that
knowledge of the matrix elements of each of our principal operators is equivalent to the
knowledge of the matrix elements of every operator T;;(u) in the Yangian algebra. More
precisely we will show that any monodromy matrix element Tj;(u) can be constructed as a
polynomial of degree at most N + 1 in principal operators.

Knowing all Tj;(u) is essentially equivalent to the full algebra of observables. For ex-
ample, in the finite dimensional case i.e. when s = —n/2, n € Z, one can use the “inverse
scattering transform" [85] to construct local symmetry generators acting on a single site of
the chain in terms of Tj;(u). The precise notion of completeness could be ambiguous — in
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order to be precise in this chapter when referring to completeness of the system of principal
operators we understand that any element of the Yangian can be generated in finitely many
steps (independently of the length of the chain). Note that while we are not aware of any
simple way to extract local operators in the infinite-dimensional case in terms of Tj;(u) we
would like to stress that these operators still contain all information about the system. For
example, consider the spin-s representation used in this section and consider some local
operator E(®). The key point is the existence of the SoV basis (x| which is constructed by
action of polynomials in Tj;(u) on the SoV ground state (0| [74]. Hence, the action of E(®)
on the SoV basis can be re-expressed as a sum over (finitely many®) SoV basis states (x'|
and hence the matrix elements of E* are completely fixed by the SoV matrix elements of
the monodromy matrix Tj;(u).

We now show that the principal operators generate the full Yangian. Our starting point
is the large u expansion of the operators T;;(u)

L
Tyj(u) = ul6i; + w1 (i85 — 6;0) + O (uF7?), ©:= > b4, (5.6.1)
a=1

Note that the indices on &£ are swapped compared to those on 7. The operators &;; are
generators of the global gl(/V) algebra

L
= E (5.6.2)

a=1
and satisfy the gl(/N) commutation relations
[€ij, Em] = 6jk€it — 01iChj - (5.6.3)

We will now prove the following property: that any 7;;(v) can be expressed as a commutator
of a global gl(IN) generator and a principal operator Ti;(v). The key point are the RTT
relations expanded at large v which read

(€56, Tt (v)] = Tiej (v) 6t — Tia(v) s - (5.6.4)
From here it is clear that we can write any operator T;;(v) as
Tij(v) = Ti(v)di; + [Ej1. Tin (v)] = P1,1(0)d35 + (=1)" 7 [Ej1, Pri(v)] (5.6.5)

where the RHS only contains principal operators and global gl(N) generators.

The family of principal operators includes the following global Lie algebra generators:
n—1

&jand €7 = Z &j11,5- These appear in the asymptotics of the generating functions
j=1
P170(’u,) = iuLilgi + O(ULiz), (—1)jP17j(u) = uL6j1 + ULil (7;51]' - 574@) + O (ULiQ) .

(5.6.6)

SThere are only finitely many states of a given SoV charge, and each local Lie algebra generator raises
or lowers the SoV charge by some finite amount.
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Hence, if we can prove that these operators can be used to generate the set of £;; then
it follows from (5.6.5) that knowing the matrix elements of all principal operators implies
knowledge of the matrix elements of all Tj;(u). From the commutation relations (5.6.3) it
is easy to see that

5j+1,1 = [5_,5j1] . (5.6.7)

Thus, we have
Eqn =1, [, [€ . &ull, (5.6.8)

~—

7j—1

where the RHS contains only principal operators. After that from (5.6.5) we get all operators
Ti;j(u) generated, which completes the proof.

Let us remark that despite the abundance of literature on SoV in gls spin chains the
relation (5.6.5) does not seem to have been exploited. Indeed, the standard approach is to
obtain the matrix elements of the one non-principal operator T (1) in terms of the principal
operators via the quantum determinant relation

qdetT(u) = T Toh — Ty T (5.6.9)

together with the known eigenvalue of the quantum determinant and the fact that 711 (u) is
invertible, see for example [86]. This produces a rather complicated expression for Tha(u).
On the other hand, using the relation (5.6.5) we see that Tha(u) can be written in terms of
principal operators simply as

ng(u) = PLl(u) - [521,P271(u)] . (5610)

5.6.2 Principal operators in the diagonal frame

In the main part of this chapter, we used the frame with the twist matrix G being of the
special form (4.4.4). Whereas for SoV approach this choice is extremely beneficial, as the
SoV basis does not depend on the twist eigenvalues A, it is not the most commonly used
in the literature. A more standard choice is the diagonal twist G = diag(A1,...,Ay). In
this section we give an explicit way to relate those two conventions. As we will see the
basic consequence of changing the frame is that the explicit expressions for the principal
operators P, s in terms of the monodromy matrix elements 7;; will slightly change in the
frame where the twist matrix is diagonal.

In the companion twist frame the transfer matrix t(u) is given by t(u) = tr (T (u)G)
where G is the companion twist matrix (4.4.4). We want to perform a similarity transfor-
mation II(S) on the Hilbert space of the spin chain where S is some GL(N) group element
and II(S) denotes its representative on the spin chain so that the transfer matrix transforms
as tr (T'(u)G) — tr (T'(u)g) where g is the diagonal twist matrix with the same eigenvalues
as G. As was established in [74] a possible choice for S is given by the Vandermonde matrix

(S7Hi = AN (5.6.11)
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Under this transformation the monodromy matrix elements Tj;(u) transform as
Tyj(u) — T Ty ()T = (ST (u)S); , T =TI(S) (5.6.12)

with similar expressions holding for anti-symmetric monodromy matrices.
To summarise we have the wave-functions in the diagonal frame related to the wave-
functions in the companion frame by

|\I/diag> _ H71|\I/> : <\I,diag| — (I . (5.6.13)
and they diagonalise the transfer matrices t4#8(u) and t(u) correspondingly related as
£9528 () = T4 ()T = (S~ T (u)SG) = tr(T(u)g) . (5.6.14)
Similarly we define ngﬁg =I"'P,,II so that
<\Iiiiag|ngfg|‘If§ag> = (U 4|P,,|Vp) = determinant . (5.6.15)

Note that the above expression only holds for the states with the same twist unlike the
expressions in the companion twist frame which hold for any twist on either state.

In general the expressions for the principal operators in the diagonal frame in terms of
T;j are quite bulky, but straightforward to work out from (5.6.12). For example for gl3 we
have P(ffffg = (S7T79)1.

dia, AT Ao A3
SR s w Vs vy Rl s vy v vy v Rl o vy g vy B )
N ATy _ N1 n N33
(A =A2) (A1 =A3) (A= A2) (A2 = A3) (A1 = A3) (A2 — Ag)
N N33 _ T30 NTs3

(M =A2) (A1 = A3) (M1 = A2) (A2 — A3) T - A3) (A2 = A3)

Note that whereas in the companion twist frame the principal operators by definition where
independent of the twist eigenvalues, in the diagonal frame they explicitly depend on A;.
In order to get nice looking expressions is it better to introduce the notation 78°°4(u) =
ST (u)SG = S™'T(u)gS going back to [69]. It obeys t4i#8 = tr(78°°d) and is related in a
simple way to the principal operators in the diagonal frame (4.4.4) so that

) 'Tgood u
P98 (y) = (—1)N—1L(), i=1,2,...,N,
| Nt w | (5.6.17)
Pl = Y (18 - ()N X))
- XN

One can check that 27]«\[:0 P(liffg(u)xr = tr(7%°°%). In particular, from (5.6.17) the above
we see that the form-factor of any Tigj\?d in the diagonal frame is a determinant. For the

particular case of gly these operators generalise the well-known operators 7% °d and sy od
which act as conjugate momenta of the separated variables encoded in T}y °d see [87].
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5.7 Comparison between FSoV and NABA

In this chapter we used the functional separation of variables (FSoV) technique in combi-
nation with the novel character projection (CP) method to compute all matrix elements
of the set of principal operators which in particular includes some individual monodromy
matrix elements 7;; and their combinations in a concise determinant form. We also showed
that they generate a complete basis of observables of the spin chain and contain the SoV
B operator as a particular case. Thus we gained access to the matrix elements of a set of
operators which generates a complete set of observables in high-rank integrable gly spin
chains.

Determinant representations for form factors of some T;; have appeared in the literature
before for the gl3 case in the Nested Bethe Ansatz approach [52, 88, 89]. However, in
addition to giving an alternative form for those objects, the results presented in this chapter
have a number of advantages and conceptual differences:

e Firstly, the form factors are expressed directly in terms of Baxter Q-functions instead
of Bethe roots. From a direct calculational perspective Q-functions offer a significant
advantage [90].

e Secondly, the FSoV approach does not require the existence of a highest-weight state.
As such our approach is applicable to models which do not have the highest-weight
state, for example the Fishchain described in this thesis.

e Thirdly, as demonstrated, our approach is valid for any rank gl with general formulas
being almost equally simple to write down as for gls. The NABA becomes much harder
for higher ranks, due to the presence of extra levels of nesting.

e Fourthly, our formulas are applicable to the set-up where the transfer matrix eigen-
states are constructed with two distinct twists, which have attracted attention recently
[91], or in fact any two arbitrary off-shell states (to which we refer to as factorisable).
In addition to being a new result, this is a very important technical advantage for
example in non-highest-weight models where the scalar product between states built
with the same twist is divergent [92] and so deforming one set of twists serves as a
natural regulator”.

e Finally, using our approach we were able to compute the matrix elements of the
principal operators in the SoV bases meaning one can compute the matrix elements
of any number of insertions. Currently and to the best of our knowledge, this has been
done via the NABA only for a single insertion of the monodromy matrix elements T;;
and for ranks N < 3.

See [93] for the explicit realisation of the twist in Fishnet CFT.
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Chapter 6

Open Integrable Spin Chains

So far, this thesis has been focused on periodic integrable spin chains, which arise as repre-
sentations of the Yangian Y (glx). The periodicity condition however neglects any possible
boundary effect, which arise in applications to condensed matter physics. Even twisting the
spin chain does not help in modelling them.

Therefore, it is natural to try and add boundaries to a spin chain and make it non-
periodic. We would however like to preserve the underlying integrability of the model.
This fact greatly reduces the freedom in the choice of the possible boundaries. In fact, the
way to add boundaries to a periodic spin chain is by ‘opening’ it and putting two matrices
representing the boundaries at its two new end points. Using generic matrices as boundaries
breaks the integrability of the spin chain, i.e. it breaks the Yangian symmetry.

In [94], Sklyanin found a set of algebraic equations that a boundary matrix should
satisfy to preserve integrability; these conditions can be packaged in a matrix equation
that involves the rational R-matrix (2.2.3) and is known as the Boundary Yang-Baxter
Equation (BYBE). The solutions of the BYBE are matrices that we denote as K. Using as
the boundary matrices of a periodic spin chain two solutions to the BYBE, we obtain an
integrable spin chain with open boundary conditions, known as open integrable spin chain.

From the Yangian symmetry point of view, the addition of integrable boundary matrices
breaks Y (gly) to a subgroup, the Twisted Yangian, that we will denote as Yo (gln). Here,
C denotes the class of boundary matrices allowed.

Two boundary matrices K and K’ that are related by a similarity transformation will
give rise to the same Twisted Yangian, and they are in the same class C. All the (complex-
valued) solutions of the BYBE will give rise to a certain Twisted Yangian Y (gly). Recently
there has been great progress in classifying twisted Yangians [95-97], and in particular the
general form of the boundary matrices for many different classes of twisted Yangians C' is
known. Furthermore, just like Yangians arise from a quantisation of classical Lie algebras,
it has been understood that the Twisted Yangians arise as quantisations of the symmetric
pairs given by Cartan’s classification of symmetric spaces (see [98], Chapter X).

In this chapter, we will treat twisted Yangians as arising from a periodic spin chain
and boundary matrices satisfying the BYBE. We will focus on a single class of boundary
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matrices, which are associated to the Twisted Yangian known as Y *(2N) in the literature.
This twisted Yangian is the basic symmetry of the open Fishchain model described in the
next section.

Many techniques that we described in chapter 3 for the Yangian carry over to the twisted
Yangian, and we will describe them here. In particular, after introducing the basic notation,
we will describe the open T-system, the open Q-system and the open Baxter TQ relation.
The spin chain we will use as reference model in this chapter is an open spin chain in a
highest-weight representation of weights (—2s, —2s,0,0), s € —% of YT(2N), as this is a
simple model that arises naturally as a strong coupling limit of the open Fishchain.

To conclude this section, we will start the Separation of Variables program for Y+ (2N).
Some results for SoV have been obtained in [99] for the twisted Yangian based on the so-
called Reflection Equation [100]. However, a big limitation of this approach is that the SoV
B operator is not known for any open spin chain, and many other gaps need to be filled.
We will present results that adapt the Functional approach of chapter 5 to Y™ (2N). While
some technical difficulties still need to be solved, this is a promising road that will lead to
a much better understanding of open integrable spin chains: as we have seen in chapter 5,
even the trivial Functional scalar product provides access to non-trivial form factors.

This chapter is based on the author’s work in preparation [27].

6.1 Open spin chains and twisted Yangians

The symmetry that defines rational spin chains with open boundary conditions is known
as the twisted Yangian [101]. The twisted Yangian Y (gly) is a subalgebra of the Yangian
Y (gln), and is characterised by the boundary matrices K. While the Yangian Y (gly)
arises as the quantisation of the classical gly algebra, the twisted Yangian Yo (gln) arises
as the quantisation of the classical symmetric pair (gly,g”), which we define in the next
paragraph.

Symmetric pairs A symmetric pair is a pair composed of a (semi)simple Lie algebra
g and an involutive automorphism p acting on it, such that p?(X) = X, VX € g. The
subalgebra g” corresponds to the fixed points of the reflection p, i.e. ¢g? = {Z|p(Z) =
Z, Z € g}. Usually, ¢g” can be identified with another semisimple Lie algebra contained in
qg.

Being involutive, p can only have eigenvalues +1, therefore its eigenvectors which are
not in g” are those with eigenvalue —1. Symmetric pairs were classified by Cartan, and a
table can be found in [98].

Twisted Yangians Twisted Yangians arise as the quantisation of classical symmetric
pairs. To the best of our knowledge, not all symmetric pairs have been used yet to define
a twisted Yangian. The ones that have been built so far correspond to symmetric pairs
involving the Lie algebras in the A, B, C, D series [95].
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In this thesis, we will be dealing with the family of Twisted Yangians known as Y+ (2N).
These are the quantisation of the classical symmetric pair (glan, so2n), originally introduced
in [101].

For the family Y *(2NNV), the automorphism p is given explicitly by p(X) = X, where *
is the generalised transposition:

Xt=vXxTv=l Vv = antidiag(1,...,1). (6.1.1)

This automorphism actually leaves invariant two subalgebras of glon, soony and spy. To
select soon at the level of the twisted Yangian, we will need to impose further restrictions
on the boundary K matrices characterising Y *(2N).

6.1.1 Boundary Yang-Baxter equation and open transfer matrix

The twisted Yangian can be defined via the introduction of boundary matrices K in a
periodic spin chain. We define the boundary matrices K_ as a solution of the Boundary
Yang-Baxter equation (BYBE):

Ria(u — v) K1 (u) Ry (—u — v) Ka(v) = Ka(v)Riy(—u — v) K1 (u) Ri2(u — v) (6.1.2)

where we are using the rational R-matrix (2.2.3) and denote by ¢ the generalised transpo-
sition (6.1.1) applied to the auxiliary space 1.

The BYBE and the usual RT'T relations (2.2.11) are the fundamental algebraic relations
defining integrable open spin chains.

We now describe how to build open spin chains from solutions of the BYBE (6.1.2) and
a periodic rational spin chain. Given the monodromy matrix (3.1.4) associated to a Y (glx)
periodic spin chain in some representation, we define:

U_(u) = T(u)K_(u)T"(~u). (6.1.3)

This is the analog of the monodromy matrix 7'(u) for open spin chains. Therefore, we will
call U_(u) the boundary monodromy matriz.
The boundary monodromy matrix (6.1.3) satisfies the BYBE:

Riz(u = v)Uy (u)Riy(—u —v)Us (v) = Uy (v)Ris(—u—0)Uy (u)Riz2(u—v).  (6.1.4)
This is due to the coproduct property of the Twisted Yangian:
N
A(Kij(w) = Y Tin(w) @ Kp(uw) @ (T")(—u), (6.1.5)
k=1

where Tj; € Y (gly) are monodromy matrix elements of a periodic spin chain. This coproduct
does not satisfy all the axioms of the coproduct of a quantum group seen in chapter 2:
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this implies that the twisted Yangian is not a quantum group itself. Nevertheless, many
techniques developed for the Yangian continue to work when adapted to the twisted Yangian.

The generating function of the conserved charges for an open spin chain is called open
transfer matriz. It is built by multiplying the boundary monodromy matrix (6.1.3) by
another boundary matrix K, which satisfies the following BYBE:

Riz(—u+v) K] (—u)Riy(u+v)KS (—v) = Ky (—v)Riy(u+v) K (—u)Ri2(—u+wv). (6.1.6)

Then, we define the open transfer matrix by:

T(u) = tr(K4+(u)U-(u)) . (6.1.7)

If K, and K_ are polynomials in u, the transfer matrix will also be a polynomial in u. The
open transfer matrix (6.1.7) possesses a global symmetry G, which is the group associated
to g, the conserved subalgebra of the underlying symmetric pair.

The transfer matrix (6.1.7) forms a commuting family of operators ['ﬁ‘(u),’ﬁ‘(v)] = 0.
This can be proven explicitly using the BYBE equations as in [94]. In section 6.4, we give
instead a diagrammatic proof. The coefficient of the powers of u in T(u) are a subset of the
conserved charges of the open spin chain.

To select a specific twisted Yangian Yo (gln), we need to impose further conditions on
the boundary matrices. In particular, to get Y (2NN), the quantisation of the symmetric
pair (glan, soan), we need to impose the following identities on the K matrices [102]:

K (u) = K'(—u) (
Ki(w) = —K\(-u). (

)
)

It can be checked [97] that the BYBE (6.1.2) and (6.1.6) with either of the conditions (6.1.8)
do not have u-dependent solutions whose entries are complex numbers. In this chapter, we
will take as particular solutions the following boundary matrices:

6.1.8
6.1.9

K*(u) = diag(C1, .-, (N, —CN - = Q1) (6.1.10)
K—(u) = Doy , (6.1.11)

where (; are complex parameters that play the role of the twist in the open spin chain, and
Ion is the identity matrix in 2N dimensions. In the next section, we will prove that this
choice of the boundaries can always be taken for Y (2N).

6.1.2 Properties of the open transfer matrix
SO(2N) symmetry

In this chapter, we will see why the properties (6.1.8) let us obtain a non-degenerate transfer
matrix. In particular, we will see how the form of the boundary matrices (6.1.10) breaks
the global SO(2N) symmetry of the open transfer matrix.
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Suppose that t(u) = tr T'(u)T?(—u). This transfer matrix has a manifest global SO(2N)
symmetry. This is due to the fact that T'(u) is GL(2N) covariant, meaning we have for any
G e GL(2N):

[GRIIG),T(u)] =0 (6.1.12)

where II(G) denotes the action of G on the physical Hilbert space. As a result of this, we
have
(&) ' T(w)I(G) = GT(u)G™" (6.1.13)

Hence,

(G H(wI(G) = tr(II(G) T (u)TH(—u)I(G))
= to(I(G) ' () I(G)I(G) ' T(—u)I(G))")  (6.1.14)

where we used that the trace and transpose only act on the auxiliary space. Now we use
the GL(2N) covariance to get

tr(GT (u)G™HGT(—u)G™1)) = tr(G'GT (u)(GGH T (—u)) . (6.1.15)

Clearly, for G € SO(2N), we have that G!G = 1. Hence the transfer matrix #(u) is SO(2N)
invariant.

This symmetry means that the eigenspaces of the transfer matrix will organise them-
selves into multiplets of SO(2N) and hence we will have a degenerate spectrum. Just like
the periodic case, in order to lift these degeneracies we can add a twist by considering
T(u) = KT (u)T*(—u) where K' = —K, while leaving the other boundary trivial. This is
exactly what we imposed in (6.1.8) for the boundary matrices K_ and K (notice that
ILy = Ly).

Finally, note that any matrix K with K! = —K with distinct non-zero eigenvalues
can be diagonalised by an orthogonal matrix P, i.e. with P!P = 1. By applying this
transformation inside the transfer matrix, we can transform any K such that K! = —K to
the diagonal matrix K in (6.1.10).

Parity of the transfer matrix

The transfer matrix (6.1.7) is a polynomial in u of degree 2L. Since the integrals of motion
are the coefficients of its powers of u, one could think that T(u) has 2L ToMs - twice the
number of a periodic spin chain. However, this is not the case: the transfer matrix of an
open spin chain of length L contains L integrals of motion.

This is due to the fact that the open transfer matrix has simple parity properties in
the spectral parameter, and can be made manifestly even in u by slightly modifying the
conventions we have used so far. In our new conventions, we shift the spectral parameter
in the Lax operators (3.1.3):

L§5(u) = (u— 0o + is)d;; + im(Ej;) - (6.1.16)
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After building the transfer matrix (6.1.7), we normalise it by a function of w:

T(u) = uqi(%. (6.1.17)

As we prove in Appendix E.1 doing so ensures that:
T(u) = T(—u), (6.1.18)

meaning that the transfer matrix of an open spin chain is even in the spectral parameter.

