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Abstract

As medical services move towards electronic health record (EHR) systems the breadth

and depth of data stored at each patient encounter has increased. This growing wealth of

data and investment in care systems has arguably put greater strain on services, as those

at the forefront are pushed towards greater time spent in front of computers over their

patients. To minimise the use of EHR systems clinicians often revert to using free-text data

entry to circumvent the structured input fields. It has been estimated that approximately

80% of EHR data is within the free-text portion. Outside of their primary use, that is

facilitating the direct care of the patient, secondary use of EHR data includes clinical

research, clinical audits, service improvement research, population health analysis, disease

and patient phenotyping, clinical trial recruitment to name but a few.

This thesis presents a number of projects, previously published and original work in

the development, assessment and application of summarisation methods for EHR free-text.

Firstly, I introduce, define and motivate EHR free-text analysis and summarisation methods

of open-domain text and how this compares to EHR free-text. I then introduce a sub-

problem in natural language processing (NLP) that is the recognition of named entities and

linking of the entities to pre-existing clinical knowledge bases (NER+L). This leads to the

first novel contribution the Medical Concept Annotation Toolkit (MedCAT) that provides a

software library workflow for clinical NER+L problems. I frame the outputs of MedCAT

as a form of summarisation by showing the tools contributing to published clinical research

and the application of this to another clinical summarisation use-case ‘clinical coding’. I

then consider methods for the textual summarisation of portions of clinical free-text. I show
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how redundancy in clinical text is empirically different to open-domain text discussing

how this impacts text-to-text summarisation. I then compare methods to generate discharge

summary sections from previous clinical notes using methods presented in prior chapters

via a novel ‘guidance’ approach.

I close the thesis by discussing my contributions in the context of state-of-the-art and

how my work fits into the wider body of clinical NLP research. I briefly describe the

challenges encountered throughout, offer my perspectives on the key enablers of clinical

informatics research, and finally the potential future work that will go towards translating

research impact to real-world benefits to healthcare systems, workers and patients alike.
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Chapter 1

Introduction

Modern healthcare systems produce healthcare records for every patient encounter. Syn-

onymous terms for such data include medical record or medical/health charts. Records

often begin at birth and end in death, and contain sensitive, personal information covering

physical and mental health, social histories of the patient and potentially relatives and even

prognostic data. The documentation of healthcare encounters is crucial to the effective and

safe delivery of care across settings [101, 89]. Care settings can be classified into: primary

care - the first point of contact with a healthcare service, secondary - the local hospital visit

often via a referral from primary care, tertiary care - a specialist hospital where patients are

referred usually from secondary care, and social or community care - that occurs directly

at home or outside of a clinician surgery such as a pharmacy, optician or dental practice.

The importance of effective communication through clear and thorough documentation is

highlighted as patients move between care settings, e.g. primary to secondary [156], or care

teams shift between: inpatient / outpatient, day / night, or between hospital departments

[26, 58, 79]. Often, care providers ‘silo’ their patient data so the burden of data sharing is

on the patient themselves [139]. Patients often must recount basic clinical information:

medical / social history, allergies, current and past diseases, medications etc. making for

an inefficient, frustrating experience for patients and care providers [34].
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The primary use of medical records directly concerns patient care, while the secondary

use includes use cases such as clinical research and population health analysis. Secondary

use of clinical records holds great potential allowing care systems to continually tailor,

improve and learn from past experience. Currently, clinicians rely on their training and

prior experience combined with clinical practice guidelines (CPGs) [88], such as the NICE

guidelines1 in the United Kingdom (UK). CPGs are the result of a feedback loop, where

care is evidence and data-driven. However, CPGs have to be integrated and consistently

adhered to in care [91] and they can be slow in responding to research outcomes [113].

Moreover, they are not tailored to individual patients or patient sub-groups [45] and their

initial development can be expensive, time-consuming [111] and even contradictory [110].

The burden of guidelines usage also falls on clinical staff, so changes must be interpreted

and applied by staff in clinical settings as guidelines are introduced or updated, leading to

inconsistencies between care offered between hospitals.

Global healthcare systems have recently moved from paper-based systems to electronic

health record (EHR) systems [14]. This is a step towards enabling scalable secondary usage

of routinely collected data to inform research, population analysis and ultimately improve

direct patient care [66, 124]. Routinely collected data include vital signs, laboratory tests

(i.e. ‘structured’ tabular data), diagnostic imaging (x-ray, MRI, CT, echo etc.), and clinical

narratives (i.e. ‘unstructured’ free-text) where clinicians provide free-text expressions that

interpret the current patient state, document current hospital course and next steps.

Multi-modal data sources present a variety of problems with analysis at scale [153].

Imaging and structured data items are often accompanied by clinical narratives that explain

findings in an image or a laboratory measure. Despite ongoing efforts to improve EHR

system user interfaces to support structured data entry, inputting free-text clinical narratives

is the easiest, most natural input method afforded to clinicians. Murdoch and Detsky [99]

estimates 80% of EHRs are unstructured data. Structured data can easily be queried,

aggregated and analysed as it is well formed and typed, whereas unstructured data is often

1https://www.nice.org.uk/guidance
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messy, incomplete and highly variable. Due to the difficulties working with unstructured

data most uses of secondary uses of EHR data i.e. reporting and research, focus on the

minority share of structured data [66].

The widespread usage of EHRs has lead to a deluge of data [124] with the potential

uses in areas including: drug discovery [164], precision healthcare [112] and real-time pop-

ulation health analysis [27] to name a few. This potential is for the most part unrealised, as

EHR adoption globally has often been driven by top-down regulatory forces, deployments

have often catered to the administrative processes in care delivery rather than prioritising

patient and care provider perspectives. This has contributed to the current scenario of

increased spending on systems and healthcare broadly, but conversely declining outcomes

[147]. Artificial Intelligence (AI), interpreted as the convergence of technology and data

to create adaptable algorithms that are not explicitly coded to perform a task, has been

considered as one route to draw down the already considerable costs incurred with the

move to EHRs. AI methods for healthcare include: natural language processing (NLP)

algorithms to read, structure and process clinical text [84, 73], computer vision algorithms

to segment, classify and triage radiology scans [3, 120], multi-modal decision support

algorithms in surgery [18], multi-modal algorithms for pathology diagnosis and prognosis

[28], diagnosis prediction in specialties - e.g. emergency medicine [67], cardiology [83],

neurology [103], pulmonology [65], gastroenterology [74].

Throughout the thesis I will present methodological developments and example ap-

plications for the summarisation of EHR free-text data. I consider summarisation of

unstructured data to include methods that either identify and extract structured data from

the text as well as the generation of further free-text that captures the salient and most infor-

mativeness parts of unstructured data. The applicability of the methods is strengthened by

considering large real-world EHR text corpora covering disparate clinical specialities and

healthcare provider geographies. This uniquely places my work across multiple boundaries

of leading-edge clinical AI development, empirical testing across wide ranging real-world

datasets and translation of initial research results into clinical impact providing insights
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and a perspective for how AI systems can be utilised within healthcare research, healthcare

delivery and healthcare administration.

1.1 Research Questions and Hypotheses

Overall, my guiding research question asks how NLP methods and approaches can be used

to improve current performance in real-world clinical text summarisation tasks.

Firstly, I ask if novel methods can improve current baseline performance for a common

task in clinical text summarisation - the identification and extraction of structured clinical

events. These events are the mentions of symptoms, findings, disorders, medications and

procedures in text.

Secondly, I investigate if this novel method can be applied to the task of ‘clinical

coding’ - the task of summarising patient admissions / episodes / spells into structured

codes summarising the patient ‘primary condition’, comorbidities and corresponding

interventions administered. Importantly, I ask if current datasets used to train clinical

coding NLP methods are fit for purpose.

Finally, I focus on clinical text-to-text summarisation and ask how this is different from

open-domain text summarisation tasks and what methods can be used to detect redundancy

in text. I then ask if discharge summary generation can be automated through a novel NLP

model. Discharge summary generation is another common example of clinical text-to-text

summarisation that occurs during each in-patient hospital stay.

1.2 Ethical Considerations

Clinical domain data, especially the free-text portion of the EHR, is highly sensitive

and often contains sensitive personally identifiable information (PII) requiring careful,

controlled access. Examples of PII in EHR text could be patient names, addresses, phone

numbers, email addresses, health and social care histories, personal family details and
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further 3rd party details relating to healthcare providers, family, friends etc. that should be

kept private.

All research within this thesis has leveraged real-world closed clinical free-text data as

well as openly available data such as MIMIC-III [64] – a large real-world, clinical dataset

that is available after an ethics training course. Closed data is leveraged from data platforms

deployed on-site at specific partner hospitals allowing for controlled access to data. King’s

College Hospital NHS Foundation Trust data was made approved by the London South

East Research Ethics Committee approval (reference 18/LO/2048), South London and

Maudsley NHS Foundation Trust CRIS data was approved for research by the National

Research Ethics Service, South Central – Oxford C (08/H06060/71). University College

London Hospitals Foundation Trust provided limited data and was under COVID-19 ethics

for Chapter 3 research.

1.3 Thesis Statement / Contributions

This thesis is a combination of work published as part of the thesis and extensions to

those works. Where prior published work is included in the thesis, it is clearly marked

within the section name. Thomas Searle is the first, or joint first author (this is marked

on the publication title page where this is the case) for all work included in the thesis.

Each published paper includes its own specific background and methods sections directly

applicable to the work presented.

1.4 Chapter Summaries

A summary of each chapter follows:



1.4. Chapter Summaries | 17

Chapter 2: Methods and Experimental Data

The thesis focuses on the development and application of Natural Language Processing

(NLP), a subset of AI methods, applied to clinical text corpora for the purposes of sum-

marisation. This chapter introduces text-analysis, NLP and the broad range of existing

methods that are used throughout the thesis to encode text, infer structure, discern meaning

and finally build summaries. I also introduce CogStack [57], an ecosystem of technolo-

gies used throughout the thesis that provides the means to ‘unlock’ clinical free-text that

would otherwise be locked away within a given hospital site EHR system. The CogStack

ecosystem is a crucial enabler in the development and evaluation of the NLP methods

presented throughout the thesis, and has also enabled unique collaborations and oppor-

tunities cross-functionally from clinical research to service audit and improvement work

that would otherwise not be possible. This chapter provides sufficient context for future

chapters that present novel methodological contributions, their applications and the wider

impact my work has had.

Chapter 3: Summarising EHRs through Named Entity Recognition

and Linking

This chapter focuses on the development, deployment testing and continued usage of

a novel Named Entity Recognition and Linking (NER+L) framework for effective and

efficient structuring of EHR free-text narratives using any predefined clinical terminology.

Importantly, the algorithm and output AI models are integrated into an associated workflow

allowing clinicians and expert users to validate refine and extend models if and when the

need arises. Two published papers are contained within this chapter demonstrating the

core algorithm, workflow and associated annotation tool. The first paper [72] is published

in the journal Artificial Intelligence in Medicine (2021) vol. 117 and encompasses a large

body of work across multiple hospitals testing the method performance across clinical

terminologies. The second paper [136] is published In Proc. Empirical Methods of Natural
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Language Processing (2020) as a system demo. We make all software source code, pre-

trained models and tutorials available to the research community for replication, usage and

further development of the work. Links to source code are listed in Section 6.2. These

contributions are used throughout the following chapters.

Chapter 4: Clinical Coding as Summarisation

Clinical coding is an important administrative process in care delivery. Clinical coders are

tasked with the assignment of diagnosis and procedure codes to patient episodes effectively

summarising complexity of the patient condition and care provided. This chapter describes

the coding process, how AI-assisted tools could be used in the coding workflow, a review

of recent work from the clinical NLP communities working in the area of automated coding

and importantly the translational gap between these contributions and real clinical coding

practise. I include a published paper [134] appearing in In Proc. of the 19th SIGBioMed

Workshop on Biomedical Language Processing describing the development of a silver-

standard dataset to enrich a clinical coding dataset frequently used to develop and assess AI

models, providing empirical support for why the translational gap remains. Experimental

setup code and output silver-standard dataset are made available to the research community

as listed in Section 6.2.

Chapter 5: Textual Summarisation of EHR Text

Generating textual summaries from source texts are a daily task performed by all healthcare

professionals. This chapter first compares this continual textual summarisation process

with open-domain tasks such as news summarisation. I then present an analysis of existing

EHR text data clearly differentiating the open-domain textual summarisation problem

from the clinical space estimating the redundancy in open-domain and clinical text. This

paper [135] appears in the Journal of Biomedical Informatics (2021) vol. 124. Secondly, I

present the development of a novel ensemble method for the textual generation of Brief
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Hospital Course (BHC) sections from source notes. This summarisation process occurs

at every inpatient discharge and therefore presents a varied, challenging and impactful

potential use case for the deployment of textual automated summarisation models. I draw

on methods presented in earlier chapters to develop the novel methodology and present a

range of empirical results that explore the problem of BHC summarisation. This paper has

been published in Journal of Biomedical Informatics vol. 141. Code and models are made

available as listed in Section 6.2.

Chapter 6: Discussion, Conclusions, Future Work

I close the thesis by discussing the impacts of my work, bringing together the viewpoints of

EHR summarisation. The future impact of my work, not only on the research community

but for the wider communities of clinical information technology.



Chapter 2

Methods

This chapter firstly introduces vectorisation of natural language text and the Word2Vec

method. This is the transformation of text into a computer interpretable set of semantic

features that enable modern Machine Learning (ML) based Natural Language Processing

(NLP) methods that we use throughout the thesis. We briefly review ML concepts and

methods that are used throughout the thesis, especially highlighting where these methods

have been previously applied to the analysis of clinical free-text and for summarisation.

We then review the Transformer neural network architecture. We close this chapter by

introducing CogStack [57], an ecosystem of technologies that ‘unlocks’ health record data

for data discovery, clinical analytics and research. We describe how this core technology

has supported and offered a framework to enable the work carried out in this thesis and

many other research projects.

A full and detailed explanation of language, text-mining and text analysis and the basis

for vector representations of text is provided in Appendix A.1.
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2.1 Dense Vector Representations

Before we discuss these methods, we introduce some linear algebra notation for ease of

reading. Scalar values will be represented by a lowercase letter, i.e. a, b. Vectors will be a⃗,

b⃗ and matrices in capitals such as A, B.

We can reuse the idea of a co-occurrence matrix to find dense, distributed semantics

vector representations of each token in vocabulary V for some chosen dimension size d

and context window size s. Importantly, d ≪ |V | forcing both the representations to be

efficient and being more usable downstream. We will now review Word2Vec in detail,

as the ideas are fundamental to the development of modern methods in NLP and of our

methods presented in the following chapter.

2.1.1 Word2Vec

The objective of Word2Vec is to compute the likelihood of a model θ , a vector of real

numbers, given all possible sliding windows over all texts T̂ . There are two alternative algo-

rithms in Word2Vec as illustrated in Figure 2.1 for token vector optimisation. Continuous-

Bag-Of-Words (CBOW) predicts the centre token via all context words, whereas Skip-Gram

predicts the target token via the target’s context vectors.

Initially, each wi ∈V token is assigned two randomly initialised vectors v⃗ictx and ⃗vicntr

both of size d. A sliding window of size 2s considers each token of a text t j, with s tokens

to the left and right of token wi.

The likelihood is formally:

L(θ ;T ) =
T̂

∏
j=0

s

∏
i=−s,i ̸=0

P(wi+ j|wi;θ) (2.1)

Taking the negative, log-likelihood provides numerical stability:

J(θ) =
T̂

∑
j=0

s

∑
i=−s,i ̸=0

logP(wi+ j|wi;θ) (2.2)
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Fig. 2.1 The Word2Vec optimisation approaches for finding dense, distributed semantics
token vectors from a text corpus - reproduced from [93]

θ is the stack of token vectors: ( ⃗v0cntr , . . . ⃗vncntr , ⃗v0ctx , . . . ⃗vnctx). The probability term of a

token wi and each surrounding context token w j with i− s ≤ j ≤ i+ s, i ̸= j can be written

as:

P(wi|w j) =
exp(vᵀicntr

v jctx)

∑
V
k exp(vᵀkcntr

vkctx)
(2.3)

We can now see that the vector product of any vcntr and vctx vectors that are similar

will increase, the numerator term, and conversely for vectors that are dissimilar. The

denominator scales the numerator so the probabilities of all tokens given their contexts

sum to 1. Given equations 2.2 and 2.3, we can use a generic optimisation method, namely

gradient descent, to iteratively modify the model parameters θ . In Section 2.2, we will

cover gradient descent and optimisation methods that are broadly used in machine learning

for NLP and training of neural networks.

For now, the current state of the model at step s, θs can be updated to θs+1 by:

θs+1 = θs −α▽J(θs) (2.4)
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Where α is some small real number that scales the amount we update θ from the

gradient of the negative log likelihood, J(θ). The partial derivatives of J(θ) can be

formulated wrt. ⃗vicntr and v⃗ jctx for each i and j pair providing:

∂J(θ)
∂vicntr

=− v jctx +
V

∑
k

P(wk|w j)v jctx (2.5a)

∂J(θ)
∂v jctx

=


−vicntr +∑

V
k P(wk|w j) · vicntr , j ∈ (i− s, . . . , i+ s)

∑
V
k P(wk|w j) · vicntr , j ̸∈ (i− s, . . . , i+ s)

(2.5b)

These partial derivatives update all parameters of θ at each sliding window. This is

computationally expensive as for the majority of time most tokens w j and their corre-

sponding v j will not be within the small context window given real text documents. An

optimisation method named negative-sampling can be used, where a pre-built unigram

table updates a random number of words not in a given context window instead of looping

over all vocabulary words each sliding window. Prior work empirically found between

5−20 samples at each sliding window was sufficient for model optimisation [92].

The original algorithm also includes further optimisations and parameters to adjust

how these optimisations function. This includes a sampling rate, to adjust if a given token

wi is to be included in the vocabulary at all, depending on its number of occurrences in T

or its marginal probability P(w = <some token>). This is important for common tokens

that appear in many contexts such as ‘the’ or ‘a’ as there is very little information to be

gained either from using these common words as a context token i.e. w j or a center token,

i.e. wi.

A further optimisation method allows for common multi-token phrases to be detected

according to the bigram, i.e. two token pair, counts of tokens plus a fixed discount factor

δ , adjusted by their unigram i.e. single token, counts. This means common bigrams that
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appear often but above the parameter threshold δ are merged together. This process was

repeated 2-4 times before token vector training [92].

The resulting vectors produced by Word2Vec were empirically shown to have embed-

ded a notion of similarity. This similarity can be observed by taking the cosine-similarity

of a given pair of vectors:

cos(vi,v j) =
vi · v j

∥vi∥∥v j∥
(2.6)

Vectors with all components equivalent will produce a similarity score of 1, with oppos-

ing components i.e. negative, will score a -1. The Word2Vec work [92] showed that over

numerous tasks that the vectors could capture semantic and syntactic features. Word2Vec

also demonstrated the compositionality of learnt vectors through simple component-wise

addition and subtraction. A famous example being: vking + vwomen − vman = vqueen.

2.1.2 Beyond Word2Vec

From 2013-2019, Word2Vec and its derivatives were the de-facto standard of producing

distributed semantic vector spaces for words. Its performance, speed, low compute require-

ments and abilities to be run over any corpus with easy re-use and sharing to further tasks

allowed a wealth of exploration [47].

Throughout that time a flurry of research provided enhancements such as: Global

Vectors (GloVe) [104]: a method that used the global features of a non-zero token co-

occurrence matrix alongside Word2Vec style localised token to token contexts, FastText:

that included improved performance through the use of subword embeddings [19], sentence

and entire document embeddings [78], low-resource languages embeddings [62], and even

special character - emoji embeddings [35].

Despite these contributions, a couple of major hurdles were still present. Tokens that

did not appear in the Vocabulary during training could not be modelled. This is known

as out-of-vocabulary (OOV) occurrences, which were often simply removed from any
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texts during processing. FastText [19] proposed an approach, via the addition of sub-word

vectors to form OOV tokens, but as the sub-word tokens did not take into account the

context during inference, the constructed vectors still left room for improvement.

An associated and broader issue with these embeddings were that a token wi and its

vector vi were represented by one ‘fixed’ or ‘static’ vector irrespective of the context under

which wi is used. This is significant as many languages, including English, frequently

have equivalent words with multiple meanings derived from how they are used in context.

These are known as homographs, e.g.: ‘the patient was admitted to hospital’, and ‘they

were asked to be patient’. Ideally, two distinct vectors would have been learnt for patient

referring to a hospital attendee, and the adjective for tolerance.

Contextualised word embedding models such as ELMO [105] and BERT [33] and

GPT [115] are now state-of-the-art and have essentially superseded Word2Vec and the

static embeddings that are calculated on a per token basis. Instead these approaches use

the surrounding context of each word to generate a context aware vector representation.

These NLP models, the underlying architectures, and their downstream use-cases will be

discussed in detail throughout Section 2.5.

2.2 Machine Learning for NLP

We will now review machine learning (ML) methods relevant to the processing of text.

ML methods are general purpose methods for the optimisation of a model’s parameters θ

wrt. to data X , to perform a task without explicit programming for each input within the

domain of X . Figure 2.2 shows how ML methods fit within wider methodological fields of

natural language processing (NLP) and artificial intelligence (AI).

Artificial Intelligence (AI) is the field of computer science that aims to emulate or

even create human-level intelligence across input modalities and associated tasks [40].

Throughout this work we assume AI and artificial narrow intelligence (ANI) are equivalent.

The methods we will discuss are all narrow as they generally function with one data
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Fig. 2.2 Venn diagram for the classifications of method groups.

modality, i.e. text, and for one task, i.e. classification or clustering or regression. The

debate regarding the very recent methods potentially providing a path towards artificial

general intelligence (AGI) is outside of scope of this methods review.

NLP is broader than just the application of ML to text. For example, corpus linguistics

the study of language via the use of computational methods using whole text corpora could

be considered NLP but not ML [148]. The application of rule-based systems in NLP has a

long history [9, 73] and could be considered NLP and AI but not ML. ML methods exist

outside of NLP and the converse is also true. Finally, deep learning (DL) methods are a

subset of ML and are again are applicable to both in and outside of NLP.

Machine learning methods can largely be split into three algorithm groups. The first,

supervised learning, requires the use of a ‘labelled’ dataset to learn given the optimal

mapping function from input data to the labels. These learning methods includes problems

as regression, classification, and specific to NLP problems include language modelling and

textual summarisation generation. The second, unsupervised learning, requires only the

input data i.e. without labels, and learns the optimal function to recognise latent structure

within the data. These methods tackle problems such as clustering and anomaly detection

and data generation. The third, reinforcement learning includes methods to learn the

optimal action given a current world view, sensory inputs and goals. These methods are

used in game playing, robotics and autonomous vehicles.
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ML methods may be referred to prediction modelling in the literature as they can can

generate predictions on potentially previously unseen data X ′, for some target variable

(i.e. supervised models), identify some latent structure or clusters (unsupervised models),

or model some state/action reward space for goal directed behaviours (reinforcement

learning).

The majority of the thesis focuses on the development and application of supervised

learning methods for EHR summarisation. This includes self-supervised methods, a recent

definition to describe approaches that infer the label directly from dataset being used but

still use standard optimisation techniques found in supervised learning. These may also be

referred to as unsupervised in the literature [33, 114], as the label or output signal is not

manually provided alongside the input data.

2.3 Supervised Learning

Binary classification problems can be modelled as a supervised learning task. Within

healthcare, this could be a prediction of a patient to attend a follow-up appointment, are to

be discharged over some set time period, or to be readmitted over some time period.

Formally, given input data X and labels Y ∈ {0,1}, a supervised learning method finds

some function f (X) = Y . θ are the parameters of f . A common method couple fit logistic

regression model using a tf-idf matrix (reviewed in Section A.5.1) as input, θ is optimised

to find the important words for classifying an input example into their respective classes

and θ ∈ R|V |. Our aim then is to find the optimal θ that brings us as close to Y given
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inputs X . The logistic or sigmoid function sθ (x) squashes all values into the range [0,1]

and therefore is a well formed probability. The probability of our label set is then:

P(Y = 1|X) =sθ (x) =
1

1+ exp(−θᵀ · x⃗) (2.7a)

P(Y = 0|X) =1−P(y = 1|x) (2.7b)

Initially, we choose a values for all i in θ , either random or via some other means, and

compute how ‘far’ we are from the optimal solution. This is also known as the ‘loss’:

J(θ) =−
|X |
∑

i
[yi · log(sθ (⃗xi))+(1− yi) · log(1− sθ (⃗xi))] (2.8)

Similar to Equation 2.2, our definition of the Word2Vec loss, we take the negative

log-likelihood for numerical stability for our logistic regression loss. The first half of

the term can be interpreted as for when yi = 1 and the second half for when yi = 0. The

opposite sides are then cancelled out by the multiplication of 0.

2.3.1 Minimization via Gradient Descent

To minimise J(θ) we use gradient descent, an iterative algorithm briefly discussed in our

discussion of Word2Vec and in Equations (2.5) and (2.4). Gradient descent uses the partial

derivative wrt. each item within θ .

▽J(θ) = (
∂J(θ1)

∂θ1
, . . . ,

∂J(θn)

∂θn
) (2.9)

Each partial derivative is the rate of change of the loss wrt. the parameter. Alternatively,

the effect each parameter has on the loss and therefore how well θ fits as a set of parameters

for f given our data X . With our example logistic regression model and an input tf-idf
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feature matrix we have |V | partial derivatives that we compute. Each θ j partial derivative

is:

∂J(θ j)

∂θ j
=

|X |
∑

i
x j

i · (sθ j(x
j
i )− y j) (2.10)

Each derivative can be interpreted as the weighted sum over all sigmoid normalised

inputs X for scalar features j compared with the corresponding outputs from Y . Computing

the change in θ at step t can now be computed using Equation 2.4, where a hyperparameter

α scales the effect the derivative has on the next state θt+1.

Gradient descent converges when ▽J(θ) ≃ 0. Gradient descent will converge to a

local or global minimum of f depending on the convexity of J(θ). A simple curve, e.g.

f (x) = x2 is an example of convex functions where gradient descent will find the global

minimum. Local minimum for a non-convex loss function are ‘pockets’ of a loss function

that approach 0 but are not globally the best values for θ . Larger α allows gradient

descent to reduce the chance of becoming stuck in local minima but may also prevent the

convergence completely as the gradient ‘bounces’ out of the minima.

Computing the derivatives wrt. each parameter requires computing over the entire

dataset of X at each iteration of the algorithm. For large X and large θ , this can be

time consuming especially as the ▽J(θ) may already be informative after a subset of

X . Stochastic gradient descent (SGD) uses a single sample for each new θt+1. This can

produce an erratic loss function that moves in different directions due to some training

samples in X indicating where components in θ should be changed. Mini-batch gradient

descent is a middle ground method that uses a ‘batch’, some defined size of samples, e.g.

10 or 20, in the calculation of ▽J(θ). This balances the noise from individual samples that

may move θ into the wrong direction in the SGD case, but aims to converge quicker as

θt+1 is computed after each small mini-batch.



2.4. Standard ML Experimental Methodology | 30

Once converged our θ parameters can be used for any new dataset X ′ to make predic-

tions y′. Methods to choose the previously discussed hyperparameters, feature-set size i.e.

the size of θ , and measuring performance are discussed in Section 2.4.

2.3.2 Multi-Class Classification and Softmax

Our logistic regression model can be generalised for a multi-class classification problem.

For example, the risk of readmission or mortality could be split into 3 classes of days 0-2,

3-6 or 7+. In a multi-class problem with C classes, Θ is a matrix of size n×C. Softmax

regression and the binary classification form of logistic regression are linear models, as

they assume the function f (X) can be expressed with some linear combination of the

feature space. With softmax, this linear combination is at the class level for each column

vector in Θ.

Many problems however cannot be expressed as a linear combination of their input

features. This inability for a model to adequately express relationships between inputs and

outputs can be seen during model training and validation and testing. These stages are

discussed in more detail in Section 2.4.

2.4 Standard ML Experimental Methodology

In any supervised learning, and most ML modelling exercise, the primary aim is often

to output a high performing, generalisable model. During model development a dataset

X is often split into Xtrain,Xval,Xtest with ratios in the region of 80/10/10. This provides

the majority (80%) of the original input data for model training, and optimisation of

actual model parameters θ . Then 10% for model, and hyperparameter improvement using

the validation set, and the final 10% for final testing of the model. Practitioners should

only report results of their models using the test set and never perform hyperparameter

optimisation with the test set.
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A model that has converged, i.e. the loss is no longer decreasing after a number of

update iterations, but still outputs poor train, validation and even test set performance can

be said to underfit the data. In our logistic regression example, this could mean that the

tf-idf matrix does not sufficiently capture the relationships between words or phrases for

the task and / or the model itself lacks the parameters to capture those relationships.

Overfitting occurs if a model performs well on the train and validation sets and the

training loss either is or approaches 0, but the test set performance is not good. This

suggests the model has too closely fit to the specific idiosyncrasies of the train and

validation data and therefore is not generalisable to the unseen test data.

Regularisation methods can be used to limit and reduce the likelihood of overfitting

occurring. For a logistic regression this could include techniques such as LASSO [128],

Ridge [53] regression that add penalty terms to loss function J(θ), applying the intuition

of Occam’s Razor, that a simpler i.e. a smaller number of parameters, are preferred over

complex so large complex θ increase the loss and smaller θ the reverse.

2.4.1 ML Evaluation Metrics

A high performing model has the appropriate number of parameters configured correctly

to achieve good performance on the test set data. However, model performance can be

optimised with specific measures in mind. For example, our scenario of hospital mortality

prediction from patient notes may favour true-positive results (i.e. the model makes a

prediction of death that is correct in the test set) so that patients at high risk are not missed.

This may then raise the false-positive (i.e. the model predicts death but this is incorrect),

creating false alarms, but is still favourable compared to missing a true-positive sample.

Balancing these metrics is a model development and testing choice, and is often context

specific. ML model research often reports a variety of performance metrics. These are

calculated via the test set and the counts of true-positive (TP), false-positive (FP), true-
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negative (TN) and false-negative (FN) of each test set item and the associated model

prediction. Metrics include:

• Accuracy: T P+T N
T P+T N+FP+FN : a common metric, that is the proportion of both positive

and negative predictions normalised by the sum of all possible prediction states.

• Specificity: T N
T N+FP : the proportion of correct negative predictions of total predictions.

E.g. if we have 10 negative samples and the model predicts 5 negatives correctly we

have 50% specificity.

• Sensitivity or Recall: T P
T P+FN : the proportion of positive predictions of total predic-

tions. E.g. if we have 10 positive samples out of 20 in a dataset and the model only

predict 5 out of the 10 correct, we have 50% recall.

• Precision: T P
T P+FP : the proportion of positive predictions that are correct. E.g. if the

model only makes 2 positive predictions and 1 is correct we have 50% precision.

• F1: 2·(Precision·Recall)
Precision+Recall : The harmonic mean between precision and recall. F1 scores

are often reported as they include both precision and recall, and therefore offer a

good view of classifier performance irrespective of data specific issues that could

skew performance in favour of recall or precision. E.g. if a class only appears once

or a few times, achieving high recall might be trivial for a classifier that has many

false positives.

Multi-class classification problems can compute a precision, recall etc. score per class.

Often two alternative averaging scenarios are used to report a single score to compare

model performance. Macro averaging averages the performance across each individual

class score. Micro averaging gathers all predictions across all classes and averages via the

above definitions. For problems with large class imbalances micro and macro averages can

tell varying stories of model performance.

Textual generation methods within NLP are particularly difficult to reliably automati-

cally evaluate. A human being can compare a reference and generated text to assessing
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equivalence using a variety of measures. For example, are the same topics, entities or words

being used in the texts? Are texts factually equivalent? Are the style and tone equivalent?

Embedding these elements into an evaluation metric are active research areas [150]. A

simple and often used metric is ROUGE [81], the Recall-Oriented Understudy for Gisting

Evaluation, is an n-gram based metric that directly compares tokens. ROUGE-1, ROUGE-2

are the unigram and bigrams that overlap between the reference text and model generated

texts. ROUGE-L is the longest common substrings between the texts. All ROUGE scores

are calculated and reported with using the precision, recall and F1 calculations defined

above. Text generation is more difficult to automatically evaluate than for binary or even

multi-class classification, as unigram, bigrams or common sub-sequences are only proxy

measures to a ‘correct’ prediction by a text generation model.

It is accepted that ROUGE has limitations for assessing effective text generation models

[131], and recent work has introduced a variety parameterised evaluation metrics [166,

150] that suggest better alignment between model prediction score and manual human

evaluated scores. These are presented and discussed in more detail in Chapter 5.

An introduction to artificial neural networks, first principle architectures (i.e. feed-

forward networks) and sequence dependency architectures are provided in Appendix

B

2.5 Transformer Models

The Transformer architecture [149], from the problem of natural language translation, uses

attention for the majority of its representation learning, replacing the explicit sequential

nature of the recurrent neural network entirely (described in Appendix B. Figure 2.3

shows the familiar encoder-decoder architecture where each encoder and decoder model is

comprised of stacked Transformer blocks.

Transformer blocks are comprised of multi-headed self-attention computations. For

the input sequence X = (x1, · · · ,xn) the self-attention score is calculated via:
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Fig. 2.3 Transformer encoder decoder architecture as presented in the original work [149]
for the open-domain translation use case.
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Attention(Q,K,V ) = softmax(
QK⊤
√

dk
)V (2.11)

where each Q,K,V are the projections of X via the weight matrices WK,WQ,WV re-

spectively. This calculation is called dot-product attention compared to additive attention

discussed in the previous section. Dot-product attention allows for improved space and

time efficiency as all computations can be carried out in parallel using optimised linear

algebra software. The Transformer authors also extend this calculation to multiple-heads,

so there are h many weight matrices W K
1···h,W

Q
1···h,W

V
1···h allowing for the self-attention

heads to focus on varying relevant relationships between inputs.

Figure 2.3 shows that the encoder model is built of stacked multi-headed-self-attention

calculations followed by feed-forward layers. All inputs can be attended to by all other

inputs, and all inputs to the self-attention calculation come from the previous block. The

decoder model has some slight variations however. Firstly, the encoder output is fed into

each decoder Transformer block, allowing any encoder inputs to be attended to giving the

name cross-attention. Secondly, the decoder should only be able attend to all positions up

to an including the position it is currently decoding. This is referred to an auto-regressive

model in the literature and is only relevant during training as tokens to the right have yet to

be decoded during inference. This is implemented by masking all decoder inputs to the

right of the current position, i.e. setting to −∞.

Layer normalisation [7] is applied after each self-attention and feed-forward layer

providing regularisation at each sub-block of computation. These layers normalise the

incoming inputs activations to have zero mean and unit variance, improving training

convergence time.

Residual connections [50], or skip connections, allow the model to be much deeper,

i.e. comprised of many more layers. These network connection structure were initially

shown to be effective in the training of deep neural networks for computer vision models

but were also subsequently shown to be beneficial with deep sequence models [155]. The
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intuition with residual connections are that activations in the lower layers can be used by

successive deeper layers without having to explicitly survive the computations of layers

between, therefore allowing for larger numbers of parameters in any given model whilst

maintaining the flexibility of learning a range of relationships.

With the Transformer, all computations of a sequence are performed in a parallel with

no explicit definition of sequence order. Positional embeddings are used alongside the

input to provide the model knowledge of where tokens are in relation to the other tokens.

These embeddings allow the projected inputs i.e. K,Q,V to maintain data related to relative

positions in the sequence.

2.5.1 Transformer models: BERT

Arguably one of the most important NLP models recently, Bi-directional encoder repre-

sentations from Transformers (BERT) [33] offered a multi-purpose model demonstrating

state-of-the-art results across a range of benchmarks datasets such as SQuAD [117, 116],

open-domain question answering, and GLUE [151], a multi-task dataset including single-

sentence tasks, similarity / paraphrase tasks and inference tasks.

BERT consists of only the encoder as shown in Figure B.4. The work achieves these

results through a large, deep configuration of Transformer encoder blocks, a large pre-

training dataset, and carefully designed pre-training task. BERTBASE and BERTLARGE

comprise of 110M and 340M parameters respectively. They are pre-trained using a corpus

of circa 3B tokens then fine-tuned on each downstream task from SQuAD and GLUE. The

authors demonstrate empirically that deep bidirectional pre-trained models can perform

across a range of settings.

The experimental setup introduces the pre-training task of masked language modelling,

where a token within a fixed window is masked and the model is tasked with predicting

the token, allowing the model to use bi-directional representations from the left and right
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of the masked token. This is contrasted with causal language modelling where only the

left hand side of a given input are used.

BERT is an important example of Transfer Learning that allows, the same base model

to be re-used across a range of tasks demonstrating that the parameters have gained some

understanding of text and natural language. BERT’s impressive performance across a wide

range of tasks prompted numerous derivative models and studies of how the architecture

and in particular multi-headed self-attention learns the intricacies of language [123].

BERT’s remarkable performance is also shown when used purely as an embedding

layer, i.e. as a stage 3 Vectorisation stage of a text analysis pipeline (Section A.5). BERT

and its derivatives provide context relevant embeddings for each input, allowing models

to be aware of differences in context for words that would otherwise be represented

equivalently using static embedding methods such as Word2Vec.

Empirically, BERT and derivative models, such as DistilBERT [127] and RoBERTa

[82], have been tested in diverse areas such as clinical text normalisation [61] and disease

prediction [118]. Prior work has also used the contextualised embeddings from BERT for

Alzheimer’s detection [134] and radiology report analysis [96].

2.5.2 Transformer models: GPT

Transformer encoder models such as BERT are pre-trained on masked language modelling

task. Allowing the model to view inputs the left and right of the masked token. For

text generation tasks, including summarisation, decoder only Transformer stacks that

mask all inputs to the right of the current token are more suitable. Generative Pre-trained

Transformer (GPT) [115] and its successors GPT-2 [114] and GPT-3 [21] are pre-trained

on this causal language model task and have successively shown improved performance

surpassing previous work each time. Remarkably, the neural architecture is the most part

the same between each successive iteration, only the depth and amount of data available

for pre-training is increased.
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The latest iteration even showed impressive performance in few-shot and zero-shot

learning scenarios where the dataset for pre-training contains either a very small number or

no specific cases of the task being asked of the model. Both masked and causal language

modelling are also referred to as self-supervised learning as the supervision signal, i.e. the

label for a given input training data item is inferred allowing for the model to optimise

itself across potentially billions of examples. These abilities for models to provide basis

across a wealth of tasks has recently been coined as foundation models having widespread

potential applications across diverse domains such as healthcare, law and education [20].

2.6 Enablers for Neural Model Success

The success of neural models can be attributed to a handful of technical advancements on

both the hardware and software side. Large datasets to potentially train neural models have

been accessible even in the clinical space since the early 90’s [37]. However, neural model

calculations both the forward and backward pass heavily rely on linear algebra calculations.

Even optimised linear algebra code is limited by the fundamental architecture of the CPU.

Graphics processing unit (GPU) hardware originally designed for rendering graph-

ics are now heavily used and configured for ML workloads. This enabled cheaper and

improved massively parallelisable linear algebra calculations through the use of heteroge-

neous hardware CPU + GPU configurations supporting training of large models in hours

instead of weeks. Further ML specialised hardware dedicated to neural network training

and inference predominately optimised for the linear algebra heavy calculations present

in neural models. Examples of these include the tensor processing unit (TPUs1) and the

intelligence processing unit IPU2.

Alongside the hardware to support experimentation, software improvements have al-

lowed for quick and easy experimentation without specialised knowledge of the underlying

1https://cloud.google.com/tpu
2https://www.graphcore.ai/products/ipu
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hardware. Software frameworks such as TensorFlow [87], PyTorch [102] and differentiable

programming allowed for experimentation at an unprecedented rate and scale.

The culmination of hardware, software and the availability of mass data across many

domains have lead to ongoing and expanding interest and success of predominately neural

models in AI and clinical AI research.

