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Impact of conditional modelling for a universal autoregressive
quantum state
Massimo Bortone, Yannic Rath, and George H. Booth

Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom

We present a generalized framework to
adapt universal quantum state approxima-
tors, enabling them to satisfy rigorous nor-
malization and autoregressive properties.
We also introduce filters as analogues to
convolutional layers in neural networks to
incorporate translationally symmetrized
correlations in arbitrary quantum states.
By applying this framework to the Gaus-
sian process state, we enforce autoregres-
sive and/or filter properties, analyzing
the impact of the resulting inductive bi-
ases on variational flexibility, symmetries,
and conserved quantities. In doing so
we bring together different autoregressive
states under a unified framework for ma-
chine learning-inspired ansätze. Our re-
sults provide insights into how the autore-
gressive construction influences the ability
of a variational model to describe corre-
lations in spin and fermionic lattice mod-
els, as well as ab initio electronic structure
problems where the choice of representa-
tion affects accuracy. We conclude that,
while enabling efficient and direct sam-
pling, thus avoiding autocorrelation and
loss of ergodicity issues in Metropolis sam-
pling, the autoregressive construction ma-
terially constrains the expressivity of the
model in many systems.

1 Introduction
The quantum many-body problem is a keystone
challenge in the description of quantum matter
from nuclei to materials and many more fields be-
sides. Its formal solution scales exponential with
number of interacting particles, but recent devel-
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opments in neural and tensor network represen-
tations have made significant advances in defin-
ing compact and expressive approximations to
the many-body wave function. This has allowed
for accurate solutions to many complex quantum
systems in condensed matter physics [11, 42, 50],
quantum chemistry [14, 23, 24, 43] and be-
yond [30, 36, 40, 63]. Neural Quantum States
(NQS) use neural networks as polynomially com-
pact models of the wave function, and are varia-
tionally optimized via stochastic sampling of ex-
pectation values. Many NQS architectures have
been investigated in recent years, starting with
the Restricted Boltzmann Machine (RBM) [7].
However, it has been shown that a state parame-
terization inspired by kernel models rather than
neural networks can also be used to achieve a sim-
ilar level of accuracy and flexibility with a simpler
functional form, derived straightforwardly from
well-defined physical arguments. These ‘Gaus-
sian process states’ (GPS) [21, 44, 46], as well
as other related kernel models [20], have been
shown to efficiently and compactly represent a
large class of low-energy quantum states to high-
accuracy, and can be considered as a member of
the broader ‘NQS’ family of parameterized quan-
tum states.

Given the many alternative functional forms
that the different machine learning-inspired ar-
chitectures can imply, a significant advance from
the initial demonstration of the NQS in quantum
systems has been the refining of particular mod-
els based on enforcing desired properties. Moti-
vated by the performance of deep convolutional
neural networks (CNN) in the field of computer
vision [47], wave function models that incorpo-
rate many layers of translationally-invariant con-
volutional filters to efficiently learn local corre-
lated features have been proposed and applied
to find ground states of frustrated quantum spin
systems [13]. The recent success of autoregres-
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sive (AR) generative models in machine learning
(ML) [3] has also captured the attention of physi-
cists interested in the quantum many-body prob-
lem, leading to the development of autoregressive
quantum states (ARQS) that enforce a strictly
normalized state from which configurations can
be directly sampled without Metropolis Monte
Carlo, autocorrelation times or loss of ergodicity.

In this context, Sharir et al. [53] were the
first to propose an adaption of PixelCNN [66]
(an autoregressive masked convolutional neural
network for image generation) to the quantum
many-body problem and applied it to find the
ground state of two-dimensional transverse-field
Ising and antiferromagnetic Heisenberg systems.
Other ML architectures such as recurrent neural
networks (RNN) [25, 26] and transformer archi-
tectures [74] have also been proposed as models
for ARQS, yielding convincing results about their
ability to represent ground states of lattice sys-
tems with different geometries and to compute
accurate entanglement entropies in systems with
topological order [27]. Hybrid models that com-
bine the expressivity of autoregressive architec-
tures from the deep learning literature with the
physical inductive bias of tensor networks have
also been proposed [12, 72]. Going beyond quan-
tum spin lattice systems, extensions of ARQS
based on deep feed-forward neural networks have
been applied to the ab initio electronic structure
problem in quantum chemistry, demonstrating
good accuracy up to 30 spin-orbitals [2].

At the core of any autoregressive model is
the application of the product rule of probabil-
ity to factorize a joint-probability distribution
of N random variables into a causal product of
probability distributions, one for each variable,
conditioned on the realization of previous vari-
ables. This modelling approach can be extended
to quantum states, yielding explicitly normalized
autoregressive ansätze from which independent
configurations can be sampled directly via a se-
quential process. This ability is of particular in-
terest in the context of Monte Carlo, where the
computation of expectation values via autocor-
related stochastic processes such as Metropolis
sampling can lead to loss of ergodicity or long
sampling times [53].

In this work, we describe a procedure to adapt
general quantum states into an autoregressive
form, as well as introduce filters to improve the

parameter scaling, enforce translational symme-
try and exploit locality of correlation features in
the model. We specifically apply these adap-
tations to the GPS model to introduce autore-
gressive and filter variants of this model. These
procedures will however also allow for autore-
gressive and filter/convolutional adaptations of
other wave function ansätze. Since the GPS
model has a simpler analytical form for the ‘par-
ent’ state compared to many NQS architectures
(while sharing its properties as a universal ap-
proximator and similar compact expressibility of
many quantum states), the resulting autoregres-
sive GPS ansatz is also particularly simple to
analyze, while sharing many properties of more
complex AR models.

This allows us to disentangle the impact of the
different conditions required for an AR state on
the flexibility of the resulting model. In particu-
lar, it is not clear in general how enforcing autore-
gressive properties affects the resulting express-
ibility of the state compared to its parent model.
While the advantages of direct sampling of con-
figurations from autoregressive ansätze has been
well demonstrated (though its impact is system-
dependent) [75, 76], it has been less clear how the
different conditions required for it (such as the
masking, the normalization, and the more lim-
ited choice of symmetrization) reduce the over-
all variational freedom afforded by the state. We
will investigate these questions, by directly com-
paring the autoregressive state to its parent (un-
normalized) GPS, and discussing the advantages
and otherwise in the choice of AR models in gen-
eral. We find the normalization of the condition-
als to be the dominant factor in the expressibil-
ity of these AR-adapted GPS states for an un-
frustrated 2D spin lattice. We consider results
on spin models, fermionic lattices and ab initio
systems, considering further the impact of sign
structure, choice of representation and numerical
expediency. While we only provide numerical evi-
dence for the impact of these adaptations for the
GPS parent model, we would hypothesise that
these qualitative conclusions are more broadly
valid for autoregressive NQS architectures due to
the constraints that this necessarily imposes, and
can potentially be used as a guiding principle for
the design of future AR models.
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2 A framework for compact many-
body wave functions

2.1 Quantum states as product of correlation
functions

The many-body quantum state of a given sys-
tem consisting of N modes, each represented by
a local Fock space of D local states as xi ∈
{0, . . . , D − 1}, is fully described by a set of DN

amplitudes ψx1,...,xN and basis configurations |x⟩,
i.e.

|ψ⟩ =
∑

x
ψx1,...,xN |x⟩ , (1)

where x = (x1, . . . , xN ) is a string representing
the local states of each mode in the configura-
tion |x⟩. This presents a challenging problem,
since the number of amplitudes grows exponen-
tially with system size (number of modes, sites
in a lattice or number of orbitals in ab initio sys-
tems).