6.2 Open Q-system

The spectrum and eigenstates of the open transfer matrix can be reconstructed via the
Algebraic Bethe Ansatz [103], in a very similar way to the periodic spin chain described in
detail in section 3.4. In particular, states can be built by applications on a vacuum vector
of some B operators, evaluated at the 2N — 1 sets of Bethe roots {uz, ?ivl_l, which are the
solutions to the nested open Bethe equations.

We will not present the detailed calculations here. The key point is that we can package
the 2N — 1 sets of Bethe roots into 2N — 1 sets of Q-functions, who form a open @Q-system
analogous to the periodic one described in section 3.6.

Let us define (y1q = —(Ny_q, Ya > N. We define the open Q-functions as:

acA

Qa(u) = Ny (H <Z;U> Fia)(u)ga(u), (6.2.1)

where Fj4 are some functions that can be changed using the gauge freedom of the open
Q-system, and g4 are the Baxter polynomials, monic polynomials in u containing the
Bethe roots. The structure of the open Q-functions is very similar to the periodic Q-
functions (3.6.8); in particular, the boundary parameters ¢; play the same role as the twist
eigenvalues of the periodic case.

There are 22V Q-functions in total, and the QQ-relations still hold [104]:

Qaar(1)QY (1) = Qaa(w)Qly? (1) — Qap(w) QL (). (6.2.2)

As argued in [102], the main feature of the Q-functions for open spin chains are the following
conditions on the Baxter polynomials g4 (u):

qi..1(u) = qi.on—1(—u), I<N (6.2.3)

This holds for other choices of the indices as well; in particular, if [ = N, this relation

implies that the middle node Baxter polynomial ¢,y is even in u'.

n the paper [102], the authors claim that all the open Q-functions should be even. This is not true,
as can be verified from explicit calculations even in the simplest examples: only the middle node Baxter
polynomials are even in u.
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6.3 Open T-system

We now construct the family of mutually commuting, totally antisymmetric transfer ma-
trices T;(u), i = 1...2N for the twisted Yangian, which will form the open T-system.
Although conceptually similar to the periodic case, fusion for the open spin chain is more
complicated, since the underlying algebra is the BYBE (6.1.2) rather than the simpler RT'T
relations.

In order to remove some overall factors that would otherwise appear throughout this
section, we introduce the normalised rational R-matrix via a rescaling of (2.2.3):

sy =W _ 1 1 4ipy. (6.3.1)

u+1 U+ 1

This rescaling leaves invariant the RTT relations and is an isomorphism of the Yangian
Y (gln)-

In the periodic case, we obtained the totally antisymmetric transfer matrices via the
quantum minors (3.7.7). We will use a similar approach here: we define the Sklyanin
minors [43] as the matrix elements of the following equation:

m—1
U™(u) = AU StUs .. . Upa (H s,gm> Un - (6.3.2)
k=1

In this equation, we have used the antisymmetriser A,,, the normalised R'-matrix S(u) =

]j”;—ﬁ? and introduced the following shorthand notation:
1
U = Uy (u - zm; + ij> : (6.3.3)
S,il = S};l(—Qu +im+1—-1-k)). (6.3.4)
Explicitly the Sklyanin minors are given by:
Uglipr(u) = 3 sgup- (U™ (w), " (6.3.5)
PESm,

The Sklyanin minors satisfy a generalised BYBE, where the R-matrix is substituted with
the fused R-matrix in a similar way as (A.3.4) [43].

In contrast with the quantum minors, the Sklyanin minors are not enough to define the
open antisymmetric transfer matrices. In fact, we also need the fused K matrix as the
matrix elements of the following equation:

m—1
K™u) = A K SLKS . K| (H S;;m> K}, (6.3.6)
k=1

where Sf, = S%,(2u +i(m+1—1—k)) and Kj = K;(u+ i1 — ij). Explicitly we define:

Kgf......élnzn (u) = Z sgnp - (Km(u))‘;ph)b...ap(m) ‘ (6.3.7)

1..-Om

pEG’"L
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Notice that we can also define the boundary matrix K™ (u) by substituting U with K_
in (6.3.5). This will be used in chapter 8.

Using both the Sklyanin minors (6.3.5) and (6.3.7), we can define the m-th fused anti-
symmetric transfer matrix as:

Ty () = try, (K™ (w)U™(u)) = Kyl (w)Ubr+bm (), Vm < 2N, (6.3.8)

aj...am

where the trace is taken on m antisymmetrised copies of the auxiliary space. Just like the
periodic case, Toy is the center of the twisted Yangian Y,% and is known as the Sklyanin
determinant.

It is possible to make the fused antisymmetric transfer matrices even in u by a simple
rescaling. In particular, we have that:

_ Tm(u)
| (u —iy + Zk) 7

The fused antisymmetric transfer matrices form a commuting family of quantum operators:

Ty (u) Ti(u) = Tpp(—u) ¥Ym < 2N (6.3.9)

[T;(u), T;(v)] =0,  Vi,j <2N. (6.3.10)

Just like in the periodic case, it is possible to introduce further fused transfer matrices using
Young diagrams; we will not do so explicitly, as we will not be using them in this work.
The open T-system is formed by these fused transfer matrices, plus the open Hirota and
CBR equations, which have a similar form to the periodic ones.

6.4 Diagrammatic rules for open spin chains

As in section 3.2, we can implement diagrammatic rules to express many algebraic equations
for open spin chains. These will essentially be the same as the one presented in section 3.2
with a few new ingredients:

e The dashed auxiliary horizontal lines, which is obtained after an horizontal line is
reflected on the boundary. It is associated with a negative spectral parameter. A
physical space vertical line crossing a dashed horizontal line gives the Lax operator
L.

e The transposed R-matrix R, which is obtained when a solid and a dashed horizontal
line cross.

e The boundary matrices K, and K_, which are put on a black vertical line representing
the "boundary" physical space (which is trivial in this section).

We draw the diagrammatic rules in figure 6.1.

As an example of their use, we draw the BYBE equations (6.1.2) and (6.1.6) in figures 6.2
and 6.3 respectively.

Furthermore, we use them to draw the proof of the statement that the open transfer
matrices commute with each other, i.e. [T(u),T(v)], in figure 6.4.
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Figure 6.1: Diagrammatic rules

6.5 Transfer matrix eigenvalues from Q-functions

Based on the parity properties of the transfer matrix T(u) a proposal for its eigenvalues in
terms of a handful of Bethe roots was proposed in [102]. We recast this here in terms of
Q-functions in the following way:

N
Ti(u) = Y An(u) (6.5.1)
k=1
where we have introduced the quantum eigenvalues Ag(u) defined by
QP Q]
Ap(u) = Z2=i=t 2k 6.5.2
t(u) Q.1 Q1..k (65.2)

By exploiting the analytic structure of the Q-functions (6.2.1) the quantum eigenvalues can
be explicitly written as

~ Fa(u+4) Fr(u—14) Grog—1(u+14) qu.p(u— 1)

M) = "5 0 R Gl () (6.5.3)
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Figure 6.3: The BYBE (6.1.6)

where G4 indicates the twisted Baxter polynomial [[, 4 Ciq4. From this equation it is
possible to fix uniquely the functions Fj, by confronting (6.5.1) with the eigenvalues of T(u)
obtained from the boundary monodromy matrix.

Just like the periodic case, we can use the quantum eigenvalues to build the eigenvalues
of all antisymmetric transfer matrices. Since we know the latter from the fusion procedure,
we can treat the quantum eigenvalues as unknown in a linear system. Solving it lets us
reconstruct the Q-functions, i.e. the Bethe roots, without the need of the Bethe equations.

Note that the asymptotics of the antisymmetric open transfer matrices are directly
related to the elementary symmetric polynomials in the K, boundary matrix eigenvalues.

6.6 Open Baxter T(Q equation

The key equations for the rest of this work describing open spin chains are the Baxter and
the Dual Baxter equation.



6.6. OPEN BAXTER TQ EQUATION

(a) Step 1 — We start off with
T(u)T(v), which acts as an opera-
tor on the quantum space.

(c) Step 3 — Now we apply the
boundary Yang-Baxter equations
(6.1.2) and (6.1.6).

115

(b) Step 2 — By introducing
the identity as a product of S-
matrices from the unitarity condi-
tion S(u)S(—u) = 1, we can pass
the auxiliary space line of T(u)
through T(v).

(d) Step 4 — Finally we resolve the
identity again using unitarity, to
obtain T(v)T(u) hence proving that

indeed the transfer matrices com-
mute with each other for arbitrary
values of the spectral parameter.

Figure 6.4: Diagrammatic proof of [T(u),T(v)] =0

In the conventions of this chapter, we define the open Baxter and open dual Baxter
operators as:

2N

O = Z(—1)aT£_2N+a+1]D_QN+2a(U), (6.6.1)
a=0
2N

of = Y (-1 p*NPerle (). (6.6.2)

a
a=0
Then the Baxter and Dual Baxter equation are respectively:
0Qi(u) = 0, (6.6.3)
O'Q! (u) 0 6.6.4

The Baxter and Dual Baxter equation described here can be simplified - the antisymmet-
ric transfer matrices of an open spin chain contain non-dynamical prefactors that can be
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stripped out, and furthermore we can reduce the Q-functions to be twisted Baxter polyno-
mials. We will see an example of this in the rank 4 case in the next section, and also in
chapter 8.

6.7 Functional Separation of Variables for the twisted Yan-
gian

In this section, we will work for simplicity on the rank 4 case Y+ (4). The motivations for
choosing this as our example are two:

e The rank 2 case Y 7(2) is isomorphic to other types of twisted Yangian [97], such as
the Reflection Algebra [100]. Thus the rank 4 case is the simplest case which shows
the unique features of the family Y (2N);

o Y7 (4) is the symmetry of the open Fishchain model described in chapter 8.

We will write down the Baxter and Dual Baxter equation for twisted Baxter polynomials,
and use them to obtain the functional SoV measure by imposing functional orthogonality.
Finally, we will work out the functional scalar product between Bethe states.

First, we need to rescale the antisymmetric transfer matrices to remove some overall
non-dynamical factors. In particular, we define:

Tl(u) = ’]I‘l(u) y (671)
To(u) = To(u)(u+i/2)(u—1i/2), (6.7.2)
(u+ 1) (u—1)

ra(u) = Ty(u)—pomt 20
’ QT )l A )

(6.7.3)

where Qg(u) = [T5_, (u — o) (—u — 0,).
By stripping away the normalisation N4 and Fj from the Q-functions (6.2.1), we get
the following form for the Baxter operator:

Oy=0_+1 +04, (6.7.4)

where
o — Q£72(3+1)]Q‘[9728]D72 (- i)QE*QS]Tl[*Q]D” (6.7.5)
0, = —uQF ™M rD + (1) QR Ml p2 (6.7.6)

The dual Baxter operator is:

ol =0l +7 +of (6.7.7)

where:
OI_ _ QgQS]QE(s-H)],DQ _ (”U, + Z')ngs]Tlp]'D (678)

OF = —uQy ™ VnD™! 4 (GG)*Qy 2 Vg D2 (6.7.9)
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The Baxter and Dual Baxter equations are given by:

O4Ga(u) = 0 (6.7.10)
Olg*(w) = 0 (6.7.11)
(6.7.12)

where G, = (‘“q,(u) are the twisted Q-functions and §* are their duals, defined exactly as
in the periodic case (3.6.10).

6.7.1 Functional measure and scalar product

Functional Separation of Variables works for the twisted Yangian in the same way as for
the periodic case, which we analysed in chapter 5.
The first step consists in defining the functional bracket:

(), = | dumotw ot (6:7.13)

where pi,, is the functional measure, and C' is a contour that contains all the poles of u, and
of the dual Baxter equation, if the latter has any. In our conventions where the Q-functions
are Baxter polynomials, the poles only come from the measure.

We can bootstrap the family of measures uo, = 1...L by imposing the functional

orthogonality relation:
((f(?lg))a - ((g@f))a (6.7.14)

By using our gauge choices, we get that:

ﬁfu—@g—f-zs—l/Q}) D(u+ 05 +i(s — 1/2))

T(u— 05 —i(s —3/2)) T(u+ 05 —i(s —3/2)""

(u), a=1...L, (6.7.15)

where p,(u) are any i-periodic functions. Notice that p, have infinite poles if the weights
of the representation are non-integer, i.e. for non-compact open spin chains. For the simple
representation s = —1/2, we get:

Ho (u) = 2] [—2] Pa (u) ) (6'7'16)

where p, is a rational function. If p, = 1, the measure has poles at:
{—05 —i,—05 +1i,—0g,05,05 —i,0g +1i}, f=1...L. (6.7.17)

By choosing the functions p, appropriately, it is possible to cancel out the poles at —63 +ni,
while leaving the functional scalar product of next section unchanged. The functional
bracket can be computed by summing over the residues at these poles, provided the asymp-
totics of the twisted Baxter polynomials are chosen appropriately.



118 CHAPTER 6. OPEN INTEGRABLE SPIN CHAINS

6.7.2 Scalar products from functional orthogonality

Having defined the functional bracket (6.7.13), we can use it to obtain an expression for the
scalar product of states of the open spin chain. The procedure is quite similar to the one
derived for periodic spin chains.

The starting point is the system of trivial equalities:

((%B(“) <OLA - OI,B) Cifé(u)) =0, (6.7.18)

«

where the subscript A (B) in the Dual Baxter operator imply that it is applied to the state
labelled by A (B).

Notice that these equalities are all trivial, since Ojl(ji = 0 and the functional orthogo-
nality condition implies that (( f OZ@) = 0 Vj, for any function f that does not spoil the
convergence of the functional bracket.

The next step is to use the explicit form of the dual Baxter operator (6.7.7), and expand
the transfer matrices in integrals of motion. The integrals of motion will be the variables
for which we solve the linear system composed by the equations (6.7.18).

For the class of representations we consider, of weights (—2s, —2s,0,0), s € —%, T; and
T3 contain L Integrals of motion each, while Ty contains 2L of them. Therefore, we will
need 4L equations of type (6.7.18).

A natural way to pick this number of equations is by taking o = 1...L, j = 1,2 and
i = 3,4 1in (6.7.18). This is done in analogy to the periodic case, where such choice would
reproduce the wavefunctions ¥ (z) = (z|¥) present in the scalar product computed via the
B operator. We hope that this is the case here as well, although we do not possess an SoV
B operator for this open spin chain.

We will now compute the scalar product explicitly. For simplicity, we set L = 1 and
s = —1/2. To do so, we need to expand the functional orthogonality relation (6.7.18), and
we get:

(400w =01 = =0 = 1P )
— = 00+ i) — 0y + DI ),

i 1 -
=@ @M+ QP (),

1

=@ @)= )= 01+ i) (—u— 01— h)Ié“B(u)[”)qf(u) ) =0

Here, we have introduced the IoMs contained in the antisymmetric transfer matrices eigen-
values 7; as I;. We splitted the ones in 7 into two factors, I 1 and I 2, each containing
L =1 IoMs. Furthermore, IZAB indicates that we are subtracting the IoMs evaluated on the
state B from those evaluated on the state B. Some of these quantities must be non-zero if
A # B.
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As in the periodic case, in order to have a non-trivial solution of this linear system, we
must have that:

et ((d;-“Lfifg ))océAB, (6.7.19)

where L is the following vector applied to the right Q-function:

L= { (u + ;) QID, (u— 6y +i)(—u — 6, + i)D",
. (6.7.20)
(w— 01 —i)(—u—0; — )DL, <u - ;) Qg+2]z>—3} .

This formula can be easily generalised to any L and s € —%, and forms the first step for the
application of FSoV to open spin chains. In particular, we hope to be able to apply this
construction to Wilson loops in N = 4 SYM, via the open Fishchain that we will introduce
in Chapter 7.
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Part 11

Spin Chains in (Gauge Theories
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Chapter 7

Conformal Field Theory and N = 4
SYM

In Part 1 of this thesis, we have introduced the tools to analyse integrable systems, with
a particular focus on integrable spin chains. In this Part, we will see how these systems
arise in High Energy Physics, and how they can be used to compute physical observables
in Quantum Field Theories. In particular, we will focus on the context of the AdSs;/CFT}
correspondence, a gauge/gravity duality formulated between type II string theory on a
AdSs5 x S° background and 4-dimensional A" = 4 Supersymmetric Yang-Mills theory with
SU(N) gauge symmetry [4]. This correspondence gave a huge impulse to the study of
integrability in the context of high energy physics, due to the fact that the 2-dimensional
sigma model describing strings moving in AdS5 spacetime was proven to be classically
integrable [105].

Supported by this fact, the search of integrable structures in the CFT side of the duality,
i,e. N =4 SYM, turned out to be extremely fruitful. The first breakthrough happened
when it was noticed that [3] in the large N (planar) limit the one-loop mixing matrix of
operators composed by a single trace of scalar fields can be identified with the Hamiltonian
of a periodic integrable SO(6) spin chain. This Hamiltonian can then be diagonalized using
the tools of integrability seen in Part 1 of this thesis. Its eigenvalues correspond to the
one-loop anomalous dimensions of the single-trace operators of N'= 4 SYM theory.

The work by Minahan and Zarembo opened up a line of research that culminated in a
method that lets us obtain the full, non-perturbative spectrum of planar N’ = 4 SYM, known
as the Quantum Spectral Curve (QSC) [57]. The QSC computes the Baxter Q-functions
of the integrable spin chain dual to N’ = 4 SYM, and extracts the spectrum of single-trace
operators from them. Hopefully, this line of research will lead us to the calculation of the
three-point structure constants too, in light of the promising results from recent works [15,
16, 18, 21, 22, 106-109]. If this task is completed, integrability will have played the main
role in the solution of an interacting gauge theory, a feat that looked impossible just twenty
years ago.

In this chapter, we will review the initial part of this story, introducing the theory of

123
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N =4 SYM and describing how Minahan and Zarembo found a spin chain in it. While their
construction is perturbative, it inspired non-perturbative dualities as well, such as the one
that we will see in the next chapter between cusped Wilson lines and the open Fishchain.

7.1 Brief overview of N' =4 SYM theory

In this section, we will give a brief overview of N' = 4 SYM. We will first introduce Conformal
Field Theories and define fundamental concepts such as the scaling dimensions, three-point
correlation functions. We will end this section with the Lagrangian for A" = 4 SYM, which
will be useful in the next chapter.

7.1.1 CFT basics

A conformal field theory (CFT) in D dimensions is a quantum field theory enjoying con-
formal symmetry, which in Euclidean space is represented by the global symmetry group
SO(1,D + 1). Being a QFT, a CFT is endowed with an Hilbert space (one for each time
slice!), and operators acting on it. The operators acting at a single point in space, or local
operators, of a CF'T are its quantum fields.

The observables in a CFT are the correlation functions of its operators, i.e. their expec-
tation values on the vacuum state, where each operator is evaluated at a different spatial
point. Conformal symmetry makes correlation functions extremely constrained: in a CFT,
any correlation function of local operators can be fully determined by two sets of numbers,
the conformal (or scaling) dimensions and the structure constants of its primary opera-
tors. Here, primary operators are the operators that act as “highest weight states” for the
conformal group, i.e. they are annihilated by the action of a subset of its generators, the
special conformal transformations. Primary operators are also eigenstates of the dilatation
operator D of the conformal group, with eigenvalues being their scaling dimension A.

Scaling dimension Given two scalar primary operators O 4, their two point correlation
function can be constrained by the Ward identities associated to conformal symmetry. This
implies that, if O4 are both scalar primary operators, their two point correlation function
is:

(Oa@)08(1) = e (.11)

where A 4 is the scaling dimension of the operator O 4, Ap is the scaling dimension of Op,
x and y are D-dimensional Euclidean vectors and | | is the Euclidean norm on RP. If
O are not scalar, their two point function will depend on A, plus an extra, non-dynamical
factor that depends on the spin of the operators.

'In Euclidean space, we can just select one dimension and treat it as "time".
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Structure constants The Ward identities constrain the three point correlation function
of 3 scalar primary operators to be:

AABC
’Al +A2—A3 |Z23‘A2+A3—A1 |213 |A1+A3—A2 )

(04(21)0B(22)0c(23)) (7.1.2)

e

where z;; = 2z;—z; and Aypc are C-numbers called structure constants. If O are not scalars,
their three point function will have extra non-dynamical factors that depend on the spin of
the operators.

The form of the 2 and 3 point functions are completely fixed by conformal invariance,
and the only dynamical dependence in them are the CFT data, the set of all possible A
and A in a given theory.

OPE A CFT has a convergent Operator Product Expansion (OPE): given two operators
O4 and Op at two different points, we can expand their product in a convergent series
around one of these two points:

O4(z)Op(z') = Z Mpc(z — 2/ )Be=Ba=B800(x) . (7.1.3)
C

Using this property, we can always express an N-point correlation function in terms of a
(N — 1)-point one plus the CFT data. This lets us always reduce the calculation of any
correlation function to the knowledge of the CFT data. Therefore from the knowledge of
CFT data we can determine any observable in a CFT, i.e. solve it.