2.7 Natural Language Understanding

Despite this enormous progress across the range of NLP tasks such as text classification,

natural language inference, question answering and summarisation, we are still arguably

far from natural language understanding where a model truly understands the text it has

been trained upon or interrogating at inference time. Recent work suggests no model can

truly understand language as the training data only provides form i.e. the text alone, and

not the meaning behind what the text is referring to, or the meaning of the words and

relationships between the language and the external manifestation of what the language is

referring to [13]. Further work describes how generalised AI cannot be realised due to the

lack of embodiment and in the language sense this refers to the model not being able to

relate words to their reality, i.e. a person, a hospital or biological process as things that

exist and the words that refer to them [40].

2.8 Challenges with Clinical Free Text

Working with clinical free-text is challenging due to a number of issues:

• Data Sensitivity: the data is highly sensitive, often describing in great detail personal

information that must be kept private. These requirements often make working

with clinical free-text difficult as large corpora are often inaccessible for substantial

training of models and compute power is limited in constrained hospital settings.
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• Technical language: the clinical domain is knowledge-rich, with many taxonomoies

and ontologies for varying specialties, some of which are covered in future chapters.

This highly specialised domain means working with text or summarisation or other

use cases requires specialist domain-specific knowledge.

• Non-Standardization: EHR data can be collected at source via different source

systems and authors. A single clinical note for a radiology scan is written by a

different author, with a different task to accomplish compared to a nursing progress

note with potentially 2 separate systems for data entry.

• Inconsistency of Available Data: clinical data often only covers a period of time

in which a patient was admitted or attended an appointment, and is heavily reliant

on stretched workforce staff to accurately remember and enter all relevant data.

A patients may have no available data large periods of time if for example only

secondary care EHR records are available and cannot be linked with primary care

data.

• Incomplete / Error Prone: Unfortunately EHR systems have done little to assist

with the recording of higher quality, less error-prone data. Instead they may have

perpetuated errors through the use of functions such as copy-paste [122]

• Multi-modal: Clinical free-text often accompanies other modalities of data. This

could be a radiological image, a structured tabular dataset from a lab, or a genome

test result. Building a truly effective system, one that is remotely comparable to a

current level of care provided by a modern day clinical multi-disciplinary team will

require machine learning and AI models to be multi-modal in their accepted input.
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2.9 The CogStack Ecosystem

Secondary and tertiary care providers offer certain specialties and areas of focus, which

involves varying digital systems to support those activities. The large scale migration from

pen and paper to electronic systems is relatively recent [14] and is often not consistent even

within the same hospital, especially if a hospital is large and spread over multiple sites [37].

EHR systems and the wider footprint of systems that hold patient data relevant for primary

i.e. direct patient care, and secondary (i.e. uses such as research) are often comprised of

multiple distinct databases [57]. This presents difficulties even for the direct patient care

scenario where clinicians must access multiple systems simultaneously for accurate patient

information leading to frustrations, decreased productivity and even worse outcomes [90].

This problem is compounded by the more disparate systems that comprise a hospitals EHR

system, and further still if the use case involves multiple patients. Even the initial hurdle

of locating and extracting the raw patient data can make a research question infeasible.

CogStack is an open-source ecosystem of tools designed to support clinical informatics

use-cases with EHR data data3. CogStack is positioned to be deployed alongside exist-

ing heterogeneous EHR databases and systems providing a single ‘data-lake’ store for

downstream tasks.

Figure 2.4 shows a high level view of the areas of the ecosystem. CogStack is designed

to be EHR, data type and data format agnostic. This allows all EHR data, (aside from

images), to be ingested, harmonized and indexed into a single ‘data-lake’ source. This is the

CogStack Data layer. Structured tabular data such as laboratory test results, observations

and patient demographics can be ingested and harmonized alongside unstructured free-text

data such as clinician admission, progress and discharge notes, radiology reports and clinic

letters.

It is estimated that 80% of any given data [99] source is unstructured, but making

such data searchable, structured and relevant for downstream use cases is non-trivial.
3https://github.com/CogStack/



2.9. The CogStack Ecosystem | 42

Fig. 2.4 A high-level diagram of the CogStack ecosystem of technologies and areas of
focus for this thesis.

For the first use case of simply searching through unstructured data, CogStack provides

a pipeline to harmonize and ingest unstructured data in a number of file formats, and

data types. Once harmonized CogStack provides a real-time search capability via open-

source ElasticSearch4 technology to ingest and provide real-time free-text searching across

potentially millions of documents.

A further open-source tool, kibana5, is used for interactive, real-time visualisations

and dashboards of clinical data from the CogStack data-lake. This thesis will focus

on development of the ‘CogStack NLP’ section that aims to extract relevant clinical

phenomena from the unstructured data, and link the extracted terms to a standardised

clinical vocabulary, therefore normalising and structuring the data for downstream use.

CogStack is uniquely positioned as both an end-2-end ecosystem of tools supporting

downstream use cases listed on the right of Figure 2.4, whilst also not strongly enforcing

the use of all pipeline stages if existing systems already fulfill certain stages. This is

enabled through the use of simple, decoupled web APIs, allowing for components to be

deployed separately if required. This has been beneficial for end users that initially only

want deploy sub components of either CogStack Data or CogStack NLP for small scale

experiments.

4https://github.com/elastic/elasticsearch
5https://github.com/elastic/kibana
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2.9.1 CogStack Deployments: Sources of Real-World Clinical Data

Mature CogStack deployments are in 4 large London secondary care hospitals, King’s

College London NHS Foundation Trust(KCH), Guy’s and St Thomas’ NHS Foundation

Trust, University College London NHS Foundation Trust (UCLH) and South London and

Maudsely NHS Foundation Trust (SLaM).

KCH, GSTT and SLaM CogStack deployments have ingested the entirety of their

respective EPR systems across decades of administered care. This has unlocked the

data from the previous disparate silos of specialist systems, databases, file formats and

data types. UCLH use their CogStack deployment as a clinical research platform for a

number of studies across departments and specialties. The CogStack deployment at SLaM,

one of the largest mental health service providers in the UK, extensively use alerting,

visualisation and dashboarding capabilities for population and case load management. All

4 deployments use different EPR systems, have varying areas of focus, speciality and

targeted downstream use. This demonstrates the versatility of the ecosystem and the need

for such tools to unlock the data within hospital settings that are often inconsistent between

sites.

Further CogStack deployments can be found both nationally, here in the UK, and

abroad in the Netherlands (UMC Utrecht) and Australia (Monash Health Partners). Further

users of specific components of the ecosystem can also be found in the United States and

India.

We will reference KCH, UCLH and SLaM CogStack deployments within later chapters

as our primary sources of clinical data. Specific details for each dataset are available within

the experimental setup section of each paper referenced within the thesis. Our work also

makes extensive use of MIMIC-III [64]. A large, freely available, US based, real world

ICU dataset collected between 2001-2012 covering circa. 53k admissions.

Figure 2.4 shows where the following chapters of this thesis will focus. Chapter 3

focuses on the development of NLP methods for the extraction, linking and normalisation
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of unstructured clinical data to existing clinical terminology. A form of summarisation that

is frequently performed by users of free-text clinical data even during direct patient care,

for example understanding what chronic diagnoses a given patient has from historical notes.

I will introduce MedCAT, a toolkit for developing these NLP models explaining technical

details and the wider impact and research outputs this toolkit has supported within the

CogStack ecosystem.

Chapter 4 then considers how these methods can be used specifically for an important

downstream use case of ‘clinical coding’, an administrative process that assigns specific

codes patient episodes identifying the diagnoses and interventions received by the patient.

A globally used process for the administration, planning and reimbursement of care, it is

often performed manually and is therefore error-prone and difficult to scale.

Finally, Chapter 5 considers a service audit use case, again using CogStack Data and

CogStack NLP models, to consider how automated text-summarisation could be used to

one-day mitigate the negative effects of excessive EPR usage.



Chapter 3

CogStack NLP: Extract, Normalise,

Structure Clinical Notes

During direct patient care clinicians do not read a patients prior medical notes ‘cover-to-

cover’ as one would a book. Electronic patient record (EPR) systems that house electronic

health records (EHRs) are organised into sections that allow for easier access to relevant

information [49]. Clinical notes also have metadata specifying the note type to identify

the clinical speciality e.g. radiology, emergency, neurological etc, the stage in care, e.g.

admission, progress, discharge or if a note is a referral or intended for another care setting

e.g. GP letter. The relevant information for direct patient care can vary depending upon the

scenario, but often includes identifying current diagnoses, assessing symptoms or findings

and determining the next best course of action such as a procedure, test or scan or assessing

how the prior intervention was received. For even relatively simple cases patient free-text

notes are rich sources of data offering detail not available in the structured data.

For secondary use cases, such as clinical research, identifying this relevant information

manually would be extremely time-consuming and error prone. Using automated methods

to identify entities within the text is well studied and is often an important step in unlocking

further use cases of the unstructured portion of the clinical record [6, 130].
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3.1 Clinical Terminologies

Within the healthcare domain there has been considerable efforts in creating standardised

terminologies supporting knowledge management, data consistency and decision support

[16].

The agreed standardised clinical terminology for the NHS is the Systematized Nomen-

clature of Medicine Clinical Terms (SNOMED CT). It is the most comprehensive, multi-

lingual clinical healthcare terminology globally [125]. SNOMED CT provides a base

international release translated into multiple end-user languages with additional country

specific additions overlaid. At its core the terminology consists of concepts and rela-

tions. Concepts encapsulate a clinical relevant entity, such as a diagnosis, a finding or

symptom. Concepts are organised into hierarchies so the concept Myocardial Infaction is

uniquely identified by the SCTID (22298006) and has multiple parent concepts including

Myocardial Disease (57809008) and multiple children concepts including Cardiomyopathy

(85898001). Concepts also include further textual alternative names or synonyms alongside

the full concept name. Relations provide a mechanism to link concepts with one-another

according to specific relation types. These include relations such as is a (116680003),

causative agent (246075003) and associated finding (246090004) etc.

SNOMED CT is designed to model clinical scenarios, and therefore is often not

directly used in the administrative part of healthcare delivery. Further terminologies such

as International Classification of Diseases (ICD-9, ICD-10 and the imminent ICD-11)

and OPCS-4 classification for procedures and interventions are used in the UK for the

task of clinical coding. This secondary use of clinical data is discussed further in Chapter

4. The Huaman Phenotype Ontology (HPO) aims to model phenotypic properties of

human disease including genomic phenotypes [69]. RxNorm is another terminology that

provides a hierarchical set of clinical drugs, often used and integrated into pharmacy and

drug management systems [16]. Specialist terminologies for specific disciplines such
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as Radiology Lexicon (RadLex) for radiology [77], and the National Cancer Institute

thesaurus (NCIt) ontology1 for cancer.

Larger ontologies such as SNOMED-CT include mappings between alternative on-

tologies, allowing concepts to be mapped to SNOMED CT for example from ICD and

OPCS. However, as these terminologies are designed with different aims some mappings

can result in one-to-many or many-to-one mappings. This is discussed more in Chapter 4.

3.2 Medical Concept Annotation Toolkit (MedCAT)

Given the considerable efforts in creating comprehensive biomedical ontologies, methods

to automatically identify, extract and link (NER+L) free-text spans to one or more of these

ontologies is a well established area of research [6, 130].

I now introduce published novel work of an open-source toolkit for the automated

NER+L task on clinical free-text. This published work details the technical contributions,

demonstrating the state-of-the-art empirical performance of our methodology and associ-

ated workflow. Initial algorithm development and testing was performed by Z. Kraljevic.

Together with ZK, I was responsible for further development of the toolkit and surrounding

workflow, gathering of supervised training data, testing of the toolkit and manuscript

writing.

1https://github.com/NCI-Thesaurus/thesaurus-obo-edition
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A B S T R A C T   

Electronic health records (EHR) contain large volumes of unstructured text, requiring the application of infor-
mation extraction (IE) technologies to enable clinical analysis. We present the open source Medical Concept 
Annotation Toolkit (MedCAT) that provides: (a) a novel self-supervised machine learning algorithm for 
extracting concepts using any concept vocabulary including UMLS/SNOMED-CT; (b) a feature-rich annotation 
interface for customizing and training IE models; and (c) integrations to the broader CogStack ecosystem for 
vendor-agnostic health system deployment. We show improved performance in extracting UMLS concepts from 
open datasets (F1:0.448–0.738 vs 0.429–0.650). Further real-world validation demonstrates SNOMED-CT 
extraction at 3 large London hospitals with self-supervised training over ∼8.8B words from ∼17M clinical re-
cords and further fine-tuning with ∼6K clinician annotated examples. We show strong transferability (F1 > 0.94) 
between hospitals, datasets and concept types indicating cross-domain EHR-agnostic utility for accelerated 
clinical and research use cases.   

1. Introduction 

Electronic health records (EHR) are large repositories of clinical and 
operational data that have a variety of use cases from population health, 
clinical decision support, risk factor stratification and clinical research. 
However, health record systems store large portions of clinical infor-
mation in unstructured format or proprietary structured formats, 
resulting in data that is hard to manipulate, extract and analyse. There is 
a need for a platform to accurately extract information from freeform 
health text in a scalable manner that is agnostic to underlying health 
informatics architectures. 

We present the Medical Concept Annotation Toolkit (MedCAT): an 
open-source Named Entity Recognition + Linking (NER+L) and con-
textualization library, an annotation tool and online learning training 
interface, and integration service for broader CogStack [1] ecosystem 
integration for easy deployment into health systems. The MedCAT li-
brary can learn to extract concepts (e.g. disease, symptoms, medica-
tions) from free-text and link them to any biomedical ontology such as 
SNOMED-CT [2] and UMLS [3]. MedCATtrainer [4], the annotation 
tool, enables clinicians to inspect, improve and customize the extracted 
concepts via a web interface built for training MedCAT information 
extraction pipelines. This work outlines the technical contributions of 
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MedCAT and compares the effectiveness of these technologies with 
existing biomedical NER+L tools. We further present real clinical usage 
of our work in the analysis of multiple EHRs across various NHS hospital 
sites including running the system over ∼20 years of collected data 
pre-dating even the usage of modern EHRs at one site. MedCAT has been 
deployed and contributed to clinical research findings in multiple NHS 
trusts throughout England [5,6]. 

1.1. Problem definition 

Recently NER models based on deep learning (DL), notably trans-
formers [7] and long-short term memory (LSTM) networks [8] have 
achieved considerable improvements in accuracy [9]. However, both 
approaches require explicit supervised training. In the case of biomed-
ical concept extraction, there is little publicly available labelled data due 
to the personal and sensitive nature of the text. Building such a corpus 
can be onerous and expensive due to the need for direct EHR access and 
domain expert annotators. In addition, medical vocabularies can contain 
millions of different named entities with overlaps (see Fig. 1). Extracted 
entities will also often require further classification to ensure they are 
contextually relevant; for example extracted concepts may need to be 
ignored if they occurred in the past or are negated. We denote this 
further classification as meta-annotation or a ‘contextualization’ of a 
recognized entity. Overall, using data-intensive methods such as DL can 
be extremely challenging in real clinical settings. 

This work is positioned to improve on current tools such as the Open 
Biomedical Annotator (OBA) service [10] that have been used in tools 
such as DeepPatient [11] and ConvAE [12] to structure and infer clini-
cally meaningful outputs from EHRs. MedCAT allows for continual 
improvement of annotated concepts through a novel self-supervised 
machine learning algorithm, customization of concept vocabularies, 
and downstream contextualization of extracted concepts. All of which 
are either partially or not addressed by current tools. 

1.2. NER+L in a biomedical context 

Due to the limited availability of training data in biomedical NER+L, 
existing tools often employ a dictionary-based approach. This involves 
the usage of a vocabulary of all possible terms of interest and the asso-
ciated linked concept as specified in the clinical database, e.g. UMLS or 
SNOMED-CT. This approach allows the detection of concepts without 

providing manual annotations. However, it poses several challenges that 
occur frequently in EHR text. These include: spelling mistakes, form 
variability (e.g. kidney failure vs failure of kidneys), recognition and 
disambiguation (e.g. does ‘hr’ refer to the concept for ‘hour’ or ‘heart 
rate’ or neither). 

1.3. Existing biomedical NER+L tools 

We compare prior NER+L tools for biomedical documents that are 
capable of handling extremely large concept databases (completely and 
not a small subset). MetaMap [13] was developed to map biomedical 
text to the UMLS Metathesaurus. MetaMap cannot handle spelling mis-
takes and has limited capabilities to handle ambiguous concepts. It of-
fers an opaque additional ‘Word-Sense-Disambiguation’ system that 
attempts to disambiguate candidate concepts that consequently slows 
extraction. Bio-YODIE [14] improves upon the speed of extraction 
compared to MetaMap and includes improved disambiguation capabil-
ities, but requires an annotated corpus or supervised training. SemEHR 
[15] builds upon Bio-YODIE to somewhat address these shortcomings by 
applying manual rules to the output of Bio-YODIE to improve the results. 
Manual rules can be labour-intensive, brittle and time-consuming, but 
they can produce good results [16]. cTAKES [17], builds on existing 
open-source technologies-the Unstructured Information Management 
Architecture [18] framework and OpenNLP [19] the natural language 
processing toolkit. The core cTAKES library does not handle any of the 
previously mentioned challenges without additional plugins. ScispaCy 
[20] is a practical biomedical/scientific text processing tool, which 
heavily leverages the spaCy2 library. In contrast to other tools 
mentioned, ScispaCy is primarily a supervised model for NER with 
limited linking capabilities. CLAMP [21] is a comprehensive clinical 
NLP software that enables recognition and automatic encoding of clin-
ical information in narrative patient reports. Similar to ScispaCy it is a 
supervised approach and not directly comparable to other tools 
mentioned here. MetaMap, BioYODIE, SemEHR, cTakes and ScispaCy 
only support extraction of UMLS concepts. BioPortal [22] offers a web 
hosted annotation API for 880 distinct ontologies. This is important for 
use cases that are not well supported by only the UMLS concept vo-
cabulary [23] or are better suited to alternative terminologies [24]. 

Fig. 1. A fictitious example of biomedical NER+L with nested entities and further ‘meta-annotations’; a further classification or ‘context’ applied to an already 
extracted concept, e.g. ‘time current’ indicates extracted concepts are mentioned in a temporally present context. This context may also be referred to as an attribute 
of a recognized entity. Each one of the detected boxes (nested) has multiple candidates in the Unified Medical Language System (UMLS). The goal is to detect the 
entity and annotate it with the most appropriate concept ID, e.g. for the span Status, we have at least three candidates in UMLS, namely C0449438, 
C1444752, C1546481. 

2 https://github.com/explosion/spaCy. 
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However, transmitting sensitive hospital data to an externally hosted 
annotation web API may be prohibited under data protection legislation 
[25]. The BioPortal annotator is a ‘fixed’ algorithm so does not allow 
customization or improvements through machine learning or support of 
non-English language corpora [26]. 

CLAMP, and in a limited capacity cTakes and SemEHR, support 
further contextualization of extracted concepts. MetaMap, BioYODIE 
and scispaCy treat this as a downstream task although it is often required 
before extracted concepts can be used in clinical research. MedCAT 
addresses these shortcomings of prior tools allowing for flexibly clini-
cian driven definition of concept contextualization, supporting modern 
information extraction requirements for biomedical text. 

2. Methods 

MedCAT presents a set of decoupled technologies for developing IE 
pipelines for varied health informatics use cases. Fig. 2 shows a typical 
MedCAT workflow within a wider typical CogStack deployment. Cog-
Stack queries selectively extract relevant documents from the EHR 
including the structured and unstructured (freetext) notes. With Med-
CAT we firstly agree with clinical partners the relevant terms within a 
clinical terminology(1) and train MedCAT self-supervised(2). We load 
the model into the MedCATtrainer annotation tool(3) alongside a 
random sample of the extracted EHR documents(4). Clinical domain 
experts validate and improve the model using supervised online learning 
(5). Metrics demonstrate the quality of a fine-tuned MedCAT model(6) 
and once desired performance is reached the fine-tuned model is 
exported(7) and run upon the wider free-text EHR dataset(8,9), facili-
tating downstream clinical research through the newly structured data 
(10). 

This section presents the MedCAT platform technologies, its method 

for learning to extract and contextualize biomedical concepts through 
self-supervised and supervised learning. Integrations with the broader 
CogStack ecosystem are presented alongside source code.3 Finally, we 
present our experimental methodology for assessing MedCAT in real 
clinical scenarios. 

2.1. The MedCAT Core Library 

We now outline the technical details of the NER+L algorithm, the 
self-supervised and supervised training procedures and methods for 
flexibly contextualizing linked entities. 

2.1.1. Vocabulary and concept database 
MedCAT NER+L relies on two core components:  

• Vocabulary (VCB): the list of all possible words that can appear in 
the documents to be annotated. It is primarily used for the spell 
checking features of the algorithm. We have compiled our own VCB 
by scraping Wikipedia and enriching it with words from UMLS. Only 
the Wikipedia VCB is made public, but the full VCB can be built with 
scripts provided in the MedCAT repository (https://github.com/ 
CogStack/MedCAT). The scripts require access to the UMLS Meta-
thesaurus (https://www.nlm.nih.gov/research/umls).  

• Concept database (CDB): a table representing a biomedical concept 
dictionary (e.g. UMLS, SNOMED-CT). Each new concept added to the 
CDB is represented by an ID and Name. A concept ID can be referred 

Fig. 2. An example MedCAT workflow using the MedCAT core library and MedCATtrainer technologies to support clinical research.  

3 https://cogstack.atlassian.net/wiki/spaces/COGDOC/pages/73338065 
3/Natural+Language+Processing. 
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to through multiple names with identical conceptual meanings such 
as heart failure, myocardial failure, weak heart and cardiac failure. 

2.1.2. The NER+L algorithm 
With a prepared CDB and VCB, we perform a first pass NER+L 

pipeline then run a trainable disambiguation algorithm. The initial 
NER+L pipeline starts with cleaning and spell-checking the input text. 
We employ a fast and lightweight spell checker (http://www.norvig. 
com/spell-correct.html) that uses word frequency and edit distance 
between misspelled and correct words to fix mistakes. We use the 
following rules:  

• A word is spelled against the VCB, but corrected only against the 
CDB.  

• The spelling is never corrected in the case of abbreviations. 
• An increase in the word length corresponds to an increase in char-

acter correction allowance. 

Next, the document is tokenized and lemmatized to ensure a broader 
coverage of all the different forms of a concept name. We used SciSpaCy 
[20], a tool tuned for these tasks in the biomedical domain. Finally, to 
detect entity candidates we use a dictionary-based approach with a 
moving expanding window:  

1. Given a document d1  
2. Set window_length = 1 and word_position = 0  
3. There are three possible cases:  

(a) The text in the current window is a concept in our CDB (the 
concept dictionary), mark it and go to 4. Note that MedCAT can 
ignore token order, but only for up-to two tokens (stopwords are 
not counted in the two token limit).  

(b) The text is a substring of a longer concept name, if so go to 4.  
(c) Otherwise reset window_length to 1, increase word_position by 1 

and repeat step 3  
4. Expand the window size by 1 and repeat 3. 

Steps 3 and 4 help us solve the problem of overlapping entities shown 
in Fig. 1. 

2.2. Self-supervised training procedure 

For concept recognition and disambiguation, we use context simi-
larity. Initially, we find and annotate mentions of concepts that are 
unambiguous, (e.g. step 3.a. in the previous expanding window algo-
rithm) then we learn the context of marked text spans. For new docu-
ments, when a concept candidate is detected and is ambiguous its 
context is compared to the currently learned one, if the similarity is 
above a threshold the candidate is annotated and linked. The similarity 
between the context embeddings also serves as a confidence score of the 
annotation and can be later used for filtering and further analysis. The 
self-supervised training procedure is defined as follows:  

1. Given a corpus of biomedical documents and a CDB.  
2. For each concept in the CDB ignore all names that are not unique 

(ambiguous) or that are known abbreviations.  
3. Iterate over the documents and annotate all of the concepts using the 

approach described earlier. The filtering applied in the previous 
steps guarantee the entity can be annotated.  

4. For each annotated entity calculate the context embedding Vcntx.  
5. Update the concept embedding Vconcept with the context embedding 

Vcntx. 

The self-supervised training relies upon one of the names assigned to 
each concept to be unique in the CDB. The unique name is a reference 
point for training to learn concept context, so when an ambiguous name 
appears (a name that is used for more than one concept in the CDB) it 

can be disambiguated. For example, the UMLS concept id:C0024117 has 
the unique name Chronic Obstructive Airway Disease. This name is 
unique in UMLS. If we find a text span with this name we can use the 
surrounding text of this span for training, because it uniquely links to 
C0024117. ∼95% of the concepts in UMLS have at least one unique 
name. 

The context of a concept is represented by vector embeddings. Given 
a document d1 where Cx is a detected concept candidate (Eq. (1)) we 
calculate the context embedding. This is a vector representation of the 
context for that concept candidate (Eq. (2)). That includes a pre-set (s) 
number of words to the left and right of the concept candidate words. 
Importantly, the concept candidate words are also included in context 
embedding calculation as the model is assisted by knowing what words 
the surrounding context words relate to. 

d1 = w1 w2 ⋯ wk wk+1
⏞̅̅̅̅̅⏟⏟̅̅̅̅̅⏞

Cx

⋯ wn (1)  

where 

d1 – an example of a document 
w1..n – words in the document, or to be more specific tokens 
Cx – the detected concept candidate that matches the words wk and 
wk+1 

Vcntx =
1
2s

[
∑s

i=1
Vwk− i +

∑s

i=1
Vwk+1+i

]

(2)  

where 

Vcntx – calculated context embedding 
Vwk – word embedding 
s – words from left and right that are included in the context of a 
detected concept candidate. Typically, s is set to 9 for long context 
and 2 for short context. 

To calculate context embeddings we use the word embedding 
method Word2Vec [27]. Contextualized embedding approaches such as 
BERT [28] were also tested alongside fastText [29] and GloVe [30]. 
Results presented in Section 3.1 show the BERT embeddings (the Med-
CAT U/MI/B configuration) perform worse on average compared to the 
simpler Word2Vec embeddings. FastText and GloVe perform similarly to 
Word2Vec, therefore our default implementation uses Word2Vec for 
ease of implementation. We trained 300 dimensional Word2Vec em-
beddings using the entire MIMIC-III [31] dataset of 53,423 admissions. 

Once a correct annotation is found (a word uniquely links to a CDB 
name), a context embedding Vcntx is calculated, and the corresponding 
Vconcept is updated using the following formula: 

sim = max
(

0,
Vconcept⃦

⃦Vconcept
⃦
⃦

⋅
Vcntx

‖Vcntx‖

)

(3)  

lr =
1

Cconcept
(4)  

Vconcept = Vconcept + lr⋅(1 − sim)⋅Vcntx (5)  

where 

Cconcept – number of times this concept appeared during training 
sim – similarity between Vconcept and Vcntx 

lr – learning rate. 

The update rule is based on the Word2Vec model and aims to make 
the concept embedding Vconcept similar to the context in which the 
concept was presently found Vcntx. The scaling which is achieved via the 
cosine similarity is used to favour new contexts in which a concept ap-
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pears over contexts that frequently appeared in the past. 
To prevent the context embedding for each concept being dominated 

by most frequent words, we used negative sampling as defined in [27]. 
Whenever we update the Vconcept with Vcntx we also generate a negative 
context by randomly choosing K words from the vocabulary consisting 
of all words in our dataset. Here K is equal to 2s, i.e. twice the window 
size for the context (s is the context size from one side of the detected 
concept, meaning in the positive cycle we will have s words from the left 
and s words from the right). The probability of choosing each word and 
the update function for vector embeddings is defined as: 

P(wi) =
f (wi)

3/4

∑n
j f (wj)

3/4 (6)  

f (wi) =
Cwi∑n

j Cwj

(7)  

Vncntx =
1
K

∑K

i
Vwi (8)  

sim = max
(

0,
Vconcept⃦

⃦Vconcept
⃦
⃦

⋅
Vncntx

‖Vncntx‖

)

(9)  

Vconcept = Vconcept − lr⋅sim⋅Vncntx (10)  

where 

n – size of the vocabulary 
P(wi) – probability of choosing the word wi 
K – number of randomly chosen words for the negative context 
Vncntx – negative context 

2.2.1. Supervised training procedure 
The supervised training process is similar to the self-supervised 

process but given the correct concept for the extracted term we update 
the Vconcept using the calculated Vctx as defined in Eqs. (3)–(10). This no 
longer relies upon the self-supervised constraint that at least one name 
in the set of possible names for a concept is unique as the correct term is 
provided by human annotators. 

2.2.2. Contextualization of identified and linked concepts: meta- 
annotations 

Once a span of text is recognized and linked to a concept, further 
contextualization or meta-annotation is often required. For example, a 
simple task of identifying all patients with a fever can entail classifying 
the located fever text spans that are current mentions (e.g. the patient 
reports a fever vs the patient reported a fever but, etc.), are positive 
mentions (e.g. patient has a high fever vs patient has no sign of fever), 
are actual mentions (e.g. patient is feverish vs monitoring needed if fever 
reappears), or are experienced by the patient (e.g. pts family all had high 
fevers). We treat each of these contextualization tasks as distinct binary 
or multiclass classification tasks Meta-annotations are equivalent to 
‘attributes’ in cTakes parlance. 

The MedCAT library provides a ‘MetaCAT’ component that wraps a 
Bidirectional-Long-Short-Term-Memory (Bi-LSTM) model trainable 
directly from MedCATtrainer project exports. Bi-LSTM models have 
consistently demonstrated strong performance in biomedical text clas-
sification task [32–34] and our own recent work [35] demonstrated a 
Bi-LSTM based model outperforms all other assessed approaches, 
including Transformer models. MetaCAT models replace the specific 
concept of interest for example ‘diabetes mellitus’ with a generic parent 
term of the concept ‘[concept]’. The forward/backward pass of the 
model then learns a concept agnostic context representation of the 
concept allowing MetaCAT models to be used across concepts as 

observed in our results (Section 3.3.3). The MetaCAT API follows stan-
dard neural network training methods but are abstracted away from end 
users whilst still maintaining enough visibility for users to understand 
when MetaCAT models have been trained effectively. Each training 
epoch displays training and test set loss and metrics such as precision, 
recall and F1. An open-source tutorial showcasing the MetaCAT features 
are available as part of the series of wider MedCAT tutorials.4 Once 
trained, MetaCAT models can be exported and reused for further usage 
outside of initial classification tasks similarly to the MedCAT NER+L 
models. 

2.3. MedCATTrainer: annotation tool 

MedCATtrainer allows domain experts to inspect, modify and 
improve a configured MedCAT NER+L model. The tool either actively 
trains the underlying model after each reviewed document (facilitating 
live model improvements as feedback is provided by human users) or 
simply collects and validates concepts extracted by a static MedCAT 
model. The active learning is done on a concept level and MedCAT-
trainer will automatically mark some concepts as correct/incorrect and 
ask for user input for others where it is not confident enough. Version 0.1 
[4] presented a proof-of-concept annotation tool that has been rewritten 
and tightly integrated with the MedCAT library, whilst providing a 
wealth of new features supporting clinical informatics workflows. We 
also provide extensive documentation5 and pre-built containers6 upda-
ted with each new release facilitating easy setup by informatics teams. 

2.4. Datasets and experimental setup 

2.4.1. Named entity recognition and linking open datasets 
MedCAT concept recognition and linking was validated on the 

following publicly datasets:  

1. MedMentions [36] – consists of 4392 titles and abstracts randomly 
selected from papers released on PubMed in 2016 in the biomedical 
field, published in the English language, and with both a Title and 
Abstract. The text was manually annotated for UMLS concepts 
resulting in 352,496 mentions. We calculate that ∼40% of concepts 
in MedMentions require disambiguation, suggesting a detected span 
of text can be linked to multiple UMLS concepts if only the span of 
text is considered. 

2. ShARe/CLEF 2014 Task 2 [37] – we used the development set con-
taining 300 documents of 4 types – discharge summaries, radiology, 
electrocardiograms, and echocardiograms. We have used the UMLS 
annotations and ignored the attribute annotations.  

3. MIMIC-III [31] – consists of ∼58,000 de-identified EHRs from critical 
care patients collected between 2001 and 2012. MIMIC-III includes 
demographic, vital sign, and laboratory test data alongside un-
structured free-text notes. 

We attempted to use the SemEval 2019 shared task for the evaluation 
of the NER+L task,7 but dataset access is currently under review for all 
requests to i2b2. 

2.4.2. Clinical use case datasets 
Our further experiments used real world EHR data from the 

following UK NHS hospital Trusts:  

• King’s College Hospital Foundation Trust (KCH) Dataset: 

4 https://colab.research.google.com/drive/1zzV3XzFJ9ihhCJ680DaQV2Q 
Z5XnHa06X.  

5 https://github.com/CogStack/MedCATtrainer/blob/master/README.md  
6 https://hub.docker.com/r/cogstacksystems/medcat-trainer  
7 https://competitions.codalab.org/competitions/19350. 
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–300 free text inpatient notes for Covid-19 positive patients, 121 
Epilepsy clinic letters 2018–2019, 100 Cardiac Clinic letters, 200 
echocardiographic reports, 100 CT pulmonary angiograms, 700 
10k character chunks of clinical notes of patients with Diabetes 
Mellitus/ Gastroenteritis/ Inflammatory bowel disease/Crohn’s 
disease/ulcerative colitis for supervised training. 
–∼17 million documents with ∼8.8 billion tokens (entire KCH 
electronic health record from 1999 to 2020 consisting documents 
from ‘multi-era’, multi-vendor electronic health records 
(including iSoft iCM, EMIS Symphony and AllScripts) and mul-
tiple geographically-distributed hospital sites (Kings College 
Hospital, Princess Royal University Hospital and Orpington 
Hospital) were processed for self-supervised training.  

• South London and Maudsley Foundation Trust (SLaM): 2200 free text 
notes for patients with a primary or secondary diagnosis of severe 
mental illness between 2007 and 2018 with each document reviewed 
for only a specific physical health comorbidity that may or may not 
appear in the note.  

• University College London Hospitals Foundation Trust (UCLH) 
Covid-19 Datasets: 300 Free text clinical notes for Covid-19 positive 
or suspected patients from January to April 2020 from single-vendor 
electronic health record (Epic). 

We used two large biomedical concept databases and prepared them 
as described in our source-code repository,8 the databases are:  

• UMLS 2018AB: 3.82 million concepts and 14 million unique concept 
names from 207 source vocabularies.  

• SNOMED CT UK edition: >659K concepts. The UK SNOMED CT 
clinical extension 20200401 and UK Drug Extension 20200325 with 
ICD-10 and OPCS-4 mappings. 

2.4.3. Named entity recognition and linking experimental setup 
We use MedMentions [36], ShARe/CLEF [37] and MIMIC-III [31] 

datasets in our experiments. We denote the ‘MedMentions’ dataset (i.e. 
all concepts) and ‘MedMentions Disorders Only’ (i.e. only concepts 
grouped under the Disorder group as shown in [38]). We train MedCAT 
self-supervised on MIMIC-III configured with the UMLS database. We 
denote the version using Word2Vec embeddings as ‘MedCAT’ and the 
one using Bio_ClinicalBERT [39] embeddings as ‘MedCAT BERT’. 

An annotation by MedCAT is considered correct only if the exact text 
value was found and the annotation was linked to the correct concept in 
the CDB. We contrast our performance with the performance of tools 
presented in Section 1.3. Appendix C provides self-supervised training 
configuration details. 

2.4.4. Clinical use case NER+L experimental setup 
For our clinical use cases we extracted SNOMED-CT terms, the offi-

cial terminology across primary and secondary care for the UK National 
Health service, as this was preferred by our clinical teams over UMLS. 

Fig. 3 shows our process of model training and distribution to partner 
hospital Trusts. Initially, we built our untrained MedCAT model using 
the SNOMED-CT concept vocabulary (M1), we then trained it self- 
supervised on the MIMIC-III dataset (M2). Next, the entire KCH EPR 
(17M documents with 8.8B tokens) is used for self-supervised training 
(M3). We collect annotations with clinician experts at KCH and train 
supervised (M4). We share this model with each partner hospital site 
where further self-supervised training (M5, M7) and specific supervised 
training with their respective annotation datasets (M6, M8). 

Site-specific models (M3, M5, M7) are loaded into deployed in-
stances of MedCATtrainer and configured with annotation projects to 
collect SNOMED-CT annotations for a range of site specific disorders, 
findings, symptoms, procedures and medications that our clinical teams 
are interested in for further research (i.e. already published work on 
Covid-19[5,6]). These included chronic (i.e. diabetes mellitus, ischae-
mic heart disease, heart failure) and acute (cerebrovascular accident, 
transient ischemic attack) disorders. For comparison between sites we 
find 14 common extracted concept groups (Appendix A) and calculate 

Fig. 3. Model provenance for NER+L clinical use case results between datasets and sites. M1-8, showing the MedCAT model instances, the data and method of 
training and base model used across all sites. 

8 https://github.com/CogStack/MedCAT#building-concept-databases-fro 
m-scratch. 
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F1 scores for each concept group and reporting average, standard de-
viation (SD), and interquartile-range (IQR). 

We shared fine-tuned MedCAT models between KCH and 2 NHS 
partner Trusts UCLH and SLaM. This was a collaborative effort with each 
hospital team only having access to their respective hospital EHR/ 
CogStack instance. Each site collected annotated data using MedCAT-
trainer, tested the original base model, a self-supervised only trained 
model and a final supervised trained model with the MedCATtrainer 
collected annotations. 

2.4.5. Clinical use case contextualization model experimental setup 
From ongoing and published work [5,6] we configured and collected 

meta-annotation training examples and trained a variety of contextu-
alization models per site as defined in Table 1. 

Our experiments test the effectiveness of our meta annotation 
modelling approach to flexibly learn contextual cues by assessing cross- 
disorder and cross-site transferability (Section 3.3.3. To assess cross- 
disorder transferability of each of the 11 disorder groups (as specified 
in Appendix A) we use the SLaM collected ‘Diagnosis’ dataset that 
consists of ∼100 annotations for each disorder group. We stratify our 
train/test sets by disorder, placing all examples for one disorder group in 
the test set and use the remaining disorder examples as a train set. We 
run this procedure 11 times so that each disorder group is tested once. 
We average all scores of each fold and report results. 

To demonstrate cross-site transferability we derive an equivalent 
meta-annotation dataset from the ‘Presence’ (KCH) and ‘Status’ (SLaM) 
datasets as they are semantically equivalent despite having different 
possible annotation values. We merge ‘Presence’ annotations from 
Affirmed/Hypothetical/False to Affirmed/Other to match classes 
available in SLaM. We then train and test new meta annotation models 
between sites and datasets report average results. 

3. Results 

We firstly present our concept recognition and linking results, 

comparing performance across previously described tools in Section 1.3 
using the UMLS concept database and openly available datasets pre-
sented in Section 2.4 We then present a qualitative analysis of learnt 
concept embeddings demonstrating the captured semantics of MedCAT 
concepts. Finally, we show real world clinical usage of the deployed 
platform to extract, link and contextualize SNOMED-CT concepts across 
multiple NHS hospital trusts in the UK. 

3.1. Entity extraction and linking 

Table 2 presents our results for self-supervised training of MedCAT 
and NER+L performance compared with prior tools using openly 
available datasets. Metrics for all the tools were calculated consistently. 
Bold indicates best performance. For each manual annotation we check 
whether it was detected and linked to the correct Unified Medical Lan-
guage System (UMLS) concept. The metrics are precision (P), recall (R) 
and the harmonic mean of precision and recall (F1). MedCAT models 
were configured with UMLS concepts and trained (self-supervised) on 
MIMIC-III: the base version (MedCAT) uses Word2Vec embeddings 
(trained on MIMIC-III), while (MedCAT BERT) uses static word em-
beddings from Bio_ClinicalBERT [39]. For the BERT version of MedCAT 
we do not use the full BERT model to calculate context representations, 
but only the pre-trained static word embeddings. 