The variational Monte Carlo (VMC) approach
circumvents this by replacing the structureless
tensor ψx1,...,xN in Eq. 1 with a model that
can be efficiently evaluated at any configuration,
ψθ : {0, . . . , D − 1}N → C, parameterized by a
vector θ of size O(poly(N)). This compact rep-
resentation of the wave function then enables the
estimation of expectation values of operators Ô
via stochastic evaluation, as

⟨Ô⟩ = ⟨ψθ|Ô|ψθ⟩ (2)

=
∑

x
|ψθ(x)|2

∑
x′

Oxx′
ψθ(x′)
ψθ(x) (3)

= Ex∼pθ
[Oloc(x)] , (4)

where pθ(x) = |ψθ(x)|2 is the Born probabil-
ity of x and Oloc(x) =

∑
x′ Oxx′ψθ(x′)/ψθ(x) is

the local estimator for operator Ô. Since typ-
ical operators are k-local, the sum in the local
estimator has a polynomial number of terms and
can thus be efficiently computed. An approx-
imation to the ground (or low-energy) state of
a system with Hamiltonian operator Ĥ is then
found by minimizing the expectation value of the
variational energy Eθ = ⟨Ĥ⟩ via gradient descent
methods, such as stochastic reconfiguration [57]
or Adam [31], which we describe in more detail in
Appendix 5. The success (or otherwise) of VMC
is thus related to the choice of three key com-
ponents: 1) an expressive and compact ansatz;

2) a reliable sampling method and 3) a fast and
robust optimization of the parameters.
Focusing on the first point, it can be impor-

tant to impose physically motivated constraints
on the chosen state in order to obtain a com-
pact representation of the wave function, since
one is typically interested in wave functions en-
forcing particular physical properties (e.g. those
with an area scaling law in the entanglement
entropy, topological order or antisymmetry for
fermionic models). However, in order to accu-
rately model large extended systems, it is also
critical that wave functions should be size exten-
sive. This property requires that the error per
particle incurred by the model in the asymptotic
large system limit should remain constant with
system size, ensuring that extensive thermody-
namic quantities such as the energy density con-
verge to a constant energy per unit volume.
A general guiding principle for size extensive

parameterized wave functions is that they can be
written in a product separable form as

ψP S(x) =
N∏

i=1
ψi(x), (5)

where ψi(x) are individual parameterized func-
tions (correlators) describing the i-th site and its
correlations with other sites in its environment.
How these correlators are modelled has impor-
tant consequences for the ability of the ansatz
to capture different physical aspects of a wave
function, such as the length scale or rank of the
correlations it can model. Simple product states
have entirely local functions for each correlator,
which precludes the description of multi-site cor-
related physics. Recent ML-inspired variational
ansätze such as the RBM or GPS have extensive
correlators as long as the number of hidden units
or support dimension respectively scales linearly
with the system size, or if translational symme-
tries are taken into account. Furthermore, full
coupling of each site to their latent spaces of the
model (‘hidden layers’ or ‘support states’ respec-
tively) allows each site to interact with the whole
rest of the system, not formally restricting the
rank of range of correlations that each site can
describe, as illustrated in Figure 1(a). This en-
ables them to capture entanglement scaling be-
yond the area law and to obtain accurate results
formally independent of the dimensionality of the
system [16, 53, 61].
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In contrast, Matrix Product States (MPS)
introduce a specific one-dimensional ordering
of the degrees of freedom in a system, as
shown schematically in Figure 1(b), explicitly
allowing for the efficient extraction of correla-
tions decaying over finite length scales along
the one-dimensional ordering [4]. Formalized
through entanglement scaling arguments [18],
this makes MPS particularly suited for many
one-dimensional systems. More general families
of tensor decomposed or factorized forms also
exist which can unify these ansätze under the
same mathematical framework [15]. As will be
seen in the next section, autoregressive quantum
states also rely on the general product structure
of Eq. 5, but introduce ordering constraints in
the correlator functions, with important ramifi-
cations for the expressivity of the ansatz.

2.2 Universal construction of autoregressive
quantum states
Modelling the probability distribution of N ran-
dom variables x = (x1, . . . , xN ) is a task common
to many domains of science and engineering. Ad-
vances in generative machine learning have pop-
ularized efficient approaches to describe and sub-
sequently sample from a joint probability distri-
bution p(x) via an autoregressive (AR) factoriza-
tion [3]. This relies on the probability chain rule
to decompose p(x) into a product of conditional
distributions p(xi|x<i):

p(x) =
N∏

i=1
p(xi|x<i) (6)

= p(x1)p(x2|x1) · · · p(xN |xN−1, . . . , x2, x1),
(7)

where x<i = (x1, . . . , xi−1) is a fixed, ordered
sub-sequence of the random variables up to the
i-th position.
The same autoregressive factorization can be

applied to the wave function, where importantly,
this form also naturally has the desired product
separable structure shown in Eq. 5. We can de-
fine an autoregressive wave function as

ψθ(x) =
N∏

i=1
ψi(xi|x<i), (8)

where ψi(xi|x<i) is the conditional wave func-
tion over the D local quantum states of the i-th
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Figure 1: Schematic representations of the correlators
used in different states on a 4×4 lattice, showing the
range of the explicit correlations in each: (a) a GPS with
support dimension M = 3 is a state with three correla-
tors each of which is parameterized on the occupation of
sites over the whole system without restriction; (b) an
MPS is obtained by introducing a one-dimensional order-
ing of the sites with direct entanglement approximated
through sites in this order; (c) masking the correlators up
to each site along a one-dimensional ordering and nor-
malizing them leads to an autoregressive state, where
each correlator is independently parameterized and de-
pends only on the configuration of sites preceding it in
the ordering (for clarity, only the correlators for sites
i = 3, 5, 11 are shown); (d) if the system has transla-
tional symmetry, the same correlator can be translated
across the system, reducing the number of independent
parameters in the model. This can be used in conjunc-
tion with the autoregressive model, as long as the site or-
dering is preserved by masking out ‘higher-ordered’ sites
in the filter as shown, to obtain an autoregressive filter-
based state described in Sec. 2.3 (for clarity, only the
correlators for sites i = 11, 16 are shown). The range of
these filters can be restricted if desired (not shown) to
impose a further locality constraint.
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site of the system, conditioned on x<i, a config-
uration of the sub-Hilbert space of all the sites
before the i-th one in a one-dimensional ordering
of the system. Here θ denotes the (potentially
complex) parameters of the autoregressive wave
function, and the number of local quantum states
will be D = 2 for a spin-1

2 system, or D = 4 for
a fermionic system.

We desire a square-normalized autoregressive
state,

∑
x |ψθ(x)|2 = 1, which can be achieved

if all conditional wave functions are normal-
ized for every possible sub-configuration x<i, i.e.∑D−1

x′=0 |ψi(x′|x<i)|2 = 1. This condition can
be explicitly imposed on the state by normal-
izing the conditionals at the point of evalua-
tion [53]. This local normalization scheme is ef-
ficiently computable, since it only involves sum-
ming over local Fock states of the i-th site, with
the global normalization for a given configura-
tion just the product of the local normalization
of the conditional states. We can therefore al-
ways consider unnormalized models for the con-
ditional wave functions ψ̃i(xi|x<i), and apply the
normalization as the model is evaluated for a
given x. We note that this autoregressive prop-
erty remains when the state is multiplied by any
function eiϕ(x) that models a complex phase.

Thus, we can summarize the construction of an
autoregressive ansatz into the following general
recipe:

1. define a one-dimensional ordering of the sys-
tem, which is equivalent to picking unique
site indices;

2. choose a model for each unnormalized con-
ditional wave function ψ̃i(xi|x<i);

3. in the evaluation of the wave function for
a given configuration, compute each con-
ditional and their respective configuration-
dependent normalization in the chosen or-
dering of the sites.

This gives the general form for an autoregressive
state as

ψAR(x) =
N∏

i=1

ψ̃i(xi|x<i)√
D−1∑
x′=0

|ψ̃i(x′|x<i)|2
, (9)

which we depict schematically in Fig. 1(c), with
the conditional wave functions for a few sites

shown to be conditioned only on the occupa-
tions of the sites preceding them in the chosen
site ordering. The property of the ansatz being
systematically improvable to exactness holds as
long as the models for each conditional are them-
selves universal approximators. Recently intro-
duced autoregressive ansätze have parameterized
these conditional wave functions with machine
learning-inspired models such as deep convolu-
tional neural networks [53], recurrent neural net-
works [25], tranformers [74], or hybrid models
that incorporate tensor networks with deep learn-
ing architectures [12, 72].