7.1.2 N =4 SYM theory

Maximally supersymmetric Yang-Mills theory in D = 4, or N' = 4 SYM, is a CFT in

4-dimensional Euclidean space, possessing the maximal amount of supercharges allowed

for this spacetime. It is an interacting gauge theory, with gauge symmetry SU(N). Cru-

cially, its conformal symmetry is unbroken at any order in perturbation theory [110]. Its

Lagrangian is given by:

= 1 T 1 2 2 1 2 = m i — A 2
= T |5 (D D+ (D,20)" = 5 [#1, 251"+ i (T Dy + T [, 9]) + 0,eDyc + € (344,)° |

Y™
(7.1.4)

Here, gy s is the Yang-Mills coupling, and all the fields are in the adjoint representation of
SU(N). These fields are:

e &, i=1...6 are scalar fields;
e U, a=1...4 are Dirac spinor fields;
e A, is the non-abelian gauge field;

e ¢, c are the ghost fields.



126 CHAPTER 7. CONFORMAL FIELD THEORY AND N =4 SYM

We will be mostly interested in the planar limit of A" = 4 SYM, which is obtained by sending
the rank N of the gauge group SU(N) to infinity while the 't Hooft coupling g = g% ,,N
stays fixed. In this limit, the Feynman diagrams that cannot be drawn on a spherical surface
become subleading, as they will be multiplied by overall negative powers of N. Hence, only
the so-called planar diagrams, that can be drawn on spherical surfaces, will contribute to
the correlation functions in the planar limit.

7.1.3 The SU(2) subsector of N'=4 SYM and spin chains

In this section, we will review the seminal work by Minahan and Zarembo [3].

We start by noticing that the 2-point correlation function (7.1.1) is not as simple as
it looks. In fact, the operators Og4, eigenstates of D, are actually renormalized opera-
tors, which are related to a naive set of bare operators (i.e. the quantum fields in the
Lagrangian (7.1.4)) via the so-called mixing matrix H as:

Ou(z) = (eff logA)AB 08(z), (7.1.5)

where A is a momentum cutoff. In fact, under a RG flow the bare operators mix between
each other, while the renormalized ones have simple scaling;:

O4(z) = A0\ 1) (7.1.6)

This means that the latter must be eigenvectors of the mixing matrix H, with eigenvalue A:
therefore, by diagonalizing H we can find the scaling dimensions of our theory. Of course,
this is easier said than done: since N' = 4 SYM is a very complicated interacting theory,
even taking simple operators and computing H at 1-loop level is a very hard task. Then
we would still need to diagonalize it and find its eigenstates!

Minahan and Zarembo in [3] noticed that the 1-loop expansion of the mixing matrix for
operators which are made by a single trace of scalar fields of NV = 4 SYM is the Hamiltonian
of a spin chain, for which the Algebraic Bethe Ansatz (3.4) can be used to find eigenstates
and eigenvalues.

We will now review in detail how this is done for the so-called SU(2) sector of N' = 4
SYM.

We start by considering single-trace operators of the 6 scalars ®; of N' =4 SYM:

O%(z) = tr (®;, ... ®;,) (7.1.7)

To compute H at 1-loop, we need to compute a huge number of planar diagrams, which
will be of self energy type and of "interaction" type between two scalars, as in figure 7.1.
Since we are interested only in the UV divergent part, we only need to evaluate them as
the loop momentum k£ — 00. In this limit, we only obtain two types of integral, which give
rise to a logarithmic and a quadratic divergence, given by:

2 p2 2

A g4 2 A2 A4
Ilzg2logA:/\f d*k 1 gA_)\J 'k 1

2) eoigep B eoie T
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Figure 7.1: Planar diagrams for the 1-loop mixing matrix of single trace scalar operators,
adapted from [3]

A
where g% = ——- By summing over all diagrams, the second contribution drops out and we

obtain a logarithmic divergence, as we would expect from the loop expansion of the mixing
operator in (7.1.5). Explicitly we get:

R .. 2 ) .
<eHlogA)""Z”’1"“"" ~1-9 N log(A) (2&#5?”“ +4

P ) (2 i7zin+1
coJnodnglse 1671-2 notndt

gindeer —aglm gl ) (7.1.9)

where we only have non-zero elements for pairs of consecutive indices. This operator can be
written in a form which resembles a spin chain Hamiltonian acting on the following states:

|5i1---SiL> (7110)

where s;, are 6-dimensional spins. These correspond to the operators (7.1.7), with the
obvious identification of s; < ®;, i = 1...L. It is easy to then rewrite (7.1.9) acting on
these state by introducing the identity, the permutation and the trace operators:

I|...Si$j...>= |...$i8]’...>
P|...S¢Sj...>= |...Sj8i...>
6 (7.1.11)
K|...8¢Sj...>=5ij Z |...Sk8k...> .
k=1
We obtain that the spin chain Hamiltonian corresponding to (7.1.9) is:
A L
H=g") Q2Lini1 + Knni1 — 2Pani1) - (7.1.12)
n=1

This is actually the Hamiltonian of a rational integrable spin chain in the fundamental
representation of Y (sog). It is possible to apply a version of the Nested Bethe Ansatz to find
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eigenstates and eigenvalues of this Hamiltonian, which will correspond to the eigenstates of
the mixing matrix and their 1-loop anomalous dimensions. This would be computationally
heavy, and we prefer to focus on the SU(2) subsector, which is much simpler but can
still illustrate the power of integrability. In this subsector, we will take only the complex
combinations of 4 scalar fields, say Z = ®; + i®9 and X = &3 + iP4. Then the states we
need to consider will have the form |ZZXXZXZ...). The main simplification for this
model is that the trace operator K vanishes identically when applied to any such state.
In fact, we have that applying K to any state with two equal consecutives spins, say ZZ,
gives:

K|...ZZ...)=
= Ktr(... (®1 +i®P2)(P; + iP2)...)
= Ktr(... (@101 +i® 1Py + iDy®) — Dody)...)
=tr(... (201®; + 2ByPy — 28, P — 209P5)...) = 0.

(7.1.13)

Acting on consecutives different spins with K gives 0, so we conclude that K|...) = 0 for
any state. Therefore our spin chain Hamiltonian for the SU(2) subsector is simply:

L
H =24 Z (Inns1 — Pant1) - (7.1.14)
n=1

This is just the XXX Heisenberg spin chain Hamiltonian described extensively in chapter
2. We can easily diagonalise it using the ABA of section 3.4.

For higher loops, one could perform similar calculations and obtain that H is still dual
to an integrable spin chain. These spin chains have long-range interactions, and most of the
techniques studied in this thesis cannot be easily applied yet to them. The modern method
to study the non-perturbative conformal dimension is the Quantum Spectral Curve, which
does not need to deal directly with these long-range spin chains.

The fact that Feynman diagrams contributing to observables of N' = 4 SYM can be
described in terms of an integrable spin chain, or that they exhibit Yangian symmetry, is
a concept that has been used extensively in literature, despite its quite recent conception:
a few non-exhaustive examples can be found in [33, 111-120]. In the next chapter, our
analysis will use it to derive an integrable spin chain that is dual to all loops Feynman
diagrams describing cusped Maldacena-Wilson loops, in a special limit of planar N' = 4
SYM.



Chapter 8

Cusps in N =4 SYM and Open
Fishchain

In this chapter, we consider a cusped supersymmetric Wilson loop (also known as Maldacena-
Wilson loop), with insertions of local operator at the cusp, in planar N'= 4 SYM. We will
adapt methods developed for the Fishnet theories [33, 93, 121], a simple, non-unitary CFT
in D = 4, to develop an integrability based description, in the form of an open spin chain,
of these observables in the so-called ladders limit of N' = 4 SYM. This spin chain, called the
open Fishchain, is built upon the twisted Yangian Y *(4) in a very non-trivial, non-compact
representation. We use this spin chain description to obtain a solution for the spectrum of
cusped supersymmetric Wilson loop, using the Baxter TQ equation supplemented with a
particular quantisation condition.

The setup that we will consider in this chapter is the following: we have a cusped
Maldacena-Wilson line [23, 122] with internal cusp angle ¢, as in figure 8.1. This Maldacena-
Wilson lines has two rays, one to the left and one to the right of the cusp, to which there
are coupled the gauge field and a scalar ®; of N' =4 SYM.

We pick the scalar ®; to couple to the left ray and ®; cos@ + P4 sinf to couple to the
right ray, thus 6 is the angle between the two scalar fields. J' N = 4 SYM complex scalars
Z = % (®5 + i Pg), orthogonal to the ones that couple to the rays, are inserted at the
cusp. In addition, we can include in our description the excited states, in analogy with
[25, 123], which corresponds to insertions on the cusp of linear combinations of the scalars
coupled to the lines. This observable has a well defined anomalous dimension, which was
studied in [124-126] by means of Thermodynamic Bethe Ansatz and then QSC methods.
We will instead carry out a first principles derivation in the so-called ladders limit, which we
describe below. The only insight we borrow from the QSC approach is a simple quantisation
condition, that can be naturally imposed using FSoV arguments as seen in [92].

The ladders limit which we study in this chapter was first introduced for the case J = 0
in [127] and then used in [128]. This is obtained by taking the 't Hooft coupling g — 0

1The name of this parameter comes from the Wilson loops literature. In our construction, it will corre-
spond to the length of the spin chain, thus for this chapter we will use the letter J instead of L.
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t1-1 =xo,1-1 SI-1 = Tj41,0-1

1 =201 S1=Tj411

ZJ

Figure 8.1: The CFT wavefunction for J = 2 is a sum of the fishnet diagrams with any
number of bridges. This figure shows one such diagram with [ = 4 bridges. The graph
building operator is highlighted.

1
w> "™ is kept constant. For the case

and # — i00, in such a way that g = ¢ <
J = 0 it was noticed in [127, 128] that only the ladder graphs contribute to the anomalous
dimensions and the correlation functions. In this chapter we show that for the general J > 0
case the diagrams which survive are those of the fishnet type with a boundary corresponding
to the two rays of the Wilson line (see figure 8.1). This drastic simplification in Feynman
graphs allows us to construct a resummation procedure for them involving a graph-building
operator. Such an operator was first constructed in the case of a Wilson-Maldacena loop
with no scalar insertions in [25] and for the Fishnet theory in [33]. A new ingredient in
our construction is the boundary of the Fishnet, which itself carries a 1D dynamics. This
corresponds to the need to build an open spin chain, with two boundary matrices that are
not constant matrices but nontrivial operators. This novel feature has not been yet fully
investigated in the literature of open spin chains.

In this chapter we first explore the integrability in the classical (strong coupling) limit
g — oo and then quantise this system and develop the full quantum integrability. The
integrability description comes from a chain of particles living on AdS5 (with radius going
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to zero at strong coupling) also known as “Fishchain” [121, 129, 130]. This time, however,
we have two “particles” with zero conformal weight at the ends of the chain whose motion
is additionally restricted to the Wilson lines. In the quantum construction we identify
explicitly the conserved charges of the system in the commuting family of operators, and
prove that the graph-building operator of the Feynman graph in the perturbation theory
is one of them. In this way we obtain a full quantum non-perturbative description for the
spectrum.

We also briefly discuss an interesting limit when the cusp becomes a straight line. In
this limit the insertion becomes an operator in 1D defect CF'T, which has been intensively
studied in recent years [123, 131-138].

8.1 Ladders limit and graph building operator

In this section we will describe the Feynman diagrams contributing to the expectation value
of the cusped Wilson line. We show that in the ladders limit it gets an iterative Dyson-
Schwinger structure, governed by a graph building operator. The graph building operator
is a hybrid between that obtained for J = 0 in [127, 128] for the cusp without insertion
and the one for the fishnet theory [24, 111]. In the rest of the chapter we develop the
integrability based method to diagonalise this operator.

8.1.1 Graph building operator

1
872 N,

b 0——0 D,
7 &——@ 7

6472 N, g°

Figure 8.2: We only need a subset of all Feynman diagrams. Above are the conventions for
the scalar propagators and the interaction vertex between ®; and Z = %. We use the

standard definition g = }4/—5 with the ‘t Hooft coupling A = g, N.

The Maldacena-Wilson Loop with J insertions of scalar fields and cusp angle ¢ is given
by:

1 0
W = NtrP expf dtdmg (iA-2'(t) + 1|2/ (t)))
0

0
x Z(0)7 x Pexpf dsdmg|[—i A-2'(s) + (Prcosf + Pasind)|a’(s)|] , (8.1.1)
0
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where 2/(t) = a’éy) and 2/(s) = 6:2(85)7 g is the 't Hooft coupling of planar N' = 4 SYM,

P is the path-ordering operator and the trace is taken over the full expression. The two
scalars that couple to the individual Wilson rays form an angle 6 between each other.
The expectation value of this quantity is divergent in both the IR and the UV, with the
divergence controlled by the dimension AZ:

-A
RIR) , (8.1.2)

)~ (G

where A corresponds to the overall scaling dimension of W and is also known as the cusp
anomalous dimension in the J = 0 case. The cusp anomalous dimension was studied
intensively in perturbation theory and integrability [122, 124, 125, 127, 128, 139-155]. In
this chapter we will study a more general observable which is the expectation value of W
with J additional insertions (under the trace) of complex scalar fields Z = %(@5 — i®g)
at points y; which lie outside of the contour, and also truncate the upper limit in Wilson
lines at some finite ¢ and s. In analogy with [121] we call this object the CFT wavefunction
W(t,s,y;). At first sight this object is not gauge invariant, however in the ladders limit
it is well defined. In fact, it can be made gauge invariant by closing the Wilson loop by
introducing additional segments of non-supersymmetric Wilson lines running through the
Z insertions, which will decouple in the ladders limit, as in fig. 8.1. As we will see, the role
of the effective coupling in the ladders limit is played by

(8.1.3)

Q>
1]

<exp (*i9/2)> 7+
g - 9 )
which we will assume finite while ¢ — 0 and § — ¢ 00. In this limit we will get the following
simplifications:

o First of all, since we are taking the 't Hooft coupling to zero, the gluons and fermions
decouple, and we are left with a theory of interacting scalar fields. Hence, we can
drop out the gauge field A from the definition (8.1.1).

e In a Feynman diagram expansion, only the contributions with the highest power of
cos  will survive. For J = 0, the only diagrams at [-loop order correspond to ladder
diagrams, that is, diagrams that contain [ scalar propagators beginning on one of the
Wilson lines and ending on the other [128].

e For J > 0, the scalars at the cusp Z can only contract with the external insertions
of Z. This means that only one type of vertex is allowed, i.e. the one in figure 8.2.
This is analogous to what one finds in the simplest fishnet CFT. Consequently, only
“fishnet” diagrams contribute.

2Strictly speaking for J > 0 it is only divergent for large enough coupling as at tree level we have A = J.
For J = 0 it is divergent for any g > 0.
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Using these simplifications, we can define the CFT wavefunction in the ladders limit as:
1 T t
Ul ons) = ([ [ 20) x Pexp [ de (amg) /()0
N =1 0

x Z(0)7 x Pexpf ds' (4mg) |2’ (s")|®1 cos 0> . (8.1.4)
0

The CFT wavefunction is obtained expanding the path-ordered exponentials

w(t7y15‘°'7yJ75) =

o0 0 t ] to
Vit yr, ..y, 8) = t{[de%m)f dtr1|x’ (ti—1) ~-J dt1|x' (t1)
ZZ;) ZZ;) 0 ’ ’ 0 1’ 1 ’ ’ ’ (815)

0

S S 52
f dslx'(sl)f ds;_1]7'(s;—1)| J dsi|z'(s1)|Fi(yj, tis Si) -
0 0 0

Here, ¢;(y;, t;, s;) represents the contribution of the I-bridge fishnet Feynman graph, where
a bridge is defined as a series of J + 1 propagators connecting the left and right Wilson
rays, as can be seen in figure 8.1. Note that the sum is over the number of “bridges” [. The
integrand in s;, t; is given by:

) L\
N <87r2N)

(1) () ()

=17 m=1n=0

Fi(yj,ti,si) = (6472 N ¢*)'7 (16 72 ¢ cos ) NUFDT+1)+1

Here we have defined z;0 = yo = (etk, 0,0, 0), T g1 = Ys+1 = (€% cos p, e’ sin g, 0, 0)
Vk=1...1,and x141; = yj, xo; =0 Vj = 1...J. In the formula (8.1.6), the second factor
in the first line of the r.h.s contains the contribution from the propagators, the third the one
from the vertices, the fourth comes from the expansion of the path-ordered exponentials,
while the fifth represents the contribution from the closed index loops of the planar diagram.
In the second line we first integrate over all positions of the vertices, the second term is a
collection of all vertical propagators, while the third contains that of the horizontal ones
(see figure 8.1 for the case of J =2 and | = 4). Notice that at any loop order these graphs
have the same order in N, consistent with the fact that we are using a planar diagram
expansion. Instead of computing this integral we notice that we can define it recursively in
terms of the inverse of a graph building operator as we illustrate below. First, notice that
[0y, acts on scalar propagators as:

i@f@yZ—M%%—%ﬂ- (8.1.7)
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Moreover, acting with 0,05 on the contour of a Wilson line brings down the expansion of
the path ordered exponential by one step, at the cost of a factor |y,(t)||y/;,;(s)|. Therefore
acting on ¢ with a string of [, followed by d:ds, we get back 1) expanded to one less
bridge, up to a multiplicative factor:

J / /
\3/0| ’yJ+1|
o0, | | Oy = (=1)7 (4971 U1, (8.1.8)
jljll v [T Wi — is1)?

where we use the definition of § from (8.1.3). From this we can extract an operator anni-
hilating the CF'T wavefunction:

(B—l_l)w:() 7 B—l = ( ?] Hz O(yz yz+1) 5156 HDyj ) (8.1.9)
@D Il 1

We refer to B~! as an inverted graph-building operator. The role of B~ — 1 was realised
in [129] to be the analogue of the world-sheet Hamiltonian of a string theory 3. We will
explore this further in the next section.

The Wilson loop with insertion W is invariant under dilatations, which stretches the
space around the origin (which we take to be the position of the cusp). Thus we can use
the following dilatation operator, acting on the CFT wavefunction

J
D=—i <at + 05+ ) (yi Oy, + 1)) , (8.1.10)

i=1

to measure the dimension A of the initial cusped Wilson line. More precisely, the eigenvalue
of D is i A. This operator commutes with B as it is easy to see. Another operator which
commutes with B is the generator of rotations in the orthogonal plane to the Wilson line:

J
=i (y? 01—yl ay?) . (8.1.11)
=1

This operator measures the spin of W. For Z7 scalar insertions S = 0, but one can also
study more general insertions with derivatives in the orthogonal plane, corresponding to
S # 0, which are also described by our construction.

In analogy with the fishnet [130] one should diagonalise both S and D. After doing so,
the equation (3 ~1—1) ¢ = 0 should restrict us to the discrete spectrum of eigenvalues of the
dilatation operator, which would give us all the anomalous dimensions of the operators with
given quantum numbers. Indeed we will find that there are infinitely many (but a discrete
set) of such v¥’s diagonalising all the 3 operators. In analogy with [25, 123] we expect each

3It’s important to notice that the graph-building operator is diagonalisable and its spectrum contains
only operators with non-trivial anomalous dimension. All operators which form Jordan blocks, like those
studied in [156], seem to be absent from its spectrum.



8.2. CLASSICAL OPEN FISHCHAIN 135

of them to correspond to a particular insertion of operators, which could include derivatives
and extra ®1,®, fields in addition to Z7, whose number is fixed by the R-charge. These
type of insertions at the cusp will not modify the iterative structure of the diagrams, instead
just adding a finite number of propagators close to the cusp (cf. figure 8.3). Therefore, all
these states should be governed by the same equation (8.1.8).

Figure 8.3: An example of an “excited state” for J = 2. Here, propagators from the
extra insertion of ®; at the cusp contract with the Wilson line without crossing any other
propagators of ®; (shown in red), as such diagrams would be subleading in the ladders
limit.

In the next sections we will explore how the integrability arises explicitly in this system.
In particular, we will show first in the classical (strong coupling) limit and then in general
that the operators B, D and S are part of a bigger commuting family of operators.

8.2 Classical open fishchain

In this section, following [129], we interpret the inverse of the graph-building operator as
a Hamiltonian of a quantum system of particles. Then we take the quasi-classical strong
coupling limit of the system, deriving the classical fishchain with specific open boundary
conditions. We analyse in detail the classical system and find some of the solutions of the
equations of motion.

8.2.1 Strong coupling limit

The starting point for the strong coupling § — oo analysis is equation (8.1.8). By re-writing
(8.1.9) in terms of the conjugate momenta:

Pi = —z'&yi, Tt = _iat, Tg = _ia& (821)
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we obtain the Hamiltonian H, governing a system with 4.J + 2 degrees of freedom, given by:

157)7 1 |90 ()[[y41(5)]
=m7s | | i + (8.2.2)
H H;] o(y yz+1)2

In this section we will be treating this Hamiltonian as the one of a classical system. In
analogy with [129] we will see that the classical limit corresponds to the strong coupling
g — o0 limit of the original quantum system (8.1.9). We will now demonstrate the classical
integrability of this system and then describe its quantisation in section 8.4.