Our results show MedCAT improves performance compared to all 
prior tools across all tested metrics (excluding precision when compared 
to ScispaCy/CLAMP – which are supervised models). We observe that 
the best performance across all tools is achieved on the ShARe/CLEF 
dataset. However, MedCAT still improves F1 performance by ∼9 per-
centage points over the next best system. We note the simpler Word2Vec 
embedding (base MedCAT) on average performs better than the more 
expressive Bio_ClinicalBERT (BERT) embeddings. We provide a further 
breakdown of the range of performances by MedCAT across MedMen-
tions and ShARe/CLEF split by UMLS semantic type in Table 3. 

Table 2 
Comparison of NER+L tools for the extraction of UMLS concepts. * The results for ScispaCy/CLAMP are not directly comparable to other tools as they are supervised 
models.  

Model\dataset  MedMentions MedMentions (disorders only) ShARe/CLEF  

P R F1 P R F1 P R F1 

SemEHR 0.252 0.165 0.200 0.295 0.499 0.371 0.680 0.623 0.650 
Bio-YODIE 0.316 0.143 0.197 0.445 0.366 0.402 0.700 0.607 0.650 
cTAKES 0.284 0.129 0.178 0.313 0.375 0.342 0.567 0.640 0.601 
MetaMap 0.305 0.465 0.368 0.358 0.460 0.403 0.755 0.540 0.630 
ScispaCy* 0.451 0.408 0.429 0.487 0.443 0.464 0.711 0.463 0.561 
CLAMP* 0.324 0.067 0.110 0.533 0.236 0.327 0.772 0.447 0.566 
MedCAT BERT 0.386 0.475 0.426 0.459 0.513 0.485 0.788 0.678 0.729 
MedCAT 0.406 0.500 0.448 0.470 0.523 0.495 0.796 0.688 0.738 
+δ(MedCAT-Best)  − 0.045  0.035 0.019 − 0.063  0.024 0.031 0.041 0.048 0.088  

Table 3 
MedCAT performance for different UMLS semantic types on MedMentions and 
ShARe/CLEF.  

Semantic 
type 

Dataset MedMentions ShARe/CLEF   

P R F1 P R F1 

T047 Disease or 
Syndrome 

0.59 0.59 0.59 0.87 0.75 0.80 

T121 Therapeutic or 
Preventive 
Procedure 

0.52 0.52 0.52 NO DATA 

T061 Pharmacologic 
Substance 

0.49 0.38 0.43 NO DATA 

T184 Sign or Symptom 0.58 0.70 0.64 0.86 0.75 0.80 
T048 Mental or 

Behavioural 
Dysfunction 

0.63 0.55 0.58 0.71 0.63 0.66  

Table 1 
Meta annotation tasks defined per site, KCH = King’s College Hospital NHS 
Foundation Trust, UCLH = University College London Hospitals NHS Founda-
tion Trust, SLaM = South London and Maudsley NHS Foundation Trust.  

Site Task Values 

KCH Presence Affirmed/Negated/Hypothetical  
Experiencer Patient/Family/Other  
Temporality Past/Present/Future 

UCLH Negation Yes/No  
Experiencer Yes/No  
Problem Temporality Past Medical Issue/Current Problem  
Certainty Confirmed/Suspected  
Irrelevant Yes/No 

SLaM Status Patient/Other/NA  
Diagnosis Yes/No  
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3.2. Qualitative analysis 

For concept disambiguation the MedCAT core library learns vector 
embeddings from the contexts in which a concept appears. This is 
similar to prior work [40], although we also present a novel 
self-supervised training algorithm, annotation system and wider work-
flow. Using our learnt concept embeddings we perform a qualitative 
analysis by inspecting concept similarities, with the expectation that 
similar concepts have similar embeddings. Table 4 shows the learnt 
context embeddings capture medical knowledge including relations 
between diseases, medications and symptoms. We train MedCAT 
self-supervised over MIMIC-III [31] using the entirety of UMLS, 3.82 
Million concepts from 207 separate vocabularies. Training configuration 
details are provided in C. 

3.3. Clinical use cases across multiple hospitals 

The MedCAT platform was used in a number of clinical use cases 
providing evidence for its applicability to answer relevant, data inten-
sive research questions. For example, we extracted relevant comorbid 
health conditions in individuals with severe mental illness and patients 
hospitalized after Covid-19 infection [5,6,41]. These use cases analysed 
data sources from 2 acute secondary/tertiary care services at King’s 
College Hospital (KCH), University College London Hospitals (UCLH) 
and mental health care services South London and Maudsley (SLaM) 
NHS Foundation Trusts in London, UK. 

The following results focus on providing an aggregate view of 
MedCAT performance over real NER+L clinical use-cases, meta-anno-
tation or context classification tasks and model transferability across 
clinical domains (physical health vs mental health), EHR systems and 
concepts. 

3.3.1. Entity extraction and linking 
Table 5 shows our results for NER+L across hospital sites, model and 

training configurations as described in Section 2.4.2 Our KCH annota-
tions were collected across a range of clinicians, clinical research 
questions and therefore MedCATtrainer projects. This unfortunately led 
to a lack of resourcing to enable double annotations and calculation of 
inter-annotator-agreement (IIA) scores. SLaM annotations were 
collected by clinician/non-clinician pairs with average inter-annotator 
agreement (IIA) at 0.88, disagreements were discarded before results 
were calculated to ensure a gold-standard. UCLH IIA was at 0.85 be-
tween two medical students with annotation disagreements arbitrated 
by an experienced clinician providing the final gold-standard dataset. 
For our KCH results we use all annotations collected across various 
MedCATtrainer projects within our 14 concept groups as described in 
Section 2.4.4 Both KCH and UCLH annotations contained occurrences of 
all 14 concept groups, SLaM annotated notes did not contain any oc-
currences of Dyspnea (SCTID:267036007), Pulmonary embolism 
(SCTID:59282003) and Chest pain (SCTID:29857009). 

3.3.2. Entity extraction and linking model transferability 
Table 5 demonstrates the improved NER+L performance that arises 

from using domain specific data first self-supervised in MIMIC-III, then 
KCH. We observe further improvements with clinician expertise with 
supervised training using the KCH data. With model sharing to UCLH we 
observe a 0.044 average drop in F1 performance compared to KCH. 
Further self-supervised training directly on UCLH data offers minimal 
average performance gains but does reduce the F1 SD and IQR sug-
gesting there is less variability in performance across concepts. Super-
vised training on a small (499) annotations from UCLH delivers 
comparable performance to our KCH trained model. For our experi-
ments at SLaM we see average F1 performance drop initially by 0.062 
using the KCH model directly on SLaM data. SLaM is a large mental 
health service provider where EHRs are markedly different to acute care 
hospitals KCH and UCLH. Interestingly, successive self-supervised (M7) 
and supervised training (M8) show benefits across all measures with 
final performance largely similar to final KCH performance. 

Importantly, this suggests performance is transferred to the different 
hospital sites and initially only drops by ∼0.04. With self-supervised 
training and further supervised training we are able to reach KCH per-
formance with ∼7× fewer manually collected examples at UCLH or ∼2×
fewer examples at SLaM. 

3.3.3. Contextualization model performance 
Contextualization of extracted and linked concepts is, by design, 

bespoke per project. Due to this, reporting and comparing results across 
studies/sites is difficult as the definitions of tasks and concepts collected 
are different and therefore output trained models are bespoke. Table 6a 
shows aggregate performance at each site, and Table 6b and c shows 
further experiments for cross-site and cross-concept model 
transferability. 

Table 5 
NER+L results across hospitals. MedCAT NER+L performance for common disorder concepts defined in Appendix A by clinical teams. Annotations for supervised 
learning are used as test sets for models M1, M2, M3, M5, M7. Average performance on a 10 fold cross-validation with a held out test set is reported for models M4, M6, 
M8. KCH: Kings College Hospital; UCLH: University College Hospital; SLaM: South London and The Maudsley NHS Foundation Trusts.  

Model Training configuration Hospital test site # Annotated examples Avg. F1 F1 SD± F1 IQR 

M1 Base − No Training  KCH 3358 0.638 0.297 0.333 
M2 Base + Self-Supervised MIMIC-III KCH 3358 0.840 0.109 0.150 
M3 Base + Self-Supervised KCH KCH 3358 0.889 0.078 0.103 
M4 KCH Self-Supervised + KCH Supervised KCH 3358 0.947 0.044 0.051 
M4 KCH Self-Supervised + KCH Supervised UCLH 499 0.903 0.103 0.112 
M5 KCH Self-Supervised + KCH Supervised + UCLH Self-Supervised UCLH 499 0.905 0.079 0.034 
M6 KCH Self-Supervised + KCH Supervised + UCLH Self-Supervised + UCLH Supervised UCLH 499 0.926 0.060 0.086 
M4 KCH Self-Supervised + KCH Supervised SLaM 1425 0.885 0.095 0.088 
M7 KCH Self-Supervised + KCH Supervised + SLaM Self-Supervised SLaM 1425 0.907 0.047 0.082 
M8 KCH Self-Supervised + KCH Supervised + SLaM Self-Supervised + SLaM Supervised SLaM 1425 0.945 0.029 0.025  

Table 4 
Qualitative analysis of learnt concept embeddings. UMLS concepts that have 
highest cosine similarity between learnt vector embeddings of concepts in bold. 
The first row defines the chosen concept and the target concept type. We have 
randomly chosen the most frequent concepts and presented the 8 most similar 
concepts for each target concept type. For example, Neoplastic Process 
(C0006826) and the following rows show the top 8 most similar Procedure 
concepts.  

Disease → Medication  Disease → Procedure  Symptom → Medication  

Hypertensive disease Neoplastic process Fever 
Metoprolol 50 MG Chemotherapy Levofloxacin 
Metoprolol 25 MG Radiosurgery Vancomycin 
Valsartan 320 MG FOLFOX Regimen Vancomycin 750 MG 
Nadolol 20 MG Chemotherapy Regimen Azithromycin 
Atenolol 100 MG Preoperative Therapy Levofloxacin 750 MG 
Enalapril 10 MG Anticancer Therapy Dexamethasone 
Oral form diltiazem Parotidectomy Lorazepam 
nimodipine 30 MG Resection of Ileum Acetaminophen  
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We achieve strong weighted (0.892–0.977)/macro (0.841–0.860) F1 
performance across all tasks and sites, with breakdown of each metric 
per site/task available in Appendix D. We report average macro and 
weighted F1 score demonstrating the variation in performance due to 
unbalanced datasets across most tasks. 

For cross-concept transferability, Table 6b shows a decrease in per-
formance when stratifying by concept. However, we still observe a 
relatively high 0.82–0.85 score suggesting the model is capable of 
learning disorder independent representations that distinguish the 
classification boundary for the ‘Diagnosis’ task, not just the disorder 
specific contexts. 

Our cross-site transferability results, Table 6c, suggest the ‘Status’ 
context model that is trained on cross site (i.e. KCH) data then fine-tuned 
on site specific data (i.e. SLaM) performs better (+0.08 Macro/+0.09 
Weighted F1) compared with training on only the SLaM site specific 
training only (i.e. comparing row 3 and 4). 

4. Discussion 

4.1. Named entity recognition and linking 

Our evaluation of MedCAT’s NER+L method using self-supervised 
training was bench-marked against existing tools that are able to work 
with large biomedical databases and are not use-case specific. Our 
datasets and methods are publicly available making the experiments 
transparent, replicable, and extendable. With the MedMentions dataset, 
using only self-supervised learning, our results in 3.1, demonstrate an 

improvement on the prior tools for both disorder detection (F1 = 0.495 
vs 0.464) and general concept detection (F1 = 0.448 vs 0.429). We 
observe all tools perform best with the ShARe/CLEF dataset. We suggest 
this broadly due to the lack of ambiguity and the more clinical setting 
allowing alternative systems to also perform reasonably well. 

We now discuss the result between our BERT and regular (Word2-
Vec) configured MedCAT models. Generally BERT, a deep neural 
embedding model, performs well for a range of downstream tasks [28] 
better than older approaches such as Word2Vec, i.e. a shallow neural 
embedding. We believe this due to our use of pre-trained static BERT 
embeddings that: (1) are not specifically trained to produce similar 
values for words appearing in a similar context, (2) sub-word tokeni-
zation might be problematic if the tokenizer was trained on a 
non-medical dataset (no matter whether it was fine-tuned later on 
MIMIC-III, pubmed or similar). 

The general concept detection task with MedMentions is difficult due 
to: the larger number of entities to be extracted, the rarity of certain 
concepts and the often highly context dependent nature of some oc-
currences. Recent work [42] highlights examples of ambiguous texts 
within the MedMentions dataset such as ‘probe’ with 7 possible labels 
(‘medical device’, ‘indicator reagent or diagnostic aid’ etc.) Further 
work[40] also showed a deep learning approach (BioBERT+) that ach-
ieved F1 = 0.56. When MedCAT is provided with the same supervised 
training data we achieve F1 = 0.71. We find our improved performance 
is due to the long tail of entities in MedMentions that lack sufficient 
training data for methods such BioBERT to perform well. 

Our qualitative inspection of the learnt concept embeddings, 3.2 
indicate learnt semantics of the target medical domain. This result 
mirrors similar findings reported in fields such as materials science [43]. 
Recent work has suggested an approach to quantity the effectiveness of 
learnt embeddings[38] in representing the source ontology. However, 
this relies on concept relationships to be curated before assessment 
requiring clinical guidance that may be subjective in the clinical 
domain. We leave a full quantitative assessment of the learnt embed-
dings to future work for this reason. 

As more concepts are extracted the likelihood of concepts requiring 
disambiguation increases, particularly in biomedical text [44]. Esti-
mating the number of training samples for successful disambiguation is 
difficult but based on our experiments we need at least 30 occurrences of 
a concept in the free text to perform disambiguation. We provide more 
details in Appendix B. 

Finally, we note that there are no limitations algorithmically for 
MedCAT to support languages other than our tested language, English. 
As MedCAT uses a concept dictionary/vocab for NER+L, if there are 
existing resources (e.g. SNOMED-CT has already been translated into 
Spanish, Dutch, Swedish and Danish) they can be used directly for these 
languages with likely similar results. Alternatively, users could build 
their own custom concept dictionary (CDB) for their language of choice. 
Meta-annotation or contextualization models also do not have language 
specific features, i.e. English, and would also likely perform well as they 
only rely on bi-directional context from supervised examples to make 
predictions. 

4.2. Clinical use cases 

MedCAT models and annotated training data have been imple-
mented to be easily shared and reused, facilitating a federated learning 
approach to model improvement and specialization with models 
brought to sensitive data silos. Our results in Section 3.3 demonstrate 
that we are able directly apply models trained at one hospital site (KCH) 
to multiple other sites, and clinical domains (physical vs mental health 
datasets) with only a small drop in average F1 (0.044 at UCLH, 0.062 at 
SLaM), and after small amount of additional site specific training, we 
observe comparable performance ( − 0.021 at UCLH, − 0.002 at SLaM). 

We also highlight that separate teams were able to deploy, extract 
and analyse real clinical data using the tools as is by following provided 

Table 6 
Contextualization model results.  

(a) Site specific contextualization model performance. Weighted/Macro average F1 
Meta annotation model performance custom defined and trained per site – detailed 
definitions are provided in Appendix D. Task definitions are uniquely defined at each 
site, e.g. Experiencer at KCH considers the values patient/family/other whereas 
Experiencer at UCLH only considers the value patient/other. Status at SLaM considers 
the values affirmed/other and Certainty at UCLH considers the values confirmed/ 
suspected. We include all concepts of interest as defined under clinician guidance at 
each site, therefore site-to-site comparison in performance cannot be made. 

Site Task # Annotated 
examples 

Macro 
F1 

Weighted 
F1 

KCH Presence 37,310 0.846 0.929  
Temporality 18,670 0.803 0.943  
Experiencer 18,670 0.867 0.959 

SLaM Patient diagnosis 1152 0.904 0.913  
Status 1152 0.775 0.812 

UCLH negation 4400 0.836 0.970  
Experiencer 4400 0.940 0.996  
Problem 
temporality 

4350 0.848 0.970  

Certainty 4160 0.836 0.970  
Irrelevant 4390 0.835 0.969  

(b) Cross site transferability performance. 11 fold concept stratified CV vs randomized 
CV for SLaM ‘Diagnosis’ contextualization task performance. The 11 concepts were 
selected from NER+L experiment concepts available at SLaM (Table A.1). The 
‘Diagnosis’ task at SLaM was used as this was our most balanced dataset between all 
tasks and concepts collected. 

Site Task Train/test split Macro F1 Weighted F1 

SLaM Diagnosis Concept stratified 0.82 0.85 
SLaM Diagnosis Random 0.90 0.91  

(c) Cross-site transferability of the MetaCAT model for Presence (at KCH)/status (at 
SLaM converted to values of Affirmed/Other) – as that was the only task that existed 
across sites. Results show 10 fold CV where applicable – e.g. row 2 is direct testing of 
the KCH model on SLaM data, so no training is performed on the SLaM side. 

Site Trained on # Annotated examples Macro F1 Weighted F1 

KCH KCH 37,310 0.89 0.93 
SLaM KCH 37,310 0.71 0.91 
SLaM SLaM 1152 0.77 0.87 
SLaM KCH + SLaM 38,462 0.85 0.96  
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examples, documentation and integrations with the wider CogStack 
ecosystem. Academic engineering projects are often built to support a 
single research project, however MedCAT and the CogStack ecosystem 
are scalable fit-for-purpose locally-tunable solutions for teams to derive 
value from their data instead of being stalled by poor quality code or 
lack of documentation. This means the model is broadly useful with top- 
up tuning also available for specific scenarios, domains and hospitals. 

Each hospital site and clinical team freely defined the set of con-
textualization tasks and associated values for each task. On aggregate 
our results show performance is consistently strong across all sites and 
tasks (Macro F1: 0.841–0.860, Weighted F1: 0.892–0.977). With many 
of the tasks the annotated datasets are highly unbalanced. For example, 
the ‘Presence’ task at KCH, disorders are often only mentioned in the 
EHR if they are affirmed (e.g. “…pmhx: TIA…”), and only rarely are 
hypothetical (e.g. “…patient had possible TIA…”) or negated terms (e.g. 
“…no sign of TIA…”) encountered. This explains the differences in 
performance when reporting macro vs weighted average F1 score. We 
would expect generalization performance to lie between these reported 
metrics. 

4.3. Limitations 

MedCAT is able to employ a self-supervised training method as the 
initial pass of the algorithm uses a given unique name to learn and 
improve an initial concept embedding. However, if the input vocabulary 
linked to the concepts inadequately specifies possible names or the given 
names of a concept rarely appear in the text then improvements can only 
occur during standard supervised learning. The main limitation of our 
approach is that it greatly depends on the quality of the concept data-
base. Large biomedical concept databases (e.g. UMLS) however have a 
well specified vocabulary offering many synonyms, acronyms and 
differing forms of a given concept. 

A limitation of our concept embedding approach is if different con-
cepts appear in similar contexts disambiguation and linking to the cor-
rect concept can be difficult. For example, ‘OD’ can link to ‘overdose’ or 
‘once daily’, both referring to medications with very different implica-
tions. We have rarely seen this problem during real-world corpus. Our 
approach can also struggle if concepts appear in many varying contexts 
that are rarely seen or annotated for. With each new context updating 
the underlying concept embedding this may decrease performance of 
the embedding. 

Supervised learning requires training data to be consistently 
labelled. This is a problem in the clinical domain that consists of 
specialized language that can be open to interpretation. We recommend 
using detailed annotation guidelines that enumerate ambiguous sce-
narios for annotators. 

4.4. Future work 

MedCAT uses a vocabulary based approach to detect entity candi-
dates. Future work could investigate the expansion of such an approach 
with a supervised learning model like BERT [28]. The supervised 
learning model would then be used for detection of entity candidates 
that have enough training data and to overcome the challenge of 
detecting new unseen forms of concept names. The vocabulary based 
approach would cover cases with insufficient annotated training data or 
concepts that have few different names (forms). The linking process for 
both approaches would remain the same self-supervised. 

Our self-supervised training over the ∼20 year KCH EHR, as 
described in Section 2.4, took over two weeks to complete. Future work 
could improve the training speed by parallelizing this process since 
concepts in a CDB are mostly independent of one another. Further work 
could address effective model sharing, allowing subsequent users/sites 
to benefit from prior work, where only model validation and fine-tuning 
is required instead of training from scratch. 

Finally, ongoing work aims to extend the MedCAT library to address 

relation identification and extraction. For example, linking the extracted 
drug dosage/frequency with the associated drug concept, or identifying 
relations between administered procedures and following clinical 
events. 

5. Conclusions 

This paper presents MedCAT a multi-domain clinical natural lan-
guage processing toolkit within a wider ecosystem of open-source 
technologies namely CogStack. 

The biomedical community is unique in that considerable efforts 
have produced comprehensive concept databases such as UMLS and 
SNOMED-CT amongst many others. MedCAT flexibly leverages these 
efforts in the extraction of relevant data from a corpus of biomedical 
documents (e.g. EHRs). Each concept can have one or more equivalent 
names, such as abbreviations or synonyms. Many of these names are 
ambiguous between concepts. The MedCAT library is based upon a 
simple idea: at least one of the names for each concept is unique and 
given a large enough corpus that name will be used in a number of 
contexts. As the context is learned from the unique name, when an 
ambiguous name is later detected, its context is compared to the learnt 
context, allowing us to find the correct concept to link. By comparing the 
context similarity we can also calculate confidence scores for a provided 
linked concept. 

With MedCAT we have built an effective, high performance IE al-
gorithm demonstrating improved performance over prior solutions on 
open access datasets. We have commoditized the development, 
deployment and implementation of IE pipelines with supporting tech-
nologies MedCATtrainer/MedCATservice supporting the transfer, vali-
dation, re-use and fine-tuning of MedCAT models across sites, clinical 
domains and concept vocabularies. MedCAT deployments are enabled 
by extensive documentation, examples, APIs and supporting real world 
clinical use cases outlined in prior published work. 

Overall, MedCAT is built to enable clinical research and potential 
improvements of care delivery by leveraging data in existing clinical 
text. Currently, MedCAT is deployed in a number of hospitals in the UK 
in silo or as part of the wider CogStack ecosystem, with wide-ranging use 
cases to inform clinical decisions with real-time alerting, patient strati-
fication, clinical trial recruitment and clinical coding. The large volume 
of medical information that is captured solely in free text is now 
accessible using state-of-the-art healthcare specific NLP. 

Data availability 

Data for reproduction of experiments for the assessment for the core 
NER+L in comparison with are available from prior work (MedMen-
tions, ShARe/CLEF 2014 Task 2, MIMIC-III). Due to the confidential 
nature of free-text data, we are unable to make patient-level data 
available. Interested readers should contact the authors to discuss 
feasibility of access of de-identified aggregate data consistent with legal 
permissions. 

Code availability 

All code for running the experiments, the toolkit and integration with 
wider CogStack deployments are available here: 

MedCAT: https://github.com/CogStack/MedCAT 
MedCAT Tutorials/Example Code: https://github.com/CogStack/Med 
CAT/tree/master/tutorial 
MedCATtrainer: https://github.com/CogStack/MedCATtrainer 
MedCATtrainer Examples: https://github.com/CogStack/MedCATtra 
iner/tree/master/docs 
MedCATservice: https://github.com/CogStack/MedCATservice 
CogStack: https://github.com/CogStack/CogStack-Pipeline 
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Data access ethics 

NER+L experiments use freely available open-access datasets 
accessible by data owners. SNOMED-CT and UMLS licences were ob-
tained by all users at all hospital sites. Site specific ethics is listed below. 
KCH: This project operated under London South East Research Ethics 
Committee approval (reference 18/LO/2048) granted to the King’s 
Electronic Records Research Interface (KERRI); specific work on 
research on natural language processing for clinical coding was 
reviewed with expert patient input on the KERRI committee with Cal-
dicott Guardian oversight. Direct access to patient-level data is not 
possible due to risk of re-identification, but aggregated de-identified 
data may be available subject to legal permissions. UCLH: UCLH is 
deploying CogStack within its records management infrastructure and is 
growing its capacity to annotate its clinical records as part of wider work 
for routine curation. The work at UCLH described here is a service 
evaluation that represents MedCAT’s annotation of the records. Access 
to the medical records will not be possible given their confidential na-
ture. SLaM: This project was approved by the CRIS Oversight Committee 
which is responsible for ensuring all research applications comply with 
ethical and legal guidelines. The CRIS system enables access to anony-
mized electronic patient records for secondary analysis from SLaM and 
has full ethical approvals. CRIS was developed with extensive involve-
ment from service users and adheres to strict governance frameworks 
managed by service users. It has passed a robust ethics approval process 
acutely attentive to the use of patient data. Specifically, this system was 
approved as a dataset for secondary data analysis on this basis by 
Oxfordshire Research Ethics Committee C (08/H06060/71). The data is 
de-identified and used in a data-secure format and all patients have the 
choice to opt-out of their anonymized data being used. Approval for data 
access can only be provided from the CRIS Oversight Committee at 
SLaM. 
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Appendix A. SNOMED-CT groupings 

Each group was defined with expert clinical guidance. S-267036007 – dyspnea (finding), S-59282003 – pulmonary embolism, (disorder) S- 
29857009 – chest pain (finding) do not appear in the SLaM annotations for supervised training.  
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Appendix B. Estimating example counts for sufficient F1 score 

To test the required number of examples to achieve a high enough F1 score, we created a mini-dataset from MedMentions. It contains two concepts: 
C0018810 (heart rate) and C2985465 (hazard ratio). Figure B.4 shows an example texts for both concepts. Both concepts have a unique name and the 
ambiguous abbreviation HR that can link to either one. We chose these two concepts, as the abbreviation HR is the most frequent ambiguous concept 
in MedMentions, given the requirement that it must be ambiguous. Our dataset consists of:  

• 60 training examples (30 per concept). In each example the full name of the concept was used, see below MedMentions Text Extracts.  
• 174 test examples, each document contains the ambiguous abbreviation HR, see below MedMentions Text Extracts. 

Table A.1 
SNOMED-CT concept level groupings for clinical use cases.  

Container concept Concepts 

S-73211009 – Diabetes mellitus(disorder) S-44054006 – Diabetes mellitus type 2 (disorder)  
S-46635009 – Diabetes mellitus type 1 (disorder)  
S-422088007 – Disorder of nervous system co-occurrent and due to diabetes mellitus (disorder)  
S-25093002 – Disorder of eye co-occurrent and due to diabetes mellitus (disorder)  
S-73211009 – Diabetes mellitus (disorder) 

S-84114007 -Heart failure (disorder) S-128404006 – Right heart failure (disorder)  
S-48447003 – Chronic heart failure (disorder)  
S-56675007 – Acute heart failure (disorder)  
S-85232009 – Left heart failure (disorder)  
S-42343007 – Congestive heart failure (disorder)  
S-84114007 – Heart failure (disorder) 

S-414545008 – Ischemic heart disease (disorder) S-413439005 – Acute ischemic heart disease (disorder)  
S-413838009 – Chronic ischemic heart disease (disorder)  
S-194828000 – Angina (disorder)  
S-22298006 – Myocardial infarction (disorder)  
S-414545008 – Ischemic heart disease (disorder) 

S-38341003 – Hypertensive disorder, systemic arterial (disorder) S-31992008 – Secondary hypertension (disorder)  
S-48146000 – Diastolic hypertension (disorder)  
S-56218007 – Systolic hypertension (disorder)  
S-59621000 – Essential hypertension (disorder)  
S-38341003 – Hypertensive disorder systemic arterial (disorder) 

S-13645005 – Chronic obstructive lung disease (disorder) S-195951007 – Acute exacerbation of chronic obstructive airways disease (disorder)  
S-87433001 – Pulmonary emphysema (disorder)  
S-13645005 – Chronic obstructive lung disease (disorder) 

S-195967001 – Asthma (disorder) S-195967001 – Asthma (disorder) 
S-709044004 – Chronic kidney disease (disorder) S-723190009 – Chronic renal insufficiency (disorder)  

S-709044004 – Chronic kidney disease (disorder) 
S-230690007 – Cerebrovascular accident (disorder) S-25133001 – Completed stroke (disorder)  

S-371040005 – Thrombotic stroke (disorder)  
S-371041009 – Embolic stroke (disorder)  
S-413102000 – Infarction of basal ganglia (disorder)  
S-422504002 – Ischemic stroke (disorder)  
S-723082006 – Silent cerebral infarct (disorder)  
S-1078001000000105 – Haemorrhagic stroke (disorder)  
S-230690007 – Cerebrovascular accident (disorder) 

S-266257000 – Transient ischemic attack (disorder) S-266257000 – Transient ischemic attack (disorder) 
S-84757009 – Epilepsy (disorder) S-352818000 – Tonic-clonic epilepsy (disorder)  

S-19598007 – Generalized epilepsy (disorder)  
S-230456007 – Status epilepticus (disorder)  
S-509341000000107 – Petit-mal epilepsy (disorder)  
S-84757009 – Epilepsy (disorder) 

S-49436004 – Atrial fibrillation (disorder) S-49436004 – Atrial fibrillation (disorder) 
S-267036007 – Dyspnea (finding) S-267036007 – Dyspnea (finding) 
S-59282003 – Pulmonary embolism (disorder) S-59282003 – Pulmonary embolism (disorder) 
S-29857009 – Chest pain (finding) S-29857009 – Chest pain (finding)  

Fig. B.4. MedMentions text extracts: three samples from the dataset used to test the amount of training samples needed for disambiguation to work. First example is 
a training case for the concept C0018810, second for C2985465 and third is used to test the disambiguation performance. 
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We have tested the performance for different sizes of the training set: 1, 5, 10 and 30. If we set the training set size to, e.g. 5, we split the full training 
set into 6 parts (in total the training set has 30 examples per concept), each containing 5 examples per concept. Then we check the performance for 
each part and report the average over the 6 parts, see Table B.2. 

Appendix C. Self-supervised training configuration 

C.1 Self-supervised training configuration 

MedCAT was configured for self-supervised training across experiments presented in Section 2.1 as follows:  

• Misspelled words were fixed only when 1 change away from the correct word for words under 6 characters, and 2 changes away for words above 6 
characters.  

• For each concept we calculate long and short embeddings and take the average of both. The long embedding takes into account s = 9 words from 
left and right (as shown in Eq. (2)). The short embedding takes into account s = 2 words from left and right. The exact numbers for s were calculated 
by testing the performance of all possible combinations for s in the range [0,10].  

• The context similarity threshold used for recognition is 0.3 unless otherwise specified. This means for a given concept candidate, or sequence of 
words, to be recognized and linked to the given concept the concept similarity provided by Eq. (2) would be greater than 0.3. 

C.2 Qualitative analysis training configuration 

We train MedCAT self-supervised over MIMIC-III using the entirety of UMLS, 3.82 Million concepts from 207 separate vocabularies. We use ∼2.4M 
clinical notes (nursing notes, notes by clinicians, discharge reports etc.) on a small one-core server taking approximately 30 hours to complete. 

Appendix D. Contextualization task results per site 

D.1 Contextualization results breakdown for KCH 

Table D.3 shows aggregate results for each defined meta-annotation at KCH. Performance is aggregated over all extracted concepts listed in 
Appendix A. We defined the following meta-annotation tasks:  

• Presence: is the concept affirmed, negated or hypothetical, values: [Affirmed, Negated, Hypothetical] 

Table D.3 
Meta annotation results at KCH.  

(a) Presence average 10 fold CV 90/10 ratio 

CLS F P R Support test (10% of total) 

Hypothetical 0.756 0.797 0.72 360 
Negated 0.865 0.878 0.852 440 
Affirmed 0.955 0.961 0.951 2930 
Macro 0.86 0.875 0.846 3731 
Weighted 0.927 0.927 0.929 3731  

(b) Experiencer average 10 fold CV 90/10 ratio 

CLS F1 P R Support test (10% of total) 

Family 0.801 0.865 0.751 13 
Other 0.823 0.838 0.809 205 
Patient 0.977 0.975 0.98 1649 
macro 0.867 0.893 0.847 1867 
weighted 0.959 0.959 0.959 1867  

(c) Temporality average 10 fold CV 90/10 ratio 

CLS F P R Support test (10% of total) 

Recent 0.969 0.964 0.94 1655 
Past 0.771 0.807 0.74 162 
Future 0.667 0.706 0.74 50 
macro 0.803 0.825 0.783 1867 
weighted 0.943 0.943 0.945 1867  

Table B.2 
Relation between the number of training examples and 
performance of MedCAT concept disambiguation.  

Number of examples per concept F1 on Test 

1 0.74 
5 0.81 
10 0.82 
30 0.86  
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• Experiencer: is the concept experienced by the patient or other, values: [Patient/Family/Other]  
• Temporality: is the concept in the past, present or future, values: [Past, Recent, Future]  

D.2 Meta annotation results breakdown for SLaM 

Table D.4 shows aggregate results for each defined meta-annotation at SLaM. Performance is aggregated over all extracted concepts listed in 
Appendix A. We defined the following meta-annotation tasks:  

• Status: is the concept affirmed to be affecting the patient or not, values: [Patient/Other/NA]  
• Diagnosis: is the concept a diagnosis related to the patient, or not, values: [Yes, No] 

D.3 Meta annotation results breakdown for UCLH 

Table D.5 shows aggregate results for each defined meta-annotation at UCLH. Performance is aggregated over all extracted concepts listed in 
Appendix A. We defined the following meta-annotation tasks:  

• Negation: is the concept negated or not, values: [Yes/No]  
• Experiencer: is the concept experienced by the patient or not, values: [Patient, Other]  
• Problem Temporality: is the concept referring to a historical mention, values [Past Medical Issue, Current Problem]  
• Certainty: is the concept confirmed to be present, values: [Confirmed, Suspected] 

Table D.4 
Meta annotation results at SLaM.  

CLS F P R Support test (10% of total) 

(a) Status average 10 fold CV 90/10 ratio 
NA 0.873 0.869 0.878 43 
Other 0.544 0.663 0.475 7 
Affirmed 0.908 0.893 0.924 60 
Macro 0.775 0.812 0.757 109 
Weighted 0.873 0.874 0.873 109 
(b) Diagnosis average 10 fold CV 90/10 ratio 
Yes 0.931 0.935 0.926 68 
No 0.872 0.889 0.880 39 
Macro 0.904 0.908 0.905 109 
Weighted 0.913 0.912 0.913 109  

Table D.5 
Meta annotation results at UCLH.  

CLS F P R Support test (10% of total) 

(a) Negation: average 10 fold CV 90/10 ratio 
Yes 0.896 0.895 0.900 46 
No 0.688 0.767 0.631 394 
Macro 0.836 0.767 0.631 440 
Weighted 0.970 0.969 0.971 440 
(b) Experiencer: average 10 fold CV 90/10 ratio 
Other 0.681 0.883 0.65 3 
Patient 0.998 0.997 0.999 437 
Macro 0.940 0.940 0.825 440 
Weighted 0.996 0.996 0.996 440 
(c) Problem Temporality: average 10 fold CV 90/10 ratio 
Past Medical Issue 0.710 0.758 0.676 23 
Current Problem 0.985 0.981 0.988 412 
Macro 0.848 0.870 0.832 435 
Weighted 0.970 0.969 0.971 435 
(d) Certainty: average 10 fold CV 90/10 ratio 
Confirmed 0.985 0.980 0.989 395 
Suspected 0.688 0.767 0.631 21 
Macro 0.836 0.874 0.810 416 
Weighted 0.970 0.970 0.971 416 
(e) Irrelevant: average 10 fold CV 90/10 ratio 
Yes 0.685 0.846 0.579 24 
No 0.986 0.976 0.994 415 
Macro 0.835 0.911 0.787 439 
Weighted 0.969 0.970 0.972 439  
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• Irrelevant: is the concept relevant, values: [Yes, No] 
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3.2.1 Discussion

A MedCAT model is comprised of two parts. A Concept database (CDB) is a collection of

biomedical terms and their representative fixed-length vector embedding for each concept.

A Vocabulary (VCB) is a collection words that represent all possible words in a language,

and each word’s associated fixed-length vector embedding. The VCB is pretrained and

does not change according to any training that occurs during normal MedCAT operation,

training and/or inference. The specific concept embedding within the CDB is updated

during training according to the algorithm described in Section 2.2.

In Section 2.1.2 of the paper presented in Section 3.2, the spell-checking process is

described. The concept of an abbreviation, however, is not fully described. An abbreviation

is an alternative shortened version of a given concept as specified during the building of

the source CDB data. Source terminology data used to build a CDB often contains the

biomedical concept name and any ‘known’ abbreviations or synonyms of that term. If any

span of text matches a given concept’s synonym spelling then this is not ‘corrected’ by the

spell-checker.

In Section 4.3 of the paper the limitations are described. I further expand this section

to describe algorithm errors in various forms. Firstly, MedCAT can miss spans of text that

should be a recognised entity but are not. These errors are due to spans of text that are not

listed within the MedCAT CDB, either because the original terminology does not include

this missing span, or during training this span has never been encountered and added by an

annotator. Common short hands for some clinical events (disorders and a measure) are

presented in Table 3.1

A second type of error is the incorrect linking of a span of text to a CDB concept.

MedCAT annotations that are predictions of the model can be fixed and linked to

the ‘correct’ concept through the MedCATtrainer interface. For example, a span of

text could link the text “DM” to “diabetes mellitus”, but this should be linked to more

specific diabetic retinopathy a common complication for diabetes patients as retinopathy is
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mentioned elsewhere in the context of the current document. This specialisation of models

to specific clinical areas and certain acronyms holding multiple meanings across clinical

domains further suggests the need for models to be continually validated.

Both errors are addressed through supervised training, manual annotations and running

of the training process over this collected data.

3.3 MedCATtrainer - The MedCAT Annotation Tool

MedCAT is a toolkit for the development, validation and ongoing fine-tuning of named

entity recognition and linking (NER+L) models for clinical concept extraction and the

further contextualisation of extracted concepts. An important part of of this workflow is

the partnership with clinical collaborators who are using the downstream output. Building

effective applied AI in a clinical setting requires an interdisciplinary approach, that engages

domain experts early and throughout the process of model development and ongoing

maintenance [142, 76].

This next published work provides further details, and empirical evidence suggesting

the MedCATtrainer interface supports this previously described workflow of MedCAT

model validation and fine-tuning. Importantly, it closely integrates with MedCAT models

and supports a seamless means to both validate and fine-tune MedCAT models.
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Abstract

We present MedCATTrainer1 an interface
for building, improving and customising a
given Named Entity Recognition and Linking
(NER+L) model for biomedical domain text.
NER+L is often used as a first step in deriving
value from clinical text. Collecting labelled
data for training models is difficult due to the
need for specialist domain knowledge. Med-
CATTrainer offers an interactive web-interface
to inspect and improve recognised entities
from an underlying NER+L model via active
learning. Secondary use of data for clinical re-
search often has task and context specific crite-
ria. MedCATTrainer provides a further inter-
face to define and collect supervised learning
training data for researcher specific use cases.
Initial results suggest our approach allows for
efficient and accurate collection of research
use case specific training data.

1 Introduction

We present a flexible web-based open-source
use-case configurable interface and workflow for
biomedical text concept annotation - MedCAT-
Trainer2.

Murdoch and Detsky (2013) estimates that 80%
of biomedical data is stored in unstructured text
such as Electronic health records (EHRs). Al-
though EHRs have seen widespread global adop-
tion, effective secondary use of the data remains
difficult (Elkin et al., 2010). However, sig-
nificant progress has been made on agreement
and usage of standardised terminologies such
as the Systematized Nomenclature of Medical
Clinical Terms (SNOMED-CT) (Stearns et al.,
2001) and the Unified Medical Language System
(UMLS)(Bodenreider, 2004). Annotating EHR
text with these concept databases is often seen as

1https://www.youtube.com/watch?v=lM914DQjvSo
2https://github.com/CogStack/MedCATtrainer

a first step in delivering data driven applications
such as precision medicine, clinical decision sup-
port or real time disease surveillance (Assale et al.,
2019).