We will consider a simpler construction, moti-
vated from Bayesian kernel models rather than
neural networks, using the recently introduced
Gaussian process state (GPS) for each condi-
tional [21, 44–46]. Similar to neural network pa-
rameterizations, this model is a systematically
improvable universal approximator for these con-
ditionals, written in a compact functional form as

ψGP S(x) = exp
(

M∑
m=1

N∏
i=1

ϵxi,m,i

)
, (10)

where ϵ is a tensor of adjustable parameters with
dimensions (D,M,L), withM denoting the ‘sup-
port dimension’, the single model hyperparame-
ter that controls the expressivity of the ansatz.
Crucially, increasing M enlarges the class of
states that the GPS wave function can span sys-
tematically towards exactness, since it formally
defines a set of product states on which a ker-
nel model can be trained to support the descrip-
tion [44]. The exponential form of Eq. 10 en-
sures product separability, and allows the model
to capture entanglement beyond area law states.
This form can then be related to an infinite series
of products of sums of unentangled states, as well
as constructively recast into a deep feed-forward
neural network architecture [44].
We can use this GPS model as a parametric

form for each conditional rather than the full
state, to adapt the state definition to an autore-
gressive GPS ansatz (AR-GPS) as

ψAR−GP S(x) =
N∏

i=1

ψ̃i,GP S(xi|x<i)√
D−1∑
x′=0

∣∣∣ψ̃i,GP S(x′|x<i)
∣∣∣2 ,
(11)

where the autoregressive masking of the config-
uration x is explicitly enforced in the argument
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of each exponential by only multiplying parame-
ters related to sites with index j ≤ i. This full
AR-GPS ansatz has DMN(N +1)/2 parameters
since it is a product of normalized GPS mod-
els for each site, each with support dimension M
over successively larger Hilbert spaces. Temper-
ing this additional scaling with number of param-
eters compared to the parent GPS model will be
considered via filters in Sec. 2.3.
To conclude this section we return to the gen-

eral formulation of AR models, to stress that
there are two conditions which must be enforced,
both of which constrain the flexibility of the state
compared to the parent parameterization. These
are:

1. A specific site (orbital) ordering is imposed,
with the conditional wave function for site i
only allowed to depend on x<i, i.e. the oc-
cupation of sites preceding it in this order-
ing. In the rest of this work, we will denote
this step as a masking operation. Explicit
dependence of the conditional from occupa-
tion changes of sites higher in this order-
ing are therefore excluded. It can thus also
be expected that the flexibility of the state
will be dependent on this ordering, as it is
also commonly observed for tensor network
representations relying on an enforced one-
dimensional sequence of sites [10, 37].

2. Each conditional is explicitly normalized
over theD local Fock states in the evaluation
of any configurational amplitude. This con-
straint also reduces the expressivity of each
conditional, and the overall state.

This loss of flexibility is offset by the practi-
cal advantages of direct sampling of configura-
tions from the state in statistical estimators.
The autoregressive masking and the explicit nor-
malization in fact allow the generation of in-
dependent and identically distributed configu-
rations directly from the underlying Born dis-
tribution |ψθ(x)|2, avoiding autocorrelation in
path-dependent Markov chain construction via
e.g. Metropolis sampling and potential loss of
ergodicity. Furthermore, there are other ap-
plications beyond the variational optimization of
ground states where the assurance of a normal-
ized model is often advantageous. For instance,
in quantum state tomography, normalized au-
toregressive models allow for the efficient opti-

mization of negative-log-likelihood loss functions
over data samples, while in real-time dynamics
autoregressive models have also been powerful,
though can require care in the choice of inte-
gration scheme [9, 37, 55]. Nevertheless, it is
important to understand the loss of variational
flexibility for AR models due to these two con-
straints, as well as the computational overheads
compared to their parent parameterizations and
increases in parameter number, to appropriately
understand the trade-offs and whether this loss
of flexibility can simply be compensated by a
more complex model for the conditionals. We
will numerically investigate these questions and
quantify the impact of the individual constraints
in Sec. 3.1 by comparing to the original (non-
autoregressive) GPS model.

2.3 Filters

The general autoregressive ansatz in Eq. 9, as
well as the specific AR-GPS model of Eq. 11, al-
lows each site conditional correlator to be mod-
elled independently. While this increases the
variational flexibility of the ansatz, it implies that
the number of parameters scales as O(N2). For
large systems, this can be prohibitively expen-
sive, thus schemes that bring the scaling down
become necessary. We consider a scheme analo-
gous to the approach of translationally invariant
convolutional layers in neural network parame-
terizations [13], which define local filters of corre-
lation features and can be applied independently,
or in conjunction with an autoregressive model,
akin to how the PixelCNN model was used as an
autoregressive quantum state in Ref. [53].

If the system being studied has translational
symmetry, then it is reasonable to model each
conditional correlator centered at a given site as
the same, with its dependence being on the dis-
tance from the current conditional site to the
ones in its environment. We can consider these
conditional correlators then as filters that are
translated to each site, describing the transla-
tionally equivalent correlations of that site with
its environment. This ensures that the quantum
fluctuations between sites are the same across the
system, and only depend on the relative distance
between sites. Furthermore, these filters can also
be combined with an autoregressive state, as long
as the autoregressive masking is applied on top
to ensure that only the occupation of preceding
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sites is accounted for in each correlator. We re-
fer to this kind of autoregressive ansatz as the
filter-based model. It should be stressed however
that while the application of filters on unnormal-
ized GPS states (which we term the ‘filter-GPS’
model) trivially conserves translational symme-
try, the masking operation on top of the filters
will break this rigorous translational symmetry.

To consider the specific construction for an au-
toregressive filter-based GPS (‘AR-filter-GPS’),
we model the unnormalized conditional correla-
tors as

ψ̃i(xi|x<i) = exp

 M∑
m=1

∏
{r}

gi(σ(r), ϵxσ(r),m,ri−r)

.
(12)

To ensure that the form generalizes for lattices of
different dimensions, we define the product over
sites above not by their index, but rather via the
set of N vectors {r} to each site in the system.
The function σ(r) then defines the mapping be-
tween the vector to the site, and the index of
the site. The tensor of variational parameters
then depends on the occupation of the site at
the position given by the vector (xσ(r)), the sup-
port index (m) defining the latent space, and the
relative distance between the central site of the
conditional correlator and the site defined by the
vector (ri −r). Note that this relative distance is
the shortest distance taking into account the pe-
riodic boundary conditions. The gi(j, x) function
then controls the masking operation for the con-
ditional of site i, required for the autoregressive
properties, given by

gi(j, x) =
{

1, if j > i.

x, if j ≤ i,
(13)

thus masking out contributions from sites which
have an index higher than the central site in the
one-dimensional ordering. This state is depicted
schematically in Fig. 1(d) for a filter size which
extends to the whole lattice size.
The consequence of the parameters being de-

fined by relative site distances is that the to-
tal number of parameters is reduced by a fac-
tor O(N), yielding the same scaling as the par-
ent (non-autoregressive) GPS model, at the ex-
pense that each site conditional is no longer in-
dependently parameterized. A further reduc-
tion in number of parameters can then be sim-
ply achieved by introducing a range cutoff in the

convolutional filters, i.e. setting a maximum dis-
tance in the range |ri − r| in Eq. 12. Practically,
this restricts the range of the correlations that
are modelled, and it is common to define range-
restricted filters in e.g. CNN-inspired NQS stud-
ies [13]. The number of parameters in the state is
then independent of system size for a fixed range
of correlations. However, in this work, we con-
sider filters which extend over the whole lattice,
and therefore do not restrict the range of the fil-
ters in each conditional to a local set of sites.

An alternative and simpler strategy to reduce
the number of parameters in autoregressive mod-
els compared to the filter-based approach is sim-
ply to share the parameters between different
conditional models, i.e. to remove the depen-

dence on i in the ϵ
(i)
xj ,m,j factor in the full AR-

GPS model of Eq. 11. This ‘weight-sharing’
scheme has been considered in autoregressive
models based on feed-forward neural networks,
such as NADE [65], which inspired the ARQS
in Ref. [53]. While this weight-sharing scheme
reduces the computational cost for sample gen-
eration and amplitude evaluation, it introduces
a highly non-trivial relationship between subse-
quent correlators in the autoregressive sequence
which can not directly be linked to physical intu-
ition, making it hard to justify as a parameteri-
zation. As a concrete example, in Appendix 6,
we show a constructive demonstration of how
the full AR-GPS with M = 1 can exactly de-
scribe any product state. However, the weight-
sharing adaptation is generally expected to re-
quire M = N to describe an arbitrary prod-
uct state, representing a significant increase in
the model complexity, even for the description
of entirely unentangled states. We therefore will
not consider these weight-sharing AR-GPS mod-
els further.

A further technique to compress the full au-
toregressive approach is to exploit recurrent neu-
ral network-based AR models [25]. These con-
sist of a parameterized function (recurrent cell)
that recursively compresses the environmental
part of the physical configuration for each condi-
tional, retaining the autoregressive character of
the state. Information about the previous sites
is encoded in a hidden state vector, which is up-
dated by the recurrent cell at each site. From
a modelling perspective, this approach is simi-
lar to a range-restricted AR-filter-GPS, but has
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the advantage of being able to learn a system-
dependent description of this filter, instead of
specifying it into the model a priori. We will ex-
plore connections between these two approaches
in future work.