We remark that y;, ¢ = 1...J are 4D vectors with four bulk degrees of freedom for
each one, while yg and y;,1 are 4D vectors having one boundary degree of freedom each.
Therefore, without loss of generality, we parametrise the latter as:

yo(t) = (et, 0, 0, O) , yr+1(s) = (e’ cos g, e’siny, 0, 0) . (8.2.3)

We will find it beneficial to embed the system in 6D space, which will allow to make
the conformal symmetry of the system manifest, but will also result in a local action with
nearest neighbour interaction.

In the rest of this section we will deduce the classical equations of motion of this system,
using the Lagrangian formalism. First, by performing a Legendre transformation on (8.2.2),
we find the Lagrangian to be:

1
27+1 ! " !
L =95 (2] 4+ 1 13 lyz — gy Lo G (8.2.4)
[Ti—o(wi — yis1)

where f = % f, with 7 being a “world-sheet” time variable (conjugate to the Hamiltonian
(8.2.2)). The action S = {Ldr is not invariant under time reparametrisation symmetry
7 — f(7), which is needed to ensure Hiy) = 0. In order to enforce this symmetry we

introduce an auxiliary field v transforming as v — ; when 7 — f(7) which gives

7
[ Tizo (Wi — yig1)?

This is now time-reparametrisation invariant. We then eliminate the auxiliary field setting
it to its extremum (by a suitable time reparametrisation). We have to remember that yg
(and ys41) is not itself a canonical coordinate, but depends on the world-sheet time through
t(r) (and s(7) respectively). Thus we can use gy = y4t and similarly ;.1 = y/; ;5. After
that we get:

J 27+1 / /
_ 1, t
L=2571(2] + 1) <7té | ] y2) — 7y (46%)7 1 oIl 51(5)] (8.2.5)

207+1) ]+1)
_ (27 + 2)(20) 7 g | [Bollg] [Ty ”72 . (8.2.6)
Hizo ’yi - yi+1’
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We now embed the system in 6D Minkowksi spacetime, using lightcone coordinates in the
Poincare’ slice:

X
. X?2=0, Xf=Xx"+Xx' (8.2.7)

L
yz_X;ra 7

Hence we get:

Xol|X X? EeEy
A [| 0|| J+1| Hz— ] ) (828)

L= (2] +2)(20)7 § [T (—2X:. Xi11)

Furthermore, we can disentangle this action to bring it to a Polyakov-like form, by intro-
ducing auxiliary fields «;, getting:

Xo||X J X? J _
L=¢ OéoM + Z a;— + sz? + (J + 1) H(—aka.Xk+1) %‘H R (829)
2 2 iy

=1

where

€= (20)7+1 4. (8.2.10)

In (8.2.9) we also introduced the light-cone constraint X? = 0 via the Lagrange multiplier
n;. In order to get back the Nambu-Goto-like form (8.2.8), we have to extremise the fields
a; and plug these values back into (8.2.9). It is possible to do this due to the new re-scaling
symmetry of X;. More precisely, the Lagrangian (8.2.9) has J + 3 gauge symmetries: time-
dependent rescaling X; — ¢;(7)X;, o — g, 172 (1), mi — mg[l/z(T), i=0...J+1and
time reparametrisation 7 — f(7), under which fields transform as X; — %, o — fal-, 7; —
ni

i Instead of setting «a;’s to their extreme values we can use the symmetries to impose

a; =1,¥i =0,...,J. This would lead to the following constraints (the same way as one
gets Virasoro constraints): ‘
Xt=r, (8.2.11)
where
J 1
= H — X Xip1) T, (8.2.12)
with £ = 1,...,J in the first equatlon. Furthermore, from the equation of motion for

ap we get | Xo|[Xs11] = £: this still leaves us with the freedom to rescale Xy — h(1)Xo
and simultaneously X j,1 — ﬁ X j+1, which we can fix by imposing additionally |Xg| =

‘XJ+1|. Hence, we can just extend the range of k in (8.2.11) to k = 0,...,J + 1. Finally,
to fix the remaining time-reparametrisation gauge freedom we can set:

£=1, (8.2.13)

which is a convenient gauge to work with. We have imposed J + 3 conditions, so all gauge
degrees of freedom are fixed. The gauge fixed Lagrangian is then:

Xo|| X X2 J L
L=¢ ('0”2"“ + 2,5 T (D [ [ (- Xk Xien) ) : (8.2.14)

=1 k=0
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Finally, by noticing that 2 Xol| X1 = X2 + X%H — (|Xo| — | Xs41])? we can replace
| Xo|| X 1] — 52 + ‘]“ in (8.2.14), modulo terms quadratic in constraints. Similarly,

1
defining y = 2]_[1 o(— X - Xi4+1)” 71 ~ 1 on constraints, we have y=e8Y =1 +logy +
=X Xk+1

O(log? y), which allows us to replace the potential term by Zk 05 Log . Therefore
we get the gauge fixed Lagranglan
X2 X2 X J L, —XiX
L = ¢|20 J o - 7”1 2.1
¢ ( Lt Z 5 1o , (8.2.15)
=1 =0
with constraints given by:
J
X
[ =1, (8.2.16)
=0
X2=0, X?=1,i=0,...,J+1. (8.2.17)

Note that on the constraints we also have L ~ £(J + 1). In this form the Lagrangian is
explicitly local and the interaction is only between the nearest neighbours. It may appear
a bit strange that the boundary particles have mass 1/2 w.r.t. to the particles in the bulk,
however we will see in the next section that in this way the equations of motion are more
uniform. The reason is that the bulk particles have to be split in two and reflected, unlike
those at the boundaries. In (8.2.14) the 6D variables X;, i = 1,...,J are independent
canonical coordinates, constrained by (8.2.11) and (8.2.13). At the same time the boundary
particles Xy and X ;.1 are encoded in terms of one variable each ¢(7) and s(7), due to
(8.2.3). Explicitly:

X;i(7) = ri(7) (coshw;(7), — sinh w;(7), cos ¢;, sin ¢;,0,0) i =0,J + 1, (8.2.18)

where ¢o = 0, ¢s11 = @, wo(7) = t(r) and w41 (1) = s(7). On the constraint X? = 1 we
also have r;(t) = ﬁ(ﬂ Apart from this, the Lagrangian (8.2.14) is very similar to the one
found in the classical limit of the fishnet graphs in [129]. It can be interpreted as the one of
a discretised string with string-bits having a nearest neighbour interaction. However, due
to the difference in the boundary DOFs it still remains to be seen whether the system is
classically integrable, as it was in the original case [129].

8.2.2 Equations of motion

We now compute the Euler-Lagrange equations starting from (8.2.15). The J equations for
bulk variables are interpreted as equations of motion for J bulk particles, while the equations
for Xy and Xy, are interpreted as equations of motion for two particles constrained on the
two Wilson lines. Since the Lagrangian (8.2.15) has nearest neighbour interactions, only
the first and last bulk particles in the spin chain will feel the presence of the particles on
the Wilson lines. For example, for the bulk particle j we have [129]:

. 1/ X X .
X =2m:X: — = It J =1,....J 8.2.19
3T AR Ty <Xj+1.Xj XX ) T ( )
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For the particles on the Wilson lines, we only have one physical degree of freedom for each,
t(7) and s(7). The relative equations of motion are given by:
i _ X104 Xo | % _ X704 X1 ' (8.2.20)
t2 X1.Xo S X5 Xy
These two equations can be written in the form (8.2.19) by introducing the reflected particles
X_1 and Xy as the reflection of the particles X7 and X ; w.r.t. the ray parametrised by ¢
and s respectively. More precisely we introduce the reflection matrix and rotation matrices:

100 0 0 O 10 0 0 0 0
010 0 0 O 01 0 0 0 0
0 01 O 0 O 0 0 cosp —sinp 0 O
C]\]{f = ) GMN =
000 -1 0 O 0 0 sinp cose 0 O
000 0 -1 0 0 0 0 0 10
000 0 0 -1 0 0 0 0
MN MN
(8.2.21)

Then we define the images of the particles 1 and J by the reflection about the ray parametrised
by t and s respectively as X_; = C.X; and X .0 = G.C.G'.X; = G®.C.X;. With these
definitions the equations (8.2.20) coincide with (8.2.19) for j = 0 and j = J + 1 correspond-
ingly.

Thus, we conclude that at the level of the classical equations of motion the open version
of the fishchain we consider here is identical to the double-size closed fishchain of [129],
with length 2J + 2 and quasi-periodic boundary condition twisted by a 2¢ rotation (see
figure 8.4). However, there are some important differences in the Poisson structure and
consequently the quantisation is different.

8.2.3 Conserved charges

The presence of boundaries in the open fishchain breaks the SO(1,5) symmetry that its
closed counterpart enjoyed to the subgroup SO(2) x SO(1,1). Nevertheless it is useful to
define

MN _ vMyN >N v N _ ovIMyN]
;' =X X - XX —2Xj Xj , (8.2.22)

for j =0,...J + 1, which are the local SO(1,5) generators for j = 1,...,.J. We also define
the total charge

2 =7 2 . -



140 CHAPTER 8. CUSPS IN N =4 SYM AND OPEN FISHCHAIN

As the SO(1,5) symmetry is broken, only the components of QMY corresponding to the
unbroken symmetry subgroup will remain conserved in time. Thus we only have two Noether
charges, corresponding to the SO(2) angular momentum and to the scaling dimension:

S=Qs4, D=Q_10=iA. (8.2.24)

Lyy1(u)

L_(j41)(—u)

Figure 8.4: Schematic representation of the open Fishchain

8.2.4 Example of solution of the classical equations of motion

Now we proceed to the numerical solution of the system (8.2.19). To do so, we introduce
the following parametrisation for the bulk particles, which is similar to the one used for the
boundary particles (8.2.18):

1
Xa(7) = : ; ( coshwg(7), —sinhwg(7), cos@q(7), sing.(7), 0, 0 ) .
w3 (1) + 93 (7)
(8.2.25)
where @ = 1,...,J. This resolves the X? = 0 and X2 = 1 constraints. For the ansatz

(8.2.25) the particles are all in the same plane. The boundary particles are constrained to
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move on the Wilson rays, so their angular position is fixed

$o(T) =0, (8.2.26)
by+1(T) = . (8.2.27)

We can imagine the simplest solution would be when these particles move along straight
lines. For that we need to compensate the interaction with neighbours, which could other-
wise bend the trajectory, so we require

k

<Z5k(7') = m‘ﬂ .

(8.2.28)
To simplify our ansatz further we can assume that wg(7) = W(7). Plugging this ansatz

into the EOMs (8.2.19) we obtain
wi(T) =p7. (8.2.29)

Finally, constraint (8.2.16) gives

=1, (8.2.30)

which has 2J + 2 different solutions

ﬁ:emaﬁzsm( )  n=1...2J+2. (8.2.31)

'
2J+2
To get an interpretation of this, we also compute the anomalous dimension, using (8.2.24)

(J+1)i
B

We see that the ambiguous factor can be absorbed into £. In fact, the initial graph building
operator only depends on €272 thus this type of ambiguity is expected. In fact this is the
same as in the case of the closed fishchain [129], where the solutions were found to multiply
in a similar way and were responsible for the different asymptotics of a 4 point correlator.
We can check our classical solution by comparing with some known results for J = 0 case.
From (8.2.32) for J = 0 we obtain:

A=— ¢ (8.2.32)

A=t 29

—_ . £
S11 3

(8.2.33)

which agrees perfectly with the equation (E.6) in [25]. We note that for § > 0 only the
minus sign solution appears in the spectrum whereas the plus sign solution corresponds to
large and negative g.

More general solutions can be obtained numerically. We generated a couple of solutions,
obtained by perturbing the analytic solution we just presented. These can be found in
figure 8.5a and figure 8.5b.
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15 15 4

(a) J = 2 — Notice that the boundary particles run  (b) J = 3 — Notice that one of the bulk particles
away to infinity in a finite amount of time, while proceeds to make a complete loop.

the particles in the bulk have only moved a finite

amount.

Figure 8.5: Plot of the motion of particles obtained by a numerical solution of the classical
equations of motion. In these solutions, motion is restricted to the plane of the Wilson loop.
As expected, the boundary particles are confined to fixed rays whereas the bulk particles
are free to move anywhere in the plane.

8.3 Classical integrability

In this section we prove that the dual model is integrable at the classical level by studying
its Poisson structure. We will construct the Lax matrices, corresponding to the particles in
the bulk, and the dynamical reflection matrix will represent the boundary particles. Using
these building blocks we will construct a family of mutually Poisson-commuting objects.

The main purpose of this section is to establish the grounds for quantisation. For this
reason we will only build here a subset of all commuting integrals of motion, as they will
anyway appear in the quantum case in full generality.

8.3.1 DPoisson brackets

In this section we discuss the Poisson structure following from the Lagrangian (8.2.15).
For the bulk DOFs the Poisson structure is identical to the closed fishchain case already
studied in [130]. One can find the conjugate momenta and define the Poisson bracket in
the standard way. In particular, for the bulk particles the momentum conjugate to X; ys is

pM =exM, (8.3.1)
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and the Poisson bracket is defined as {X; M,P]N } = 51-]-6]\]\2. Due to the constraints the
Poisson brackets is ambiguous, and we could define a Dirac bracket. Alternatively, one
can work with gauge invariant quantities. The gauge invariant combination of phase space
coordinates for the bulk particles are the local symmetry generators

1 . .
1 = LKV RN XMEY) = XN XY 5:32)
which form the SO(1,5) algebra under the Poisson bracket:

1
{q]i”N,q]ﬁ(L}=g( nMEGYE 4 N E g pMEGVE g NEGMEY Tk =1,...,J. (8.3.3)

Similarly, one can proceed with the boundary degrees of freedom ¢ and s. The canonically
conjugate momenta to t(7) and s(7) are

_ ¢ _ €
M=orm =2

Even though the boundaries explicitly break down the SO(1,5) symmetry, it is still useful
to define ¢}’ and ¢} in a similar to (8.3.2) way

(8.3.4)

2 , / 2
@M= € (YOMYON - YONYOM) I, ¢y = R (YJ+1YJ+1 YJ+1YJ+1> (8.3.5)

where
Yy = {cosht,—sinht¢,1,0,0,0} , Yji1 = {coshs, —sinh s, cosy,sinp, 0,0} . (8.3.6)

Since the Wilson lines explicitly break conformal symmetry, the Poisson bracket of ¢q is
modified to

1 . . N .
(@™ ,qoL}—g( MR g+ N E g+ MBI — N | i =n (1 +0),

(8.3.7)
where C'is the reflection matrix defined in (8.2.21). Similarly for the right boundary we get

1, ) )
(', afh) = F (=g Mg + g ot + ad - al ) L e =n(1+ G.G.O),

(8.3.8)
where G is the rotation matrix defined in (8.2.21).
Finally, let us write the Hamiltonian H, corresponding to the lagrangian (8.2.15) in
terms of the local symmetry generators ¢;. For this we introduce

1
H, = mtr (5.3 - - 45-0541.G-G.C.q5....... q;.C) — 1. (8.3.9)

Then we find that Hj is proportional to the Hamiltonian H up to a constant multiplier and
up to second order in constraints

H, = exp (gﬂ) ~1~iH+O(H?). (8.3.10)
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As our constraint implies H = 0 we can equivalently use %Hq instead. The advantage of
H, over H is that it is written explicitly in terms of ¢;’s. At explained in [130] in the case
of ¢;’s there is no difference between the Poisson and Dirac brackets and so they are more
convenient for the quantization.

Next, we will build the Lax representation based on the Poisson structure explained
here and develop the integrability construction.

8.3.2 Lax representation

In this section we will build the the Lax representation for the equations of motion of the

M N
. . . . MN __ Xi[_l i ] . .
open Fishchain. It is useful to introduce the local current j;*" = _2ﬁ’ satisfying
i—1-4%
. 1. . .
GMN = (MN HY} = -5 (GMY =GNy i=0,.., 0+ 1. (8.3.11)
This allows us to define the Lax pair of matrices L; and V;:
L; =u14$4+§szNZMN , V= —@LMNZMN, (8.3.12)

where Y/ are the 6D o matrices, giving a 4D representation of SO(1,5). The explicit
form we are using can be found in [130]. Both L; and V; are complex 4 x 4 matrices with
entries that are functions on the phase space of the i-th site of the spin chain. One can
show [129] from (8.2.19) that L; and V; satisfy the flatness condition

Li = Li.Vig1 — Vil = Vi Ly — L.V, (8.3.13)
From this we have that the open transfer matrix:
T(u) = trlLh (—u).L} (—u).Lo(u). L1 (u) - - - Ly (u). Ly (u).GELG* | (8.3.14)

is conserved in time for any value of u, i.e. {T(u), H} = 0. In the above expression we have
defined the twist matrix:

s 0 0 0
0 e 0 0
Gt = . . (8.3.15)
0 0 e % 0
0 0 0 ¢if

f

To prove that the model is classically integrable, we also need to show that the integrals
of motion are in convolution, i.e. that {T(u),T(v)} = 0. This is not automatic, since the
Lax pair construction we have reviewed in section 1 does not apply to (classical) open spin
chain.
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In order to prove the convolution property of integrals of motion one can use (8.3.3) and
(8.3.12) to show that:

E{L,(u),Ly(v)} = [r(u,v), Ly (u) ® Ly (v)]6nm , (8.3.16)

where 7 is the classical r-matrix.
For the boundary matrices we have a different relation due to the modifications in the
Poisson brackets (8.3.7) and (8.3.8). Denoting

K(u) = CLo(u) , K(u)=G 1 Li(u).G.C, (8.3.17)

we have:

£ (Kop(), Kog(0)} = Kaa(u)Kep (v) — Kag(v)Kep(u)  Kap(u)Kea (v) — Kpa(v)Kae (1) '

u—v u—+v
(8.3.18)
and the same for K. In Appendix F.1 we use these identities to show that indeed
{T(u),T(v)} =0. (8.3.19)

Therefore, the open Fishchain is classically integrable - its equation of motion are equivalent
to a Lax pair equation, and from it we can construct mutually commuting transfer matrices.

8.4 Quantum integrability

In order to demonstrate the integrability at the quantum level we will have to embed the
graph building operator into a family of commuting operators. To first approximation, one
can replace the local SO(1,5) generators g; by the operators §;. However, there are some
quantum corrections to work out due to non-commutativity of various components of (LM N ,
and this is what we will do in this section.

We will define the Lax operator L and the boundary matrices K as quantum versions
of the classical ones. They will continue to be 4 x 4 matrices, but now each component
will become a differential operator. Thus we will treat them as tensors acting on a tensor
product of a finite, 4-dimensional vector space and an infinite dimensional functional space.
We will refer to these spaces as auxiliary and physical spaces as usual. In particular, the
physical space for the bulk LL; matrices will be made of functions of 6D projective space
variables X!, while the physical space for the boundary K and K matrices will be made of
functions of the boundary degrees of freedom ¢ and s.

8.4.1 Quantisation of the integrability relations

We need to build the quantum analogue of (8.3.16), which is the Yang-Baxter equation,
and of (8.3.18), which is given by the boundary Yang-Baxter equation.
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Quantum Lax matrix The quantum version of the Lax matrix is?

p(u) = udy + %@MNEMNab ; (8.4.1)

A

L

where ¢M¥ is the local generator of SO(1,5), obtained as a quantisation of (8.3.2), i.e. by
replacing PjK — PjK = —i0x; ;"

N 9 S S VA
My = €<X] TR an,N>’ (8.4.2)

It satisfies the SO(1,5) commutation relation:

N N i . . . .

(@™, ai "] = 3 (=™t MG e M =N EGIE) L k=1, (8.4.3)
As explained in [130] ¢; can be understood as acting on the functions of 4-dimensional
variables y; (e.g. CFT wave function) as if it was the corresponding conformal generator in
4D. In other words one can use the following map between the functions of 4D coordinates

Ym and functions of 6D coordinates XM

1 X! X4
e Ym) — 8.4.4
.- ym) X1+X0f<X1+X0’ ’X1+X0> (844)

as ¢; preserves the 6 interval X X, we can set it to zero consistently. Note the action
on the 4D is only well defined for observables build out of ¢;’s. In particular ]3]- and X j
themselves are operators living in AdS5 [130].

The Lax operator (8.4.1) satisfies the usual RT'T relations with the rational R-matrix if
we set the quantum parameter & to £. This Lax operator is built on a representation of gly
that is non-compact and non-highest weight, as evident from the fact that the generators
qZM N are differential operators acting on an infinite-dimensional space. This implies that the
Bethe Ansatz approaches are not available for this spin chain, and the Q-functions cannot
be built in terms of Bethe roots and Baxter polynomials. However, the FSoV techniques
discussed in chapter 6 would still be available.

8.4.2 Boundary reflection operator

In the classical case at the boundary we found that gy and ¢y, satisfied the modified
Poisson brackets (8.3.7). This in turn results in K satisfying the boundary Yang-Baxter
equation.