EHR text annotation is challenging due to the
use of domain specific terms, abbreviations, mis-
spellings and terseness. Text can also be ‘copy-
pasted’ from prior notes, structured tables entered
into unstructured form, content with varying tem-
porality and scanned images of physical docu-
ments (Botsis et al., 2010). Annotation is further
complicated as researchers have task and context
specific parameters. For example, whether fam-
ily history or suspected diagnoses are considered
relevant to the task.

MedCAT3, manuscript in preparation (Zeljko
and Lucasz, 2019), is a Medical Concept
Annotation Tool that uses unsupervised machine
learning to recognise and link medical concepts
with clinical terminologies such as UMLS. Med-
CAT, like similar tools, uses a concept database to
find and link concept mentions inside of biomedi-
cal documents. In addition it has disambiguation,
spell-checking and the option for supervised learn-
ing for improved disambiguation.

We introduce a novel web based application that
supplements usage of a biomedical NER+L mod-
els, such as MedCAT. Our contributions are as fol-
lows:

1. Concept Inspection and Addition: an in-
terface that to inspect the identified concepts
from free text, and add missing concepts to an
existing NER+L model. This interface aligns
with MedCAT, but could also be used with
other models that have similar capabilities.

2. Active Learning: an interface for active
learning, enabling users to provide minimal

3https://github.com/CogStack/MedCAT
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training data to assist in improving and cor-
recting the NER+L. This interface requires
that the backing NER+L system supports ac-
tive learning.

3. Clinical Research Question Specific Anno-
tation: a further interface for configurable
use case specific annotation of identified con-
cepts. Allowing for the collection of research
question specific training data. For exam-
ple, annotating specific temporal features of
a concept.

2 Related Work

Outside of the biomedical domain general pur-
pose annotation interfaces have been developed
for most popular NLP tasks such as NER, NEL,
relation extraction, entity normalisation, depen-
dency parsing, chunking etc. Popular choices in-
clude open-source tools such as BRAT (Stenetorp
et al., 2012) that also allows for managing the dis-
tribution, monitoring and collection of annotated
corpora. General purpose tools with active learn-
ing include the commercial product Prodigy4. Al-
though these tools are mature and offer advanced
features they can be complex to setup and do not
offer integration with existing biomedical domain
NER+L systems.

Prior work on biomedical NER+L includes
MetaMAP (Aronson, 2001) and CTakes (Savova
et al., 2010). Both have provided interfaces to in-
spect recognised entities but they have not pro-
vided means to correct and amend concepts or
specify further annotations for specific research
questions.

Another tool for biomedical NER+L, SemEHR
Wu et al. (2018), offers features to add custom pre
and post processing steps and research specific use
cases, but does not directly improve the NER+L
model via an interface. Instead it treats the pro-
vided NER+L model as a black-box model.

3 MedCATTrainer

MedCATTrainer is a web-based interface for
inspecting, adding and correcting biomedical
NER+L models through active learning. An ad-
ditional interface allows for research specific an-
notations to be defined and collected for training
of supervised learning models.

4https://explosion.ai/blog/prodigy-annotation-tool-active-
learning

The interfaces are built with Vue.js5 for
the front-end and the python6 web framework
Django7 for the web API and integration with
NER+L models such as MedCAT. We use the
Django admin features to allow administrators
to configure research question specific supervised
learning tasks.

MedCATTrainer is deployed via a Docker8 con-
tainer. This ensures users can build, deploy
and run MedCATTrainer cross-platform without
lengthy build and run processes, advanced infras-
tructure knowledge or root access to systems. This
is especially important in health informatics as
hospital infrastructure is often restrictive. Med-
CATTrainer allows researchers to build on top
of existing biomedical domain ontologies, such
as UMLS, for two use cases. Firstly, improv-
ing the underlying NER+L model by adding syn-
onyms, abbreviations, multi-token concepts and
misspellings directly from the interface. Secondly,
by allowing research use case specific annotations
to be defined and collected for training of super-
vised learning models.

3.1 Concept Inspection and Addition

Figure 1a shows the ‘Train Annotations’ interface.
Users can inspect and correct the concepts iden-
tified by the underlying NER+L model. Entities
that have not been recognised can also be added
to the NER+L model concept database. This al-
lows researchers to test the learnt entity recogni-
tion/linking capabilities of the model whilst tai-
loring it to recognise sub-domain specific lexicon.
This can include abbreviations or misspellings
common to specific corpora. Figure 1b shows
the form entry to add new concepts to the un-
derlying concept database. Semantically equiva-
lent texts can be added under the same Concept
Unique Identifier along with synonyms. Advanced
NER+L tools (e.g. MedCAT) learn from the con-
textual embeddings of words to disambiguate fu-
ture occurrences. MedCATTrainer provides a text-
box for entering the surrounding context tokens to
assist with concept disambiguation.

3.2 Active Learning

Annotating biomedical domain text for NER+L
requires expert knowledge and therefore cannot be

5https://vuejs.org/
6https://www.python.org/
7https://www.djangoproject.com/
8https://www.docker.com
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(a) The MedCATTrainer interface for viewing identified con-
cepts by the underlying NER+L model of a publicly availablea

neurological consultation summary showing the concept meta-
data and active learning feedback input controls.

ahttps://bit.ly/2RLcdJx (b) Side panel for the addition of new concepts.

Figure 1: The interfaces for inspecting annotations and the addition of concepts.

easily crowd sourced. Active learning is a com-
mon approach to provide a minimal set of high
value training examples for manual annotation.
Examples are valued with respect to expected im-
provement in classification performance once la-
belled and the model retrained (Settles, 2009).

We use a simple strategy of certainty based se-
lective sampling (Lewis and Catlett, 1994) to dis-
play low confidence examples. Concretely, given
a trained model M, and the total set of annota-
tions predicted on a new document d by model M
is L = {l1, l2, . . . ln} where the model labelled
the document with n annotations. An annotation
li has an associated confidence cli probability in
the annotation. An annotation manager defines δ,
a confidence cutoff score. The set of annotations
A shown to an annotator is therefore Φ(L) where
Φ(li) = cli > δ.

Each human annotator is instructed to review
each identified concept and provide feedback on
correctness. Feedback is provided through the ac-
tion of clicking the ‘tick’ for correct or ‘cross’ for
incorrect as shown in the top right of Figure 1a.

If an identified concept is incorrect human an-
notators are asked to provide feedback, rerun the
NER+L model (top left ‘Rerun the Annotator’),
and then confirm if the misidentified concept has
been corrected. More feedback can be provided
if needed. Our pilot test users found this quickly
resulted in the correctly identified and linked con-
cept as text spans often only have one or two alter-
native concepts.

3.3 Clinical Research Question Specific
Annotation

It would be infeasible to have a clinical terminol-
ogy to define every possible contextual represen-
tation of a concept. For example, disambiguation
of ‘seizure’ for a symptom of epilepsy and ‘first
seizure clinic’ for a clinic that provides epilepsy
care or ’history of seizures’ for a historical case of
epilepsy.

Our second interface solves this problem by al-
lowing clinical researchers to define use case ori-
entated tasks and associated annotations for pre-
viously identified and linked concepts. Custom
classifiers are then trained and layered over the ex-
isting NER+L model for context specific concept
disambiguation. An example configured screen
for ’Temporality’ and ’Phenotyping’ tasks for an
ongoing clinical research project is shown in Fig-
ure 2 - using replacement publicly available data.
The top bar lists the overall task name followed by
the number of documents to be annotated. The top
right corner opens the current task help document,
listing annotation guidelines for this use-case.

The left panel itemises each text span, the asso-
ciated Concept Unique Identifier (CUI) - that the
NER+L model has identified and linked with the
text, and the current value of each task specific an-
notation. The value ‘n/a’ indicates the task has not
been completed for that span. Users can choose
any order of the text spans to annotate. The cur-
rently selected text span is highlighted in the ta-
ble and within the central text area showing the
entirety of the document. Clinical notes can be

3.3. MedCATtrainer - The MedCAT Annotation Tool | 67



142

Figure 2: Task and context specific annotation interface configured for ‘Temporality’ and ‘Phenotype’ tasks

long in length. Clicking a text span from the side-
bar scrolls the central text area to the correspond-
ing span assisting human annotators in locating
the span to annotate. The text area also highlights
each spans current annotated value for the current
task.

The bottom bottom bar lists the current task and
the possible annotation values. Figure 2 shows the
‘Temporality’ task and the associated annotation
values ‘Is Historical’ and ‘Not Historical‘. The
values are in context to a seizure care pathway use
case and are defined as any currently experienced
mention of seizure symptoms in present clinical
encounter. Use cases and associated tasks values
are configurable via the admin interface.

The bottom right corner provides navigation be-
tween text spans and tasks via the arrow buttons.
Navigating between spans highlights the current
span to be annotated in the main left sidebar and
auto scrolls to the next span in the main text area.
The navigation controls here, the sidebar and the
main text area allow human annotators to com-
plete the task in any order they are comfortable.

The ‘Incomplete’ button marks the current doc-
ument to be revisited at a later date. Samples
are marked incomplete if the NER+L model has
misidentified the concept or there is a genuine am-
biguity. The ‘Submit’ button marks the document
as complete. Both actions store and retrieve the
next document if there is one available. If there
are no more files to annotate a dialog prompts the
user to return to the home screen.

Corpora are currently directly uploaded via a
use case management screen. Future deploy-
ments will directly ingest documents via an elas-

ticsearch9 connector to hospital EHR deployments
of CogStack (Jackson et al., 2018) an EHR in-
gestion, transformation and search service de-
ployed at King’s College Hospital (KCH) and
South London and Maudsley(SLaM) NHS Foun-
dation Trusts, UK.

4 Results

We ran an initial small scale pilot experiment to
test the suitability of our use case specific tool
to quickly and accurately collect training data la-
belling the temporal features of seizure symptoms.
This is similar to the task shown in Figure 2.
We used MIMIC3 (Johnson et al., 2016), a de-
identified publicly available database of ICU ad-
mission data that includes observations, consulta-
tion and discharge summary reports. We randomly
sampled 127 discharge summaries that contained
one or more token occurrences that match the
regular expression ‘seizure|seizre|seizur|siezure’,
where | is an OR operator between the text tested
to be present. We intentionally rely on a rule-based
NER mode (i.e. the regex) here to demonstrate
our tools flexibility to use possible alternatives to
MedCAT if desired.

We asked 2 human non-clinical annotators to la-
bel temporal features of each occurrence in rela-
tion to a ‘present’, i.e. ‘chief complaint: seizure’
or ‘historical’, i.e. ‘family history of seizures’,
mention of the term. Both took approximately
35 minutes to review all 127 documents. We
achieve an percent agreement of 89% and a Co-
hen’s Kappa κ = 0.695, Table 1. Both annota-
tors marked some records as incomplete as they ei-
ther mostly referred to non symptomatic mentions

9https://www.elastic.co/
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R1* R2* R1 R2
# Documents 107 117 100 100
# Concepts 351 344 317 317
# Historical 67 80 79 65

# Not Historical 276 264 238 252

Table 1: Total labelled ‘seizure’ symptom concepts and
for each human annotator (R1, R2) for the ‘temporal-
ity’ task of labelling concepts that have occurred the
past relative to the hospital episode. * indicates raw
numbers before taking into account the intersection of
notes between annotators

of seizure, i.e. ‘anti-seizure meds prophylaxis’ or
the prevention of future seizures. This resulted in
each rater having differing total documents ‘sub-
mitted’ as there are some document with mixes of
the above occurrences. We took the intersection of
submitted documents from both raters to compute
the final agreement scores.

Using the collected data we fit a simple Sckit-
learn10 Random Forest (RF) classifier model
demonstrating the effectiveness of the data collec-
tion in being able to easily fit a well performing
model for the task of recognising temporality of
seizure symptoms. We took a random 70/30 train
test split, took 100 characters either side of the
labelled ‘seizure’ occurrence, tokenized the plain
text on whitespace then used a TF-IDF vectoriser
with the default English stop-words list. We ran a
grid search across TF-IDF and random forest clas-
sifier parameters, with a 3 fold cross validation and
found the best fitting parameters: TF-IDF features
500 (range:500, 1000, 10000), RF maximum num-
ber trees of 100 range(100, 300, 500, 1000) and
maximum tree depth 20 (range: 5, 20, 50, 75).
We achieve an accuracy of this binary classifica-
tion task of 92% and f1 score .79.

5 Discussion and Future Work

From our labelling exercise we demonstrate the
speed and accuracy of our configurable use case
specific interface. Strong scores across % agree-
ment, Cohen’s Kappa and trained model accuracy
indicate good agreement between annotators, in-
terpretations of the task and reasonable signal cap-
tured even with this small data set. Although, it is
likely the model is over-fitting due to the size of
the data set. Given the prior experiment - across
two raters - gathering enough accurate data to, for

10https://scikit-learn.org/stable/index.html

example, fine-tune a pretrained language model
based classifier would be of the order of hours of
manual labelling for approx 2k samples. We see
this rapid labelling ability as a key strength of our
interface.

We foresee that trained classifiers will likely
generalise to additional research questions. For
example language used to express temporality of
seizures is likely to be similar to temporality of
stroke or myocardial infarction.

Generally, training models across use cases will
likely capture shared semantics. This suggests
particular use cases would require less examples to
train as annotated data or the model itself could be
reused, therefore jump-starting clinical research.
If a model is not performing for a new use case,
further data could be collected to fine tune the
model to a specific task, context or sub-domain
corpora.

Clinically, domain experts in the neurology de-
partment of KCH, with varying levels of exper-
tise (medical student to practising consultant) are
scheduled to participate in the use case shown in
Figure 2 in the coming months.

Our initial testing, not shown above due to
space, of the active learning approach for improv-
ing the bound NER+L model suggests we can im-
prove performance with minimal training data.

6 Conclusions

We have presented a lightweight, flexible,
web-based, open-source annotation interface for
biomedical domain text. MedCATTrainer is inte-
grated with a biomedical NER+L model and al-
lows for addition of missing concepts, improve-
ments to the underlying NER+L model through
active learning, and a configurable interface for
clinical researchers to define annotations specific
for their research questions. Preliminary results
show promise for our interface and our approach
to biomedical NER+L, which is often seen as a
first step in deriving value from data sources such
as electronic health records.
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Condition Common Shorthand

Methicillin-resistant Staphylococcus aureus MRSA
chronic obstructive pulmonary disease COPD
Diabetes Mellitus Type 2 DM2, DMII
Heart Failure HF
Heart Failure with Preserved Ejection Fraction HFpEF
Left Ventricle Ejection Fraction LVEF

Table 3.1 Clinical disorders and measures that appear in clinical text but are often referred
to in their shorthand form. Representative of MedCAT errors, where the CDB has not
encountered these text spans during training

3.3.1 Discussion

Overall, MedCATtrainer has been completely rewritten since the above paper to better

support the aims of validating, fine-tuning and collecting high quality training data for

MedCAT models. However, the application still retains all of the features described in

the original paper. Both the screens for concept recognition and task specific annotation

collections have been combined so concepts can be recognised - marked correct or incorrect

and missing concepts can be added. Task specific annotations can also be quickly added

for each recognised concept if needed. In summary, the latest features allow for:

1. Adding missing concepts by selecting text and looking up a missing concept within

a linked MedCAT concept database.

2. A fast concept database lookup configurable for each MedCAT concept database.

3. A flexible and configurable relation annotation collection screen.

4. A flexible, multi-user, multi-annotation project system allowing for a single de-

ployment to manage hundreds of individual projects with precise access control of

annotation data.

MedCATtrainer is still in active development and I continue to make each new release

opensource.
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3.4 Clinical Research with MedCAT

This section will present and discuss the MedCAT and MedCATtrainer tools as enablers

for clinical research. I will first critically demonstrate our analysis of fine-tuning models

across various clinical research projects at KCH via the MedCATtrainer tool. Then I will

briefly review clinical research papers that have used a MedCAT trained model to extract

ad contextualise comorbidity terms.

3.4.1 MedCATtrainer Annotation Analysis

As of September 2022, the KCH deployment of MedCATtrainer has been used for 44

separate projects by 31 distinct users collecting >36k annotations for >4100 distinct clinical

concepts (mostly SNOMED-CT), and >60k annotations for 3 meta annotation tasks.

The total number of unique concept forms evolve throughout annotation projects

and the ratio of correct (blue area) / incorrect (orange area) annotations changes as our

clinicians annotate documents. The number of word forms that appear within a single

document can vary, hence the plot the ratio of correct / incorrect annotations per document

relative to the number of word forms that have been seen during the annotation session

(marked by the black line in each curve). A word form is a synonym for a concept. For

example, the SNOMED CT concept myocardial infarction (SCTID: 22298006) can be

referred to as ‘heart attack’, ‘MI’ or myocardial infarction’. This is an example of 3 word

forms or unique concept forms for this one concept. Figure 3.1 shows multiple projects

that initially use the KCH self-supervised trained SNOMED-CT model to annotate a range

of concepts and how they uniquely appear in the texts. Visually, this is the area under the

cumulative word forms line in each plot taken by either the correct or incorrect ratios. We

observe that in the Covid_COPD project we annotated 5 different concepts, and 12 word

forms for those concepts. This converges to 100% correctness after 60 documents even

with further forms added on two separate occasions. However, larger annotation projects

such as Covid_CTPA_Reports saw over 400 word forms of 194 concepts where the model
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Fig. 3.1 Top left to bottom right: MedCATtrainer annotation projects number of con-
cepts seen during human annotation vs number of configured concepts that could have
appeared: Covid_COPD (5/2012), Covid_Gastro (8/679), Diabetes_Covid (15/864),
Covid_CTPA_Reports (194/297280)

was still converging to an optimal model. A further observation is the ratio of correct to

incorrect annotations that dip (orange area vs blue area under the black unique forms line)

where MedCATtrainer is presented with a high volume of new word concept forms. This

performance drop is quickly rectified (blue area increases) by subsequent training. Model

performance should be understood by examining the progressive increase in the ratio of

correct/incorrect annotations, rather than the absolute number of incorrect annotations.

For example in Covid_CTPA_Reports, the incorrect ratio area (orange) looks largely flat,

however, performance is slowly improving as correct annotation ratios per document are

improving (blue area is larger than orange).

Subsequent error analysis found the causes of the performance drops shown i.e. the

sharp rises in incorrect orange area vs blue correct area under the word forms line. In

the Covid_Gastro project, our clinical annotators marked “ileal Crohn’s” incorrect for

Crohn’s disease despite it being a sub-type of the more general Crohn’s disease concept,
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and marked “Previous medical history: UC” as incorrect for ulcerative colitis. Both of

these could arguably be marked correct. In our Diabetes_Covid project we see annotators

that mark examples such as “episode in diabetic clinic” and “referred to medics by diabetic

reg” where the condition is being used as an adjective so was likely marked incorrect as it

is not directly describing a condition experienced by the patient. These are confusing for

the MedCAT model, and should actually be marked as correct and left to a meta annotation

to determine patient experience.

3.4.2 MedCAT Downstream Clinical Research

CogStack and the wider research group has utilised both the data availability and newly

developed and trained MedCAT models and associated workflow provided by MedCAT-

trainer to support clinical research before and during the Covid-19 pandemic. CogStack

alerts provided early indications of upsurges ahead of lab results and trending terms could

be identified such as ‘anosmia’ - now a common symptom alongside Covid-19.

As the pandemic was beginning to impact the King’s College Hospital emergency ward

we were able to support important, time-critical research to answer priority questions such

as whether angiotensin-converting enzyme inhibitors (ACE-i) were still safe and did not

lead to increased Covid-19 severity risk [11]. ACE-Is are common drugs used within the

treatment plan of common conditions such as high blood pressure, certain chronic kidney

conditions, coronary artery disease and heart failure and so are frequently prescribed and

taken by groups that are known to be particularly susceptible to severe Covid-19 cases. It

was well understood that SARS-CoV and SARS-Cov-2 i.e. Covid-19, enter host cells via

the ACE-2 receptor. Therefore, it was hypothesised that ACE-Is may lead to increased

Covid-19 viral load therefore to greater severity risk. CogStack and MedCAT enabled

rapid analysis of patient data incoming to King’s College Hospital. CogStack supported

searching and data extraction before Covid-19 even had a consistent name within the

EHR and before laboratory testing was consistently available. MedCAT allowed for rapid
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identification, extraction and contextualisation of comorbidity concepts allowing us to

come to the conclusion there was no evidence of increased severity of Covid-19 outcomes

for those on ACE-Is.

A further study used again data extracted from the KCH CogStack and MedCAT

extracted comorbidities for the assessment of the early warning scoring system of NEWS -

a system for risk stratification of Covid-19 patients recommended in the UK at the time

[71]. We found that predictive risk could be improved by including readily available

blood and physiological parameters such as supplemental oxygen flow rate, urea, age,

oxygen saturation) and MedCAT extracted commodities such as hypertension, diabetes

cardiovascular, respiratory and kidney disorders [25].

Another study characterised the various biological responses of admitted Covid-19

patients at KCH again extracting common relevant comorbidities. We found 5 distinct

classes of patient, detailing specific biological responses at each class, the rate at which

each were admitted to the ICU and the prevalence of comorbidities across each class. We

concluded further research would be required for identifying potential early interventions

for classes of patients to improve in-hospital outcomes [165].

A final study at South London and Maudsley NHS Foundation Trust (SLaM) used

MedCAT extracted physical health conditions across a large cohort of patients (n=17,500)

diagnosed with serious mental illness between 2007 and 2018. We extracted 21 common

physical health conditions with F1 score at or above 0.9 for all conditions. This study

found the 40% of the cohort had at least one physical health i.e. multi-morbidity, with 20%

having complex multimorbidity, i.e. two or more physical health conditions alongside their

SMI diagnosis [12].

3.5 Summarisation via MedCAT Models

Throughout this chapter I have shown our novel toolkit and associated workflow for the

development, validation, fine-tuning and application of clinical NLP models. These models
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extract clinical terms from any configured terminology and provided free-text document. I

have often found that the precise location of the clinical concept, i.e. the exact span of text

that MedCAT has identified, linked and contexualised is not important for downstream use.

Users of these models are typically only interested at a patient admission or the patient

level entirely if a condition is chronic for example. I consider this usage of the model

as a form of primitive summary often centered around summarising patient diagnosis,

symptoms, findings, or medications.

The next chapter describes a downstream use case of such a summarisation system to

improve current administrative processes that is currently performed manually.



Chapter 4

Existing Clinical Summarisation Tasks:

Clinical Coding

EHR free-text’s primary purpose is for direct patient care. A secondary purpose uses

records for hospital administration and billing for remuneration of care provided. This

involves extracting and summarising a patient episode where an episode is defined by

one or more encounters with a service in a hospital care environment. For an inpatient

multi-day stay this could involve multiple visits from various clinical teams: clinical

specialists, surgery, nursing, radiology etc. A single episode can span an inpatient stay over

multiple days generating many documents for each healthcare worker encounter or simply

an outpatient could simply be one or two encounters and the associated documentation.

There is potentially a huge variety in complexity from one episode to the next.

4.1 The Clinical Coding Process

In the UK entities from taxonomies such as ICD-10 and OPCS-4, as first discussed in

Section 3.1, are assigned by clinical coders to patient episodes. This process effectively

summarises the set of diagnoses and procedures / interventions for each episode. Clinical

coding (CC) requires clinical knowledge of the words and phrases describing diagnoses
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and procedures, specific training of the coding rules, and of specific national and local

priorities, but the role is not technically clinical. Meaning coders cannot make clinical

inferences or judgements and assign a code for a diagnosis or intervention unless it is

explicitly written within the notes and confirmed by clinical staff. For example, if a

diagnosis is written ‘likely to be pulmonary edema’, or ‘possible pulmonary edema’, then

this cannot be assigned a clinical code [157].

Specialist knowledge and growing demand for coding of administered care has resulted

in a staff shortage [109] suggesting a need for improvements to the coding function

from multiple perspectives [119]. One such perspective is the integration and usage of

technology for computer assisted coding (CAC), and to move away from the fully manual,

labour-intensive, error prone processes currently used. A recent literature review suggests

CAC could improve data quality, streamline the process, and further develop the careers of

clinical coders [23]. This review also suggested significant hurdles for CAC integration,

including ongoing monitoring of the systems and retraining of existing staff.

Figure 4.1 shows the current coding process for a single admission to discharge, the

aggregation of the care notes and coding, then the downstream uses of coded data for

provider remuneration alongside collection for local and national clinical research and care

planning databases. As suggested the coding function sits within its own function and does

not impact patient care directly and similar to other data collected for local or national

purposes the incentives for collection of high quality, clean and complete data are often

not top-of-mind [109].

Clinical coding is therefore a task of document or multi-document level extraction

of codes from clinical text. The NER+L problem and MedCAT methodology posed in

Chapter 3 provides mention-level extraction of clinical codes from text, that is a code is

specifically assigned to a contiguous block of text within specific document. To convert

this approach to a clinical coding required output, mention-level codes can be aggregated

and deduplicated. A specifically designed document or multi-document classification
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Fig. 4.1 A visual of the clinical coding process and downstream use of assigned codes
applicable to large proportion of global healthcare.

system might be required where clinical codes are combinations of multiple spans of text

within or across documents.

4.2 Clinical Coding and NLP Models

Clinical coding has recently attracted increased attention from NLP researchers. I believe

this is motivated by: 1) the easy formulation of clinical coding as challenging multi-

document, multi-label classification problem, 2) the wealth of ‘labelled’ data that is

readily available through current clinical coding processes, allowing researchers to develop,

test and benchmark models against consistent data, and 3) the problem is a real-world

application of NLP that could assist a currently manual and labour-intensive process.

However, upon review of the literature the majority of the AI / NLP approaches

proposed have consistent shortcomings [162, 10, 97, 24, 59]. Firstly, the majority of

studies only report results on MIMIC-III. This is problematic as the dataset is only from

a single US based site, only covers the ICU department between 2001-2012, and relies

on the older ICD-9 taxonomy that has now been decommissioned in favour of version 10.

There is a lack of empirical evidence to suggest these models will be successful across

other sites, clinical specialties or geographical locations.

Secondly, diagnosis and procedure codes are often treated as group of equally plausible

labels. This is contrary to what happens in reality. For example, a procedure or intervention

code that is relevant for a neonate would only be applied to a patient that is neonatal. Most
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modern deep learning approaches rely on data intensive approaches to learn these ‘hard’

rules. Whereas, clinical coders can use both rule-based and ‘data‘ or experience driven

approaches to assign codes.

Thirdly, prior NLP approaches treat each clinical code as equally important. In reality

clinical coders are tasked with coding the primary diagnosis and primary intervention

/ procedure then secondary diagnoses and procedures / interventions are coded. The

importance of some codes could be included within a loss function of a given model

to weight towards certain classes, but this importance is actually often more dynamic

in clinical coding practise. For long and complex episodes coding all of the secondary

diagnoses is less important than coding secondary conditions in an inpatient day-case for

example.

Finally, there is little to no consideration of how the NLP model will be deployed,

maintained and integrated into a clinical coding workflow. I accept that a research paper

cannot contain a complete plan for roll-out and maintenance, however, the NLP models

discussed often present predictions without explicit reference to where in the text the

predicted assignment came from. An important constraint in the coding process is that

clinical coders cannot infer the diagnosis or procedure, it must be within the text.

A recent comprehensive literature review of automated coding systems and CACs

shows the breadth and depth of work carried out within the clinical NLP community [60].

The authors conclude with similar thoughts as I have listed above.

4.3 Exploring the Suitability of MIMIC-III for Clinical

Coding

The next published work investigated focused on the usage of MIMIC-III as a data source

for training and evaluating CAC systems. I critically analyse the ICD-9 dataset arguing

the lack of a ‘gold-standard’, double annotated and agreed upon set of codes makes the
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dataset a ‘silver standard’ dataset with potential issues for generalisability particularly for

those methods that only use this dataset. This work fits alongside an important recent

observation, suggesting the focus of AI / NLP researchers is skewed towards model

development rather than on high quality, well understood datasets [126]. This observation

is especially important in healthcare as this is a high stakes environment where algorithmic

predictions even if not directly impacting patient care, such as clinical coding, can have

downstream impact through the planning or reprioritization of care at local and national

levels.
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Abstract

Clinical coding is currently a labour-intensive,
error-prone, but critical administrative process
whereby hospital patient episodes are manu-
ally assigned codes by qualified staff from
large, standardised taxonomic hierarchies of
codes. Automating clinical coding has a long
history in NLP research and has recently seen
novel developments setting new state of the art
results. A popular dataset used in this task is
MIMIC-III, a large intensive care database that
includes clinical free text notes and associated
codes. We argue for the reconsideration of the
validity MIMIC-III’s assigned codes that are
often treated as gold-standard, especially when
MIMIC-III has not undergone secondary vali-
dation. This work presents an open-source, re-
producible experimental methodology for as-
sessing the validity of codes derived from
EHR discharge summaries. We exemplify the
methodology with MIMIC-III discharge sum-
maries and show the most frequently assigned
codes in MIMIC-III are under-coded up to
35%.

1 Introduction

Clinical coding is the process of translating state-
ments written by clinicians in natural language to
describe a patient’s complaint, problem, diagnosis
and treatment, into an internationally-recognised
coded format (World Health Organisation, 2011).
Coding is an integral component of healthcare and
provides standardised means for reimbursement,
care administration, and for enabling epidemiolog-
ical studies using electronic health record (EHR)
data (Henderson et al., 2006).

Manual clinical coding is a complex, labour-
intensive, and specialised process. It is also error-
prone due to the subtleties and ambiguities com-
mon in clinical text and often strict timelines im-
posed on coding encounters. The annual cost of
clinical coding is estimated to be $25 billion in the
US alone (Farkas and Szarvas, 2008).

To alleviate the burden of the status quo of man-
ual coding, several Machine learning (ML) auto-
mated coding models have been developed (Larkey
and Croft, 1996; Aronson et al., 2007; Farkas and
Szarvas, 2008; Perotte et al., 2014; Ayyar et al.,
2016; Baumel et al., 2018; Mullenbach et al., 2018;
Falis et al., 2019). However, despite continued in-
terest, translation of ML systems into real-world
deployments has been limited. An important factor
contributing to the limited translation is the fluctuat-
ing quality of the manually-coded real hospital data
used to train and evaluate such systems, where large
margins of error are a direct consequence of the
difficulty and error-prone nature of manual coding.
To our knowledge, the literature contains only two
systematic evaluations of the quality of clinically-
coded data, both based on UK trusts and showing
accuracy to range between 50 to 98% Burns et al.
(2012) and error rates between 1%-45.8% CHKS
Ltd (2014) respectively. In Burns et al. (2012),
the actual accuracy is likely to be lower because
the reviewed trusts used varying statistical evalu-
ation methods, validation sources (clinical text vs
clinical registries), sampling modes for accuracy
estimation (random vs non-random), and the qual-
ity of validators (qualified clinical coders vs lay
people). CHKS Ltd (2014) highlight that 48% of
the reviewed trusts used discharge summaries alone
or as the primary source for coding an encounter,
to minimise the amount of raw text used for code
assignment. However, further portions of the docu-
mented encounter are often needed to assign codes
accurately.

The Medical Information Mart for Intensive
Care (MIMIC-III) database (Johnson et al., 2016)
is the largest free resource of hospital data and con-
stitutes a substantial portion of the training of au-
tomated coding models. Nevertheless, MIMIC-III
is significantly under-coded for specific conditions
(Kokotailo and Hill, 2005), and has been shown
to exhibit reproducibility issues in the problem of
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mortality prediction (Johnson et al., 2017). There-
fore, serious consideration is needed when using
MIMIC-III to train automated coding solutions.

In this work, we seek to understand the limita-
tions of using MIMIC-III to train automated cod-
ing systems. To our knowledge, no work has at-
tempted to validate the MIMIC-III clinical coding
dataset for all admissions and codes, due to the
time-consuming and costly nature of the endeavour.
To illustrate the burden, having two clinical coders,
working 38 hours a week re-coding all 52,726 ad-
mission notes at a rate of 5 minutes and $3 per
document, would amount to ∼$316,000 and ∼115
weeks work for a ‘gold standard’ dataset. Even
then, documents with a low inter-annotator agree-
ment would undergo a final coding round by a
third coder, further raising the approximate cost
to ∼$316,000 and stretching the 70 weeks.

In this work, we present an experimental eval-
uation of coding coverage in the MIMIC-III dis-
charge summaries. The evaluation uses text ex-
traction rules and a validated biomedical named
entity recognition and linking (NER+L) tool, Med-
CAT (Kraljevic et al., 2019) to extract ICD-9 codes,
reconciling them with those already assigned in
MIMIC-III. The training and experimental setup
yield a reproducible open-source procedure for
building silver-standard coding datasets from clin-
ical notes. Using the approach, we produce a
silver-standard dataset for ICD-9 coding based on
MIMIC-III discharge summaries.

This paper is structured as follows: Section 2
reviews essential background and related work in
automated clinical coding, with a particular focus
on MIMIC-III. Section 3 presents our experimental
setup and the semi-supervised development of a sil-
ver standard dataset of clinical codes derived from
unstructured EHR data. The results are presented
in Section 4, while Section 5 discusses the wider
impact of the results and future work.

2 Background

2.1 Clinical Coding Overview

The International Statistical Classification of Dis-
eases and Health Related Problems (ICD) provides
a hierarchical taxonomic structure of clinical ter-
minology to classify morbidity data (World Health
Organisation, 2011). The framework provides con-
sistent definitions across global health care services
to describe adverse health events including illness,
injury and disability. Broadly, patient encounters

with health services result in a set of clinical codes
that directly correlate to the care provided.

Top-level ICD codes represent the highest level
of the hierarchy, with ICD-9/10 (ICD-10 being the
later version) listing 19 and 21 chapters respec-
tively. Clinically meaningful hierarchical subdivi-
sions of each chapter provide further specialisation
of a given condition.

Coding clinical text results in the assignment of
a single primary diagnosis and further secondary
diagnosis codes (World Health Organisation, 2011).
The complexity of coding encounters largely stems
from the substantial number of available codes. For
example, ICD-10-CM is the US-specific extension
to the standard ICD-10 and includes 72,000 codes.
Although a significant portion of the hierarchy cor-
responds to rare conditions, ‘common’ conditions
to code are still in the order of thousands.

Moreover, clinical text often contains special-
ist terminology, spelling mistakes, implicit men-
tions, abbreviations and bespoke grammatical rules.
However, even qualified clinical coders are not per-
mitted to infer codes that are not explicitly men-
tioned within the text. For example, a diagnostic
test result that indicates a condition (with the con-
dition not explicitly written), or a diagnosis that
is written as ‘questioned’ or ‘possible’ cannot be
coded.

Another factor contributing to the laborious na-
ture of coding is the large amount of duplication
present in EHRs, as a result of features such as
copy & paste being made available to clinical staff.
It has been reported that 20-78% of clinicians dupli-
cate sections of records between notes (Bowman,
2013), subsequently producing an average data re-
dundancy of 75% (Zhang et al., 2017).

2.2 MIMIC-III - a Clinical Coding Database

MIMIC-III (Johnson et al., 2016) is a de-identified
database containing data from the intensive care
unit of the Beth Israel Medical Deaconess Center,
Boston, Massachusetts, USA, collected 2001-12.
MIMIC-III is the world’s largest resource of freely-
accessible hospital data and contains demograph-
ics, laboratory test results, procedures, medications,
caregiver notes, imaging reports, admission and dis-
charge summaries, as well as mortality (both in and
out of the hospital) data of 52,726 critical care pa-
tients. MIMIC provides an open-source platform
for researchers to work on real patient data. At the
time of writing, MIMIC-III has over 900 citations.
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2.3 Automated Clinical Coding

Early ML work on automated clinical coding con-
sidered ensembles of simple text classifiers to pre-
dict codes from discharge summaries (Larkey and
Croft, 1996). Rule-based models have also been
formulated, by directly replicating coding manuals.
A prominent example of rule-based models is the
BioNLP 2007 shared task (Aronson et al., 2007),
which supplied a gold standard labelled dataset
of radiology reports. The dataset continues to be
used to train and validate ML coding. For example,
Kavuluru et al. (2015) used the dataset in addition
to two US-based hospital EHRs. Although the two
additional datasets used by Kavuluru et al. (2015)
were not validated to a gold standard, they are re-
flective of the diversity found in clinical text. Their
largest dataset contained 71,463 records, 60,238
distinct code combinations and had an average doc-
ument length of 5303 words.

The majority of automated coding systems are
trained and tested Using MIMIC-III. Perotte et al.
(2014) trained hierarchical support vector machine
models on the MIMIC-II EHR (Saeed et al., 2011),
the earlier version of MIMIC. The models were
trained using the full ICD-9-CM terminology, cre-
ating baseline results for subsequent models of
0.395 F1-micro score. Ayyar et al. (2016) used
a long-short-term-memory (LSTM) neural network
to predict ICD-9 codes in MIMIC-III. However,
Ayyar et al. (2016) cannot be directly compared to
former methods as the model only predicts the top
nineteen level codes.

Methodological developments continued to use
MIMIC-III with Tree-of-sequence LSTMs (Xie
and Xing, 2018), hierarchical attention gated re-
current unit (HA-GRU) neural networks (Baumel
et al., 2018) and convolutional neural networks
with attention (CAML) (Mullenbach et al., 2018).
The HA-GRU and CAML models were directly
compared with (Perotte et al., 2014), achieving
0.405 and 0.539 F1-micro respectively. A recent
empirical evaluation of ICD-9 coding methods pre-
dicted the top fifty ICD-9 codes from MIMIC-III,
suggesting condensed memory networks as a supe-
rior network topology (Huang et al., 2018).

3 Semi-Supervised Extraction of Clinical
Codes

In this section, we describe the data preprocessing,
methodology and experimental design for evaluat-
ing the coding quality of MIMIC-III discharge sum-

maries. We also describe the semi-supervised cre-
ation of a silver-standard dataset of clinical codes
from unstructured EHR text based on MIMIC-III
discharge summaries.

3.1 Data Preparation

Discharge summary reports are used to provide
an overview for the given hospital episode. Au-
tomated coding systems often only use discharge
reports as they contain the salient diagnostic text
(Perotte et al., 2014; Baumel et al., 2018; Mullen-
bach et al., 2018) without over burdening the model.
MIMIC-III discharge summaries are categorised
distinctly from other clinical text. The text is of-
ten structured with section headings and content
section delimiters such as line breaks. We identify
Discharge Diagnosis (DD) sections in the majority
of discharge summary reports 92% (n=48,898) us-
ing a simple rule based approach. These sections
are lists of diagnoses assigned to the patient during
admission. Xie and Xing (2018) previously used
these sections to develop a matching algorithm
from discharge diagnosis to ICD code descriptions
with moderate success demonstrating state-of-the-
art sensitivity (0.29) and specificity (0.33) scores.
For the 8% (n=3,828) that are missing these sec-
tions we manually inspect a handful of examples
and observe instances of patient death and admin-
istration errors. The SQL procedures used to ex-
tract the raw data from a locally built replica of the
MIMIC-III database and the extraction logic for
DDs are available open-source as part of this wider
analysis1.

Table 1 lists example extracted DDs. There is a
large variation in structure, use of abbreviations and
extensive use of clinical terms. Some DDs list the
primary diagnosis alongside secondary diagnosis,
whereas others simply list a set of conditions.

3.2 Semi-Supervised Named Entity
Recognition and Linkage Tool

We use MedCAT (Kraljevic et al., 2019), a
pre-trained named entity recognition and linking
(NER+L) model, to identify and extract the cor-
responding ICD codes in a discharge summary
note. MedCAT utilises a fast dictionary-based
algorithm for direct text matches and a shallow
neural network concept to learn fixed length dis-
tributed semantic vectors for ambiguous text spans.
The method is conceptually similar to Word2Vec

1https://tinyurl.com/t7dxn3j
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Extracted Discharge Diag-
nosis

Admission
ID

CAD now s/p CABG
HTN, DM, Osteoarthritis,
Dyslipidemia

102894

Left convexity, tento-
rial, parafalcine Subdural
hematoma

161919

Primary Diagnoses:
1. Acute ST segment Eleva-
tion Myocardial Infarction
Secondary Diagnoses:
1. Hypertension
2. Hyperlipidemia

152382

Seizures. 132065

Table 1: Example discharge diagnosis subsections ex-
tracted from MIMIC-III discharge summaries

(Mikolov et al., 2013) in that word representa-
tions are learnt by detecting correlations of context
words, and learnt vectors exhibit the semantics of
the underlying words. The tool can be trained in
a unsupervised or a supervised manner. However,
unlike Word2Vec that learns a single representa-
tion for each word, MedCAT enables the learn-
ing of ‘concept’ representations by accommodat-
ing synonymous terms, abbreviations or alternative
spellings.