Beyond the number of parameters, the compu-
tational cost of both generating statistically inde-
pendent configurations from the AR-GPS wave
function (according to |Ψ(x)|2), and evaluating
their amplitude, is given as O(N2), since N cor-
relators of complexity O(N) must be computed.
In AR-filter-GPS models with a range cutoff this
reduces to O(NKd), where K is a measure of
the linear length scales included, and d denotes
the dimensionality of the filters. However, the
dominant cost in a VMC calculation is often in
the evaluation of the local energy, particularly in
ab initio systems where the Hamiltonian in sec-
ond quantization has in general a quartic number
of non-zero terms (although locality arguments
can reduce this to quadratic [45]), and the model
amplitudes must then be evaluated at all these
connected configurations. Here, it is possible
to reduce the computational cost of evaluating
the AR-GPS model at each of these configura-
tions, by exploiting the fact that these configu-
rations only differ by a small occupation change
from a reference configuration. This ‘fast updat-
ing’ scheme for the AR-GPS, described in Ap-
pendix 7, yields a reduction in the naive cost of
computing the local energy by a factor of O(N)
and is used in all results.

2.4 Universality

Given the functional forms introduced in the pre-
vious sections, it is important to consider to what
degree they are able to exactly represent arbi-
trary quantum states, and thus be considered
universal ansätze. For the parent GPS (Eq. 10),
this property has been demonstrated in Ref. [44],
and since the AR-GPS is a product of N GPS
models this ansatz is also universal, even in the
presence of the masking and normalization.

For the filter-GPS where translationally-
invariant filters are used on top of the GPS, the
ansatz will only be able to represent quantum
states with trivial translational symmetry with
character one, i.e. those where all translations
map configurations onto ones with the same am-
plitude. As such, the filter-GPS can only be con-
sidered a universal ansatz for states exhibiting

this trivial translational symmetry, and as long
as no locality constraints are applied to the fil-
ter, which is allowed to span the whole system (or
deep architectures used as in Ref. [14]). However,
applying the autoregressive adaptation on top of
a filter-based ansatz allows the symmetry to be
broken by the masking operation, and while this
no longer exactly conserves translational symme-
try, it also allows the state to become a gen-
eral universal approximator. Masking can also be
applied to filter-GPS for systems without exact
translational symmetry, to break the enforcing of
this symmetry by the filters and return to a uni-
versal approximator for all states (e.g. for lattice
models with open boundary conditions) [77].

2.5 Symmetries and conserved quantities

Incorporating symmetries and conserved quanti-
ties of the system into the ansatz is crucial for
state-of-the-art accuracy [13, 41], restricting the
optimization to the appropriate symmetry sec-
tor. Any non-autoregressive GPS state can typi-
cally be symmetrized by either symmetrizing the
form of the kernel via a filter as described in
Sec. 2.3 (and as has previously been denoted ‘ker-
nel symmetrization as in Eq. (B1) of Ref. [44]),
or via projective symmetrization where an oper-
ator summing over the operations of the group is
applied at the point of evaluating the amplitudes
(see Eq. (B2) in Ref. [44]). For a set S of sym-
metry operations forming a symmetry group, the
projective symmetrization sums over the symme-
try operations applied to each configuration that
is being evaluated of a non-symmetric ansatz,
ψθ(x). Projecting onto a specific irreducible rep-
resentation of the group, Γ, results in the explic-
itly symmetrized ansatz

ψΓ
θ (x) = dim(Γ)

|S|
∑
τ∈S

χΓ(τ)ψθ(τ(x)), (14)

where each τ is a symmetry operation, and χΓ(τ)
is the character of the symmetry operation in
that irrep. For the totally symmetric states con-
sidered in this work all characters are one, leading
to a simple averaging over the symmetry-related
configurations [41, 42, 49, 50].

However, since this explicit symmetrization of
Eq. 14 does not preserve the normalization of the
state, projective symmetrization is not compati-
ble with the autoregressive property, and thus di-
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rect sampling of configurations. Instead, autore-
gressive wave functions are symmetrized by en-
suring that the probability of generating config-
urations of a certain symmetry-equivalence class
from the unsymmetrized ansatz is the same as the
probability given by the corresponding amplitude
of the symmetrized model. As first proposed for
autoregressive NQS in Ref. [53] and further ex-
panded on in Ref. [48], this can be achieved by
averaging the real and imaginary part of the wave
function amplitude separately, which for a totally
symmetric irrep results in

ψsymm
θ (x) =

√√√√ 1
|S|

∑
τ∈S

exp (2 Re [logψθ(τ(x))])

× exp
(
i arg

(∑
τ∈S

exp (i Im [logψθ(τ(x))])
))

,

(15)

where ψθ(x) is the amplitude from the unsym-
metrized autoregressive ansatz. This ansatz can
be sampled in a two-step process: first a config-
uration is autoregressively sampled from the un-
symmetrized ansatz, then a symmetry operation
is drawn uniformly from the set S and applied to
the sampled configuration.
For symmetry operators which are diagonal in

the computational basis, there is a simpler way
to exactly constrain the sampled irrep in autore-
gressive models. This includes spin magnetiza-
tion when working in a computational basis of
Ŝz eigenfunctions, or electron number symmetry
for fermionic models. This can also be extended
to full SU(2) spin-rotation symmetry when work-
ing in a basis of coupled angular momentum
functions [38, 68]. These ‘gauge-invariant’ au-
toregressive models can be implemented with
a gauge-checking block, which renormalizes the
conditionals in order to respect the overall se-
lected gauge or quantum number. This means
that certain local Fock states of conditionals are
set to zero when iteratively generating a con-
figuration, if they would result in a symmetry-
breaking final configuration. Therefore, this ex-
cludes support of the AR-GPS state on these
symmetry-breaking configurations. This ap-
proach has also been used for autoregressive re-
current neural network-based architectures for
the conservation of magnetization in quantum
spin systems [25] and electron number and mul-
tiplicity in ab initio systems [2, 39].

In this work, we use the normalization-
preserving symmetrization of Eq. 15 to sym-
metrize our AR-GPS with the C4v point-group
symmetries of the lattice and Z2 spin-flip sym-
metry in quantum spin systems (not including
translations, which are not preserved even in the
presence of filters in the AR states). In addition,
we implement a gauge-checking block to conserve
the total magnetization in spin systems as well
as the electron particle number in fermionic sys-
tems. We stress here that the normalization-
preserving symmetrization of Eq. 15 is not equiv-
alent to the projective symmetrization approach
of Eq. 14. In particular, in keeping with the
conclusions of Refs. [48] and [50], we find that
the symmetric autoregressive state resulting from
Eq. 15 is not as capable in modelling sign struc-
tures of quantum states compared to the projec-
tive symmetrization of non-autoregressive states.
This is due to the requirement to split the ampli-
tude and phase information in Eq. 15, which pre-
vents interference between unsymmetrized am-
plitudes, limiting the flexibility of autoregressive
ansätze in frustrated spin and fermionic systems.

3 Results

Having presented the general formulation of au-
toregressive and filter adaptations to a wave func-
tion ansatz, as well as their specific construc-
tion for the Gaussian process state (GPS) model,
we will now numerically investigate the expres-
sivity of these states. In particular, we aim to
understand how the AR constraints of mask-
ing conditionals according to a 1D ordering and
normalization (Sec. 2.2), as well as the sym-
metrization (Sec. 2.5) and convolutional filters
(Sec. 2.3) change the variational freedom of the
state compared to the ‘parent’ unnormalized and
non-autoregressive GPS model of Eq. 10. Note
that this is analyzed independently to the ben-
efit in the efficiency of the direct sampling af-
forded by the AR models, which is considered
elsewhere [53] and likely to be highly system de-
pendent. We therefore consider the minimized
variational energy of these models, with the com-
plexity of the state denoted by the number of
parameters. These models are optimized with
a variant of the stochastic reconfiguration algo-
rithm [36, 57] which is detailed further in Ap-
pendix 5 and has been shown to improve the
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Ansatz Masked Normalized Correlator Parameters
GPS ✗ ✗ fully-variational O(DMN)†

masked-GPS ✓ ✗ fully-variational O(DMN2)
AR-GPS ✓ ✓ fully-variational O(DMN2)
filter-GPS ✗ ✗ filter O(DMN)
masked-filter-GPS ✓ ✗ filter O(DMN)
AR-filter-GPS ✓ ✓ filter O(DMN)

Table 1: The variational GPS variants used in this work
for the comparison between autoregressive and non-
autoregressive states and their respective properties, in-
cluding how the number of parameters scales w.r.t. the
dimension of the local Fock space D, the support dimen-
sion M and the system size N . ‘Filter’ correlators im-
pose that all sites model identical correlations with their
environment (up to masking constraints), while fully-
variational correlators allow for fully-independent corre-
lators for each site. Note that the masked-filter-GPS and
masked-GPS are models used to understand and com-
pare the effect of certain properties, but are not expected
to be used in practice. †: In order to achieve product-
separability, the support dimension M is expected to
scale as O(N).

convergence for autoregressive models and avoid
local minima. We implement all the models of
Table 1 and perform the VMC optimization us-
ing the NetKet package [8, 67].