The quantum version of gy and ¢y are again obtained by replacing II; — —id; and
II; — —ids, and read:

R 2 . . R 2 . .
oM = —iZ(YMYY - Y YMe, , ¢M = —Zg(Yf\ilYﬁl —YM Y0, (8.4.5)

£

“Note that our conventions differ by sign in comparison with [130].
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where Ys are explicit functions of s and ¢, parameterising the Wilson rays defined in (8.3.6).
Following the classical case, we also introduce:

Lo“p(u) = udy + §Q(])\/[NZMNab ;v L") = udp + §Q%]YEMNGI; : (8.4.6)
These will form the operatorial part of the boundary matrices.

Next we need to identify the quantisation of K (8.3.17), such that (8.3.18) becomes the
BYBE (6.1.2). We find that at the quantum level there is a quantum correction to the
spectral parameter, invisible in the classical £ — oo limit. Namely the BYBE is solved by

K(u) = C.Lo(u— 5) , (8.4.7)

where C' is the same reflection matrix as the classical case (8.3.15). For the other boundary
matrix, we need to find a solution of (6.1.6). One can easily verify that the solution to this
equation has the following form:

K(u) = G Lyji(u+ £).G.C, (8.4.8)

where G is the twist matrix defined in (8.3.15)°. This expression is again identical to the
classical expression up to a quantum correction in the spectral parameter.

The R-matrix itself is defined up to an arbitrary scalar factor, which does not affect
any of the previous relations. However, in the next sections we will be using the fusion
procedure for the boundary reflection matrix which is sensitive to the normalisation.

In the next sections we will use the normalised R-matrix (6.3.1) S, and denote for future
convenience:
u2£2

Au) = 1—7u2§2

(8.4.9)

8.4.3 Transfer matrix

In this section we will build the family of antisymmetric transfer matrices for the open
Fishchain out of the building blocks discussed above and the fusion procedure.

We will use the index 4 to indicate the fundamental open transfer matrix of the open
Fishchain, which is a representation of the twisted Yangian Y (4), and define it as:

T4(u) =tr [L%(—u) - Li(—u)Li (—u)K(u)Li (uw) . .. Ly—1 (u)Ly(u)GK(u)G*] . (8.4.10)
The boundary monodromy matrix of the model can be defined as:
U(u) = Ly(u) ... Ly_1(u)Ly(u) GK(u)GLY, (—u) . .. Ly (—u)Li (—u), (8.4.11)

but we will not use it in this chapter.
As showed in chapter 6, open transfer matrices form a family of mutually commuting
operators:
[T4(u), T*(v)] = 0. (8.4.12)

5Notice that the twist is included for convenience in this solution via the twisted Yangian coprod-
uct (6.1.5).
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First fused transfer matrix

In order to build T® - the transfer matrix acting on the auxiliary space C* A C* ~ €%, or Ty
in the notations of chapter 6 - we need the fuse the corresponding building blocks, K and
LS.

The L8 needed in this section has auxiliary space being the 6-dimensional Minkowski
space with metric ny/x. The fused Lax operator is a quadratic polynomial in u with
coefficients built out of local charge operators ¢; as follows:

A 1 1 ; 1
LYY () = <u2 - 81:@2) M = ug ™+ <2qu M %@MN + 452771‘”) . (8413)

Note that the fused Lax operator ﬂ?(u) is invariant under generalised transposition ¢ plus
flipping of the spectral parameter u — —u.

Boundary reflection operator What remains to be done is fusing the reflection oper-
ators. This can be done using the procedure described in chapter 6.
In terms of Y = Y{, defined in (8.3.6), we get:

A 7 21 . .
K8, v(u) = CSnu (u - 5) + Ug(YNYM —YuYn)o: (8.4.14)
N R Y A Y R
EINOIMO — g YMOtINO: -

As we can see, it is a second order differential operator in ¢ and a second order polynomial
in the spectral parameter u. Similarly for the right boundary we get (replacing ¢ by s):

A j 2 . .
K8, n(u) = C%nu <u + 2) + ué(YNYM Y Y)as (8.4.15)
2 P 20, » A
?YM&;YN&S + @YNasYMaS .
In the equations above we are using the reflection matrix C® in vector representation is the
matrix C' we introduced in (8.2.21). An important property, which follows directly from
the definitions (8.4.14) and (8.4.15), is that K6(+i/¢) = 0 and Ké(—i/¢) = 0.

Using o (8.4.5) we can write

_|_

. i .1 i
K8(u) = C%u <u — 5) — udo + iqg — %—u(qg)T . (8.4.16)

For the right boundary we have very similar expression

H%G(U) = (G%~ 1 (u (u + 2) —ugj41 + %(d?]+1)T +

SWe could also fuse the boundary monodromy matrix U directly, but this seems to be computationally
heavier to do.

("
2§uq?,ﬂ) G8.C% . (8.4.17)
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where G in vector representation is the twist matrix G from (8.2.21). The twist matrix G©
appears in the expression (8.4.17) for the right boundary reflection operator, as it is defined
in a way that does not depend on ¢.

Having all the needed ingredients we can compute T® by replacing in the RHS of (8.4.10)
all the operators and matrices by their fused counterpart.

Hamiltonian from the transfer matrices

In this section we will show that the Hamiltonian of the system is a part of the commuting
family of operators. For that consider:

T6(0) = 4 lim u?&tr [Ly(0) -+ - La(0)Ly (0)K(u)Ly (u) ... Ly—1(0)L;(0)GK(u)G'] .

(8.4.18)
First we can use that:
2 MN . MN MN ~2 MN
N 4 1 g7 1
LMV (0) = F— - %ngN - g + 77452 - TR TR LERE)

where in the last equality we used the identity from [130]. Also from (8.4.14) and (8.4.15)
we have

. i 21 A A
uéKSMN(u)‘u:O = —§(q§ )NM:_?}/OMat}/ONat , (84.20)

N _\MN 7 R 27 N n
ué (GGKG(u)(GG) 1) - +§(q3+1)MN=+§—2Yﬁ183Y%185. (8.4.21)

u=0
Combining all parts together, up to sub-leading terms in 1/£ we get the quantum version
of Hy + 1, where H, is defined in (8.3.9). In order to check that this produces the correct
quantisation of Hg, i.e. the one related to the graph building operator, we have to analyse
the expression (8.4.19) more carefully. Paying attention to the order of the operators we
get

J
4
47]NMX§V[XJ.XJ_1 . .Xl.Yoé‘t HDgG) (8422)

6
T (0) 422J£4J+
i=1

J
X YZ].Xle.XQ NN XJ.YJHasYﬁl&S@t HDEG) y

i=1
where all derivatives are understood as operators acting on the CFT wavefunction embedded
in the lightcone of 6D Minkowski spacetime. In order to relate the above expression with
the graph building operator (8.1.9), which is expressed in terms of derivatives acting on
functions in 4D Euclidean spacetime, we recall that T® is built out of ¢;’s and as such
we can act with it, in a consistent way, on functions of 4D coordinates, following the

prescription (8.4.4). Furthermore, one can just replace the 6D d”Alembertian operator in
4D d”Alembertian due to the identity

0% =W + ox, ox_, (8.4.23)
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and the fact that there is no dependence on X~ in the 4D functions, by construction (8.4.4).
Therefore,

J
Yo.X1X1.Xs ... X5 Y5000, [OF

= (8.4.24)
i=1
Jil 050 L W e
=27 ‘1_[ —u)? [ [0 = (3)77 @B, (84.25)
Yoll¥)r41 e
where we used that X1.X» = —%(z1 — 22)? and Yp.X; = _;t(ZEO — 21)2. We use the

expression for the inverse of the graph-building operator B! from (8.1.9). Then for T6(0)
one gets precisely R
T6(0) = 4B72. (8.4.26)

Where we used (8.2.10) to relate & and §. We see that all factors cancel exactly, implying
that at the quantum level we also have T¢(0)y) = 4 as it follows from (8.1.9). At the same
time we see that the quantum graph building operator B is indeed a part of the commuting
family of operators, which demonstrates the integrability of the initial system of Feynman
graphs.

Second fused transfer matrix

Here we compute the 4 transfer matrix (or T3 in the notation of chapter 6), corresponding
to the antisymmetrisation of the antisymmetric tensor product of three copies of 4 irrep. in-
gredients with the corresponding shifts in the spectral parameters, dictated by the fusion
procedure. The calculation for L4 was done in [130]. The result for L* can be re-expressed
in terms of one L# times a scalar polynomial factor

L2 (u) = <u2 trgk + ;2> (LAY (=) | (8.4.27)

Doing the fusion of the boundary reflection operator and projecting onto the 4 auxiliary
space, we get:

Kzlab<u) — <U2 — % —+ 422> ]Ii<4ba(—u) y f{%b(u) = - <’LL2 + Z;"L + 42.2> Kga(_u) °
(8.4.28)

Finally, the twist matrix is the inverse of the one for the 4 irrep. (8.3.15). The polynomial
factors in (8.4.27) and (8.4.28) will play an important role in the Baxter TQ equation.

Sklyanin determinant

Here we compute the ingredients of the transfer matrix in the representation 1, also known
as the Sklyanin determinant. Like in the previous sections, this can be computed as an
antisymmetrisation of the tensor product of four copies of I and K in the 4 irrep. For both
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L! and K! we find that they are just fourth order polynomials in u acting trivially on the
physical space. Again the calculation of ! was already performed in [130] and the result

reads: )
. trg? 5 trg? 1
LYu) = (w? — —% + — U 4.2
(u) (u 3 +4£2> + e @ (8.4.29)

For the boundary reflection operator, we obtain:
) = (w2 (ut D\ Rl — 2 t _L
= (=) (1-g)u(erg) B (erF) (o1 ) (o §8>

J = 0 example

Before discussing the general case we first give the explicit result for the simplest case of
a chain of zero length. This means that we are only left with the boundary reflection
operators. Furthermore, the graph-building operator is a second order differential operator
in s and ¢, as it should commute with the dilatation operator only one variable remains.
If we further impose T8(0) = 4, we will automatically diagonalise all transfer matrices
obtaining the following results for their eigenvalues:

1
T*(v) = = (41}2 cos p + cos p + 862) ,

¢z
TS (v) = A(2v)vg4;1 (v (2cos(2¢) + 4) + v* (16£7 cos p — 4A%sin® ) + 16£7) |
_ 2 2
T4 (v) = A(20)A(20 + i) A(20 — i) (47 + 11)6;“) +9)

2
T (v) = A2(20)A(2v + i) A(2v — i) A(2v + 20) A(2v — zi)qﬂ (v? + 128 (v? + 4) |

where we introduced the rescaled spectral parameter v = uw&. The factors A, where A(v) =

(8.4.31)
(4112 cos ¢ + cosp + 8{2) ,

11%7 are due to the R-matrix normalisation as discussed in section 8.4.2. We also worked
out the form of the transfer-matrix eigenvalues for J = 1 case in Appendix F.3 in terms
of a few unknown constants. We have explicitly verified that all the T-operators for J =0
and J = 1 commute between themselves and with the charges A, S, H as expected.

In the next section we will extend these results to the general J case.

Eigenvalues of the transfer matrices

Here we deduce the general form of the eigenvalues of the transfer matrices. First, one
can notice explicitly that for J = 0 and J = 1 case they are even functions of the spectral
parameter. In Appendix F.2 we prove that this is true for any J. Some other properties of
the transfer matrices are:

o T4 is a polynomial of degree 2.J + 2 in v, as it follows from its definition (8.4.10).
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« TS is a rational function with two poles at v = +4/2, coming from the normalisation
factor A(2v). Another potential pole at v = 0, coming from the boundary reflection
operators, is cancelled by the same A(2v). At large v it behaves as ~ v4/*4,

« Previously we noticed that Ké(u = +i/¢) = 0 and Kb(u = —i/¢) = 0, therefore we
can see that TS should have a prefactor of v? + 1 = £2u? + 1.

o Finally, in section 8.4.3 we have showed that T®(0) = 4 due to (8.4.26).

e The properties of T4 are very similar to those of T4, apart from the trivial factors of
A’s and additional trivial factors coming from L% and K.

o Finally, T! (the Sklyanin determinant) contains only trivial factors and can be com-
puted explicitly for any J.

Based on these observations we can write the transfer matrices in terms of the polynomials
P (v?) as:

T (v) =1,
P4 (v?)
T4(U) = % 9
02+ 1 Py o(v?)

TS (v) = A(2v) 2 vz

_ v v 2J+1 4 2
() = A(20) A2 + i) A(20 — i) T DO 2&,16 Fra ()

T(0) = A2(20)A(20 + ) A0 — ) A(20 + 20) A(20 — 20) T 4><v2g R

(8.4.32)

Here, P,? is a polynomial of degree k, labelled by the representation A in the auxiliary space.
The eigenvalues of the conserved charges of the system are the coefficients of the powers of
2 in these polynomials. We will denote them as (defining w = v?):

J+1
—z+J+1
PJ+1 Z a;w
2]+2
Py pa(w Z bw ™I (8.4.33)
J+1
—7,+J+1
PJ+1 Z Gw

In our definition, ag will represent the coefficient of the highest power in v? in Pf} 41, a1 the
second highest etc. The leading coefficients are easy to compute explicitly directly from the
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definition
ag =co=4cosp , by =2cos2p+4. (8.4.34)

They just give the twisted (or g-)dimension of the corresponding representations. Since
the leading coefficients are trivial, in total we get 4J + 4 non-trivial coefficients in the
polynomials P. As our system has 4.J + 2 degrees of freedom it may suggest that there are
2 more relations between the coefficients of the polynomials P. Indeed, in the J = 0 and
J = 1 cases we found them by computing the differential operators explicitly, but it is rather
hard to deduce the general relations. In the J = 1 case we found exactly 6 independent
operators guarantees integrability of the system.

We found that the global charges A and S are encoded into the sub-leading coefficients
in the following way:

c1—a; =8iSAsing, (8.4.35)
(a1 4+ c1)cosp — by =2 (2S2+2A2+J) sin? ¢ 4+ 2 cos? ¢ .

These relations are also quite hard to derive in general, but we explicitly verified the first
relation up to J = 3 and the second up to J = 2.
Finally, the condition T6(0) = 4 implies:

bojio = EMH = 16547+ . (8.4.36)

In order to find the eigenvalues of all coefficients of the transfer matrices we will have to
develop a numerical procedure. For that we will first build the TQ-relations in the next
section.

8.5 Baxter T(Q equation

In this section we follow the derivation of [121] to deduce the general simplified form of
the TQ-relations and deduce asymptotic of the Q-functions. The starting point is the
TQ-relation, valid in the gauge used in this chapter’:

Qv +2i) +T*v+1i/2)Q(v +1i) + T®(v)Q(v) + T*(v —/2)Q(v —i) + T (v —i)Q(v —2i) = 0.

(8.5.1)
As we discussed above the transfer matrices have a number of trivial factors. In order to
remove these fixed, non-dynamical factors, we perform the following gauge transformation
of the Q-function

eTr(JJrl)vF(_,L'U>£2i(J+1)vF(,L',U + 1)72‘]71
I (—iv — ) T(iv + 2) ’

Q(v) = q(v) (8.5.2)

"Notice that this is actually the dual Baxter TQ relation presented in chapter 6, with the main difference
being an overall shift in the transfer matrices.
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which brings (8.5.1) to a simpler and more symmetric form:

6 (12 i |
Bl ) = —os )40+ 20) - (+ P (0 + 22 o+ 1) (853)

2 pd (0 1) qlv—i).

(v — D2 (v — 27) —
(0= g~ 20) —

As a test of this equation we can compare with the case J = 0, studied as a ladder limit of
QSC in N' = 4 SYM. For J = 0, by plugging in the explicit form of the polynomials (8.4.31)
into (8.5.3), we obtain:

o(v) ( (892v? cos(y) + Si‘; + v*(cos(2¢) + 2)) 2 5in? )

N 2(2v — i)q(v — i) (26° + v(v — i) cos(p)) N 2(2v + z) (v +1) (2% + v(v +7) cos(p))
v(v —1) v(v +1)
+ (v —1i)glv—2i)+ (v+1i)g(v+2i)=0. (85.4)

This is the same as what was found in [25, 157] for a cusped Wilson line in the ladders
limit, as expected (see detailed comparison in Appendix F.3).

The equation (8.5.3) for general J is one of our main result. As we show in section 8.6
it lets us evaluate numerically the spectrum.

8.5.1 Large v asymptotic of Q-functions

For the numerical evaluation, which we describe in the next section, it is important to have
the large v asymptotics under control. As the leading and partially subleading coefficients in
the polynomials P are known from (8.4.34) and (8.4.35), we can deduce that the 4 linearly
independent solutions of the equation (8.5.3) should have the following large v asymptotic
expansion:

q1_+dw+ASJ<1+ )7
o= o PV TA+S— J(1+ ) :
(8.5.5)
g3 = ~A+S— J( ) :
q4=e_¢ ’U_A_S_J< 1 ) .
v

where ¢ = ™ — . The above asymptotics suggest the following relation to the QSC Q-
functions of [126]:

Qilv) (8.5.6)

¢(v) ~ VESYOR

which is similar to the relations found in the fishnet model [33]. Subleading coefficients in
1/v can be found systematically in terms of the coefficients of the polynomials P, i.e. a;, b;
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and ¢;, by plugging the expansion (8.5.5) into (8.5.3). In order to fix the coefficients of the
polynomials P one has to use the gluing (or quantisation) condition, which we describe in
the next section.

8.6 Numerical solution

After having established the key properties of the Baxter equation we can solve them nu-
merically and fix the remaining coefficients a;, b; and ¢;. The method we implement is
essentially the one of [158] which was adopted and simplified to the current type of prob-
lems in [33, 93, 121, 157]. The 4th order finite difference equation (8.5.3) has 4 linearly
independent solutions with the asymptotic (8.5.5). The way to find them numerically is
first finding the asymptotic solution at large v, where (8.5.3) reduces to a linear problem for
the asymptotic expansion coefficients. The truncated asymptotic series gives a very good
approximation at sufficiently large [Imwv|. In order to bring Imwv to a finite value, we can
simply use (8.5.3) itself, as it allows to find ¢(v) in terms of ¢(v + in), n = 1,...,4 (or
q(v—1in), n =1,...,4). Using (8.5.3) as a recursion relation, we can gradually decrease
[Im v|. By doing this there are two options: starting from +i00 or from —ico. Correspond-
ingly, we will find 4 analytic solutions in the upper-half plane, qil , and other 4 analytic in
the lower-half plane, qiT . Since the Baxter equation is a fourth order equation, we can have
only four independent solutions, meaning that the qiT and qil should be related by a linear
transformation. We should therefore have:

gl (v) = Q/ (V)gi(v), Q(v+i)=0/(v), (8.6.1)

. jjrgzjs detp—o,.. 3 1¢; (v —in), ' (v —in), ; (v —in), ! (v—in)
0 (v) = & { & Z 2 } . (86.2)

| . . . .
3! detp—o,. 3 {q%(v —in), q% (v —in), qé(v —in), g5 (v — m)}

Qij (v) is an i-periodic function which can have poles at v = in of order no higher than
¢i(v)’s themselves. From the Baxter equation (8.5.3) it is easy to see that ¢;(v) only has
poles at v = in of maximal order 2.J +2, which implies that 2 (v) is a trigonometric rational
function of the form:

2J+2 .

Z C(n)»JEQW nu
i

n=0

Q] (v) = , (8.6.3)

(1 . e27ru)2=]+2

The quantisation condition can be obtained by comparing with the QSC description of the
cusped Wilson line [126], where one defines an antisymmetric matrix w;, related to Qij in
the following way: ‘

Wik = Qijrjk, (864)
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where the so-called gluing matrix is:

0 v sinh(2mv) 0 73
o sinh(27v) 0 va O
T = : (8.6.5)
0 s 0 0
Y6 0 0 O

where 7; are some constants. All we need to know, from QSC, is that w in (8.6.4) is
anti-symmetric i.e. Q/T'jp = —Q/T'j;, which, in particular, implies:

Qup = Q32 = 0. (8.6.6)

As each component of ©(u) is a nontrivial function parametrised in terms of 2.J+3 constants
o
the Baxter equations.

imposing (8.6.6) is usually sufficient to fix 4J 4+ 4 unknown constants, contained in

Tests By applying the numerical method we studied the spectrum for J =1 and J = 2
cases. For J = 1 we also found a large number of excited states (see figure 8.6), correspond-
ing to additional insertions of ®5 and ®; fields at the cusp, as discussed in [25]. We tested
our results against the weak coupling result of [125], which in our notations reads

(—1)J24J+37T2J+1

F(QJCjCQ(;p)BQJH (%) T 0(94‘”4) , (8.6.7)

A:J_’_g2J+2

which agreed with high precision (of more than 15 digits) with our numerical data for
J=0,J=1and J = 2. For example for J = 2 and ¢ = 27/3 we get the following fit for
the numerical data on figure 8.7:

A =2 —124.088395422104° + 23271.5133715174% + ... (8.6.8)
in agreement with (8.6.7), which for J = 2 gives

¢ bl2m®
9 7294/3

8
2+ 90— ¢ (3¢ — 15mp® + 20722 — 87%) cscp = 2 — (8.6.9)

45

The states Z” for the cases J = 1 and J = 2 do not behave classically at large &, i.e.
A decreases faster than linear. Like in [33] we expect the classical regime to describe the
highly excited states.
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8.7 Summary

In this chapter we showed that the cusped Wilson-Maldacena loop with insertions of .J
orthogonal scalars is dual to an open integrable spin chain. We computed the transfer
matrices of this model, and obtained a Baxter T'QQ equation which can be solved numerically
for any J, finding the spectrum of dimensions A non-perturbatively (for J = 0, 1,2). This
lets us find the Q-functions of the system, which could be used as a building block for future
calculations, such as the three-point correlation functions using Functional SoV. Some hints
that this approach will work in this setting can be found in [25], while some initial progress
for the cousin Fishnet theory has been done in [92].
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Re()

-2

Im(A)

Figure 8.6: Numerical spectrum with excited states for J =1 and S = 0. The lowest curve
(starting at A = 1 at zero coupling) corresponds to the case with a single insertion of Z at
the cusp. The curves which begin at higher integers at zero coupling correspond to excited
states of the solution of the Baxter equation, which correspond to additional insertions of
®9 and ®; at the cusp (see [25] for some explicit examples). Whereas for the ground state
the dimension A is real, excited states could appear in complex conjugate pairs.
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J=2, =271/3
A
“o02 o4 " 06 é‘-._' T8 10 Y
2+ .0..
4t ’..
-6 ..