We use a MedCAT model pre-loaded with the
Unified Medical Language System (Bodenreider,
2004) (UMLS). UMLS is a meta-thesaurus of med-
ical ontologies that provides rich synonym lists
that can be used for recognition and disambigua-
tion of concepts. Mappings from UMLS to the
ICD-92 taxonomy are then used to extract UMLS
concept to ICD codes. Our large pre-trained Med-
CAT UMLS model contains∼1.6 million concepts.
This model cannot be made publicly available due
to constraints on the UMLS license, but can be
trained in an an unsupervised method in ∼1 week
on MIMIC-III with standard CPU only hardware3.

In an effort to keep our analysis tractable we
limit our MedCAT model to only extract the 400
ICD-9 codes that occur most frequently in the
dataset. This equates to 76% (n=48,2379) of to-
tal assigned codes (n=634,709). We exclude the
other 6,441 codes that occur less frequently. Future
work could consider including more of these codes.

2https://bioportal.bioontology.org/ontologies/ICD9CM
3https://tinyurl.com/yadtnz3w

3.3 Code Prediction Datasets
We run our MedCAT model over each extracted
DD subsection. The model assigns each token or
sequence of tokens a UMLS code and therefore
an associated ICD code. In our comparison of the
MedCAT produced annotations with the MIMIC-
III assigned codes we have 3 distinct datasets:

1. MedCAT does not identify a concept and the
code has been assigned in MIMIC-III. Denoted
A NP for ‘Assigned, Not Predicted’.

2. MedCAT identifies a concept and this matches
with an assigned code in MIMIC-III. Denoted
P A for ‘Predicted, Assigned’.

3. MedCAT identifies a concept and this does not
match with an assigned code in MIMIC-III
dataset. Denoted P NA for ‘Predicted, Not As-
signed’.

We do not consider the case where both MedCAT
and the existing MIMIC-III assigned codes have
missed an assignable code as this would involve
manual validation of all notes, and as previously
discussed, is infeasible for a dataset of this size.

3.3.1 Producing the Silver Standard
Given the above initial datasets we produce our
final silver-standard clinical coding dataset by:

1. Sampling from the missing predictions dataset
(A NP) to manually collect annotations where
our out-of-the-box MedCAT model fails to
recognise diagnoses.

2. Fine-tuning our MedCAT model with the col-
lected annotations and re-running on the entire
DD subsection dataset producing updated A NP,
P A, P NA datasets.

3. Sampling from P NA and P A and annotating
predicted diagnoses to validate correctness of
the MedCAT predicted codes.

4. Exclusion of any codes that fail manual valida-
tion step as they are not trustworthy predictions
made by MedCAT.

We use the MedCATTrainer annotator (Searle
et al., 2019) to both collect annotations (stage 1)
and to validate predictions from MedCAT (stage
3). To collect annotations, we manually inspect 10
randomly sampled predictions for each of the 400
unique codes from A NP and add further acronyms,
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Figure 1: The distributions of manually annotated ICD-
9 codes and the assigned codes in MIMIC-III grouped
by top-level ICD-9 axis.

abbreviations, synonyms etc for diagnoses if they
are present in the DD subsection to improve the
underlying MedCAT model. To validate predic-
tions from P A and P NA, we use the MedCAT-
Trainer annotator to inspect 10 randomly sampled
predictions for each of the 179 & 182 unique codes
respectively found. We mark each prediction made
by MedCAT as correct or incorrect and report re-
sults in Section 4.1.

4 Results

The following section presents the distribution
of manually collected annotations from sampling
A NP, our validation of updated P A and P NA
post MedCAT fine-tuning, and the final distribu-
tion of codes found in our produced silver standard
dataset.

Adding annotations to selected text spans di-
rectly adds the spans to the MedCAT dictionary,
thereby ensuring further text spans of the same con-
tent are annotated by the model - if the text span
is unique. We collect 864 annotations after review-
ing 4000 randomly sampled DD notes from the
A NP (Assigned, Not Predicted) dataset. 21.6%
of DDs provide further annotations suggesting that
the majority of missed codes lie outside the DD
subsection, or are incorrectly assigned.

Figure 1 shows the distributions of manually
collected code annotations and the current MIMIC-
III set of clinical codes, grouped by their top-level
axis as specified by ICD-9-CM hierarchy.

We collect proportionally consistent annotations
for most groups, including the 390-459 chapter
(Diseases Of The Circulatory System), which is
the top occurring group in both scales. However,
for groups such as 240-279 (endocrine, nutritional

and metabolic diseases) and 460-519 (diseases of
the respiratory system) we see proportionally fewer
manually collected examples despite the high num-
ber of occurrence of codes assigned within MIMIC-
III. We explain this by the DD subsection lacking
appropriate detail to assign the specific code. For
example codes under 250.* for diabetes mellitus
and the various forms of complications are assigned
frequently but often lack the appropriate level of
detail specifying the type, control status and the
manifestation of complication.

Using the manual amendments made on the 864
new annotations, we re-run the MedCAT model
on the entire DD subsection dataset, producing
updated P NA, P A and A NP datasets. We ac-
knowledge A NP likely still includes cases of ab-
breviations, synonyms as we only subsampled 10
documents per code allowing for further improve-
ments to the model.

The MedCAT fine-tuning process was run until
convergence as measured by precision, recall and
F1 achieving scores 0.90, 0.92 and 0.91 respec-
tively on a held out a test-set with train/test splits
80/20. The fine-tuning code is made available4.
Annotations are available upon request given the
appropriate MIMIC-III licenses.

4.1 P A & P NA Validation
We use the MedCATTrainer interface to validate
our MedCAT model predictions in the ‘Predicted,
Assigned’ (P A) and ‘Predicted, Not Assigned’
(P NA) datasets. We sample (a maximum of) 10
unique predictions for each ICD-code resulting in
179 & 182 ICD-9 codes and 1588 & 1580 man-
ually validated predictions from P A and P NA
respectively. The validation of code assignment is
performed by a medical informatics PhD student
with no professional clinical coding experience and
a qualified clinical coder, marking each term as
correct or incorrect. We achieve good agreement
with a Cohen’s Kappa of 0.85 and 0.8 resulting in
95.51% and 87.91% marked correct for P A and
P NA respectively. We exclude from further exper-
iments all codes that fail this validation step as they
are not trustworthy predictions made by MedCAT.

4.2 Aggregate Assigned Codes & Codes
Silver Standard

We proportionally predict ∼10% (n=42,837) of to-
tal assigned codes (n=432,770). We predict ∼16%

4https://github.com/tomolopolis/MIMIC-III-Discharge-
Diagnosis-Analysis/blob/master/Run MedCAT.ipynb
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of total assigned codes (n=258,953) if we only con-
sider the 182 codes that resulted in at least one
matched assignment to those present in the MIMIC-
III assigned codes.

We label and gather our three datasets into a sin-
gle table, with an extra column called ‘validated’,
with values: ‘yes’ for codes that have matched with
an assigned code (P A), ‘new code’ for newly dis-
covered codes (P NA), and ‘no’ for codes that we
were not able to validate (A NP). We have made
this silver-standard dataset available alongside our
analysis code5.

4.3 Undercoding in MIMIC-III
This work aims to identify inconsistencies and vari-
ability in coding accuracy in the current MIMIC-III
dataset. Ultimately to rigorously identify undercod-
ing of clinical text full, double blind manual coding
would be performed. However, as previously dis-
cussed, this is prohibitively expensive.

Comparing the codes predicted by MedCAT to
the existing assigned codes enables the develop-
ment of an understanding of specific groups of
codes that exhibit possible undercoding. In this
section we firstly show the effectiveness of our
method in terms of DD subsection prediction cov-
erage. We then present our predicted code distri-
butions against the MIMIC-III assigned codes at
the ICD code chapter level, highlighting the most
prevalent missing codes and showing correlations
between document length and prevalence.

4.3.1 Prediction Coverage
MedCAT provides predictions at the text span level,
with only one concept prediction per span. We can
therefore calculate the breadth of coverage of our
predictions across all DD subsections. Figure 2
shows the proportion of DD subsection text that
are included in code predictions. We note the 100%
proportion (n=2105) is 75% larger than the next
largest indicating that we are often utilising the
entire DD subsection to suggest codes although the
majority of the coverage distribution is around the
40-50% range.

We find a token length distribution of DD sub-
sections with µ =14.54, σ =15.9, Med = 10 and
IQR = 14 and a code extraction distribution with
µ = 3.6 and σ = 3.1, Med = 3 and IQR = 4
suggesting the DD subsections are complex and
often list multiple conditions of which we identify,
on average, 3 to 4 conditions.

5https://tinyurl.com/u8yae8n

Figure 2: Left: Counts of admissions and the associ-
ated % of characters covered by MedCAT code predic-
tions. Right:Distribution of DD token lengths

Figure 3: Proportions of matching predictions against
total number of assigned codes per admission.

4.3.2 Predicted & Assigned

Figure 3 shows the distributions of the number
of assigned codes and the proportion of matches
grouped into buckets of 10% intervals. We see a
high proportion of matches in assigned codes in the
1-40% range, indicating that although the DD sub-
section does contribute to the assigned ICD codes,
many of the assigned codes are still missed. We
exclude the admissions that had 0 matched codes
and discuss this result further in Section 4.3.4.

If we order codes by the number of predicted
and assigned we find the three highest occurring
codes (4019, 41404, 4280) in MIMIC-III also rank
highest in our predictions. However, we note that
these three common codes only yield 25-39% of
their total assigned occurrence, which could be ex-
plained by these chronic conditions not being listed
in the DD subsection and referred elsewhere in the
note. If we normalise predictions by their preva-
lence, we are most successful in matching specific
conditions applicable to preterm newborns (7470,
7766), pulmonary embolism (41519) and liver can-
cer (1550), all of which we match between 69-55%
but rank 114-305 in total prevalence. We suggest
these diagnoses are either acute, or the primary
cause of an ICU admission so will be specified in
the DD subsection.
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Figure 4: Predicted, Assigned Codes grouped by top-
level code group vs total assigned codes

Figure 5: Predicted, Not Assigned Codes grouped by
top-level code group vs total assigned codes

We also group the predicted codes into their re-
spective top-level ICD-9 groups in Figure 4 and ob-
serve that predicted assigned codes display a simi-
lar distribution to total assigned codes. We quantify
the difference in distributions via the Wasserstein
metric or ‘Earth Movers Distance’(Ramdas et al.,
2015). This metric provides a single measure to
compare the difference in our 3 datasets distribu-
tions when compared with the current assigned
code distribution. We compute a small 2.7× 10−3

distance between both distributions, suggesting
our method proportionally identifies previously as-
signed codes from the DD subsection alone.

4.3.3 Predicted & Not Assigned

This dataset highlights codes that may have been
missed from the current assigned codes.

Figure 5 shows that the distribution of predicted
but not assigned codes is minimally different for
most codes, supporting our belief that the MIMIC-
III assigned codes are not wholly untrustworthy,
but are likely under-coded in specific areas.

From this dataset we calculate how many exam-
ples of each code that has potentially been missed,
or potentially under-coded. For the 10 most fre-
quently assigned codes we see 0-35% missing oc-
currences. We also identify the most frequent
code 4019 (Unspecified Essential Hypertension)
has 16% or 3312 potentially missing occurrences.

To understand if DD subsection length impacts
the occurrence of ‘missed’ codes we first calculate
a Pearson-Correlation coefficient of 0.17 for DD
subsection line length and counts of assigned codes
over all admissions. This suggests a weak posi-
tive correlation between admission complexity and
number of existing assigned codes.

In contrast we find a stronger positive correlation
of 0.504 for predicted and not assigned codes and
DD subsection line length. This implies that where
an episode has a greater number of diagnoses or
the complexity of an admission is greater, there is
a likelihood to result in more codes being missed
during routine collection.

We compute the Wasserstein metric between
these two distributions at 1.6× 10−2. This demon-
strates a degree of similarity between distributions
albeit is 8x further from the Predicted and Assigned
dataset distance presented in Section 4.3.2. We ex-
pect to see a larger distance here as we are detecting
codes that are indicated in the text but have been
missed during routine code assignment.

4.3.4 Assigned & Not Predicted
We observe that the distribution of assigned and
not predicted codes largely mirrors the distribu-
tion of total codes assigned in MIMIC-III with a
Wasserstein distance of 2.7× 10−3 that is similar
to the distance observed in in our Predicted and
Assigned Section 4.3.2) dataset. This suggests that
our method is proportionally consistent at not an-
notating codes that have likely been assigned from
elsewhere in the admission, but may also be incor-
rectly assigned.

5 Discussion

On aggregate, the predicted codes by our MedCAT
model suggest that the discharge diagnosis sections
listed in 92% of all discharge notifications are not
sufficient for full coding of an episode. Unsur-
prisingly, this confirms that clinicians infrequently
document all codeable diagnoses within the dis-
charge summary. Although, as previously stated,
coders are not permitted to make clinical infer-
ences. Therefore, to correctly assign a code, the
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diagnoses must be present within the documented
patient episode within the structured or unstruc-
tured data.

However, the positive correlation between doc-
ument length and number of predicted codes in-
dicates that missed codes are more prevalent in
highly complex cases with many diagnoses. From
a coding workflow perspective, coders operate un-
der strict time schedules and are required to code a
minimum number of episodes each day. Therefore,
it logically follows that the complexity of a case
directly correlates to the number of codes missed
during routine collection.

Looking at individual code groups we find 240-
279 is not predicted proportionally with assigned
codes both in P A and P NA. We explain this as
follows. Firstly, DD subsections generally convey
clinically important diagnoses for follow-up care.
Certain codes such as (250.*) describe diabetes
mellitus with specific complications, but the DD
subsection will often only describe the diagnoses
‘DMI’ or ‘DMII’. Secondly, ICU admissions are
for individuals with severe illness and therefore are
likely to have a high degree of co-morbidity. This
is implied by the majority of patients (74%) are
assigned between 4 and 16 codes.

We also observe E000-E999 and V01-V99 codes
are disproportionately not predicted. However, this
is expected given that both groups are supplemen-
tary codes that describe conditions or factors that
contribute to an admission but would likely not be
relevant for the DD subsection.

In contrast, we observe a disproportionately
large number of predictions for 001-139 (Infectious
and Parasitic Diseases). This is primarily driven
by 0389 (Unspecified septicemia). A proportion
of these predictions may be in error as the specific
form of septicemia is likely described in more de-
tail elsewhere in the note and therefore coded as
the more specific form.

5.1 Method Reproducibility & Wider Utility

Inline with the suggestions of Johnson et al. (2017),
the original authors of MIMIC-III, we have at-
tempted to provide the research community all
available materials to reproduce and build upon
our experiments and method for the development
of silver standard datasets. Specifically, we have
made the following available as open-source: the
SQL scripts to extract the raw data from a replica
of the MIMIC-III database, the script required to

parse DD subsections, an example script to build
a pre-trained MedCAT model, the script required
to run MedCAT on the DD subsections, load into
the annotator and finally re-run MedCAT and per-
form experimental analysis alongside outputting
the silver standard dataset6.

Given these materials it is possible for re-
searchers to replicate and build upon our method,
or directly use the silver standard dataset in future
work that investigates automated clinical coding us-
ing MIMIC-III. The silver standard dataset clearly
marks if each assigned code has been validated or
not, or if it is a new code according to our method.

6 Conclusions & Future Work

This work highlighted specific problems with using
MIMIC-III as a dataset for training and testing an
automated clinical coding system that would limit
model performance within a real deployment.

We identified and deterministically extracted the
discharge diagnosis (DD) subsections from dis-
charge summaries. We subsequently trained an
NER+L model (MedCAT) to extract ICD-9 codes
from the DD subsections, comparing the results
across the full set of assigned codes. We find our
method covers 47% of all tokens, considering we
only take 400 of the ∼7k unique codes and per-
form minimal data cleaning of the DD subsection.
We have shown in Section 4.3.2 and 4.3.3 that the
MedCAT predicted codes are proportionally inline
with assigned codes in MIMIC-III.

Interestingly, we found a 0.504 positive correla-
tion between DD length and the number of codes
predicted by MedCAT, but not assigned in MIMIC-
III. This result can be understood by observing that
the ICU admissions in MIMIC-III can be extremely
complex, with up to 30 clinical codes assigned to a
single episode. The DD subsections alone can con-
tain up to 50 line items indicating highly complex
cases where codes could easily be missed.

We found that the code group 390-459 (Diseases
of the Circulatory System) is both the most as-
signed group and the group of codes where there
are the most missing predictions from our model.
Furthermore, codes such as Hypertension (4019),
Sepsis and Septicemia (0389, 99591), Gastroin-
testinal hemorrhage (95789), Chronic Kidney dis-
ease (5859), anemia (2859) and Chronic obstruc-
tive asthma (49320) are all frequently assigned but

6https://github.com/tomolopolis/MIMIC-III-Discharge-
Diagnosis-Analysis
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are also the highest occurring conditions that ap-
pear in the DD diagnosis subsection but are not
assigned in the MIMIC-III dataset. This suggests
that MIMIC-III exhibits specific cases of under-
coding, especially with codes that are frequently
occurring in patients but are not likely to be the
primary diagnosis for an admission to the ICU.

As we only use the DD section, there are many
codes which likely appear elsewhere in the note
that we cannot assign. Although 92% of discharge
summaries contain DD subsections we only match
∼ 16% of assigned codes. We suggest this is due
to: our NER+L model lacking the ability to identify
more synonyms and abbreviations for conditions,
the DD subsections lacking enough detail to as-
sign codes and in some occasions, little evidence to
suggest a code assignment. Our textual span cover-
age, presented in Section 4.3.1 demonstrates that
we often cover all available discharge diagnosis,
although there is still room for improvement as the
majority of the coverage distribution is around the
50% mark.

For future work we foresee applying the same
method to either the entire discharge summary or
more specific sections such as ‘previous medical
history’ to surface chronic codeable diagnoses that
could be validated against the current assigned code
set. Researchers would however likely need to
address false positive code predictions as clinical
coding requires assigned codes to be from current
conditions associated with an admission.

In conclusion, this work has found that fre-
quently assigned codes in MIMIC-III display signs
of undercoding up to 35% for some codes. With
this finding we urge researchers to continue to
develop automated clinical coding systems using
MIMIC-III, but to also consider using our silver
standard dataset or build on our method to further
improve the dataset.

Acknowledgments

RD’s work is supported by 1.National Institute
for Health Research (NIHR) Biomedical Research
Centre at South London and Maudsley NHS Foun-
dation Trust and King’s College London. 2. Health
Data Research UK, which is funded by the UK
Medical Research Council, Engineering and Phys-
ical Sciences Research Council, Economic and
Social Research Council, Department of Health
and Social Care (England), Chief Scientist Of-
fice of the Scottish Government Health and Social

Care Directorates, Health and Social Care Research
and Development Division (Welsh Government),
Public Health Agency (Northern Ireland), British
Heart Foundation and Wellcome Trust. 3. The
National Institute for Health Research University
College London Hospitals Biomedical Research
Centre. This paper represents independent research
part funded by the National Institute for Health
Research (NIHR) Biomedical Research Centre at
South London and Maudsley NHS Foundation
Trust and King’s College London. The views ex-
pressed are those of the author(s) and not necessar-
ily those of the NHS, MRC, NIHR or the Depart-
ment of Health and Social Care.

References
Alan R Aronson, Olivier Bodenreider, Dina Demner-

Fushman, Kin Wah Fung, Vivian K Lee, James G
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4.3.1 Discussion

This paper is limited by only applying the MedCAT model to the discharge diagnosis (DD)

section of the discharge summary note. Early feasibility work suggested using MedCAT

on the entirety of the note would result in many more suggested codes, many of which

would be ‘noise’, that should not be counted as an assignable clinical code as they are not

current / or chronic conditions and should not be coded according to clinical coding rules.

We acknowledge that the DD section can often be a small portion of the the discharge

summary and overall admission notes, and is insufficient to fully code an admission. The

DD section is a good place to start with automated analysis as this is one of the first

sections a human clinical coder will check for diagnosis as it should be a summarised and

prioritised list of all presenting diagnoses. Analysing the DD section alone is useful in

demonstrating where if a code is not assigned to the admission, but is clearly written in

DD section, this is strong evidence of a missed code.

For the other groups of predicted assigned / and assigned but not predicted codes -

these two groups demonstrate that the DD is only sometimes sufficient for complete and

full coding. More analysis could be done to investigate if there are correlations between

patient types, authors, admission complexity etc.

A full gold-standard coding of MIMIC-III would be unfeasibly expensive to complete.

We attempt to compare relative distributions of codes across ICD-9 chapters, whilst also

identifying the specific admissions that are missing these assigned codes, providing the

‘silver standard’ back to the community.

4.4 Computer Assisted Clinical Coding Conclusions

Tools such as MedCAT can support data quality goals and the often associated audit pro-

cesses that follow not only in clinical coding but for clinical, operational or administrative

data efforts. I foresee tools such as MedCAT holding potential for broadly improving
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accuracy e.g. suggesting where codes or clinical data can be automatically verified, or

suggesting a potential false-positive to be flagged for review, completeness e.g. suggesting

additional codes or clinical data that may have been missed, consistency e.g. ensuring

chronic conditions that should consistently appear between care episodes.

A recent study for a stroke clinical audit has already demonstrated this potential.

Researchers used a MedCAT fine-tuned model for common comorbidity concepts and

compared the identification of these against current curation methods [141]. They observed

improvements across all F1 performance scores across all extracted comorbidities when

compared with existing curation methods, suggesting merit in the approach.

So far I have only discussed MedCAT, the toolkit in providing means to extract

structured representations, i.e. SNOMED CT codes, from free-text narratives. I have also

covered the meta-annotation approach that allows for contextualisation of these extracted

terms, such as the diagnosis terms that are further classified to be relevant to the patient, or

perhaps terms that a positive mentions and not negated. I have presented how this method

has broad applications across clinical research and also for the downstream summarisation

use case of clinical coding.

As discussed in Appendix Section A.1, free-text narratives are a rich efficient means to

store and communicate nuanced and detailed information. This is in part why free-text

inputs are often preferred by clinicians where there is no appropriate structured input field.

The next chapter will revisit free-text generation to build further methods to understand the

differences between open-domain and clinical text generation. I also present a final study

on methods to summarise inpatient hospital stays to generate the ‘brief hospital course’

section of a discharge summary.



Chapter 5

Automated text summarisation of EHR

text

Previous chapters have considered methods and their applications for structuring clinical

free-text, a common task performed both during direct patient care and for secondary

purposes such as care audit, clinical research or the administration of healthcare i.e. clinical

coding. However, free-text in the clinical setting is often summarised and enriched during

successive note entries. During a patient episode for direct patient care, often only the most

recent note will be used. For example clinicians might only use the very latest ‘clinical

progress note’ ignoring older notes of the same type. If a patients care transitions from

one department i.e. emergency medicine to a ward, or is discharged from secondary to

primary care, then receiving clinicians will likely read through the ‘discharge summary’

note. This summarises the entire admission outlining the presenting problem, associated

investigations, interventions and finally future follow-up care to be provided elsewhere

[49].

Overall, patient records evolve over time. They are updated periodically, at varying

cadence according to speciality, context and clinical events. Different parts of a patient’s

record are often more useful than others. For example, in the scenario of a patient being

discharged from a secondary care setting to their primary care provider (PCP), the clinician
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(a GP in the UK) will likely only read the discharge report or discharge letter ignoring

the progress, admission or other specialist reports. They would expect that the discharge

summary has already summarised relevant clinical information from previous reports [58].

However, this may not always be the case as a discharge summary could be incomplete, or

the patient condition particularly complex etc. [121] requiring usage of the other notes.

Recent systematic reviews of summarisation methods for EHR text [107, 94] found

proposed systems often did not generate text narratives as a summary. The reviews note that

systems often use a NER+L (e.g. MedCAT) approach of first extracting clinically relevant

terms then use a secondary step to present these extracted terms in either a visualisation

[51, 22] or to complete a predefined template [159, 2].

Summarisation models that output a text narrative as the summary, can either be

extractive - a subset of words, phrases or sentences are selected and combined from the

source text or abstractive - sentences are generated by sampling from a vocabulary via an

autoregressive process. This is discussed more fully in Section 5.3, and have only recently

been applied to clinical texts in limited scenarios.

Abstractive models are called sequence-to-sequence (seq-to-seq) models as they receive

a sequence of source note texts and outputs sequences of output summary text. Seq-to-seq

models have been being trained for radiology report summarisation of the impression

section of a report, from the background and findings sections [167]. This is still early

research, with a long road to be useful from a clinical perspective. System produced

summaries are susceptible to factual errors [168], and best performing systems are still a

long way off to being equivalent to a real radiologist performance [31].
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5.1 Summarisation from an Information Theory Perspec-

tive

Information theory provides a theoretical basis to calculate the information contained

within text S, via an optimal encoding scheme H(S). Further formal definitions are

provided in the following Section 5.2, but information theory underpins many areas in ML

and NLP. For example, cross-entropy allows the calculation of a numerical loss given a loss

function, such as those discussed in Section 2.1.1 and B.1.1, and single numerical value

for the difference between distribution of predictions and the intended label or reference

distribution.

Perplexity is another measure from information theory that is used in language mod-

elling - the task to predict the next token given a sequence of tokens initially discussed in

Section 2.5.2. Perplexity quantifies language model performance over a given corpus and

experimental setup. Perplexity can also be interpreted as the average surprise or branching

factor to encode this information.

Irrespective of the output summary format i.e. free-text or visualisation, the initial step

in building a summary is the identification of the set of relevant entities, their interactions

and their relative importance to one another. Recent work has presented a theoretical

framework for importance in the context of summarisation [106]. This framework presents

an information theoretic framework to assess importance through definitions of redundancy,

relevance and informativeness.

For clinical free-text summarisation, relevance and informativeness require the sum-

mary users’ context, e.g. the equivalent summary for a radiologist and a nurse will vary

in relevance and informativeness. However, redundancy is irrespective of the user. The

framework suggests an Hmax, or a theoretical maximum entropy that could be achieved

with a ‘perfect’ summary and entropy produced from the current summary H(S). The

redundancy of summary Red(S) is formulated:
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Red(S) = Hmax −H(S) (5.1)

Considering Equation 5.1, we do not directly have Hmax or a means to collect an

objective Hmax for clinical texts. Prior work, reports that consistency in clinical text is

difficult due to subjective data interpretation and user dependent preferences [56].

The amount of redundancy in a text is the volume of text that is repeating one or more

of the semantic units in the text. Redundant text will not inform a reader anymore than they

already know. These parts of the texts should be removed in summarisation generation,

given that the aim of the summary is to reduce the total volume of text whilst maintaining

the meaning.

5.2 Estimating Redundancy in Clinical Text

However, we can still compare entropy / perplexity across domains to understand relative

redundancy. In the below paper I perform these experiments to quantify redundancy

within clinical texts. I compare perplexity through the use a previously state-of-the-art

language model over open-domain and clinical text corpora and find consistent differences

in perplexity across two real world clinical data sets compared to open-domain corpora.

I also carry our further experiments comparing redundancy at the token level between

successive clinical notes of the equivalent note types. This method quantifies redundancy

within note sequences by assuming note sequences are continual summaries of prior notes.
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The current mode of use of Electronic Health Records (EHR) elicits text redundancy. Clinicians often populate 
new documents by duplicating existing notes, then updating accordingly. Data duplication can lead to propa-
gation of errors, inconsistencies and misreporting of care. Therefore, measures to quantify information redun-
dancy play an essential role in evaluating innovations that operate on clinical narratives. 

This work is a quantitative examination of information redundancy in EHR notes. We present and evaluate two 
methods to measure redundancy: an information-theoretic approach and a lexicosyntactic and semantic model. 
Our first measure trains large Transformer-based language models using clinical text from a large openly 
available US-based ICU dataset and a large multi-site UK based Hospital. By comparing the information-theoretic 
efficient encoding of clinical text against open-domain corpora, we find that clinical text is ∼ 1.5× to ∼ 3× less 
efficient than open-domain corpora at conveying information. Our second measure, evaluates automated sum-
marisation metrics Rouge and BERTScore to evaluate successive note pairs demonstrating lexicosyntactic and 
semantic redundancy, with averages from ∼43 to ∼65%.   

1. Introduction 

Electronic Health Record (EHR) text details patient history, findings, 
symptoms, diagnoses, procedures and plans for future care. A single 
inpatient hospital stay can result in multiple document types (e.g. GP 
letters, inpatient admission/ discharge notes) created by the different 
specialisms involved in the patient’s care (e.g. nursing, A&E, cardiology, 
neurology, radiology etc.) as well as progress documents to address 
previous questions and introducing follow-up actions or queries. As a 
result, a patient’s records can contain different perspectives accumu-
lated through time, by various specialities documenting the patient’s 
‘progress’ throughout the care pathway [26]. Therefore, it naturally 
follows that EHR text and the design of systems induces redundancy. 
This is not necessarily a negative as repeated mentions could be used to 
indicate importance, corroboration or confirmation of a prior finding, 
diagnosis etc. However, using the clinical narratives for direct patient 
care can be difficult [20], as clinicians must navigate through potentially 
redundant, out-of-date or erroneous information to come to the current 
state of a patient, although this problem of navigation and data con-
sumption is not exclusive to unstructured portion of EHRs. For second-
ary research purposes [3,31] this requires significant time cleaning and 

pre-processing data [30,21]. 
Using clinical narratives in EHRs is unavoidable. For direct patient 

care, forcing EHR users to specify patient state in only structured fields 
thereby avoiding free-text input is both impractical and insufficient 
[11,1] and also does not consider existing free-text patient data. Outside 
of direct patient care, prior work has shown EHR text analysis offers 
insights in diverse areas such as disease classification [37], trajectory 
modelling [36], patient stratification [21], therapeutic development 
[27] and personalised medicine [52]. Yet, the free-text content of EHRs 
forces researchers to spend considerable time manually exploring 
datasets attempting to identify the most informative portions of notes to 
inform predictive models [34]. 

Current EHR system designs have focused on the administrative side 
of care delivery forcing clinical users to spend more of their time per-
forming data entry [51,42,13]. Systems do not allow users to refer to, 
append, or amend prior notes whilst keeping the original document as 
recorded [7]. To overcome this limitation free text is often copied from 
prior notes, duplicating data that could otherwise be referenced [35]. 

This work aims to highlight and quantify an often acknowledged but 
neglected area of study - the scale of redundancy in EHR text. As 
redundancy is so prevalent in clinical text the research community must 
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do more to understand where and why this redundancy exists in an 
effort to minimise and mitigate its effects, allowing for further progress 
in the diverse use cases of clinical text as previously discussed. 

Understanding where the most meaningful data is within a record 
will enable researchers to better understand where time should be spent 
preparing data, as well as potentially informing EHR system designers 
where changes can be made to improve data entry design or other data 
redundancy reduction mechanisms for future implementations. 

We present two approaches to measure redundancy in clinical texts:  

• Information-theoretic redundancy: We show language models 
trained and tested on public and private clinical texts consistently 
show higher levels of redundancy in comparison to open-domain text 
as demonstrated by information-theory measures of perplexity and 
cross-entropy [48].  

• Syntactic and semantic redundancy of successive note pairs:we 
show average token level redundancy across various clinical note 
types, through calculation of summarisation metrics of temporally 
successive note pairs. This measure assumes that successive notes 
from the same admission and of the same type are ‘summaries’ of 
former notes within the same clinical admission. We discuss the 
implications of recall and precision of these metrics and perform a 
manual analysis of randomly selected notes. 

2. Background 

2.1. Prior work 

Despite information redundancy in clinical text being widely re-
ported, work to develop methods or measures of redundancy and 
applying these to clinical text have been limited. Early work investigated 
lexical matching to measure redundancy [58], presenting a modified 
Levenshtein edit-distance based algorithm that aligned and measured 
redundancy of 100 randomly selected admissions [58] reporting an 
average 78% and 54% redundancy for sign-out and progress notes 
respectively. Further work applied lexical normalisation, stop word 
removal followed by a sliding window alignment algorithm over mul-
tiple sentences [63], showing a 82% correlation with human annotated 
expert judgements of redundancy for randomly selected sentences in 
outpatient notes. 

Assessing the semantic similarity of documents provides a more 
robust method to detect redundancy, as lexical and syntactic variations 
that may arise when a prior note is summarised or copy/pasted then 
edited can still be marked redundant. Prior work has used statistical 
modelling techniques to recognise new relevant information for various 
note types [64,65]. 

Automated summarisation systems perform a similar process to 
redundancy identification. Intuitively, an effective summary will iden-
tify the most ‘important’ sections of a document, highlighting the 
informative, relevant parts of a document whilst ignoring the redundant 
sections [38]. An extractive summary of text can be seen as an inverse 
ranking of redundancy, selecting the least redundant sections of a source 
text, and an abstractive summarisation performs the same ranking fol-
lowed by a natural language generation step [32]. Outside of the clinical 
domain, there is strong interest in models for open-domain free text 
summarisation [47,40,22,62]. Many of these methods use deep neural 
network based methods to learn representations that capture lexical, 
syntactic and semantic meaning of texts to produce coherent and 
informative summaries. Most methods are knowledge-free, having no 
reliance on external modelled knowledge graphs or databases and learn 
to write summaries only from input text and the associated reference 
summary. 

The clinical domain is uniquely rich with modelled knowledge 
graphs such as the UMLS [6] and SNOMED-CT [50]. Applying Named 
Entity Recognition and Linking systems such as cTakes [44], MetaMap 
[2] or MedCAT [19] over EHRs and aggregating extracted concepts over 

groups of documents per admission could determine documents with 
equivalent extracted concepts as redundant. However, solving such an 
NER + L task is an ongoing research problem due to the scale of 
modelled knowledge (i.e. hundreds of thousands of possible concepts) 
and the variability of clinical text [60,59]. 

Recently, corpora of synthetic [41] and manually annotated [55] 
semantic similarity sentence pairs have been used in shared tasks to 
promote further research and system development in this area [56]. 
Deep neural models such as BERT [9] and S-BERT [43] achieved high 
scores from multiple challenge submissions achieving 0.88 correlation 
in ranking sentences with a similarity scale of 0–5. 

To our knowledge there is no prior work that estimates information 
theoretic content of clinical text and compares such estimates to open- 
domain text. Prior work has estimated redundancy using sequence 
alignment algorithms for estimating token-level redundancy, largely not 
considering semantic redundancy, i.e. the tokens differ across texts but 
the meaning is equivalent, or they have considered sentence to sentence 
semantic similarity, training models to predict similarity between 
sentences. 

2.2. Measuring redundancy of text through informativeness 

The following sections provide the information theoretic basis for 
empirically estimating redundancy of clinical text. We initially intro-
duce relevant notation and information theory concepts, then describe 
how language modelling can be used to estimate redundancy. 

Given a language L with a vocabulary V comprised of the number of n 
symbols w1…wn ∈ V where wi is a character, word or word piece pro-
duced by some tokeniser function Z over text t, Z(t) provides some 
sequence of w symbols. Given that P is a probability distribution over all 
symbols in V we can define the average information conveyed by a lan-
guage L via Shannon’s Entropy [49]. H(P) is defined as: 

H(P) = E[I2(P)] = −
∑n

i=1
p(wi)log2p(wi) (1) 

Entropy is the negative sum of proportional log2 probabilities of each 
symbol wi with information units represented as bits (i.e. log2). Intui-
tively, entropy provides the average number of bits used to convey a 
symbol from set V for the most efficient coding of L. A maximum bound 
for the entropy of L is the uniform distribution for P over all symbols in 
V. Given Eq. 1 this provides: 

H(P) =
∑n

i=1
p(wi)log2p(wi)

=
1
n
∑n

i=1
log2n =

1
n

nlog2n

= log2n

(2) 

A theoretical lower bound of H(P) ≈ 1 is if the probability of a single 
symbol W is P(W = wi) ≈ 1 as the probability mass is focused on wi, i.e. L 
effectively only has 1 symbol. Eq. 1 holds in the limit of all possible texts 
that can be produced for L. As we cannot produce all possible texts from 
L we empirically estimate H(P) with a distribution Q over the same 
vocabulary V for some, usually large, defined set of texts from L. The 
cross entropy between distributions P and Q is: 

H(P,Q) = H(P)+DKL(P‖Q) (3)  

where DKL(P‖Q) is the Kullback-Leibler(KL) divergence or relative en-
tropy of Q from P. These are the extra bits needed to encode symbols 
from distribution P through the use of the optimal encoding scheme 
found through the distribution Q. 

2.3. Causal language modelling 

Causal Language modelling (LM) is the task to predict the next 
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symbol conditioned on previous symbols. Given a defined set texts from 
L fitting such a model minimises the DKL(P‖Q) term of Eq. 3 therefore 
providing an estimate of entropy for L. A language model estimates the 
joint probability of a sentence by conditioning the current symbol wi on 
all previous w1…wi− 1: 

P(w1,…,wi) = p(w1)…p(wi|w1,…,wi− 1) (4)  

2.4. Perplexity and cross-entropy to compare redundancy across texts 

Perplexity (PPL) is the ‘surprise’ a language model finds having 
encountered wn given w1, …wn− 1, and is the 2H(P,Q) of entropy [18]. 
Language models are often evaluated using PPL where the lower the 
score the better the model generalises to unseen texts from language L. 
Given a language model trained on general purpose text Len, and another 
language model with the same available vocabulary V trained on clinical 
text Lclinic then comparing PPL/ i.e. cross-entropy by taking log2(PPL), 
provides a reflection of the level of information and therefore redun-
dancy present in texts across the two languages. 

It is however important to highlight that this information theoretic 
measure of redundancy, i.e. estimating the efficiency of encoding of a 
given a language given the same language model, does not capture a 
human level measure of informativeness as clinical texts are subject to a 
context in which they are written. For example, clinical text progress 
reports have represent a time series of clinical information and therefore 
repetitions in text could indicate a continuation or confirmation of prior 
clinical information and may not necessarily be redundant. 

2.5. Re-purposing summarisation evaluation metrics for sequential note 
sequences 

The primary purpose of clinical narratives are to document new 
clinical information. However, EHR data entry often is often poorly 
designed [5] or users lack sufficient training, time or incentives for clean 
data entry. This results in frequent use of the copy-paste function with 
prior data copied into the current note with additions and amendments 
for the new clinical information [12,35,54]. Therefore, our second set of 
experiments frame a set of clinical notes of the same type for a given 
admission as successive summaries of one another and seeks to measure 
the prevalence of copy-pasted notes from successive note pairs. 

We apply n-gram and semantic embedding summarisation metrics to 
successive pairs of clinical notes. In this context ‘recall’ captures the 
proportion of the previous note that is contained in the current note, 
whereas ‘precision’ is more ambiguous as successive notes with high 
precision and high recall indicate a note is redundant (i.e. the content is 
equivalent), whereas high recall, low precision indicates a summary of 
the previous note with additional new information. Low recall and low 
precision indicates a successive note does not summarise prior events at 
all, we expect this to be the case for procedure and investigative notes 
such as radiology reports as these events are often standalone, even if 
they take place during the same admission. There are no clear aims for 
high precision/ recall such as the case for comparing predictive model 
performance. 

3. Methods 

3.1. Datasets 

Descriptive statistics for datasets and splits are provided in Table 1. 
We consider two clinical datasets in our analysis, we take a ‘stroke’ 
specific subset to compare results to our other clinical dataset:  

• MIMIC-III: [17] A large, freely-available US based ICU dataset 
collected between 2001 and 2012 containing 53,423 distinct ad-
missions. We consider MIMIC-FULL (∼1.17 M documents) that 
contains all free text notes for primary coded conditions that 

appeared at least 20 times (∼41 k admissions), and MIMIC-Stroke 
(337 admissions) with a primary diagnosis of ICD10 code:I63.*.  