To distinguish between the effects of the au-
toregressive masking and the normalization con-
ditions, we also consider one further GPS-derived
model. This is an unnormalized ansatz, but in-
cluding the autoregressive masking, as

ψmasked-GPS(x) =
N∏

i=1
exp

 M∑
m=1

∏
j≤i

ϵixj ,m,j

.
(16)

This ‘masked-GPS’ model is purely proposed for
illustrative purposes, as it suffers from the in-
crease in variational parameters and loss of flexi-
bility due to masking constraints of the full AR-
GPS state, but without the benefit of direct sam-
pling that the full AR construction would af-
ford. However, since it does not introduce the
additional normalization constraint, it allows us
to disentangle the loss in the flexibility of the
model due to these two constraints required for
a full AR state construction. We also apply this
masking without the explicit normalization in the
presence of filters, resulting in the ‘masked-filter-
GPS’ similarly used to understand the effect of
the masking operation in isolation.
We first consider these states applied to

the Heisenberg system, before moving on to
fermionic Hubbard models, and ab initio systems,
to understand the change of variational freedom

that these model variants present. While these
will be specific to the GPS underlying parameter-
ization, we expect that the conclusions regarding
the relative expressibility of these states will also
transfer to other (e.g. NQS) parent models with
similar universal approximator properties.

3.1 Antiferromagnetic Heisenberg system

The study of quantum spin fluctuations and mag-
netic order in condensed matter has for a long
time relied on the understanding of the proper-
ties of the S = 1/2 antiferromagnetic Heisenberg
model (AFH), described by Ĥ = J

∑
⟨i,j⟩ Ŝi · Ŝj ,

where ⟨i, j⟩ represent nearest-neighbor pairs of
localized quantum spins. Correctly describing
the quantum fluctuations of the AFH ground
state at zero temperature represents a challenge
for analytical and numerical techniques and a
common benchmark for many emerging meth-
ods. On a 6 × 6 square lattice, we can apply
the Marshall-Peierls sign rule, transforming the
Hamiltonian into a sign-free problem that can
be described with real parameter GPS models,
avoiding in this case the complications of repre-
senting sign-structures as described in Sec. 2.5.
For masked and autoregressive models, we follow
a zig-zag ordering of the lattice sites, as depicted
in Fig. 1(c-d).

In Fig. 2 we show the relative variational en-
ergy error as a function of the number of param-
eters for the different ansätze. We include the
conservation of total zero magnetization for all
models (trivially for the Metropolis-based non-
AR models, or via gauge-checking blocks for the
AR models), and do not explicitly include further
symmetries unless otherwise stated. The accu-
racy for all states can be systematically improved
in principle by increasing the number of parame-
ters (via the support dimension M), noting that
due to the difference in scaling the same num-
ber of parameters does not necessarily equate to
the same value of M . We take care to ensure
that the models are optimized as well as possible
with respect to samples and other technical pa-
rameters (see Appendix A for more details), such
that we can accurately judge the overall ground
state expressibility of the models. However we
can not exclude the possibility of the AR models
changing the optimization landscape to introduce
fundamental bottlenecks in the training as an al-
ternative source of the discrepancies.
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Considering first the GPS models without fil-
ters (solid lines), there is a clear loss of varia-
tional flexibility for a given number of parameters
between the unnormalized parent GPS model
(Eq. 10), and the AR-GPS model (Eq. 9). In-
terestingly, if we apply a masking operation to
the GPS model without normalization (the non-
AR masked-GPS model of Eq. 16), the energies
are almost as good as the parent GPS model,
despite the increase in the number of parame-
ters for a given M . This indicates that it is the
act of explicitly normalizing the AR-GPS state
for each configuration which is providing most
of the loss of variational flexibility in the model,
rather than the act of masking the physical con-
figuration from certain sites. This normalization
step cannot be easily compensated for by an in-
crease in the support dimension. We note here
that similar finding have been uncovered in the
machine learning literature, pointing to intrinsic
limitations of autoregressive models in modelling
arbitrary distributions over sequences of a finite
length [34, 70].

We further consider the relative impact of this
masking and normalization of the individual con-
ditionals of the autoregressive state, but now
with filters also applied both to autoregressive,
masked and parent GPS models (dashed lines).
While these models are more parameter efficient
than their respective counterparts without filters,
the discrepancy between the AR-filter (including
normalization of conditionals) and the masked-
filter-GPS (without normalization of condition-
als) persists, reaffirming that the normalization
rather than the masking is the leading cause in
the loss of flexibility going towards AR models
in this (unsigned) problem. As expected, the
filter-GPS provides the best results for a given
number of parameters, due to its dual advantage
in both avoiding the masking operation, allowing
the model at each site to ‘see’ the full spin con-
figuration, as well as ensuring that translational
symmetry is exactly maintained. The quality of
these results in this system mirrors the equiva-
lent ‘kernel-symmetrization’ results of Ref. [44].
We should stress again that this analysis consid-
ers purely the expressivity of these models for
a given compactness, rather than the numerical
advantages in faithful and direct sampling of con-
figurations the AR construction admits.

In the inset of Fig. 2 we also report the rel-
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Figure 2: Relative energy error of different GPS mod-
els for the 6 × 6 AFH with PBC as a function of the
number of parameters. The exact energy is obtained
from Ref. [52]. Models with convolutional filters are
shown with dashed lines and are more parameter effi-
cient, while models with independent site conditionals
are shown with solid lines. We find that explicit normal-
ization of the autoregressive state is more deleterious
to its variational freedom than the other AR require-
ment of masking conditionals based on a 1D ordering
of the lattice sites, for both filter and non-filter models.
The explicitly translationally-invariant filter-GPS with-
out masking or normalization constraints are found to
be the variationally best ansatz for a given complexity
in this system. Inset: Relative energy error of the AR-
filter-GPS model for the larger 10 × 10 lattice compare
to the stochastic series expansion results of Ref. [51].
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ative energy error obtained by the filter-based
autoregressive GPS model on a larger 10 × 10
lattice. This relative error is almost identical to
that reached on the smaller 6 × 6 lattice with
the same value of M , confirming the expectation
of a consistent level of accuracy across different
system sizes for a given M for the size extensive
form of the AR-GPS model.

To test whether the inclusion of additional
symmetries helps in closing this accuracy gap
due to the explicit normalization of AR correla-
tors, we optimize filter-based autoregressive and
masked GPS models with the inclusion of C4v

point-group symmetries of the square lattice and
Z2 spin-flip symmetry (in addition to the conser-
vation of total zero magnetization, i.e. Sz sym-
metry). We symmetrize both models following
the normalization-preserving method in Eq. 15,
in order to ensure a faithful comparison. Inclu-
sion of these symmetries in Fig. 3 show that they
help with the accuracy of both models. How-
ever, the gap between the accuracy of the models
(arising from the requirement of explicit normal-
ization of conditional correlators in the AR-filter-
GPS) decreases as a function of M . This is due
to a plateau in the accuracy of the masked-filter-
GPS model.