Figure 8.7: Numerical data (dots) for the ground state of length-2 chain with ¢ = 27/3.
Red solid line shows the Liischer formula prediction of [125].
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Chapter 9

Conclusions and Outlooks

In chapters 5 and 6 of this thesis, we developed the Functional Separation of Variables.
For periodic rational spin chains, we presented the Character Projection (CP) technique
to compute a complete basis of observables, the Principal Operators for the spin chain in
terms of Baxter Q-functions. We then showed that FSoV + CP let us reconstruct from
first principles the Sklyanin’s B and C' operators, whose form for rank N > 4 spin chains
was only conjectured before (the rank N = 3 case was treated in [75]). We also derived
the SoV basis and the SoV basis matrix elements of all Principal Operators, which form a
complete set of observables: from their knowledge, as we explained, it is possible to extract
any correlation function for rational integrable spin chains.

For open rational spin chains, based on the twisted Yangian Y+ (2N), we also developed
the FSoV approach, culminating in the functional orthogonality relations and the scalar
product between Bethe states. While the latter is a trivial relation!, it is practically im-
mediate to update it to obtain diagonal matrix elements of various operators, using the
perturbation theory techniques explained in chapter 5.

In chapter 7, we proved from first principles that the cusped Maldacena-Wilson line
in V' = 4 SYM with orthogonal scalar insertions at the cusp, is integrable in the ladders
limit. We derived the holographic dual of this observable, the open Fishchain. Solving the
Baxter TQ relation for this open rational spin chain allowed us to find the non-perturbative
values of the scaling dimension of the cusped line with orthogonal scalar insertions, for any
value of the coupling constant and cusp angle. It also provides an ideal playground for the
application of FSoV to a concrete model in an important Quantum Field Theory such as
N =4 SYM.

9.1 Future directions

FSoV We believe that the formulas presented for form-factors in this thesis extend imme-
diately to the g-deformed high-rank XXZ case [77] after simple modification as is already

'Recall that Bethe states are orthogonal.

161



162 CHAPTER 9. CONCLUSIONS AND OUTLOOKS

the case in the gls setting [159], and it would be interesting to check directly, allowing one
to extend the recent rank 2 results [160] and to study high-rank correlators at zero tem-
perature along the lines of [86]. From our results it is also possible to extract form-factors
of local operators using the quantum inverse transform [85]. From here there are many
interesting directions to pursue. For example, these can be used in the computation of
current operators [161] which have numerous applications. It would also be very interesting
to compare with the results of [162], where certain mean-values related to current operators
are shown to factorise, and to understand such results from an SoV perspective.

Another interesting direction would be to construct the quantum version of the classical
A operator of Sklyanin seen at the beginning of chapter 4, which is expected to act as a rais-
ing / lowering operator on the SoV bases, as some combination of principal operators as was
done here for the B and C' operators. This would solve an important puzzle as it is known
that Sklyanin’s quantum construction is singular for the highest-weight representations we
consider here, see for example the discussion in [70].

It would be very interesting to develop the FSoV formalism and the approach to cor-
relators developed in this thesis for spin chains based on different algebras. The Q-system
for models with orthogonal symmetry has attracted huge attention recently [163, 164] and
will likely play a large role in the SoV approach to correlators in conformal fishnet theories
in D # 4 [165, 166].

The SoV construction for models with open boundary conditions still needs quite a lot
of work. First of all, we have not developed yet a Character Projection technique, nor we
know a companion “boundary” frame in which the SoV basis is independent of the boundary
matrices eigenvalues. This in turn does not let us define Principal Operators, nor a way
to compute off-diagonal form factors. Furthermore, the B and C operators have not been
built yet. An operatorial approach for open spin chains has recently been studied [86, 99,
167-171], but this is for a different twisted Yangian, the reflection algebra. We used some
insights from this work, such as the procedure to build the SoV basis, but it would be
interesting to develop it fully for our open spin chain. Finally, it would be interesting to
extend FSoV to any open rational spin chain, which would mean extending it to all the
known twisted Yangians [95]. This would let us study any so-called integrable boundary
state within the SoV formalism. First steps were already taken in [92, 172, 173] and recently
this problem received increased interest [174-183].

Open Fishchain Since we have the spectrum of the model under control, the natural
next step is to compute correlation functions. In [25, 184], the first steps towards this were
taken, where the authors calculated the three point functions of three cusped Wilson lines in
the ladders limit. Remarkably, they observed that the structure constants can be expressed
as overlaps between some states via formulas that are highly reminiscent of FSoV. We have
given some preliminary results in this thesis, but it would be important to extend them to
the general case. This would naturally lead to the calculation of structure constants for
cusped Wilson lines in the ladders limit.

It would also be interesting to get away from the ladders/fishnet limit both in our set-up
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and in the Fishnet theory. Such an exploration could give some clues as to how to develop
a first principles holographic derivation for the full theory. Some progress for the Fishnet
theory has been made in [185], where a more complicated version of the Fishnet theory,
which includes fermions and gauge fields, has been proven to be fully dual to a periodic
integrable spin chain.

Another direction of exploration would be to try to expand our construction to Wilson
loops in the ABJM theory [186] where there is already some evidence of integrability [187]
and further, it admits treatment from a defect CET point of view [188, 189]. Here too, a
fishnet limit exists with Feynman graphs which look like a triangular lattice [190] and one
can envisage the definition and study of a similar CF'T wavefunction like the one we studied
in this thesis.
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Appendix A

Technical Details for Chapter 3

In this Appendix, we will put some more technical derivations of the subjects treated in
chapter 3.

A.1 Derivation of eigenstates of the Heisenberg XXX spin
chain

Our goal is to solve the spectral problem:
t(w)| ) = 7(u)|¥) (A.1.1)

We start by considering the monodromy matrix (3.4.5). We will write it as acting as a
matrix on the auxiliary space Hquy = C?, with entries being operators in the full physical

L
space Hphys = &), Hi:

T(u) = . (A.1.2)

The transfer matrix in this notation is simply ¢(u) = A(u) + D(u).

We now need to compute the operators in the entries of (A.1.2). Recall that 7" is defined
as a product of Lax operators (3.4.8), whose action on a physical spin up state (tensored
with a generic state |®) on the auxiliary space) is:

u+1i/2 i
Li(u)] 1)i ®|P) = wri/Bl Y ) |D). (A.1.3)

0 (w—1/2)[ 1)
Thus, if we choose as the vacuum state for the physical space a state with all spin ups,

165
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Q) = ®Z.L:1 | 1), the action of the monodromy matrix on it will be given by:

e | EFPID e it i b
0 (uw—i/2)] DL 0 (u—1i/2)| Th
u+i/2)0
R T
0 (u—i/2)" 1)
where |...) is a value we do not need to write explicitly. Comparing with (A.1.2), we see
that:
AWIR) = (u+ /M), D)) = (u—i/2)" 19, (A.15)
C(u)|2y =0, B(u)|Q) =|...). (A.1.6)

So now we know that the vacuum state |Q2) is an eigenvector for ¢(u):
)| = ((u+i/2)" + (u—1i/2)%) Q). (A.1.7)

We now need to build the other eigenstates. The fact that C'(u)|2) = 0 suggests us to treat
C(u) as a lowering operator. Therefore, we may think of B(u) as a raising operator, with
eigenstates of T'(u) being of the form:

) = B(u1)B(us) ... B(w)|Q). (A.1.8)

To prove this, we need to check the commutation relations between the various operators,
and in particular we need that [B(u),t(u)] ~ t(u). Luckily, all the algebra we need is
contained into the RTT relation (2.2.11). In particular, by using the matrix forms for T'
and R and comparing the entries, we obtain the following relations:

s
D(u)B(v) = %B(U)D(u) - - ! —Bu)D(v). (A.1.9)

It is quite simple from here to prove that the state with one excitation, B(v)|Q2), is an eigen-
state of t(u) = A(u)+ D(u). In fact, we can easily compute A(u)B(v)|Q2) and D(u)B(v)|2),
obtaining:

AWBOID = 0+ i/2) B) 1) + ——

DB = " i/t B)jo) -

u—2o u—v

(v+1i/2)LBw)|Q), (A.1.10)

(v—1i/2)" B)|Q). (A.1.11)

|®)

(A

1.4)
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Therefore, we have that:

u—v—1)(u+i/2)L u—v+1i)(u—1i/2)L
Hu) B(0)[Q2) — <( Jutif2)+ (w=—v+i(u—1i/2) )B(v)|Q>+ (A.1.12)

u—v

(o (2 - -2 ) B, (A1)

So, under the condition that the second row cancels in the above equation, i.e. that:

(”“./ > 1, (A.1.14)
v—1/2
we get that B(v)|{2) is an eigenstate of the transfer matrix ¢(u) with eigenvalue:
—— /2 L _ ; — /2 L
7_(u):((u v—1)(u+i/2)" + (u—v+1)(u—1i/2) > . (A1.15)
u—v

With a little more work, it is possible to generalize the above argument to states created
by applying M creation operators B evaluated at different spectral parameters wu, obtaining
that they again are eigenstates of ¢(u) with eigenvalues:

Mu—u-—i Mu—u<+i
rw =] —L—@+i/2"+ @-i2" [ [ —L—. (A.1.16)

provided that the following Bethe equations hold:

<“k+Z/Q>L _ ﬁ up U+ (A.1.17)

up — /2 ik Uk T U

The solutions of the Bethe equations uj are known as Bethe roots.
Of course, the cancellation of the unwanted terms given by the Bethe Equations (A.1.17)
is an ansatz, but there are many other ways to see that this is indeed correct.

A.2 Derivation of eigenstates for the Y (gl3) spin chain

We have seen that the transfer matrix of the Y (gl3) spin chain in the fundamental repre-
sentation is:

t(u) =trT(2) = A(2) + D11(2) + Daa(2) = A(z) + trD(2) (A.2.1)

We want to check what are the conditions for which the states built from the two operators
By, By as:

=

2

(War(@)y =[] [ ] Bsi(ui)l0) (A.2.2)

1=13;=1
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are eigenstates of t(u).
It turns out that the ansatz (A.2.2) does not work; one needs to consider linear combi-
nations:

2
U (1)) = Z Bg, (u1) ... Bg,, (UM)F,BL--ﬁM 10), (A.2.3)
B1--Bu=1
where Fj, . g, are some complex coefficients. This notation can be simplified using the
Bi(u) ,
vectors B(u) = . If By...Bjs is the tensor product of M such vectors, then
By (u)

equation (A.2.3) can be written compactly as:

M
W () = HBi(Ui)]F(ﬂ>|0>a (A.2.4)

where now F is a vector in the tensor product of M copies of C2. We now need to compute
the action of (A.2.1) on these vectors.

Commutator with trD Using the RTT relation for Y (gl3), it is possible to prove that
(we indicate the trace on the 2 x 2 matrix D with the subscript 0):

M
tr0Do(2)[War(@)) = tro [ | Bi(ui)DoTg ™" (2)F(@)|0) + unwanted terms (A.2.5)
i=1

where %(M)(z) = ropm(z,unr) .. ro1(z,u1) is a gly monodromy matrix built via the glo R-

matrix r» and the unwanted terms all contain at least one of the B evaluated at z. For now
we will leave the unwanted terms alone.

The first term in the RHS of (A.2.5) is almost of the form we want; we just need to
impose that IF(u) is an eigenvector of the glo transfer matrix:

MZ MZ
tro 7 (2) = ATE BRE) ) (A.2.6)

CY(z) DY(2)

We know exactly how to get them - via the Algebraic Bethe Ansatz for Y (gl2). Therefore,

we impose that:
N

F(u) = | [ B ()|, (A.2.7)
i=1
where [QM) is the vacuum vector for (A.2.6), and the auwiliary Bethe roots vy ... vy satisfy
the auziliary Bethe equations:

Mvjful+i ijkaJri .
PR, Al P T (A.2.8)
=1 Vi w k;ﬁjvk—vj—kz
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Under these conditions, we get that:

trD(2)|¥ s N (6, 0)) = Tp(2, 4, v)|¥ar,n (4, D)) + unwanted terms (A.2.9)

Commutator with A Using again the RTT relations for gls, it is possible to show that:
A(2) |V N (u,0)) = Ta(2, 4, 0)|Var, v (1, V) + unwanted terms (A.2.10)

Combining, we see that:
t(2)| VN (w,0)) = 7(2,4,0)| ¥ n(a,0)) + unwanted terms (A.2.11)

Then it turns out that the overall coefficient of the unwanted terms can be set to zero
provided that u = (u ... ups) satisfy the Bethe equations:

Up — Uj + 1
Uj — U + 1

Loy —u +1
[[——"— k=1...Mm. (A.2.12)
=1 Ul T Uk

M
(uk + i/2)L = H

j#k
A.3 Fusion for transfer matrices

Fusion is a generalisation of the procedure used to build the quantum minors of section 3.7.1.

In particular, fusion takes m copies of the monodromy matrix (3.1.4), and computes their
projection on the tensor product of m auxiliary spaces )~ CN, opportunely symmetrised
and/or antisymmetrised. This symmetrisation of auxiliary spaces can be described in terms
of the Young tableaux appearing in the representation theory of the gl Lie algebra.

Young diagrams and Young tableaux

A Young diagram is a two-dimensional array of boxes, arranged in left-justified rows with
row lenghts that are in non-increasing order.

The number of boxes in each row is defined as A\ = (A1, A2...\y), where N is the
number of rows and A\ = \g > --- > Ay, and specifies completely the Young diagram®.

A Young Tableau is any set of numbers that we put in the boxes of a Young diagram.

To index the boxes in a Young diagram, we will use Cartesian coordinates (s,a). Both s
and a start from 0 at the top-left box; s increases moving to the right along columns, while
a increases moving down along rows.

The Young Tableaux we use to fill Young diagrams for fusion are simply expressed in

terms of these Cartesian coordinates; to the box of coordinates (s, a) we assign the number:
cj=a—s, (A.3.1)

where the order of the boxes j is given in figure A.1.

1This notation is used because Young tableaux are in one-to-one correspondence with highest weight
representations of gly, which are determined uniquely by their weights A;.
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s s
1|[5]|8|10 o[-1]-2]-3
ll2]6|9 Uf1]of-1
3|7 2|1
4 3

Figure A.1: Left: Column-ordering of boxes on the Young diagram A. Right: ¢; = a — s
associated with each box j.

Fused monodromy matrices

We now describe how to use Young tableaux in the fusion procedure. We start by defining
T*(u) as the monodromy matrix whose auxiliary space is P (@L)jl cN ), where P is the

Young symmetriser associated to the Young diagram A.

To obtain T (u) explicitly, we just need to generalise the results of the previous section;
in fact, the antisymmetriser A,,, we have used there is just the Young symmetriser associated
to a Young diagram with a single vertical column of length m.

Any Young symmetriser P* with total number of boxes |A\| = m can be obtained from
the generalised R-matrix (3.7.1) using the following spectral parameters:

uj=u+ic;, j=1...m (A.3.2)

where ¢; are the numbers in the Young tableaux defined in (A.3.1). Then the fused mon-
odromy matrix is:

T)‘(u) = p? (Tl(u + icl) .. Tw(u + ’le)) = Tw(u + Z'C|/\‘) .. .Tl(u + icl)P’\ (A33)

The fused monodromy matrices form representation of Y (gl ), and the coproduct for them
is given by (3.7.8).

Fused transfer matrices as generators of conserved charges

The fused monodromy matrices satisfy the generalised RT'T relation:
Ry3 (u — 0)T7 (u) T3 (v) = T35 (0) 17 (u) Ry3 (u — ) (A.3.4)
where R32 is the fused R-matrix:
RV, (u) = PAP) (Rahbl (u +icr) ... Rapy oy, (1 + z'cw)) (A.3.5)
By taking the trace on the auxiliary spaces 1,2 in (A.3.4), it is easy to see that:

[t)‘(u),t)‘(v)] —0, VA (A.3.6)



A.3. FUSION FOR TRANSFER MATRICES 171

where t*(u) = tr(T*(u)) is the fused transfer matriz corresponding to the Young tableau .
Therefore, the fused transfer matrices commute with themselves at different values of the
spectral parameters, for each Young tableau A.

This property can be generalised to the case where we have two different fused transfer
matrices associated to different Young tableaux A, u. To prove this, we define the corre-
sponding fused R-matrix as:

AL 1w
R (u,0) = PP [ T ] Raye (u +ic) — z’cg) (A.3.7)
j=1k=1

Then the fused monodromy matrices corresponding to any two Young diagrams A, u satisfy:
A A
R (u — o) T ()T (v) = T (o) T () R (u — v) (A.3.8)
Taking the trace on auxiliary spaces 1,2, we conclude that:
[tk(u), t“(v)] —0, Y\ u (A.3.9)

Hence, all fused transfer matrices commute with each other, forming a large class of com-
muting operators. The fundamental transfer matrix ¢(u) corresponds to the Young diagram
formed by a single box, and is part of this family. Furthermore, the fused antisymmetric
transfer matrices t, a = 1... N defined in section 3.7.1 are also part of this family, since ¢,
can be built via fusion using a Young diagram with a single column of a boxes.

A.3.1 Hirota and CBR equations

The T-system is composed of the fused transfer matrices we have just defined and two
functional relations between them, which take the form of finite difference equations.

The first one is the Hirota equation. It is a relation between transfer matrices corre-
sponding to rectangular Young diagrams, which are completely specified by their number
of rows and columns. Therefore, we will denote A\t as (a, s), where a is the number of
rows and s is the number of columns.

The Hirota equation reads:

2]

2 g s et (A.3.10)

tagsta,s a:-
where to; = 1, tarns ~ tas and t,; = 0, Va < 0.

It is possible to use this relation repeatedly to obtain all rectangular transfer matrices
ta,s from the subset of N elements t,1, a = 1... N, which correspond to the totally anti-
symmetric transfer matrices (3.7.14). This is one of the reasons why quantum minors play
a fundamental role in the T-system.

In fact, one can start by fixing s = 1 in (A.3.10), and read off ¢, 2 for any a in terms of
tat+1,1,ta,1,ta—1,1- Then fixing s = 2 one can obtain t, 3 in terms of t441,2,%0,2,ta—1,2,ta,1-
This procedure can be then iterated for any s.
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The Hirota equation admits the following gauge symmetry:
tas) (W) = 907 o ta,s) (W), 4,5 =1,2 (A.3.11)

where gé;ljs) are 4 independent analytic functions of v who depend in a fixed way on the
constants a,s. We can use the transformation (A.3.11) to impose a specific normalisation

on the transfer matrices corresponding to rectangular Young diagrams.
The second relation between fused transfer matrices is the CBR formula:
t)\(U) = det1<k7j<)\l t)\;_Jrk,j’l(U — ’L(]{ — 1)) (A312)

where )\3 denotes the number of boxes in the j-th column of the Young diagram A.
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Technical Details for Chapter 5

B.1 Gelfand-Tsetlin patterns

A Gelfand-Tsetlin pattern is a collection of numbers that labels uniquely a state of a spin
chain based on the Yangian Y (glx)!'. This procedure is based on the chain of subalgebras
Y(gll) C Y(glg) .. .Y(glel) C Y(glN).

We can take as a starting point the fact that gl has a glp_1 subalgebra naturally
identified with the subset of generators Fjj;, i,j = 1...k — 1, and this subalgebra can be
decomposed into a direct sum of irreps. of gly_1:

R(Eij)M k-1 = D R(F)* (B.1.1)
)7

where the LHS is the restriction of the irrep. R, of weights A, of gli to its glx_1 subalgebra,
and on the RHS F' are the generators of gli_1 in a irrep. with weights p.