• KCH: clinical records for patients diagnosed with Cerebral infarction 
(ICD10 code:I63.*) from the King’s College Hospital (KCH) NHS 
Foundation Trust, London, UK, EHR. This includes 9,892 distinct 
admissions and ∼26 K documents. We extract data via the internal 
CogStack [15] system, an Elasticsearch based ingestion and harmo-
nization pipeline for EHR data. This patient cohort is driven by 
permitted ethical approval and our ability to compare to a similar 
patient cohort in MIMIC-Stroke. 

Our two open domain English language datasets are available via the 
HuggingFace Datasets1 library, and are used to demonstrate the en-
tropy/ PPL of non-clinical open-domain datasets. We use:  

• OpenWebText [10]: a recreated openly available version of the 
original data used to train GPT-2. There is no defined ’test’ split so 
we randomly sample 5000 texts. It is worth noting our base pre- 
trained language model (GPT-2 [39]) has likely seen some if not 
all of the samples in this random sample during pre-training. Vo-
cabulary size is 48,105.  

• WikiText2 [28]: the test data split of WikiText2, a corpus of 4358 
Wikipedia articles often used to assess language models. This data is 
unseen by all LMs and is used to assess open-domain text language 
modelling performance. 

3.2. Experimental setup 

3.2.1. Data preparation 
To exclude very rare conditions or cases that may not represent 

typical clinical language found in EHRs we extract all MIMIC-III notes 
and filter the admissions that have a primary diagnosis that appeared 
⩾20 times in the dataset. We decided upon this threshold after initial 
small-scale experimentation. We do not clean the notes from MIMIC-III 
or KCH in any way, although the MIMIC-III notes have already under-
gone a de-identification process to remove sensitive information such as 
dates and names. 

3.2.2. Pre-trained language models 
We estimate the entropy of clinical language using GPT-2 [39] a 

previous state-of-the-art auto-regressive causal language model, based 
upon the Transformer [53] architecture that has been pre-trained with 
the ‘WebText’ corpus, ∼40 Gb of text data collected from the Web. 
Model/ tokenizer weights, configurations and model implementations 
are via the HuggingFace ‘transformers’ [57] library. We use the base 
GPT-2 model with 124 M parameters, 12 Transformer block layers with 
model dimensionality of 768, and vocabulary size 50,257. 

Table 1 
Descriptive statistics for clinical and open domain datasets. Average document 
length is in characters and a single note type for MIMIC-III is the combined 
category and description fields. KCH uses a single field for note type. M-III is the 
MIMIC-III ‘full’ dataset and (S) is the stroke (I63.*) primary diagnosis subset. 
WebText & WikiText-2 do not have # ‘Note Types’ and WebText is only avail-
able as sentences only.  

Dataset # Docs Avg. Length # Note Types Test Set Vocab Size 

M-III 1,172,433 2,201 3,127 31,017 
M-III (S) 8,213 2,232 241 12,167 

KCH 26,348 5,217 1310 27,722 
WebText 5000 n/a n/a 48,105 

WikiText2 4358 579 n/a 19,037  

1 https://huggingface.co/docs/datasets/master/. 
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3.2.3. Language model fine tuning and PPL calculations 
We fine-tune GPT-2 in a self-supervised manner, i.e. after tokenizing 

the clinical text we feed each token sequentially into the model, con-
ditioning on previous symbols, we produce the distribution over V via 
the forward pass of the model, compute the loss and back-propagate the 
error gradient back through the model to update parameters. Code for 
tokenizing, training, validating and testing the fine-tuned model for the 
openly available datasets are made available.2 We calculate perplexity 
by concatenating all test set texts and applying a strided sliding window 
half the size of the model dimension (384) to condition the model and 
make a token prediction. This method ignores inconsistent sentence 
breaks, a common problem in EHR text. Importantly, this produces re-
sults inline with original GPT-2 [39] work, allowing us to focus on the 
impact the datasets have on PPL calculations. 

3.2.4. Internote type summary evaluation 
Our second method of estimating levels of redundancy in clincal text 

applies summarisation evaluation metrics to ordered note pairs as 
demonstrated in Fig. 1. We firstly group each admission’s note types and 
order by update time. We apply a sliding window of pairwise evalua-
tions over each note sequence then average over the sequence and ad-
missions. Our output is a table for MIMIC and KCH with the average 
token level summarisation score per note type. This method measures 
the level of redundancy between successive clinical notes within the 
same admission of the same type. 

We use a Gestalt Pattern matching algorithm [4] as a baseline that 
computes the ratio of matching sub-sequences of ‘tokens’, (i.e. white- 
space separated words) between each successive note. We then report 
precision/recall for ROUGE [23] another lexical/syntactic token metric 
and BERTScore [66] a recent deep-learning model based metric that 
embeds texts using pre-trained semantic vector space, cosine similarity 
between the embedded texts produces a similarity score between them. 
BERTScore was shown to correlate higher with human level judgements 
of generated summary quality than token based metrics such as ROUGE, 
somewhat addressing the documented failings of ROUGE [45]. Our 
clinical texts are longer than the maximum dimension supported by the 
default and highest performing model configured with BERTScore. 
Therefore, We use the xlnet-base-cased [61] embeddings due to 
increased maximum permitted input length. Our scores are normalised 
to the model baseline to produce an improved uniformity in similarity 
scores as discussed in the original work [66]. 

4. Results 

We present results for both clinical datasets presented in Section 3 
and open datasets originally used to train/test LMs. 

4.1. Estimating entropy of clinical text 

Table 2 reports PPL scores across datasets used to pre-train and 
further fine-tune GPT-2 models. We report our test set results for the pre- 
trained GPT-2 and the model fine-tuned to clinical datasets presented in 
Section 3.1. ‘Test’ values for each dataset provide empirical estimates of 
entropy for languages Len i.e. OpenWebText, and Lclinic, i.e. MIMIC 
(Stroke/ Full) and KCH. 

We show LM performance on validation and test sets, observing that 
test set PPLs are largely consistent with validation set scores indicating 
the models are not over-fitting to idiosyncrasies only present in the 
validation set. We are potentially underfitting the data as we did not 
especially experiment with techniques such early stopping, learning rate 
optimisation and architecture optimisation. As the model performance is 
not the valuable contribution of this work we only used a small number 
of fixed epochs (i.e. 8) with a scheduled weight decay within the AdamW 

[24] optimizer (i.e. 0.01). 
Our results demonstrate the PPL of clinical texts to be smaller than 

open domain text. Using Eqs. 2, 3 and computing log2(PPL) we estimate 
the information content of our open-domain text language Len = 5.16 and 
our clinical language Lclinic = 1.66 − 3.26. This suggest that clinical text 
is ∼ 1.5× to ∼ 3× less efficient in encoding information than regular 
open domain text. It is important however to note this efficiency is with 
the respect to the definition of an optimal encoding of a language L. 
Predictability of texts within Lclinic does not necessarily measure the 
informativeness from a human perspective in comparison to Len. 

We further test our models on WikiText-2 dataset to observe open- 
domain performance after clinical text training. We find that once 
GPT-2 is further trained with clinical text it loses the ability to accurately 
model open-domain text resulting in large PPLs. This is seen to a greater 
extent in MIMIC (Full) compared to MIMIC (Stroke)/ KCH, which is 
likely due to the MIMIC (Full) model having seen the highest volume of 
clinical text. 

4.1.1. Perplexity across clinical datasets 
We compare our models trained and tested on available alternative 

clinical datasets as shown in Table 3. As our MIMIC (Stroke)/ KCH 
trained models share the common stroke diagnosis we would expect 
clinical language and the description of symptoms, findings, clinical 
events, procedures to be similar. Our KCH trained and MIMIC (Stroke) 
tested model performs modestly, i.e. PPL is still 6–13 points less than 
open domain PPLs, whereas the MIMIC trained and KCH tested model 
performs poorly. Surprisingly, the similarity in disorder seems to offer 
little or no benefit, as KCH trained and testing on both MIMIC test sets 
produces similar PPLs. MIMIC trained and KCH tested also performs 
better with Full compared with Stroke. We believe the poor performance 
with MIMIC trained models is due to heterogeneity of the KCH dataset, 
including out patient notes, patient letters, procedure reports etc. 
whereas MIMIC only contains inpatient ICU notes albeit notes from 
across specialisms such as physician, nursing, radiology, etc. 

4.2. Token level redundancy 

Fig. 2 shows our results computing summarisation metrics described 
in Section 3.2.4 for the MIMIC (Full) and KCH datasets. Broadly, our 
baseline (difflib), ROUGE and BERTScore metrics display similar trends, 
as seen by coloured gradients consistently decreasing across all metrics 
for similar types of documents. There are some exceptions in the MIMIC 
dataset such as Respiratory: Respiratory Care Shift Note where our base-
line method reports a lower similarity ratio as compared to the sum-
marisation metrics. 

We report the micro-averaged median scores for each note type to 
reduce skew from extremes of either side of the distribution of scores. 
Recall and precision for ROUGE and BERTScore at each note type are 
largely equivalent, indicating each note type has on average propor-
tionally equivalent amounts of redundant, i.e. duplicated text, from 
previous notes (the recall score), and ‘new’ text (the precision score. We 
observe that this varies substantially according to note type with almost 
no redundant text with some types, i.e. Nursing/other:Report and in 
contrast the majority of text being redundant, i.e. Physician:Physician 
Resident Admission Note. 

Table 4 shows a final average across each metric weighted by total 
number of tokens within each document and type. Interestingly, recall 
and precision are equivalent for ROUGE and BERTScore. Intuitively, this 
indicates that successive notes often have a ‘core’ section which is static 
throughout an admission and updates are provided by editing certain 
sections only. This reflects a typical workflow for providing status up-
dates on patient condition or progress. 

4.3. Manual analysis 

We perform a manual analysis of 70 randomly selected note pairs, 2 https://github.com/tomolopolis/clinical_sum. 
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(35 each from MIMIC-III and KCH). We group, order and split the notes 
as shown in Fig. 1 and visually highlight the token level differences 
between successive pairs to assist with determining similarity/ differ-
ences. We use a Likert scale of 1–5 to rate redundancy between note 
pairs and compute a correlation with F1 score. Table 5 shows that 
ROUGE scores correlate better with our human annotated measure of 
redundancy than BERTScore. 

Fig. 1. Internote type summarisation evaluation process.  

Table 2 
Perplexity scores for GPT-2 trained on (Open) WebText (i.e. the model is not 
trained in this work at all), further training on the MIMIC (Stroke), KCH, and 
MIMIC (Full) datasets. WikiText2 test split results are also provided for an un-
seen test set of open-domain text for all models.  

Dataset Val Test WikiText2 

OpenWebText – 29.57 35.56 
MIMIC (Stroke) 6.14 5.38 144.4 
MIMIC (Full) 3.12 3.15 204.9 

KCH 8.78 9.58 74.51  

Table 3 
GPT-2 trained and tested across our clinical datasets.  

Training Test PPL 

KCH MIMIC (Stroke) 23.05 
KCH MIMIC (Full) 23.98 

MIMIC (Stroke) KCH 119.66 
MIMIC (Full) KCH 94.19  

Fig. 2. Summarisation metrics calculated over a sliding window of generated and reference summaries for admission texts grouped by admission then by note type and 
ordered by time. We only show the first 20 note types of each dataset ordered by ROUGE score. 

Table 4 
Weighted average by token length of sequential token level redundancy. Rec  =
Recall, Prec  = Precision.  

Dataset DiffLib ROUGE BERTScore   

Rec Prec Rec Prec 

MIMIC 0.26 0.43 0.42 0.58 0.58 
KCH 0.32 0.49 0.49 0.65 0.65  
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5. Discussion 

5.1. Language modelling for clinical text 

Our PPL scores suggest that clinical text is ∼ 1.5× to ∼ 3× less 
efficient in encoding information than regular open domain text, or 
∼ 1.5× to ∼ 3× more text is used to communicate the same volume of 
information in comparison to open domain text. 

To our knowledge this is the first work to estimate in information 
theoretic terms the entropy of clinical language Lclinic and compare 
against open-domain language Len. These estimates are dependent upon 
the text and models used, but we believe they are representative as both 
datasets are large, from varied geographies, hospital sites, specialisms 
and patient types (outpatient vs inpatient). Our Len corpora are built 
from curated texts (i.e. Wikipedia and positive karma Reddit posts) that 
cover a wide array of topics. However, our results may be highly 
dependent upon these text sources. Future work could compare other 
easily available datasets such as news or academic papers to provide 
further clarity on our findings. 

Language modelling performance is dependent upon the size of vo-
cabulary of the model and the test set. Model vocab size is static as the 
same model (GPT-2) and tokenizer configurations are used throughout 
all experiments. Despite the narrower focus of clinical text, the vocab-
ulary sizes in Table 1 indicate MIMIC-III (Full) and KCH are in fact larger 
than the WikiText2 corpus although we observe substantially lower 
PPLs for clinical text. This suggests clinical text is overall less informative 
and therefore more redundant when compared to open-domain corpora. 
However, this interpretation must be further clarified, as EHRs are 
written with a clear task in mind to communicate health status, and 
record clinical events. This is in contrast to open-domain text that has a 
far wider array of possible tasks for the text. 

We compute PPL scores inline with the original GPT-2 authors [39], 
as this work is an assessment of the data rather than the specific model. A 
reduced sliding window stride length during PPL calculation would 
decrease scores further, although relative difference would remain 
similar. However, we acknowledge that our results are dependent on 
model architecture, i.e. GPT-2 has higher performing model variants 
‘GPT-2(large)’ even newer variants, ‘GPT-3’, with an even larger 
parameter space [8] We propose our results show the trend that clinical 
domain text is redundant by some multiple compared to open-domain 
text. 

The drop in open-domain text performance after clinical text fine- 
tuning suggests the model is incapable of modelling clinical and open- 
domain text simultaneously. The difference in lexicon and syntax 
forces the model to minimise a loss landscape substantially different 
from that found in open-domain text. Further work, could experiment 
with larger models or with a training process that jointly attempts to 
model open-domain and clinical text, in an effort to maintain high 
performance on both. Multiple works [39,40] have already highlighted 
the effect and importance of data quality, pre-processing and training 
configuration in LM training. 

5.2. Sequential inter-note type redundancy 

We used BERTScore configured with xlnet-base-cased, due to the size 
of input texts. The xlnet-base-cased embeddings in the BERTScore 
framework report worse correlation with human annotations of sum-
marisation quality than the default settings that otherwise do not 

support long input texts. Our manual evaluation of notes against the 
computed scores indicate ROUGE more accurately captures redundancy 
than the current BERTScore configuration. During the manual review 
we noticed BERTScore often scored notes highly that had small token- 
level differences. As BERTScore projects note pairs into a learnt se-
mantic vector space it is difficult to compare scores with the n-gram 
based ROUGE. One explanation is that note pairs are likely by the same 
clinician, are the same clinical specialism and about the same patient 
and therefore score highly, although n-gram differences are larger. A 
model such as ClinicalXLNET [14] would likely assist in capturing dif-
ferences in clinical language thereby producing more appropriate em-
beddings compared to the open domain variety currently used. We leave 
this experiment to future work. 

This work only considers sequences of notes labelled as the same 
type. Analysis of intra-note type redundancy, where notes of one type 
refer to clinical events documented in other note types is another po-
tential avenue of future work. Future work could also order note se-
quences by clinician, or compare only first and last note for example. 

Overall, the interpretation of recall and precision of the summa-
risation metrics and their relationship to redundant text is nuanced. For 
example, repeated mentions of an acute condition may simply indicate 
the continued presence of a condition or symptom, and may not be 
redundant text after all. These measures do not account for the time 
series nature of clinical information present in the record. Future work 
could investigate information extraction, normalisation and linking 
methods that leverage clinical knowledge bases such as cTakes [44], 
MetaMap [2] or MedCAT [19]. Extracted concepts could then be 
compared across notes whilst being grounded in clinical knowledge. 
This would allow for redundant clinical events to be identified alongside 
how they present in the text. 

6. Conclusions 

We have presented two empirical approaches for an often acknowl-
edged [34] but neglected area of clinical natural language processing 
research, to measure redundancy in clinical text. We have trained large 
language models on multiple clinical datasets resulting in perplexity and 
therefore cross-entropy estimates for a clinical language Lclinic. We 
observe a ∼ 1.5× to ∼ 3× reduction in entropy when comparing the 
same model trained on open domain text. Our approach shows the token 
level redundancy between different note types with the usage of auto-
mated summarisation evaluation metrics. We observe variable scores 
across different types with some results indicating clinical notes can be 
97–98% redundant (i.e. the text is largely duplicated across documents 
MIMIC: Physician Resident Admission Note), or only 0.12% redundant 
(MIMIC: Nursing/other:Report). 

Overall, our results support prior work suggesting clinical text con-
tains redundant text [34,58,63]. In information theory terms we show 
that clinical text is less efficient than open domain text meaning on 
average more text is required to express the same volume of information 
in comparison to general purpose texts. However, this efficiency measure 
does not take into account the context in which EHR records are written, 
that is a time series of clinical events, where repetition may not neces-
sarily be redundant but indicative of an ongoing condition or clinical 
event. 

With more stressors on our healthcare system than ever before [29] 
and despite increasing investment [16] we continue to see increased 
clinician burn-out [33]. A contributing factor is the often enforced usage 
of EHR systems, increasing doctor-computer time [20], forcing clini-
cians to overcome poor usability of systems [5]. Improving EHR entry to 
allow easy updating, cross referencing and versioning of notes could 
alleviate an extra burden on clinical staff. To this aim we would urge 
EHR providers to adapt their systems to improve data entry and main-
tenance, potentially considering features similar to source code man-
agement version control allowing for a living document to improve data 
quality, minimise redundancy and errors that are propagated through 

Table 5 
F1 score correlation of redundancy of ROUGE and BERTScore with manual 
annotations on a 1–5 Likert scale of a random sample of note pairs.  

Dataset ROUGE BERTScore 

KCH 0.83 0.77 
MIMIC 0.77 0.63  
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the usage of copy/paste. We acknowledge this would however require 
substantial non-trivial changes to systems and user workflow [25,46]. 
Until EHR providers address these shortcomings researchers will have to 
rely on ad-ssssshoc pre-processing logic to clean datasets before carrying 
out analysis. 
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5.2.1 Paper Clarifications

This work has reviewed multiple datasets and presented methodologies for measuring

redundancy at scale. Another possible solution to remove these seemingly high measures

of redundancy would be to improve user guidance during note creation. This could include

the use of specific guidance tailored to users workflow and the EHR system, to allow for

referencing portions of the record, rather than copy-pasting or overly relying on template

text.

The results in this work support the view that clinical text is more redundant than

open-domain text, and quantifies this via multiple methods. Overall, this difference

in redundancy leads to the following work investigating automated text summarisation,

and frames why clinical text summarisation is distinctly different to open-domain text

summarisation. As a key task for summarisation is the identification and removal, or

alternatively, the selection of non-redundant information, understanding the scale of this

problem in clinical text will allow the research community to build more performant and

tailored summarisation systems.

5.3 Summarisation of EHRs for Discharge Summaries

In the next below work I experiment with a range of summarisation methods for in-patient

clinical text summarisation. The work focuses on summarising the ‘Brief Hospital Course’

section within the ‘Discharge Summary’ note. An example of these sections are shown in

Figure 5.1.

Section B.2.1 has provided sufficient background to the methods used. In-patient

stay summarisation is already performed manually by senior clinicians who document an

admission as part of the discharge process. The complexity of in-patient stays can vary

hugely, so I assess the performance of existing pre-trained abstractive models with this

task, comparing performance to the open-domain task of multi-document, time-series news
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Brief Hospital Course: 
Admi4ed [**6-1**] for evalua<on of resolu<on of CHF and 
comple<on 
of pre-op work-up.Underwent AVR/cabg x2 with Dr. [**Last 
Name (STitle) 1290**] on 
[**6-2**]. Of note, pre-bypass EF decreased to 10-15%. 
Transferred to 
the CSRU in stable condi<on on epinephrine, milrinone, 
levophed, insulin and propofol drips.Drips slowly weaned 
over 
next 2 days and extubated the morning of POD #2. Chest 
tubes 
also removed on POD #2.Low-dose ACE inhibitor started and 
beta 
blockade <trated over next several days.Gentle diuresis 
started 
and pacing wires removed on POD #3, then transferred to 
the 
floor to begin increasing her ac<vity level.Coumadin also 
started for mechanical valve and heparin started for 
coverage 
un<l therapeu<c INR obtained. Cleared for discharge to 
home on 
POD #9.  Target INR for an aor<c mechanical valve is 2.0- 
2.5. 

Brief Hospital Course: 
#Anemia: was likely the cause of her dizziness and fa<gue. 
Iron 
studies and MCV were consistent with iron deficiency likely 
[**2-28**] 
chronic blood loss. Haptoglobin, LDH, Tbili, Dbili were normal 
and were not consistent with hemolysis. Lactate was normal 
and 
not consistent with bowel ischemia. In the MICU she was 
transfused 3 units of blood. Her hematocrit trended from 17-> 
28.3->27.5. On transfer to the floor, vital signs were stable 
and she showed no signs of ongoing bleeding. Stool gauic was 
posi<ve. 
. 
#. H/O DVT: Pt had DVT in [**4-5**] aher l first toe 
amputa<on. Had 
been on coumadin tx for an<-coagula<on. INR on admission 
was 4 
and was reversed to 2 with vitamin K. Pa<ent has had 4 
months 
of an<-coagula<on and risks of further treatment outweigh 
the 
benefits. 
. 
#. DM: Her home mejormin was held while inpa<ent but was 
restarted on discharge. She was given a diabe<c diet and 
fingers<cks were checked QID FS and she was given humalog 
insulin sliding scale 
. 
#. HYPONATREMIA: As low as 131, normalized over the 
admission. 
Was likely secondary to fluid administra<on. 
. 
#. COPD asthma: 
-con<nued on albuterol neb prn for asthma 
. 
#. HTN:  At first , her home atenolol, diovan and HCTZ were 
held 
in the seong of hypotension and possible GI bleed. She was 
discharged on atenolol 25 mg once a day (prior dose was 50 
mg po 
qD) and valsartan 80 mg po BID. Her hydrochlorothiazide was 
stopped. 
. 
#. HYPERLIPIDEMIA: She was con<nued on  simvasta<n 40 mg 
QD, 
fish oil. 
. 
#. ANXIETY/DEPRESSION:  She was con<nued on home 
cymbalta 30 mg 
[**Hospital1 **]. 

Fig. 5.1 Example BHC sections from the publicly available dataset MIMIC-III
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summarisation [140, 38]. I also experiment with extractive models for initial sentence

extraction as prior work observed that initial in patient stay summaries began with extractive

summaries [1]. I then adapt the abstractive model to use ‘clinical guidance’ extracted via a

pre-trained MedCAT(Chapter 3) model, closing with a simple ensemble model to perform

extractive and abstractive summarisation of inpatient summary text.
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A B S T R A C T
Brief Hospital Course (BHC) summaries are succinct summaries of an entire hospital encounter, embeddedwithin discharge summaries, written by senior clinicians responsible for the overall care of a patient. Methodsto automatically produce summaries from inpatient documentation would be invaluable in reducing clinicianmanual burden of summarising documents under high time-pressure to admit and discharge patients. Automat-ically producing these summaries from the inpatient course, is a complex, multi-document summarisation task,as source notes are written from various perspectives (e.g. nursing, doctor, radiology), during the course of thehospitalisation. We demonstrate a range of methods for BHC summarisation demonstrating the performance ofdeep learning summarisation models across extractive and abstractive summarisation scenarios. We also test anovel ensemble extractive and abstractive summarisation model that incorporates a medical concept ontology(SNOMED) as a clinical guidance signal and shows superior performance in 2 real-world clinical data sets.

1. Introduction
A patient’s clinical journey is documented in rich free-text narrativesstored in time-ordered linked documents in Electronic Health Records(EHRs). Narratives include commentary from multiple care teams, spe-cialisms and perspectives with varying scope, detail, structure andtime-span covered. Content broadly presents the patient experience,symptoms, findings and diagnosis alongside resulting procedures andinterventions. Clinical and social histories and future prognoses areoften referenced to provide further context and any potentially followup actions to occur in some defined time period. Single notes also oftenmention or refer to previous notes. An encounter such as a simpleroutine outpatient procedure could generate only a few sentences,whereas a complex admission may result in hundreds of distinct docu-ments. When a patient is discharged from an inpatient encounter, thedischarging clinician summarises the entirety of the visit often withina section of the Discharge Summary note known as the Brief HospitalCourse (BHC) section. For short, i.e. day case admissions BHC sectionsare likely to be short and potentially not clearly defined. For longer,multi-day, complex admissions where a patient is being discharged toa primary, community or even tertiary care service this section is morelikely to be present as its vital for continuity of care [1]. However,

∗ Corresponding author.E-mail address: thomas.searle@kcl.ac.uk (T. Searle).

with most free-text clinical narrative, there can be large variability withhow this data is presented [2]. Overall, it is generally accepted that aneffective discharge summary should document the clinical events of anadmission [3].Manually generating this summary is laborious, time-consumingand potentially error prone [4]. Fig. 1 shows a fictitious, multi-day in-patient encounter. This single admission produces 6 distinct documentsfrom a range of perspectives (Nursing, Doctors, Radiology) in the first18 h. The first 2 Nursing - Progress Notes are by the same author, thediffering radiology scans (X-ray vs. MRI) have different authors and thedischarge summary is the same author that wrote the initial admission.Discharge occurs ∼2 days after admission with more notes taken thanthose shown. Each document can inform the BHC section. However, notall notes are treated equally, notes are categorised into care providercategories, and further by admission, progress, discharge amongst othertypes. Due to the volume of text and the time-constraints for doctors toproduce these summaries, it is improbable that a clinician author readsthe entirety of the record and certainly not thoroughly.In computational linguistics, this problem can be framed as a chal-lenging multi-document summarisation task, with the model requiredto adapt to varying numbers of documents (simple vs. complex cases),
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Fig. 1. An example patient admission timeline where a patient is admitted with anadmission summary note, nursing progress notes, radiology reports and a dischargesummary note. Each is written by potentially different authors (colour coding), asthe admission progresses. Each note potentially informs the BHC section within thedischarge summary. (For interpretation of the references to colour in this figure legend,the reader is referred to the web version of this article.)

large time variances between notes, differences between note types,varying source document authors aims and focus areas.A recent detailed analysis of BHC sections [5], found BHC sum-maries to: (1) be information dense, (2) switch quickly between ex-tractive and abstractive summarisation styles, beginning with top-levelextractive summaries of an admission followed by problem orientatedabstractive summary of the admission, (3) be only a silver-standard andcan lack important information.To the authors’ knowledge, this is the first work to offer a rangeof summarisation models for BHC summarisation trained and tested onmultiple real-world sources of clinical text. The contributions of thiswork are:
• A baseline evaluation of existing pre-trained Transformer models forabstractive summarisation fine-tuned on the BHC summarisation task.
• An evaluation of extractive top-k sentence extractive summarisationmodels. Using unsupervised and supervised methods to analyse theextractiveness of the opening BHC sentences.
• An adapted abstractive summarisation model (BART) [6] to include aclinical ontology aware guidance signal of relevant terms to produceproblem-list orientated abstractive summaries.
• An evaluation of an ensemble model for extractive and abstractivesummarisation combining the extractive and abstractive models.
2. Background
2.1. Automatic summarisation

Automatic summarisation of text aims to provide a concise, fluentrepresentation of the source material, retaining ‘important’ informationwhilst ignoring redundant or irrelevant information. Formally, withsingle document summarisation, a set of documents 𝑇 = {𝑡1, 𝑡2,… , 𝑡𝑛}we aim to find some function 𝑓 (𝑇 ) = 𝑇 ′ where 𝑇 ′ = {𝑡′1, 𝑡
′
2,… , 𝑡′𝑛} the setof texts that maximise some parameters of an effective summary. Theseparameters can include: maximum length that could vary according touse case, correctness if the generated summaries are factually inlinewith source texts, completeness, if the generated summary captures allimportant information from source texts, and fluency, a often subjectivemeasure of the writing quality of the generated summary [7]. In multi-document summarisation we have multiple texts for each sample 𝑇 =

{𝑡11⋯𝑖
, 𝑡21⋯𝑗

,… , 𝑡𝑛1⋯𝑘
}. With BHC summarisation each 𝑡𝑖 has one or moredocuments.

2.2. Extractive & abstractive summarisation
Research interest in automatic summarisation has a long historywith empirical data-driven methods divisible into two main groups [8].
1. Extractive summarisation is the selection and combination of im-portant words, phrases, or sentences i.e. some syntactic unit, ofsource texts to form the summary text. Consider some documenttext 𝑡 of syntactic units 𝑆 = {𝑠1, 𝑠2,… , 𝑠3}, 𝑓 (𝑡) = 𝑡′ where 𝑡′ = 𝑆′and 𝑆′ ⊂ 𝑆.Some extractive summarisation methods can be considered In-formation Extraction (IE) [9] methods that identify importantinformation and simply use 𝑠𝑗 where the information is found, orpossibly surrounding syntactic units 𝑠𝑗−1 and 𝑠𝑗+1. Informationis extracted until desired summary length is reached or there isno more information to extract. Further extractive approachessearch/rank a document’s 𝑆 according to some importancemetricand select the top-n many sentences for the desired summarylength [10].2. Abstractive summarisation methods do not enforce generatedsummaries to be directly drawn from source texts. Instead,abstractive methods allow 𝑓 to generate any syntactic unit,i.e. 𝑆′ ⊄ 𝑆𝑖. This means a ‘generation’ step is used once alatent importance model of source texts 𝑇 is found. Models areoften equipped with a suitable vocabulary 𝑉 and are tasked withgenerating fluent, informative summary text, whist being guidedby the latent importance model.
Prior work has combined extractive and abstractive approaches,allowing 𝑓 to balance abstractive and extractive summarisation, mostnotably the pointer-generator model [11].Recently, large pre-trained Transformer [12] models have beenshown to perform well across a range of tasks such as machine trans-lation, question answering and abstractive summarisation [13]. TheTransformer architecture supports learning of deep latent representa-tions of input data by layering encoder and decoder blocks, the modellearns deep contextual representations of input, and how to decodethese representations for a range of sequence-to-sequence tasks.

2.3. Clinical text summarisation
Clinical narratives are estimated to comprise 80% of EHR data [14].However, the development and application of text summarisation meth-ods is progressing slowly [15] when compared with areas such asdisease prediction [16], mortality prediction [17], and clinical infor-mation extraction [18]. Contributing factors include: (1) the difficultyin collecting reference summaries [5], Gold standard reference summarycollection is difficult as the language is complex and highly specialised,(2) produced summaries present a high stakes AI scenario that haspotential to cause negative downstream effects [19] if the model makeserrors, (3) assessing summarisation model performance using auto-mated metrics such as ROUGE [20] is difficult, as high scoring modelscan still perform poorly when assessed by human evaluators [21].Prior work has initially focused on extractive approaches [22].Approaches focused on modelling semantic similarity, and methods tooptimally pick representative sentences, i.e. 𝑠𝑖 units, from latent topicsdiscovered during model fitting. Recent work, has focused on singledocument summarisation of radiology reports [23–25]. Radiology re-ports generally consist of three sections, the background of patient, thefindings – the visible phenomena within the scan and finally the impres-sion – an often abstractive summary of the background and findingsused during the clinical followup. The impression sections are treatedas the target reference summaries for model development. Radiologyreport summarisation is similar to a single document open-domain task,where modelling sentence salience and sentence compression are theprimary aims.
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2.4. Consistency of discharge summary content

There is currently no standard for discharge summary format orcontent although a majority of surveyed clinicians agree there shouldbe a standard [2]. There is ongoing work to improve the consistency ofeducation and training in effective discharge summary writing [3,26]and in some fields such as surgical pathology, synoptic reporting isan agreed upon standard form for reporting clinical events [27]. Un-fortunately, there is no cross specialty, consistent method of writing aBHC, or even a consistent section header to define the BHC section of adischarge summary. We presume this is due to the variability in clinicalencounters that are documented, where it would be very difficult todefine rigid structure to cover all eventualities without being overlyonerous.
2.5. BHC section analysis

Prior work [5] has shown BHC sections are: (1) dense with clinicalterms, (2) can vary widely in complexity and quality, (3) quicklyswitch between extractive and abstractive styles. These make the BHCsummarisation task a difficult task. In this work we attempt to findan effective method that can be consistently used across these varieddatasets and that takes advantage of the density of clinical terms. It isoutside the scope of this work to address the issue of the variability indischarge summary and BHC sections themselves.
3. Datasets & methods
3.1. Datasets

We extensively pre-process and clean the admission’s dischargesummaries to extract only the BHC section. We discard the rest of thedischarge summary so as to not bias the source texts.Our datasets are:
• MIMIC-III: Johnson et al. [28] A large, US based ICU dataset col-lected between 2001–2012 containing 47,591 unique patient ad-missions. We extract BHC sections from discharge summaries withregular expressions and clean all other notes of headers/footersresulting in 1,441,109 unique documents.
• KCH: clinical records for inpatients diagnosed with cerebral in-farction (ICD10 code:I63.*) from the King’s College Hospital(KCH) NHS Foundation Trust, London, UK, EHR. We extract datavia the Trust deployed CogStack [29] system, an Elasticsearchbased ingestion and harmonisation pipeline for EHR data. Weextract BHC sections with regular expressions and clean sourcenotes of common headers/footers resulting in 34,179 uniquedocuments.
Table 1 shows that the average case includes many documents, overa multi-day stay. The MIMIC-III dataset of USA based ICU admissions,are skewed towards complex multi-day stays generating many smallEHR notes. The KCH dataset are UK-derived clinical records containingonly patients diagnosed with cerebral infarction requiring inpatient re-habilitation for associated disability and therefore covers substantiallylonger time periods.Concatenating entire patient episode free-text narratives can cre-ate very long sequences of text. For encounters that are over 1000sentences we pick the top and bottom 500 sentences, based on theintuition that patient notes often begin with an important admissionnote describing the patient history, initial diagnosis and finish with themost recent summary of the patient state. Our source-code for cleaningand preparing the data, and the following model code is made availableto the research community.1

1 https://github.com/tomolopolis/BHC-Summarisation.

Table 1Descriptive statistics for our MIMIC-III (M-III) and KCH clinical text data. From leftto right, the number of admissions, the average admission length in days, the averagenumber of notes per admission, the average sequence length of a document excl. thedischarge summary, and the average sequence length of the BHC section within thedischarge summary.Dataset # Adm Adm length # Docs Src Seq BHC Seq
M-III 47,591 7 26 206 731KCH 1586 49 21 441 274

3.2. Assessing model performance
We assess performance of our models using ROUGE [20]. TheROUGE authors describe ROUGE-recall to measure the generated sum-maries ‘coverage’ of the reference summary or how much of the ref-erence summary is included with the generated summary. ROUGE-precision measures relevancy, or how much of the generated summaryis relevant to reference summary. An ideal summary will balance bothcoverage and relevancy, which can be expressed as the ROUGE-F1score. A higher ROUGE score correlates with higher human levelsof satisfaction with a generated summary but there are still notableissues with the score interpretation [30] . For context, in open-domainsummarisation tasks ROUGE often still used and reported. Currentstate-of-the-art performance is 37–41 points [6].

3.3. Extractive baseline BHC approaches
Our initial experiments test a recent finding that BHC sections areoften extractive summaries initially before moving to more abstractivesummaries as the BHC section progresses [5]. We compare a rangeof unsupervised and supervised extractive summarisation models topredict the initial sentences of the BHC sections.All methods first concatenate each document text in chronologicalorder, split into sentences via Spacy,2 then embed sentences by aver-aging GloVe [31] or directly using S-BERT [32] embeddings, finallyfeeding these to a ranking model, an unsupervised TextRank [33] orsupervised Bi-LSTM [34] model. We train multiple models to select top1 to 15 ranked sentences. Our final baseline model, the Oracle model,uses the reference summary to rank source sentences via Gestalt Patternmatching [35] computing the ratio of matching ‘tokens’ (i.e. white-space separated words), for each reference summary sentence andsource sentence pair. The top k ranked source sentences are used inthe oracle. The Oracle model provides an estimate of the performanceceiling of sentence based extractive summarisation for both datasets.