For comparison, we also show the CNN-based
multi-layer NQS results from Ref. [13]. While
this non-AR filter-based NQS model is by con-
struction translationally invariant, it is also in-
variant under all rotations of the lattice (C4
symmetry). However, contrary to the masked
and autoregressive filter-based GPS models in
Fig. 3, the CNN-NQS was symmetrized via
projective-symmetrization, which as shown in
Ref. [48] results in a more expressive model than
the normalization-preserving symmetrization re-
quired in autoregressive models, which is again
demonstrated in these results. Furthermore, even
though our models use a translationally-invariant
filter to model the conditional wave-functions,
the autoregressive masking breaks this invari-
ance, and thus we lose this exact symmetry in
the model. Restoring rigorous translational sym-
metry in the AR-filter-GPS models would re-
quire the addition of all the translation operators
in Eq. 15, yielding an additional O(N) cost to
the evaluation of the amplitudes unless working
within a basis representation which transforms
according to the symmetry group [2, 39].
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Figure 3: Relative energy error of the autoregressive
(red) and masked (violet) filter-based GPS ansätze with-
out symmetrization (dashed) and with normalization-
preserving C4v and Z2 symmetrization (solid) as a func-
tion of the support dimension (M) on the 6 × 6 AFH
with PBC (conservation of total zero magnetization is in-
cluded in all models). Included is also the relative energy
error of a projectively-symmetrized (non-autoregressive)
CNN-based NQS [13], which provides similar accuracy
and compactness to the projectively-symmetrized GPS
[44] model due to the improved symmetrization and lack
of masking.

We expect that this exact conservation of
translational symmetry, more expressive (pro-
jective) symmetrization of the point group op-
erations, as well as lack of masking to be the
dominant cause of the improved CNN results
of Ref. [13] rather than the change in under-
lying model architecture to the GPS in Fig. 3.
This is validated via inclusion of the projectively-
symmetrized GPS results of Ref. [44], which pro-
vides comparable accuracy to the projectively-
symmetrized deep CNN results of Ref. [13] (albeit
noting that the GPS results are also projectively-
symmetrized over the translational symmetries,
instead of relying on translationally-invariant fil-
ters). We would also expect other more recent
NQS architectures to be able to efficiently model
this system [69].

3.2 1D Hubbard model
We now move to the 1D fermionic Hubbard
model of strongly correlated electrons with
Hamiltonian

H = −t
∑

⟨i,j⟩,σ

(
ĉ†

iσ ĉjσ + ĉ†
jσ ĉiσ

)
+ U

∑
i

n̂i↑n̂i↓,

(17)
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where ĉ†
iσ(ĉiσ) is the creation (annihilation) op-

erator for a σ-spin electron at site i, and n̂iσ =
ĉ†

iσ ĉiσ is the spin-density operator for σ-spin elec-
trons at site i [1]. The ansätze introduced can
be easily extended to this fermionic setting by
allowing the local Fock space for each site to be
extended to four possible states, from two in spin
systems. In Fig. 4 we show the relative ground
state energy error of a AR-filter-GPS with sup-
port dimension M = 64 for a N = 32 site
1D model in different interaction regimes, from
the uncorrelated U = 0t to strongly correlated
U = 10t, compared to the reference energy from
a DMRG optimized MPS with bond dimension
M = 2500 [73].

For each interaction strength we consider both
open (OBC) and anti-periodic (APBC) boundary
conditions. The OBC system no longer strictly
obeys translational symmetry, however the filter
ensures that the environment around each site is
modelled with the same parameters. In this case,
the sum over {r} in Eq. 12 therefore only ranges
over values such that ri−r respects the boundary
conditions of the system for each site conditional.
As discussed in Sec. 2.4, despite the filter ensur-
ing that environmental fluctuations are transla-
tionally symmetric, the addition of the masking
operation ensures that the AR-filter-GPS is still a
universal approximator for this system even with
OBC.

In fact, we find that the model is able to de-
scribe the OBC system in general to higher accu-
racy than the APBC system, with it being par-
ticularly effective at higher U/t values. We can
rationalize this as resulting from the fact that the
necessity of the masking operation biases towards
the OBC, where a 1D ordering of the sites is re-
quired which does not respect the boundary con-
ditions of the problem. This improves at higher
U/t values, where the physics is dominated by
local fluctuations, and where the imposition of
a translationally symmetric filter is less restric-
tive. In contrast, the translational symmetry of
the APBC system works against the constraints
imposed by the masking, where the accuracy is
worse for all values other than the uncorrelated
U/t = 0 state.

3.3 Ab initio hydrogen models

Lastly we look at more challenging ab initio
fermionic systems with long-range Coulomb in-
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Figure 4: Relative energy error of the autoregressive
filter-based GPS model with support dimension M = 64
as a function of the interaction strength U/t in a 1D
Hubbard system with N = 32 sites and different bound-
ary conditions. Solid lines represent models optimized
with Open Boundary Conditions (OBC), while dashed
lines are for those obtained with Anti-Periodic Boundary
Conditions (APBC). Exact reference energies were ob-
tained from an MPS with bond dimension M = 2500
optimized by DMRG [73].

teractions, and test the performance of the au-
toregressive GPS in describing the electronic
ground state of chains and sheets of hydrogen
atoms. Analogous to changes in the interaction
strength in the Hubbard system, modulating the
bond length of the hydrogen atoms leads to quali-
tatively different correlation regimes. These sys-
tems have been studied as models towards re-
alistic bulk materials, with rich phase diagrams
that exhibit Mott phases, charge ordering and
insulator-to-metal transitions [22, 45, 54, 56, 58,
64].

In second quantization, the ab initio Hamilto-
nian in the Born-Oppenheimer approximation is
discretized in a basis of L spin-orbitals

Ĥ =
2L∑
ij

h
(1)
ij ĉ

†
i ĉj + 1

2

2L∑
ijkl

h
(2)
ijklĉ

†
i ĉ

†
k ĉj ĉl, (18)

where ĉ†
i (ĉi) are fermionic operators that create

(destroy) an electron in the i-th spin-orbital. The
single-particle contributions due to the kinetic
energy of the electrons and their interaction with
external potentials are described by the one-body

integrals h
(1)
ij , whereas the Coulomb interactions

between electrons is modelled by the two-body

integrals h
(2)
ijkl.

The choice of molecular orbitals used in the
second quantized representation is not unique,
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since any non-singular rotation of the orbitals
would yield another valid basis for the degrees of
freedom, without affecting the physical observ-
ables of the exact solution. However, depend-
ing on the chosen representation for the compu-
tational basis, the wave function will have dif-
ferent amplitudes, which changes the ability to
sample configurations from an ansatz, as well as
faithfully represent them in a given parameter-
ized form. As such the accuracy to which an
observable can be estimated by an ansatz will
greatly depend on this choice, which will then
also impact the optimization process. The prac-
tical consequences of this choice on the scalability
of VMC calculations have recently been studied
in Ref. [45] with the GPS as an ansatz. Using the
4 × 4 × 4 hydrogen cube as benchmark, the au-
thors have demonstrated the benefits of working
in a basis of localized orbitals to obtain state-of-
the-art results.

A localized basis is one in which the electron
orbitals are rotated in such a way that they ful-
fil some locality requirement, concentrating the
orbital amplitudes around localized regions in
the system, often retaining atomic-like orbital
character. In contrast, the orbitals in a more
common canonical basis (that diagonalize some
single-particle effective Hamiltonian, such as the
Hartree–Fock or Kohn–Sham Hamiltonian) are
delocalized over the whole system. Since the
dominant contribution to the correlated ground
state wave function typically would come from
the mean-field configuration in this representa-
tion, the probability distribution over configura-
tions is generally highly peaked around this con-
figuration. For a local basis, however, many con-
figurations will have similar energy contributions,
which then leads to more uniform structure in
the probability distribution, improving the abil-
ity to faithfully sample from the wave function
via Monte Carlo algorithms.

It is important to note here that even though
autoregressive states allow for independent and
uncorrelated sampling of the configurations, they
are not immune to sampling effects caused by the
choice of representation. In a canonical basis,
they will still require potentially many samples
to resolve expectation values by integrating over
the highly peaked probability distribution given
by the ground state many-body density, which
is the same problem that can also affect non-
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Figure 5: Relative energy error of an M = 16 autore-
gressive GPS on a chain of 16 (top) and a 4 × 4 lattice
(bottom) of hydrogen atoms at different interatomic dis-
tances, using a canonical (blue circles) and a local (green
diamonds) basis representation, in an underlying STO-
6G basis. Solid and dashed lines represent states op-
timized with real and complex parameters respectively.
Exact energies are obtained via full configuration inter-
action algorithm from PySCF [59, 60].

autoregressive states as described in Ref. [14].
Autoregressive states are simply more sample ef-
ficient, since generated configurations are uncor-
related, and amplitudes of repeatedly generated
configurations can be stored in a lookup table as
illustrated in the batched sampling procedure of
Ref. [2].