This decomposition is unique and each p can appear at most once, and furthermore it
is subject to the branching rules:

A=y = A (B.1.2)

Considering now the chain of subalgebras gly < gls < ...gly_1 < glny and using the
decomposition (B.1.1), we can start from gl and pick up a single u irrep. of gly_1 from
the RHS of the decomposition (B.1.1), subject to the branching rules (B.1.2); then, we can
decompose this gly_1 irrep into a sum of gly_o irreps, pick one of them and continue until
we reach a single gl; irrep. All the possible highest weights of these chains of irreps. of

!Technically one has to assume non-degenerateness of the spin chain; thanks to twisting, this is always
true in the setting we consider.
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subalgebras form the Gelfand-Tsetlin patterns for gly:

AN AN 2 .. AN.N
AN-11  --- AN—1,N-1
(B.1.3)
AL
where A ; is the i — th weight of the irrep. of gl, subject to branching rules:
Akj Z Me—1,-1 = Akjt1 (B.1.4)

The Gelfand-Tsetlin patterns can immediately be lifted to the Yangian. In fact, a similar
chain of subalgebras is present in Y (gly), and the Gelfand-Tsetlyn patterns for the Y (gix)
are built with the same philosophy as the ones for gly. The main difference is that now we
will have a GT pattern for each site of the spin chain, that we will label via a?:

e} 6% o
N71 N72 . o N,N
Woar e AR (B.1.5)
[0
1,1
subject to branching rules:
MNej = Noo1j-1 = Mg je1s Va=1...L. (B.1.6)

We find it convenient to label the gl weights as v;, ¢ = 1... N and introduce for the
other weights in the GT pattern the notation Py, = )\gfkﬂ;l’j. In this notation the GT
pattern becomes:

(6% (6% (0 (07
Sl Vy V3 UN_2 VN—1 VN
o (e}
M1t K2 2 KN_—2 N—2 KN_1,N-1
M2 1 K32 UN—1.N—2
’ ’ B (B.1.7)
(e}
31 HN—1,N-3
(e}
EN-1,1

2In principle there can be a different representation of Y (gln) at each site. We will always assume that
every site is in the same representation.
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pi = (ug 1 -- - piy) is said the be the k-th dual diagonal of the GT pattern, since it is placed
on the k-th bottom left to top right diagonal of (B.1.7). The dual diagonals are the natural
objects labelling the separated variables.



176 APPENDIX B. TECHNICAL DETAILS FOR CHAPTER 5



Appendix C

Technical Details for chapter 6

C.1  Mapping (¥4|0|¥3) to {y|O}x)

Our goal in this section is to prove the relation (5.3.30) which we repeat here for convenience

[Lo;uo‘Ll;m‘LQ;uQ’L:ﬁu3]qj = Z‘i’B(X)‘I’A(Y) [LOQUO’LHU&‘LQ;U—Q‘LB;u3]xy (C.1.1)
Xy

where we use the notation

1
[LOQuO’L1§ul‘L2§u2‘L3§u3]\II =N (C.1.2)
A . Lo—1 (A A Li-1 (A . Lo—1 (A A L3—1
[{ uouwaDg} ’{ u1uww]D1} ’{ UQuww]D—l} ’{ u3uww]D—3} ] ’
Ay, Jj=0 Ay, j=0 us j=0 us j=0
and
SL . Toa,na,a A“buxfl(b)
[L0§uO‘Ll;ul‘LZ;u2‘L3§u3] = PZSL%‘H(U)H A
xy 0 L a,a Ta,0 b up
’ O'a,a:ka,oz_ma,a"!‘a

(C.1.3)
Our starting point is the Lh.s. of (C.1.1). By explicitly writing each entry of the matrix
we can pull out the measure factors 1o (wa,q) and Q-functions QP associated to the state
|¥p), as the finite-difference operators in the determinant do not act on them. Hence we
obtain

Jt({wa,a}) [ [ QF (waa)tta(wa,a)dwa,q (C.1.4)
where | |
waal) =  det foon ool Qurva (oot 3G -20) . (€19
and A
fo(w) = ﬁj" (C.1.6)
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Let us note the range of indices in the above determinant formula. («,a) takes values

in the set
{(1,1),(1,2),(2,1),...,(L,2)} (C.1.7)

whereas (b, 3) takes values in the set
{(0,1),...,(0,Lo), (1,1),...,(1,L1),...,(3,L3)}. (C.1.8)

Note that, in order to simplify this derivation, this notation is in contrast to the one used in
the main text, where the rows of the determinant were labelled by (a, «) instead of («, a).
At the end we will convert back to the original ordering.

In [74] a determinant relation was used to extract the SoV matrix elements for the
measure, which in our notation corresponds to the case Lo = L3 = 0 and L; = Ly = L.
For the general case we have the following updated determinant relation, valid for any two
tensors H, o g and G qp, which reads

det  HyapGaap = (—1)! det  Hyq Gaao C.1.9
(035 HomsCaan = 2D (H(w)ea—l(bmb ”ﬁb)g wacea (O19)

which is easy to derive. Here, o is a permutation of

{0,...,0,...,3,...,3} (C.1.10)

~—— ~——
Lo L3

with 04, denoting the number at position a + (N — 1)(ow — 1) and
o1 (b) = {(e,a) : 0ae = b}. (C.1.11)

We have (3, € {1,..., Ly} and finally |o| denotes the number of elementary permutations
needed to bring the set | J, o0~1(b) to the canonical ordering (C.1.7).
We now apply (C.1.9) to (C.1.4) by identifying

_ 7
Ha,a,ﬂ = wg,ala Ga,a,b = fb(wa,a)Q1,1+a <wa,a + 5(3 - 2b)> . (0112)

L
Notice that det(y a)eo—1(1),8, Ha.a8, = (—I)Tb(Lbfl)Ab where Ay denotes the Vandermonde
determinant built out of we,, for which o, 4 = b, that is

Ab = H (’wa@ - wa/@/) (C.l.lg)

(a,a)< (o a’)

where < is to be understood in lexicographical ordering as explained above. The result
then reads

t({waa} = st O (D [ A [ fouo (Wa.a)@114a(Waa + & + i5a.0) (C.1.14)
o b

a,a
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where we have defined so, = 1 — 04, and

sp 1= H(—l)Tb(Lb 1 (C.1.15)
b

Using the explicit form of f,(w), which is (C.1.6), it is easy to verify that

A'l.l uw _—
[Ta] [fouawan) =[] —5— (C.1.16)
b a,a up

b

and hence we obtain

Ay,ow, -
t({wa,a}) = SILZ( 1)l H Tb Le=l) % HQl 1+a(’waa+ +18q,0) - (C.1.17)

up a,a

We now symmetrise! over the integration variables We,1 and wq 2. The only factor in (C.1.4)
not invariant under this operation is ¢({wq,q}), S0 symmetrising it gives

A _
sym  t({wae}) = Z ‘”'H%HFS“S“, (C.1.18)
b b Je?

Wa,1 OWe,2

where
Sa,18«,2 . .
Fa = 1<(3-2F<2 Ql,l—&-a(wa’a/ + % + Zsa,a’) . (0119)

We will now derive this relation. We introduce the expression

ol TT 2o o-1 i, oy
how == (=) T ] — P Qua(war + 5 +i501)Q13(Wa 2 + § +isan) . (C.1.20)

b bt

Consider the interchange of w1 and wq2. This produces

ubuw —1
hg,a — |0|HA7U])Q1 2(’wa2 + ¢ -I-ZSa 1)@1 3(wa1 + ¢ +Zsa 2) (C.l.?l)
up

where A denotes that we have interchanged wq,1 and wq, 2 inside the Vandermonde deter-
minant.

There are two possible types of o. Either 04,1 = 04,2 = ¢ for some c € {0,1, 2,3} or not.
First suppose 04,1 = 0a,2 = ¢. Then s4,1 = sq,2 and, since (o, 1) and (o, 2) are adjacent to
each other in the properly ordered set (C.1.7) we have

AuCqu,uC) = _Aucuwafl(c)a Aubuwafl(w = Aubuwofuby b+#c. (C.1.22)

'To avoid confusion, for any function f(u,v) we define the symmetrisation of f over u and v as being
sym f(u,v) = % (f(u,v) + f(v,u)), as used in Sections 5.2 and 5.3 of [74].

USv
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Hence, after exchanging w,,1 and wq2 for such a o we obtain

All vw _— . .
hoo — —(—1)°! H %ng(waﬂ + 5 +050,2)Q13(Wa,1 + 5 +i8a,1) . (C.1.23)
b o

Hence for such a o, after symmetrising over w, 1 and wq 2 we obtain

1 A -
sym ho,a = 5(_1)|‘7| 1_[ MF;‘IJS&,? ) (0124)
b

Wa,1PWq,2 up

We now consider the case of o such that 04,1 = c1, 04,2 = c2 With ¢; # ca2. Note that there
is another (unique) permutation & with 61 = ¢2, Ga2 = ¢1 and G4 o = 04 o for all other
pairs (¢/,a’). Clearly since these two permutations are equivalent up to interchanging a
single pair we have (—1)Il = —(—1)I°l. Denote 34,4 = 1—4,4. Then it immediately follows
that under exchanging wq,1 and w, 2 we have

|51 A“W“’&—l(b) iy s L 44§
hew — —(=1)I7IT ] — A @Q12(Wa2 + 5 +18a2)Q13(Wa2 + 5 +15a1).  (C.1.25)
b o

Hence, after symmetrisation we have

1 A _
sym  (hoa +hsa) = 5 ((—1)"’| [T o @R 4o o 5) . (C.1.26)
b

Wa,1>Wa,2 up

Of course, the conclusion is unchanged if h,  is multiplied by any function independent of
(v, @) and hence (C.1.18) immediately follows by sequentially symmetrising over («, 1) and
(o,2) fora=1,2,...,L.

We now put (C.1.18) under the integration (C.1.4) and compute the integral by residues,
closing the contour in the upper-half plane. This produces a sum over poles at the locations
Wa,q = Xa,a = Oa + (s + Naq), with ng , ranging over all non-negative integers. If all nq q
are distinct for a fixed o we can use the symmetry of the integrand to remove a factor of
2 for each « and restrict the summation to 14,1 = n42. If some n, 4 coincide for a fixed «
then removing the 2% factor will result in an overcounting which we must compensate for,
by introducing the factor M,,.

As a result, we obtain

Z H ML H leg (Xa,a) Coene
X a,a

T
Na,12Na,220 & a0

A
sp N~ T e det  Qrast(Xaw + & +iSaa)
L 1,a+1\Xa,a’ D) 1Sa,a) -
Au 1<a,a’<2
o b b o ’

(C.1.27)

We now compare with the general expression (C.1.1). We see that in order for a term

[Lo;uo)Ll;ul‘Lz;uz‘Ls;u:s] (C.1.28)
xy
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in the summand of the r.h.s. to be non-zero it must be possible to write each y,, =
0o + i(s + ma,q + 1 —a), for each fixed a, as

Yaa = Xa,pe +i8ape, a=1,2 (C.1.29)
where p® is a permutation of {1,2} and p% := p®(a) and hence we require
Maa + 1 —a = ngpe + Sape - (C.1.30)

Since each of the numbers m, q + 1 —a must be distinct, as otherwise the determinant built
from Q1,1+, will vanish, there is a unique permutation p® (if such a permutation exists) for
which (C.1.30) holds. If such a permutation does not exist then the matrix element (C.1.28)
vanishes. The permutation p® amounts to sorting the set {nq 1 + sa,1,Ma,2 + Sa,2} and so
we should keep track of the sign of this permutation. Hence, for a fixed permutation o we
read off the following contribution to (C.1.28)

Lo B _1)|¢7| (_1)‘1’&‘ Tan Ly 1 Aubux -1
s (—1)5T-1D(N-1) ( MNav,a T e )
L) reml | S vl | el NG A,

« a,a - _
’ Ma,a=Nq,p o'a’pgz-‘ra

(C.1.31)
where we have included the corresponding normalisation factor N. Finally, in order to
determine (C.1.28) we note that for a given set of X, q and y, q there can be many different
o for which the relation (C.1.30) holds and we must sum over all such ¢ in (C.1.31) in order
to obtain (C.1.28). When there is a degeneracy in nq, for fixed a there are multiple o
that give the same result. Their number is exactly M, so we can simplify the expression
by only summing over k inequivalent permutations of n, , within each a. We denote such
permutations perm,n and hence obtain

A LL- - _1)|0‘ T Ly oy Buyux,
Oh = 51 (—1)5T-DW 1)2( [ Cemee (1) %00 1)
<y| ‘ > L( ) - Ag o Ta,O ) ( ) Aub

Ua,a:ka,a*ma,a+a
(C.1.32)
Moving back to the original ordering of the rows of the determinant introduces a sign

(—1)%(N2_3N+2) which combines with s}, to produce sg, given by

st o= (—1)F E-DWN=D+T0 L (C.1.33)

Finally, the above argument is rigourous in the finite-dimensional setting. To pass to the
infinite-dimensional case we notice that the matrix elements are block diagonal with each
block having finite size. The spin s enters each block as a universal polynomial pre-factor.
Then, each block is fixed by analysing a finite-number of finite-dimensional representations
and the matrix elements can be analytically continued to values of s not being negative
half-integers. So the matrix elements we found are valid in the infinite-dimensional case as
well for generic s. Note that since the SoV basis vectors are polynomial in the spin s our
formula for the SoV matrix elements of the principal operators are valid for all values of s.
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This completes the derivation. The gly case is identical up to extending the range of

indices {1,2} to {1,..., N — 1} but can be carried out in exactly the same way as was
demonstrated for the measure in [74]. Note that for a function f(wa,1,...,wa,N-1) We
define the symmetrisation over wq 1, ..., Wa,N—1 a8
1 C.1.34
m Z f(wa,p(l)a"'awa,p(N—l)) (C.1.34)
PEON-1

where ox_1 denotes the permutation group on N — 1 letters.



Appendix D

Technical details for Chapter 5

D.1 Alternative derivation

In this appendix we present an alternative derivation of (5.3.15) which avoids using Cramer’s
rule and hence avoids expressing the integral of motion eigenvalues Ibf,{ s as a ratio with a
potentially vanishing denominator.

Our starting point is the following trivial equality

[(t),8)) — O] =0. (D.1.1)

We then expand out OL

N
OL = Z(—l)blfﬁwﬁ_lDN_Qb + Z XTOgr) (D.1.2)
b7B r=0

and notice a number of cancellations. Indeed, in the sum

D=1 R, B) — w T DN 2] (D.1.3)
b,3

only a single term will survive and it is precisely (—1)’),154}, plV,B) — w? =1 DN=2] This
is a result of the anti-symmetry of the determinant as all other terms in the sum (D.1.3)
will produce two identical columns in the determinant and hence vanish.

As such we obtain the relation

N
(—)°[V, 8) = w” DI 5 = = Y, B) - O] (D.1.4)
r=0

and see that the coefficient of I} g s precisely (=1)Y N{¥ 4|¥p). From here on the deriva-
tion proceeds exactly as in section 5.3. Since I, “,‘7 g 1s the eigenvalue of the integral of motion

183
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fb/”g/ on the state (V4| we can replace <\I'A|\iJB>I§‘5, with <‘11A|fb/”3/\\i13>. Then, we expand
fb/7 g into a sum over characters x; to obtain

N v+1 N

Xr{Wa|ly 5| ¥p) = =0 DI, 8) - ogr)] : (D.1.5)
r=0 N r=0

Finally, we equate the coefficients of the characters x, on both sides (character projection),
which was justified in section 5.3, and obtain the result

(_1)b/+1
N
The derivation presented here is valid for any transfer matrix eigenstate (V4| and any
factorisable state |Up). These classes of states are enough to completely constrain the SoV

[(v,8)— O] ]. (D.1.6)

WAL ) ¥y = b

matrix elements (y|], (r )ﬂ,|x> (as is proven in Appendix C.1) and hence the formula (D.1.6)
is valid for any two factorisable states (W 4| and |¥g).

D.2 SoV basis

In this section we will demonstrate that knowledge of the structure of the SoV basis and
the FSoV approach allows one to derive the form of Sklyanin’s B operator.

We start by defining the SoV ground states |0) and (0| which correspond to the constant
polynomial 1. These states satisfy the following properties

Tj1 (0o + i8)|0) = 0 = T1;(00 +i8)[0> =0, j=1,....,N, a=1,....,L.  (D.2.1)

We can now follow the logic of [70] and build vectors by action of transfer matrices on (0]
and |0). The key idea of [70] is that if such vectors form a basis then it is automatically
an SoV basis since the transfer matrix wave functions will factorise. We will choose the
following set of transfer matrices

1<g k<

i .
Ty (u) ;= det Ty —j+kt (u -5 (y—p—ps+j+k— 1)> (D.2.2)

where T, 1(u) are the transfer matrices in anti-symmetric representations and p denotes an
integer partition (Young diagram)

n= (:u’la'“nu’N—lvO) (D23)

and ,u; denotes the height of the j-th column of the Young diagram. The states |y) are then
constructed as

L .
. v a,
yyoc [ Tha (ea +is+ g (1§ — pf ’)> 0) (D.2.4)
a=1

and we label the constructed states by the L Young diagrams pu®, o =1,..., L.
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We also construct a set of left vectors

L N-1

e O T T Tov-ves <9a s — %(N — 5o 1)) (D.2.5)
a=1j=1

where (N — 1, s) denotes the Young diagram of height N — 1 and width s, that is p =
(s,...,5,0) and the corresponding transfer matrix is defined by the Cherednik-Bazhanov-
~—

N-1
Reshetikhin (CBR) formula

T, (u) = 1<§52m Ty k.1 (u - % (W)= — w47 +k— 1)) . (D.2.6)

We now note two key properties of the constructed set of vectors. First, they are linearly
independent. This was proven in [73] and the argument relies on the fact that the twist
matrix (4.4.4) can be deformed slightly with N — 1 parameters wi,...,wy—1. Then, in
the limit where all w; are sent sequentially to infinity the constructed set of vectors reduce
to eigenvectors of the so-called Gelfand-Tsetlin algebra [73], a key object in representation
theory. Furthermore, the Gelfand-Tsetlin algebra has non-degenerate spectrum and it was
shown in [73] that a basis of eigenvectors are given by (D.2.5) and (D.2.4) in the above-
described limit. Hence, the vectors (D.2.5) and (D.2.4) form a basis, and the transfer matrix
wave functions are guaranteed to factorise.

The next key property is that the constructed set of vectors are independent of the twist
eigenvalues. This follows from the fact that all transfer matrices in our chosen reference
frame have the structure

N
Th(u) = TEO(u) + > -+ x xe T (w) (D.2.7)
r=0
and
N
TN—LS(U) = T?V—l,s(u) + Z XTTLT(U) X ... (D.2.8)
r=0

where Tg(u) denotes a part which is independent of the twist eigenvalues. The property
(D.2.1) then ensures that the twist-dependent part of the transfer matrices never con-
tributes, see [72-74].

We now exploit known relations for transfer matrices in terms of Baxter Q-functions.
The transfer matrix eigenvalues admit the form

i

a+1 _
) 1@,‘3/%_1 @ (yo"a/ 3 (v 2)>
) = Z.
det Q! <9a +is + 5 (N = 2k)

1<a,a’<N-1

UL (a4 i+ 5 (o = i W

(D.2.9)
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with ya,q = 0a + (s + pu5 +1 —a) and

L N-— L N-—
H H TN 1,50 (9 —&-zs—*( — 0 >|\If> H H GQ;EXZS;ZS )jwy (D.2.10)

where Xq,q = 0o + i(s + 55).
We can now write down the wave functions. By normalising (¥| and |¥) appropriately
we have

L

(Tly) = H det Q! (ya,a + % (N — 2)) . (D.2.11)

1<a,a’<N-1

Similarly, we have
L N—
X0y = ]‘[ H 1(Xaa) (D.2.12)

Since the proposed sets of vectors form a basis we can write the scalar product between two
transfer matrix eigenstates as

(TAlTB) = Up(x) My, Taly). (D.2.13)

X?y

We now turn to the FSoV construction which allows us to extract the measure (6.7.15) in
the two SoV bases. This is just a special case of the formula (5.3.30). Since the SoV bases
are independent of twist, the character projection trick is valid and all of the techniques
developed earlier in sections 5.3 and 5.4 can be carried out. In particular, we can compute
correlation functions of multi-insertions of principal operators. Following the logic of section
5.4.3 we see that there is a distinguished operator diagonalised in the basis |x) which then
must also be diagonalised in the basis (x| defined in (D.2.5). Hence, we have obtained
Sklyanin’s B operator, and the basis diagonalising it, starting solely from the FSoV approach
and the knowledge of the SoV basis.