3.4. Pre-trained transformer based models
We consider end-to-end abstractive summarisation models as fur-ther baselines. Large pre-trained Transformer [12] models have beensuccessful across a variety of tasks including textual summarisation.Models such as BERT [36], T5 [13] and BART [6] have demon-strated state-of-the-art performance across classification, summarisa-tion, translation, language comprehension and question answering withfor the most part a single model architecture. Transformer models forsequence-to-sequence (seq2seq) tasks such as machine translation andsummarisation consist of layers of Transformer blocks configured eitheras encoders or decoders. Models such as T5 and BART are end-to-endtrained for a range of tasks, whereas BERT in its original configurationconsisted of encoder only Transformer blocks. Further work has showedBERT models can be repurposed in encoder–decoder configurations forsummarisation [37].Once trained on large, open-domain datasets these models can bere-used on further specialised domains, transferring base knowledge to

2 https://spacy.io/.
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a narrower domain and problem [38]. Transfer learning has recentlybeen shown to be effective for biomedical use cases [39]. However, toour knowledge BHC summarisation has not been considered to date,and our baseline experiments initially establish if large pre-trainedmodels can be fine-tuned to produce high quality BHC sections fromsource notes directly.All abstractive models have been pre-trained on large corpora ofopen-domain text prior to fine-tuning with clinical text. We use exist-ing pre-trained model parameter and configurations from the publiclyavailable huggingface model hub.3 Then, Fine-tuning is performedusing 3 Nvidia Titan X GPUs (M-III experiments) and 8 Nvidia DGXV100 GPUs (KCH experiments). We use different compute for eachdataset due to the difference in availability of access, the Nvidia DGXmachine is shared, and restricted infrastructure co-located on the KCHsite whereas the other hardware is openly accessible on the universitynetwork. We split datasets 80/10/10 for training, validation and test.We fine-tune for 20 epochs assessing validation set performance aftereach epoch. Initial experiments determined learning rate schedule andoptimiser parameters and a suitable number of epochs for convergence.We report our results in Section 4 on the test set only.As discussed in Section 3.1 clinical notes and BHC sections arehighly variable in length and complexity. One limitation of recentmodels are the limited source and target text sequence lengths thatcan be produced due to the self-attention mechanism requiring allinput representations to attend to all others. For example, BERT scalesquadratically limiting the max input sequence length to 512. BHCsummarisation is difficult as both input source notes are (far) greaterthan this maximum, as shown in Table 1. Recent models such asthe Reformer [40], and LongFormer [41] use various optimisationsfor the attention calculations to enable longer sequences to be en-coded/decoded.Abstractive summarisation models use source text saliency to focusthe summary on only the important parts of the source text. Modelsmust also learn how to faithfully produce source texts alongside ensur-ing the correct content. Prior work has shown models can be prone tohallucinations, producing text that is not representative of the sourcetext [42]. This is problematic for high risk settings such as healthcarebut to our knowledge this problem has only been studied for radiologyreport summarisation [43].
3.5. Clinical concept guided summarisation

Guiding summarisation models using a variety of guidance stimulusforcing the model to focus on specific inputs has recently been shownto be beneficial for open-domain summarisation [44].We guide our abstractive summariser to focus on summarising theclinical problems and associated interventions of each admission, as isoften the method used by clinicians when writing the BHC section [5].We perform named entity recognition (NER) and entity linking to ex-tract and link SNOMED-CT [45] terms, a standardised clinical terminol-ogy via a pre-trained MedCAT [46] model that has been unsupervisedtrained on both MIMIC-III and KCH datasets for SNOMED-CT problemsi.e. clinical findings, disease, disorders, and interventions i.e. proceduresand drugs. Specific top level SNOMED-CT terms provided in Tables 6and 7. We useMetaCAT models configured within MedCAT to contextu-alise extracted terms. Therefore, all extracted terms are patient-relevant(i.e. not familial history mentions), positive (i.e. not negated), andare classified as a diagnosis (i.e. not mentions of department name orclinical specialisms e.g. ‘‘patient attended the stroke clinic’’ would notannotate stroke as a diagnosis).Table 8 provides full descriptive statistics of extracted terms acrosssource and BHC notes. An interesting measure ‘term density’ the av-erage number of all word tokens per each extracted concept. This
3 https://huggingface.co/models.

follows analysis in prior work that showed differences in the densityof clinically relevant information between note types [5]. For example,if a sentence were to contain 20 words describing a patient diagnosis, ofwhich our MedCAT model extracts 5 clinical terms, this would providea term density of 4, as there are 4 word tokens for each clinical term.If of the 5 clinical terms there are only 2 unique clinical terms thisprovides a unique term density of 10. We observe that for MIMIC-IIIand KCH datasets the Notes and BHC sections have similar SNOMED-CTterm density (56 vs. 52) and word token densities (26 vs. 29), but whenconsidering unique terms the BHC sections have almost double the den-sity of unique clinical terms (63 Notes vs. 118 BHC) for M-III whereasfor the KCH notes it is circa equivalent (at 32 Notes vs. 35 BHC),indicating in the M-III dataset BHC sections quickly change from oneclinical topic to another when compared to source notes. Redundancywithin these datasets have been described in prior work [47].We use the huggingface4 BART [6] architecture pretrained on open-domain texts and additionally pretrained on a summarisation corpusPubMed [48]. We choose this architecture as it is specifically tunedfor natural language generation (NLG) including summarisation. Wefollow the architecture modifications outlined in recent work [44].This includes using dual Transformer based encoders, one for the rawtext input and another for the MedCAT extracted guidance input.Importantly, the guidance input is aligned to the text input by paddingguidance input, so the dual encoders receive the text and MedCATextracted concept term at the same sequence step. The model failsto converge without this alignment. These pre-trained parameters areshared for the first 3 encoder Transformer blocks reducing number ofmodel parameters. The rest of the encoder Transformer blocks onlysee either the original text input or the associated guidance signal.The decoder Transformer blocks is implemented to use an extra cross-attention layer that uses the encoded guidance aware signal to theregular cross-attention layer from the text input encoder representation.Fig. 2 shows our clinical concept guided abstractive summarisationarchitecture that uses MedCAT-extracted concept sequences to guidethe text summariser. We use teacher-forcing for the MedCAT-extractedconcept encoder input, and the decoder output embedding signal.Code is made available for the adapted BART model and the inputpreparation.5We configure the guidance signals to include only problem (disease,disorder, finding), and problem & intervention (drug, procedure) extractedconcepts. This aims to explore the effect of varying the guidance signalacross datasets. The original work indicates the guidance signal choicecan affect the resulting summary performance [44].
3.6. Extractive and abstractive ensemble model

Our final experiments ensemble the above clinically guided abstrac-tive model with our extractive top-level summary models, thereforeutilising both the extractive and abstractive models simultaneously. Wepredict the initial n lines of the BHC section using the extractive modelthen use the abstractive model with the guidance signal to predict thefollowing sentences. Importantly, the ensemble predictions are fed intothe abstractive model—to replicate the scenario of the summarisationmodel having already produced these sentences.
4. Results

Our results can be interpreted as the balance of generated summaryrelevancy, i.e. including only content found in the reference summary,and coverage, i.e. content available in the reference summary is inthe generated summary. Prior work has shown a positive correlationbetween the higher the ROUGE scores the high performing summarywhen manually judged by a human [20].
4 https://huggingface.co/.5 https://github.com/tomolopolis/BHC-Summarisation/blob/master/guidance_models/.
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Fig. 2. The encoder–decoder architecture using clinical relevant guidance signal duringthe encoding, decoding process.
Table 2ROUGE-LSum F1 scores for the extractive summarisation via sentence ranking forvarying sentence limits. WV is the Word vector embedding method, and SB the sent-BERT embedding method used as input to our modelling approaches TextRank orBi-LSTM. Bold indicates the best score across each sentence limit experiment. TheOracle model results are the performance ceiling for each configuration. Further resultsavailable in Appendix B.Sentence MIMIC-III KCH

limit TextRank Bi-LSTM Oracle TextRank Bi-LSTM Oracle
WV SB WV SB WV SB WV SB

1 0.0 0.0 18.3 21.8 30.2 4.09 3.6 4.3 14.7 23.32 5.6 5.0 17.2 18.8 31.1 5.56 5.2 8.3 10.1 29.13 7.6 5.1 16.6 17.5 31.8 6.63 6.4 10.8 9.9 31.75 18.8 11.3 22.1 23.5 32.8 7.61 7.5 16.1 12.4 34.210 17.9 17.7 27.5 28.7 34.3 9.12 9.2 13.4 20.59 35.615 24.1 28.3 30.1 31.1 35.3 13.0 12.9 15.8 16.0 35.3
4.1. Extractive models

Our extractive models rank all sentences within the source text tofind the top-k salient sentences that comprise the summary. Table 2show our results across varying initial BHC section sentence limits forthe various model embedding and ranking model configurations. Priorwork found BHC sections are initially extractive then quickly move toabstractive problem focused narratives [5]. The Oracle model that hasaccess to the target BHC section to rank candidate sentences against,shows the performance ceiling on both datasets is between 5 and 10 ofthe initial BHC sentences. This is more clearly shown in the KCH datasetwith only a very small improvement between 5 and 15 sentences.Our best performing ranker models use the semantic contextualsentence embeddings from S-BERT and the LSTM ranker across themajority of the sentence limits for both datasets. It is noteworthy thatthe improvements of using sentence specific embeddings S-BERT vs. av-erage word vectors are minor in comparison to performance improve-ments from the unsupervised TextRank ranker to the supervised LSTMmodel. This suggests that relying on relative importance of words andsentences within the documents is an ineffective model, and domainknowledge is needed to build BHCs.
4.2. Abstractive models

Table 3 shows our pre-trained Transformer based models fine-tunedon our datasets. We observe that the performance of these deep pre-trained models is not comparable with open-domain summarisation,

Table 3ROUGE-LSum and ROUGE-2 F1 scores for pre-trained transformer models fine-tunedon the entirety of the BHC Summarisation task.Model M-III KCH
T5-base 7.3/1.3 11.0/6.3T5-small 14.4/5.6 10.8/4.1BERT-2-BERT 22.4/4.6 7.4/2.1BERT-2-BERT (PubMed) 23.8/4.2 6.2/1.6BERT-2-BERT (M-III) – 8.6/2.2BART 26.9/11.1 17.1/8.0BART (PubMed) 32.7/11.1 22.1/8.6

Table 4ROUGE-LSum/ROUGE-2 F1 scores for our clinically guided abstractive summarisationmodels. BART is pre-trained on the open-domain XSUM [50] datasets, and BART(PubMed) is pre-trained on PubMed [48]. Bold indicates the best performance for themetric and dataset.Model M-III KCH
BART 26.9/11.1 17.1/8.0BART + Prb 26.0/9.1 23.4/12.0BART + (Prb & Inv) 26.2/8.5 23.4/12.2BART(PubMed) 32.7/11.1 22.1/8.6BART(PubMed) + Prb 34.7/10.6 26.6/13.7BART(PubMed) + (Prb & Inv) 33.6/11.5 24.0/12.8

even when these models are further pre-trained on biomedical corporasuch as PubMed or even MIMIC-III itself. Prior work reports ROUGE-L F1 scores between 37–41 points for BART, BERT, T5 with the opendomain summarisation datasets, namely the CNN/Daily Mail [49] andXSum [50] datasets, whereas our results show a range between 7–32points. The ROUGE-2 performance gap is even larger with open-domainsummarisation for these models varying between 19–22 and our resultsshowing a range 1–11 points on our clinical datasets. The BART modelpre-trained on PubMed is our best performing model by a substantialmargin for both MIMIC-III and KCH BHC summarisation.
4.3. Clinically guided abstractive summarisation

Table 4 shows our guidance aware abstractive summarisation re-sults. We use 2 different guidance signals extracted by our pretrainedMedCAT model. The first signal Prb includes only the problem extractedconcepts. The second Prb + Inv includes MedCAT extracted problemsand interventions.The M-III BART shows a small drop in performance, 1 and 3points with both guidance signals, whereas the KCH model improvesby 6 and 4 points for ROUGE-LSum and ROUGE-2 respectively. ForBART(PubMed) we observe improved ROUGE-LSum performance withboth guidance signal types Prb and Prb + Inv. We observe a small gainwith ROUGE-2 in MIMIC-III but more noticeable in KCH(4 points).BART(PubMed) experiments show both guidance signals are compara-ble, with Prb offering a marginal improvements when compared to thePrb + Inv signal, despite there being less guidance offered.
4.4. Ensemble extractive/abstractive summarisation

Table 5 shows ablation results for our baseline and ensemble mod-els. Abs is the abstractive only model BART with PubMed pre-training.Ext + Abs is the extractive and abstractive model - S-BERT into Bi-LSTMsentence ranker and BART with PubMed fine-tuning. Ext + Abs + Prb isour final model that is extractive and abstractive with Problem extractedclinical term guidance.We only observe small improved performance through either en-sembling with or without guidance. Only the KCH ROUGE-2 score isworse with the ensemble model.
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Table 5ROUGE-LSum and ROUGE-2 F1 score results for our baseline abstractive and ensemblesummariser configurations. Bold indicates the best performance for the respectivemetric/dataset pair.Model M-III KCH

Abs 32.7/11.1 22.1/8.6Ext + Abs 34.9/10.6 23.6/7.5Ext + Abs + Prb 34.9/10.6 22.4/6.7

4.5. Summarisation extracted concept analysis
Alongside ROUGE scores, we analyse the clinical terms output byour summarisation models. As our guidance signal should push themodel to generate more clinically relevant information. We run our pre-trained NER+L model (MedCAT), the same model used to produce theguidance signals, over the generated summaries from the models in Ta-ble 5 comparing the proportion of terms in the generated vs. referencesummary.Table 9 provides full results. There are small improvement with bothdatasets using the guidance model, with summaries having 0%–4%more clinical terms in the guidance models compared to the baselineabstractive models, indicating the guidance signal is assisting the modelproduce more clinically relevant terms. The guidance assists the gen-eration of problems more so than interventions unsurprisingly as thisguidance only includes problem extracted terms. Overall, there is still amajority of concepts (>50%) that are missed entirely by all generatedsummaries, suggesting there is plenty of room for improvement.

4.6. Qualitative analysis
We manually review 40 random summaries from the set of modelconfigurations presented in Table 5 with two clinicians. We comparethe generated BHC, the reference summary and the original sourcenotes for only the MIMIC-III dataset due to the sensitivity of the KCHdata. Examples of these comparisons can be found in Appendix C. Weuse a Likert scale 1–5, to measure: (1) coherence - the overall qualityof all sentences of the BHC, (2) fluency - the quality of each individualsentence, (3) consistency - the correct facts are in the BHC comparedto source notes, (4) relevance - the BHC only contains the relevantfacts from the source notes and is not overly verbose. These measureshave been used and defined in prior work for large scale qualitativeassessment of summarisation texts [51]. Our reviewers - review BHCsblind as to not bias the ratings towards either the reference or generatedsummaries. We record an average Cohen’s Kappa of 0.65 across the 4metrics. We take the mid point score if there are disagreements. Fromall ratings there are no disagreements larger than 2 points.Now we discuss the % of samples with scores ≥2.5 for each metric.For coherence we observe that all our models achieve 70% (28/40)vs. 75% (30/40) for the reference summary. For fluency our modelsachieve 60% (24/40) vs. 70%(28/40) for reference summaries. For con-sistency we see a small difference in favour of our guidance model 58%(23/40) vs. abstractive baseline 55% (27/40). Reference summary con-sistency was at 90% (36/40). Finally, relevance showed another smallimprovement with the guidance models 73%(29/40) vs. 70%(28/40)with the reference summary at 80%(32/40).We find that the majority of the same summaries are rated ≥2.5over the 4 metrics. Indicating the variability in difficulty the models en-countered with the task. Overall, from this small scale manual analysisit is positive to see that the models, including the baseline abstractivemodel, performing well across all metrics. However, there is still muchroom for improvements, with between 30%–40% of produced sum-maries without acceptable outputs. This poor performing text resultedin common abstractive summarisation issues such as repeated phrasesor words within and across sentences, and most worryingly are theoccurrences of inconsistencies between source and generated summary

facts. For example, ‘No documented hypoxia at this hospital’ is correctlywithin the reference but is generated in the BHC summaries: ‘Hypoxia:The patient was initially hypoxic on admission to the ICU.’. Thisinconsistent fact is between multiple consistent facts in the generatedsummaries. A high performing summary must be near perfect in itsconsistency to be usable in a real scenario.A promising result here is that these bad performing summarieswere often easy to pick out, and could potentially be systematicallyexcluded if the model were to be included within a real productionsystem. For example the system could decline to ‘auto-complete’ asummary given a set of admission notes, if the produced summaryexcessively repeated a phrase or sentence.We notice that our ensembling strategy to first sample extractivesentences then from the abstractive model do not read as coherentlyas the abstractive only models. This indicates that summaries movebetween extractive and abstractive generation at the sub-sentence level,and require a more sophisticated model to balance extractive selectionof representative words or phrases alongside abstractive generation,e.g. the Pointer Generator model [11].
5. Discussion and future work

We first discuss our initial baseline methods—our extractive modelsand our pre-trained fine-tuned abstractive models. We then discussour guidance signal enhanced model and final ensemble approach.We then discuss a range of issues of our approaches and the problemmore broadly. This includes common problems with abstractive mod-els, reference summary quality and the difficulties around real-worldclinical text, summarisation metrics and possible future directions forreal-world usage of such systems.Our sentence ranking extractive summarisation experiments suggestthe amount of ‘extractiveness’ for a BHC section depends largely on thedataset. Prior work showed that BHC sections often rely on extractivesummarisation initially, i.e. direct copy and paste from source notesinto the BHC for the first few sentences, but then quickly switch toabstractive summarisation in later sentences [5]. Our work supportsthe finding that both extractive and abstractive techniques are used.The M-III dataset shows the opening sentences of the BHCs are moreconsistently ‘extractive’ than KCH, as seen by the differences in Oraclemodel performance as the sentence limit increases. Our best performingmodel uses a pre-trained contextual sentence embedding model (S-BERT) alongside a Bi-LSTM. Future work could consider further rankingmodels i.e. a Transformer model to rank sentences, or an appropriateembedding boundary to build sub-sentence, or phrase level embeddingsextractive summaries from these. Moreover, we would expect to see dif-ferent results in sub-sentence level extractions over the whole sentenceextractions that we report.Our fine-tuning of pre-trained abstractive summarisation systemssuggest BART, the only model specifically trained for NLG tasks suchas summarisation, offers the best performance across datasets andmetrics for BHC summarisation. Models such as T5, a general seq-to-seqTransformer model and the BERT-2-BERT models perform substantiallyworse than BART. For BART we find that further pre-training ona relevant corpus i.e. PubMed [48] compared to only open-domainpre-training, offers improvements inline with prior research [38].We find that guidance signals for BHC abstractive summarisationoffers improvements compared to our best model without guidance. Weobserve best performance once an existing pre-trained model has al-ready been fine-tuned with biomedical data. We observe that guidancesignal improvements are dataset dependent. All experiments use theequivalent hyperparameters, e.g. learning rate, learning rate scheduler,epoch number etc. as the baseline abstractive models. It is likely thatfurther performance gains are possible with further hyperparametertuning. The guidance models share the parameters for the initial 3encoder layers. Further work could explore the effect of increasing ordecreasing the number of shared parameters.
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5.1. Guidance signal

The guidance signal uses a pre-trained MedCAT [46] model. Thismodel has not been validated across the entirety of clinical termsthat could be extracted. It has been configured to favour precisionover recall, and so likely misses clinical terms that otherwise shouldbe identified and included within the guidance signal. Further workcould fine-tune and improve the model performance to improve theguidance signal offered to the summarisation model using the MedCATannotation tool and workflow [52].This guidance signal used in our experiments is produced using theMedCAT [46] NER+L approach that is trained unsupervised on thesame MIMIC-III and KCH text data. This approach could be replacedwith a rules-based, ML or otherwise approach to extract clinical terms.The effectiveness of the clinical term extraction and subsequent usageas a guidance signal will impact the effectiveness of the adapted model.If the NER+L sufficiently under performs and relevant terms are missed,it is very likely the guidance assisted model will perform the same orworse than the standard abstractive model as the decoder stack needsto learn to ignore cross-attention from the encoder.Moreover, it must be highlighted that our NER+L model has seenthe MIMIC-III/KCH data during unsupervised training although it hasnot received supervised training on any of this data. MedCAT modelsare based upon a concept dictionary lookup, alongside a concept vectordisambiguation algorithm that adapts concept vectors according to thecontext in which they are found. We have configured the model tohighly favour high confidence predictions (i.e. high precision) predic-tions so it is likely that the majority of predictions are simply dictionarymatches. However, the impact of pre-training this guidance model hason our results is unclear and should be considered alongside our results.The guidance signal could be biased and higher performing than signaloutput by a model that has not seen the input summarisation data.Overall, As reported in prior work [44], further work on guidancesignal generation is needed.For successful model fine-tuning the guidance signal must be alignedwith the raw text input. We align the signal by padding the signal withthe white space token, but further experiments could investigate align-ing the signal with syntactic hints such as punctuation, i.e. full stops,commas, new lines, colons etc. Further work could also experimentwith replacing identified guidance terms directly with clinical conceptembeddings. During our experiments we attempted to replace the rawtext with the standardised terminology name but this lead to modelfailures and only keeping the original source text allowed for modelconvergence.
5.2. Ensemble models

We use a very simple ensembling strategy, sampling the extractivemodel and feeding into the abstractive summariser. Prior work suggeststhat BHC sections are initially extractive then become abstractive [5].We find this to be partly true – we reach an Oracle performance limitfor both datasets between 10 and 15 sentences – but it is probably atthe sub-sentence/phrase level rather than full sentences where sum-maries are extractive. Further work could explore a PG [11] networkarchitecture, with a mechanism to favour extractiveness initially thenabstractive generation afterwards.
5.3. Problems with abstractive summarisation models

Repetition is a known problem with Abstractive summarisationmodels [53]. Prior work have studied numerous methods to reducerepetition and therefore improve summarisation quality. These includea specific training regime that improves the models ability to samplepreviously unselected n-grams [54], and a coverage model that adjuststhe loss to include words and phrases that sufficiently cover the sourcetext [11]. Repetition is highly unlikely to occur in human generated

summaries. Utilising the above techniques would likely improve perfor-mance, as observed in open-domain settings [53], although we arguethis would still not guide the model to ‘focus’ on the problem-list duringsummary generation as our method allows.Factual correctness is an important problem in summarisation andespecially important applying these models to clinical scenarios, a highstakes use case that lead to large downstream impacts for model errors.An incorrect statement within a generated BHC summary could missa diagnosis, follow-up or report a result incorrectly. Our own manualanalysis identified various examples especially within long BHCs, ofoccurrences of inconsistent facts, detecting these and ensuring themodel is consistent with the source text is arguably the most importantmetric in BHC generation. A real deployment of a BHC summarisationsystem would likely require a ‘human-in-the-loop’ to monitor, similar tomost medical AI [55]. The human user would correct, further edit andsign-off on any produced summaries. Even if a system were only ableto provide a basic BHC summary, this would still beneficially reducethe administrative burden of completing the BHC section from scratch.
5.4. Reference summary quality

The reference summary BHC sections in both datasets were collectedas part of routine care. They have not been reviewed and validated sorepresent a silver-standard BHCs. Real-world clinical data often doesnot undergo secondary validation, and even MIMIC-III a heavily studiedclinical dataset has data quality concerns [56,57]. It is likely that thereare mistakes and omissions in this dataset but given the complexityof clinical text, developing a gold-standard double annotated corporawould be prohibitively expensive. If for example we used two cliniciansand each took on average 30 min per admission, one to generate anew summary of each admission, and another to compare both theexisting reference and newly written summary this would still takecirca. 7.4 years of manual work for both clinicians, of 8 h work days,5 days a week and 40 weeks a year. This is clearly not going to bepossible, across multiple datasets.However, we argue in line with prior analysis that BHC writingis context and author specific so it is likely another domain expertclinician with different training, geography etc. would result in adifferent summary [5]. Future work could seek to better understandthe variability between BHC sections, or even validate BHC sectionscreating a gold-standard.
5.5. Summarisation metrics

The ROUGE score shows our guidance assisted and ensemble modelsoffer some but limited improvement. However, in context current topperforming ROUGE-LSum scores in open-domain summarisation are at37–41 points [6] and improvements needed for achieving a few pointsabove the current state-of-the-art is difficult. Analysis using MedCATextracted concepts and from manual review indicates the addition ofguidance helps to produce longer more ‘clinically complete’ summariesdespite the similarity in ROUGE score.ROUGE has been criticised in the literature as summarisation qual-ity can score highly whilst perform poorly during manual evalua-tion [30]. Alternative metrics such as BERTScore [58] or the recentlyintroduced question answering metrics [59,60] rely on manually gener-ating questions for reference/generated summary pairs or a pre-trainedanswer conditional question generation model. Assessing our experi-mental scenarios with these metrics is left to future work, but wouldlikely assist in higher quality, more factually correct summaries. Factualaccuracy is critical in BHC generation, as this section is both a legalrecord and likely to be used by followup care upon discharge.
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5.6. Downstream summary use

Automatic generation of BHC sections from source notes is stilla long way off. Embedding an automatic summarisation model inhigh stakes scenarios such as healthcare would involve engineering asolution well beyond a research project. Aside from initial validation,ML operations tasks such as detecting model drift or bias would beessential.In any real-use scenario—a generated summary would likely onlybe used with explicit clinician supervision and ultimate responsibilityfor the produced summary, ensuring factual correctness and coher-ence. Pivovarov and Elhadad [61] provides a further categorisation ofgenerated summaries and how the output is integrated into a workflow.They explain that indicative summaries highlight significant or impor-tant parts of source texts, whereas informative summaries are intendedto replace the original text and used in place of it.
6. Conclusions

Our work has demonstrated a range of possible models using bothextractive, abstractive summarisation approaches, pre-trained and fine-tuned to specific data and a pre-trained guidance signal generationmodel (MedCAT) to push the summarisation models to focus on clin-ically relevant terms. We train a state-of-the-art abstractive modelguided by clinically relevant problem terms outperforming all baselinesacross 2 real-world clinical dataset.Overall, we have shown BHC automated summarisation to be achallenging task supporting prior work [5] suggesting that BHCs areboth extractive and abstractive. We hope this work motivates furtherwork in this area that could one day improve the overall healthcareexperience for patient and clinician alike through the minimisationof screen time. A well documented contributing factor for clinicianburn-out [4,62].
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Table 7The set of ‘Intervention’ semantic tags from SNOMED-CT configured within MedCAT.All SNOMED-CT terms with these semantic terms are extracted from source texts andBHC summaries and treated as ‘Intervention’ terms.Type ID SCTID root term Description # Concepts available
T-9 373873005 Clinical drug 6247T-26 373873005 Medicinal product 7715T-27 373873005 Medicinal product Form 6203T-39 71388002 Procedure 6,4291T-40 373873005 Product 17,3894T-55 105590001 Substance 27,626

Health and Social Care (England), Chief Scientist Office of the ScottishGovernment Health and Social Care Directorates, Health and SocialCare Research and Development Division (Welsh Government), PublicHealth Agency (Northern Ireland), British Heart Foundation and Well-come Trust. 3. The National Institute for Health Research UniversityCollege London Hospitals Biomedical Research Centre. This paper rep-resents independent research part funded by the National Institute forHealth Research (NIHR) Biomedical Research Centre at South Londonand Maudsley NHS Foundation Trust and King’s College London. Theviews expressed are those of the author(s) and not necessarily those ofthe NHS, MRC, NIHR or the Department of Health and Social Care.
Appendix A. MedCAT extracted terms

We configure MedCAT [46] to extract ‘problem’ and interventionterms. Tables 6 and 7 are provided.Table 8 shows descriptive statistics of the extracted terms of bothdatasets MIMIC-III and KCH.
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Fig. 4. Extractive score max.

Fig. 5. GloVe Embeddings: TextRank.

Fig. 6. S-BERT embeddings: TextRank.

Fig. 7. S-BERT embeddings: Bi-LSTM.

Appendix B. Extractive baseline architectures
Fig. 3, shows our baseline extractive model architectures (seeFig. 4).

Appendix C. Extractive summarisation plots precision, recall, F1plots appendix
Extractive Summarisation Methods for Top-N-Line BHC Summarisa-tion (see Figs. 5–7).
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Table 8Extracted and linked average: term counts, unique term counts, and their respectivedensities with regards to the number tokens per clinical term.Dataset

M-III KCH
Notes

# Terms 156 110Term density 55 26# Uniq terms 56 43Uniq term density 118 32
BHC

# Terms 19 10Term density 52 29# Uniq terms 15 8Uniq term density 63 35
Table 9MedCAT Extracted Term comparisons vs. reference summary. Average % of problemonly, intervention only and both problem & intervention terms in the generated vs. thereference summary. Bold indicates model with highest proportion of clinical termsgenerated compared with reference summary.Dataset Model % Prob % Inv % Total

M-III Abs 31 32 34Ext + Abs 33 33 34Ext + Abs + Prb 35 35 34
KCH Abs 40 30 38Ext + Abs 41 34 41Ext + Abs + Prb 43 34 42

Appendix D. Measures of clinically relevant information acrosssummarisation models
Table 9 shows the proportion of concepts that we successfullygenerate in the predicted summaries vs. the reference summaries.
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5.3.1 Discussion

This work covers only BHC text summarisation. This is only a section, albeit an important

one, of the discharge summary of an admission. Text within the discharge summary,

that requires external world knowledge or knowledge base, as all information is not

necessarily within the prior notes, is also needed for a comprehensive EHR summarisation

system. Prior work has presented comprehensive EHR summarisation as longitudinal

summarisation, with systems such CliniText [43] utilising expert knowledge to influence

summary generation. Effective summarisation could also include a multi-modal system

capable of summarising using both the structured and unstructured portion of the record

[80]. Further work could look to extend or integrate our BHC generation method into a

larger multi-modal longitudinal summarisation system.

A key finding from this work has been the difficulty in assessment of effective summari-

sation, and the reliance on manual review still being necessary. Recent work has attempted

to address the shortfalls of metrics such as ROUGE, BERTScore [166] or QAGS [150].

However, both these scores rely on deep Transformer based models to produce scores or

data for an assessment protocol.

5.4 Chapter Summary

This chapter has focused on the analysis of clinical free-text in the context of textual

summary generation. I firstly analysed and compared clinical text to open-domain text,

and secondly developed and tested a range of textual summarisation models and scenarios

for inpatient summary generation. I again used the NER+L method presented in Chapter 3,

to assist with the summarisation task, leveraging a pre-modelled clinical knowledge graph.

The next and final chapter will summarise the contributions of the thesis, challenges

and lessons I have learned and potential future directions for the work.



Chapter 6

Wider Discussion, Future Work and

Conclusions

This final chapter will summarise the main findings of this thesis. I will summarise the

contributions of the work, how they fit into the wider context of clinical data research and

why they are important. I will also highlight future directions of the work alongside current

and future challenges to further progress.

I will conclude this chapter and thesis by reflecting firstly on the key enablers of the

research, how the contributions can be replicated and scaled across datasets, clinical areas

and settings. I will then conclude with how I hope this and future work can in some small

way provide the means to improve delivery of clinical care.

6.1 Summary of Research Findings

6.1.1 Named Entity Recognition and Linking for Clinical Concepts

The first published work of the thesis presents the Medical Concept Annotation Toolkit

(MedCAT). This focuses on the problem of named entity recognition and linking (NER+L)

for clinical text. This is an important problem as the majority (~80%) of EHR data is
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unstructured [99] and asking even seemingly simple questions can be difficult. For example,

finding all patients with a certain condition or the number of a patients prescribed a certain

medication is non-trivial. MedCAT importantly leverages significant previous investments

in the creation of clinical ontologies (e.g. SNOMED-CT [144] and UMLS [17]) that define

clinical concepts and the relationships between them. Identifying the portions of text and

linking them to these ontological terms is a first step in making use of the unstructured

data ‘unlocking’ the data for specific successive use cases. MedCAT also provides further

models to classify extracted concepts for any number of ‘Meta Annotations’ or properties.

The underlying model uses a Bidirectional-LSTM [52] and can be configured to classify

across any number of classification tasks. For example - temporality - a concept being

referred to in the past, present or future, negations - a concept is present, or explicitly stated

as not present or diagnosis - a term used in the diagnostic sense, or some other reference.

Our novel methods empirically demonstrate improved performance over existing

methods such as cTakes [130] and MetaMap [6]. Importantly, our work acknowledges and

relies upon domain expert human validation of trained models via the MedCATtrainer tool.

Fine-tuning via annotation collection is also available allowing the model to specialise

in clinical areas guided by domain expertise or even be localised and modified if the

terminological system does not adequately represent requirements.

MedCAT is an open-source software library written to support the addition of further

clinical informatics models. Recent developments from colleagues have included:

1. Relation Annotations: further modules in MedCAT and MedCATtrainer are being

developed to annotate relations across two clinical terms. For example, the relation

symptom of for a finding term and a disorder term, or dose, frequency relations for

medication terms.

2. Document Annotations: MedCATtrainer modules have been prototyped to support

the collection of document level annotations. These models would be configurable to
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support any definable classification task, similar to ‘Meta Annotations’. The backing

model would likely be a deep pre-trained Transformer model i.e. BERT [33].

3. De-Identification Annotations: Colleagues within my department have recently

completed experiments on a de-identification pipeline using a BERT based model to

identify and replace sensitive data. A custom ontology for sensitive data has been

constructed, trained and validated. Early data is promising, and the pipeline step

has been included open-source within the library. A high performing De-ID model

could alleviate the difficulties in data sharing providing more health data researchers

access to data.

These new features are being developed with the same ‘workflow’ as the Meta An-

notation models. This means a model’s training data is defined and collected through

the MedCATtrainer interface. Then model training, validation and testing occur directly

through the MedCAT API operating directly on the trainer exported data. Finally, once a

model has been trained the library allows for easy exporting and re-use.

All of the methods presented here operate on text. Structuring the data at point of entry

could alleviate the need for these methods, but despite large continued investment in EHR

systems offering tailored forms and workflows, data entry through natural language is still

preferred [54]. Preliminary work at University College London Hospitals aims to combine

the flexibility of natural language entry with MedCAT models to extract and contextualise

clinical terms in real-time at point of entry1.

For historical text data the CogStack group within my wider research lab are working

towards secure and scalable model sharing for further CogStack deployments to use and

contribute to model fine-tuning. These models aim to be continually improved by running

them upon new data as it is being generated, i.e. for self-supervised training, and further

annotated data collected for downstream clinical research projects, i.e. for supervised

training.

1https://www.uclhospitals.brc.nihr.ac.uk/criu/research-impact/medical-information-ai-data-extractor

https://www.uclhospitals.brc.nihr.ac.uk/criu/research-impact/medical-information-ai-data-extractor
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Future work also aims to ensure manually collected annotations are utilised beyond

their initial clinical projects. I aim to build and integrate machine learning operations

(MLOps) tooling into MedCATtrainer, such as MLFlow2, to enable storage, serving,

discovering, and traceability of models.

6.1.2 Summarisation Methods for Clinical Coding

Chapter 4 focused on the application of our methods to an existing summarisation task

within healthcare delivery - namely Clinical Coding. This is the administrative process

of extracting clinical codes from patient episodes. Episodes are variable periods of care

ranging from a single encounter such as an inpatient day-case encounter, or a large complex

admission with many encounters across multiple specialties and teams. Clinical codes

represent the diagnoses and associated interventions for an episode and are represented

in clinical coding taxonomies such as ICD-10 or OPCS-4 in the UK. Clinical coding is a

skilled but mostly manual, potentially error-prone process where clinical coders identify

and aggregate the correct codes given a set of episodes notes. Clinical coders do not make

clinical judgements so a given code must be explicitly written within the notes for a code

to be extracted.

Recently, the latest NLP methods have been applied to clinical coding [97, 10, 162,

24], as the problem can be modelled as a large multi-class classification problem. A recent

review found steady improvements as demonstrated by the automated metric performance

of various models [60], but there are consistent shortcomings. Firstly, most systems used

end-to-end code prediction. Methods often used deep learning approaches to learn the

latent relationship between episode text and associated code predictions making prediction

interpretation difficult. This often then does not allow specific terms to be attributed to a

predicted code, a requirement for real-world clinical coding. Secondly, there is inconsistent

individual code performance reported by most publications. Clinical coding has a priority

2https://mlflow.org/



6.1. Summary of Research Findings | 125

order, and priority codes are more important to assign correctly rather than secondary

comorbidities or interventions. Thirdly, clinical coding is context specific. Human clinical

coders review notes in the context of the patient episode, the patient demographics, the

specific hospital department and even clinician. This informs their coding process where

to look for codes and the specific coding rules to apply. This can be especially helpful for

the detection of false negatives, where a code should be assigned, but notes are missing or

not fully documented by clinical teams, An issue that current modelling approaches do

not account for. Finally, most of the research focuses on a single ICU dataset MIMIC-III

[64]. This is problematic as the clinical coding dataset has not undergone a secondary

audit. In published work I argue this dataset can only be treated as ‘silver standard’. I

perform a detailed analysis by fine-tuning a MedCAT model for specific codes outlining

areas where I believe there is undercoding. Importantly, MedCAT identities specific words

or phrases from the text and links the appropriate ICD code, providing an interpretable set

of predicted codes.

6.1.3 Text Summarisation in the Delivery of Care

Chapter 5 focuses on the application of summarisation methods to new areas within

healthcare. I include two research papers. The first explores techniques to quantify the

redundancy in clinical text, presenting methods to better understand information theoretic

differences between clinical and open-domain text, and a pipeline to estimate duplication

between concurrent notes of the same type. Both methods quantify sources of redundancy.

Identifying and mitigating the effects of redundant text is a key area in the development of

effective textual summaries.

The second paper builds extractive / abstractive text summarisation models for brief

hospital course (BHC) summarisation. BHC sections are within discharge summary

clinical notes and they summarise the entirety of an admission. This work compares

extractive vs abstractive summarisation methods, evaluates a novel model that uses a
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clinically aware guidance signal within an abstractive summarisation model and how an

ensemble (extractive & abstractive) model can be used to produce BHC sections. This

work demonstrated consistently improved results for a ‘clinically aware’ summarisation

model for two real-world clinical datasets.

6.2 Available Software and Wider Research Community

Impact

All software that has contributed to the thesis has been released open-source and can be

found on github. The wider CogStack ‘organisation’ houses the source-code that supports

the ingestion and search capability used to train and evaluate the NER+L methods:

• CogStack-Nifi: Data ingestion pipelines for EHR structured and unstructured data

using ElasticSearch as a data sink. https://github.com/CogStack/CogStack-NiFi

• MedCAT: https://github.com/CogStack/MedCAT

• MedCATtrainer: https://github.com/CogStack/MedCATtrainer

Experiment or study specific software is also made available:

• MIMIC-III Coding Analysis: https://github.com/tomolopolis/MIMIC-III-Discharge-

Diagnosis-Analysis

• Redundancy Exploration: https://github.com/tomolopolis/clinical_sum

• Guided summarisation: https://github.com/tomolopolis/BHC-Summarisation

Users of the software have been far and wide. There are active users of CogStack,

MedCAT and MedCATtrainer extensively within the UK at the time of writing. This data

and digital infrastructure provides a path for ongoing research output.

https://github.com/CogStack/CogStack-NiFi
https://github.com/CogStack/MedCAT
https://github.com/CogStack/MedCATtrainer
https://github.com/tomolopolis/MIMIC-III-Discharge-Diagnosis-Analysis
https://github.com/tomolopolis/MIMIC-III-Discharge-Diagnosis-Analysis
https://github.com/tomolopolis/clinical_sum
https://github.com/tomolopolis/BHC-Summarisation
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Fig. 6.1 A venn diagram of the enablers for successful research in clinical informatics

6.3 Enablers of Clinical Informatics Research

In Section 2.6, I briefly discuss the enablers of open-domain ML research. This includes

the arrival of large curated datasets, software frameworks enabling accessible, iterative

experimentation, and innovative use of hardware (i.e. GPUs, TPUs) to drastically speed up

model training.

Reflecting on the range of research projects for this thesis and in my contributions

to the wider lab’s work, I can outline 3 further enablers of effective clinical informatics

research with a focus on the application machine learning and often deep learning methods.

Figure 6.1 shows these components and compares the PHI data lab with alternative

research and industry efforts within clinical informatics. These components are:

1. Data: Clinical data is highly sensitive as it describes our private health status over

the course of our lives. With each encounter we leave a digital footprint about

our clinical condition, the interventions and importantly the objective (lab results /

observations) and subjective (how we felt) care experience. The richness of this data

and its possible utility is largely unrealised, but will certainly play a role across the

spectrum of possible decisions be it clinical, operational or administrative. Within

the UK, health care data is decentralised, stored and maintained within each care
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provider’s EHR system e.g. Unfortunately, there is currently no central store of

national records, that includes both structured and unstructured data. Navigating the

bureaucracy to gain data access is difficult and often only available through academic

partnerships between provider and attached academic partners.

2. People: Effective clinical informatics research requires multidisciplinary teams. This

includes: clinicians and domain experts to direct and guide the research, validate

findings and provide human annotations for supervised learning. Engineers or

computational scientists to process and prepare data, setup and run experiments.

Lastly, information governance, patient public involvement & engagement (PPIE)

groups to ensure data is being used responsibly and in the interest of the patients and

public.

3. Infrastructure: Alongside the physical hardware and software to collect and analyse

data, setup and run experiments there is significant process and organisational

infrastructure that enables clinical informatics research. There are often local,

specific administrative processes that can bring together teams of clinical specialists

on the hospital side, and engineers or data scientist researchers on the university side.

Having a clear well defined process that enables team with different specialisms to

come together and execute on a project within a timely manner is critical to success.

The research in this thesis has been fortunate in all 3 areas. All projects have had access

to real-world clinical data, often from multiple large hospital sites with diverse populations

adding sufficient weight to findings and analysis. This is largely due to the successful

and ongoing deployments of the CogStack ecosystem at various NHS Hospital Trusts in

London and beyond. The key development that CogStack provides is the ingestion of all

EPR data in a single, real-time updated and searchable index. Without CogStack, gathering

the necessary data to run large scale model training, with data potentially spread across

multiple SQL databases and document management systems housing .pdf, .doc or .xlsx

docs could take months of custom scripts and manual efforts.
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6.4 Challenges

This section will summarise the challenges encountered throughout projects for the thesis.

6.4.1 Clinical Data Quality

Clinical data is heterogeneous with presenting clinical phenotypes hugely variable for even

a single condition. Data can be scarce and shallow for patients that have uncomplicated

complaints and receive routine care, whereas other patients can have broad and deep data

for chronic complex issues involving many encounters. There is further heterogeneity

across data formats such as pdf, word docs, and images. The OCR pipeline supplied within

CogStack is able to handle most formats and extract data, however there is still a word

error rate (WER) depending largely on the quality of source data, i.e. a handwritten note

vs a typed pdf. This inter-patient difference was seen throughout the Covid-19 research

where some patients had hundreds of pages of notes whereas as others had only couple of

paragraphs.

6.4.2 CogStack Deployment Differences

CogStack is designed as a loosely coupled ecosystem of technologies to flexibly support

clinical research. Hospital IT is often heterogeneous within and across Trusts. Each

CogStack deployment requires a data ‘ingestion’ script to replicate data from the source

system into CogStack. Setting this up can vary in difficulty depending on the volume

and complexity of data to be ingested. If CogStack is yet to ingest a dataset then it must

be retrieved directly from the source system, which can be difficult to locate, access and

retrieve. Fortunately, in my case the majority of data used throughout this thesis was

already ingested by deployed CogStack instances, or was in the process of being ingested.