In Fig. 5 we investigate this by considering the
relative energy error of a fully-variational AR-
GPS model with support dimension M = 16
on 1D chains with OBC and 4 × 4 square pla-
nar 2D systems of 16 hydrogen atoms (32 spin-
orbitals) in both local and canonical (restricted
Hartree–Fock) bases at different interatomic dis-
tances [59, 60]. We then obtain a localized ba-
sis by performing a Foster-Boys localization [19],
which directly minimizes the overall spatial ex-
tent of each orbital, whilst preserving orthogo-
nality.

The 1D hydrogen chain can be considered an
extension of the 1D Hubbard model with OBC
of Sec. 3.2, with a natural choice of ordering for
the local orbitals required for the masking, but
now with long-range interactions giving the po-
tential to induce a non-trivial sign structure of
the state, and a higher complexity in the local
energy evaluation. As shown in the top panel
of Fig. 5, the localization of the orbitals in this
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setting is clearly critical for the sampling of con-
figurations in the optimization of the autoregres-
sive model, as well as the accuracy to which
the state can be represented. In the local ba-
sis, the ansatz achieves an average relative en-
ergy error of ≈ 4 × 10−5 across the whole range
of interatomic distances considered, whereas in
the canonical basis it fails to reach an acceptable
accuracy, with its error increasing as the separa-
tion between atoms becomes large in the more
strongly correlated regime.

We furthermore tested the performance of the
AR-GPS ansatz with both real-valued parame-
ters, restricting it to model positive-definite wave
function amplitudes, as well as complex param-
eters, which should enhance the flexibility while
also making it possible to model the sign struc-
ture of the target state. The additional freedom
of the model with complex parameters leads to an
improvement in the observed energy in all cases
other than the linear chain in a local basis. In this
case, the high accuracy of the real-valued, strictly
positive model could not be matched. Since the
complex-parameter model must be able to span
the same states as the real-valued analogue, this
(small) discrepancy must arise from increased dif-
ficulties in the sampling and optimization of the
parametrization, even if the model carries the
theoretical ability to give a better approximation.
The additional flexibility of the complex ampli-
tudes causes more numerical difficulties in prac-
tice than benefit found in their expressibility, due
to the small change from a stoquastic Hamilto-
nian and positive-definite wave function that the
long-range interactions induce in this case.

Rearranging the atoms into a two-dimensional
square lattice changes these conclusions, with the
canonical basis providing better results up until
a bond length of ∼ 2.5 a0, at which point the lo-
cal basis becomes more accurate. At short bond
lengths, the canonical basis allows a description
of the dominant kinetic energy driven effects with
a single configuration, while the ‘Mott insulat-
ing’ stretched geometries which are dominated
by the interactions favor the local basis as an
efficient representation due to the rapidly decay-
ing correlation lengths. Nevertheless, the geom-
etry change coupled to fermionic antisymmetry
necessitates a strongly signed set of wave function
amplitudes, requiring complex parameters. Fur-
thermore, the ambiguity in defining an ordering

of the orbitals (in both representations) impacts
upon the accuracy that can be achieved in the
state, significantly increasing the relative energy
error compared to the 1D system.

4 Conclusions and outlook

With the emergence of highly expressive func-
tional models based on machine learning
paradigms as ansätze for the many-body quan-
tum state, autoregressive models seem particu-
larly appealing due to their inherent design which
allows for an exact generation of configurational
samples. We have presented a general frame-
work for the construction of these autoregres-
sive forms from general approximators, defining
the two constraints which must be imposed on
their form in terms of masking and normalization
steps. Exemplifying the construction for the re-
cently introduced Gaussian process state for the
conditional probability distributions which make
up these models, we introduced a new autoregres-
sive ansatz, explicitly underpinned by physical
modelling assumptions which motivate the GPS
ansatz, and adapted for autoregressive sampling.
Furthermore, we go beyond autoregressive adap-
tations of quantum states to consider ‘filters’, de-
signed to model correlations in a translationally
symmetric fashion, and allow for a correspond-
ing scaling reduction in parameter numbers. We
show how these can then be combined with the
quantum states in both a general framework, and
specifically with the GPS.

While the benefits of direct sampling have been
previously highlighted, with the practical op-
timization difficulties of these expressive states
well known [6, 11, 33, 50, 62, 71], we put par-
ticular focus on the ramifications for the varia-
tional flexibility of these modified states due to
these autoregressive and filter adaptations com-
pared to their parent GPS model. This was
numerically investigated for the variational op-
timization of unknown ground states across spin,
fermionic and ab initio systems, highlighting that
for the benefits and simplicity of direct sam-
pling of a normalized autoregressive quantum
state there can be a significant loss in express-
ibility. We numerically investigate which of the
two constraints (masking or normalization) re-
quired for an autoregressive state this primarily
stems from, finding (perhaps surprisingly) that
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the explicit normalization affects the expressibil-
ity more than the masking constraint of an or-
dered and causal set of conditionals. While nu-
merical results were specifically obtained from
the simple (yet nonetheless universal) autoregres-
sive GPS model, we believe that these general
conclusions would transfer to other forms of flex-
ible ansatz, with the choice of ‘parent’ architec-
ture for the conditionals less important in the
flexibility of these states compared to the under-
lying assumptions required for the autoregressive
property to emerge. We did not balance this loss
of flexibility with the benefits of direct sampling
in terms of an overall picture of the net bene-
fit of autoregressive model. This is likely to be
highly system-dependent, varying with the ease
and ergodicity in the sampling of the configura-
tional space, making broad conclusions impossi-
ble. Nevertheless, it should be cautioned that
there is potentially a price in flexibility to pay
when using autoregressive models compared to
their parent model in systems where the tradi-
tional configurational sampling is not difficult,
in particular with improved sampling schemes
emerging [5].

We show that the autoregressive model espe-
cially performs well when capturing the correla-
tions emerging from (quasi-)one dimensional sys-
tems, where a natural order for the decomposi-
tion into a product of conditionals can be found.
Indeed, we are able to demonstrate a high de-
gree of accuracy for one-dimensional fermionic
systems within different settings and correlation
regimes, here exemplified for prototypical Hub-
bard models as well as fully ab initio descriptions
of the electronic structure of hydrogen atom ar-
rays. We furthermore compare the performance
across signed and unsigned states, as well as the
importance of basis choice in moving towards ab
initio systems. Generalizing these constructions
for models in higher dimensions, as has started
to be done for e.g. recurrent neural networks
[25, 72], is an ongoing direction of future work.
Bringing these different modelling paradigms to-
gether in a general framework can build us to-
wards a practical tool for the description of gen-
eral quantum states, from their variational opti-
mization, to time-evolution [7, 17, 29, 35] or the
simulation of quantum circuits [30, 40].

Code Availability
The code for this project was developed as
part of the GPSKet plugin for NetKet [8, 67]
and is made available, together with config-
urations files to reproduce the figures in the
paper, at https://github.com/BoothGroup/
GPSKet/tree/master/scripts/ARGPS.
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5 Optimization Details

Throughout this work we optimize all the ansätze with an improved Stochastic Reconfiguration
(SR) [57] algorithm introduced in Ref. [36], which we implemented in our GPSKet plugin for
NetKet [8, 67]. In the SR scheme, parameters are updated according to the following rule:

θt+1 = θt − ηS−1g, (19)

where η is the step size (learning rate), θt are the parameters of the ansatz at iteration t, S is the
quantum geometric tensor (QGT) and g is the variational energy gradient.

The QGT and the energy gradient, can be defined by introducing operators Ôk representing the
derivative with respect to the k-th parameter of the log wave function amplitude according to

⟨x|Ôk|x′⟩ = δx,x′
∂ logψθ(x)

∂θk
, (20)

where |x⟩ and |x′⟩ are computational basis states. The QGT and the energy gradient can then be
evaluated via Monte Carlo sampling of the following expectation values:

Si,j = ⟨Ô∗
i Ôi⟩ − ⟨Ô∗

i ⟩⟨Ôi⟩, (21)
gi = ⟨Ô∗

i Ĥ⟩ − ⟨Ĥ⟩⟨Ôi⟩. (22)

It is typically required to appropriately regularize the solution of the update of Eq. (19), which
involves solving for the update vector S−1g. A common strategy is to add a constant shift to the
diagonal of the S matrix. Instead of applying a constant shift to the diagonal of the S matrix to
stabilize its inversion in Eq. 19, we update the diagonal entries of S with a parameter-dependent shift
based on the scheme introduced in Ref. [36]. We found that this approach sometimes significantly
helps to reliably optimize the autoregressive parameterization. The scheme is based on adding a
regularization shift to the diagonal of the S matrix based on the exponential moving average of the
squared gradient, vt, effectively rotating the parameter updates towards the RMSProp gradient descent
update directions [28]. This means that the S matrix is regularized by replacing it according to

S 7→ (1 − ε)S + εdiag(
√
v + 10−8), (23)

which depends on an additional hyperparameter ε between 0 and 1, controlling the amount of regu-
larization. The exponentially moving average of squared gradients is continuously updated over the
course of the optimization according to

v 7→ βv′ + (1 − β)g2, (24)

where v′ is the accumulated value from the previous iteration, and an additional momentum hyper-
parameter β controls the rate of the decay.