D.3 Existence of basis of Bethe algebra eigenstates

In this appendix we will prove the existence of the decomposition used in (5.3.12) which
states that one can write a resolution of the identity as

1= [TaX Ty (D.3.1)
A

where each |¥4) is a joint eigenvector of the transfer matrices t(u) ,to(u), (¥ 4| is defined
by the property
(Wal¥p) =dap (D.3.2)

and the index A in the sum labels all transfer matrix eigenstates.
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Outline of proof The proof is very similar in spirit to our proof in the paper [74] showing
that eigenstates of the SoV B operator form a basis of the representation space. An outline
of the steps we will take are as follows. We will begin by decomposing the representation
space H into a direct sum of finite-dimensional spaces Hy, k € Z>o from which the identity
operator inherits the decomposition

1= )1 (D.3.3)

k=0

where 1; denotes the restriction of the identity operator to Hi. We will then prove that
each H;, admits a basis of transfer matrix eigenstates and as a result we can write

Iy = Z ‘\IlAk><\i]Ak’ (D'3'4)
A

where the sum is over a finite number of certain transfer matrix eigenstates enumerated by
Ay, to be specified later. Hence, the decomposition (D.3.1) holds with

1= Z Z ‘WAk><\ijAk| : (D.3.5)

k>0 Ay

Proof The representation space of the gls spin chain is the space of polynomials in x4, ya,

a=1,...,L. By definition, a vector in this space is a finite linear combination of monomials
L
1_[ »TZQZ/ZZ“, Na,y, Mg € Zzo . (D36)
a=1

In order to perform SL(3) (group)-valued linear transformations the representation space
must be extended from polynomials to analytic functions which can be represented as power
series in the above variables convergent in some neighbourhood of the origin, see [74] for a
discussion and examples. Hence, in order to show that a collection of vectors form a basis
of the representation space we must show that any such analytic function can be written as
an infinite series in those vectors with finite coefficients.

Note that there are legitimate questions about convergence of such infinite series and the
existence of the corresponding finite coefficients. Indeed even if one manages to construct
a basis for the original space of polynomials it does not necessarily extend to a basis of the
space of analytic functions.

Let us introduce the following operator £ = —&11— L sx 1 of the global Cartan subalgebra
of U(gl(3)), see (5.6.2) for the definition of £11. A direct calculation yields

L L L
& H eyt = (2 Ne + ma> H xpeyme (D.3.7)
a=1 a=1 a=1

Hence, we see that the spectrum of this operator is bounded from below and furthermore
each eigenvalue is non-negative. Hence the representation space H decomposes into a direct
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sum of eigenspaces Hj corresponding to the eigenvalue k

H=CCP My, HMHi:={veMl:Ev=kv}. (D.3.8)
k=0

Clearly, each Hj, is finite-dimensional as there are only finitely many ways to write a given
non-negative integer k as a sum of non-negative integers n, and mg. Clearly the decomposi-
tion (D.3.8) is valid for the space of polynomials. However, since the space of regular at the
origin analytic functions admit a Taylor expansion into the variables z., y, the decomposi-
tion (D.3.8) is also valid for this enlarged space. To complete the proof it remains to show
that each H; admits a basis of transfer matrix eigenstates. To this end it suffices to show
that they have a distinct set of eigenvalues in each subspace the number of which matches
the dimension of that space. Since transfer matrix eigenvalues are algebraic functions of
the twist parameters it suffices to prove there are sufficiently many for some special value
of the twist to prove that it is true generically.

We will proceed as follows. Consider the transfer matrices with diagonal twist g =
diag(A1, A2, A3). As a result the transfer matrices commute with £ and preserve the sub-
spaces Hi. We consider the singular twist limit Ay » Ao » A3. In this limit ¢;(u) and
t2(u) reduce to the generators GT;(u) and GTa(u) of the Gelfand-Tsetlin subalgebra of the
Yangian whose properties are well-understood [43]. Let o € C be a generic parameter and

consider the combination
o

A1

In the singular twist limit #(u) — t®T(u) := GT1(u) + 0 GTa(u). We will prove that this
operator has distinct eigenstates in each Cartan subspace, and hence so does ¢(u) and hence
so do the family ¢;(u) and t2(u).

The eigenvectors of t®T(u) are well-understood for finite-dimensional representations
where s € {0, —%, —1,...}. In particular, they are all polynomial functions of the spin
s with each eigenvalue also being a polynomial in s. What is not obvious is that each
eigenvector remains an eigenvectors when analytically continued to non half-integer values
of s. Let us consider the expression

Hu) = )\111%1 () + ~—ta(u). (D.3.9)

tCT (u)|Wsy — 76T (u)|Ws) (D.3.10)

where |Wg) is an eigenvectors of tT(u) for s € {0,—3,—1,...}. For such values of s this
expression equates to zero. However, for generic s the operator tGT(u) is a differential
operator with coefficients which are polynomial in s and hence the action of t®T(u) on |¥s)
results in a vector which is polynomial in s and hence (D.3.10) vanishes for all values of
s. Hence, |¥,) is an eigenvector for all s and is non-zero for generic s and T (u) has
distinct eigenvalue for each such eigenvector. Since each Hj can be obtained by considering
enough finite-dimensional representations with sufficiently large —s we can promote a basis
of eigenvectors of Hy, for s € {0, —%, ...} to a basis of eigenvectors for generic s. This
completes the proof.



Appendix E

Technical details for Chapter 6

E.1 Parity of the open transfer matrix

We will now prove that, up to a trivial prefactor, the open transfer matrix T(u) built from
the Lax operators and boundary matrices is even in the spectral parameter.
This is quite simple to do once we establish a few identities.
Unitarity of R! Just like the R-matrix, the R! matrix is also unitary:
St (2u)S "k (—2u) = sl (E.1.1)
where we are summing over repeated indices and S is the normalised rational R-matrix

introduced in (6.3.1).

KR identities We also need special identities between boundary matrices and R-matrices,
first found in [28]. They are given by:

st in?j(QU)Kfnn = (KY)y, (E.1.2)
; 2u 41
KJr tgmn _ ty. .
mnS m z( 2“) “ou + Z-(KJr)zj . (E13)

In particular, the first can be immediately upgraded to an identity for the boundary mon-
odromy matrix Usj(u):

SH U () = (UY)ij(—u). (E.1.4)

Using these identities, we see that:
T(u) = K;jUu(u) = K55 (=2u) 8" (2u) Uy (u) = (E.1.5)
= Egzﬁz (K )nm (U mn(—u) = ,Q;JJ:ZT(—U), (E.1.6)

where in the last passage we have used the fact that trace is invariant under transposition

— T

and that V2 = 1. Therefore, the quantity T(u) = w7z s even in .
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Appendix F

Technical details for Chapter 8

F.1 Proof of Poisson-commutativity of T (u)

In this appendix, we prove that the classical transfer matrix (8.3.14) forms a family of
mutually Poisson-commuting functions for any value of the spectral parameter and for any
J. We start by the J = 0 case. We have that:

{T(w), T(v)} ={Kap(u), Kag(0) K" ()K" (v) + Kap (u)Kap () {K" (w), K**(0)} . (F.1.1)

Using (8.3.18) and its analog for K:

{T(w), T(v)} = sz((?ﬂfﬁ(”) (K 55 (1)K (v) — Ko (0) Ko ()] +
4 KPR ) 1)K (0) — Ko (0) K (1)] -
§(u—v) (F.1.2)
. W [Re ()R (0) — Ko ()R (u) | +
; W [ ()R (0) — RY (o) R (u) ]

By relabelling indices appropriately, all terms cancel as expected.
For the rest of this section, we will use the shorthand notation:
(L)% (u) = (La(w).Lo(u) .. . Ly(u)%,  (L)g(u) = (Loy(w).Loop(u) ... Loi(u)y .
(F.1.3)
It is easy to see that these matrices follow the same Poisson brackets as individual LL-
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matrices. Thus, for general J we have that:

{T(), T(v)} ={Kap (1) Kap (0) HL) (u) (L) (0) K* (@)K (0) (L) g () (L) 5 (0) +
Kb () Kap (0) (L) () (L) (0) (K (u), K (0) L)y () (L) 5 (v) +

(Poisson brackets between L) =

<u>@)f(v)(mbd(u)(m)%(v)

{ E(u+v) 1)Ko (0) K (1)K (0) — Kpg () Ko (u) K (1) K2 (v) +
+ Kap (1) Kag (0)K (u)K*(0) — Kab(U)Kaﬁ(U)K'”(U)KCM(U)} +
+ f(ul—v) [KCLB(u)Kab(v)ch(u)KM(v) - Kag(v)Kab(u)ch(u)KM(v)—i-

+ Kap (1) Kap (0) K (1)K*(0) — Kab(U)Kag(v)Kd”(v)K‘;C(U)} }+

+ (Poisson brackets between L) .

(F.1.4)
We now relabel indices in order to collect the boundary reflection matrices as:
{T(u), T(v)} =Kap(u)Kap(0)K* ()K" (v)
{ s | D4 (L)) (L) (o)~
= (L) () (L) () (L) (u) (L) 5 (0) +
+ (L) () (L) (v) (L), (u) (L) 5 (v)
— (L) (w)(L) ) (0) (L) %(w) (]L)ﬁa(v)} +
(F.1.5)

+ (Poisson brackets between L) .



F.1. PROOF OF POISSON-COMMUTATIVITY OF T(u)

The Poisson Brackets between LL-matrices give:

{T(u), T(v)} =(Poisson brackets between K)+
+ Ko (1)Ko s (0) K€ (1)K (v)

+ (L) (0){(L) &(w), (L) (0) L)y (w) +
(L)L (0){(L)(w), (L))} +

U+ v

{T(u), T(v)} =(Poisson brackets between K)+
+ Kap (1) Kag (0)K™ (u)K (v)
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(F.1.6)

(F.1.7)

(F.1.8)

(F.1.9)

It is easy to verify that the terms from the Poisson Brackets of L-matrices cancel exactly
the ones from the Poisson brackets of K-matrices. Therefore, the transfer matrices form a

family of functions in convolution between themselves:

(T(u),T(v)} = 0.

(F.1.10)
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F.2 Parity of quantum transfer matrices

In this appendix we will prove explicitly the parity of the quantum transfer matrices in all
the antisymmetric representations of the auxiliary space.

Parity of T*

We need to evaluate:

T4(—u) = To(L4(u). L3 (u) . .. LA(w) R (—w) LA (—w) L (—w) . .. LA (—u).GLRA(—u).G4T).

Transposing inside of the trace:

T4(—u) =Tr(GAKAT (—w).GAT LAT () 13T, (—u) . . . 14T (—w).
RAT (—w).LAT (w).L8T (w) ... LAT (w)) .

Now since H:?T(—u) = —IE;‘(—U) and IE?T(u) = —H:‘ll(u) we get:

T4(—u) = Te(L4(—u). L4 (—u) .. LY (—u).K*T (=) L4(u) Li(u) . .. LA (u).GLKAT (—u).GAT) .
(F.2.3)

We can now insert a pair of S-matrices near the K-operator using the unitarity condition

S(2u)S(—2u) = I and then commute S(2u) through the [-operators using the Yang-Baxter

equation, obtaining:

T4(—u) =Tr(L4(—u). L3 (—u)... LA(—u) KT (—u).5(—2u) Fo)
TAu) L4 (w) .. L4 (u).G*.5(2u) K4T (—u).G4T)

Using the following identities:
a(2u) RS (2u)Ky (—u) = Ki, (u) (F.2.5)
(—2u) RAY (—~2u) (K (—u) = (K4)™ (u), (F.2.6)

which in matrix notation are:
KAT (—u).5(2u) = K*(u), (F.2.7)
S(—2u) KA (—u) = K*(u), (F.2.8)

we obtain that T4(—u) = T%(u), thus seeing that T4 is even for any J.
We will now give a more detailed proof of the last passage above. We will use the
RTT relations (substituting R(—u) with S(u)), the unitarity condition S(u)S(—u) = 1 and
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the identities (F.2.5) and (F.2.6). Starting from (F.2.3) we insert an identity and we use
unitarity to get:

() L5 -0 Lo s L) S oS h20Ras ()
(L4 (w) LA(u) ... LAw))5 (G KAT (—u).GAT)ha |
We can now use (F.2.5) to get
Pw) =L Lo () L)) 5420k (W) 210
(LA () LE(u) .. . LA(w)’ (GLRAT (—u).GAT ke

We now use the YBE (substituting R(—u) with S(u)) to commute the remaining S-matrix
through all the [L; and LL;, obtaining for i = 1:

T4(—u) =(LI(—u).LI_; (—u) ... Li(—u)),* ST2(—2u)L7 " (w)L ;¢ (—u)KE, (u) (F211)
(L4 (w) ... LA (w), (GLKAT (—u).GAT)ha |
Continuing this process for Vi = 2...J we obtain:
T4 (—u) =(L5(—w).LI_; (—u) ... L3 (—u) K (u) L (w). L3 (u) ... L5 (u))ew
- . (F.2.12)
599 (—2u) (GLKAT (—u).GAT)he
Finally we use (F.2.6) and get:
T4(—u) =(L4(—u). L4 | (—u).. L (—u) K*(w).Li(u) Li(u) .. . L3 (u))cw (F213)
(G KA (u).GAT)we = T4(u).
Parity of T
Remembering that LS (u) = L8(—u), we write:
T6(u) = Tr (Iﬂ?}(u) . L8(w). RO (w).LO(w) .. .Lg(u).aﬁ.ﬂiﬁ(u).c;”) . (F.2.14)

Hence we have that:

T6(—u) = T (]113(—u) L8 () RO (—u).L8(—u) .. .nlg(—u).GG.ﬂ%G(—u).GﬁT) .
(F.2.15)
Taking a transpose inside the trace and noticing from definition (8.4.13) that L87 (—u) =
L8 (u):

=
(=]
|
£
|
H
/N
=
N
—~
N
N—
=
(=]
=
~
o
/-?
|
<
N—
=

. ?(u)...Lg(u).aﬁ.ﬂ%ﬁT(—u).GGT). (F.2.16)
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We now need identities analogous to (F.2.5) for 6 irrep. First, we need the S®-matrix.
Making the ansatz that it is formed by all compatible indices structures, we can fix the
relative coefficients by requiring that it satisfies the Yang-Baxter equation:

L85 ()82 (—0) S5 (u + v) = S8R (u + 0L (o)L (). (F.217)
We get that:
_ i {
S84 (u) = c(u) [ 6% % — 55% 0% + ———n"“nsp | - (F.2.18)

The overall coefficient c(u) is fixed by unitarity, S®4;%,(u)S8 B, 0. (—u) = 64 6%, as:

u(u— 2
c(u)=< £>

. (F.2.19)
5% +u (u + %)
The identities we need are:
KO (—u).5%(2u) = K8(u), (F.2.20)
56(—2u). KT (—u) = KS(u). (F.2.21)

Hence, inserting into (F.2.16) a pair of S-matrices via unitarity and repeating the passages
of the section above, it is easy to prove that:

T (—u) = TO(u). (F.2.22)

Parity of T4

Using the definitions of section 8.4.3 one can rewrite Tz(u) in terms of L*-operators and
K*-operators as:

T4(u) = B(u) Tr(Li(u) ... L3(w).(G*) T KA (—u).(GH 7 LLA(—u) .. . L (—u) K* (—u)) .
(F.2.23)
Where B(u) is an operator which is an even polynomial in u, composed by all the prefactors
appearing in the definitions of the 4 operators. Following the same passages used for the
parity of T4, it is then easy to prove that:

T4(—u) = T4 (u). (F.2.24)
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Parity of T!

From the definitions of section 8.4.3, it is evident that the Li—operators are even polynomials
in u. Also, since the Kl-ope_rators are proportional to the identity operator, we can move
them together through all L'. Their product is:

K (w)KE (u) = (u2 + ;) <u2 + ;)2 u?. (F.2.25)

Hence, T!(u) is even as it is a product of even functions.

F.3 Explicit form of transfer matrices
J =0 case
The polynomials P that enter the transfer matrices for the J = 0 case in (8.4.31) are

pt = pt =4 cospv? —8h +cosp,

(F.3.1)
P® = (2cos2p + 4)v? — (4 A%sin? o + 16 h cos p)v® + 16 h?

where h = —§? B~!'. The above expressions lead to the Baxter equation (8.5.4).

In order to make a comparison with [25, 157] we introduce the notation for the final
difference operators O

O+q = q(u) (49% — 2u® cos(¢) & 2Ausin(@)) + uq(u — i) + uq(u + 1) . (F.3.2)

The second order equations used in [25, 157] was of the form Oiq = 0. At the same time
the forth order equation (8.5.4) can we written as

1o log—-1tolog-o0. (F.3.3)
u u

We see that the four independent solutions of the two second order equations Oiq =0 are
the 4 solutions of (8.5.4), which indeed demonstrates their equivalence.

J =1 case

For the J = 1 case we explicitly built all 3 transfer matrices as differential operators acting
on the CFT wavefunction of 6 variables s,t,Z1. We verified the general analytic properties
outlined in the text in section 8.4.3. Furthermore, we found some additional relations
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between the coeflicients as shown below

1
P* = 4cospvt + a1 v? + % +8h—zcosg0,

a1 +c1

PG—(2COSZcp+4)US+2[COSgo +cos2p A2 — (A% 4+ 1)

(F.3.4)
— 2SQSin2<p] 0% + by vt + b3 v? + 16 A2,

P* =4cospvt +cpv? + % + 8h — icosgp.

Here, h = —§*B~! ~ —§% so we can see that the relation (8.4.26) does hold indeed. The
coefficients a1, cq,be,b3 and h are complicated differential operators whose explicit form
can be computed if needed. There are no further simple relations we found between them
except for ¢; —a; = 815 A singp, agreeing with (8.4.35). This implies that under spin
flipping S — —9, T4(u) interchanges with T4(u) up to the trivial explicit prefactor. We see
that in total we have 6 independent commuting operators a1, be, b3, h, S, A, which equates
the number of degrees of freedom in J = 1 case.

The limit of straight line ¢ — 7 is especially interesting as 1D Conformal symmetry
gets restored. The space naturally decomposes into a 1D line and the 3D space orthogonal
to it. The corresponding symmetry is thus SO(3) x SO(2,1), and its representations are
parametrised by the spin S of SO(3) and the conformal weight A of SO(2,1). Fixing A and
S removes two variables in our CF'T wavefunction out of 6. Furthermore, we can restrict
ourselves to Highest Weight states w.r.t. to both subgroups, which imposes on the wave
function 2 more conditions K1 = 0 and St = 0, which can be used to further reduce the
number of variables from 4 to 2. In this reduced system B~! and b3 remain two non-trivial
differential operators, whereas all others can be expressed explicitly in terms of A and S. In
particular, a; becomes 2(P; K + A2 — A+ 1), where K, is the special conformal transfor-
mation generator and P, is the generator of translations, and thus simplifies considerably
for the primary operators in the 1D defect CFT, for which by definition K; = 0.

In the simplified case S = 0 we get the following relations

P = 4t 4 (2A272A+2)v2+i(2A272A+3) — 84,
= +60% — (4(A — 1)A + 6)0° + v* (A —1)2A% + 163*) + b3o? + 165°,  (F.3.5)

)
[=>)
|

P4=—4v4+(2A2—2A+2)v2+%(2A2—2A+3)—8@4,

so there are only two non-trivial functions A(g) and b3(g), which can only be deduced
numerically.

F.4 Generalisation: addition of impurities

In order to develop an SoV construction for this spin chain, it would be good to introduce
impurities like in [69]. This is done by introducing a dependence on some parameters
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{6;}, i = 1...J in the rapidities of the bulk particles. To preserve parity in the argument
u of the T-operators, the correct choice (up to a normalisation of the 6;) amounts to:

TA(u) = Tr (n:w—u —0y) . T = 00) R w) L w — ) . L (u — QJ).G)‘.]f{)‘(u).G’\t> :

(F.4.1)

where A\ = {4,4,6,1}. These transfer matrices form a family of mutually commuting
operators: this was verified explicitly up to the case J = 1. However, they do not commute
with the original Hamiltonian H: this is expected, as introducing impurities changes the
physical system and thus the Hamiltonian as well.

The next step is to introduce the polynomials P,? and to write the Baxter equation.
In this case, the polynomials will acquire a {#;} dependence. Moreover, the prefactors
appearing in equations (8.4.32) will also be modified. We obtain that:

Tg(v, {G}) =1,
P}Jrl(UQv {Cz})

Tj (v, {Gi}) = =2 A
2 pP6 2’ 5
TH(0, () = A20) "5 ““”54(324{5 b,

(0 + DO+ DITL (G + (02 = ¢ +1)?) P2 (G

T (v, {G}) = A(20)A(20 + ) A(20 — 1) T

Th (0, {G:}) = A2(20) A(20 + i) A(20 — i) A(20 + 2i) A(20 — 2i)
(02 +4)(0? + )22 [T, <(112 —2)? (4@2 + (2 -+ 1)2))

€8J+8 ’

(F.4.2)

where v = u& and (; = 0;£. We can now rewrite the Baxter equation (5.2.2). Defining
(o =0, (_; = —(; and identifying:

I (—iv) exp(r(J + 1)v) q(v) 20U+ 7

Q) = T (—iv — 3) T(iv +2) 11 PG+ +17) . (F43)
we obtain:
6 ’U2 J v i '
2;;3”22 ) C)q(v) = — [[w+i=¢)alv+2i) - MP}‘H ((v+2)%) q(v +1)
v i=—J\U — G4 i=—J
J v—=Li .
- H (U —1— CZ) Q(U - 22) - U(’U _21) P}—&—l ((’U - %)2) Q(U - Z) :
i=—J

A similar construction with inhomogeneities in the closed fishchain is introduced in [92].

)
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