CogStack is flexible and has been designed to cope with issues of missing, incomplete

and messy data. However this flexibility does not enforce or even suggest a schema for
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ingested data. This can result in inconsistencies in deployments within and between sites.

For example, equivalent data such as ‘document description’, could be called ‘doc desc’,

‘document desc’ across 3 different deployments or indices. Schema differences are simple

to fix, but as analysis pipelines are often long and complex, modifying even simple things

such as parameter names can be time-consuming to implement and run. Overall, CogStack

deployment differences often resulted in delays in running replications of analysis across

sites as subtle variations in code or edge cases needed to be fixed before results could be

gathered and analysed.

6.4.3 Data Access

Throughout this thesis methods have been built to enable clinical research (e.g. MedCAT)

and supplemented my own research interest of clinical text summarisation. Healthcare

providers that store and maintain the data have strict information governance (IG) processes

to ensure the data is used responsibly and ethically. For example, CogStack requests that

supply data for clinical research questions have to undergo independent internal committee

review, be sponsored by a clinical supervisor within the Trust and ensure appropriate levels

of patient and public involvement and engagement (PPIE) are considered. Each hospital

has their own broadly similar process with small but often significant differences. SLaM

has the CRIS process, KCH the KERRI and GSTT the GERRI process. Unfortunately,

despite there being a ‘National’ health service in the UK, there is not single national level

agreed upon process that each Trust follows to provide access for research. This can

be understood by each provider operating independently, with their own unique patient

populations, clinical specialisms, technology stacks and data requirements and therefore

IG processes. Navigating through IG and research administrator processes was difficult

and only possible with assistance of staff placed within those Trusts.
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6.4.4 Data Discovery with Clinical Datasets

A challenge acutely felt within the early part of the thesis was the lack of data model

visibility at NHS Trusts. The expectation for clinical research is to specify the data

requirements first then to submit a proposed project. This was difficult initially as the

development and testing of novel methods required large scale data access that project

review committees had not previously come across. Once various projects were framed

in particular way, project review committees became easier to navigate. Systems such as

CogStack allow large scale analysis that previously have not been possible.

6.4.5 Compute Restrictions

Both the PHI DataLab at KCL and the KCH NHS Trust have access to GPU compute to

accelerate model training, fine-tuning and inference. For experiments involving MIMIC-III

[64], the departmental local GPU compute was available for fast, interactive access. The

KCH compute is a large 80 core, 8 V-100 GPU NVIDIA-DGX machine, located on the

KCH network behind the Trust firewall. This machine has KCH CogStack access but has a

restrictive firewall so all experiments require pre-built docker containers. This has been

time consuming as the time to test a hypothesis, fix bugs and explore further ideas requires

rebuilding large docker containers that contain models, software dependencies and external

datasets. Software and models have to be configured or modified to operate in an ‘offline’

manner, allowing for container images to be built, and moved to isolated compute. As the

KCH CogStack data is highly sensitive, identifiable health data there are few alternative

options.

6.4.6 Annotation Collection

Modern AI methods are extremely capable pattern recognition systems. However, no model

is perfect. Understanding where a model makes errors is an important part in building trust

with model users. MedCAT uses human domain expert collected annotations for model
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validation, and model fine-tuning via supervised training. Collecting manual annotations

is labour intensive and potentially error prone. Finding motivated domain experts who are

prepared to manually annotate data can be difficult. MedCAT and MedCATtrainer attempt

to provide easy to use interfaces, suggesting potential annotations, keyboard shortcuts, and

fast concept look-ups but there is still a learning curve to use the tools effectively. Ensuring

annotators are able to consistently annotate to the same standard is crucial, as I have found

to my detriment, with previous project annotation exercises yielding little value despite

annotators spending hours annotating. Although annotation guidelines are provided3 and

strongly recommended ensuring human annotators adhere to them is difficult.

Overall, the challenges encountered were overcome, or mitigated through perseverance

and the expert guidance from clinical, technical and NHS Trust process experts.

6.5 Limitations

Overall, the impact of this work is limited to healthcare settings where firstly the data is

digitally available. Paper records could not be used in the methods shown throughout this

thesis. Fortunately, converting paper records to electronic form can be fairly easily done at

a reasonable expense, although there are errors associated with the conversion, particularly

in converting handwritten text. Secondly, all methods have focused on English language

text only. Through the open-source code bases there has been engagement across Europe

and Asia where the clinical text is not English, but we have only seen initial results to

suggest the results are precisely replicable across languages [36]. Another limitation is

that our methods are unimodal, and only use the unstructured portion of the EHR. EHRs

are rich multi-modal sources of data, containing radiology scan images and structured

laboratory test results / demographic data that could be used for better model predictive

power. Beyond the EHR, there is a wealth of relevant data that could be incorporated into

3http://shorturl.at/hmy78

https://docs.google.com/document/d/1xxelBOYbyVzJ7vLlztP2q1Kw9F5Vr1pRwblgrXPS7QM/edit#heading=h.imad4ksd7q78
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learning systems integrated into specific healthcare scenarios, these include wearable and

mobile device, social media and genomic data.

6.6 Future Work and the Challenges Ahead

6.6.1 The CogStack Ecosystem

At the time of writing CogStack is an open-source ecosystem of solutions that includes the

MedCAT and MedCATtrainer tools developed as part of this thesis. CogStack is owned and

maintained by the core group in the PHIDL, with further contributions from individuals

attached to hospitals or universities based in UK, Australia and the Netherlands. This

‘organic’ growth has resulted in deployments of various part of the ecosystem across 1̃5

UK based hospitals and international healthcare providers / research organisations. Future

work in this area will look to build further clinical informatics research outputs but also

address shortcomings of the academic software into a well documented and supported

industrial solution. A reason for its successes so far are:

• The components are loosely coupled. As previously mentioned, NHS Trusts can

greatly vary in EPR deployments, digital maturity etc. CogStack provides an end-to-

end solution for indexing, searching, visualising and structuring EHR data but each

component can also be used independently. So for example, if a site already has a

single data-source for all clinical data MedCAT can be used in isolation.

• The software is open-source. Open-source software has steadily grown in popularity

over the last decade with many businesses small and large choosing to ‘download’

rather than ‘build’ or ‘buy’. Open-source has allowed potential users of CogStack to

investigate, deploy and trial the technology for their own use cases without securing

funding to purchase the ‘product’. Future work will continue to push for open-source

to continue to maximise its availability and potential for impact.
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• CogStack has grown organically within academia and NHS Trusts. This growth

has meant that progress has been slower (6+ years) than a dedicated, built in silo

product. However, CogStack is now a trusted, identifiable brand with brand equity

in the close-knit clinical informatics community. This has been built by continual

delivery of peer-reviewed published research and delivery of service improvement /

audit projects at many healthcare providers across the UK and internationally.

I have shown that NER+L developed in Chapter 3 has uses in downstream clinical

research (Section 3.4.2) and various summarisation use cases (Chapter 4 and 5). The

continued investment in the CogStack ecosystem will productionise the models used for

these studies, enabling re-use, model discovery and sharing. This is largely the discipline

of ML Operations. An active research and industry area that supports how a machine

learning model can be continually monitored and controlled to ensure safety, ongoing

validation and governance.

6.6.2 CogStack to ‘Unlock’ EHR Data

Overall, CogStack aims to ‘unlock’ data already held within an EHR. Healthcare providers

are continuing to invest in large expensive EPR deployments to manage and directly

administer care. However, EPR providers often lack the capabilities that CogStack provides

and are often not incentivised to build out these capabilities. Namely, to search and visualise

data in real-time, or structure and prepare data rapidly for downstream uses such as clinical

research, decision support and predictive modelling. This unlocking of the data will be a

huge leap forward in what is capable, but it will only be the start. CogStack deployments

at a given site ideally will allow any timely, relevant, structured data (regardless of source

system) ready for any conceivable downstream use.



6.7. Conclusions | 135

6.7 Conclusions

To conclude, this thesis has presented, applied and evaluated methods to summarise data

within EHRs. The methods for extracting and contextualising clinical terms from any

clinical terminology has been evaluated across multiple healthcare settings, fine-tuned for

specific subsets of terms and contributed to research studies across specialties, clinical

areas and even use cases i.e. clinical, operational and administrative. The thesis has

highlighted the relevance of summarisation of EHR data across the range of healthcare

roles. For example, front line staff summarising patient narratives for care team or setting

transitions. For administrative staff that summarise episodes and assign clinical codes for

billing and reporting, and for researchers and innovators looking to build decision support

tools and predictive models that summarise the raw clinical notes by extracting patient or

episode level terms for further processing.

Healthcare is a data rich domain, and this thesis has only considered EHR data, focusing

on the often untouched unstructured portion of the record. The work has reinforced and

furthered our abilities to realise value locked away within the unstructured or patient

narrative part of the EHR. I have critically looked at current research and built tools that

have utility across areas of healthcare delivery. The open-source release of tools has

enabled dissemination as users have already by using the tools in downstream healthcare

use cases. However, I have only scratched the surface of what is possible. Structuring

decades of historical data could drastically improve clinical, operational and administrative

use cases in the short to medium term. Many research questions that have simply not been

possible, due to a lack of data and expertise in analysis could be answered by enabling

researchers to rapidly ask questions of the data.

Looking ahead, I foresee systems using multi-modal approaches integrating multiple

data sources, supporting healthcare workers and even patients themselves to make timely,

well-informed decisions. These multi-modal methods would still include data from the

patient narrative and NLP methods, but also speech from both clinicians and patients, image
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data, e.g. radiology scans, multi-omics data, e.g. genomics, proteomics, transcriptomics

etc., and newer data sources such as mobile health sensors providing continual monitoring

of patients outside of hospital settings.

Overall, I believe increased data and precise, careful, considered application of AI

methods in healthcare will lead to improvements across many aspects of healthcare delivery.

Allowing clinicians, researchers, operations and administrative personal to augment their

current capabilities beyond what is currently possible. Importantly, this will not replace

any of these roles but allow the human user of the AI to perform tasks at greater speed and

efficiency applying expert human guidance where necessary. I hope one day future PhD

and academic research projects will continue to push the envelope, using the contributions

in this work and beyond, building upon our methodologies and experiments, implementing

the currently experimental solutions into real-world practise; using the wealth of EHR data

work for the patient, clinician and system as a whole. For example, our work could be used

to improve patient care by identifying and extracting structured data allowing computable

guidelines to be used and advise clinicians through electronic clinical decision support, or

building a system where the clinician’s experience is improved by reducing the friction in

EHR system usage through the automated generation of text, or even improving clinical

coding depth and breadth of coding improving care planning and financial remuneration

for a provider. Ultimately, I hope this work in some small way moves global healthcare to

a more equitable, efficient and available service.
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Appendix A

Appendix: Language and Free-Text

Analysis Pipelines

This appendix firstly introduces natural language and written free-text as a flexible and

efficient storage medium for data. We briefly summarise the relevant areas of linguistics

that have informed the specific sub-fields of free-text analysis and text mining, providing

an abstract view of a typical text analysis pipeline.

A.1 Language and Free-Text

A natural language (or language here on in) is a language that has organically grown

without explicit definitions and planing by one or more persons [30]. This is in contrast

to a formal language such as computer programming language or logic language that has

been explicitly codified according to some language creation process. Natural languages,

due to their organic development, are closely linked with a culture of those that speak,

write or read it. Languages afford users a rich, accessible, efficient method to communicate

our interpretation of the world around us [5]. A written language accompanies a language

system such as a spoken language, or sign language that can be acquired without explicit

learning, i.e. a child learning to speak their native language from engaging with parents.
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Written languages enable easier storage and transfer of data compared with spoken / sign

languages and since the invention of distributable media, i.e. the printing press / digital

media / the internet, written language has facilitated mass, instant, global communication.

Linguistics provides a framework for the study of language, providing objective,

scientific analysis of language, their structures and phenomena. All written languages

include common linguistic constructs such as: morphemes - the smallest unit of meaning

that a symbol or collection of symbols can possess in a language, and morphology - the rules

that govern the assembly of units of meaning through combining morphemes. Together

these support the building of a given language’s vocabulary or lexicon. Syntax defines

how words are ordered to form sentences and semantics provides rules for identifying the

meaning conveyed by words and sentences. Syntax and semantics are central to a languages

grammar - i.e. the rules of language that define how to effectively build sentences. Typical

native speakers of modern languages such as English or French have vocabulary sizes

of 20-35k words [63]. Grammars can be vast and complex with many exceptions to the

specified grammar rules. Moreover, languages are constantly changing and evolve as their

users refine, develop or discard parts of a language [15].

Large-scale analysis of texts was previously only possible through manual means,

relying on human efforts to meticulously read, catalogue and store texts for further analysis

at a later date. With microprocessor technologies, text mining and analysing processes that

would have otherwise taken months or years if done manually can now be performed in

seconds. Firstly, we will review how text is stored and computed within modern computing

architectures then we will describe from a high level the steps involved within the field of

text analysis.

A.2 Encoding Free-Text

(Modern) Computing systems operate on data at binary i.e. 0 and 1-bit level, representa-

tions. All data such as numerical, text, image, audio, video or sensor output signals can
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be encoded into a binary representation for processing and storage. Most mediums have

standardized protocols and encodings allowing for the full breadth of possible data to be

represented, stored and computed over by a variety of computing architectures. In the case

of text, a universal encoding for a language is one that can encode all possible symbols

or graphemes for that language, i.e. the languages alphabet plus additional characters for

punctuation and whitespace, brackets and so forth. Initially, the standard encoding scheme

was ASCII (American Standard Code for Information Exchange) [44], which was only

able to represent English text, with 7 bits for characters and 1 bit for parity, representing

128 possible characters. ASCII-256 or the extended-ASCII code allowed for up to 8 bits for

characters, or 256 possible characters including possible characters for Latin and Germanic

based languages. The Unicode standard [146] and the associated encodings (utf-8, utf-16

and utf-32) are supersets to ASCII that provide: (near) universal means to represent and

handle most modern languages simultaneously, flexibility to grow as new symbols are

added, and only some extra storage requirements. With unicode any texts in any supported

language can be stored, retrieved and computed over allowing text analysis developments

and research that is initially done in one language to be relevant and useful with corpora in

one or more different languages. Universal standards and encodings are relevant to this

research, as with our increasingly globalised world, it is important that we reflect on the

applicability of our work, and how others that do not use English exclusively, can use and

benefit from these developments.

This thesis exclusively focuses on the analysis of English or American English text

as these are the data sources available, however we reference relevant background work

both from the clinical informatics and NLP domains and highlight where our own work is

relevant for non-English text.
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Fig. A.1 A typical text analysis pipeline and the stages involved to produce a result, insight
or finding

A.3 Text Mining and Analysis

The flexibility afforded by a natural language presents difficulties in aggregate analysis

of text. Text mining often refers to the transformation of text into normalised structures

allowing for easier analysis. Common techniques include tokenization, normalisation i.e.

stemming, lemmatizing and stop word removal. Text analysis often refers to the analytical

processes or methods used to derive useful information from normalised texts. However,

both these terms can be used interchangeably and are even often included within definitions

of NLP. Fig. A.1 shows the typical steps carried out during the process of text analysis.

The pipeline may include all or only some of these stages to produce the final intended

result. Results are the aims of running the text-analysis pipeline and can be any arbitrary

aggregate ‘finding’ that is somehow within the texts. Text analysis pipeline results with

clinical notes could include: counting the number of patients that have been prescribed a

drug, understanding the sentiment (i.e. positive or negative) of patients following a recent

care experience, building a patient cohort for a clinical trial from recently recorded clinical

findings / symptoms / disorders, or even a predictive model for in-patient mortality or

hospital readmission. The final stage in the pipeline i.e. the Analysis / Model, can also be

the final result although arguably trained AI models are only useful if they are performant

according to target metrics, a further result.

Before running text through a pipeline researchers may pre-process it to discard

sentences, paragraphs and documents that do not fit within a provided criteria. This

process is known as cleaning and can be complex and time-consuming depending on the
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source text(s) under analysis. We will not go into great detail within this appendix but we

describe the cleaning process in the thesis chapters where relevant. The second stage of

the described pipeline, normalisation, could also be considered cleaning as it manipulates

and potentially discards select tokens, the output of the tokenizer stage. Data wrangling is

also another common term and is the process in which data is transformed into a usable

format for processing.

We will now briefly describe each stage in the abstract text-analysis pipeline and

review the relevant background research, providing a basis for the following chapter’s

methodological contributions and their applications.

A.4 Tokenization

Arguably the first step in any text-analysis pipeline is a tokenizer. This breaks up a

contiguous block of characters into tokens. For some text T that is a sentence, paragraph,

document, corpus or corpora, a tokenizer is a function F that produces sequence of 1 to

n tokens X , that is x1...n. Each token xi is then further processed by each text-analysis

pipeline step.

F(T ) = X = (x1 . . .xn) (A.1)

A simple, common tokenizer F breaks up T via white space characters such as spaces

(\s). However, F can be any function that operates on sequences of characters. For example,

a tokenizer could treat each sentence as a token, using end-of-sentence markers such as

full stops (periods), new lines(\n) or carriage returns(\r) to identify token boundaries.

If T is HTML, a markup language that allows content to be displayed within modern

web browser technology, tokens could be split by common tags such as ‘<p>...</p>’ or

‘<span>...</span>’ or ‘<br>’. In practise, F can be of two categories. The first are fixed

rule-based tokenizers that define token boundaries via one or more regular expressions [68].
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Regular expressions (Regex) are a formal language that allows patterns of characters to be

recognised and split according to arbitrary criteria as described earlier, e.g. whitespace,

newlines, HTML tags etc. Regex rules are easy to implement, fast to run, and are built-in

across multiple programming languages and environments i.e. computer servers, mobile

devices and web browsers. However, a single regex can quickly grow in complexity and

be difficult to debug for errors; they can also be brittle and perform in unintended ways if

text data appears that was not originally coded for.

The second category of tokenizers do not define any explicit rules but are parameterised

by running a parameterized algorithm over T . These tokenizers have recently become

popular due to their ability to optimise the tokenization of T according to a target vocabulary

size. This is practically important as down-stream stages of text analysis pipeline, i.e.

stages 3 (vectorisation) and 4 (analysis/model), require each token to be represented and

operated over by a fixed length numerical vector. This will be discussed in further detail

in Sections A.5 and A.6. For now it is sufficient to know setting an intended maximum

vocabulary size and allowing the algorithm to find an optimal tokenization F is useful

downstream. A vocabulary V is the set of tokens of the sequence of tokens X outputted

from the tokenizer F over texts T :

V (X) = x1···n;xi ∈ X (A.2)

A.4.1 Sub-Word Tokenizer Algorithms

Zipf’s law [95] is an empirical law in linguistics that states that word occurrences in any

language and therefore our texts T , are inversely proportional to their rank. In other words,

it describes the word occurrence relationship between where a word ranks and its volume

of frequency of occurrence. For example, the first most common word in T will occur

proportionally 2x the second most occurring word and the second most occurring word

will proportionally occur 2x the third most occurring word and so on. This results in the
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frequent words in T dominating the occurrence distribution with a long tail of infrequent

words. Given Zipf’s law, a simple tokenizer that simply identifies tokens on white space

and adds all unique entries to a vocabulary is likely to later encounter words that have never

been seen before. These unseen tokens are known as out-of-vocabulary (OOV) tokens, and

are often simply ignored or removed from the source text in downstream analysis.

An example algorithm for optimal V is Byte Pair Encoding [133] (BPE), initially used

for lossless compression of strings. BPE takes all unique characters in T , counts and

ranks all two character pairs adding the highest occurring pair to the vocabulary V . This

joining and ranking process continues iteratively with the addition of each newly added

item to V until the target vocabulary size is reached. The original algorithm allows for

frequent sequences to be retained as full tokens whereas suffixes or prefixes of words are

naturally split and treated as separate tokens. This allows for contextualised vectorisation

(embedding) approaches, discussed first in 2.1 and then in Section 2.5, to represent

previously OOV tokens.

BPE supported lossless compression as a byte to sequence mapping table allowed for

long common sequences to be replaced with a single byte in the original source text T .

Recent work has improved the performance of BPE using UTF-8 encoded representations

of characters rather than characters themselves [152]. This was shown to be especially

effective for for character rich languages such as Chinese and Japanese, and training

multi-lingual tokenziers.

WordPiece [161] and SentencePiece [75] have also recently become popular due to

recent state-of-the-art downstream models using these algorithms for tokenization. Broadly,

these tokenizers continually train a model to optimise for the likelihood of each possible

token given the dataset, balancing segmenting rare tokens into their common constituent

parts and keeping common words whole.
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A.4.2 Normalisation

Normalisation aims to remove or transform tokens into a standardized form ready for

further downstream use. This stage can be considered an optional stage in the text analysis

pipeline or even part of a pre-processing stage. Normalisation can provide performance

gains depending on the following stages but is often only used in combination with rules

based tokenizers, i.e. the first category discussed in the prior section, as these normalisation

methods operate on whole words only. These category of tokenizers produce variable

length tokens i.e. character, sub-word, word and multi-word tokens. It can be argued

that they have an inherent normalisation step. We will now briefly review the common

normalisation methods.

Stemming is the removal of suffix characters to reduce a token to its stem form

irrespective of the context of the word. The intuition being that words with equivalent stems

have equivalent meanings and therefore enables the reduction in the number of semantically

distinct words, i.e. the vocabulary V , to be analysed. An example implementation, the

Porter Stemmer [108], uses a suffix list and bespoke rules to transform tokens to their stem,

although others could use word and stem dictionaries.

Lemmatization is similar to stemming but seeks to normalise a provided token into its

lemma form, or the form of the token that would be found within a dictionary. Therefore,

alongside the lemmatization algorithm, external dictionary resources are often used to

reference lemma forms of words, although it is also possible to ‘train’ a lemmatizer to

learn these base forms [98]. Lemmatization is an improvement upon stemming as it takes

the tokens context and morphological features such as Part-Of-Speech (POS) tags into

account. POS tags are the set of grammatical groups that each token can be assigned,

for example a verb, adverb, adjective, noun etc. A common set of tags used is the Penn

TreeBank tag set [86]. POS tagging is now considered as mostly a solved problem wrt.

English, as algorithms have reached fast accurate performance with now >97% accuracy

[4]. POS tags are useful during lemmatization as a tokens lemma can depend directly on
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the POS tag. Take for example the token ‘leaves’, the plural of leaf as well as the word to

indicate leaving. A sentence such as ‘He always leaves early’ vs ‘the leaves are falling’, the

former sentence would lemmatize the last token to the singular leave whereas the second

sentence will use leaf for the singular of a tree leaf.

Our final common normalisation method is stop word removal. This is a simple

technique to remove irrelevant tokens that uses a dictionary to filter out terms that should

not be included in any further downstream analysis. This step is often performed after

lemmatisation or stemming, is language specific, and for English often includes common

terms such as ‘a’, ’the’, ‘that’, ‘has’, ‘it’, ‘who’ etc. Stop word removal is a simple

but often effective approach at removing ‘uninformative’ parts of text. However, if this

‘uninformativeness’ measure is difficult to define this method may inadvertently remove

important text.

A.5 Vectorisation

Stage 3 of our text-analysis pipeline is vectorisation, a process where each entry in

Vocabulary V is transformed into a fixed size vector, or sequence of floating point numbers

to encode the ‘important’ features of these words, i.e. the semantics and syntactical

features, allowing computer architectures such as some analytical procedure to encode,

modify and compute over these words.

Each item within V , regardless of how each entry was found in the previous two stages

is a sequence of characters encoded via some encoding as discussed in Section. A.2. So,

why cannot an encoding schema such as Unicode be used to encode words, to provide

a consistent, transmissible bit representation? Firstly, an item in V can vary between a

sub-word, word, multi-word token so the range of possible inputs is far greater than than the

limited character sets used in most languages. Secondly, the building blocks of meaning,

the morphemes of a language, are within words so such an encoding scheme would need to

be able to universally encode this as well as any possible context that the words were found
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in, i.e. the syntax. The semantic and syntax representations are not a consideration in the

encoding of letters or the graphemes of a language. As a research community, to achieve a

universal encoding scheme for even a single language’s morphology, the semantics, and

the syntax would bring us one step closer to true NLU [13].

Despite the lack of a universal encoding scheme, we can still build meaningful and

useful representations of text allowing further processing in the final stage of the pipeline.

To build these useful representations, the text T now is assumed to be suitably large and is

comprised of many individual texts T = (t1 . . . tm), with each ti outputting token sequences

via our Tokenizer F(ti) = (xti
1 . . .x

ti
n),xn ∈V .

A.5.1 Sparse Token Representations

One method to choose a dimension for each Vocabulary entry vector is to simply use m,

the number of documents in T . Stacking all vocabulary vectors then outputs a matrix with

dimensions |T |× |V |. This matrix can be populated by the counts of occurrences for each

document and each vocabulary item column. For example, for the two sentences, t1 =

‘patient diagnosis: heart disease’ and t2 = ‘discharge diagnosis: heart failure, heart attack’,

we have the vocabulary (‘patient’, ‘diagnosis’, ‘heart’, ‘disease’, ‘discharge’, ‘failure’,

‘attack’), and therefore matrix M is:

M
2×8

=


patient diagnosis heart disease discharge f ailure attack

t1 1 1 1 1 0 0 0

t2 0 1 2 0 1 1 1


An alternative is ‘one-hot-encoding’ that represents the binary presence or absence of

a word in a text, instead of of counting the number of occurrences. A more advanced but

still commonly used method to vectorize T is term-frequency, inverse document frequency

(tf-idf) [85]. This uses the previously found count matrix, i.e. the term-frequency, and
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normalises each count by the inverse document frequency that is the log scaled proportion

of occurrences of the given vocabulary token as it appears across all documents. In simpler

terms, the idf scales the document term count representation for each document aiming to

highlight the words that occur infrequently across the entire corpus, the intuition being

that the rare words are likely important and should be weighted in favour of those words.

Applying this transformation to our 2 sentence corpus provides the following M̂:

M̂
2×8

=


patient diagnosis heart disease discharge f ailure attack

t1 0.58 0.41 0.41 0.58 0 0 0

t2 0 0.3 0.61 0 0.43 0.43 0.43


Note how in t2 the previous ‘diagnosis’ column vector is now penalized for appearing in

both documents, with ‘discharge’, ‘failure’ and ‘attack’ being weighted favourably despite

their equivalent term count. With a large set of real documents, and a meaningfully large

vocabulary, the majority of the entries of this matrix will be 0, as any given document row

is unlikely to contain all possible vocabulary entries entries available in V . This sparsity

can present some difficulties, firstly a very large vocabulary and very large corpus can be

become computationally unwieldy to manipulate for further downstream processing, and

storage can be challenging depending on how the matrix representation is stored.

Each column of M and M̂ can be referred to as a feature and can be used as input into

the next stage of the text analysis pipeline. Tf-idf can be useful to provide interpretable

features of results, as impactful features can directly be mapped back to specific words.

Importantly, vocabulary V is a set and is therefore unordered. This gives count vectoris-

ers and tf-idf the name ‘bag-of-words’ approaches, as the sequence order of each document

is lost during vectorisation. So, given a row vector ti of M it is not possible to retrieve the

original text. However, the sequence order of tokens can be very important in the text’s

overall meaning. Let us consider the text: ‘no sign of diabetes, positive for hypertension’,
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a tf-idf representation would not be able to discern whether the negation refers to diabetes

or hypertension.

A field of linguistics, distributional semantics, is built around the idea that terms that

appear in similar contexts i.e. appear with similar words around them, share similar seman-

tic properties, which emerge when analysing large corpora [48, 39]. An initial approach to

capture this could be to build a large co-occurrence count matrix with dimensions |V |×|V |.

Each entry is the count of the token at row i appearing in the context of the column j token.

The context is some predetermined window that could be one, three or even 10 token to the

left and right of the token under consideration. This matrix is large, quadratic with respect

to V , and sparse as only a small fraction of tokens will appear in the context of another

token given a sufficiently large V .

Further vectorisation methods crucial to the thesis are covered extensively in Section

2.1.

A.6 Analysis / Model

Given the previous 3 stages we now have the methods to take a text corpus T , tokenize,

normalise and vectorise into a matrix M, that capture both the semantic and syntactic

properties of the text. This next stage can vary from simply ranking, or visualising directly

a tf-idf matrix to understand important words or phrases in a corpus or conducting simple

search queries. For example, in an information retrieval (IR) scenario, given a vectorised

query string and a tf-idf matrix, we could rank all documents by the cosine-similarity, as

shown in Equation. 2.6, returning results that are not exact matches, alongside those that

are semantically similar.

This stage of the text-analysis pipeline is the most open-ended and varied. Many use

cases utilise machine learning methods, a subset of Artificial Intelligence (AI), to transform

this vectorised representation of T into some final useful, humanly interpretable result.
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The application of machine learning techniques can be seen across use cases (classifi-

cation, regression, clustering, generation) and data modalities (text, images, video, speech

/ signal, processes etc.). Prediction models that rely on classical statistical models such

as linear and logistic regression analysis can be considered within the realm of machine

learning.



Appendix B

Artificial Neural Networks

Artificial Neural Networks (ANNs) are able to model non-linear relationships between

X and y, unlike logistic or softmax regression. ANNs are based on the connectionist

theory of computation [41] where many small, simple and interconnected units or nodes

of computation are arranged to model higher order complexity. Connections between

nodes are reinforced or diminished according to the input signal that flows through each

node, its corresponding activation from carrying out some computation, and finally most

importantly the feedback signal supplying the means for the node to modify its internal

state so future activations are an improvement over the prior.

Neural models can also be called representation learners, as each node gradually adjusts

its parameters to produce a latent representation of the original input via the produced

activation. Through this layered composition of functions, representations of data are

produced that allow for features that would otherwise be hidden in the data to be found

and further used for the downstream purposes, i.e. classification or regression.

ANNs are often organised into layers of these simple computational units, and are

configured with specific connection architectures and computational configurations. I

will now review the broad range of neural model architectures relevant to our work. This

includes initially fully-connected / feed-forward networks and the theoretical framework

of neural models, then I will review recurrent neural networks that are ideal for sequence
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modelling tasks as they specifically allow for a ‘memory’ within the model. I will then

briefly review the Transformer, and its effectiveness across a broad range of tasks. I will

close this section with a review of language modelling, transfer learning and their relevance

to clinical NLP and summarisation.

B.1 Feed Forward Neural Networks

A neural network model is the combination of the network topology and the parameters

represented as matrices or weights connecting the nodes. Figure B.1 shows a simple

feed-forward, fully connected neural network [55] for binary classification as signified

by the single output neuron on the right hand side, alongside the weight matrices that

represent the parameters of the network W 1 and W 2. Given the input samples X and output

labels y. A forward pass through the network computes the error or loss between the

output ŷ and the intended labels y. In the example X has two features, x1,x2, represented

by two network nodes on the left hand side. The example has a single hidden layer with 3

nodes, the middle layer. Each hidden layer node receives both inputs x1,x2. The activation

at each node is computed by the dot product of the weight vector w⃗ and the input x⃗. A

non-linear activation function f outputs:

z(x) = f (w · x) (B.1)

Example activation functions are:

Sigmoid: ReLU: Leaky ReLU:

f (x) =
1

1+ exp(−x)
f (x) = max(0,x) f (x) =


αx,x < 0

x,otherwise



B.1. Feed Forward Neural Networks | 166

Fig. B.1 Example Fully-Forward Neural Network Architecture

Activation functions are often simple fixed functions that provide a non-linearity

between inputs and outputs. As inputs flow through the network and are transformed by

composing dot product and activation functions, the forward pass completes at the output

layer. In the example architecture f at the last node is the sigmoid function providing a

probability value for binary classification problem. For 3 or more classes the soft-max as

described in 2.3.2, is applied as the final activation function with an output layer node per

class.

Linear functions, such as the weighted sum of a networks connection, even when

composed i.e. stacked in layers, would still only be able to model linear functions. The

non-linearity of the activation function provides the means for ANNs to be universal

approximators for a given function space as suggested in prior work [55], given a sufficient

number of hidden nodes (breadth) and layers (depth) to a network.

B.1.1 Backpropagation

In the binary classification scenario, a forward pass through the network produces an output

probability vector ⃗̂y for each sample i that can be compared with our labels y⃗ producing

the loss L:

L = ∑
i

ŷi − yi (B.2)
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Fig. B.2 An example backward pass through our network, and the partial derivatives of the
Loss (L) wrt. to each weight vector at each vector connection (parameter).

Backpropagation is the backward pass that computes the amount of loss or error of

our current network configuration given the inputs X . This uses the same gradient descent

calculation described in Section 2.3.1 for logistic regression, the θ parameters are the

weight matrices of the network W 1 and W 2. Importantly, backpropagation requires all

forward pass functions to be differentiable. This allows for the calculation of the derivative

of the loss L wrt. to the network weights W . Similar to logistic regression, this is the

sequence of partial derivatives of the loss wrt. each parameter wi
j,k.

The forward pass in a general feed-forward ANN composes weighted sums, non-linear

functions at each layer. To take the partial derivative of the loss wrt. each parameter the

chain-rule is repeatedly applied as shown on the right of Figure B.2 for a single parameter

from a hidden node to the output node.

Each partial derivative can be thought of as the amount of influence that the incoming

signal should be either reinforced or diminished by to minimise the loss. Given all the

partial derivatives ( ∂L
∂w1

1,1
· · · ∂L

∂wi
j,k
) Equation 2.4 can be followed to update the parameters.

The forward / backward process then starts over. The loss via the forward pass is computed

again with these revised parameters, the partial derivatives of the loss wrt. each parameter

is calculated and each parameter is adjusted according to their derivatives. This process

repeats until convergence, that is, until the loss no longer continues to reduce.
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For NLP problems, a feed-forward NN could use tf-idf matrix as the input layer with

|V | input neurons, one for each vocab entry, or in our word vector example, we could

average all embeddings in a sentence or paragraph to produce each x⃗i in X . This example

would have an input neuron for each word vector component.

To avoid overfitting, which is the result of generalising poorly to unseen test data whilst

simultaneously performing overly well on the training data, a common regularisation

method for neural networks is Dropout [143]. During model training this randomly drops

outputs of nodes within a layer with a set probability ρ , forcing the parameters or weights

of receiving nodes to not overly rely on single or a small number of nodes from sample to

sample. During validation and testing the ρ = 0 means all nodes are active during these

stages.

B.2 Sequence Modelling in Neural Networks

As first discussed in Section A.5.1, using bag-of-words such as tf-idf and word vector

averages removes the sequence order of inputs. Sequence order in language is important

but feed-forward neural networks, regardless of network breadth or depth are unable to

explicitly model the order of input sequences.

Recurrent neural networks (RNNs) are a class of network topology that contain a loop

or recurrence. The simplest network would be a single node with a single connection to

itself. Figure B.3 shows this network and the unrolled version i.e. a version of the network

topology without loops. This shows that each successive input item in the sequence x1 · · ·xn

e.g. each word in a sentence is processed in order by the node. At each sequence input

item the node produces an output and hidden node state. Successive nodes then receive a

hidden state, the memory, of the past sequence alongside the next input item.

General RNNs are known to be susceptible to the problem of vanishing or exploding

gradients [70]. Unrolling a recurrent node for the total length of a input sequence involves

creating a network as deep as the sequence. Optimising such a network is now via
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Fig. B.3 A single node recurrent neural network, and the unrolled version

backpropagation through time, which similar to regular backprop involves the product

of multiple gradients through the successive applications of the chain-rule. During the

training process if gradients become small the calculation quickly reduces to ≈ 0, or if

gradients are large value, the calculation can quickly overflow. Specific RNN architectures

tackle this through gating logic, such as the long short-term memory (LSTM) [52] and

the more recent gated recurrent unit (GRU) [29]. These architectures contain parameters

that gate how information flows through the node, protecting the internal state or cell from

both the previous hidden state input and the current input item. Prior work showed that

these gates minimised the convergence issues of vanishing or exploding gradients, but

also allowed dependencies between input sequences to be more accurately modelled. For

clinical NLP these RNNs have been used for the effective modelling of negations [137],

temporal expressions [46] and named entity recognition [100] amongst others.

B.2.1 Sequence to Sequence Modelling

Our review of methods so far has mostly discussed problems of binary or multi-class

classification. This presents problems as a matrix X = (x1, · · ·xn) where each row vector x⃗i

outputs a single label y⃗ = (y1, · · ·yn) indicating the intended class. Multi-label problems

allow for yi to be a sequence of applicable class labels. Another common problem is the

modelling of sequence-to-sequence (seq2seq) problems that have the same input X but now

each yi is another sequence over the shared vocabulary V , e.g. y⃗i = (v1 · · ·vk). For clinical
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Fig. B.4 An abstract Encoder / Decoder model architecture showing the variation in decoder
inputs according to training or inference modes

NLP this includes problems such summarisation [167], medical question answering [129]

and medical translation or simplification [32].

Prior work has shown seq2seq models perform well in an encoder-decoder architecture

[145]. Figure B.4 shows an example encoder-decoder architecture showing distinct encoder

and decoder networks and the input / output data flow during training and inference time.

The encoder model is tasked with learning representations of the input resulting in a

fixed dimensional vector for the variable length sequence. This is similar to the models

we have discussed for classification of sequences. The decoder portion uses two inputs.

Firstly, the encoded input sequence from the encoder, and secondly the output sequence.

During training time the output sequence, or the intended sequence to be generated, is

fed into the decoder alongside the encoded input. This is known as teacher-forcing and

improves training convergence [160]. During inference time the output sequence is the

previously output sequence from the decoder. All seq2seq models vocabularies include

special characters to indicate the start and end of sequences e.g. ‘<start>’, ‘<end>’. During

inference time the decoder is provided the encoder input and the ‘<start>’ sequence token

and continues to produce new tokens conditioned on the previously decoded tokens until

the ‘<end>’ token.
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Early work focused on encoder-decoder seq2seq models used stacks of LSTMs [145],

however these models often were not able to model long range dependencies between

items in a given sequence. The memory of a cell in the LSTM case or simply a node in

a general RNN are stored in the latest hidden state i.e. ht−1. This means with each new

input item, there is an opportunity for previous states to become corrupted or inaccessible.

Natural language often has many potential long range dependencies occurring in even the

simplest of text. For example, a clinical note might introduce a person with their name and

then subsequently use a pronoun. Usage of the pronoun could be after many input tokens,

so the model must be able to reference back to the initial introduction of the person via

their name.

B.3 Long Range Dependencies in Sequences

Attention is a method to provide models a view of prior input states alongside the directly

previous hidden state ht−1. Originally a method to allow an encoder-decoder architecture

model to allow the decoder portion to selectively attend to prior hidden states previously

output by the encoder [8]. The authors propose a soft-alignment model via a feed-forward

neural network that computes a context vector ci for each timestep used in the calculation

of the next hidden state hi. The context vector ci is the weighted sum of all previous

encoder hidden states, with the weights αi j calculated as the softmax of the alignment of

each previous hidden and current hidden state. The equations are as follows:

hi = f (hi−1,yi−1,ci) (B.3a)

ci = Σαi jh j (B.3b)

αi j = softmax(ei j) (B.3c)

ei j = a(h j,hi) (B.3d)
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For the alignment calculation a(hi−1,hi), the original paper uses the concatenated

hidden state of bidirectional LSTM hidden state for the current hi. Bidirectional LSTMs

[132], enable the unrolled LSTM node to view input sequences from both left-to-right and

right-to-left. This provides improved representation learning as often sequence items to

the right may affect the interpretation of a current item, which would otherwise not be

interpretable to a unidirectional LSTM. a is modelled using a simple feed-forward neural

network with one hidden layer.

The concept of attention in RNNs have been heavily studied [42, 138, 158] and applied

beyond the encoder-decoder and translation use cases [163, 169, 154]. However, RNNs are

by design only able to process one sequence input item at a time. Current hidden and output

states depend on either the direct or n many prior hidden states via an attention mechanism.

In comparison to feed-forward networks, entire layers, i.e. each neuron activation, can be

calculated in parallel, making them highly efficient for long input sequences.
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