Within all our numerical tests, we set the momentum value to β = 0.9. We chose a learning rate
of η = 0.01 with a diagonal shift constant of ε = 0.1 for our simulation with lattice models, and a
learning rate of η = 0.04 with a shift constant ε = 0.01 for the ab initio simulations of hydrogen
systems. We computed estimates of the variational energy, the gradient, and S matrix elements
with 4096 (non-symmetric representations), or 1024 (symmetric representations) for lattice models,
and with 5000 samples for the ab initio systems. For non-autoregressive models, we relied on the
Metropolis-Hastings algorithm based on spin exchange proposals to generate samples according to the
Born distribution defined by the ansatz. The reported final energies were computed by averaging the
sampled variational energy over the last 50 iterations.
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6 Representing product states with autoregressive GPS

While the practical applications studied in this work specifically focus on capturing non-trivial cor-
relations between the modes with the machine learning inspired ansatz, the model should also be
able to reproduce physical characteristics of non-entangled states, as, e.g., obtained for eigenstates of
Hamiltonians with vanishing couplings between system fragments. In particular the ability to repre-
sent such simple product states with the model is likely an important building block to model ground
states typically displaying a low, but non-vanishing, degree of entanglement [18]. In this appendix,
we show how these unentangled states can also be obtained with the autoregressive extensions of the
GPS model considered in the main text.

A general product state for a system comprising N modes decomposes as

|ψ⟩ = ⊗N
i=i |ψi⟩ , (25)

where the states |ψi⟩ are states only associated with the local Hilbert space of the i-th mode. This
means that wave function amplitudes of the configurations in the computational basis for this state
evaluate to

ψ(x) =
N∏

i=1
ci

xi
, (26)

with an N ×D tensor of local amplitudes ci
xi

= ⟨xi|ψi⟩.
To represent a general product state by an autoregressive model, we decompose the wave function

amplitudes according to

ψAR(x) =
N∏

i=1

ψ̃i(xi|x<i)√
D−1∑
x′=0

|ψ̃i(x′|x<i)|2
, (27)

we represent the local amplitudes ci
xi

by the conditional wave functions amplitudes ψ̃i(xi|x<i).
It can directly be seen that the general autoregressive GPS model as defined in Eq. 11 of the main

text, which specifies the wave function amplitudes as

ψAR−GP S(x) =
N∏

i=1

exp
(

M∑
m=1

∏
j≤i

ϵ
(i)
xj ,m,j

)
√√√√D−1∑

x′=0

∣∣∣∣∣exp
(

M∑
m=1

ϵ
(i)
x′,m,i

∏
j<i

ϵ
(i)
xj ,m,j

)∣∣∣∣∣
2
, (28)

can represent arbitrary product states with a support dimension M = 1, by employing the following
choice

ϵ
(i)
xj ,m,j =

{
log(ci

xi
) if j = i

1 otherwise
. (29)

As an approach to impose additional structure into the ansatz (and reduce the number of vari-
ational parameters), we introduced filter-based version of (autoregressive) GPS models. This relies
on transferring a symmetric structure of the system to the model similar to that of a convolutional
neural network, and is compatible with the autoregressive adaptation, since an additional masking
can always be applied in order to ensure the autoregressive property is maintained. Applying this
to the product state representation above, results in a fully symmetric product state where all the
local states |ψi⟩ are equal, i.e., a wave function decomposing as a product with mode-independent
amplitudes ci

xi
according to

ψ(x) =
N∏

i=1
cxi . (30)

Accepted in Quantum 2024-01-30, click title to verify. Published under CC-BY 4.0. 23



While this filtering approach reduces the number of variational parameters (thus often improving the
practical optimizability of the state) for a given support dimension, the fully-symmetric product state
representation can only be sensible if the target agrees with this trivial symmetry.

As an alternative to the filtering approach to impose additional structure, in the main text we also
consider a ‘weight sharing’ approach in which parameters are equivalent among the conditionals of
different sites according to the model

ψAR−GP S(x) =
N∏

i=1

exp
(

M∑
m=1

∏
j≤i

ϵxj ,m,j

)
√√√√D−1∑

x′=0

∣∣∣∣∣exp
(

M∑
m=1

ϵx′,m,i
∏
j<i

ϵxj ,m,j

)∣∣∣∣∣
2
, (31)

characterized by M ×N ×D parameters ϵx,m,j . This ansatz has a factor O(N) fewer parameters, and
caching intermediate values of the product over sites j allows for a reduction of the computational
cost which is linear in the system size when sampling and evaluating configurations.

However, with these additional weight sharing constraints on the model, it is no longer obvious how
to represent arbitrary product states most compactly, let alone with a constant support dimension
M = 1, since the same parameters are used in all the correlators. We can still recover a representation
of arbitrary product states by using a support dimension matching the size of the system, M = N ,
in which case a representation arbitrary product states with an autoregressive weight-sharing ansatz
can be obtained by choosing the model parameters as

ϵxj ,m,j =


log(cj

xj
) if j = m

1 if j < m

0 otherwise

. (32)

The required increase in the support dimension of the model to represent fully unentangled states
therefore suggests that a weight-sharing construction might not be as suitable to target states ex-
hibiting low degrees of entanglement, representing a major drawback of such a construction. This is
also in agreement with results from numerical experiments, where we commonly observed a significant
decay of the achievable accuracy when utilizing the autoregressive ansatz based on a weight-sharing
parameter reduction.

7 Fast updating of the AR-GPS

To reduce the overall computational scaling, it is often useful to exploit the fact that the evaluation
of local energies generally requires low-rank updates to wave function amplitudes arising from few-
electron changes to configurations of interest. These are applicable for k-local Hamiltonians which
connect a sampled configuration with other computational basis states that only differ in their oc-
cupancy for few sites. While this is, in general, true for all the systems considered in this work, the
utilization of a fast updating strategy to evaluate the amplitude of the connected configurations typi-
cally becomes particularly important for the ab initio Hamiltonians where each basis state is connected
to a quartically-scaling number of connected configurations. In this section, we show how updates to
wave function amplitudes can be implemented for the AR-GPS model, resulting in an O(N) scaling
improvement of the connected amplitude evaluations.

The fast updating scheme directly follows from the approach for GPS amplitudes as also outlined
in Ref. [45]. With the definition of the AR-GPS ansatz according to Eq. (11), the model associates a
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wave function amplitude with a basis configuration x according to

ψAR(x) =
N∏

i=1

exp
(

M∑
m=1

φi,m(x)
)

√√√√D−1∑
x′=0

∣∣∣∣∣exp
(

M∑
m=1

ϵ
(i)
x′,m,i φi,m(x)/ϵ(i)xi,m,i

)∣∣∣∣∣
2
. (33)

Here, we introduced the N ×M products φi,m, which are defined as

φi,m(x) =
∏
j≤i

ϵ
(i)
xj ,m,j . (34)

The direct evaluation of an amplitude is therefore associated with a cost of O(N2M).
To avoid redundant computations of elements for an update of the amplitude for a connected

configuration x̃ with a similar occupancy as the initial configuration x, we can consider updates
to values of the products φi,m. Caching these for configuration x, its value can be updated for a
configuration x̃ according to

φi,m(x̃) = φi,m(x) ×
∏
k

θ
(k)
i,m(xk, x̃k), (35)

where the product only runs over those site indices for which the occupancy is different in configurations

x and x̃. The update factor θ
(k)
i,m(xk, x̃k) is given as

θ
(k)
i,m(xk, x̃k) =

{
ϵ
(i)
x̃k,m,k/ϵ

(i)
xk,m,k if k ≤ i

1 otherwise
, (36)

and can therefore easily be evaluated in constant time. This means that the full cost to update the
amplitude for the connected configuration x̃ only scales as O(NMK), where K is the number of local
updates which are employed. Within the considered lattice models with nearest neighbor interactions,
the number of updates is at most K = 2, and for ab initio systems the occupancy changes on at most
4 orbitals through the application of the Hamiltonian.
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